
Regular Repair of Specifications
Michael Benedikt Gabriele Puppis Cristian Riveros

Abstract—What do you do if a computational object (e.g.
program trace) fails a specification? An obvious approach is to
perform repair: modify the object minimally to get something
that satisfies the constraints. In this paper we study repair
of temporal constraints, given as automata or temporal logic
formulas. We focus on determining the number of repairs that
must be applied to a word satisfying a given input constraint in
order to ensure that it satisfies a given target constraint. This
number may well be unbounded; one of our main contributions
is to isolate the complexity of the “bounded repair problem”,
based on a characterization of the pairs of regular languages
that admit such a repair. We consider this in the setting where
the repair strategy is unconstrained and also when the strategy
is restricted to use finite memory. Although the streaming setting
is quite different from the general setting, we find that there are
surprising connections between streaming and non-streaming, as
well as within variants of the streaming problem.

I. INTRODUCTION

When a computational object does not satisfy a specifica-
tion, an obvious approach is to repair it – edit it minimally
so that it becomes valid. We may want to perform this editing
transformation on the object, or we may be merely interested
in knowing how difficult it would be to perform – that is,
determining how far a given object or collection of objects is
from satisfying the specification. In the database community,
this has been extensively studied under the notion of constraint
repair (see e.g. [1], [2]): the specifications considered there are
relational integrity constraints, such as keys and foreign keys,
and the problems considered include determining how much
a database needs to be modified in order to satisfy a given
constraint.

Here we initiate the study of repair for temporal constraints
on words. The notion of repairing a word is indeed more
obvious than in the case of databases: we can simply consider
the edit distance between strings, a standard measure of how
many basic operations it takes to get from one string to
the next. Edit distance is lifted in a natural way to give a
measure dist(w,L) of the distance of a string w to a language
(collection of strings) L: the minimal distance of w to any
string in L. It is well-known [3] that the standard dynamic
programming approach to edit distance extends to give an
efficient algorithm for calculating dist(w,L) when L is a
regular language given as an NFA.

In this work we take the next step and consider a “distance”
between languages – given languages R and T (specified
in different ways) we aim to calculate how difficult it is to
transform a string satisfying R into a string satisfying T . The
notation is motivated by considering R to be a restriction —
a constraint that the input is guaranteed to satisfied – while T
is a target – a constraint that we want to enforce. We consider

the worst-case over a string s ∈ R of the number of edit
operations needed to move s into R: supw∈Rdist(w, T). That
is, we look at the worst-case number of operations needed
to get from R to T . Of course, this number may be infinite;
the core of our results is a procedure for solving the bounded
repair problem – determining whether the supremum above is
finite. Of course, in order to compute this effectively, we need
to restrict the languages R and T . We consider this problem
for regular languages, presented by both deterministic and
non-deterministic finite automata. We also consider languages
specified by Linear temporal logic. In all these cases we
determine the complexity of the bounded repair problem.

Above we considered the use of an edit/correction function
that can read the whole string in memory. In this work we
consider the impact of limitations on the editing process –
what happens when we require the editing to be done by a
transducer, reading in the input letter-by-letter and producing
the corrected output, based only on a finite amount of control
state and a fixed amount of lookahead in the word. We refer to
this as a streaming repair processor. We isolate the complexity
of the streaming repair problem, for any lookahead, for any of
the language classes considered in the non-streaming case.

The above deals with determining whether the distance of
one specification to another is finite or infinite. But in the
finite case, we may want to compute this distance exactly,
and to produce the processor that optimally edits a given
specification. Note that in the non-streaming setting, it is easy
to describe the optimal processor: it is simply the function
that given a word w runs a dynamic-programming algorithm to
compute the edit distance to the target (e.g. the algorithm from
[3]) in the case of NFAs). In the streaming setting, it is not
clear how to derive the optimal editing algorithm efficiently.
We give results on the complexity of computing the exact
bound when it is finite in both the streaming and non-streaming
setting, and also give procedures for computing the optimal
processor in the streaming setting.

The streaming and non-streaming repair problems have very
different flavors: the former are closely related to games
played on the components of an automata, while the latter
require a more global analysis, and exhibit a close relation to
distance automata. However, there are connections between
the different problems: we show that in the case where there
is no restriction, the bounded repair problems are the same for
both the streaming and non-streaming setting. We also show
that the bounded repair problem in the streaming setting is
independent of the lookahead, and is robust under plausible
alternative definitions.

In summary our contributions are:

• We formalize the bounded repair problem for languages
and characterize when regular languages have bounded
repair, in both the streaming and non-streaming setting.

• We show that the bounded repair problem in the stream-
ing setting is independent of the lookahead of the stream
processor, and is robust under variants of the cost func-
tion.

• Using the characterizations above, we give results on the
complexity of the bounded repair problem in each setting.

• We present results on the complexity of computing the
optimal bound, and on computing the optimal strategy in
the streaming case.

• We demonstrate special cases where the streaming and
non-streaming bounded repair problems have the same
solution.

Organization: Section II gives preliminaries, while Section
III defines the basic problems. Section IV gives the character-
izations of bounded repair that we will use throughout the
remainder. Section V studies the non-streaming case, while
Section VI deals with the streaming case. Section VIII briefly
discusses extensions to infinite words, while Section IX gives
related work and conclusions. Proofs are relegated to an
appendix.

II. BASIC NOTATION AND TERMINOLOGY

Given a word w over an alphabet Σ, we denote by |w| its
length and, for every position 1 ≤ i ≤ j ≤ |w|, we denote by
w[i] (resp., w[..i], w[i..], w[i..j]) the i-th symbol of w (resp.,
the prefix of w ending at position i, the suffix of w starting
at position i, the infix of w starting at position i and ending
at position j).

Automata. Non-deterministic finite state automata (shortly,
NFA) will be represented by tuples of the form A =
(Σ, Q,E, I, F), where Σ is a finite alphabet, Q is a finite set of
states, E ⊆ Q×Σ×Q is a transition relation, and I, F ⊆ Q are
sets of initial and finite states. The notions of run and accepted
word are the usual ones. L (A) is the language recognized by
A. For technical reasons, it is also convenient to assume that
all states of an NFA are reachable from some initial states (if
this were not the case, then we can preprocess the automaton
in linear time and prune all unreachable states). If A is a
deterministic finite state automaton (DFA), then we usually
denote the unique initial state by q0 and turn its transition
relation E into a partial function δ from Q×Σ∗ to Q defined
by δ(q, ε) = q and δ(q, a · u) = δ(q′, u) iff (q, a, q′) ∈ E.
It is worth noticing that, since the decision problems we
are going to deal with are at least NLOGSPACE-hard and
since any given automaton can be pruned using some simple
NLOGSPACE reachability analysis, this assumption will have
no impact on our complexity results.

Since automata can be viewed as directed (labeled) graphs,
we inherit the standard definitions and constructions in graph
theory. In particular, given an NFA A = (Σ, Q,E, I, F) and
a state q ∈ Q, we denote by C(q) the strongly connected

component (shortly, SCC) of A that contains all states mutu-
ally reachable from q. We say that a component C of A is
final if it can reach a final state (possibly outside C). Given
a set C of states of A (e.g., a SCC), we denote by A|C the
automaton obtained by restricting A to the set C and by letting
the new initial and final states be all and only the states in C
(note that if C consists of a single transient state, then the
language L (A|C) recognized by the subautomaton A|C is
empty). Finally, we denote by Dag(A) the directed acyclic
(unlabeled) graph of the SCCs ofA and by Dag∗(A) the graph
obtained from the transitive closure of the edges of Dag(A).

Transducers. A (letter-to-word sequential) transducer is a
device of the form S = (Σ,∆, Q, δ, q0,Ω), where Σ is a finite
input alphabet, ∆ is a finite output alphabet, Q is a finite set of
states, δ is a transition function from Q×Σ to ∆∗×Q, q0 is an
initial state, and Ω is a final output function from Q to ∆∗. For
every input word u = a1 . . . an ∈ Σ∗, there is one run of S of
the form q0

a1/v1−−→ q1
a2/v2−−→ . . .

an/vn−−→ qn
ε/vn+1−−→ , with δ(qi, ai) =

(vi, qi+1) for all 0 ≤ i < n and Ω(qn) = vn+1; in such a
case, we define the output of S on u to be the word S(u) =
v1v2 . . . vnvn+1. The only slightly non-standard feature here
is the final output function, which allows an additional word
to be added on at the end.

Transducers as above produce an output word immediately
on reading an input character. We will also consider trans-
ducers with a bounded amount of “delay”. A k-lookahead
transducer, with k ∈ N, is as above, but where the transition
function δ now has input in Q×Σ×(Σ⊥)k, with Σ⊥ = Σ∪{⊥}
and ⊥ 6∈ Σ. Given an input word u and a position 1 ≤ i ≤ |u|
in it, we denote by −�u i the (k + 1)-character subword of
u · ⊥k that starts at position i and ends at position i + k.
The output of the k-lookahead transducer S on an input u
of length n is the unique word v = v1v2 . . . vnvn+1 for
which there exists a sequence of states q0, ..., qn satisfying
δ(qi,

−�u i) = (vi, qi+1), for all 1 ≤ i ≤ n and Ω(qn) = vn+1.
Clearly, a 0-lookahead transducer is simply a standard (letter-
to-word sequential) transducer.

Logics. In this paper we look at languages defined by
automata, and also consider linear temporal logic LTL, which
utilizes the modal operators X (next) and U (until), along
with boolean operators. Hereafter, we shall interpret LTL
formulas on finite models only. This requires a careful use of
the modal operators (for instance, the LTL formula Xtrue
does not hold on singleton words). We also assume that
the propositional variables of an LTL formula are precisely
the symbols of the underlying alphabet (this means that two
different propositional variables can not hold at the same
position in a model).

Finally, recall that DFA and NFA are equally expressive
DFA and NFA express exactly the regular languages while
LTL expresses a strict subclass of them. NFA are exponentially
more succinct than DFA.

III. PROBLEM SETTING

Given two words u ∈ Σ∗ and v ∈ ∆∗, we denote by
Dist(u, v) the Levenshtein distance (henceforth, edit distance)

between u and v, which is defined as the length of a shortest
sequence s of edit operations (e.g., deleting a single character,
modifying a single character, and inserting a single character)
that transforms u into v [4].

Given two finite alphabets Σ and ∆, a processor is simply
a function from Σ∗ to ∆∗. Given a processor f , we refer to
the edit distance between two words u and f(u) as the cost
of f on the word u. Given a language R ⊆ Σ∗ the worst-case
cost of f over R is the supremum of the cost of f over all
words in R (if the cost is unbounded, then we say that the
worst-case cost is ω).

The general setting of a repair problem consists of two
languages R ⊆ Σ∗ and T ⊆ ∆∗, called the restriction
and target languages, respectively. We would like to repair
a string that is known to belong to the restriction language
into a string in the target language. A processor f is a repair
strategy of R into T if for every word u ∈ R, the output
f(u) is in T . We denote by Dist(R, T) the worst-case cost
of an optimal repair strategy of R into T . It is easy to see
that Dist(R, T) = supu∈R minv∈T Dist(u, v), since the best
strategy is just to output on any u ∈ R the word in T that is
closest to u with respect to the edit distance.

The bounded repair problem is to decide, given (some
representations of) languages R and T , whether Dist(R, T) is
finite, that is, whether there is a repair strategy f of R into T
and a natural number n ∈ N such that Dist(u, f(u)) ≤ n for
all u ∈ R. The threshold problem is to compute the exact value
of Dist(R, T). Clearly, the languages R and T that form the
input to the bounded repair problem must be finitely presented,
for instance, in terms of machines or logical formulas. In
this paper, we study the complexity of the bounded repair
problem for input languages represented by means of the
following formalisms: (i) deterministic finite state automata
(DFA), (ii) non-deterministic finite state automata (NFA), and
(iii) LTL formulas with only future modal operators (shortly,
LTL formulas). We shall also consider special cases of the
bounded repair problem, where the restriction language is
assumed to be the universal language Σ∗, or where the repair
strategy is implemented by a sequential transducer.

Streaming vs non-streaming. In its most general formula-
tion, a repair strategy could be any function mapping words
to edit words (in principle, such a function could even be
not computable). However, we know from [3] that there is a
dynamic programming algorithm that, given a word u and a
target language T represented by a DFA, computes in linear
time an optimal edit sequence s such that s(u) ∈ T . In
particular, this shows that optimal repair strategies can be
described by functions of fairly low complexity. Sometimes
it is desirable to have repair strategies that are in even more
limited classes. Perhaps the ideal case is when a strategy is
realizable with a bounded memory one-pass algorithm, that
is, using a (letter-to-word sequential) transducer. Recall that a
letter-to-word transducer defines a word-to-word function (i.e.,
a processor); if this function is a repair strategy, we refer to the
transducer as a streaming repair strategy. The idea is that any
input word u from a restriction language should be repaired

in an online way. Similarly, we can talk about a k-lookahead
streaming repair strategy.

Accordingly, we define the bounded repair problem in the
(k-lookahead) streaming case as the problem of deciding,
given two languages R and T , whether there is a (k-lookahead)
streaming strategy for repairing R into T with uniformly
bounded cost. To stress the difference between the streaming
and the non-streaming settings, we explicitly refer to the
original problem as the bounded repair problem in the non-
streaming case. The following example, due to Slawomir
Staworko, illustrates the difference between the streaming and
non-streaming setting:

Example 1. Consider R = (a + b)c∗(a+ + b+) and T =
ac∗a+ + bc∗b+. One can get from R to T by only editing the
initial letter: so the asymptotic cost is 0. A streaming strategy
must commit as to changing the initial letter or leaving it be,
and then will be forced to repair

Costs in the streaming case. Note that, if we have a
transducer S and a word u = a1 . . . an ∈ Σ∗, then we can
define the cost of S on u in two ways:

• letting q0
a1/v1−−→ q1

a2/v2−−→ . . .
an/vn−−→ qn

vn+1−−→ be the run of S
on u, we define the aggregate cost of S on u to be the
sum over all indices 1 ≤ i ≤ n of Dist(ai, vi), where
Dist(ai, vi) is 1 if vi is empty, |vi| − 1 if ai occurs in
vi, and |vi| otherwise;

• considering the transducer S as a processor, we define
the (edit) cost of S on u to be simply the edit distance
between u and the output S(u).

The first cost considers the distortions performed in producing
the input from the output – it is equivalent to considering the
transducer as producing edits rather than strings and counting
the number of edits produced. The second cost is global and it
considers only the output and not its production (clearly, this
cost never exceeds the aggregate cost). These two models of
cost can be very different in general. Consider a transducer S
on the input alphabet Σ = {a, b} that swaps a’s and b’s. On the
string un = (ab)n, the aggregate cost is 2n since S changes
each letter, but the edit distance between u and S(u) (i.e., the
edit cost of S on u in our sense) is only 2. Nevertheless, it
will turn out that for the bounded repair problem it does not
matter which model of cost we choose (see Theorem 3).

Special cases. We are also interested in a variant of the
bounded repair problem where the restriction language is
assumed to be a universal language of the form Σ∗. In this
case, the input to the bounded repair problem consists of a
restriction alphabet Σ and a target language T . We refer to
this variant of the bounded repair problem as the unrestricted
case.

A. Repair Problems, Automata, and Games

In the case of DFA, both the non-streaming and streaming
problems correspond to special cases of prior problems studied
in automata and games.

Non-streaming repair problems correspond to distance au-
tomata, while the streaming variant corresponds to energy

games. We explain the correspondences in detail now. In both
cases, we find that the results for the more general framework
do not give tight bounds. .

Non-streaming repairs and distance automata. Intu-
itively, a distance automaton is a transducer D that receives as
input a finite word w and outputs a corresponding cost D(w)
in N∪{∞}. Formally, the transitions of the distance automaton
D are quadruples of the form (p, a, c, q), with p being a state
in the restriction, a an input symbol, c a cost associated with
the transition, and q a target state. The cost D(w) on input
w is obtained by taking the minimum among the costs of the
successful runs of D on w, where the cost of a successful run
is defined as the sum of the costs of its transitions (we let
D(w) =∞ if D admits no successful run on w).

The main problem that has been studied for distance au-
tomata is the limitedness problem which consists of deciding
whether the cost function computed by a given distance
automaton D is uniformly bounded on all accepted words. This
problem was shown decidable by Hashigushi [5] and later in
[6] was shown to be PSPACE-complete.

Distance automata have been related to edit-distance prob-
lems in several prior works – see the Related Work section
for further discussion of the connections. Here we note only a
simple reduction of the bounded repair problem to limitedness.
Given two NFA R and T , one can construct a distance
automaton D that computes the cost of repairing any word
from L (R) into a word from L (T). LetR = (Σ, Q,E, I, F)
and T = (∆, Q′, E′, I ′, F ′) bet the two NFA for the restriction
and the target languages. First of all, we associate with each
symbol a ∈ Σ a matrix M(a) whose entries M(a)[p, q] are
indexed over the pairs of states p, q of T and give the minimum
edit-distance between the symbol a and a word v ∈ ∆∗

such that p v−−→ q (if q is not reachable from p, then we let
M(a)[p, q] =∞). We then define the distance automaton D as
the quadruple (Σ, Q×Q′, E⊗M, I×I ′, F×F ′), where E⊗M
is the set of all transitions of the form

(
(p, p′), a, c, (q, q′)

)
,

with a ∈ Σ, (p, a, q) ∈ E, p′, q′ ∈ Q′, and c = M(a)[p′, q′].
It is easy to see that the cost function computed by D maps
any word u ∈ L (R) (which is accepted by D too) to the cost
of the best non-streaming repair of u into L (T). Moreover,
the distance automaton D has size polynomial in the size of
R and T . Combining this reduction with the PSPACE upper
bound for the limitedness problem, we see that the bounded
repair problem for NFA is in PSPACE.

The same reduction technique can be applied to solve the
bounded repair problem for DFA. In this case, however, the
resulting complexity bound is not optimal: the bounded repair
problem for DFA is in fact in co-NP (cf. Corollary 4).

Roughly speaking, the reason why the bounded repair
problem for DFAs is easier than the limitedness problem for
(unrestricted) distance automata is that the distance automata
emerging from DFA repair problems are deterministic on
the 0-cost moves. In addition to not giving tight bounds,
approaches via distance automata give less insight into the
problems. We invite the reader, for example, to compare the

PSPACE upper bound that we derive from our characterization
of repairability, Theorem 2, with the PSPACE upper bound
given in [6].

Streaming repairs and energy games. Just as non-
streaming repair problems can be seen within the framework of
distance automata, bounded repair problems in the streaming
setting are special cases of games on graph that pair qualita-
tive (e.g., reachability) objectives and quantitative ones (e.g.,
maximization of payoff). An interesting family of such games
is that of energy games studied by Chatterjee and Doyen [7],
which are played on finite weighted arenas. The quantitative
requirement is that the running sum of the weights (i.e., the
energy) remains positive. The qualitative requirement could
be either a safety condition, which makes sense for both
finite and infinite plays or a parity, (e.g., Büchi) condition,
which makes sense for infinite plays only Together, these
requirements describe a game between an energy player, who
wants to fulfill both quantitative and qualitative requirements,
and her opponent. A variant of energy games allows the
parameterization by an initial credit of energy; the higher the
credit the more possibility for the energy player to win.

Theorem 2 in [7] shows that the problem of determining
whether there is a finite initial credit so that the energy player
has a winning strategy is in NP ∩ coNP (the exact complexity
is however unknown). Theorem 3 in the same paper shows
that same problem can be solved in time O

(
|E| · d · |Q|d+3 ·

W
)
, where |E| denotes the number of edges of the arena,

|Q| denotes the number of nodes of the arena, W denotes the
largest weight in absolute value of the arena, and d denotes
the number of priorities of the parity condition. As a matter
of fact, the latter complexity result implies that energy games
with safety or Büchi conditions can be solved in polynomial
time with respect to the size of the arena (provided that the
weights are represented in unary).

One can easily reduce the bounded repair problem in the
streaming setting, under the aggregate cost model for lan-
guages recognized by DFA, to the finite initial credit problem
for energy safety games. Informally, the choice of the opponent
in the energy game corresponds to the letters emitted by the
restriction, while the edits correspond to choices of the energy
player. Formally, we have a node in the arena for each pair
of states of the restriction DFA R and of the target DFA T
– call this node a “Restriction Player Node”. We also have a
node for each combination of restriction state, target state, and
letter played – call this a “Target Player Node”. The former
represents the states reached by the restriction and target
automata after parsing the unedited and edited words, while
the latter adds the last letter emitted by the restriction. There
is an edge of weight 0 going from a Restriction Player Node
(p, p′) to any Target Player Node (q, p′, a), where (p, a, q) is a
transition of the restriction DFA R. Similarly, there is an edge
of weight 0 going from a Target Player Node (q, p′, a) to a
Restriction Player Node (q, q′), where (p′, a, q′) is a transition
of the target DFA T . There are also edges of weight −c
from Target Player Nodes (q, p′, a) to Restriction Player Nodes

(q, q′), provided that there is a word v at distance c from a (i.e.,
Dist(a, v) = c) such that T can move from p′ to q′ consuming
v. Finally, the safety condition requires the existence of a play
that ends in a non-final state of R or in a final state of T .

The above construction reduces the bounded repair problem
in the non-streaming setting, under the aggregate cost model
for DFA, to the problem of deciding whether a player can win
an energy safety game with a finite initial credit. We observe
that the size of the resulting arena is polynomial in the size of
the restriction and target DFA and, moreover, the weights are
bounded by the size of the target DFA. This gives a PTIME
upper bound to the complexity of the bounded streaming repair
problem for DFA.

Our characterization results (see Theorem 3) give analo-
gous (tight) complexity bounds for languages recognized by
DFA and moreover, prove that the bounded repair problem
in the streaming setting is not sensitive to the models of
aggregate/edit cost. They also provide tight bounds for special
cases of the problem that can not naturally be captured in the
setting of energy games. Our repair strategy can be seen as a
special case of the notion of good-for-energy strategy, which
is introduced in [7] to solve energy parity games. Intuitively,
a good-for-energy strategy guarantees that the outcome of the
play contains only cycles of non-negative energy (this excludes
the possibility for the opponent to induce plays of arbitrary
low energy). We characterize bounded repair using “good-
for-repairer” component mappings, when a SCC C of the
restriction automaton covers a SCC C ′ of the target automaton
(see Section IV for a formal definition). In such a situation any
word emitted by the restriction automaton with the component
C does not need to be repaired in order to be recognized by
the target automaton with the component C ′.

Despite the connections mentioned above, many concepts
and problems concerning repair do not have natural analogs
in the game setting, and vice versa. For instance, in the game
setting one could allow look-ahead for one player, but it is
not as natural as in the repair setting. Moreover, while the
aggregate cost metric fits the game setting naturally, our usual
cost function does not. Conversely, the binary weights that
are allowed in the game setting have no natural analog in the
context of edits. Our characterization also allows us to easily
isolated special cases of lower complexity that are not easily
seen from the embedding into energy games.

IV. CHARACTERIZATIONS OF BOUNDED REPAIRABILITY

The non-streaming case. We fix a restriction language R
and a target language T and we assume that these languages
are recognized by two NFA R and T , respectively. Recall that
Dag(R) is the directed acyclic graph of the SCCs of R and
Dag∗(T) is the symmetric and transitive closure of Dag(T).
Moreover, recall that we tacitly assume that all useless states
are removed from both R and T .

We say that a path π = C1 . . . Cn in Dag(R) is covered
by a path π′ = C ′1 . . . C

′
m in Dag∗(T) if we have (i) n =

|π| = |π′| = m and (ii) L (R|Ci) ⊆ L (T |C ′i) for all indices

1 ≤ i ≤ n, namely, if the language recognized by the i-
component along π is contained in the language recognized
by the i-component along π′.

The following characterization reduces the bounded repair
problem in the non-streaming case to the path matching
problem in finite directed acyclic graphs.

Theorem 2. Given two NFA R and T , the following condi-
tions are equivalent

1) there is a repair strategy of L (R) into L (T) with
uniformly bounded cost,

2) every path in Dag(R) is covered by some path in
Dag∗(T),

3) there is a repair strategy of L (R) into L (T) with worst-
case cost at most (1 + |Dag(R)|) · |T |.

The interesting directions are from 2) to 3) and from 1)
to 2). For the first implication, if the coverability condition
is satisfied, then we repair words w in (R) by choosing any
path π through Dag(R) taken by w, and looking at a covering
path π′′ in Dag(T). At the boundary points where w jumps
from one component to the next in R, we can insert small
words that push the computation in D to the next component
in π′; because these are strongly connected components, we
can arrange a jump to any state in p′. Thus we can repair w
with a small word.

The second implication is more complex, and is proven by
contraposition. Assuming the negation of 2) we know that
there is a path π = C1 . . . Ck of Dag(R) that is not covered.
For each component Ci ∈ π we construct a single word vi that
witnesses all non-containments of L (Ci) in components of T .
We then form for each n words wn formed by concatenating
n-fold iterations of the vi: words wn = v′0v

n
1 . . . v

n
k v
′
k where

the initial and final strings v′0, v
′
k are arranged to make sure

the resulting word is in L (R). We argue that wn requires at
least n edits to be repaired into a word in L (T).

The streaming case. We now modify Theorem 2 to give a
characterization of the streaming repair problem, adding in a
game setting.

Fix two DFAs R and T recognizing the restriction and
target languages. We associate with the DFA a reachability
game between two players, Adam and Eve, on a suitable arena
AR,T , defined in terms of the SCCs of R and T . The idea
underlying this game is as follows: during Adam’s construction
of a path π in Dag(R), Eve has to provide a construction of a
corresponding path f(π) in Dag∗(T) that covers π; moreover,
the resulting function f must satisfy the following condition:
if π · C is an extension of the path π in Dag(R) by a single
SCC, then either f(π · C) coincides with f(π) or it is an
extension of f(π) by a single SCC, namely, f(π ·C) is of the
form f(π) ·D.

Formally, the nodes of the arena AR,T where player Adam
(resp., Eve) nodes are the pairs of the form (C,D) (resp.,
(D,C)), where C is a SCC of R and D is a SCC of T .
The edges of the arena connect Adam’s nodes (C,D) to
Eve’s nodes (D,C ′) where (C,C ′) is an edge of Dag(R)

and, similarly, Eve’s nodes (D,C) to Adam’s nodes (C,D′)
where (D,D′) is an edge of Dag∗(T) and, in addition,
L (R|C) ⊆ L (T |D′). The initial node is an Eve node
(D0, C0), where C0 is the SCC of the initial state of R and
D0 is the SCC of the initial state of T . The last player who
moves wins. Intuitively, Adam’s objective is to reach a node
(C,D) where Eve cannot respond with any move, conversely,
Eve’s objective is to reach a node (D,C) where Adam cannot
respond with any move. As usual, we say that a player has
a winning strategy on the arena AR,T if he/she can win the
reachability game on AR,T independently of choices of the
other player.

The following characterization reduces the bounded repair
problem in the streaming case to the problem of determining
the winner of a suitable reachability game. It also shows that,
quite surprisingly, the bounded repair problem in the streaming
setting is not sensitive to the notions of transducer with/without
lookahead and to the models of aggregate/edit cost.

Theorem 3. Given two DFA R and T , the following condi-
tions are equivalent
1) there is a k-lookahead streaming strategy, for some k ∈

N, that repairs L (R) into L (T) with uniformly bounded
edit cost,

2) Eve has a winning strategy for the reachability game on
AR,T ,

3) there is a 0-lookahead streaming strategy that repairs
L (R) into L (T) with worst-case aggregate cost at most
(1 + |Dag(R)|) · |T |.

V. COMPLEXITY RESULTS IN THE NON-STREAMING CASE

In this section, we study the complexity of the bounded
repair problem and the threshold problem in the non-streaming
setting.

A. The bounded repair problem

We begin by analyzing the complexity in the case of
languages recognized by non-deterministic finite automata.

NFA. Theorem 2 gives a straightforward PSPACE algorithm
that solves the bounded repair problem between two NFA R
and T in this setting: the algorithm first guesses universally
a path π = C1...Cn in Dag(R), then it guesses existentially
a path π′ = C ′1...C

′
n of the same length in Dag∗(T), and

finally it checks the containment of the subautomaton R|Ci
in the subautomaton T |C ′i for all indices 1 ≤ i ≤ n. Together
with the PSPACE lower bound for the problem proven later
(see Corollary 20), we obtain:

Corollary 4. The bounded repair problem in the non-
streaming case, where the restriction and target languages are
represented by NFA, is PSPACE-complete.

DFA. The same characterization result can be used to solve
the problem when the restriction language is represented by
an NFA and the target language is represented by a DFA. In
this case, we can take advantage of the determinism to show
that the problem turns out to be coNP-complete. Intuitively,

the complexity upper bound follows from the observation that
containment of languages recognized by SCCs of DFA is
decidable in PTIME (even if the successful runs can start from
arbitrary states inside the SCCs) and that the above mentioned
coverability problem for paths of SCCs is in coNP (indeed,
the coverability problem can be solved using a variant of the
online subset construction over the graph of the SCCs of
the target automaton). The complexity lower bound follows
from a reduction from the validity problem for propositional
formulas in disjunctive normal form (i.e., the dual of the SAT
problem): the idea is to encode in the restriction language
all the possible valuations for the propositional variables
(here some redundancy is needed to forbid the repair strategy
from modifying these valuations) and then restrict the target
language to consist only of encodings of valuations that satisfy
at least one clause of the formula.

Theorem 5. The bounded repair problem in the non-streaming
case, where the restriction language is represented by an NFA
and the target language is represented by a DFA, is in coNP
and it is coNP-hard already for languages represented by DFA.

Before turning to the complexity of the bounded repair
problem for languages specified by LTL formulas, we briefly
outline some parameterized complexity results in the automa-
ton case. Quite surprisingly, if we fix either the restriction
language or the target language, then the bounded repair
problem in the non-streaming case becomes tractable. We first
consider the case where the restriction automaton is fixed
and the target automaton is a DFA provided as input to the
problem. Using arguments similar to the previous coNP upper
bound, one can show that the bounded repair problem between
a fixed restriction language and the target language recognized
by a given DFA is in PTIME:

Proposition 6. Let R be a fixed restriction language. The
problem of deciding, given a DFA T , whether there is a non-
streaming repair strategy of R into L (T) with uniformly
bounded cost is in PTIME.

Similarly, the bounded repair problem is tractable when we
fix the target automaton and let the restriction automaton be
an NFA provided as input to the problem:

Proposition 7. Let T be a fixed target language. The problem
of deciding, given an NFAR, whether there is a non-streaming
repair strategy of L (R) into T with uniformly bounded cost
is in PTIME.

LTL. We conclude the section by analyzing the complexity
of the bounded repair problem where languages defined by
LTL formulas are involved. We first consider the problem
where both the restriction language R and the target language
T are defined by some LTL formulas φ and ψ. It is not
difficult to see that this problem is in coNEXPTIME. Indeed,
one can use standard automaton-based techniques to construct,
in exponential time, two DFA

−�
R and

−�
T that recognize the

reversals
−�
R and

−�
T of the languages R and T . Since, in the non-

streaming setting, the cost of repairing R into T is the same

as the cost of repairing
−�
R into

−�
T , one can exploit Theorem 5

to solve the bounded repair problem on the DFA
−�
R and

−�
T . As

for the complexity lower bound, one can reduce the problem
of deciding the non-existence of a tiling of an exponential
square grid – this problem is known to be coNEXPTIME-
complete [8] – to the problem of deciding the existence of a
repair strategy of uniformly bounded cost between two regular
languages defined by suitable LTL formulas. The general idea
of such a reduction is to let the formula for the restriction
language encode all candidate tilings and the formula for the
target language check that none of them is correct.

Theorem 8. The bounded repair problem in the non-streaming
case, where the restriction and target languages are repre-
sented by LTL formulas, is coNEXPTIME-complete.

The bounded repair problem becomes easier when it in-
volves repairs of languages recognized by NFA into language
defined by LTL formulas, or, symmetrically, repairs of lan-
guages defined by LTL-formulas into languages recognized
by NFA:

Theorem 9. The bounded repair problem in the non-streaming
case, where the restriction language R is represented by an
NFA and the target language T is represented by an LTL
formula, is in PSPACE.

Theorem 10. The bounded repair problem in the non-
streaming case, where the restriction language R is repre-
sented by an LTL formula and the target language T is
represented by an NFA, is in PSPACE.

B. The threshold problem

We now consider the problem of calculating the exact cost.
In the case of DFA, we know from Theorem 5 that we can
determine whether the repair cost is finite or infinite in coNP.
Furthermore, Theorem 2 tells us that if the cost is finite it
must be bounded by a polynomial in the input size.

Thus, to determine the exact repair cost in the case where
it is finite, it suffices to test whether the cost is above or
below a given threshold k in unary, since then we can try
every k below the polynomial bound. Perhaps surprising, this
problem is harder than the finiteness problem, although still
within polynomial space:

Theorem 11. The problem of determining, given k and two
languages R and T recognized by DFA, whether Dist(R, T)
is above k, is PSPACE-complete. The same holds when R and
T are given as an NFA.

In the case of LTL, it is not a priori even clear how to
compute the distance of a single word to a formula. However,
this can be shown to be in PSPACE (see the appendix). In
the general case of two LTL formula we get an exponential
blow-up over the automata case, as expected:

Theorem 12. The problem of determining, given k and
two languages R and T defined by LTL formulas, whether
Dist(R, T) is above k, is EXPSPACE-complete.

VI. COMPLEXITY RESULTS IN THE STREAMING CASE

A. The bounded repair problem

DFA. Let us consider two DFA R and T . The characteri-
zation of Theorem 3 shows that the problem of deciding the
existence of a streaming repair strategy of L (R) into L (T)
with uniformly bounded cost amounts at solving a reachability
game over a suitable (acyclic) arena AR,T . In particular, we
observe that the arena AR,T can be computed from R and
T in polynomial time (recall that checking containment of
languages recognized by SCCs of automata is in PTIME).
Moreover, it is known that the problem of deciding the winner
of reachability games over acyclic graphs is PTIME-complete
[9]. This shows that the bounded repair problem for DFA in
the streaming case is PTIME-complete:

Corollary 13. The bounded repair problem in the streaming
case, where the restriction and target languages are repre-
sented by DFA, is PTIME-complete.

It is worth remarking that the complexity of the bounded
repair problem for DFA in the streaming setting is lower than
the analogous problem in the non-streaming setting (indeed
Theorem 5 shows that the latter problem is coNP-complete).
This will be in contrast with the complexity results for
languages defined by LTL formulas, where the non-streaming
setting becomes more difficult than the streaming setting
(compare Theorem 5 and Theorem 16).

NFA. When both restriction and target are NFA we are not
able to provide tight complexity bounds, thus we only claim
that the complexity of the bounded repair problem for NFA
is between PSPACE and EXPTIME (the lower bound follows
from Corollary 20 and the upper bound from the standard
subset construction on NFA):

Corollary 14. The bounded repair problem in the streaming
case, where the restriction and target languages are repre-
sented by NFA, is in EXPTIME and it is PSPACE-hard.

In the case where either the restriction or target language is
a DFA, we have tight bounds:

Theorem 15. The bounded repair problem in the streaming
case, where the restriction language is a DFA and the target
language is an NFA is PSPACE-complete. The same result
holds when the target language is DFA and the restriction is
an NFA.

In the case where the target is a DFA but the restriction
is an NFA, one could also prove an EXPTIME bound on
the bounded repair problem via reduction to energy games
with imperfect information (studied by Degorre et. al. in [10]).
However, this does not give a tight bound, and we do not know
how to extend the reduction to non-deterministic targets.

LTL restriction and target. We now turn to the complexity
of the bounded repair problem in the streaming case, where
both restriction and target languages are represented by LTL
formulas. By following standard constructions in automata
theory, one can translate any pair of LTL formulas φ and ψ

into DFA R and T that have size doubly exponential in the
size of the formulas φ and ψ and that recognize the same
languages defined by φ and ψ. This gives a straightforward
2EXPTIME upper bound to the complexity of the bounded
repair problem. As for the complexity lower bound, we can
reduce the problem of deciding the winner of tiling game over
an exponential square grid – this problem is known to be
EXPSPACE-complete [8] – to the problem of deciding the
existence of a streaming repair strategy of uniformly bounded
cost between the languages defined by suitable LTL formulas
(the idea of such a reduction is similar to the coNEXPTIME-
hardness proof of Theorem 8):

Theorem 16. The bounded repair problem in the streaming
case, where the restriction and target languages are repre-
sented by LTL formulas, is in 2EXPTIME and is EXPSPACE-
hard.

B. The threshold problem and constructing streaming repairs

For the streaming case, if we consider streaming repair
strategies with aggregated cost, the threshold problem main-
tains its PTIME complexity. Further, one can easily reduce
this threshold problem to a reachability game over a suitable
arena.

Theorem 17. The problem of determining, given k and two
languages R and T recognized by DFA, whether one can
repair R into T in the streaming case with aggregate cost
at most k, is in PTIME.

In fact, it follows from the reduction that one can efficiently
compute the optimal streaming repair that satisfies a given
threshold from the previous reduction. This is because we
can construct a streaming repair strategy that satisfies a given
threshold by finding a winning strategy for Eve in the reach-
ability game. Finding such a strategy is well-known to be in
PTIME.

Corollary 18. Let R and T be the restriction and target
languages specified by DFA. If R is streaming repairable into
T with aggregate cost at most k, then an optimal streaming
repair strategy of R into T with aggregate cost at most k can
be computed in PTIME.

Note that in the above we deal with the aggregate cost; the
example from Section III shows that this cost can differ from
the edit cost, while our characterization theorem shows that
one is finite iff the other is. We do not know if finding the
exact edit cost is tractable.

VII. SPECIAL CASES: UNRESTRICTED REPAIR PROBLEMS

We now consider a special case of the bounded repair
problem, namely, the variant where the restriction language is
assumed to be a universal language Σ∗ and the target language
T is represented by means of finite state automata.

The following result adapts the characterization theorems
given in Section IV to give a necessary and sufficient condition
for the existence of a repair strategy with uniformly bounded
cost from a universal language Σ∗ to the language recognized

by an NFA T . This result also shows that there is no difference
between the non-streaming and the streaming settings when
the restriction language is universal (indeed it can be viewed
as a special case of both Theorem 2 and Theorem 3).

Corollary 19. Given an alphabet Σ and an NFA T , the
following conditions are equivalent

1) there is a repair strategy of Σ∗ into L (T) with uniformly
bounded cost,

2) T has a SCC C such that Σ∗ ⊆ L (T |C),

3) there is a 0-lookahead streaming strategy that repairs Σ∗

into L (T) with worst-case aggregate cost at most 2|T |.

Using the above characterization, one can easily devise an
NLOGSPACE algorithm that solves the bounded repair prob-
lem for DFA in the unrestricted (streaming or non-streaming)
case. Indeed, if the target automaton T is a DFA and C is a
component of T , then we have Σ∗ ⊆ L (T |C) iff for every
symbol a ∈ Σ and every state q in C, T contains a transition
of the form (q, a, q′), with q′ ∈ C. Checking this property
amounts to performing a standard NLOGSPACE reachability
analysis over T . Conversely, NLOGSPACE-hardness follows
from the fact that the emptiness problem for DFA is reducible
to the bounded repair problem: given a DFA A over an
alphabet Σ, we have that L (A) 6= ∅ iff Σ∗ is repairable into
L (A′) with uniformly bounded cost, where A′ is a DFA that
recognizes the language Σ∗ ·L (A) and that can be computed
from A using simple logarithmic-space constructions.

In a similar way, one can show that the bounded repair
problem for NFA in the unrestricted case is PSPACE-complete.
This complexity result follows from Corollary 19 and from
suitable reductions to/from the universality problem for NFA.
Indeed, checking whether a target NFA T has a final SCC
C such that Σ∗ ⊆ L (T |C) is equivalent to the problem of
deciding whether Σ∗ is repairable into L (T) with uniformly
bounded cost, and it is clearly reducible to the universality
problem for NFA. As for the PSPACE-hardness, we observe
that a given NFA A recognizes the universal language Σ∗ iff
Σ]{#})∗ is repairable into L (A#) with uniformly bounded
cost, where # is a fresh separator symbol and A# is the
automaton that recognizes the language {u1#u2# . . .#un :
n ∈ N, u1, u2, . . . , un ∈ L (A)} (note that A# can be
computed from A in linear time).

We thus conclude the following:

Corollary 20. The bounded repair problem in the unre-
stricted case, where the target languages are represented by
DFA (resp., NFA) is NLOGSPACE-complete (resp., PSPACE-
complete).

Another consequence of Corollary 19 is the following.
Suppose that a target language T is recognized by a DFA T
that is complete over the target alphabet ∆, namely, for every
symbol a ∈ ∆ and every state p of T , T contains a transition
from p labeled by a. Let us consider a restriction alphabet
Σ contained in ∆ and suppose that Σ∗ is not repairable into
T with uniformly bounded cost. Let us consider a SCC C

of T that is reachable from the initial state and terminal,
namely, with no outgoing edges. We know that C does not
contain any final state (otherwise, C would be a final SCC and
hence, by Corollary 19, Σ∗ would be repairable into L (T)
with uniformly bounded cost). In this case, however, the same
component C in the complement DFA T { would be both final
and terminal, and hence Σ∗ would be repairable into L (T {)
(= ∆∗ \ T) with uniformly bounded cost. This shows that for
every restriction alphabet Σ ⊆ ∆ and every regular language
T ⊆ ∆∗, there exists a (streaming) repair strategy from Σ∗

to T or from Σ∗ to the complement ∆∗ \ T (sometimes, both
cases happen).

Corollary 21. Given an alphabet Σ and a regular language
T ⊆ ∆∗, with Σ ⊆ ∆, one of the following two cases (possibly
both) holds:

1) Σ∗ is repairable into T with uniformly bounded cost,

2) Σ∗ is repairable into ∆∗\T with uniformly bounded cost.

We now turn to the complexity of the bounded repair prob-
lem in the unrestricted case, but where the target languages
are represented by LTL formulas. We claim that problem
is PSPACE-hard for LTL formulas. This complexity lower
bounds follows from arguments similar to the automaton-based
setting, namely, from a reduction of the satisfiability problem
for LTL formulas, which is known to be PSPACE-hard [11].
As for the complexity upper bound, we claim that the problem
for LTL formulas is in PSPACE (thus PSPACE-complete).
Indeed, given an LTL formula ψ defining a target language T ,
one can compute in polynomial time a symbolic representation
of a DFA T ′ that recognizes the reversal T ′ of T . Moreover,
one can perform standard reachability analysis on the symbolic
representation of T in polynomial space. Finally, we observe
that Σ∗ is repairable into T with uniformly bounded cost iff Σ∗

is repairable into T ′ with uniformly bounded cost. This shows
that the bounded repair problem in the unrestricted case for
LTL formulas is in PSPACE.

Corollary 22. The bounded repair problem in the unrestricted
case, where the target languages are represented by LTL
formulas, is PSPACE-complete.

VIII. TOWARDS INFINITE WORDS

We briefly discuss a natural generalization of our character-
ization result for the bounded repair problem in the streaming
setting.

Recall that Theorem 2 reduces the bounded non-streaming
repair problem to the problem of deciding the property of
coverability between paths of SCCs in the DAGs of the
restriction and target automata. If we turn to languages of
infinite words recognized by non-deterministic Büchi automata
(NBA), then the characterization result is similar. There is
however a slight complication due to the acceptance condition
in the infinite case.

First of all, we modify the notation for the sub-automata
obtained by restricting to SCCs. As in the previous cases for
NFA, given an NBA B and a SCC C of it, we write R|C to

R :

a

T :

b

b

a

R′ :

b

b

a T ′ :

b

b

c

c
a a

Figure 1: Some non-deterministic Büchi automata.

denote the usual NFA obtained by restricting B to the states
in C and by letting them be both initial and final states. We
also write R|ωC to denote the NBA obtained by restricting B
to the set of states in C and by letting them be initial (we do
keep instead the final states as in B).

To understand why we introduce the two variants B|C and
B|ωC of sub-automata, it is worth looking at the following
examples. Let R and T be the single-component NBA depited
at the top of Figure 1 (all states are initial, the final states
are those with double circles). Observe that, when we view
R and T as NFA, we have L (R|C) ⊆ L (T |C ′), and
hence, by Theorem 2, Dist

(
L (R),L (T)

)
< ω. However,

when we view R and T as NBA, we have L (R|C) ⊆
L (T |C ′), but Dist

(
L ω(R),L ω(T)

)
= ω. On the other

hand, if we consider the NBA R′ and T ′ at the bottom
of Figure 1, and we denote by C and C ′ be their unique
SCCs, then we have that L ω(R′|ωC) * L ω(T ′|ωC ′), but
Dist

(
L ω(R′),L ω(T ′)

)
< ω. The above examples suggest

that we should use both variants of sub-automata for estab-
lishing a characterization result for bounded non-streaming
repairability of languages recognized by NBA.

We now turn to the generalization of the notion of cover-
ability. Given two NBA R and T , a path π of length k in
Dag(R), and a set of paths Π′ in Dag∗(T), we say that π is
Büchi-covered by Π′ iff

i) all paths in Π′ have length precisely k + 1,

ii) L (R|π(i)) ⊆
⋂

π′∈Π′
L (T |π′(i)) for all indices i < k,

iii) L ω(R|ωπ(k)) ⊆
⋂

π′∈Π′
L (T |π′(k))·

⋃
π′∈Π′

L ω(T |ωπ′(k+1)).

The characterization theorem for bounded non-streaming re-
pairability of NBA-recognizable languages is as follows:

Theorem 23. Given two NBA R and T , the following condi-
tions are equivalent

1) there is a repair strategy of L ω(R) into L ω(T) with
uniformly bounded cost,

2) every path in Dag(R) is Büchi-covered by a set of paths
in Dag∗(T),

3) there is a repair strategy of L ω(R) into L ω(T) with
worst-case cost at most (2 + |Dag(R)|) · |T |.

We omit the proof of this theorem, which is almost identical
to that of Theorem 2, and we instead invite the reader to check
that the characterization for the infinite-word case is consistent
with the examples that we gave above. As a matter of fact,
the above characterization result easily yields a PSPACE upper
bound for the bounded non-streaming repair problem between
languages recognized by NBA.

IX. RELATED WORK AND CONCLUSIONS

In this work we have investigated language repair in the
most basic setting of words. Our results are summarized in
the tables below – in the non-streaming setting our bounds
are tight (indicated by a single class), while in the streaming
setting we have several gaps (where a cell gives lower and
upper bounds).

fixed DFA NFA LTL
fixed Const PTIME PSPACE PSPACE
DFA PTIME CoNP PSPACE PSPACE
NFA PTIME PTIME PSPACE PSPACE
LTL PSPACE PSPACE PSPACE CoNEXP

Table I: Complexity of bounded non-streaming repair

fixed DFA NFA LTL
fixed Const PTIME PSPACE PSP, EXPSP
DFA PTIME PTIME PSPACE PSP, EXPSP
NFA PSPACE PSPACE PSP, EXP PSP, 2EXP
LTL PSP, EXPSP PSP, EXPSP PSP, 2EXP EXPSP, 2EXP

Table II: Complexity of bounded streaming repair

We omit the corresponding table for computing the exact
cost: in the case of non-streaming repair we can derive tight
bounds in all cases, and also in the case of streaming repair
for aggregate cost. In the latter case we can also know the
complexity of computing the optimal stream repair processor.

This paper deals with finding a uniform bound on the
number of repairs needed over all instances. However, in a
parallel work we have isolated the complexity of determining
the repair strategy that is optimal for normalized cost of repair,
where normalized cost divides number of repairs by the string
length (in particular, it is always bounded).

We will be looking at extensions to trees next: the initial
motivation for this work was to use repair policies as a way
to correct input XML documents known to satisfy a source
schema to result documents satisfying a target. Obviously, the
notion of edit must be extended to the tree context, and the
class of transducers considered must likewise be modified.

We have focused on the case of finite words in this paper,
but infinite words raise many new issues. In the case of infinite
words in a streaming setting, one can look for strategies
that allow finitely-many edits per word, without a uniform
bound, and likewise look for strategies with “continuous” (but
not uniformly-bounded) look-ahead. This last issue has been
investigated for purely qualitative games by Holtmann et. al.
[12].

Related work on edit distance of languages. The problem
of finding the minimal distance of a string to a regular
language was first considered by Wagner in [3], who showed
that the problem could be solved by adapting the dynamic
programming approach to edit distance, giving a polynomial
time algorithm.

Several authors have extended the definition to deal with
distances between languages. Mohri [13] defines a distance
function between two sets of strings, and more generally

between string distributions: in the case of languages, this is
the minimum distance between two strings in the two respec-
tive languages, which is appropriate for many applications.
Konstantinidis [14] focuses on the minimum distance between
distinct strings within the same language, giving tractable
algorithms for computing it. Our notion of “cost” is quite
distinct from this, since it is asymmetric in the two languages,
focusing on the maximum of the distance of a string in one
language to the other language.

Grahne and Thomo [15] consider a related problem of
“approximate containment” of regular expressions. Expres-
sions are evaluated with respect to an edge-labeled graph
and are given a numerical semantics by a “distortion” – a
generalization of the notion of edit distance. Approximate
containment of T1 and T2 means, roughly speaking, that for
every input graph R and every word w generated by R, the
distance to target T1 is bounded by the distance to T2. Grahne
and Thomo also study “k-containment” (distance to T1 is at
most k more than T2) and “approximate-containment” (k-
containment for some k), relying primarily on a reduction to
the limitedness problem for distance automata. Their problem
differs in several fundamental respects from ours: they are
interested in bounding the difference over all words, not just
the worst case; in addition they quantify over all restrictions
(databases, in their terminology).

An entire line of research in XML data management has
dealt with comparisons and matching algorithms between
schema languages; many of these lift edit distance between
trees to the level of schemas (i.e.g languages) – see, for
example, [16]. However the lifting is done by looking at the
syntactic structure of the schema description, rather than at
the instance level (distance between documents/trees in each
schema).

REFERENCES

[1] M. Arenas, L. Bertossi, and J. Chomicki, “Consistent query answers in
inconsistent databases,” in PODS, 1999, pp. 68–79.

[2] F. Afrati and P. Kolaitis, “Repair checking in inconsistent databases:
Algorithms and complexity,” in ICDT, 2009, pp. 31–41.

[3] R. Wagner, “Order-n correction for regular languages,” CACM, vol. 17,
no. 5, pp. 265–268, 1974.

[4] R. Wagner and M. Fischer, “The string-to-string correction problem,”
JACM, vol. 21, no. 1, pp. 168–173, 1974.

[5] K. Hashiguchi, “Improved limitedness theorems on finite automata with
distance functions,” Theor. Comp. Sci., vol. 72, no. 1, pp. 27–38, 1990.

[6] H. Leung and V. Podolskiy, “The limitedness problem on distance
automata: Hashiguchi’s method revisited,” Theor. Comp. Sci., vol. 310,
pp. 147–158, 2004.

[7] K. Chatterjee and L. Doyen, “Energy parity games,” in ICALP, 2010,
pp. 599–610.

[8] P. Van Emde Boas, “The convenience of tilings,” in Complexity, Logic
and Recursion Theory, vol. 187, 1997, pp. 331–363.

[9] C. Papadimitriou, Computational Complexity. Addison-Wesley Long-
man Publishing Co., Inc., 1994.

[10] B. Puchala and R. Rabinovich, “Parity games with partial information
played on graphs of bounded complexity,” in MFCS, 2010, pp. 604–615.

[11] A. Sistla and E. Clarke, “The complexity of propositional linear temporal
logics,” JACM, vol. 32, no. 3, pp. 733–749, 1985.

[12] M. Holtmann, L. Kaiser, and W. Thomas, “Degrees of lookahead in
regular infinite games,” in FOSSACS, 2010, pp. 252–266.

[13] M. Mohri, “Edit-distance of weighted automata: general definitions and
algorithms,” Int’l Journal of Foundations of Comp. Sci., vol. 14, no. 6,
pp. 957–982, 2003.

[14] S. Konstantinidis, “Computing the edit distance of a regular language,”
Inf. and Comp., vol. 205, no. 9, pp. 1307–1316, 2007.

[15] G. Grahne and A. Thomo, “Query answering and containment for regular
path queries under distortions,” in FOIKS, 2004, pp. 98–115.

[16] H. Do and E. Rahm, “COMA - a aystem for flexible combination of
schema matching approaches,” in VLDB, 2002, pp. 610–621.

APPENDIX

A. Proofs for Section IV (Characterizations of bounded repairability)

Theorem 2. Given two NFA R and T , the following conditions are equivalent
1) there is a repair strategy of L (R) into L (T) with uniformly bounded cost,
2) every path in Dag(R) is covered by some path in Dag∗(T),
3) there is a repair strategy of L (R) into L (T) with worst-case cost at most (1 + |Dag(R)|) · |T |.

Proof: Let R = (Σ, Q,E, I, F) and T = (∆, Q′, E′, I ′, F ′). We first prove the implication from 2) to 3); later we will
prove the implication from 1) to 2) (the implication from 3) to 1) is trivial and thus omitted).

Suppose that every path in Dag(R) is covered by some path in Dag∗(T). We have to prove the existence of a repair strategy of
R into T with worst-case cost at most (1 + |Dag(R)|) · |T |. Let us fix a generic word u in the restriction language L (R) and
let ρ be a successful run of R on u. Clearly, the run ρ of R induces a path π in Dag(R), which is defined as the sequence of
SCCs of R visited by ρ. Suppose that π = C1C2 . . . Cn. Accordingly, we factorize the word u into the sequence of subwords
u1, a1, u2, a2, . . . , un, where ui ∈ L (R|Ci) for all 1 ≤ i ≤ n and ai ∈ Σ for all 1 ≤ i ≤ n− 1. From the assumption on the
coverability of the paths in Dag(R), we know that there is a path π′ = C ′1C

′
2 . . . C

′
n in Dag∗(T) that covers π, namely, such

that L (R|Ci) ⊆ L (T |C ′i) for all 1 ≤ i ≤ n. This shows that each subword ui of u, with 1 ≤ i ≤ n, belongs to the language
L (T |C ′i).
We can now construct inductively a corresponding word f(u) = v0 · u1 · v1 · u2 · . . . · un · vn that is accepted by T . We recall
π′ = C ′1 . . . C

′
n is a path in Dag∗(T) and that the automaton T is pruned (namely, it does not contain useless states). This

means that all states in C ′1 can be reached from some initial state of T and, similarly, all states in C ′n can reach some final
state. In particular, since u1 ∈ L (T |C ′1), we know that there exist an initial state q0 of T , two states p1 and q2 in C ′1, and a
word v0 ∈ ∆∗ such that T admits a run of the form q0

v0−−→p1
u1−−→q1. Moreover, without loss of generality, we can assume that

the length of v0 is bounded by the number of states of T . As for the inductive step, we assume that the words v0, . . . , vi−1,
with 0 ≤ i ≤ n− 1, are defined and that T admits a run on v0 · u1 · . . . · vi−1 from the initial state q0 to a state qi ∈ C ′i. Since
every state in C ′i+1 is reachable from every state in C ′i, we know that there is a word vi, with |vi| ≤ |T |, and two states pi+1

and qi+1 in C ′i+1 such that T admits a run of the form qi
vi−−→pi+1

ui+1−−→qi+1. As for the final step, we assume that v0, . . . , vn−1

are defined and that T admits a run on v0 · u1 · . . . vn−1 · un from the initial state q0 to a state qn ∈ C ′n. Using arguments
similar to the previous ones and the fact that C ′n is a final SCC, we derive the existence of a word vn, with |vn| ≤ |T |, and a
final state pn+1 of T such that T admits a run of the form qn

vn−−→pn+1. Putting this all together, we obtain the existence of
a successful run of T of the form

q0
v0−−→p1

u1−−→q1
v1−−→p2

u2−−→ . . . pn
un−−→qn vn−−→pn+1

and hence the word f(u) = v0 · u1 · v1 · u2 · . . . · un · vn is accepted by T . Moreover, since n ≤ |Dag(R)| and |vi| ≤ |T | for
all 0 ≤ i ≤ n, we have that the edit distance between u and f(u) is at most (1 + |Dag(R)|) · |T |. This proves that there is a
repair strategy f from R to T with worst-case cost at most (1 + |Dag(R)|) · |T |.

We now prove the contrapositive of the implication from 1) to 2), namely, we assume that there is a path π = C1 . . . Ck in
Dag(R) that is not covered by any path π′ in Dag∗(T) and from that we derive Dist(L (R),L (T)) = ω. First of all, we
topologically sort the SCCs C ′1, . . . , C

′
N of T in such a way that for every pair of indices 1 ≤ j, j′ ≤ N , if the states of C ′j′

are reachable from the states of C ′j , then j ≤ j′ follows. We then associate with each pair of indices 1 ≤ i ≤ k and 1 ≤ j ≤ N
a word ui,j defined by letting either ui,j = ε or ui,j ∈ L (R|Ci)\L (T |C ′j), depending on whether L (R|Ci) ⊆ L (T |C ′j) or
not. Since each word ui,j belongs to the language L (R|Ci) and since all states in the SCC Ci along π are mutually reachable,
we know that there exist some states qi, pi,1, . . . , pi,N ∈ Ci and some words u′i,1, . . . , u

′
i,N ∈ ∆∗ such that R admits a run of

the form
qi

ui,1−−→pi,1
u′
i,1−−→qi . . . qi

ui,N−−→pi,N
u′
i,N−−→qi

namely, the word vi = ui,1 · u′i,1 · . . . · ui,N · u′i,N is consumed by a run of R that is a loop inside the SCC Ci of π. From
the above property, we also know that for every index 1 ≤ i ≤ k and every positive natural number n, the n-fold iteration vni
is accepted by the subautomaton R|Ci. Similarly, since (i) all states in the first SCC C1 along π are reachable from initial
states, (ii) all states in the i+ 1-th SCC Ci+1 are reachable from all states in the i-th SCC Ci along π, and (iii) all states in
the last SCC Cn along π can reach some final states of R, we know that there exist some words v′0, . . . , v

′
k such that, for

every positive natural number n, the word wn = v′0 · vn1 · v′1 · vn2 · . . . · vnk · v′k is accepted by R.
Below, we argue that the cost of repairing the family of words wn into the regular language L (T) is unbounded. To do that,
we consider a generic repair strategy f : L (R) → L (T) and a family of corresponding successful runs ρ′n of T on the
words f(un). For every positive natural number n, we denote by π′n the path in Dag(T) that consists of the SCCs visited by

the run ρ′n. Since Dag(T) contains only finitely many paths, we can assume, without loss of generality (i.e., by restricting to
an infinite subset of the positive natural numbers), that all paths π′n are the same. Accordingly, we denote these paths simply
by π′′ = C ′′1 . . . C

′′
h , with C ′′1 , . . . , C

′′
h being SCC of T among C ′1 . . . C

′
N . We now establish the following claim:

For every path π′′ = C ′′1 . . . C
′′
h in Dag∗(T), there exist some indices 1 = i0 ≤ i1 ≤ . . . ≤ ih ≤ k such that

(i) L (R|Cij) * L (T |C ′′j) for all 1 ≤ j ≤ h and (ii) L (R|Ci) ⊆ L (T |C ′′j) for all 1 ≤ j ≤ h and all
ij−1 ≤ i < ij .

We exploit an induction on h, namely, we assume that the claim holds for any path π′′ of length h and we prove it for
path of longer length h + 1. The base case h = 0 is trivial. As for the inductive case, let π′′ = C ′′1 . . . C

′′
hC
′′
h+1 be a path

in Dag∗(T). From the inductive hypothesis, we know that there exist some indices 1 = i0 ≤ i1 ≤ . . . ≤ ih ≤ k such that
(i) L (R|Cij) * L (T |C ′′j) for all 1 ≤ j ≤ h and (ii) L (R|Ci) ⊆ L (T |C ′′j) for all 1 ≤ j ≤ h and all ij−1 < i < ij .
We distinguish between two cases: either L (R|Ci) * L (T |C ′′h+1) for some ih ≤ i ≤ k, or L (R|Ci) ⊆ L (T |C ′′h+1)
for all ih < i ≤ k. In the first case, we immediately obtain the claim by letting ih+1 be the first index ih ≤ i ≤ k such
that L (R|Ci) * L (T |C ′′h+1). In the second case, we obtain a contradiction when considering the path π̃′′ = C̃ ′′1 . . . C̃

′′
k in

Dag∗(T), where each SCC C̃ ′′l , for 1 ≤ l ≤ k, is defined to be either C ′′j , where j is the unique index satisfying ij−1 ≤ l < ij ,
if l ≤ ih, or C ′′h+1 if ih < l ≤ k. Indeed, by construction and by inductive hypothesis, we have L (R|Cl) ⊆ L (T |C̃ ′′l) for all
1 ≤ l ≤ ih and, similarly, for all ih < l ≤ k. This shows that the path π = C1 . . . Ck is covered by the path π̃′′ = C̃ ′′1 . . . C̃

′′
k ,

which is against the assumption on π. Therefore, we must conclude that only the first case can happen and hence the claim
holds.
Turning to the proof of the main theorem, we know from the above claim that there exist some indices 1 ≤ i1 ≤ . . . ≤ ih ≤ k
such that L (R|Cij) * L (T |C ′′j) for all 1 ≤ j ≤ h. In particular, this shows that the word wn defined previously contains
n-occurrences of the substrings ui1,1, . . . , uih,h. We can thus write wn as follows

wn = . . .
(
ui1,1 . . . ui2,2 uih,h

)
. . .

(
ui1,1 . . . ui2,2 uih,h

)︸ ︷︷ ︸
n times

. . .

Towards a conclusion, we recall that π′′ = C ′′1 . . . C
′′
h is the path in Dag(T) that is visited by the successful run ρn on f(wn).

By construction, each substring uij ,j in wn is not recognized by the subautomaton L (T |C ′′j). This shows that the word f(wn),
which is accepted by T via the run ρn, must contain no occurrences of the substrings ui1,1 . . . ui2,2 uih,h (in this precise
order). Therefore, the edit distance between wn and f(wn) must be at least n and this implies that the repair strategy f has
unbounded cost.

Theorem 3. Given two DFA R and T , the following conditions are equivalent
1) there is a k-lookahead streaming strategy, for some k ∈ N, that repairs L (R) into L (T) with uniformly bounded edit

cost,
2) Eve has a winning strategy for the reachability game on AR,T ,
3) there is a 0-lookahead streaming strategy that repairs L (R) into L (T) with worst-case aggregate cost at most (1 +

|Dag(R)|) · |T |.

Before turning to the proof of the above theorem, it is convenient to establish some preliminary lemmas, which can be
reused also in other proofs (e.g., in the proof of Proposition 6). For the sake of brevity, given an NFA (resp., DFA) A, a SCC
C of it, and a state q ∈ C, we denote by A|qC the NFA (resp., the DFA) obtained from the subautomaton A|C by letting q
be the unique initial state (recall that the final states of A|C are all the states in C).

Lemma 24. Let R be an NFA, let T be a DFA, and let C and C ′ be some SCCs of R and T , respectively. We have that

L (R|C) ⊆ L (T |C ′) iff ∃ q ∈ C, q′ ∈ C ′. L (R|qC) ⊆ L (T |q′C ′).

Proof: Let R = (Σ, Q,E, I, q0, F) and T = (∆, Q′, δ′, q′0, F
′). We first prove the right-to-left implication. Suppose that

L (R|qC) ⊆ L (T |q′C ′) for some states q ∈ C and q′ ∈ C ′. Let u be a word in L (R|C). Since q ∈ C and C is a SCC,
we know that there is a word u0 ∈ Σ∗ such that u0 · u ∈ L (R|qC). Since L (R|qC) ⊆ L (T |q′C ′), the same word u0 · u
belongs also to the language L (T |q′C ′). In particular, this shows that u ∈ L (T |C ′).

We now prove the contrapositive of the left-to-right implication, namely, we assume that L (R|qC) * L (T |q′C ′) for all
q ∈ C and all q′ ∈ C ′ and we derive L (R|C) * L (T |C ′). Let C ′ = {q′1, . . . , q′n}. We first prove, by exploiting an induction
on i ≤ n + 1, that there is a word ui that belongs to L (R|C) but not to L (T |q′jC

′) for all indices 1 ≤ j < i. The base
case i = 1 is trivial. As for the inductive case, we assume that the claim holds for i ≤ n and we prove it for i+ 1. Let ui be
the word obtained from the inductive hypothesis such that ui ∈ L (R|C) \L (R|q′jC

′) for all 1 ≤ j < i. Moreover, let r′i be

the state reached by T from q′i after parsing the word ui, that is, r′i = δ′(q′i, ui). If r′i 6∈ C ′, then the claim follows trivially.
It remains to consider the case r′i ∈ C ′. Let pi and ri be two states in C such that pi

ui−−→ ri. We know from the original
assumption that L (R|ri, C) * L (T |r′i, C ′). In particular, we know that there is a word vi ∈ L (R|ri, C)\L (T |r′i, C ′). This
shows that the word ui+1 = ui · vi belongs to the language L (R|C), but not to the language L (T |q′iC

′). Finally, since C ′ is
a SCC, it follows that ui+1 does not belong to any of the languages L (T |q′jC

′) either, for all 1 ≤ j < i, and this concludes
the proof.

Lemma 25. Let R and T be two DFA and let C and C ′ be some SCCs of R and T , respectively. We have that

L (R|C) ⊆ L (T |C ′) implies ∀ q ∈ C. ∃ q′ ∈ C ′. L (R|qC) ⊆ L (T |q′C ′).

Proof: Let R = (Σ, Q, δ, q0, F) and T = (∆, Q′, δ′, q′0, F
′) be two DFA such that L (R|C) ⊆ L (T |C ′), let C and C ′

be two SCC of R and T , respectively, and let q be a state in C. We know from Lemma 24 that that there exist two states
p ∈ C and p′ ∈ C ′ such that L (R|pC) ⊆ L (T |p′C ′). Moreover, since all states in C are reachable from each other, there is
a word u such that δ(p, u) = q. Since L (R|C) ⊆ L (T |C ′), we know that the state q′ = δ(p′, u) belongs to C ′. Finally, for
every word v ∈ L (R|qC), we have u · v ∈ L (R|pC) and hence, since L (R|pC) ⊆ L (T |p′C ′), u · v ∈ L (T |p′C ′), whence
v ∈ L (T |q′C ′). This shows that L (R|qC) ⊆ L (T |q′C ′).

Proof of Theorem 3: Let R = (Σ, Q, δ, q0, F) and T = (∆, Q′, δ′, q′0, F
′) be two DFA and let AR,T be the arena obtained

from R and T as described in Section IV. The implication from 3) to 1) is trivial. Below, we prove first the implication from
2) to 3) and then the implication from 1) to 2).

Suppose that Eve has a winning strategy in the reachability game over AR,T . Since reachability games are positionally
determined, Eve’s strategy can be described by a partial function1 g that maps a node of the form (D,C), with C ∈ Dag(R)
and D ∈ Dag∗(T), to a successor g(D,C) = (C,D′) (if there is any) in the arena AR,T . We can use Eve’s winning strategy
g to construct a sequential transducer S that implements a repair strategy of R into T having uniformly bounded aggregate
cost. Intuitively, the transducer S works as follows. While parsing the input word u from the restriction language R and
emitting a corresponding word v, the transducer S mimics, at the same time, the transitions of both R and T . Each time the
restriction automaton R exits the current SCC C and enters a new SCC C ′, a corresponding move (C,D) → (D,C ′) for
Adam is identified; accordingly, on the basis of Eve’s response g(D,C ′) = (C ′, D′) (recall that Eve’s strategy was assumed
to be winning), the transducer S outputs a suitable word that makes the target automaton T move from the SCC D to the
SCC D′ (the new state in D′ can be determined using Lemma 25 since we have L (R|C ′) ⊆ L (R|D′)).
The formal definition of the transducer S is a bit more technical due to the treatment of some special cases. First of all, we can
assume, without loss of generality, that the initial state q0 of R has no entering transitions (we can always enforce this condition
by introducing duplicate states). Then, we let C0 be the SCC of q0 in R, D0 be the SCC of q′0 in T , (C0, D1) = g(D0, C0)
be target node in the arena AR,T for the first move of the player Eve (recall that g is the winning strategy of Eve), and q′1
be some arbitrary state in D1 such that L (R|q0C0) ⊆ L (T |q′1D1) (note that L (R|C0) ⊆ L (R|D1) and hence, by Lemma
25, such a state q′1 must exist). Accordingly, we define v0 to be the shortest word such that δ′(q′0, v0) = q′1 (note that since
(D0, D1) is an edge in Dag∗(T), the state q′1 is reachable from the state q′0). Intuitively, the word v0 is the first prefix emitted
by the transducer S at the beginning of the computation (it should be now clear why we assumed that the initial state q0 of
R has no entering transitions). We are finally ready to define the transducer S = (Σ,∆, Q′′, δ′′, q′′0 ,Ω):
• Q′′ = Q×Q′;
• for every state p′′ = (p, p′) ∈ Q′′ and every symbol a ∈ Σ, δ′′

(
p′′, a

)
=
(
v, q′′

)
, where q′′ = (δ(p, a), δ′(p′, v)) and v is

the word over ∆ defined as follows
1) if both states p and δ(p, a) belong to the same SCC of R, then we let v be either the input symbol a or the word
v0 · a, depending on whether p 6= q0 or p = q0;

2) otherwise, if the states p and δ(p, a) belong to different SCCs, we denote by C ′ the SCC of the state δ(p, a) in R,
by D the SCC of the state p′ in T , by (C ′, D′) the response g(D,C ′) given by Eve’s winning strategy, by q′ some
arbitrary state in D′ such that L (R|p′C ′) ⊆ L (T |q′D′) (we know from the containment L (R|C ′) ⊆ L (R|D′) and
from Lemma 25 that such a state q′ exists), and by v′ the shortest word such that δ′(p′, v′) = q′ (note that since (D,D′)
is an edge in Dag∗(T), the state q′ is reachable from the state p′); accordingly, we let v be either the word v′ or the
word v0 · v′, depending on whether p 6= q0 or p = q0;

• q′′0 = (q0, q
′
0);

• for every state p′′ = (p, p′) ∈ Q′′, Ω(p′′) is the shortest word v ∈ ∆∗ such that δ(p′, v) ∈ F ′ (note that the existence of
such a word v is guaranteed by the assumption that every state of T can reach some final state).

1The reason for the strategy function g to be partial is that some positions in the arena AR,T may have no successors.

Using arguments similar to those used in the proof of Theorem 2 (e.g., by associating with each successful run of R a
corresponding path π in Dag(R) and a covering path π′ in Dag∗(T) induced by Eve’s winning strategy), one can show that
the transducer S maps any word u ∈ L (R) to a word S(u) ∈ L (T). Moreover, by construction, the output produced at
each transition of S can be different from the input symbol only if S is at the beginning of the computation, at the end of the
computation, or if the current SCC of the automaton R has just changed; in each of these cases, the length of the produced
output does not exceed the number of states in T . This shows that the the aggregate cost of S on input u ∈ L (R) is at most
(1+ |Dag(R)|) · |T |. We thus conclude that there there is a 0-lookahead streaming repair strategy of L (R) into L (T) having
worst-case aggregate cost at most (1 + |Dag(R)|) · |T |.

We now prove the implication from 1) to 2), namely, we assume that S = (Σ,∆, Q′′, δ′′, q′′0 ,Ω) is a transducer with k-lookahead
that implements a repair strategy of L (R) into L (T) with cost uniformly bounded by a natural number N and we construct
from this a winning strategy for Eve. More precisely, we shall specify Eve’s moves g(D,C) on those nodes (D,C) in AR,T ,
with C ∈ Dag(R) and D ∈ Dag∗(T), for which there exist some words uC , u′C ∈ Σ∗ and vD ∈ ∆∗ such that
i) δ(q0, uC · u′C) ∈ C,
ii) δ′(q′0, vD) ∈ D,
iii) δ′′(q′′0 , uC) = (vD, q

′′) for some q′′ ∈ Q′′.
We call these nodes reachable. On the remaining (unreachable) nodes, we let the function g be unspecified. As a preliminary
remark, we observe that from the definition of the arena AR,T and from the above properties, the domain of the function
g is closed under the ancestor relation, namely, if g(D,C) is defined and (D′, C ′) is an ancestor of (D,C) in AR,T , then
g(D′, C ′) is defined as well. Below, we define the moves g(D,C) by exploiting an induction on the distance of the SCC C
from the root of Dag(R), which is the SCC of the initial state q0 of R.
Let us consider a reachable node (D,C) in the arena AR,T . Since (D,C) is reachable, we know that there exist some words
uC , u

′
C ∈ Σ∗ and vD ∈ ∆∗ such that (i) δ(q0, uC · u′C) ∈ C, (ii) δ′(q′0, vD) ∈ D, and (iii) δ′′(q′′0 , uC) = (vD, q

′′) for some
q′′ ∈ Q′′. For the sake of brevity, we let p = δ(q0, uC · u′C). We claim that there is a SCC D′ that is a successor of D in
Dag∗(T) (possibly D′ = D) such that L (R|C) ⊆ L (T |D′). Indeed, suppose, by way of contradiction that this is not the
case. Let D1, . . . , Dh be all the the descendants of D, topologically ordered according to their accessibility relation (hence
D1 = D). Using arguments similar to those used in the proof of Theorem 2, we can recursively construct a sequence of words
u0, u1, u

′
1, . . . , uh, u

′
h over Σ such that

i) p
ui·u′

i−−→ p is a run of R on ui · u′i for all 1 ≤ i ≤ h,
ii) ui 6∈ L (T |Di) for all 1 ≤ i ≤ h.
In particular, the first property implies that the word

uC · u′C · (u1 · u′1)N+1 · . . . · (uh · u′h)N+1

is a prefix of some word u in the language L (R) (recall the assumption that all states in R can reach some final states).
Moreover, since u contains N + 1 occurrences of the subwords u1, . . . , uh and since S implements a repair strategy with
cost uniformly bounded by N , we have that the words u1, . . . , uh must occur at least once, and in this particular order, as
subwords of S(u) (observe that having a transducer with k-lookahead does not help here). However, since vD is a prefix of
S(u), δ(q′0, vD) ∈ D, and ui 6∈ L (T |Di) for all 1 ≤ i ≤ h, we have that S(u) can not belong to the target language L (T),
which is against the assumption that S implements a repair strategy of R into T . We must conclude that there is a SCC D′

that is a successor of D in Dag∗(T) and that satisfies L (R|C) ⊆ L (T |D′). Accordingly, we define Eve’s move on node
(D,C) to be g(D,C) = (C,D′) (note that this is a valid move in the arena AR,T).
Turning to the proof of the main theorem, we argue that the above defined strategy g for Eve is winning. This is equivalent
to proving that for every partial play of the form

(D0, C0) Eve−−→ (C0, D1) Adam−−→ . . . Adam−−→ (Dn, Cn)

that follows Eve’s strategy g, Eve is able to respond with an appropriate move, namely, g is defined on the node (Dn, Cn).
In fact, to prove this property it is sufficient to show that the node (Dn, Cn) is reachable and this can be easily verified by
exploiting an induction on n and the definition of the strategy g given above. We thus conclude that Eve has a winning strategy
for the reachability game on AR,T .

B. Proofs for Section V (Complexity results in the non-streaming case)

Theorem 5. The bounded repair problem in the non-streaming case, where the restriction language is represented by an NFA
and the target language is represented by a DFA, is in coNP and it is coNP-hard already for languages represented by DFA.

We first establish the following complexity result for the coverability problem:

Lemma 26. Given two NFA R and T and a path π in Dag(R), the problem of deciding whether π is covered by some
path π′ in Dag(T) is in PTIME with an oracle for deciding containment between the languages of the form L (R|π(i)) and
L (T |π′(i)).

Proof: Let R and T be two NFA and let π be a path in Dag(R). The basic idea for checking whether the path π is
covered by some path π′ in Dag(T) is to perform a sort of online subset construction on Dag∗(T), that is, to incrementally
process larger and larger prefixes of π while keeping the frontier of the paths in Dag(T) that cover these prefixes. Algorithm
A.1 below describes the pseudo-code of an algorithm that implements this idea.

Algorithm A.1: PATHCOVERABILITY(R, T , π)

let π = C1 . . . Ck
let Dag∗(T) = (V ′, E′)
F ← ∅
for all C ∈ V ′

do
{

if CHECKCONTAINMENT(R, T , C1, C)
then F ← F ∪ {C}

for i← 2 to k

do

F ′ ← F
F ← ∅
for all C ′ ∈ F ′ and (C ′, C) ∈ E′

do
{

if CHECKCONTAINMENT(R, T , Ci, C)
then F ← F ∪ {C}

return (F 6= ∅)

Note that the pseudo-code uses CHECKCONTAINMENT(R, T , Ci, C) as an oracle for deciding containment between the
languages L (R|Ci) and L (T |C). The proof of the correctness of the algorithm is straightforward and it is based on the
following invariant: at each iteration of the loop on i, the set F contains a SCC C of T iff there is a path π′ = C ′1 . . . C

′
i in

Dag∗(T), with C ′i = C, that covers πi = C1 . . . Ci. Clearly the described procedure runs in polynomial time with respect to
the size of the input NFA R and T .

Proof of Theorem 5: Let R be an NFA and T be a DFA. In view of the characterization result of Theorem 2, deciding
whether there is a repair strategy of L (R) into L (T) with uniformly bounded cost amounts at first guessing universally a
path π in Dag(R) (this can be done in coNP) and then checking whether π is covered by some path in Dag(T) (by Lemma
26, this can be done in PTIME using an oracle for deciding the containment of languages recognized by SCCs of R and T).
Moreover, recall that Lemma 24 reduces the containment problem between the language recognized by a SCC of the NFA R
and the language recognized by a SCC of the DFA T to containment problem between a non-deterministic subautomaton of
R and a deterministic subautomaton of T , which is known to be in PTIME (indeed, given an NFA A and a DFA B, we have
L (A) ⊆ L (B) iff L (A) ∩L (B{) = ∅, where B{ denotes the DFA that recognizes the complement of L (B)). Putting all
together, we have that the bounded repair problem in the non-streaming case, where the restriction language is given by an
NFA and the target language is given by a DFA, is in coNP.

As for the hardness result, we reduce the validity problem of propositional formulas in disjunctive normal (which is known
to be coNP-hard) to the bounded repair problem for DFA in the nonstreaming setting. We fix a set X = {x1, . . . , xk} of
propositional variables and we denote by L = {x1, . . . , xk} ∪ {¬x1, . . . ,¬xk} the corresponding set of literals. For the sake
of brevity, we identify ¬¬xi with xi. A valuation for the variables in X can be viewed as a subset V of L such that, for every
literal l ∈ L, we have l ∈ V iff ¬l ∈ V . Let use consider a formula in disjunctive normal form

ϕ =
∨

1≤i≤m

∧
1≤j≤hi

li,j

with li,j ∈ L for every pair of indices 1 ≤ i ≤ m and 1 ≤ j ≤ hi. Below, we describe suitable restriction and target languages
R and T such that R can be repaired into T with uniformly bounded cost iff ϕ is valid, namely, if for every valuation V ,
there is an index 1 ≤ i ≤ m such that li,1, . . . , li,hi ∈ V .

We define the restriction language over the alphabet Σ = L to be

R =
(
{x1}∗ ∪ {¬x1}∗

)
· . . . ·

(
{xk}∗ ∪ {¬xk}∗

)
Note that it is easy to construct a DFA R that recognizes R and that has size linear in the number of variables used by ϕ.
Similarly, we define the target language over the alphabet ∆ = {a1, . . . , am} ∪ L to be

T =
⋃

1≤i≤m

{ai} ·
(
L \ {¬li,1, . . . , ¬li,hi}

)∗
.

Again, it is easy to construct a DFA T that recognizes T and that has size linear in the number of clauses of ϕ and in the
number of its variables.

We verify that R can be repaired into T with uniformly bounded cost iff ϕ is valid. As for the right-to-left implication, suppose
that ϕ is valid and let u be a word in R. Clearly, u is a word of the form (l1 . . . l1)(l2 . . . l2) . . . (lk . . . lk), with li ∈ {xi,¬xi}
for all 1 ≤ i ≤ k. Such a word encodes the valuation Vu = {l1, l2, . . . , lk}. Moreover, since ϕ is valid, there is an index
1 ≤ i ≤ m such that li,1, . . . , li,hi ∈ V . The repair strategy f of R into T could then map the word u to the word f(u) = i ·u,
which clearly belongs to T . As for the converse implication, we assume that ϕ is not valid. This means that there is a valuation
V = {l1, l2, . . . , lk}, with li ∈ {x1,¬xi} for all 1 ≤ i ≤ k, such that for every index 1 ≤ i ≤ m, there is an index 1 ≤ j ≤ hi
satisfying li,j 6∈ V . We thus consider the family of words un = (l1)n · (l2)n . . . · (lk)n). From previous arguments, we know
that, for every 1 ≤ i ≤ m, there is 1 ≤ j ≤ hi such that the edit distance between the subword (¬li,j)n of un and any word
in the sublanguage Ti = {ai} ·

(
L \ {¬li,1, . . . , ¬li,hi}

)∗
of T is at least n. This shows that any repair strategy of R into T

has unbounded cost.

Proposition 6. Let R be a fixed restriction language. The problem of deciding, given a DFA T , whether there is a non-streaming
repair strategy of R into L (T) with uniformly bounded cost is in PTIME.

Proof: The proof is similar to the part of the proof of Theorem 5 regarding the coNP upper bound. Let R be a fixed
DFA recognizing the restriction language R and let T be a given DFA recognizing the target language T . From Theorem 2,
deciding whether there is a non-streaming repair strategy of R into T amounts at checking that every path π in Dag(R) is
covered by some path in Dag(T). In virtue of Lemma 26 and Lemma 24, coverability of a given path in Dag(R) by paths in
Dag∗(T) can be decided in PTIME. Since the number of paths in Dag(R) is fixed, this shows that the problem in decidable
in polynomial time.

Proposition 7. Let T be a fixed target language. The problem of deciding, given an NFA R, whether there is a non-streaming
repair strategy of L (R) into T with uniformly bounded cost is in PTIME.

Proof: The polynomial-time solution to the bounded repair problem under a fixed target language T = L (T) uses the
characterization of Theorem 2 (and hence it is similar to that of Theorem 5). However, instead of guessing a path π in Dag(R)
and then checking whether π is covered by some path π′ in Dag∗(T), we directly compute (a set representing) all instances
of the coverability relation. More precisely, we compute the set P of all pairs of the form (C,F), where C is a SCC of the
NFA R and F = {D1, . . . , Dn} is a set of SCCs of the DFA T , for which there is a path π in Dag(R) that ends in C and
that is covered by the paths π′1, . . . , π

′
n in Dag∗(T), with each π′i ending in Di (of course we have repeated occurrences of

the same component among D1, . . . , Dn). We call such a path π a witness of the pair (C,F). Clearly, if F 6= ∅ for all pairs
(C,F) ∈ P , then we know that every path π in Dag(R) is covered by some path in Dag∗(T) (and similarly for the converse
implication). The elements (C,F) of the set P can be recursively computed by exploiting an induction on the length of the
witnessing paths. Algorithm A.2 below implements such an idea.

Algorithm A.2: ALLPATHSCOVERABILITY(R, T)

let Dag(R) = (V,E)
let Dag∗(T) = (V ′, E′)
P ← ∅
for all C ∈ V

do

F ← ∅
for all D ∈ V ′

do
{

if CHECKCONTAINMENT(R, T , C, D)
then F ← F ∪ {D}

P ← P ∪ {(C,F)}
for k ← 2 to |V |

do

for all (C,F) ∈ P and (C,C ′) ∈ E

do

F ′ ← ∅
for all D ∈ F and (D,D′) ∈ E′

do
{

if CHECKCONTAINMENT(R, T , C ′, D′)
then F ′ ← F ′ ∪ {D′}

P ← P ∪ {(D′, F ′)}
return (∀ (C,F) ∈ P . F 6= ∅)

The proof that the algorithm is correct, namely, that it returns true iff every path π in Dag(R) is covered by some path
in Dag∗(T), relies on the following invariant: at each iteration of the loop on k, the set P contains all pairs (C,F) that are
witnessed by a path π in Dag(R) of length at most k. Moreover, we observe that every instruction used in the pseudo-code
of the algorithm (including the calls to the subroutine CHECKCONTAINMENT(R, T , C,D)) requires time polynomial in the
size of the arguments (recall, for instance, Lemma 24). Finally, since the set P has size at most |R|× 2|T | and T is fixed, we
can conclude that the algorithm runs in polynomial time with respect to the size of R.

Theorem 8. The bounded repair problem in the non-streaming case, where the restriction and target languages are represented
by LTL formulas, is coNEXPTIME-complete.

Proof: We already explained the complexity upper bound in Section V so we focus here on the lower bound. To prove
coNEXPTIME-hardness, we reduce the problem of deciding the non-existence of a tiling of an exponential square grid (which
is known to be coNEXPTIME-hard [8] to the problem of deciding the existence of a repair strategy of uniformly bounded cost
between two regular languages defined by suitable LTL formulas. We briefly introduce some definitions for the tiling problem.
A tiling instance, is a tuple I = (n, S,H, V, t⊥, t>), where S is a finite set of tiles, H,V ⊆ S × S are the relations for the
horizontal and vertical constraints between tiles, 2n is the length of the edge of the square grid Gn = [0, 2n − 1]× [0, 2n − 1]
to be tiled (n is represented in unary notation and thus within space |n|), and t⊥ and t> are the tiles that must appear at the
bottom and top rows of the grid. A tiling (for the instance I) is a mapping g from the pairs (i, j) ∈ Gn to the tiles in S such
that g(0, j) = t⊥ and g(2n − 1, j) = t> for all 0 ≤ j < 2n. We say that the tiling g satisfies the constraints of I if, for every
pair of indices 0 ≤ i, j < 2n, with j > 0 (resp., i > 0), we have

(
g(i, j−1), g(i, j)

)
∈ H (resp.,

(
g(i−1, j), g(i, j)

)
∈ V). The

(exponential square grid) tiling problem is the problem of deciding, given a tiling instance I = (n, S,H, V, t⊥, t>), whether
there is a tiling g that satisfies the constraints in I . It is known (see, for instance, [8]) that this problem is NEXPTIME-
complete. Below, we fix a tiling instance I = (n, S,H, V, t⊥, t>) and we construct suitable LTL formulas φ and ψ that have
size polynomial in |I| and that define two regular languages R and T such that R can be repaired into T with uniformly
bounded cost iff there is no tiling of Gn that satisfies the constraints in I . This would imply that the bounded repair problem
for LTL formulas is coNEXPTIME-complete.
We start by defining the formula φ for the restriction language R. The idea is to define the restriction language R as the set
of all (redundant) encodings of the tilings of Gn. For the sake of brevity, we let N = 2n. We let the restriction alphabet be
Σ = {0, 1#}]S (using slightly more encoding, one can even assume that the restriction alphabet contains only two symbols)
and we define the restriction language R to be the union of the languages

Lg = {u0,0}+ · . . . · {u0,N−1}+ · · {uN−1,0}+ · . . . · {uN−1,N−1}+.

for all tiling functions g : Gn → S, where ui,j is the word 〈i, j〉g(i, j)# and 〈i, j〉 is the 2n-character word obtained from
the juxtaposition of the binary encodings of the coordinates i and j (e.g., 〈0, 0〉 = 00 . . . 0 00 . . . 0, 〈1, 0〉 = 10 . . . 0 00 . . . 0,

〈N, 0〉 = 11 . . . 1 00 . . . 0, etc.). We now show how to define the language R using an LTL formula φ of size polynomial in
|I| (i.e., in n and |S|). The formula φ will be a conjunction of the form

φ = G
(
(φblock ∧ X2n+2 true) → (X2n+2φblock ∧ φsucc ∧ φcorr)

)
∧ φinit ∧ φfinal

where φblock, φsucc, φcorr, φinit, and φfinal are suitable formulas to be defined below. The formula φblock guarantees that the
next 2n+ 2 symbols (hereafter called block) form word of the form 〈i, j〉t#, for some 0 ≤ i, j < N and some t ∈ S. We let

φblock =
∧

0≤k<2n

Xk(0 ∨ 1) ∧
∨
t∈S

X2nt ∧ X2n+1#.

The formula φsucc enforces a matching relation between contiguous blocks, namely, it checks that for the next 2 blocks 〈i, j〉t#
and 〈i′, j′〉t′#, we have either i′ = i and j′ = j, or i′ = i and j′ = j + 1, or i′ = i+ 1, j = N − 1, and j′ = 0. This can be
done by defining

φsucc =
∧

0≤k<2n

(
Xk0 ↔ X2n+2+k0

)
∨∨

0≤k<2n

(∧
0≤h<k

Xh1 ∧ X2n+2+h0
)
∧
(
Xk0 ∧ X2n+2+k1

)
∧
(∧
k<h<2n

Xh0 ↔ X2n+2+h0
)
.

The formula φcorr guarantees that the tiles specified in two contiguous blocks with the same coordinates i and j agree, namely,
that for the next 2 blocks 〈i, j〉t# and 〈i′, j′〉t′#, if i = i′ and j = j′, then t = t′. This can be done by letting

φcorr =
∧

0≤k<2n

(
Xk0 ↔ X2n+2+k0

)
→

∧
t∈S

(
X2nt ↔ X4n+2t

)
.

Finally, the remaining two formulas φinit =
(∧

0≤k<2n X
k0
)
∧ X2nt⊥ ∧ X2n+1# and φfinal = F

((∧
0≤k<2n X

k1
)
∧

X2nt> ∧ X2n+1# ∧ ¬X2n+2
)

enforce the usual boundary conditions, namely, they require that the first 2n+ 2 symbols of
the word form a block of the form 〈0, 0〉t⊥# and, similarly, the last 2n + 2 symbols of the word form a block of the form
〈N − 1, N − 1〉t>#. It is routine to verify that the language defined by the formula φ is precisely the restriction language R.
We now turn to the definition of the formula ψ for the target language T . The idea is that every word in the target language
must be obtained from a word in the restriction language (i.e., from the encoding of a tiling function) by adding a “certificate”
that makes it easy to verify that the encoded tiling function does not satisfy the horizontal and vertical constraints of I . More
precisely, the certificate will be defined as a decoration of a block 〈i, j〉t# (e.g., by means of underlined symbols) that makes
it distinguishable from all other blocks in the word; in such way, a suitable LTL formula (of small size) can easily check
whether the tiles at the positions (i, j), (i−1, j), and (i, j−1) are consistent or not with the horizontal and vertical constraints
of I . The alphabet of the target language is ∆ = Σ] {#}, where # is a new symbol not in Σ. Given a word v over ∆, we
denote by v[#/#] the word over Σ obtained from v by replacing every occurrence of the symbol # with #. Formally, the
target language T is defined as the set of all and only the words of the form

v = . . . 〈i− 1, j〉t# . . . 〈i, j − 1〉t′# 〈i, j〉t′′# . . .

such that (i) v[#/#] belongs to the restriction language R and (ii) (t′, t′′) 6∈ H or (t, t′′) 6∈ V . It is easy to verify that the
target language T is defined by the following LTL formula of size polynomial in n and |S|:

ψ = φ
[
#/(# ∨ #)

]
∧ ψmark ∧

(
ψcheck-H ∨ ψcheck-V

)
where
• φ

[
#/(# ∨ #)

]
is obtained from φ (i.e., the formula that defines the restriction language R) by replacing every occurrence

of the propositional variable # by the disjunction # ∨ #;
• ψmark is the formula (¬#) U (# ∧ G¬#), which enforces precisely one occurrence of the underlined symbol #;
• ψcheck-H is the formula F

(∧
0≤k<n(Xk0 ↔ X2n+2+k0) ∧ ¬

∧
n≤k<2n(Xk0 ↔ X2n+2+k0) ∧

∨
(t′,t′′)6∈H(X2n+1t′ ∧

X4n+3t′′)
)
, which verifies that the horizontal constraints are violated by the tiles associated with the underlined block and

with its predecessor along the same row, but on a different column;
• ψcheck-V is a formula that verifies that the vertical constraints are violated by the tiles associated with the underlined

block and with some previous block along the same column, but on a different row; such a formula can be written as

F
(∧

0≤k<n

(
Xk0 ↔ F(X2n+1# ∧ X2n+2+k0)

)
∧

¬
∧

n≤k<2n

(
Xk0 ↔ F(X2n+1# ∧ X2n+2+k0)

)
∧∨

(t′,t′′) 6∈H

(
X2n+1t′ ∧ F(X2n+1# ∧ X4n+3t′′)

))
.

It remains to prove that R can be repaired into T with uniformly bounded cost iff every tiling of Gn violates the constraints in
I . As for the right-to-left direction, we assume that every tiling of Gn violates the constraints in I . This means that for every
tiling g, there exist two indices 0 ≤ i, j < N such that

(
g(i, j − 1), g(i, j)

)
6∈ H or

(
g(i − 1, j), g(i, j)

)
6∈ V . By exploiting

this property, one can repair any word u ∈ R, which encodes a tiling g, into a word v ∈ T , by simply replacing a distinguished
occurrence of # with #. This shows that there is a repair strategy with worst-case cost 1. As for the converse direction, we
assume that there is a valid tiling g of Gn and we consider the family of words

u(n) = un0,0 · . . . · un0,N−1 · · unN−1,0 · . . . · unN−1,N−1

where, for every 0 ≤ i, j < N , ui,j is the block 〈i, j〉 g(i, j) #. By exploiting the fact that all blocks in u(n) satisfy the
horizontal and the vertical constraints, one can easily verify that the edit distance between the word u(n) and any word in the
target language T is at least n, for all natural numbers n. This shows that any repair strategy of R into T has unbounded cost.

Theorem 9. The bounded repair problem in the non-streaming case, where the restriction language R is represented by an
NFA and the target language T is represented by an LTL formula, is in PSPACE.

Proof: Let us fix an NFA R recognizing a restriction language R and an LTL formula ψ defining a target language
T . In a way similar to the proof of the coNEXPTIME complexity bound for the LTL-vs-LTL bounded repair problem (see
Theorem 8), we reduce the problem to deciding whether there is a non-streaming repair strategy of

−�
R into

−�
T , where

−�
R

and
−�
T are the reversal languages of R and T , respectively. Clearly, from the NFA R one can efficiently compute an NFA−�

R = (Σ, Q,E, I, F) recognizing
−�
R. Moreover, using standard constructions in automata theory, one can translate in polynomial

time the LTL formula ψ into a DFA
−�
T that recognizes

−�
T , where the states are symbolically represented by vectors q̄ of bits

(one for each subformula of ψ), the transitions are symbolically represented by propositional formulas that relate the bits of
the restriction state p̄ to the bits of the target state q̄ for any transition (p̄, a, q̄) of

−�
T , and, finally, the initial state and the set

of final states are symbolically represented by analogous propositional formulas. The symbolic representation of the DFA
−�
T

has size polynomial in the size of the formula ψ. Moreover, one has to keep in mind that the DFA
−�
T is not pruned, namely,

it may contain states that are not reachable from the initial state or that cannot reach some final states.
We now make a couple of remarks related to algorithms on symbolically represented automata:

1) First of all, one can perform symbolic reachability analysis on the DFA
−�
T in PSPACE. For instance, deciding whether−�

T contains a path between two given states p̄ and q̄ can be done by a non-deterministic polynomial space algorithm that
guesses, step by step, the correct moves of

−�
T to go from p̄ to q̄ (this exploits the fact that reachability between states is

witnessed by paths of length at most exponential). As a matter of fact, PSPACE reachability analysis can be also done
on symbolically deterministic NFA.

2) Given a SCC C of the NFA
−�
R and a state r̄ of the DFA

−�
T , one can decide in PSPACE whether the language L (

−�
R|C)

in contained in the language L (
−�
T |Cr̄), where CCr̄ is the SCC of the state r̄ in T . This is done as follows. We first

turn, in polynomial time, the NFA
−�
R|C into an equivalent symbolic DFA

−�
RC using the usual subset construction: the

states of
−�
RC are vectors of bits specifying which state of the original NFA

−�
R|C is achievable; the transitions of

−�
RC are

symbolically represented by suitable propositional formulas. We then compute, again in polynomial time, the symbolic
representation of the complement

−�
T { of

−�
T and from there a symbolic representation of the synchronous product P of−�

RC and
−�
T { (note that the result is a symbolic DFA). To verify that L (

−�
RC) is contained in L (

−�
T |Cr̄) it is sufficient to

check that for every pair of (initial and final) states p̄, q̄ in
−�
RC , there exist some states p̄′ and q̄′ in

−�
T { such that (i) the

three states r̄ p̄′, and q̄′ are mutually reachable in
−�
T { (this implies that p̄′ and q̄′ belong to the same SCC Cr̄ of r̄) and (ii)

(q̄, q̄′) is reachable from (p̄, p̄′) in the DFA P . These properties can be decided in PSPACE using symbolic reachability
analysis.

We are now ready to describe the PSPACE procedure that solves the bounded repair problem between
−�
R and

−�
T . Intuitively,

this is a variant of Algorithm A.1 presented in this appendix. Precisely, one first guesses universally a path π = C1 . . . Ck in
Dag(

−�
R) (doable in coNP), then one guesses existentially a sequence r̄1 . . . r̄k of states of

−�
T that represents a corresponding

path π′ = Cr̄1 . . . Cr̄k in Dag∗(
−�
T) (doable in NP), and finally one verifies that

i) each language L (
−�
R|Ci) in contained in the language L (

−�
T |Cr̄i) (doable in PSPACE),

ii) each state r̄i is reachable from the initial state of
−�
T (doable in PSPACE),

iii) each state r̄i can reach a final state of
−�
T (doable again in PSPACE).

This proves that the bounded repair problem for
−�
R and

−�
T (and hence that for R and ψ) is in PSPACE.

Theorem 10. The bounded repair problem in the non-streaming case, where the restriction language R is represented by an
LTL formula and the target language T is represented by an NFA, is in PSPACE.

Proof: Let us fix an LTL formula φ defining a restriction language R and an NFA T recognizing a target language T . As
usual, we can reverse the languages and convert φ (resp., T) to a symbolic DFA

−�
R (resp., to an NFA

−�
T). The technique for

solving the bounded repair problem between
−�
R and

−�
T is somehow similar to that used in Proposition 7. Intuitively, by exploiting

symbolic reachability analysis over
−�
R, we move down the DAG of the SCCs of

−�
R, universally guessing, at each step, a state

r̄ that represents a SCC Cr̄ of
−�
R and maintaining the collection Fr̄ of all SCCs C ′ of T such that L (

−�
R|Cr̄) ⊆ L (

−�
T |C ′). At

the end of the computation (i.e., when there is no successor SCC of
−�
R to move into), we anwer positively iff the reached set

Fr̄ is not empty.
Concerning the complexity of the above described procedure, we make the following important remarks:

1) The collection Fr̄ can be stored in polynomial space (i.e., linear in the size of
−�
T).

2) In order for the algorithm to be correct, at each step we need to check that the guessed state r̄ is reachable from the
initial state and can be reach some final states of

−�
R. Moreover, the SCC Cr̄ of r̄ must be a successor in Dag(

−�
R) of the

SCC of the state that was guessed at the previous step. All these properties can be checked using symbolic reachability
analysis on

−�
R.

3) Each step of the above described procedure requires checking a language containment L (
−�
R|Cr̄) ⊆ L (

−�
T |C ′), where r̄

is a state of the DFA
−�
R, Cr̄ is its SCC, and C ′ is a SCC of the NFA

−�
T . This can be done in PSPACE using a technique

similar to the proof of Theorem 9, that is, by first turning
−�
T |C ′ into a symbolic DFA

−�
T C′ , then computing a symbolic

representation for the synchronous product of
−�
R and

−�
T {
C′ , and finally checking that for every pair of states p̄ and q̄ of−�

R that belong to the same component Cr̄ of r̄, there exist some states p̄′ and q̄′ of
−�
T C′ that are mutually reachable and

for which (q̄, q̄′) is reachable from (p̄, p̄′) in P . These properties can be decided in PSPACE using symbolic reachability
analysis.

Since all the mentioned steps can be carried out in polynomial space, we conclude that the bounded repair problem for
−�
R and−�

T (and hence that for φ and T) is in PSPACE.

Theorem 11. The problem of determining, given k and two languages R and T recognized by DFA, whether Dist(R, T) is
above k, is PSPACE-complete. The same holds when R and T are given as an NFA.

Proof: We first give the upper bound, assuming that R and T are recognized by some NFA R and T . Given k and
word w, let us denote by Impact(w,R, T , k) the vector of the form (R0, T0, . . . Tk) where R0 is the set of states that are
reached by R, starting from an initial state after reading w, and for each 9 ≤ i ≤ k, Ti is the set of states of T achievable
by editing w by i edits. Let us call a vector of the form (R0, T0, . . . Tk) attainable if it is of the form Impact(w,R, T , k)
for some word w, and call it successful if, furthermore, some state in R0 is accepting in R and all states in each set Ti are
non-accepting for T . The attainable vectors can be given an automaton structure: given an attainable vector (R0, T0, . . . Tk) and
a letter a, we can efficiently determine the vector (R′0, T

′
1 . . . T

′
k) to which we should transition – that is, the one representing

Impact(wa,R, T , k) for any w such that (R0, T0, . . . Tk) = Impact(w,R, T , k). R′0 is the image of R0 under the a-labeled
transitions of R, T ′0 is the image of T0 under the a-labeled transitions of T , and for each 0 ≤ i < k, T ′i+1 is the union of the
image of Ti+1 under the a-labeled transitions of T , Ti, the image of Ti under b-transitions of T , for any symbol b 6= a, and
the image of Ti under pair of consecutive transitions of T that consume ab, for any symbol b. We call the resulting automaton
impact-automaton and we let v0 = Impact(ε,R, T , k) be its initial state.
We have that Dist(R, T) is above the threshold k exactly when there is a path in the impact-automaton that consists of
attainable vectors starting from v0 and leading to a successful vector. Although there are exponentially many states, each state
can be represented within polynomial space and one can calculate in polynomial time the initial state v0 and the successors of
any given state. This enables reachability analysis on the impact-automaton in polynomial space and it implies the PSPACE
upper bound for the reduced threshold problem.

We now discuss the PSPACE lower bound, which holds even for languages represented by DFA. It is via reduction from the
problem of tiling a corridor of polynomial width (and unbounded height). An instance of the latter problem is given by a
number n (i.e., the width of the corridor, represented in unary notation), a set S of available tiles, some sets H,V ⊆ S × S
of vertical and horizontal constraints, and two tiles t⊥ and t> for the bottom and top rows. Hereafter, we fix an instance
I = (n, S,H, V, t⊥, t>) of the corridor tiling problem and a threshold k ≥ 2 (by a slight modification of the encodings
described below, one could generalize the proof to the case k ≥ 1 – note that for k = 0 the threshold problem becomes
a containment problem between DFA, which is clearly solvable in PTIME). Moreover, we assume that the threshold k is
represented in unary notation (clearly this does not make the threshold problem more difficult).

We let the restriction alphabet Σ consist of a separator symbol # and the pairs 〈t, j〉, where t is a tile from S and j is a
number in {0, . . . , n− 1}. A symbol 〈t, j〉 ∈ Σ can be thought of as identifying the tile t and its horizontal co-ordinate j. The
restriction language R contains “k-redundant” encodings of tilings, namely, words of the form

#〈g(0, 0), 0〉k . . .#〈g(0, n− 1), n− 1〉k #〈g(N − 1, 0), 0〉k# . . . 〈g(N − 1, n− 1), n− 1〉k

where N is a positive natural number and g : [0, N − 1] × [0, n − 1] → S is a tiling function that satisfies the horizontal
constraints and the constraints on the bottom and top rows (but possibly not the vertical constraints). Note that, differently
from the proof of Theorem 8, the number of rows of the tiling is not fixed (the problem is still PSPACE-hard), the separator
symbol # appears at the beginning, rather than at the end, of a block of symbols 〈g(i, j), j〉, and, moreover, the number of
repetitions in each block is fixed to be equal to the given threshold k. We claim that the above language is recognized by a
DFA R of size polynomial in I and in k: indeed, the automaton R needs to check that the input word is well-formed, which
requires enforcing the horizontal constraints and the initial and final tile requirements (which clearly can be done with a fixed
number of states) and counting up to k and n (which clearly can be done with a number of states linear in k and n).
We now turn to the definition of the target language. Its alphabet ∆ contains all symbols of the restriction alphabet Σ plus a
marking symbol #, which is used to highlight a violation of the vertical constraints. Given a word v over ∆, we call witnessing
t-block any factor v[x..y] of v that starts with the marking symbol # and contains a k-repetition of a symbol of the form (t, j),
with 0 ≤ j < n. Intuitively, a violation of a vertical constraint is certified on a word v ∈ ∆∗ when v contains a witnessing
t-block v[x..y] and a witnessing t′-block v[x′..y′] and the infix v[y+ 1..x′− 1] delimited by these two blocks contains exactly
n−1 occurrences of the separator symbol # (this implies that the tile t′ is adjacent to t along the vertical axis). More precisely,
the target language T is defined as follows:

T =
⋃

(t,t′)6∈V

Σ∗ · #〈t, j〉k ·
(
{#} · (Σ \ {#})k

)n−1 · #〈t′, j〉k · Σ∗

It is easy to construct a DFA T of size polynomial in I and k that recognizes the language T .
We now argue that there is a tiling of a corridor [0, N − 1]× [0, n− 1] that satisfies the constraints in I iff there is a strategy
for repairing R into T with worst-case cost at least k + 1.
On the one hand, suppose that there is no tiling g : [0, N − 1] × [0, n − 1] → S that satisfies the constraints in I . Let us
consider a word u ∈ R of the form

#〈g(0, 0), 0〉k . . .#〈g(0, n− 1), n− 1〉k #〈g(N − 1, 0), 0〉k# . . . 〈g(N − 1, n− 1), n− 1〉k

where g is a tiling of [0, N − 1]× [0, n− 1] → S. From the previous assumptions, we know that g violates the constraints
in I . This implies that u contains two factors u[x..y] = #〈g(i, j), j〉k and u[x′..y′] = #〈g(i+ 1, j), j〉 that are separated by
exactly n−1 occurrences of # and such that (g(i, j), g(i+1, j)) 6∈ V . Replacing the two occurrences of # in these factors by
the marking symbol # will bring us into the target language T . This shows that there is a non-streaming strategy for repairing
R into T with worst-case cost at most 2 (≤ k).
On the other hand, suppose that there is a tiling g : [0, N − 1]× [0, n− 1] → S that satisfies the constraints in I . Let u be
the corresponding word:

#〈g(0, 0), 0〉k . . .#〈g(0, n− 1), n− 1〉k #〈g(N − 1, 0), 0〉k# . . . 〈g(N − 1, n− 1), n− 1〉k.

Clearly, u belongs to the restriction language R. We claim that no matter how we edit u by k edits, the resulting sequence
will not belong to the target language T . Consider a word v produced by such an edit. If there are not two occurrences of
witnessing blocks starting with # and having n− 1 separator symbols between them, then v cannot satisfy T . If there are two
such occurrences, then the tiles encoded within these witnessing blocks must be the same as in the input word u (recall that
every witnessing block has length k + 1 and hence it cannot be edited entirely). By previous assumptions, these tiles must
satisfy the vertical constraints. This shows again that v does not belong to the target language T .

We now turn to the results for LTL, starting with the case of word-to-formula distance:

Proposition 27. There is a PSPACE Turing Machine that given a word w and LTL formula φ determines the distance of w
to L(φ) in binary.

Proof: Note that the distance of w to an NFA A is bounded by a polynomial in the size of A and w. Using this we
can compute in binary an upper bound on the distance of w to an LTL φ, deriving it from a bound on the size of an NFA
equivalent to φ.

Thus it suffices to solve the corresponding threshold problem: given k in binary, decide whether the distance from w to L(φ)
is below k. A φ-type is a maximal consistent collection of subformulas of φ. A φ-type t1 reaches a φ-type t2 via word w if
there are words w1, w2 such that (w1 ·w ·w2, |w1|) |= t1 and (w1 ·w ·w2, |w1|+ |w|)) |= t2. We give a more general PSPACE

algorithm for determining, given two φ-types t1 and t2, k in binary, and word w whether or not there is a word w′ obtainable
via at most k edits of w such that t1 reaches t2 via w′. The algorithm consists of a top-level alternating LOGSPACE routine
that takes w t1 and t2 guesses an intermediate t3 and k′ < k, divides w into two nearly equal sized factors (rounding off) w1

and w2 and recursively checks that t1 can reach t3 via w1 and t3 can reach t2 via w2.
The alternating algorithm bottoms out at the case of w = ε for two types t1 and t2. Here it calls a subroutine performing

reachability analysis in the type graph, beginning at t1 and maintaining a counter in binary, truncating when we reach the
threshold k; it is easy to see that the reachability problem can be solved in PSPACE.

The above describes an alternating LOGSPACE computation that performs a PSPACE subcomputation at the leaves; each
thread of the alternating computation can be stored in PSPACE, thus the entire algorithm runs in PSPACE.

Theorem 12. The problem of determining, given k and two languages R and T defined by LTL formulas, whether Dist(R, T)
is above k, is EXPSPACE-complete.

Proof: The upper bound follows from converting the formulas to NFA and applying Theorem 11.
The lower bound is obtained by a reduction from the problem of tiling a corridor of width 2n. The reduction is analogous to
that of Theorem 11, with the only difference that, instead of using single symbols to represent a tile and its co-ordinate, we
use sequences consisting of a tile symbol and n bits for the binary encoding of the co-ordinate. Checking that the sequences
of co-ordinates are well-formed (and similarly, checking that two witnessing blocks have the same co-ordinates) can be done
by suitable LTL formulas similar to those used in the proof of Theorem 8.

C. Proofs for Section VI (Complexity results in the streaming case)

Theorem 15. The bounded repair problem in the streaming case, where the restriction language is a DFA and the target
language is in NFA is PSPACE-complete. The same result holds when the target language is restricted to be a DFA and the
restriction is an NFA.

Proof: We make use of the characterization Theorem 3 in both scenarios.
Let us first consider the case where the restriction language is given by a DFA R and the target language is given by an NFA
T . Let det(T) denotes the DFA obtained by applying the standard determinization procedure to T . Recall that the states of
det(T) are sets of states of T . We can then exploit the fact that the longest collection of moves of Adam in the arena AR,det(T)

is linear in the size of Dag(R). This implies that the length of any play is at most |Dag(R)| and hence we can simulate the
reachability game on AR,det(T) by an alternating polynomial-time procedure. Precisely, we can keep track of the configuration
of the reachability game by maintaining the current SCC C of R and (a symbolic representation of) the current SCC C ′ of
det(T) (note that a SCC of det(T) can be represented by a single state of det(T) or, equivalently, by a set of states of T).
At each round of the reachability game, we need to check a language containment L (R|C) ⊆ L (det(T)|C ′): this can be
done using the characterization given in Lemma 25 and a PSPACE subroutine based on symbolic reachability analysis. What
we have described is an alternating polynomial-time procedure that simulates the reachability game over AR,det(T) using a
PSPACE subroutine for language containment. Overall, the resulting complexity is in PSPACE.
We turn to the case where the restriction language is given by an NFA T and the target language is given by a DFA T . As in
the previous proof, the general idea is to simulate the reachability game over the arena Adet(R),T that results from the main
characterization result. However, we cannot obtain a polynomial bound to the length of the plays since the DAG of R has
potentially exponential height. The crucial observation here is that it is possible to modify the definition of the arena Adet(R),T
(and thus the resulting reachability game) by allowing Adam to move down the DAG of det(R) with shortcuts, namely, by
allowing Adam to move from any SCC to some descendant of it (rather than simply a successor of it). On the one hand,
allowing this freedom in the new reachability game clearly makes it easier for Adam to win. We argue that, if he wins, he
can do it within a polynomial number of moves. Indeed, suppose that Adam wins in the original arena, then he can also win
in the modified arena and, moreover, by properly choosing shortcut moves, he can push Eve towards a sink node in at most
n rounds, where n is the height of the DAG of SCCs of T . On the other hand, if Adam wins in the modified arena, then he
can also win in the original arena via longer plays. The above arguments show that the two versions of the reachability games
are equivalent and, furthermore, one can bound the length of the plays to a polynomial in the size of the DFA T . Therefore,
the bounded streaming repair problem for R and T can be solved by an alternating polynomial time procedure similar to the
one described above. This shows that the problem is in PSPACE.

Theorem 16. The bounded repair problem in the streaming case, where the restriction and target languages are represented
by LTL formulas, is in 2EXPTIME and is EXPSPACE-hard.

Proof: As already mentioned, the 2EXPTIME complexity upper bound follows from standard constructions in automata
theory one can translate any two given LTL formulas φ and ψ into NFA R and T recognizing the languages defined by φ
and ψ, respectively. The NFA R and T have size exponential in |φ| and |ψ|. Moreover, by using the classical determinization
procedure, one can turn the NFA R and T to equivalent DFA R′ and T ′, which have size at most doubly exponential in |φ|
and |ψ|. Corollary 13 then implies that the problem of deciding whether there is a streaming repair processor of the language
defined by φ into the language defined by ψ with worst-case finite cost is in 2EXPTIME.

We now turn to the proof of the lower bound; we reduce the problem of deciding the winner of a tiling game on a grid of
exponential size to the bounded repair problem in the streaming case. We first describe the tiling game. As in the proof of
Theorem 8, an instance of the tiling game is a tuple I = (n, S,H, V, t⊥, t>), where S is a finite set of tiles, H,V ⊆ S × S
are the relations for the horizontal and vertical constraints between tiles, 2n is the length of the edge of the square grid
Gn = [0, 2n − 1] × [0, 2n − 1] to be tiled (as usual, n is represented in unary notation), and t⊥ and t> are the tiles that
must appear at the bottom and top rows of the grid. Given a number 0 ≤ k ≤ 2n, we define a tiling of height k (for the
instance I) to be any function g that maps the pairs (i, j) in Gn, with 0 ≤ i < k and 0 ≤ j < 2n, to the tiles in S and that,
furthermore, satisfies g(0, j) = t⊥ if k > 0 and g(2n − 1, j) = t> if k = 2n − 1, for all 0 ≤ j < 2n. We say that a tiling g
of height k is correct if it satisfies the constraints of I , namely, if for every pair of indices 0 ≤ i < k and 0 ≤ j < 2n, with
j > 0 (resp., i > 0), we have

(
g(i, j − 1), g(i, j)

)
∈ H (resp.,

(
g(i − 1, j), g(i, j)

)
∈ V). The tiling game for the instance I

is played between two players, Eve (who corresponds to the target language) and Adam (who corresponds to the restriction
language), as follows. A configuration of the tiling game at round k, with 0 ≤ k ≤ 2n, is a correct tiling gk of height k
(hence the empty tiling of height 0 is the initial configuration of the game). Adam moves at even rounds (hence Adam moves
first), while Eves moves at odd rounds. Given a correct tiling gk at round k, the move of the corresponding player consists
of extending gk to a correct tiling gk+1 of height k + 1. The player who cannot move loses (hence Adam loses if the last

round k = 2n is reached). We know from [8] that the problem of deciding the winner of a tiling game is AEXPTIME-hard
(hence EXPSPACE-hard). Below, we fix a tiling instance I = (n, S,H, V, t⊥, t>) and we construct suitable LTL formulas φ
and ψ that have size polynomial in |I| and that define two regular languages R and T such that R can be repaired into T
by a streaming strategy with uniformly bounded cost iff Eve wins the tiling game associated with the instance I . This would
imply that the bounded repair problem for LTL formulas in the streaming case is EXPSPACE-hard.
The basic idea of the reduction is similar to the proof of Theorem 8. Intuitively, the player Adam (resp., Eve) corresponds to
a processor that produces a (redundant) encoding of a partial tiling for the even (resp., odd) rows in Gn. Moreover, in order to
check that the resulting tilings are correct, the two processors can emit repetitions of a distinguished block that make it easy
to certify the violation of some horizontal or vertical constraints of I . The alphabets Σ and ∆ for the restriction and target
languages consist of the symbols 0, 1 (which are used to encode the tile coordinates), the symbol # (which is used to separate
the various blocks), an underlined copy # of # (which is used to decorate the block that witnesses a violation), the symbol
� (which is used to separate the various rows).
The restriction language R, which corresponds to Adam’s objective, contains the encodings of the tilings of Gn along the even
rows, up to some height, extended with repetitions of a distinguished underlined block witnessing a possible violation. We
define R to be the union, over all even numbers 0 ≤ k < 2n − 1, all tilings g of height k+ 2, and all indices 0 ≤ j′ < 2n, of
the languages

Lodd
k,g,j′ = {u0,0}+ · . . . · {u0,N−1}+ · {�} ·{u2,0}+ · . . . · {u2,N−1}+ · {�} · · {uk,0}+ · . . . · {uk,N−1}+ · {�} ·{uk+1,j′}+

where, as in the proof of Theorem 8, each word ui,j is defined as 〈i, j〉g(i, j)# (similarly, uk+1,j′ = 〈k + 1, j′〉g(k+ 1, j′)#)
and each word 〈i, j〉 is the juxtaposition of the binary encodings of the coordinates i and j. The target language T , which
corresponds to Eve’s objective, contains the encodings of the tilings of Gn along all rows up to some height, possibly extended
with some repetitions of a distinguished underlined block. T is the union of the languages

Lk,g,j′ = {u0,0}+ · . . . ·{u0,N−1}+ ·{�}·{u1,0}+ · . . . ·{u1,N−1}+ ·{�}· ·{uk,0}+ · . . . ·{uk,N−1}+ ·{�}·{uk,j′}∗ ·∆∗

for all numbers 0 ≤ k < 2n, all tilings g of height k + 1, and all indices 0 ≤ j′ < 2n such that

i) if k is even, then
(
g(k, j′ − 1), g(k, j′)

)
6∈ H or

(
g(k − 1, j′), g(k, j′)

)
6∈ V (namely, Eve witnessed a violation of the

constraints in the previous move of Adam).

ii) if k is odd, then
(
g(k, j′−1), g(k, j′)

)
∈ H and

(
g(k−1, j′), g(k, j′)

)
∈ V (namely, Adam did not witness any violation

of the constraints in previous move of Eve),

Using constructions similar to those in the proof of Theorem 8, one can define the restriction and target languages R and T
by means of suitable LTL formulas φ and ψ of size polynomial in the instance I . We omit the formal definitions of these
formulas and we focus instead on the reduction of the tiling game.
Suppose that Eve has a winning strategy in the tiling game. This strategy can be described as a function s that maps a correct
tiling g of odd height 1 ≤ k < 2n to a correct tiling g′ of height k + 1 that extends g. Using this function s, we can
construct a transducer S that realizes a streaming repair strategy of R into T with uniformly bounded cost. Here we omit the
formal definition of such a transducer, which is tedious, and we only describe its behaviour informally. The computation of the
transducer is divided into 2n phases, which correspond to the 2n rounds of the tiling game; the behaviour of the transducer is
defined according to the parity of the phase. At the beginning of an even phase k (including the initial phase k = 0), the state
of the transducer S represents the current configuration of the tiling game at round k, which consists of a correct tiling gk of
height k. During this phase, the transducer S consumes (without modifying) a portion of the input word until it identifies one
of the following two sub-sequences in it:

1) 〈k, 0〉gk+1(k, 0)# · . . . · 〈k, 2n − 1〉gk+1(k, 2n − 1)# ·�, for some tiling gk+1 of height k + 1 that extends gk (note that
the tiling gk+1 may not be correct),

2) 〈k − 1, j′〉gk(k − 1, j′)#, for some index 0 ≤ j′ < 2n.

In the first case, the transducer moves to the next (odd) phase k + 1 by storing the new tiling gk+1. In the second case,
since the tiling gk is correct, we know that

(
gk(k − 1, j′ − 1), gk(k − 1, j′)

)
∈ H and

(
gk(k − 2, j′), gk(k − 1, j′)

)
∈ V .

In this case, the transducer can directly move to a sink state that reproduces any input symbol later on (observe that this
kind of behaviour guarantees that the transducer eventually outputs a word in the target language T). During an odd phase
k, the transducer remembers the current tiling gk of height k, which is guaranteed to be correct up to height k − 1. The
transducer here distinguishes two cases, depending on whether the tiling gk is entirely correct or not. If gk is correct, then
the transducer emits the encoding 〈k, 0〉gk+1(k, 0)# · . . . · 〈k, 2n − 1〉gk+1(k, 2n − 1)# · � of the tiling gk+1 along the row
k that is specified by Eve’s strategy (i.e., gk+1 = s(gk)) and it accordingly moves to the next (even) phase k + 1. Otherwise,
if gk is not correct, then we know that there is an index 0 ≤ j′ < 2n such that

(
gk(k − 1, j′ − 1), gk(k − 1, j′)

)
6∈ H or(

gk(k − 2, j′), gk(k − 1, j′)
)
6∈ V . In this case, the transducer emits the word 〈k − 1, j′〉gk(k − 1, j′)# and moves to a sink

state that reproduces any input symbol later on (this guarantees that the output word belongs to the target language T). From
the above arguments it is clear that the transducer S realizes a streaming strategy for repairing the restriction language R into
the target language T with uniformly bounded cost (note that, even if the worst-case cost depends on the instance I , it is
uniformly bounded once we fix I and the corresponding languages R and T).
We now prove the converse implication. We assume that Adam has a winning strategy in the tiling game and we describe
this strategy by a function s that maps a correct tiling g of even height 0 ≤ k < 2n − 1 to a correct tiling g′ of height k + 1
that extends g. Moreover, by way of contradiction, we assume that there is a transducer S that realizes a streaming repair
strategy of R into T with cost uniformly bounded by some natural number N . For the sake of brevity, we say that a word u
encodes a tiling g along the row i if u contains a sub-sequence of the form 〈i, 0〉g(i, 0)# · . . . · 〈i, 2n − 1〉g(i, 2n − 1)# ·�.
We recursively construct some tilings g0, g1, g2, ..., gk and some words v1, v3, ..., vk+1 such that

i) for all even indices 2 ≤ i ≤ k, gi is a tiling of height i that extends gi−1,

ii) for all odd indices 1 ≤ i < k, gi is a correct tiling of height i that extends gi−1,

iii) for all odd indices 1 ≤ i < k, vi encodes the tiling gi along the row i− 1,

iv) for all odd indices 1 ≤ i ≤ k + 1, the word v1 · v3 · . . . · vi belongs to the restriction language R,

v) S(v1 · v3 · . . . · vk+1) does not belong to the target language T .

As for the base case, we simply let g0 be the tiling of height 0. As for the inductive case, we assume that there exist some
tilings g0, g1, g2, ..., gi and some words v1, v3, ..., vi−1, for some even index i ≥ 0, that satisfy the properties i)–iv) above and
we define the word vi+1 and, possibly, the tilings gi+1 and gi+2 as follows. First, we distinguish between two cases, depending
on whether gi is correct or not.
If gi is not correct, then we necessarily have i ≥ 2 and hence gi extends the tiling gi−1, which is correct. This shows that
there is an index 0 ≤ j′ < 2n such that

(
gi(i− 1, j′ − 1), gi(i− 1, j′)

)
6∈ H or

(
gi(i− 2, j′), gi(i− 1, j′)

)
6∈ V . In this case,

we simply let k = i + 2 and vi+1 be the underlined block 〈i, j′〉gi+1(i, j′)#. This concludes the inductive definition and it
guarantees that the property v) above is also verified.
In the second case, we assume that the tiling gi is correct. We then use Adam’s strategy to define a the correct tiling gi+1 = s(gi)
of height i+ 1 that extends gi. Accordingly, we let vi+1 be a redundant encoding of the tiling gi+1 along the row i:

vi+1 =
(
〈i, 0〉gi+1(i, 0)#

)N+1 · . . . ·
(
〈i, 2n − 1〉gi+1(i, 2n − 1)#

)N+1
.

Since vi+1 contains more than N occurrences of each block 〈i, j〉gi+1(i, j)#, the output of the transducer S on vi+1 must
contain a sub-sequence that encodes the tiling gi+1 along the row i. By analyzing the definition of the target language T , we see
that the transducer has, basically, only two options for repairing the word vi+1. The first option is to emit an underlined block of
the form 〈i, j′〉gi+1(i, j′)#. In this case, however, we have

(
gi+1(i, j′−1), gi+1(i, j′)

)
∈ H and

(
gi+1(i−1, j′), gi+1(i, j′)

)
∈ V

(recall that the tiling gi+1 is correct) and hence the repaired word S(v1 · v3 · . . . · vi+1) does not belong to the target language
T . The second option is to emit an encoding of a tiling gi+2 of height i+ 2 that extends gi+1, provided that i+ 2 ≤ 2n. This
latter case concludes the inductive definition.
The above arguments show that there is a word v1 ·v3 · . . . ·vk+1 in the restriction language that is not repaired by S into a word
in the target language. This is against the hypothesis of S realizing a streaming repair strategy of R into T with uniformly
bounded cost.

Theorem 17. The problem of determining, given k and two languages R and T recognized by DFA, whether one can repair
R into T in the streaming case with aggregate cost at most k, is in PTIME.

Proof: Let R = (Σ, Q, δ, q0, F) and T = (∆, Q′, δ′, q′0, F
′) be two DFA, let R and T be the recognized languages, and

let k be the repair threshold. As a preliminary remark, we observe that, without loss of generality, we can assume that k is
represented in unary: indeed, we know from Theorem 3 that either there is a streaming strategy for repairing R into T with
aggregate cost uniformly bounded by (1 + |Dag(R)|) · |T | (i.e., a polynomial in the size of R and T), or all streaming repair
strategies of R into T have unbounded aggregate cost.
We define a reachability game over an arena AR,T that characterizes the threshold problem for R and T in the streaming
case. The nodes of the arena are either the pairs (q, q′, c) ∈ Q × Q′ × [0, k] or the pairs (q, q′, c, a) ∈ Q × Q′ × [0, k] × Σ.
The former nodes are owned by Adam (i.e., the player entitled to emit a word in the restriction language) and the latter
nodes are owned by Eve (i.e., the player entitled to repair the given word into the target language). The arena AR,T has
an edge (p, p′, c) → (q, p′, c, a) if δ(p, a) = q, and an edge (q, p′, c, a) → (q, q′, c′) if q′ is reachable from p′ in T and
c′ = c + min

{
Dist(a, v) : δ(p′, v) = q′

}
(provided that c′ ≤ k). Adam plays first, starting from the node (q0, q

′
0, 0). The

player who cannot move loses. Finally, Eve wins in all infinite plays (which are feasible in this type of game).
Now, we show that Eve has a winning strategy in AR,T iff there is a streaming repair strategy of R into T with aggregate
cost at most k. Easily, assume that Eve has a winning strategy in AR,T . This implies that there exist a winning positional

strategy for Eve. It is easy to construct, using the positional strategy of Eve, a deterministic transducer that repairs R into
T with aggregate cost less than or equal to k. For the other direction, suppose that there exists a deterministic transducer
S = (Σ,∆, Q′′, δ′′, q′′0 ,Ω) that repairs every word fromR into T with aggregate cost less than or equal to k. It is straightforward
to define a winning strategy for Eve using the deterministic transducer. Indeed, we only need to maintain the current state s ∈ S
of the transducer and move from each node (q, p′, c, a) to a successor node (q, q′, c′) such that q′ = δ(p′, v), c′ = c+Dist(a, v),
and δ′′(s, a) = (v, s′).

	Introduction
	Basic notation and terminology
	Problem setting
	Repair Problems, Automata, and Games

	Characterizations of bounded repairability
	Complexity results in the non-streaming case
	The bounded repair problem
	The threshold problem

	Complexity results in the streaming case
	The bounded repair problem
	The threshold problem and constructing streaming repairs

	Special cases: unrestricted repair problems
	Towards infinite words
	Related Work and Conclusions
	References
	Appendix
	Proofs for Section IV (Characterizations of bounded repairability)
	Proofs for Section V (Complexity results in the non-streaming case)
	Proofs for Section VI (Complexity results in the streaming case)

