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Abstract

Topological quantum computation (TQC) is a new fault-tolerant approach to quantum

information, where computations are carried out by braiding particles called anyons. Anyons

are quasiparticles that exist in 2 + 1 dimensions and are neither bosons or fermions. Modular

tensor categories capture the structure of anyon systems and thus serve as models for topo-

logical quantum computation. However, program of using category theory to �nd higher-level

structures and protocols has yet to be applied to TQC due to the di�culty of working with

modular tensor categories. This di�culty could be greatly mitigated by the development of a

computer algebra system to represent such categories. Thus, a computer algebra system for

representing modular tensor categories within the symmetric monoidal 2-category 2Vect was

developed.

A general representation for 2Vect is described. This involves extending basic linear

algebra operations to handle matrices of zero-dimension and 2-matrices (matrices of matrices).

Then, representations for the 0-cells, 1-cells, and 2-cells of 2Vect are found. Due to the chosen

representation, various structural isomorphisms are required to ensure equations expected of

1-categories hold in the 2-categories setting. These structural isomorphisms are explicitly

constructed.

In order to identify special categories, such as modular tensor categories, a diagrammatic

language of monoidal categories is extended for 2-categories. This language is used to construct

the axioms for these special categories within 2Vect. Finally, a way of implementing these

axioms within 2Vect in the computer algebra system is described. This system will now be

used for the investigation of higher-level structures within modular tensor categories to better

understand the structure of topological quantum computing.
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1 Introduction

Topological Quantum Computation (TQC) is an alternative program for quantum computation that

has recently started to gain traction [18, 20, 24, 28, 31, 34, 30]. Opposing the industry-standard local

two-level system qubit model [29], TQC proposes�as the name suggests�an entirely topological

computation scheme. To perform computations, quasiparticles, called nonabelian anyons, are

braided together in 2 + 1 dimensions. The proposed quantum computer is naturally fault-tolerant�

qubits do not require complex encodings or error correcting schemes�they are naturally resilient

to the errors that plague the traditional model [28].

Category theory is an abstract branch of mathematics that generalizes the approach of set

theory [3]. The program of category theory is to identify and unify similar structures across many

diverse �elds of mathematics and science, such as logic, physics, topology and computation [5]�and

sometimes even outside the realm of traditional mathematics and science, such as linguistics [17]. A

favored haunt of category theory is the quantum realm, where certain types of categories, monoidal

categories, are perfect structures for representing compound systems. Recently, category theory

has been applied to the foundations of quantum mechanics as a replacement for the von Neumann

Hilbert space formalism [2]�to put quantum mechanics on proper axiomatic footing. Through

its use of a high level of abstraction, category theory brings the fundamental structure of these

�elds into focus, providing, at worst, a nice new formalism in which to view and study branches of

mathematics, and, at best, insight into the deep connections within math, philosophy, reality, and

everything�essentially the 42-ness of it all [4].

In additional to foundational issues, category theory has been applied to quantum information

as a means of developing a high-level language for quantum computation [1]. Not unlike the

di�erence between mere bit-�ipping and Python or Java, the categorical approach to quantum

computation and information hopes to bring the �eld out of the proverbial complex-number-qubit-

(well, not just �ipping anymore but, more technically)-unitary-operating gutter [12, 13]. Coupled

with this new formalism, a diagrammatic language developed by Joyal and Street [21] has been

applied by Abramsky and Coecke [1] to simplify calculations and elucidate not only the how but

also the why of quantum information theory. Concepts key to the quantum world, such as no-

cloning and teleportation, are rendered intuitive, if not obvious, in the diagrammatic language.
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Kitaev, who originally proposed TQC [24], also attempted to give it a categorical founda-

tion [25]. A special type of category, the modular tensor category (MTC), has been shown to have

the exact structure needed to model the kinematics and dynamics of anyons [31]. Thus, MTCs

provide a model for TQC.

Unfortunately, MTCs are not simple categories1 and are encumbered with structures and prop-

erties. It takes many pages of matrices to even test whether a proposed set of structures form a

modular tensor category. Therefore, it is useful to develop a computer algebra representation of

modular tensor categories. This representation would aid in identifying and �nding such categories

as well as allow the user to compute within them. Since MTCs model topological quantum compu-

tation, this would also allow the user to compute things about anyons or the underlying topological

quantum �eld theory (TQFT) the category represents�essentially to aid in the exploration of

TQC.

This computer model will be developed within the symmetric monoidal 2-category, 2Vect.

2-categories are further generalizations in category theory and may be thought of as categories

of categories [26]. In this paradigm, modular tensor categories are structures to be found within

2Vect. In fact, the structure of 2Vect is general enough to represent many di�erent types of

categories, not just MTCs. As such, this model will provide an explicit representation of 2Vect and

thus serve to elucidate its structures, which carries an interest in its own right. These structures

must be explicitly constructed, and on the way, it was determined that certain equations of 1-

categories only hold up to isomorphism in 2Vect.

Additionally, the diagrammatic language was extended to symmetric monoidal 2-categories,

where a special type of two-dimensional bracketing is necessary to keep equations �type safe.� This

allows us to easily write equations of the MTC in 2Vect, and ensures (from a non-categorical

viewpoint) that no �implicit change of basis� will disrupt our calculations.

Along the way, we will make discoveries about the structure of 2Vect (as mentioned) and

the di�erent equivalent classes of MTCs that live inside it. In the end, we hope to use such a

computer algebra representation to work with modular tensor categories and anyon models at the

same high-level quantum protocols now enjoy due to category theory.

1Technically, MTCs are semisimple. However, here we really use simple to mean �of low complexity� or �not
elaborate.�
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2 Theory

2.1 Modular Tensor Categories

The following provides a brief introduction to modular tensor categories. Amodular tensor category

is a twisted braided monoidal category that is semisimple, modular, and rigid. The braiding, the

twist, and monoidality are all di�erent structures that must be de�ned on top of the base category.

Modularity, rigidity, and semi-simplicity are properties that a given category must satisfy. This

presentation of categories, monoidal categories, and braided monoidal categories is adapted from

Baez and Stay [5], the discussion of rigidity and the twist follows the approach of Turaev [36], and

our approach to modularity follows Müger [27].

A category consists of a set of objects and a set of arrows or morphisms that go between

the objects. We write arrows with their source and destination objects. For instance, f : A → B

speci�es a morphism, f , goes from object A to object B. This can be represented diagrammatically

as

A
f // B

Furthermore, a category has an associative binary operation that allows morphisms to be composed.

If we have g : B → C, in addition to f , then we also have g ◦f : A→ C. This is diagrammatically

represented as

A
f //

g◦f ��

B

g
��

C

Finally, all objects have an identity morphism, for instance, idB : B → B, such that g ◦ idB = g

and idB ◦ f = f .

A category is, in many ways, an abstract generalization of a set. For the category of sets, Set,

the objects would be the sets and arrows would be functions between the sets. However, category

theory shifts the focus from the objects (or possible elements �within�) to the arrows. The main

focus of category theory is structures and the various operations that preserve structure.

We can also de�ne maps between categories, called functors. For each object and morphism

in the source category a functor provides a map to an object and morphism (respectively) in the
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destination category. If a functor F maps from category C to category D, we write F : C → D.

Furthermore, if A and B are objects in C, and f : A→ B is a morphism is C, then FA and FB are

objects in D, and Ff : FA→ FB is a morphism in D. Finally, functors preserve the composition

of morphisms, so that F (g ◦ f) = Fg ◦ Ff . In the category of categories, Cat, the morphisms are

functors. Thus, as morphisms they must satisfy the associativity and identity properties as de�ned

above for arrows.

Furthermore, we can de�ne natural transformations as maps between functors that go between

the same categories. If we have functors F : C → D and G : C → D, then we can have a natural

transformation from F to G, α : F ⇒ G. This can be represented diagrammatically as

C

F

##

G

<<⇓ α D

where C and D are categories�or equivalently seen as objects in the category of categories. Fur-

thermore, for every object in C, the natural transformation provides a morphism. For an object

A in C, we have the morphism αA : FA→ GA. Furthermore, for any morphism f : A→ B in C,

we have αB ◦ Ff = Gf ◦ αA as a true equation in category D. This equation can be represented

as a diagram in D

FA

αA

��

Ff // FB

αB

��
GA

Gf
// GB

along with the statement that the diagram commutes�meaning that all paths through the diagram

are equal. A equation (or diagram) such as this is known as a coherence condition. An invertible

natural transformation is known as a natural isomorphism.

Examples of all these structures will be given in the forthcoming de�nitions, and furthermore,

these concepts will be explained in greater detail within the structure of 2-categories in Section

2.2. Nevertheless, the essentials of category theory should be familiar to the reader�if not, the

reader may consult Abramsky and Tzevelekos [3] for an introduction.
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2.1.1 Monoidal Categories

A monoidal category (sometimes referred to as a tensor category) is a category equipped with a

tensor product functor, usually written as ⊗, a unit object, denoted u, and three natural isomor-

phisms, the associator, the right unitor, and the left unitor, denoted α, ρ, and λ, respectively.

The product functor ⊗ is a bifunctor�it takes two objects, A and B from the underlying

category and returns a combined object, A⊗B. This monoidal combination can be thought of as

A and B.

The components of the natural isomorphisms, α, ρ, and λ are

αA,B,C : (A⊗B)⊗ C → A⊗ (B ⊗ C)

ρA : A⊗ u→ A

λA : u⊗A→ A

The associator mediates between the di�erent ways of bracketing three objects, and the unitors

single out the unit object�e�ectively making it the identity under ⊗. Finally, all of these structures

must satisfy two equations or axioms.

The pentagon equation�so aptly named due to the shape of its representative diagram�is a

condition stating that the two ways to rebracket ((A⊗B)⊗C)⊗D to A⊗ (B⊗ (C⊗D)), built up

from di�erent combinations of α, must be equal. The pentagon equation is given by the statement

that the following diagram

((A⊗B)⊗ C)⊗D
αA⊗B,C,D

))

αA,B,C ⊗ idD

uu
(A⊗ (B ⊗ C))⊗D

αA,B⊗C,D

��

(A⊗B)⊗ (C ⊗D)

αA,B,C⊗D

��
A⊗ ((B ⊗ C)⊗D)

idA⊗αB,C,D

// A⊗ (B ⊗ (C ⊗D))

(1)

must commute�i.e. both ways of rebracketing must be equal. Mac Lane's coherence theorem can

be applied, so that if the pentagon equation holds, then all ways of rebracketing 5 or 6 or N objects
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must be equal [26].

Similarly, there is an equation that deals with coherence the two unitors and the associator,

known as the triangle equation.2 The triangle equation states that the following diagram must

commute:

(A⊗ u)⊗B
αA,u,B //

ρA⊗idB &&

A⊗ (u⊗B)

idA⊗λBxx
A⊗B

(2)

In this case, the coherence ensures that using the right unitor is the same as rebracketing and using

the left unitor.

Monoidal categories are a generalized means of combining objects (or morphisms) in paral-

lel. The category Vect has a monoidal structure with the tensor product functor given by the

tensor product�hence, these are both represented by ⊗�and trivial unitors. The unit is the

one-dimensional vector space, i.e. a complex number, i.e. a scalar�and it is true that the tensor

product of any vector space with the one-dimensional vector space is isomorphic to itself. In quan-

tum mechanics (and quantum information theory), we use the tensor product to combine systems

and processes, which is exactly what a monoidal category allows us to do.

2.1.2 Braided Monoidal Categories

A braided monoidal category is a monoidal category equipped with natural isomorphism, β, known

as a braid structure. The braiding has components βA,B : A ⊗ B → B ⊗ A. Thus, commuting

monoidally combined objects in a braided monoidal category returns an object isomorphic to the

original.

The braid structure must satisfy two equations, known as the hexagon equations, for coherence

with the associator (and indirectly, for coherence with the unitors). The hexagon equations state

2Correct�it is shaped like a triangle.
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that the following diagrams must commute:

A⊗ (B ⊗ C)
βA,B⊗C// (B ⊗ C)⊗A

αB,C,A

((
(A⊗B)⊗ C

αA,B,C

66

βA,B⊗idC ((

B ⊗ (C ⊗A)

(B ⊗A)⊗ C
αB,A,C

// B ⊗ (A⊗ C)

idB⊗βA,C

66

(3)

(A⊗B)⊗ C
βA⊗B,C// C ⊗ (A⊗B)

α−1
C,A,B

((
A⊗ (B ⊗ C)

α−1
A,B,C

66

idA⊗βB,C ((

(C ⊗A)⊗B

A⊗ (C ⊗B)
α−1

A,C,B

// (A⊗ C)⊗B
βA,C⊗idB

66

(4)

These equations show that the multiple ways of reordering and rebracketing three objects must be

equal. Furthermore, these equations imply the coherence of the unitors with the braid structure�

i.e. the following diagram commutes:

(A⊗ u)
βA,u //

ρA
##

(u⊗A)

λA{{
A

(5)

Thus, all the structures in a braided monoidal category are coherent.

If βB,A ◦ βA,B = idA⊗B for all objects, then the category is a symmetric monoidal category. In

these categories, the braid operation is colloquially referred to as a swap�essentially since we do

not have to keep track of how many times the objects �wind� around each other and only have to

keep track of their order. Modular tensor categories are braided but not symmetric.3

3In fact, the modularity property prevents them from being symmetric�this intuitively makes sense, since we
require nontriviality in at least some cases when anyons are wound around each other�q.v. Section 2.1.6.
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2.1.3 Twisted Braided Monoidal Categories

A twisted braided monoidal category is a braided monoidal category equipped with a natural iso-

morphism, θ, known as a twist. The twist has components θA : A → A and must satisfy a

coherence equation�which is square-shaped but generally appears to be unnamed�that states

that the following diagram must commute:

A⊗B
θA⊗B //

θA⊗θB
��

A⊗B

A⊗B
βA,B

// B ⊗A

βB,A

OO (6)

The twist can be explained by appealing to the analogy by which it was named. Objects in

braided monoidal categories can be represented by strands (and drawn and calculated as such,

using a graphical calculus that we will introduce in Section 4), then the monoidal combinations are

strands placed next to each other, and the braiding is represented by, well, braiding the strand. A

twisted braided monoidal category extends our objects so that they are ribbons. Thus, the ribbons

can not only be braided, but also twisted. Then, equation 6 represents a topological coherence

equation between two ribbons that are either twisted together or individually twisted and then

braided.

2.1.4 Rigidity

A monoidal category can satisfy a property known as rigidity. A category that is rigid is also

said to �have duals.� When we interpret our objects as anyons, an object's dual represents its

antiparticle.

A category is rigid if, for all objects A, there exists another object, A∗, for which there exists

morphisms ηA : u→ A⊗A∗ and εA : A∗ ⊗A→ u, and the following diagrams commute:

A
idA //

ηA⊗ idA
��

A

(A⊗A∗)⊗A
αA,A∗,A

// A⊗ (A∗ ⊗A)

idA⊗εA

OO (7)
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A∗
idA∗ //

idA∗⊗ ηA
��

A∗

A∗ ⊗ (A⊗A∗)
α−1

A∗,A,A∗

// (A∗ ⊗A)⊗A∗
εA⊗idA∗

OO (8)

where in equation 7 the left morphism is technically (ηA ⊗ idA) ◦ λA, and in equation 8 the left

morphism technically (idA∗ ⊗ ηA) ◦ ρA∗ . Similarly, the right morphism in equation 7 is technically

ρA◦(idA⊗εA), and the right morphism in equation 8 is technically λA∗ ◦(εA⊗idA∗). In general, the

use of the unitors will be implicit, and the equations will be drawn as shown (unless the equation

is directly involving the unitors, as is the triangle equation).4

If we have a twisted braided monoidal category and a rigid structure, we need a coherence

equation to ensure that the twist and the braid are compatible with rigidity. For all simple objects,

A, and their duals, A∗, we require that the following diagram commutes:

u
ηA // A⊗A∗

idA⊗θA∗

$$

θA⊗idA∗

;;A⊗A
∗ (9)

A twisted braided monoidal category that is rigid, and satis�es equation 9, is sometimes referred

to as a ribbon category. The analogy to �ribbons� was explained in the previous subsection as an

intuitive explanation of the twist natural isomorphism. In fact, in must of the literature [7], the

twist is often de�ned in terms of a ribbon structure�which is often treated as primary in the

de�nition of ribbon categories and thus MTCs.

2.1.5 Semisimplicity

A category may satisfy a property known as semisimplicity. Essentially, in a semisimple category,

there exists a biproduct, ⊕, that takes two objects, A and B, and returns an object, A⊕B, which

is the direct sum of the two objects. Furthermore, in a semisimple category all objects can be

built in this manner from a �nite direct sum of simple objects, where a simple object is an object

4Equations 7 and 8 do not indicate how to construct A∗, ηA, or εA for a given A. We will address their
construction later in Section 4.6 when discussing the realization of MTCs within 2Vect using our computer algebra
system.
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that cannot be reduced further.

Much of the literature [7, 31, 36] de�nes semisimplicity through a complicated notion leading

from additive categories to abelian categories to semisimple categories. However, since we will only

ever be working with modular tensor categories within 2Vect, our de�nition is su�cient. Within

Vect, the bifunctor ⊕ is essentially given by the direct sum on matrices, de�ned in the standard

manner. Furthermore, in addition to semisimplicity, modular tensor categories require only a �nite

number of simple objects.

In our topological quantum computation model, we now have two bifunctors to account for.

Combinations of objects using ⊗, the tensor product functor, amount to having those combinations

of anyons�i.e. we can think of them as placed next to each other (abstractly, not physically) and

we will move them around and braid them to enact a computation. This can be thought of as

an AND in that we have anyon A and B. Combinations of objects using ⊕ are di�erent possible

fusion paths�i.e. A ⊕ B means we can have total anyon charge A or B. Simple objects are the

di�erent species of anyons we have in the model, and thus there will only be a �nite number of

them.

2.1.6 Modularity

A braided monoidal category may satisfy a property known as modularity. If, for all objects A,

there exists at least one object B, for which the diagram does not commute:

(A⊗B)
βA,B //

idA⊗B ##

(B ⊗A)

βB,A{{
A

(10)

�with A, B, not made up of a direct sum combination of the unit, u�then the category is

modular. Essentially, each nontrivial objects (i.e. objects that are not made up of a direct sum

of the unit) must braid nontrivially with at least one other object. Clearly, this is essential for

topological quantum computation, since if the �nontrivial� anyons braided trivially we would not

be able to compute anything. Furthermore, if equation 10 did commute for all objects, then the
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category would be symmetric monoidal. Thus, modular categories cannot be symmetric.5

A modular tensor category is a semisimple ribbon category with the modularity property (and

with a �nite number of simple objects). Thus, it is a twisted braided monoidal category that is

rigid, modular, and semisimple.

2.1.7 Monoidal Functors

Functors also may have addition structure, usually to preserve the structure of the source and

destination categories. For instance, monoidal functors preserve the structure of monoidal cate-

gories, braided monoidal functors preserve the structure of braided monoidal categories, and so on.

Here, we will consider monoidal functors, as they will be considered later as an example of how

to represent such functors within 2Vect within our computer algebra system. A reference for this

section may be found in Coecke and Paquette [14].

A monoidal functor is a functor equipped with a natural transformation, φ, and a morphism,

φu. The natural transformation has components φA,B : FA • FB → F (A ⊗ B), where here ⊗

represents the tensor product functor in the source category and • represents the tensor product

functor in the destination category. A given functor is monoidal if the following diagrams commute:

(FA • FB) • FC

φA,B • idFC

��

α2FA,FB,FC // FA • (FB • FC)

idFA•φB,C

��
F (A⊗B) • FC

φA⊗B,C

��

FA • F (B ⊗ C))

φA,B⊗C

��
F ((A⊗B)⊗ C)

Fα1A,B,C

// F (A⊗ (B ⊗ C))

(11)

FA • u2

idFA•φu

��

ρ2 // FA

FA • Fu1
φA,u1

// F (A⊗ u1)

Fρ1

OO (12)

5N.B. In the literature, modularity is often de�ned equivalently with the statement that for a category to be
modular, a certain matrix, called the S-matrix, must be invertible. Please see Bakalov and Kirillov [7] for more
details.
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u2 • FB

φu•idFB

��

λ2 // FB

Fu1 • FB
φu1,B

// F (u1 ⊗B)

Fλ1

OO (13)

where the source category has monoidal structures α1, ρ1, and λ1, and the destination category

has monoidal structures α2, ρ2, and λ2. The �rst diagram ensures the coherence of the monoidal

functor operation and the associator natural isomorphism, and the second two diagrams ensure the

coherence of the monoidal functor with the right and left unitors, respectively. Thus, the monoidal

functor will preserve the monoidal structure of the underlying categories. However, a braided

monoidal functor would require additional structures to preserve the braiding, and a modular

tensor functor requires even more structures.

If the structures φ and φu are invertible, then the monoidal functor is strong. If they are

identities, the monoidal functor is strict. We will mostly be interested in strong monoidal functors.

2.2 2Vect, the 2-Category

A 2-category extends the idea of a category�objects and morphisms�to include a higher level

structure: morphisms between parallel morphisms. In lieu of such complicated terminology, the

�eld has created the terms 0-cell, 1-cell, and 2-cell to mean object, morphism, and morphism-

between-parallel-morphisms, respectively.

The only 2-category we will be interested in is 2Vect. Speci�cally, we are interested in 2Vect

endowed with additional structures so that it is symmetric 2-monoidal. This 2-category is the

natural 2-category extension of the category Vect. It is within 2Vect that we will represent

modular tensor categories. Braided monoidal 2-categories were originally de�ned by Kapranov and

Voevodsky [22, 23]. A rigorous presentation of 2Vect without a monoidal structure is given by

Elgueta [19]. A general rigorous treatment of monoidal 2-categories, including symmetric monoidal

2-categories, may be found in work of Schommer-Pries [35]. This presentation of a 2-category and

its properties is mostly adapted from Mac Lane [26], with the focus on 2Vect adapted from the

other sources.
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2.2.1 0-Cells

A 0-cell or object of 2Vect is the Cartesian product of a number of copies of the category Vect

(which, of course, is itself a category). As such, there is an isomorphism between its 0-cells and

the whole numbers, where the whole number indicates the number of copies.

Additionally, we can use the 2-monoidal structure to combined 0-cells using the monoidal

product 2-functor, �. 0-cells N and M can be combined as the 0-cell N�M, meaning the

monoidal product of N copies of 2Vect and M copies of 2Vect is the 0-cell representing N times

M copies of 2Vect. Via the isomorphism with the whole numbers, the 0-cell N�M is also

isomorphic to the 0-cell NM�i.e. the 0-cell given by the product of the numbers N and M .

2.2.2 1-Cells

A 1-cell is a morphism or arrow of 2Vect. Since the objects (i.e. 0-cells) of 2Vect are copies of

the category of Vect, a 1-cell is a functor between di�erent numbers of copies of Vect.

Every 1-cell has a source 0-cell and destination 0-cell and is written f : N→M. This can also

be represented diagrammatically as

N
f //M

A 1-cell of 2Vect, f maps n copies of Vect to m copies of Vect. If we �look inside� the objects

of 2Vect, the �states� will be a certain-dimensional vector space (including zero-dimensional) in

each copy. As such, a 1-cell can be considered as an m × n matrix of vector spaces.6 1-cells

may be composed via a type of generalized matrix product (see Section 3.1)�an operation that

has the form of a matrix product, but is made up of operations other than multiplication and

addition�with the direct sum as the �plus� operation and tensor product as the �times� operation.

Thus, the 1-cell is able to mix the vector spaces from di�erent categories together. Finally, we

can �look inside� and access the �states� of a 0-cell N (a certain-dimensional vector space for each

copy of Vect) with a 1-cell ψ : 1 → N (i.e. a n × 1 dimensional matrix of vector spaces). Then,

by composing this morphism with another compatible morphism, we can have a morphism act on

a state.7 The categorical viewpoint does away with the idea of �looking inside� and just considers

6See Table 2 for an example.
7This may seem like a strange hierarchy violation, since one may think that morphisms are above objects that

are above states. Naively, states are elements of the object and we need to �look inside� the object to talk about
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0-cells, 1-cells, and 2-cells. This is how we will access the objects and morphisms of the modular

tensor categories that we will �nd within 2Vect.8

1-Cell Composition: if a 1-cell shares a destination with the source of a second 1-cell, then

they may be composed. If f : N → M and g : M → P, then they may be composed as

g ◦ f : N→ P.

N
g◦f //

f   

P

M

g

>>

Identity 1-Cell: every 0-cell, N, has an identity 1-cell idN : N→ N such that f ◦ idN = f and

idN ◦ g = g for f : N→M and g : P→ N.

P
g // N

idN

�� f //M

Inverse 1-Cell: the inverse of a 1-cell f : N→M is a 1-cell f−1 : M→ N, such that f ◦ f−1 =

idM and f−1 ◦ f = idN.

N

f

77M

f−1

xx

Monoidal Product: 1-cells can be combined using the monoidal product 2-functor, �. If f :

N→M and g : A→ B are 1-cells, then monoidal product is

f � g : N�A→M�B

Swap 1-Cell: since 2Vect is a symmetric monoidal 2-category, it is endowed with a 2-natural

states. However, the real hierarchy should place objects above both morphism and states�objects are atomic and
morphisms let us go among objects. In that way, morphisms and states are at a parallel level (and a state can
be thought of as a way of going between the unit object and another object) it is no surprise that there exists an
isomorphism between them.

8This is similar to the relationship between objects, states, and morphisms within Vect. The objects are n-
dimensional vector spaces. The morphism are linear maps between vector space. The states are vectors (i.e. one
element of the ground �eld for every dimension of the vector space). A morphism goes between di�erent vector
spaces and can mix the elements from each dimension together. Additionally, we use morphisms to access the
vectors (i.e. the states) of the objects. A linear map between a one-dimensional vector space and an n-dimensional
vector space is a column vector. This is entirely analogous to 2Vect, except the abstraction of everything is increase
by one level.
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isomorphism, S whose components are 1-cells, such as SN,M : N�M→M�N, that swap

order of monoidally combined 0-cells.

N�M
SN,M //M�N

Since 2Vect is symmetric, we require SM,N ◦SN,M = idN�M, and the action of S is referred

to as a swap and not a braid.

2.2.3 2-Cells

A 2-cell is a morphism or arrow between 1-cells that have the same source and destination. It

is a collection of separate linear maps between the vector spaces in the source 1-cell and the

vector spaces in the destination 1-cell. Since 1-cells of 2Vect are functors, 2-cells are natural

transformation between the source and destination 1-cells.

If we have f : N → M and g : N → M, then we can de�ne a 2-cell α : f ⇒ g. This is

represented as

N

f

##

g

<<⇓ α M

2-cells will be written with the ⇒ arrow, while 1-cells will be written with the → arrow.

2-Cell Vertical Composition: analogous to 1-cell composition, two 2-cells may be composed

vertically if the destination of the �rst 2-cell matches the source of the second 2-cell. If we

have f : N → M, g : N → M, and h : N → M, with α : f ⇒ g and β : g ⇒ h, then we

have the following diagram:

⇓α

N

f

��

h

KK
g //M

⇓β
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We can vertically compose α and β to get β ◦ α : f ⇒ h, or α followed by β:

N

f

$$

h

;;⇓ β ◦ α M

2-Cell Horizontal Composition is given by the composition of a 2-cell whose 1-cells have a 0-

cell destinations that matches the 0-cell source of the 1-cells of another 2-cell. In other words,

if the source 1-cells of two 2-cells can be composed9, then horizontal composition is the 2-cell

that goes between the composed source 1-cells and the composed destination 1-cells. If we

have f1 : N →M, f2 : N →M, g1 : M → P, g2 : M → P, α : f1 ⇒ f2, and β : g1 ⇒ g2,

then we have the following diagram:

N

f1

##

f2

<<⇓ α M

g1

""

g2

<<⇓ β P

We can compose the 1-cells to get g1 ◦ f1 : N → P and g2 ◦ f2 : N → P. We can also

horizontally compose the 2-cells to get β • α : g1 ◦ f1 ⇒ g2 ◦ f2:

N

g1◦f1

&&

g2◦f2

88⇓ β • α P

Identity 2-Cell: analogous to the identity 1-cell, every 1-cell has an identity 2-cell, such that for

9which, given the de�nition of 2-cells, means their destination 1-cells can be composed as well.
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f : N→M and g : N→M, we have idf : f ⇒ f and idg : g ⇒ g

N

f

$$

f

;;⇓ idf M

N

g

$$

g

;;⇓ idg M

Furthermore, these must satisfy α ◦ idf = α and idg ◦ α = α, for α : f ⇒ g.10

N

f

%%

g

::⇓ α ◦ idf M = N

f

%%

g

::⇓ idg ◦ α M

= N

f

##

g

<<⇓ α M

Inverse 2-Cell: analogous to the inverse 1-cell, the inverse of a 2-cell (under vertical composition),

α−1 : g ⇒ f

N

f

$$

g

;;⇑ α−1 M

10Thus, the identity 2-cell is the identity under vertical composition.
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exists if, for α : f ⇒ g , we have α ◦ α−1 = idg and α−1 ◦ α = idf

N

g

%%

g

::⇓ α ◦ α−1 M = N

g

$$

g

;;⇓ idg M

N

f

%%

f

::⇓ α−1 ◦ α M = N

f

$$

f

;;⇓ idf M

Whiskering is the name for the horizontal composition of a 2-cell with (the vertical composition)

identity 2-cell of another 1-cell. In the following diagram, we can combine the 1-cell f with

the 2-cell α by whiskering :

N
f //M

g1

""

g2

<<⇓ α P

= N

f

$$

f

;;⇓ idf M

g1

""

g2

<<⇓ α P

= N

g1◦f

$$

g2◦f

;;⇓ α • idf P

This makes it clear that the identity 2-cell is only the identity for vertical composition, since
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horizontal composition with the identity yields a 2-cell with di�erent source and destination

1-cells. Finally, if the order is reversed, we can whisker the other way.

N

g1

##

g2

<<⇓ α M
f // P

= N

f◦g1

$$

f◦g2

;;⇓ idf • α P

Monoidal Product: 2-cells can also be combined using the monoidal product 2-functor, �. If

α : f ⇒ g and β : a⇒ b are 2-cells, their monoidal product is given by

α� β : f � a⇒ g � b

Interchange Law: in the following diagram, there are two ways to compose all the 2-cells to-

gether.

⇓α1 ⇓β1

N

f1

��

f3

KK
f2 //M

g1

��

g3

KK
g2 // P

⇓α2 ⇓β2

(14)

We can �rst compose vertically and then compose horizontally, to give (β2 ◦ β1) • (α2 ◦ α1) :

g1 ◦ f1 ⇒ g3 ◦ f3, or we can �rst compose horizontally and then compose vertically, to give

(β2 • α2) ◦ (β1 • α1) : g1 ◦ f1 ⇒ g3 ◦ f3. For all 2-categories, these 2-cells must be equal.
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2.3 Topological Quantum Computation

2.3.1 Anyons

Quantum mechanics teaches us that there are two types of fundamental particles: fermions and

bosons. We go on to learn from quantum �eld theory (particularly the standard model of particle

physics) that fermions�such as electrons, protons, and neutrons�are particles of matter, and

bosons�such as photons�are force carriers. The di�erence�we learn�between these particles

is due to a property (i.e. quantum number) of these particles, playfully (yet misleadingly) called

spin�an analogy intended to invoke the spinning top. Fermions have half-integer spin and bosons

have integer spin. Spin is an intrinsic angular momentum, an angular momentum that is unlike

and distinct from rotational angular momentum, as from classical physics. The total spin is a

conserved quantity (i.e. a charge) and thus must correspond to a symmetry. Since spin is an

angular momentum, we know it generates rotational symmetry. We �nd that under a 2π rotation,

the boson wavefunction is unchanged, but the fermion wavefunction acquires a phase change of

−1. However, spin is also connected to a di�erent type of symmetry through the spin-statistics

theorem. Fundamental particles of the same type are indistinguishable, we learn that exchanging

them cannot a�ect the physics. Through the spin-statistics theorem, we learn that the generators

of exchange symmetry are connected to spin.11 Under exchange of two identical particles, the phase

of the fermions is multiplied by −1, but phase of the wavefunction of bosons remains unchanged.12

We can shed more light on this by visualizing the exchange as a process. Consider the exchange

of two particles in three spatial dimensions (with four dimensions total, since the process occurs in

time). We move the particles around each other in a counterclockwise path (so they do not collide)

that preserves each particle's orientation (so they are not also rotated), until each one occupies the

position previously occupied by the other. Now, we repeat the process (still in a counterclockwise

manner), and the particles occupy their original positions, having been exchanged twice. Due

to the three spatial dimensions, this process can be continuously deformed into one where the

particles are not exchanged at all13�i.e. it is topologically equivalent to no exchanges, a process

11The key connection between exchange symmetry (i.e. statistics) and a conserved angular momentum (i.e.
spin)�the spin-statistics theorem�is predicated on the existence of antiparticles. See [32] for more details.

12Thus, fermions have antisymmetric wavefunctions and bosons have symmetric wavefunctions, leading to the
appropriate behavior under exchange. This leads to the Pauli exclusion principle that no fermions can be in the
same state, since the antisymmetry would cause the total wavefunction to be zero.

13To see this, �rst, deform the two exchanges into a process where one particle stays in place and the other is
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where nothing happens�and the phase of the wavefunction must remain unchanged. Thus, for

one exchange, we �nd the phase can change only by ±1, leading to bosons and fermions.

The key to the above argument was three spatial dimensions. In two spatial dimensions, we have

no extra dimension to move the loop over, and thus the double exchange cannot be continuously

deformed into the nothing process�the identity process. The double exchange is in a di�erent

topological class than the identity process, and the wavefunction is allowed to change. However,

exchange of indistinguishable particles is still a symmetry of the system (the physics must remain

the same), so at most, the wavefunction can undergo a unitary operation. There are two cases to

consider:

• The space of the unitary operation is one-dimensional, given by eiΦ. For Φ = 0 we have

familiar bosons, and for Φ = π we have familiar fermions. However, θ is not restricted to

these cases and may take other values. These particles are playfully called anyons, because

they may have �any� other statistical angle�as Φ is called [28]. Speci�cally, these particles

are known as abelian anyons, since, for an N particle system, the order of the exchanges does

not matter�i.e. the unitary operations all commute.

• The space of the unitary operation has dimension greater than one. In this case, there are a

degenerate set of states describing the system, and an exchange of particles causes a rotation

in this state space. In this case, di�erent exchanges may not commute. These particles are

known as nonabelian anyons.

Just as for fermions and bosons, we can relate�through the spin-statistics theorem�the behavior

of these particles under exchange to the behavior of these particles under rotation. Under a 2π

rotation, anyons will undergo a phase change eiθ, known as the topological charge or topological

spin (i.e. plays the same role as the spin number) of the anyons. The species or type of anyon is

entirely determined by its topological charge. As we will see, each species will have its own copy

of the category Vect within the modular tensor category.

Like our fermions and bosons, anyons may appear in a bound state or be taken together as a

compound system. The topological charge of anyons add in a similar fashion to the addition of

taken around it (again making sure to preserve the orientation). So far, we have only moved through two spatial
dimensions. Now, use the third spatial dimensions to move the loop path of the moving particle around the straight
world line of the non-moving particle. This loop can now be contracted, and we �nd that two particle exchanges is
topologically equivalent to one in which nothing happens.
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particles of di�erent spin (i.e. the addition of angular momentum)�meaning that anyons combine

to form composite anyons of possibly di�erent topological charge. This is referred to as fusion, and

the rules for combining anyons and the possible resulting particles are collectively known as fusion

rules. Two abelian anyons have a unique way of adding together, i.e. they can only fuse into one

species of anyon. A property of nonabelian anyons is the existence of at least one nontrivial fusion

rule�meaning two nonabelian anyons can combine in di�erent ways to form particles of di�erent

topological charge. This is not unlike a familiar property of angular momentum addition�two

spin 1
2 particles can combine in one way to form a spin 1 triplet or can combine in another way to

form a spin 0 singlet.

It is about time to come clean; fundamental particles do not exist in 2 + 1 dimensions. Further-

more, even when con�ned to two spatial dimensions, fundamental particles do not exhibit anyon

statistics. However, in certain condensed matter many-particle systems, particle-like excitations,

called quasiparticles do. Coined by Lev Landau, a quasiparticle is a low energy excitation of a

many-body system whereby the interaction between all the particles (i.e. shielding, etc.) leads

to clumps of energy that behave like particles. Speci�cally, in certain fractional quantum Hall

systems�where emergent quasiparticles carry fractional electric charge�abelian and nonabelian

anyons are theorized to exists [28].

2.3.2 Quantum Computation

Now what? Well�quantum computation is all about unitary operations. The basic model for

quantum computation is system preparation, then unitary operations, then measurement [29].

Quantum bits or qubits are prepared in a certain state�the input, then entangled and acted on

with various unitary operations designed as �quantum logic gates��the computation, and �nally

measured�the result. However, it is immensely di�cult�physically�to (a) apply an arbitrary

unitary operation to di�erent sets of qubits and (b) maintain the entanglement of all the qubits.

Small perturbations can cause the qubits to decohere�all of this adding up to insurmountable

errors in the computation. Fault-tolerant quantum computation is possible using complex error-

correcting coding schemes, whereby the information is represented redundantly and is subjected to

error-correcting processes. However, as the error-correction process has the potential to introduce

additional errors, the overall computation can only be fault-tolerant if the error rate is considerably
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small�a feat that is currently far from being achieved.

The solution is to �ght the errors at the level of hardware rather than software [28]. In this

conventional model, the quantum information is stored and processed locally. The qubits may

become locally entangled with the environment and then thermal �uctuations can cause the state of

the environment to change, leading to decoherence. Then, we require a quantum process to correct

the errors. Topological quantum computers store and process the quantum information globally

via what are known as topological degrees of freedom�degrees of freedom that are una�ected by

local interactions [34].

Consider a system of nonabelian anyons. If they can be pushed around, exchanged�essentially

braided at will�one can e�ect a unitary operation. Given certain species of nonabelian anyons,

one could achieve an arbitrary unitary operation by braiding. As these braids are in separate

topological classes, by de�nition, they cannot be continuously deformed into each other�i.e. they

are una�ected by local perturbations and environmental �uctuations. They are naturally fault-

tolerant, without any error correction required. Thus, this model of quantum computation is

known as topological quantum computation.

2.3.3 Fibonacci Anyons

In order to see how quantum information may be represented with anyons, let us consider a speci�c

model of TQC, known as the Fibonacci model. A model of TQC is a way of representing and

processing the qubits with speci�c types of anyons. In this model, there are one or two species of

anyons�depending on your reference�although everyone agrees that there is only one nontrivial

species.14 We will label the nontrivial anyon, τ , and the trivial anyon, u. As such, τ particles are

their own antiparticles. In category theory, we will �nd that it is rigidity that allows objects to

have duals�i.e. antiparticles.

Our presentation of the Fibonacci model will combine di�erent approaches, taking from [28]

and [32] for the physics and quantum computation intuition, and from [31] for the modular tensor

categorical intuition�although not for the representation within 2Vect. The values for the dif-

ferent structures of Fib was taken from Rowell, et al., who classi�ed all MTCs up to four simple

14Some references consider the trivial anyon to be not unlike a vacuum, since an anyon particle and anyon anti-
particle can created from the trivial particle�i.e. out of the vacuum�and can also annihilate back into it.

27



anyon species [33].

The �rst part of a model is to consider how the anyons can fuse together. The trivial anyon

carries that name because it always fuses trivially�i.e. for any other anyon A, A and u fuse

together to form A. Thus, we see why u can be considered the vacuum�or more aptly like a

neutral particle among charges�i.e. it carries no topological charge. We write this fusion rule as

A× u = u× A = A.15 Thus, if the anyons in the Fibonacci model are to be nonabelian (which is

required for TQC), the only possible nontrivial fusion rule can arise from τ × τ fusion. In fact, we

have

τ × τ = u+ τ (15)

Two τ anyons can either fuse to form the trivial particle, u, or can fuse to form a single τ . Now,

we will show why this model is called the Fibonacci model. It is easy to see�pardoning the slight

abuse of notation�that

τn = Fn−1u+ Fnτ (16)

where Fn is the nth Fibonacci number, and τn means the fusion together of n anyons of charge τ .

Now, let us begin to introduce the structure of a modular tensor category. As we will see

every modular tensor category realizes a di�erent model of TQC. Furthermore, we will show how

this structure lies within the 2-category 2Vect, which we represent with numbers, matrices, and

matrices of matrices.

The modular tensor category associated with the Fibonacci model is, reasonably, called Fib.

Let us build up these structures bit by bit. Every MTC �rst must be a semi-simple monoidal

category. Monoidal categories are equipped with a bifunctor that takes two objects of the category

and combines them, returning another object in the category. A semi-simple category means

all objects can be expressed as a direct sum of simple objects. Together, this is exactly what the

fusion rules are!�a way of combining objects (fusing anyons) into direct sums of other objects of the

category (i.e. they fuse in potentially di�erent ways into other anyons of the model). Considering

a 2-category as category of categories, it has categories as objects, functors as morphisms, and

natural transformations as morphisms between parallel morphisms. Thus, Fib will be an object in

15Since particle exchange is a symmetry of the system, it cannot change the total topological charge (this is the
fact that was used in de�ning topological charge and anyons). Thus, the factors in all the fusion rules must be
commutative. We will also see later that this must be true categorically because MTCs are braided categories.
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2Vect�speci�cally, the object 2 or two copies of Vect. The product functor of the MTC, which

encapsulates the fusion rules of the TQC model, will be a morphism of 2Vect. This is represented

as a matrix�speci�cally for Fib, we have m : 4→ 2,

m =

 1 0 0 1

0 1 1 1

 (17)

The four fusion rules (trivial and nontrivial) are encapsulated in the columns ofm�the last column

is the nontrivial rule. The unit, u, of the MTC picks out the trivial particle. In this case, we have

chosen to represent it as u : 1→ 2,

u =

 1

0

 (18)

Here we see another feature of category theory�an object of the MTC (which represents a collection

of the di�erent types of particles in the anyon model) is represented by a morphism (i.e. a matrix)

in the 2-category, speci�cally a 2× 1 matrix. Similarly, we can access τ by τ : 1→ 2,

τ =

 0

1

 (19)

By the semisimple structure of 2Vect, we can represent arbitrary �states,� like au + bτ , in the

expected way�thus, for Fib, such a state is represented by two natural numbers, with equations

18 and 19 de�ning the basis.

Let us return to m. We can represent two anyons together�pre-fusion16�as a tensor product

of two two-dimensional vector spaces. Thus, we represent τ × τ as τ � τ : 1→ 4,

τ × τ =



0

0

0

1


(20)

To determine how these particles fuse, we compose (matrix product) that state with m and see

16By pre-fusion, we mean the left side of equation 15.
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we get the state that represents u + τ�the correct fusion rule. Thus, fusion is represented by

the action of the product functor on two objects when working �inside� the MTC, but this is also

represented by the composition of corresponding of morphisms in 2Vect. The majority of people

will adopt the �rst viewpoint when they consider TQC categorically, but we will concentrate on

the second viewpoint as it will allow us to represent all MTCs within our computer algebra system.

Now, let us consider the fusion of three anyons. If any of the anyons are trivial, then there is only

one or zero ways for them to fuse together to form a given anyon. For instance, there is only one way

for (u× τ)×u to fuse into a τ , and zero ways for it to fuse into a u�i.e. (u× τ)×u = 0u+1τ = τ .

However, the fusion of three τ anyons is nontrivial: (τ × τ) × τ = u + 2τ . There is one way for

them to fuse to u, but there are two ways for them to fuse to τ . The �rst fusion of τ × τ can give

an u or a τ . Then, either of these can fuse with the third τ to give an overall charge of τ�we

have (τ × τ) × τ → u × τ → τ or (τ × τ) × τ → τ × τ → τ . Thus, if the overall charge of the

three anyons is τ , there are two distinct fusion channels.17 As we will see later, the fusion rules

for three anyons is given by the matrix product of m with m in a tensor product with the 2 × 2

identity matrix m ◦ (m� id2) : 8→ 2,

m(m⊗ I2×2) =

 1 0 0 1 0 1 1 1

0 1 1 1 1 1 1 2

 (21)

where in the morphism de�nition the tensor product is written with the symbols � and id2 to

make contact with the categorical notation used later.18

The space of three τ anyon fusion into τ is a degenerate two-dimensional vector space. We can

pick a basis using the intermediate fusion states: one basis state is (τ×τ)×τ → u×τ → τ and the

other basis state is (τ × τ)× τ → τ × τ → τ . Bonesteel, et al., introduced the following notation

for basis states to make contact with familiar bra-ket notation: if we have (τ × τ) → A, meaning

two τ fuse to an anyon A, then we represent this as | (•, •)A〉 [9]. We use • to represent an anyon,

and (•, •)A to represent the fusing of two anyons to A, and what they are should be clear from

17The use of → instead of = indicates we are considering just one of possibly many fusion channels.
18The � symbol is used as the product functor in the 2-category 2Vect.
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context.19 Thus, we have as our basis

(τ × τ)× τ → u× τ → τ ≡| ((•, •)u, •)τ 〉 ≡| 0〉 (22)

(τ × τ)× τ → τ × τ → τ ≡| ((•, •)τ , •)τ 〉 ≡| 1〉 (23)

These basis vectors are labeled very suggestively because, in fact, they will form our qubit. Essen-

tially, in the Fibonacci model, three τ anyons of total charge τ form a qubit. Sometimes, three τ

anyons will fuse to u, which we write as

(τ × τ)× τ → τ × τ → u ≡| ((•, •)τ , •)u〉 ≡| NC〉 (24)

meaning �non-computational.� This state is reached only in error, a process we will describe in

Section 2.3.6.

However, there is another equivalent basis to consider. Instead of the �rst two anyons fusing

and those intermediate states forming the basis, the second two anyons can fuse �rst and form the

basis, giving:

τ × (τ × τ)→ τ × u→ τ ≡| (•, (•, •)u)τ 〉 ≡| +〉 (25)

τ × (τ × τ)→ τ × τ → τ ≡| (•, (•, •)τ )τ 〉 ≡| −〉 (26)

We can de�ne a change of basis matrix, αττττ , such that for a state | ψ〉 in the 0, 1 basis, αττττ | ψ〉

is in the ± basis. We label α with three τ on top to indicate the fusion of three τ anyons, and the

subscript indicates they anyon they fuse into�the total charge of the three�which, in this case,

is also τ .

Unsurprisingly, this change of basis matrix is part of the monoidal structure of Fib. Every

monoidal category is equipped with a natural isomorphism, α, whose components are morphisms

such that

(A⊗B)⊗ C
αA,B,C // A⊗ (B ⊗ C) (27)

where we are using ⊗ to represent the product functor for the MTC. This is exactly what the

19Although, we suppose, this could also be written as | (τ, τ)A〉 for clarity�or in a di�erent model with more
than one nontrivial anyon, we could write a basis given by the fusion A×B → C as | (A,B)C〉.
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matrix αττττ is�the τ, τ, τ component of the associator, which is a morphism. Thus, the entire

associator is a collection of matrices�which we can represent as a matrix of matrices for all the

di�erent simple object combinations

α =



[1] ∅0×0 ∅0×0 [1] ∅0×0 [1] [1] [1]

∅0×0 [1] [1] [1] [1] [1] [1]

 ϕ−1 ϕ−
1
2

ϕ−
1
2 −ϕ−1




(28)

where ∅0×0 is the 0 × 0 dimensional matrix, and ϕ = 1+
√

5
2 , the golden ratio. We invoke zero-

dimensional matrices because, for instance, there is no way for three u anyons to fuse to a τ anyon.

Thus, this fusion is represented by a zero-dimensional vector space, and the change of basis matrix

is a 0 × 0 dimensional matrix. Our change of basis matrix, αττττ , is the matrix in the lower right

hand corner, which we might also choose to index as α2,8. Since the morphisms of a 2-category are

functors, natural transformations are morphism between parallel morphisms in the 2-category, and

thus α has a source and destination, which may be written as α : m ◦ (m� id2)⇒ m ◦ (id2 �m),

where the double arrow ⇒ lets us known that this is de�ning a natural transformation. In fact,

we can represent any natural transformation as a matrix of matrices in this manner.

For the most part, we have described the important aspects of the monoidal structure of Fib,

as well as the fusion of the anyons. How about quantum computation�i.e. braiding? For this, we

require a braided monoidal structure, which provides another natural isomorphism, β : m⇒ m◦S,

where S is the swap 1-cell (which is part of the symmetric structure of 2Vect and allows us to

exchange objects monoidally combined by the product 2-functor �). The components of β given

the phase change associated with braiding or exchanging two anyons in a clockwise manner�or

swapping the order of two objects monoidally combined in the MTC. Using the 0, 1 basis, we can

represent the braiding unitary operation of braiding two τ 's by

βττ =

 e−
4
5 iπ 0

0 e
3
5 iπ

 (29)

We further see how these anyons are nonabelian and how that connects with a nontrivial fusion
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rule. First, τ × τ can fuse into u or τ , and, second, they braid di�erent depending on their charge.

We can represented the whole natural isomorphism, β : m⇒ m ◦ S, as

β =


[1] ∅0×0 ∅0×0

[
e−

4
5 iπ
]

∅0×0 [1] [1]
[
e

3
5 iπ
]
 (30)

and we see that βττu = e−
4
5 iπ and βτττ = e

3
5 iπ, using the notation from before. The other elements

describe what we expect�for instance, braiding τ ×u causes no phase change, since u is the trivial

particle and braiding with it is like doing nothing.

Computation is performed by successive braiding of the anyons that form our qubits. In this

case, that means we can build up unitary operations by application of the braid matrix given by

βττ and then associator basis change matrix, given by αττττ , to regroup the anyons we want to

braid. This will be explored further in Section 2.3.5.

Finally, we will consider braided monoidal categories with a twist. The twist, θ, is a natural

isomorphism whose components describe�e�ectively�a twist in the anyon's world line or a 2π

rotation. It is this quantity, in Section 2.3.1, that we called topological charge or topological spin.

We �nd that when u undergoes a 2π rotation, it undergoes no phase change, since it is the trivial

particle. However, when τ undergoes a 2π rotation, it undergoes a phase change of e
4
5 iπ�which is

both nontrivial and di�erent from bosons and fermions, since they can only change phase by ±1.

As a natural isomorphism, we represent it as θ : id2 ⇒ id2,

θ =


[1] ∅0×0

∅0×0

[
e

4
5 iπ
]
 (31)

where again the zero-dimensional matrices indicate that if you put a twist in a particle's world

line�rotate it by 2π�it cannot change into a di�erent species of anyon�i.e. its topological charge

is conserved. In Section 2.1.3, we will show how the twist and braid structures are intricately related

through the twist axiom (which is also the all important connection between spin and statistics

mention in Section 2.3.1).
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categorical name categorical symbol TQC name TQC symbol

product functor m fusion rules N

associator α F-matrix (basis change) F

braiding β R-matrix R

twist θ topological spin Θ

Table 1: Di�erent notation and names used in category theory literature and topological quantum
computing literature.

2.3.4 Notation

We would like to clear up some notational di�erences between the category theory literature�for

instance, [5, 31, 36]�and the topological quantum computing literature�for instance, [28, 32].

Unfortunately, even within the category theory literature, there is no agreement for the symbols

representing the various structures.

In this work, we have chosen to use the categorical symbols, choosing those that are (roughly)

the most common and least likely to cause confusion or collide with other symbols. On the other

hand, symbols in the TQC work are mostly standardized. Table 1 provides a guide for converting

between the di�erent notations. The category theory symbols and structures should be familiar by

this point in the work, as should their roles within topological quantum computing. The names and

symbols within TQC literature for these structures are provided for readers interested in mediating

between di�erent works.

2.3.5 Computation in the Fibonacci Model

Picking up from where we left o� in Section 2.3.3, we would like to how to enact a computation in

the Fibonacci model. We know that the matrix representing the braiding of two τ anyons is given

by βττ , de�ned by equation 29. Speci�cally, two τ anyons with total charge u will undergo phase

change βττu = e−
4
5 iπ, and two τ anyons with total charge τ will undergo phase change βτττ = e

3
5 iπ.

Given three τ Fibonacci anyons paired as (τ × τ) × τ , we know that we have a basis, |

((•, •)u, •)τ 〉 =| 0〉, | ((•, •)τ , •)τ 〉 =| 1〉, and | ((•, •)τ , •)u〉 =| NC〉 (de�ned by equations 22�

24), determined by the intermediate fusion states and total charge of the three anyons. The

34



three-dimensional vector space reduces into a two-dimensional total charge τ part�i.e. our qubit�

spanned by the vectors | 0〉 and | 1〉, and a one-dimensional total charge u, spanned by | NC〉.

If we exchange the �rst two τ anyons (in a clockwise manner), a state | 0〉 would undergo phase

change βττu , a state | 1〉 would undergo phase change βτττ , and a state | NC〉 would undergo phase

change βτττ �since the phase change is determined by the charge of the intermediate fusion state

of the �rst two anyons. This can be described by the unitary matrix

U1 =


 βττu 0

0 βτττ

 02×1

01×2 [βτττ ]

 =


 e−

4
5 iπ 0

0 e
3
5 iπ

 02×1

01×2

[
e

3
5 iπ
]
 (32)

where we have a direct sum between the action on the qubit and the non-computational sector.

The upper left 2 × 2 matrix is a unitary operation on our qubit. However, we do not have

enough generators to fully describe all the possible braids of our anyons. More importantly,

this operation alone does not support universal quantum computation. Instead, we need at least

another operation.

Luckily, we can also exchange the second and third anyons. This provides another distinct

unitary operation, even though we are still just exchanging two τ , due to an implicit change of

basis involved in such a exchange. Remember, our anyons are paired as (τ×τ)×τ , but to exchange

the last two anyons, we need to pair them as τ × (τ × τ). To determine the action of exchanging

the second and third anyons, we need to change from the 0, 1 basis to the ± basis20, we need

to rebracket�we need to apply the associator, α. Our change of basis matrix, built from the

associator (de�ned in equation 28) is

V =

 αττττ 02×1

01×2 ατττu

 =


 ϕ−1 ϕ−

1
2

ϕ−
1
2 −ϕ−1

 02×1

01×2 [1]

 (33)

As expected, the non-computational sector remains the same in both bases.

Now, in the ± basis, if we exchange the second and third τ anyons, a state | +〉 would undergo

20Given by | (•, (•, •)u)τ 〉 =| +〉 and | (•, (•, •)τ )τ 〉 =| −〉, de�ned in equations 25 and 26.
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phase change βττu , a state | −〉 would undergo phase change βτττ , and a state | NC〉 would undergo

phase change βτττ �since now the phase change is determined by the charge of the intermediate

fusion state of the �nal two anyons. This is described by the same matrix, U1, except it is now

taken to be in a di�erent basis.

To determine the action of exchanging our second and third anyon in the 0, 1 basis, we �rst

change to the ± basis, apply the exchange matrix, then change back to the original basis.

U2 = V −1U1V =


 e

4
5 iπϕ−1 e−

3
5 iπϕ−

1
2

e−
3
5 iπϕ−

1
2 −ϕ−1

 02×1

01×2

[
e

3
5 iπ
]
 (34)

All possible braids on three anyons can be created by exchanging either the �rst two or the

last two (in a clockwise or a counterclockwise manner, with the action of a counterclockwise braid

represented by the inverses of U1 and U2) [28]. In fact, U1 and U2 will generate a representation of

the braid group and can approximate an arbitrary two-dimensional unitary operation by di�erent

combinations of braids [32]. To entangle more qubits together, we can consider more anyons�i.e.

six anyons of charge τ will represent two qubits.

Using the method demonstrated in this section (exchanging and rebracketing), we can determine

the action of braiding di�erent anyons together. The inverse process�which generally requires

brute force or clever computation [28]�will allow us �nd the (approximate) braid for a given

unitary operation. Thus, we can piece together which braids represent the unitary operations

that are standard for universal quantum computation. Finally, it can be shown that all the

required gates can be constructed for the Fibonacci model, and thus it supports universal quantum

computation [31].21

2.3.6 Errors

This discussion of errors is mostly adapted from Nayak, et al. [28].

Much of this work has been focused on topological quantum computation as a naturally fault-

tolerant error free model of quantum computation. By encoding the quantum information topo-

21In fact, it can be done with only the two clockwise exchange operations [28].
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logically, it is robust against local perturbations and environment �uctuations.

Thus, errors in topological quantum computing are nonexistent in the traditional sense. Are

there any errors in this model? Yes�although they are most unlike the debilitating errors that

currently plague non-topological approaches to computation. Essentially, errors can only result

from other anyons entering the system and unintentionally braiding with the computational anyons

representing the qubits. Such anyons can be unintentionally created from the vacuum (and are

more likely, the greater the temperature) and can wander around �wreaking havoc.�

Luckily, a large majority of these processes do not cause any errors. If an anyon anti-anyon pair

is created from the vacuum and one of them braids with another anyon and then they annihilate,

the qubit's total state is unchanged (within an overall phase), and no error is caused. If an anyon

anti-anyon pair is created from the vacuum and one of them annihilates with an anyon involved in

our computation, but its partner takes the annihilated anyon's place, no error is caused. In fact,

an error can only occur if a thermal anyon braids with more than one computational anyon. This

process can be suppressed by keeping the computational anyons physically separated�making it

likely the stray anyons will annihilate long before they braid with more than one computational

anyon.

Finally, in most cases, braids can only approximate a desired unitary operation. This means

that such operations will not be exact and can lead to error in the computation. It is through this

approximate braiding of multiple qubits together that a non-computational state, | NC〉, can be

reached�a process known as leakage error [9]. However, this error can be made arbitrarily small

by increasing the length of the braid, and their length only grows logarithmically as the accuracy

is increased [32]. Thus, this source of error is entirely controllable and can easily be suppressed to

the desired degree.

3 Realization

The computer algebra system we developed was implemented in Mathematica [37], but can be

adapted for any computer algebra package. Here, we will describe generally how to realize such a

system for 2Vect and MTCs.

Before we can represent MTCs, it is necessary to fully develop the mathematical helper functions
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to represent the symmetric monoidal 2-category 2Vect.

3.1 Generalized Operations

To facilitate the implementation of 2Vect, we require four generalized matrix operations:

Generalized Unary Element Operation is a unary operation that takes a matrix, A, and a

unary function, f , and applies it element-wise to A. This is de�ned as

Bij = f(Aij) (35)

where B is the output matrix. The function, f , is referred to as a generalized operation.

Generalized Binary Element Operation is a binary operation that takes two matrices, A and

B, and a binary function, f , and applies it element-wise to A and B. This is de�ned as

Cij = f(Aij , Bij) (36)

where C is the output matrix. The function, f , is referred to as a generalized operation.

Generalized Matrix Product is a binary operation that takes two matrices, A and B, and two

binary functions, f and g, and combines them in a way analogous to the matrix product

(
∑
j AijBjk) to form a new matrix. Speci�cally, the generalized matrix product is given by

Cik = G
j
f(Aij , Bjk) (37)

where C is the output matrix, and Gj is taken to mean repeated application of g for j

iterations22. Because of the roles these operations play, f is referred to as a generalized times

and g is referred to as a generalized plus.

Generalized Tensor Product is a binary operation that takes two matrices, A and B, and

a binary function, f , and combines them analogously to the Kronecker product or tensor

22 in the same way that
∑
i indicates i repeated iterations of addition.
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product, to form a new matrix. The tensor product of two matrices, A and B, is given by

(A⊗B)αβ = AijBkl (38)

α = a(i− 1) + k (39)

β = b(j − 1) + l

where, if A has dimensions m × n and B has dimensions a × b, then A ⊗ B has dimensions

ma× nb. Analogously, the generalized tensor product is given by

Cαβ = f(Aij , Bkl) (40)

where C is the output matrix and if A has dimensions m×n and B has dimensions a× b, C

has dimensions ma × nb and α and β are de�ned the same as above. In this case, f is also

referred to as a generalized times.

3.2 Linear Algebra Extensions

In order to work with the symmetric monoidal 2-category 2Vect, we need to make two modi�ca-

tions to the standard set of linear algebra functions:

• Functions need to be extended to handle zero-dimensional matrices.

Since 0 is a perfectly good object in 2Vect, we can have morphisms from 0 to other ob-

jects, from other objects to 0, or from 0 to 0. These morphisms or 1-cells will be represented

by matrices of zero dimensions, and it is necessary to keep track of the size of both the rows

and columns of these matrices.

• An entire set of functions need to be de�ned over matrices of matrices, or 2-matrices.

Objects in 2Vect are represented by whole numbers, 1-cells are represented by matrices,

and 2-cells are represented by matrices of matrices. The real task in representing 2Vect
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is implementing the 2-cell operations, which ultimately means understanding operations on

2-matrices.

3.2.1 Zero-Dimensional Matrices

A zero-dimensional matrix is an m× 0 dimensional matrix, a 0× n dimensional matrix, or a 0× 0

dimensional matrix (with m 6= 0 and n 6= 0). Since zero-dimensional matrices have no elements,

there exists only one such matrix for each pair of dimensions.23 In the following, we will extend

many familiar mathematical operations so they may be de�ned for zero-dimensional matrices.

Matrix Product: consider two matrices, A and B, of dimensions a×b and c×d, to be multiplied

as AB. The matrix product is still only de�ned when the inner dimensions of the input

matrices match (i.e. b = c), with the resulting matrix AB being a × d dimensional. This

leaves two cases:

• Inner dimensions are zero (b = c = 0): AB will be an a× d matrix of zeroes.24

• One or both of the outer dimensions are zero (a = 0 or d = 0 or both): AB will be an

a× d zero-dimensional matrix (since either a or d or both are zero).

Tensor Product (or Kronecker Product): if either input is a zero-dimensional matrix, the

tensor product is also a zero-dimensional matrix whose dimensions are still given by equation

39.

Direct Sum: as a semisimple monoidal category, 2Vect requires a second monoidal product given

by the direct sum[31]. The direct sum is given by

A⊕B =

 A 0m×b

0a×n B

 (41)

where 0m×b is taken to mean a m× b block of zeros, and if A has dimensions m× n and B

has dimensions a× b, then A⊕B has dimensions (m+ a)× (n+ b).

23A zero-dimensional matrix is distinct from a zero matrix. A zero matrix has a non-zero number of rows and
a non-zero number of columns, and all the entries are zeroes. A zero-dimensional matrix is a matrix that has zero
rows or zero columns, or both. As such, there are no entries.

24Since A and B really carry no information other than their dimension, there is nothing else that this could
possibly be.
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Essentially, equation 41 still holds for the zero-dimensional implementation, as long as zero

is inserted for the appropriate dimensions. E�ectively, the direct sum of a matrix A and a

matrix B, with zero as a row (column) dimension, will add columns (rows) of zeros to A equal

to the non-zero dimension of B.25 For example, if A has dimensions m× n (both non-zero)

and B has dimensions 0× b matrix, then their direct sum will be

A⊕B = [A 0m×b]

which is exactly what one would expect by plugging into equation 41. This means that the

0× 0 matrix is the identity for the direct sum. Additionally, if A and B have complimentary

zero dimensions, such as m× 0 and 0× n respectively, the result of their direct sum will be

an m× n matrix of zeroes.26

Identity Matrix: as previously stated, there exists only one zero-dimensional matrix for each

pair of dimensions m× n, with m = 0 or n = 0 or both. Since identity matrices are square,

the only zero-dimensional matrix with an identity is the 0 × 0 matrix. The matrix product

of this matrix with itself must be itself, and thus it is its own identity.

Inverse Matrix: in category theory, for a matrix A to have an inverse A−1, it must be a left

inverse and a right inverse.

A−1A = AA−1 = I (42)

Thus, the inverse is only de�ned if the matrix is square, so only the 0 × 0 matrix has an

inverse. As there is only one 0× 0 matrix, the only candidate for the inverse it itself. Since

the matrix product of this matrix with itself is itself (which is also the identity matrix for

the 0× 0 matrix), it has the properties required by equation 42 and is its own inverse.

Adjoint Matrix of a zero-dimensional matrix is given by swapping the dimensions, since zero-

dimensional matrices have no elements. Thus, the adjoint of the 0× n (or m× 0) matrix is

the n× 0 (or 0×m) matrix.

25in this case, the number of the columns (rows) of B
26As with the matrix product A and B really carry no information other than their dimension, so there is nothing

else that this could possibly be.
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3.2.2 Two-Matrices

A 2-matrix has the form of a matrix, but its elements themselves are also matrices. These elements

will be referred to as element-matrices or inner -matrices. Consider a 2-matrix A with outer

dimensions m×n, and element-matrices Aij with dimensions aij×bij . An element-matrix element

is indexed by (Aij)αβ , where the �rst two indices, i and j range over the outer dimensions m and n,

the the second two indices, α and β, range over the inner dimensions aij and bij . 2-matrices were

introduced by Elgueta in [19] in a slightly di�erent context�as the 2-category 2Mat, the 2-category

analog of the categoryMat. Here, we focus 2-matrices from a non-categorical perspective�simply

as matrices of matrices. Please see Section 3.3.3 for a speci�c example of a 2-matrix.

Many operations that exist for regular matrices or 1-matrices have 2-matrix analogues. Most

involve the use of generalized operations, as de�ned in Section 3.1. Furthermore, these operations

will correspond to the required set of operations on 2-cells 2Vect.

Element-Matrix Product takes a pair of 2-matrices of the same outer dimensions and returns

a 2-matrix given by the element by element matrix product. For the element-matrix product

to exist, the outer matrix dimensions of both 2-matrices must be the same (so they have

the same number of element-matrices in the same positions) and the matrix product must

exist between all the corresponding pairs of element-matrices. If A and B are 2-matrices of

dimensions m× n and p× q and the element-matrix product A ◦B is to be computed, then

we must have m = p and n = q. Furthermore, for each corresponding element-matrix Aij

and Bij of dimensions aij × bij and cij × dij , we must have bij = cij for all i = {1, ...,m} and

j = {1, ..., n}. If the element-matrix product A ◦B exists, then it is given by

((A ◦B)ij)αβ =

bij∑
γ=1

(Aij)αγ(Bij)γβ (43)

where i and j range over m and n, respectively, and α and β range over aij and dij , respec-

tively. This is an example of a generalized binary element operation with the matrix product

as the generalized operation.

Outer-Matrix Product is a generalized matrix product with the tensor product as the general-

ized times and the direct sum as the generalized plus. The only constraint is that if A and
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B are 2-matrices of dimensions m× n and p× q then for the outer-matrix product to exist,

we must have n = p. Furthermore, if the inner dimensions are aij × bij and cjk × djk, with

i = {1, ...,m}, j = {1, ..., n} , and k = {1, ..., q} , then by equation 37, the outer-matrix

product A •B is given by

(A •B)ik =

n⊕
j=1

Aij ⊗Bjk (44)

Identity Two-Matrix is the identity for the element-matrix product. Thus, if A is a 2-matrix

with outer dimensions m × n, then the identity 2-matrix I is also an m × n 2-matrix

whose element-matrices Iij are individually identity matrices to their corresponding element-

matrices of A such that

A = A ◦ I = I ◦A (45)

The identity two matrix is only de�ned for 2-matrices whose element-matrices are all square.

It can be implemented by a generalized unary element operation with a get identity matrix

from matrix function as the generalized operation.

Inverse Two-Matrix is the corresponding inverse for the element-matrix product. Thus, if A

is a 2-matrix with outer dimensions m × n, then its inverse 2-matrix A−1 is also an m × n

2-matrix whose element-matrices A−1
ij are individually inverse matrices to the corresponding

element-matrices of A and subject to the expected existence conditions for matrix inverses

such that

I = A ◦A−1 = A−1 ◦A (46)

where I is the previously de�ned identity 2-matrix corresponding to A. For A−1 to exist,

the matrix inverse must exist for each element-matrix of A.27 A function to give the inverse

2-matrix can be implemented by a generalized unary element operation with a get inverse

matrix from matrix function as the generalized operation.

Two-Tensor Product takes a pair of 2-matrices and returns a 2-matrix that is the tensor product

on both the outer and inner matrices. It is a generalized tensor product with the tensor

product as the generalized times. If A and B are 2-matrices of dimensions m× n and a× b
27and thus the element-matrices of A must be square if A has an inverse.
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and the two-tensor product A�B is to be computed, then

(A�B)αβ = Aij ⊗Bkl (47)

α ≡ a(i− 1) + k

β ≡ b(j − 1) + l

where A�B has outer dimensions ma× nb.28

Additionally, we could de�ne a 2-direct sum and potentially two types of 2-adjoints, but none of

these operations are required for implementing 2Vect.

For similar reasons, we do not extend the functionality of the 2-matrix operations we just

de�ned to handle 2-matrices whose outer dimensions are zero. In some small situations, it is

possible for them to arise, however they are not needed to represent the modular tensor categories

of interest to TQC.29

3.3 2Vect, the representation

We �nally have the required functionality to implement the semisimple symmetric monoidal 2-

category 2Vect using a computer algebra system. This Section will heavily mirror Section 2.2,

providing implementations for all the features de�ned there.

3.3.1 0-Cells

As stated in Section 2.2.1, there is a isomorphism between 0-cells of 2Vect and the whole numbers.

Thus, we will use this isomorphism to represent 0-cells as whole numbers.

Since we are not just implementing 2Vect, but we are also endowing it with a 2-monoidal

structure, we can combine 0-cells using the monoidal product 2-functor, �. This has the action of

simply multiplying the numbers used to represent the 0-cells. For instance, in our representation,

2 � 3 = 6, meaning the monoidal product of two copies of 2Vect and three copies of 2Vect is

28N.B. In equation 47, the symbol ⊗ is used to mean the standard tensor product, and the symbol � is used to
represent the two-tensor product we are de�ning. However, later we will begin to use � mainly to represent the
product 2-functor for monoidal 2-categories.

29However, most relevant 2-matrices will have some zero-dimensional matrices as element-matrices, as we saw in
Section 2.3.3 for the representation of Fib.
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2Vect label actual representation isomorphism

0-cell 2

[
Vecta
Vectb

]
2

1-cell f : 2→ 3

 Cn Cm
Cp Cq
Cr Cs

  n m
p q
r s


�state� of 0-cell: 2 ψ ε 2

[
Ca
Cb

] [
a
b

]

�state� as a 1-cell ψ : 1→ 2

[
Ca
Cb

] [
a
b

]

Table 2: Example of a 0-cell, 1-cell, and �states� of a 0-cell for 2Vect. The 0-cell is actually two
copies of the category Vect, but we represent it as the number 2. The 1-cell is actually a 3 × 2
matrix of vector spaces, but we represent it as a 3× 2 matrix of numbers. A state of 2 is a 2× 1
matrix of vector spaces (i.e. a column vector), but we represent it as a 2 × 1 matrix of numbers.
Furthermore, the equivalence between the two ways of thinking about �states� should be clear.
From the categorical viewpoint of 2Vect, we do not �look inside� the 0-cells to �nd the states, but
can access them via 1-cells. We can then apply morphisms to them via 1-cell composition. (q.v.
footnote 8 for analogy to Vect.)

isomorphic to the 0-cell representing six copies of 2Vect. Thus, the monoidal product represents

all the ways of pairing together a copy of Vect from each of the factors.30 Additionally, from this it

should be clear that 1 is the unit object of the 2-monoidal structure of 2Vect, 1�N = N�1 = N,

and that the left and right unitors are the identity.

Furthermore, 1 is simply equal to the category Vect, and 0 represents no copies of Vect. For

the modular tensor categories of interest, we will not make any use of 0.

3.3.2 1-Cells

As there is an isomorphism between 0-cells and whole numbers, there is also an isomorphism be-

tween matrices of vector spaces and matrices of whole numbers. Thus, rather than the complicated

generalized matrix product we described in Section 2.2.2, we can use the standard matrix product

to compose our representation of 1-cells and generally treat them as matrices of numbers. An

example of the actual and isomorphic representations of 0-cells and 1-cells is shown in Table 2.

30N.B. The 0-cells 2 � 3, 3 � 2, and 6 are di�erent but isomorphic objects. However, they are equal in our
representation, since as numbers, 2 · 3 = 3 · 2 = 6. We will see in the next section how this stricti�cation in our
representation leads to the need for additional categorical structures�in this case, the swap 1-cell.
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1-Cell Composition: As 1-cells are represented by matrices, the composition of 1-cells f :

N→M and g : M→P is simply given by the matrix product gf . We will always write

the �rst 1-cell on the right and the last 1-cell on the left, to highlight the isomorphism be-

tween one cells and matrix operators acting on vectors. Usually, when it is clear that the

matrices we are referring to are 1-cells, we will write 1-cell composition as g ◦ f .

Identity 1-Cell: The identity 1-cell idN is given by the n× n identity matrix.

Inverse 1-Cell: The inverse 1-cell of f , if it exists, will be given by the matrix inverse of f .

Monoidal Product is given by the tensor product or Kronecker product of the matrices rep-

resenting the 1-cells. Thus, for 1-cells represented by the matrices f and g, the matrix

representing their monoidal product is given by f ⊗ g.31

Swap 1-Cell: The swap 1-cell is implemented by an explicit construction of a swap matrix from

the input of the two objects to be swapped. Essentially, the matrix must reverse the order of

the factors in the original tensor product. For example, consider 2� 3, which is isomorphic

to 6. In its actual representation, 2 � 3 is six copies of Vect constructed from 2 and 3 in

the following manner. 

Vect6a

Vect6b

Vect6c

Vect6d

Vect6e

Vect6f


=



Vect2a
�Vect3a

Vect2a �Vect3b

Vect2a
�Vect3c

Vect2b
�Vect3a

Vect2b
�Vect3b

Vect2b
�Vect3c


(48)

where Vect3 is taken to mean a copy of Vect that came from 3 and the roman letter indexes

31The 2-monoidal product will always be written with �, even when referring to the matrix representation and
the normal matrix tensor product. This is to avoid confusing with the monoidal product we will de�ne for our
modular tensor categories, which will be written with ⊗.
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which copy. After the application of the swap 1-cell S2,3, it should be in the form



Vect3a �Vect2a

Vect3a
�Vect2b

Vect3b
�Vect2a

Vect3b
�Vect2b

Vect3c
�Vect2a

Vect3c
�Vect2b


The fact that 2� 3 = 3� 2 = 6 in our representation, but they are not equal 0-cells, means

that the swap goes from the 0-cell 6 to itself. This is due to the stricti�cation induced by

our representation. Thus, S2,3 : 6 → 6 keeps the �rst element the same, moves the second

element to the third element, moves the third element to the �fth element, and all the rest.32

Its matrix representation is

S2,3 =



1 0 0 0 0 0

0 0 0 1 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 0 0 1


Its construction is determined by where an element is located in the �rst column and where

it needs to move to in the swapped column. For instance, the third element moves to the

�fth element, so (S2,3)5,3 = 1. The column indicates where it's moving from and the row

indicates where it is moving to. All the other entries are zeroes. This makes sense given the

rules of the matrix product and linear maps. Furthermore, it's easy to see that SN,M will be

unitary and that SN,M = (SM,N)T . Thus, we will have SM,N ◦SN,M = idN�M, as required.

32The order Vect3a � Vect2a versus Vect2a � Vect3a does not matter since they are isomorphic. It is true
that 2� 3 and 3� 2 are isomorphic as well, and we are constructing exactly that isomorphism. However, the order
of the copies of Vect within an element of the column doesn't matter in our representation from the 2-categorical
viewpoint.
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Finally, we need a method for determining where the elements move to. This can be easily

seen in the above example, where



1

2

3

4

5

6


→



1

4

2

5

3

6


The �rst element will always stay the same. The next element is the fourth, or 3 greater. In

general, the next element is always taken from the current position plus m when computing

SN,M. However, if the position exceeds n×m, the total number of elements in the column,

then it wraps around plus 1. For instance, 3 more than the fourth element is 7, minus 2× 3

is 1, plus 1 is 2. So,

xi+1 =

 xi +m, xi +m ≤ nm

1 + [(xi +m) mod nm] , xi +m > nm
(49)

where i is the old position, xi is the new position, and xi+1 is the next new position for the

old position i+ 1. From this, we can �nd xi as a function of i

xi = 1 + [(i− 1)m mod nm] +
i− 1− [(i− 1) mod n]

n
(50)

Then, for all xi, we have

(SN,M)xi,i = 1 (51)

and 0 everywhere else. Finally, if either M or N equal 0, then SN,M will simply be given by

the 0× 0 matrix.33

33The swap is exactly akin to a change of basis in the column representation of 0-cell �states,� and S is the change
of basis map. While categorical viewpoint abstracts away from bases and coordinates, it is sometimes helpful to
take this viewpoint, as in Section 3.4.
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3.3.3 2-Cells

The 2-cells of 2Vect are 2-matrices.

As with 1-cells, the column dimension relates to the source and the row dimension relates to

the destination. For 2-cells, the outer dimension row (column) counts the number of simple objects

or the number of copies of Vect of the destination (source) 0-cells of the 1-cells. For instance,

consider the 2-cell given by the following diagram,

N

f

##

g

<<⇓ α M

As a 2-matrix, the outer dimensions of α are m× n (i.e. there are m× n element-matrices).

Additionally, both f and g are m × n matrices. Thus, each element-matrix of a 2-cell has

a corresponds to an element in both the source and destination 1-cells (which represents the

dimension of a vector space). Each element-matrix is a linear map from a vector space given by

the element in the 1-cell source to the vector space given by the element in the 1-cell destination, and

these numbers will be the dimensions of the corresponding element-matrix.34 Ergo, the element-

matrix αij will be dimension gij × fij .

Consider the following example. If f : 2→3 and g : 2→3, they will both be 3×2 dimensional

matrices going from 2 copies of Vect to 3 copies of Vect. Each element represents a vector space

of dimension given by that element. Let them be given by

f =


1 2

3 4

2 1

 (52)

34This makes the elements of the element-matrices actually numbers (i.e. whatever the ground �eld of the Vect
is) and not representations isomorphic to some other structure.
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g =


3 4

2 5

2 1


then α : f ⇒ g would have the form




a1,1

a2,1

a3,1





b1,1 b1,2

b2,1 b2,2

b3,1 b3,2

b4,1 b4,2



 c1,1 c1,2 c1,3

c2,1 c2,2 c2,3





d1,1 d1,2 d1,3 d1,4

d2,1 d2,2 d2,3 d2,4

d3,1 d3,2 d3,3 d3,4

d4,1 d4,2 d4,3 d4,4

d5,1 d5,2 d5,3 d5,4


 e1,1 e1,2

e2,1 e2,2

 [f1,1]



(53)

where {ai,j , ..., f1,1} are all of the ground �eld (in our case almost always C). Here we exploit no

isomorphism and represent 2-cells exactly as they are.

We de�ne 2-cells of 2Vect to have the following properties / endow them with the following

operations:

2-Cell Vertical Composition essentially entails element-wise composing the linear maps of the

2-cell, which of course results in a new collection of linear maps. The vertical composition of

2-cells α : f ⇒ g and β : g ⇒ h to get β ◦ α : f ⇒ h will be given by the element-matrix

product β ◦ α de�ned in Section 3.3.3 by equation 43.
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2-Cell Horizontal Composition: Given the following de�nition of 1-cells and 2-cells,

N

f1

##

f2

<<⇓ α M

g1

""

g2

<<⇓ β P

the 2-cell horizontal composition of α and β is given by outer-matrix product β • α de�ned

in Section 3.3.3 by equation 44.35

Identity 2-Cell: If γ : f ⇒ f , the identity 2-cell idf is given by the identity 2-matrix on γ,

de�ned in Section 3.3.3 by equation 45.

Inverse 2-Cell is given by the inverse 2-matrix de�ned in Section 3.3.3 by equation 46.

Whiskering: There is no special implementation for this operation with 2-matrices. Given the

following diagram

N
f //M

g1

""

g2

<<⇓ α P

The identity 2-matrix of f is idf and the whiskering is given by α • idf .36

N

g1◦f

$$

g2◦f

;;⇓ α • idf P

35Note that the order of α and β in β • α is consistent with the order of the outer-matrix product and with the
order of 1-cell composition, but reverses the order of α and β in the �rst diagram. Many authors choose the opposite
ordering, but we will write it this way to highlight the fact that 2-cells are 2-matrices and horizontal composition is
simply a higher level form the composition of operators (which are often written to the left of that which they act
on).

36Some authors will write the whiskering as α • f . While usually clear from context, this notation suggests that a
2-cell α and a 1-cell f can be combined using the outer-matrix product operation, •. We will always write whiskering
as a horizontal composition between 2-cells (i.e. α • idf ).
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Monoidal Product on 2-cells is given by the two-tensor product on the 2-matrices α and β

de�ned in Section 3.3.3 by equation 47. This will be written as α� β.

Interchange Law: The interchange law stated that given the following diagram

⇓α1 ⇓β1

N

f1

��

f3

KK
f2 //M

g1

��

g3

KK
g2 // P

⇓α2 ⇓β2

(54)

we can �rst compose vertically and then compose horizontally, to give (β2 ◦ β1) • (α2 ◦ α1) :

g1 ◦ f1 ⇒ g3 ◦ f3, or we can �rst compose horizontally and then compose vertically, to give

(β2 •α2) ◦ (β1 •α1) : g1 ◦ f1 ⇒ g3 ◦ f3, and those 2-cells must be equal. We can bring further

light to the interchange law by noting that statements about 2-cells are also statements

about 2-matrices. The interchange law is, in fact, a 2-matrix identity, (β2 ◦ β1) • (α2 ◦ α1) =

(β2 • α2) ◦ (β1 • α1), which can be proven using the de�nition of the element-matrix product

and the outer-matrix product.

3.4 Structural Isomorphisms

While working with symmetric 2-monoidal 2-categories like 2Vect, we quickly �nd that many

expressions that are equal when working with symmetric monoidal categories will only hold up to

isomorphism. The presence of 2-cells provides an extra �degree of freedom� in the structure by

which certain equations no longer hold.

For instance, in the de�nition of a symmetric monoidal category (for instance, Vect), we are

told S◦(f⊗g) = (g⊗f)◦S, where f and g are morphisms, and S is the swap operation as de�ned in

Section 3.3.2 [12].37 In 2Vect, these 1-cells will no longer be of the same type. Furthermore, related

equations between 2-cells will no longer hold. To mediate between type, 2Vect is endowed with

a structural 2-cell isomorphism, denoted σf,g, to allow monoidally combined 1-cells to commute

with the swap.38

37Technically, in Section 3.3.2 we were referring to the swap operation for a symmetric monoidal 2-category. The
di�erence will shortly be made clear.

38The 2-cell is denoted σf,g because it is the structure tailored to two speci�c 1-cells, f and g, that is a 2-cell. The
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However, by no longer of the same type, we mean something subtle. The two 1-cells, S ◦ (f � g)

and (g�f)◦S, must always give the same functor (i.e. the same 1-cell matrix) in our representation.

But these are not the same one cell, even if they have the same representation. This is due to

the stricti�cation implicit in our representation of 1-cells, our treating matrices of vector spaces

as matrices of numbers. A similar problem occurred with our representation of 0-cells, requiring

the swap 1-cell. Furthermore, composed parallel 1-cells leads to horizontal composition in the

2-cells that go between them. At the 2-cell level, we will have di�erent 2-cells, and without any

subtlety, idS • (µ � ν) 6= (ν � µ) • idS , where µ : f ⇒ f ′ and ν : g ⇒ g′.39 Essentially, this

is just a statement about 2-matrices, and in many cases about commutativity or associativity of

the underlying tensor products and direct sums. From a non-categorical perspective, going from

S ◦ (f � g) to (g � f) ◦ S will induce an implicit change of basis either the element-matrices or

outer-matrices of the associated 2-cells (or both).

We will list three such discovered structures required for realizing modular tensor categories in

2Vect and discuss two other cases where it could be possible for a structure to arise, but argue

that these cases will always be equal to the identity 2-cell. For the three that require structural

isomorphisms, we will explain the equation that only holds up to isomorphism and then explicitly

construct the structure for 2Vect.40

components of σ are 2-cells, and σ itself is some higher level 2-transformation. (cf. the relationship between natural
transformations and their component arrows). This will be true of all of the structural isomorphism presented in
this section.

39This is not a surprise since we are not using any stricti�cation in our representation of 2-cells�we are representing
them as they actually are (q.v. Section 3.3.3).

40While one may think that explicitly constructing 2-cells would be di�cult, it is made signi�cantly easier by the
use of generalized operations. First, we determine how to solve one element-matrix of the structural isomorphism,
and then we use a generalized operation to get the entire 2-matrix solution. The generalized operation required is the
one that will provide the correct form for the structural isomorphism. For instance, for σ, the 1-cells are combined
using the monoidal product, �, which is just the tensor product. Thus, constructing σ involves a generalized tensor
product between those 1-cells.
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3.4.1 Swap Structure: σ

As stated above, S ◦ (f ⊗ g) and (g⊗ f) ◦S are not of the same type in 2Vect. Instead, if we have

the following de�nitions of 1-cells and 2-cells

A

f1

""

f2

<<⇓ µ B

C

g1

##

g2

<<⇓ ν D

A�C
SA,C // C�A

B�D
SB,D // D�B

We can monoidally combine the 1-cells in two di�erent ways

A�C

f1�g1

&&

f2�g2

::⇓ µ� ν B�D

C�A

g1�f1

&&

g2�f2

::⇓ ν � µ D�B

Just considering the 1-cells with the subscript 1 for the moment, the �rst these diagrams can be

post-composed with SB,D to get SB,D ◦ (f1⊗g1), while the second can be pre-composed with SA,C
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to get (g1 ⊗ f1) ◦ SA,C. However, because of the freedom in our 2-category, these do not have to

necessarily be equal, but can be related by a 2-cell

A�C

SB,D◦(f1�g1)

&&

(g1�f1)◦SA,C

::⇓ σf1,g1 D�B (55)

Furthermore, for coherence, the following diagram must commute

SB,D ◦ (f1 � g1)
σf1,g1 +3

idSB,D
•(µ�ν)

��

(g1 � f1) ◦ SA,C

(ν�µ)•idSA,C

��
SB,D ◦ (f2 � g2)

σf2,g2

+3 (g2 � f2) ◦ SA,C

(56)

where the 0-cells have been omitted for clarity.41 Here lies the problem with assuming SB,D ◦ (f1�

g1) and (g1 � f1) ◦ SA,C are the same. If σ is the identity, then we would have idSB,D
• (µ� ν) =

(ν � µ) • idSA,C
, which is a statement about 2-matrices that is generally incorrect. Essentially, we

�nd that the two-tensor product (de�ned by equation 47), like the normal matrix product, does

not commute for arbitrary factors. However, it will be true that (g1 � f1) ◦ SA,C will be the same

functor as SB,D ◦ (f1 � g1), and thus be represented by the same matrix. Thus, σ must be applied

to go between these 1-cells, otherwise 2-cell equations will be incorrect.

Explicit Construction Like the swap 1-cell described in Section 3.3.2, σ will be explicitly

constructed, given the 1-cells to be interchanged with the swap. The swap 1-cell swapped the

order of monoidally combined 0-cells, which in practice meant reversing the order of two columns

tensored together. The structure σ increases the level of abstraction twofold.

First, rather than �xing columns tensored together, we have to �x matrices tensored together.

Considering the swap as a change of basis, since our 0-cells transformed like ~x′ = S~x (where ~x just

means our column representation for states of the 0-cells, see equation 48), then schematically our

41N.B. We can think of idSB,D
• (µ � ν) as the whiskering of 1-cell SB,D with 2-cell µ � ν.
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matrices will transform as A′ = SAS−1.42 The upside is that if we come up with a transformation

to reorder the rows (as we did for our 0-cells represented in a column), we will automatically

reorder the columns by applying the inverse (or transpose, since the swap matrices are unitary) of

the swap to the other side.

Second, the 2-cells are matrices of matrices, and the two-tensor product operates on both

the outer-matrices and inner-matrices. However, this problem is rendered trivial by the use of

generalized operations, q.v. footnote 40. Formally, to reorder (µ � ν) to (ν � µ), we need to

swap both the order of the inner-matrices and the outer-matrices (i.e. we need to reorder the

element-matrices and the elements of the element-matrices). However, due to the use of generalized

operations, the explicit construction of our swap matrix (the swap 1-cell) is all we need.

However, we are not reordering (µ � ν) to (ν � µ). We are reordering idSB,D
• (µ � ν) to

(ν �µ) • idSA,C
. It turns out that idS horizontally composed with a 2-cell is exactly the operation

that reorders the element-matrices. Thus, we are left with reordering the elements of the element-

matrices. However, we already know how to reorder (i.e. change the basis) of normal matrices via

the swap 1-cell.

We now need a way to create one for all the possible element-matrix combinations from the

input of a pair of 1-cells, such as f2 and g2. Each element of f2 will be multiplied each element

of g2 as the row dimension for each of the element-matrices of µ � ν. We want a swap 1-cell to

reorder the rows for each of these element-matrices. The matrix operation that creates pairs of

each element from one matrix with every element from another is a generalized tensor product

(equation 40). To get a swap 1-cell for each pair, we use the swap 1-cell operation (equations 50

and 51) as the generalized times.43 For each element in the form of a tensor product between f2

and g2, we will get a swap 1-cell element-matrix that, when applied to the proper element-matrix

of µ � ν, will �x the order of the element-numbers. Let us call generalized tensor product with

swap 1-cell as the generalized times σ′.

However, since σf2,g2 is not being post-composed with (µ � ν) but rather idSB,D
• (µ � ν),

σ′f2,g2 6= σf2,g2 . Since idSB,D
already reordered the outer-matrices of (µ � ν), we need to reorder

42Using the fact that σ is invertible, this essentially the content of equation 56. However, technically this swap
will be not the same as the one on the other side of A since they will be over di�erent 0-cells. Explicitly we have

(ν � µ) • idSA,C
=
(
σf2,g2

)
◦
(
idSB,D

• (µ � ν)
)
◦
(
σf1,g1

)−1
, which is, in spirit, the same as A′ = SAS−1.

43N.B. The generalized times can be any binary operation. It is labeled as such because it is applied to the matrix
factors in the form of the tensor product times.
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the outer-matrices of σ′ so that the element-matrices will be compatible under vertical composition.

Thus, we also need to vertically compose with idSB,D
, giving

σf2,g2 = idSB,D
◦ σ′f2,g2 (57)

If one of the input 1-cells (i.e. f1, f2, g1, or g2) is a zero-dimensional matrix, then σ will have

outer dimensions 0 × 0. This is one of the few situations where this 2-matrix arises, however, as

stated in Section 3.2.2, they will not be needed for modular tensor categories.

3.4.2 Interchange Structure: τ

A structure is needed to mediate the interchange of the operations � and • for 2-cells.

Given the following de�nitions of 1-cells and 2-cells

A

f1

##

g1

<<⇓ µ1 B

f2

##

g2

<<⇓ µ2 C

X

h1

##

i1

<<⇓ ν1 Y

h2

""

i2

<<⇓ ν2 Z

in each diagram, the 2-cells may be composed horizontally to give

A

f2◦f1

$$

g2◦g1

::⇓ µ2 • µ1 C
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X

h2◦h1

##

i2◦i1

;;⇓ ν2 • ν1 Z

Just considering the 1-cells fj and hj for the moment, the 1-cells on the top of these last two

diagrams can be monoidally combined to get (f2 ◦ f1) � (h2 ◦ h1). However, f1 and h1 can be

monoidally combined �rst before being composed with a monoidally combined f1 and h1 to give

(f2 � h2) ◦ (f1 � h1), which is the same 1-cell and will have the same matrix representation. For

a 1-category, these would have to be of the same type. However, because of the freedom in our

2-category, these do not have to be the same, but can be related by a 2-cell

A�X

(f2◦f1)�(h2◦h1)

''

(f2�h2)◦(f1�h1)

99⇓ τf2,f1,h2,h1
C� Z (58)

Furthermore, for coherence, the following diagram must commute

(f2 ◦ f1) � (h2 ◦ h1)
τf2,f1,h2,h1 +3

(µ2•µ1)�(ν2•ν1)

��

(f2 � h2) ◦ (f1 � h1)

(µ2�ν2)•(µ1�ν1)

��
(g2 ◦ g1) � (i2 ◦ i1)

τg2,g1,i2,i1

+3 (g2 � i2) ◦ (g1 � i1)

(59)

where again the 0-cells have been omitted for clarity. As in Section 3.4.1, the functor given by the

source and destination 1-cells of τ will be the same (they will be represented by the same matrix).

However, τ is always the identity, then we would have (µ2•µ1)�(ν2•ν1) = (µ2�ν2)•(µ1�ν1), which

is a statement about 2-matrices that does not hold for arbitrary µ1, µ2, ν1, and ν2. Fundamentally,

the issue is that the tensor product does not generally distribute over the direct sum.44

44N.B. This is a di�erent interchange from the one introduced by equation 14. Here, τ mediates an interchange
of � and ◦. The one given by equation 14 is an interchange of ◦ and •, and is a law of 2-categories.
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Explicit Construction We will also need to explicitly construct τ , given the four 1-cells to be

interchanged. Our 2-cells will still transform schematically as A′ = τAτ−1, so we will still only need

to reorder the rows of the inner- and outer-matrices of our 2-cells (q.v. Explicit Construction

in Section 3.4.1 and footnote 42).

As stated in footnote 40, the construction of a structural isomorphism is given by a combina-

tion of generalized operations linked to achieve the appropriate form. For τ , it will involve two

generalized matrix products (equation 37) and the generalized tensor product (equation 40).

The element-matrices of the 2-cell (µ2 • µ1) � (ν2 • ν1) will have row dimensions given by

(g2 ◦ g1)� (i2 ◦ i1) and column dimensions given by (f2 ◦ f1)� (h2 ◦h1). Vertically post-composing

τg2,g1,i2,i1 with (µ2 • µ1) � (ν2 • ν1) will �x the row ordering problem. Thus, τg2,g1,i2,i1 must be

able to be vertically post-composed with (µ2 • µ1) � (ν2 • ν1) and the resulting 2-cell τg2,g1,i2,i1 ◦

((µ2 • µ1) � (ν2 • ν1)) must have the same element-matrix row dimensions as the original. There-

fore, τg2,g1,i2,i1 must have the same outer-matrix dimensions as (µ2 •µ1)�(ν2 •ν1) and have square

element-matrices given by the row dimension of the element matrices of (µ2 • µ1) � (ν2 • ν1) ,

which is given by the elements of (g2 ◦ g1) � (i2 ◦ i1). Ergo, the form of τg2,g1,i2,i1 will be dictated

by the generalized matrix product on g2 ◦ g1 and the generalized matrix product on i2 ◦ i1 the

results then combined by a generalized tensor product. This will be sure to combine the elements

of the 1-cells in the correct form and create the correct number of element-matrices in the correct

place. However, we have not yet discussed the content of these element-matrices, which will be

set by de�ning the generalized times and generalized plus for the generalized matrix product and

the generalized times for the generalized tensor product. The generalized matrix products will be

operations designed to generate lists of the necessary parameters. Given such a list, the generalized

tensor product will solve the individual element-matrices and yield the correct form for τ .

Consider a single element-matrix of (µ2 • µ1)� (ν2 • ν1). Even simpler, consider one column of

a single element-matrix�remember, we only have to reorder the rows. The number of rows will

be given by the sum and product of some di�erent numbers: a row of the matrix g2, a column of

the matrix g1, a row of the matrix i2, and a column of the matrix i1. In fact, the g's multiplied

in a vector product, the i's will be multiplied in a vector product, and then those numbers will

be (scalar) multiplied. Alternatively, the same number can be reached by �rst taking the tensor

product of the matrices indexed by 2 and a separate tensor product of the matrices indexed by 1
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and then taking a row from the 2's, a column from the 1's, and �nally combining them in a vector

product.

Let us consider the general case. Consider the following de�nitions for g2 : B→ C, g1 : A→ B,

i2 : Y → Z, and i1 : X→ Y

g2 =

 a1 · · · aB
...

. . .
...



g1 =


b1 · · ·
...

. . .

bB · · ·



i2 =

 c1 · · · cY
...

. . .
...



i1 =


d1 · · ·
...

. . .

dY · · ·


The two di�erent ways of combining them gives two equivalent-in-value-but-di�erent-in-form CZ×

AX dimensional 1-cells, given by

(g2 ◦ g1) � (i2 ◦ i1) =

 (a1b1 + · · ·+ aBbB)× (c1d1 + · · ·+ cY dY ) · · ·
...

. . .



(g2 � i2) ◦ (g1 � i1) =

 a1c1b1d1 + · · ·+ a1cY b1dY + · · ·+ aBc1bBd1 + · · ·+ aBcY bBdY · · ·
...

. . .


where the order of all the factors has been preserved in the operation performed.

Consider the top left cell (the only one we show). As numbers, it is true that (a1b1 + · · · +

aBbB) × (c1d1 + · · · + cY dY ) = a1c1b1d1 + · · · + a1cY b1dY + · · · + aBc1bBd1 + · · · + aBcY bBdY .

However, from these 1-cells we ascertain that the top left element-matrix of (µ2 • µ1) � (ν2 • ν1)

is schematically ordered as (a1 ⊗ b1 ⊕ · · · ⊕ aB ⊗ bB)⊗ (c1 ⊗ d1 ⊕ · · · ⊕ cY ⊗ dY), while the top

left element-matrix of (µ2 � ν2) • (µ1 � ν1) is schematically ordered as (a1 ⊗ c1 ⊗ b1 ⊗ d1)⊕ · · ·
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⊕(a1 ⊗ cY ⊗ b1 ⊗ dY)⊕ · · · ⊕(aB ⊗ c1 ⊗ bB ⊗ d1)⊕ · · ·⊕(aB ⊗ cY ⊗ bB ⊗ dY). By schemati-

cally ordered, we mean that µ2 has an element matrix, ai, whose row size is given by ai, and so

on for all the rest. For instance, we represent µ2 : f2 ⇒ g2 as

µ2 =

 a1 · · · aB
...

. . .
...


where ai means an ai-by-unconcerned element-matrix.45 These will be the smallest unit of row

chunk or row block that needs to be reordered. Only showing one column, and representing the

content of the rows as stated, the two di�erent orderings of the top left element-matrix look like

((µ2 • µ1) � (ν2 • ν1))1,1 =



(a1 ⊗ b1)1,· × (c1 ⊗ d1)

...

(a1 ⊗ b1)1,· × (cY ⊗ dY)

...

(a1 ⊗ b1)a1b1,· × (c1 ⊗ d1)

...

(a1 ⊗ b1)a1b1,· × (cY ⊗ dY)

...

(aB ⊗ bB)1,· × (c1 ⊗ d1)

...

(aB ⊗ bB)1,· × (cY ⊗ dY)

...

(aB ⊗ bB)aBbB ,· × (c1 ⊗ d1)

...

(aB ⊗ bB)aBbB ,· × (cY ⊗ dY)



(60)

45Hopefully, the di�erence between g2 and the representation of µ2 should be clear from the context. Essentially,
ai is a number representing the row size and ai is an ai-by-unconcerned matrix. Also within this scope of variables,
A is the 0-cell source of g1 and A is its whole number representation.
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((µ2 � ν2) • (µ1 � ν1))1,1 =



a1 ⊗ c1 ⊗ b1 ⊗ d1

...

a1 ⊗ cY ⊗ b1 ⊗ dY

...

aB ⊗ c1 ⊗ bB ⊗ d1

...

aB ⊗ cY ⊗ bB ⊗ dY



(61)

=



(a1 ⊗ c1)1,·×(b1 ⊗ d1)

...

(a1 ⊗ c1)a1c1,·×(b1 ⊗ d1)

...

(a1 ⊗ cY)1,·×(b1 ⊗ dY)

...

(a1 ⊗ cY)a1cY ,·×(b1 ⊗ dY)

...

(aB ⊗ c1)1,·×bB ⊗ d1

...

(aB ⊗ c1)aBc1,·×bB ⊗ d1

...

(aB ⊗ cY)1,·×bB ⊗ dY

...

(aB ⊗ cY)aBcY ,·×bB ⊗ dY


where, with apologies for the abuse of notation, we use (ai ⊗ bi)k,· to mean the element given by

the kth row, k = {1, . . . , aibi}, with the dot indicating no concern for the column, of the matrix

represented by ai ⊗ bi. Thus, (ai ⊗ bi)k,·×(cj ⊗ dj) means a number, (ai ⊗ bi)k,·, scalar multiplies

the matrix, (cj ⊗ dj). In the following, we also use i = {1, . . . , B} and j = {1, . . . , Y } as indices.

Equation 61 is written two ways to help decipher the notation.

From the numbers given by a1, . . ., ai,. . ., aB , b1, . . ., bi,. . ., bB , c1, . . ., cj ,. . ., cY , d1, . . .,
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dj ,. . ., and dY , we want to �nd a matrix that reorders the column given by equation 60 to the

column given by equation 61. As discussed above, the generalized matrix products will be used

with the generalized tensor product to generate such a list of parameters for each element-matrix

in τ , which will then be computed as follows. It will be a two step process. First, we will reorder

to the following form



(a1 ⊗ b1)1,· × (c1 ⊗ d1)

...

(a1 ⊗ b1)a1b1,· × (c1 ⊗ d1)

...

(a1 ⊗ b1)1,· × (cY ⊗ dY)

...

(a1 ⊗ b1)a1b1,· × (cY ⊗ dY)

...

(aB ⊗ bB)1,· × (c1 ⊗ d1)

...

(aB ⊗ bB)aBbB ,· × (c1 ⊗ d1)

...

(aB ⊗ bB)1,· × (cY ⊗ dY)

...

(aB ⊗ bB)aBbB ,· × (cY ⊗ dY)



=



a1 ⊗ b1 ⊗ c1 ⊗ d1

...

a1 ⊗ b1 ⊗ cY ⊗ dY

...

aB ⊗ bB ⊗ c1 ⊗ d1

...

aB ⊗ bB ⊗ cY ⊗ dY



(62)

which involves reordering the rows in equation 60. Since all the terms involving matrix a1⊗b1

come before all the terms involving matrix ai⊗bi, which come before all the terms involving

matrix aB⊗bB, we can generally solve the problem by solving the part involving ai and then

direct summing the matrices together for all i.

Focusing on terms involving ai, let us consider an arbitrary element of equation 60, such as

(ai ⊗ bi)k,·× (cj ⊗ dj). This is a matrix with row dimension given by the number cjdj . It initially

resides at position Y (k−1)+ j, where by resides we mean indexing over all such matrix terms (i.e.

treating the matrix terms as atomic), but not indexing over all the rows within all such matrix
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terms. In equation 62, the term's position is aibi(j − 1) + k. Essentially, we are going from groups

of size Y , which the index j ranges over, to groups of size aibi, which the index k ranges over.

To make the exchange, in the portion of τ we are building, we want to put a cjdj × cjdj identity

matrix at chunk position (aibi(j − 1) + k, Y (k − 1) + j). If (τ ′i)1,1 is created as a matrix of chunk

dimensions aibiY × aibiY , then we have

((τ ′i)1,1)aibi(j−1)+k,Y (k−1)+j = Icjdj×cjdj (63)

for all j and k, and everything else is zero.46 Then, for all the ai⊗bi terms, we direct sum together

to solve the �rst part of our problem, going from equation 60 to 62.

(τ ′)1,1 =

B⊕
i=1

(τ ′i)1,1 (64)

For step two, we have to go from equation 62 to equation 61. This entails reordering the middle

two matrices in a tensor product. However, we already know how to do this using our swap 1-cell.

For instance, to change ai ⊗ bi⊗cj ⊗ dj to ai ⊗ cj⊗bi ⊗ dj, we would need Iai×ai⊗Sbi,cj⊗Idj×dj ,

where Sbi,cj is the swap 1-cell matrix. This must be done for each element in equation 62, which

can all be direct summed together as

(τ ′′)1,1 =

B⊕
i=1

Y⊕
j=1

Iai×ai ⊗ Sbi,cj ⊗ Idj×dj (65)

Finally, the �nal top left element-matrix of the interchange 2-cell τg2,g1,i2,i1 is given as the matrix

product of the two steps

(τg2,g1,i2,i1)1,1 = ((τ ′′)1,1)((τ ′′)1,1) (66)

46Since all the chunks are of di�erent sizes, the creation of (τ ′i)1,1 is rather nontrivial. One solution is to
create a matrix of actual dimensions aibiY × aibiY and then at position (aibi(j − 1) + k, Y (k − 1) + j) store
the size of the identity matrix to be created, cjdj . Then, we have a matrix of di�erent values corresponding
to the size of the identity matrix to be created there. Next, using a unary element operation with Get Identity

Matrix as the generalized operation, identity matrices of correct size will be created in the correct positions, as
long as zero matrices of appropriate size are also created to pad the rows and columns appropriately. For example,

Get IdentityMatrix

([
0 3
2 0

])
=


0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0

, so that an identity matrix is returned for each element

of the input, with the zero padding occurring appropriately.
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By applying this construction within a generalized tensor product as described at the top of the

section, the entire structural isomorphism τ may be constructed. As expected, if any of the

parameters are 0, everything still works as described using the rules for zero-dimensional matrices.

3.4.3 Associator Structure: ω

A structure is needed to mediate the rebracketing of horizontally composed 2-cell (the • operation).

Given the following de�nitions of 1-cells and 2-cells

A

f1

##

g1

<<⇓ µ1 B

f2

##

g2

<<⇓ µ2 C

f3

##

g3

<<⇓ µ3 D

the 2-cells may be composed horizontally in two di�erent orders to give

A

f3◦(f2◦f1)

%%

g3◦(g2◦g1)

99⇓ µ3 • (µ2 • µ1) D

(67)

or

A

(f3◦f2)◦f1

%%

(g3◦g2)◦g1

99⇓ (µ3 • µ2) • µ1 D

(68)

Just considering the 1-cells labeled by f for the moment, we have two di�erent ways of composing

them, f3 ◦ (f2 ◦ f1) or (f3 ◦ f2) ◦ f1. In a 1-category, morphisms are associative by the axioms, and

these would have to be of the same type. However, because of the freedom in our 2-category, they
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can be isomorphically related by a 2-cell

A

f3◦(f2◦f1)

$$

(f3◦f2)◦f1

::⇓ ωf3,f2,f1 D (69)

Furthermore, for coherence, the following diagram must commute

f3 ◦ (f2 ◦ f1)
ωf3,f2,f1 +3

µ3•(µ2•µ1)

��

(f3 ◦ f2) ◦ f1

(µ3•µ2)•µ1

��
g3 ◦ (g2 ◦ g1)

ωg3,g2,g1

+3 (g3 ◦ g2) ◦ g1

(70)

where again the 0-cells have been omitted for clarity.47 If ω equals the identity, then we would

have µ3 • (µ2 • µ1) = (µ3 • µ2) • µ1, which is not true as we will explicitly show. In this case, part

of the issue is that while (A⊕ . . .)⊗B = (A⊗B)⊕ . . ., A⊗ (B⊕ . . .) 6= (A⊗B)⊕ . . ., for arbitrary

matrices A and B. As for the other structural isomorphisms,f3 ◦ (f2 ◦ f1) and (f3 ◦ f2) ◦ f1 will be

the same functor and thus have the same matrix representation.

Explicit Construction The explicit construction of ω will be very similar to the construction

of τ . As expected, ω transforms 2-cells as A′ = ωAω−1,48 and for the same reasons as before we

only need to focus on reordering the rows of the 2-cell to be transformed. Similarly, if we solve the

ordering problem for one element-matrix, we can use general operations to solve the entire 2-cell.

We will use the same type of notation used in de�ning τ , so, if necessary, check back to Section

3.4.2.

As before, we will consider the general case. Consider the following de�nitions for g3 : A→ B,

g2 : B→ C, and g1 : C→ D, with only the �rst and last entries needed for constructing the top

47As with the other double arrow diagrams, if the 0-cells were not omitted, we would have a three-dimensional
coherence diagram created by placing the diagram given by equation 67 on top of the diagram given by equation
68.

48i.e. (µ3 • µ2) • µ1 = (ωg3,g2,g1 ) ◦ (µ3 • (µ2 • µ1)) ◦ (ωf3,f2,f1 )−1
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left element-matrix of the 2-cell listed

g3 =

 a1 · · · aC
...

. . .
...



g2 =


b1,1 · · · b1,B
...

. . .
...

bC,1 · · · bC,B



g1 =


c1 · · ·
...

. . .

cB · · ·


The elements of each of these are whole numbers representing the row dimension of the two cell to

be transformed, µ3•(µ2•µ1). Then, the two di�erent ways of bracketing them gives two equivalent

D ×A dimensional 1-cells represented by

(g3 ◦ (g2 ◦ g1)) = (71)

 a1(b1,1c1 + · · ·+ b1,BcB) + · · ·+ aC(bC,1c1 + · · ·+ bC,BcB) · · ·
...

. . .


((g3 ◦ g2) ◦ g1) = (72) (a1b1,1 + · · ·+ aCbC,1)c1 + · · ·+ (a1b1,B + · · ·+ aCbC,B)cB · · ·

...
. . .


where, again the order of the factors is the key to the reordering and has been preserved.49 We

49N.B. At the two cell level, the second ordering will also be equivalent to ((g3 ◦ g2) ◦ g1) = a1b1,1c1 + · · ·+ aCbC,1c1 + · · ·+ a1b1,BcB + · · ·+ aCbC,BcB · · ·
...

. . .

. Thus, we will �nd we can distribute ⊗

over ⊕ from the right but not from the left.
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will represent 2-cells by connecting them to their respective 1-cells, for instance, µ2 : f2 ⇒ g2, as

µ2 =


b1,1 · · · b1,B

...
. . .

...

bC,1 · · · bC,B


where b1,1 means a b1,1-by-unconcerned element-matrix. Again, these will be smallest unit of row

chunk that needs to be reordered. The ellipsis indicate all the other terms if B > 2 or C > 2,

where B and C refer to the 0-cell source and destination of g2.50 Using this representation, we

�nd that the top left element-matrix of (µ3 • (µ2 • µ1)) will be ordered as

a1 ⊗ (b1,1 ⊗ c1 ⊕ · · · ⊕ b1,B ⊗ cB)⊕ · · · ⊕ aC ⊗ (bC,1 ⊗ c1 ⊕ · · · ⊕ bC,B ⊗ cB)

while the top left element-matrix of ((µ3 • µ2) • µ1) will be ordered as

(a1 ⊗ b1,1 ⊕ · · · ⊕ aC ⊗ bC,1)⊗c1 ⊕ · · · ⊕ (a1 ⊗ b1,B ⊕ · · · ⊕ aC ⊗ bC,B)⊗ cB

= (a1 ⊗ b1,1 ⊗ c1)⊕ · · · ⊕ (aC ⊗ bC,1 ⊗ c1)⊕ · · · ⊕ (a1 ⊗ b1,B ⊗ cB)⊕ · · ·⊕(aC ⊗ bC,B ⊗ cB)

Compressing everything to one column, and representing the row chunks as described, the two

50Of course, if B = C = 1, then µ2 would only have one element-matrix, b1,1.
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di�erent orderings look like

(µ3 • (µ2 • µ1))1,1 =



(a1)1,· × (b1,1 ⊗ c1)

...

(a1)1,· × (b1,B ⊗ cB)

...

(a1)a1,· × (b1,1 ⊗ c1)

...

(a1)a1,· × (b1,B ⊗ cB)

...

(aC)1,· × (bC,1 ⊗ c1)

...

(aC)1,· × (bC,B ⊗ cB)

...

(aC)aC ,· × (bC,1 ⊗ c1)

...

(aC)aC ,· × (bC,B ⊗ cB)



(73)

((µ3 • µ2) • µ1)1,1 =



a1 ⊗ b1,1 ⊗ c1
...

aC ⊗ bC,1 ⊗ c1
...

a1 ⊗ b1,B ⊗ cB
...

aC ⊗ bC,B ⊗ cB



(74)
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=



(a1)1,· × (b1,1 ⊗ c1)

...

(a1)a1,· × (b1,1 ⊗ c1)

...

(aC)1,· × (bC,1 ⊗ c1)

...

(aC)aC ,· × (bC,1 ⊗ c1)

...

(a1)1,· × (b1,B ⊗ cB)

...

(a1)a1,· × (b1,B ⊗ cB)

...

(aC)1,· × (bC,B ⊗ cB)

...

(aC)aC ,· × (bC,B ⊗ cB)


where, as before, we use (ai)j,· to mean the element given by the j th row, j = {1, . . . , ai}, with the

dot indicating no concern for the column, of the matrix represented by ai. Thus, (ai)j,·×(bi,k ⊗ ck)

means a number, (ai)j,·, scalar multiplies the matrix, (bi,k ⊗ ck). In the following, we also use

i = {1, . . . , C} and k = {1, . . . , B} as indices. Equation 74 is written two ways to help decipher

the notation.

From the numbers a1, . . ., ai,. . ., aC , b1,1, . . ., bi,1,. . ., bC,1, b1,k, . . ., bi,k,. . ., bC,k, b1,B , . . .,

bi,B ,. . ., bC,B , c1, . . ., ck,. . ., and cB , we want to �nd a matrix that reorders the column given

by equation 73 to the column given by equation 74. This list of parameters can be generated by

generalized matrix products. These parameters can then be fed to a generalized unary element

operation that will compute all of ω. As with τ , this will be a two-step process. First we will
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reorder to the form



(a1)1,· × (b1,1 ⊗ c1)

...

(a1)a1,· × (b1,1 ⊗ c1)

...

(a1)1,· × (b1,B ⊗ cB)

...

(a1)a1,· × (b1,B ⊗ cB)

...

(aC)1,· × (bC,1 ⊗ c1)

...

(aC)aC ,· × (bC,1 ⊗ c1)

...

(aC)1,· × (bC,B ⊗ cB)

...

(aC)aC ,· × (bC,B ⊗ cB)



=



a1 ⊗ b1,1 ⊗ c1
...

a1 ⊗ b1,B ⊗ cB
...

aC ⊗ bC,1 ⊗ c1
...

aC ⊗ bC,B ⊗ cB



(75)

which involves reordering the rows in equation 73. Since all the terms involving matrix a1 come

before all the terms involving matrix ai, which come before all the terms involving matrix aC,

we can generally solve the problem by solving the part involving ai and then direct summing the

matrices together for all i.

Focusing on terms involving ai, let us consider an arbitrary element of equation 73, such as

(ai)j,·× (bi,k ⊗ ck). This is a matrix with row dimension given by the number bi,kck. It originally

resides at row position B(j − 1) + k, where by resides we mean the same thing we meant when

constructing τ�that when indexing the matrix terms are to be treated as atomic. In equation 75,

it has moved to position ai(k − 1) + j. We are really just grouping the elements di�erently, going

from groups of B, which the index k ranges over, to groups of ai, which the index j ranges over.

To make these exchanges, in the portion of ω we are building, we want to put a bi,kck × bi,kck

identity matrix at chunk position (ai(k − 1) + j, B(j − 1) + k). If (ω′i)1,1 is created as a matrix of
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chunk dimension aiB × aiB, then we have

((ω′i)1,1)ai(k−1)+j,B(j−1)+k = Ibi,kck×bi,kck (76)

for all j and k, and everything else is zero.51 Then, we have

(ω′)1,1 =

C⊕
i=1

(ω′i)1,1 (77)

which successfully solves the �rst part of our problem, going from equation 73 to75.

Now, to go from75 to 74, we need to construct a second reordering.52 For this step, we will be

collapsing our chunks together, grouping (ai)1, . . . , (ai)j , . . . , (ai)ai back together into the matrix

chunk ai. Thus, an arbitrary chunk is given by ai ⊗ bi,k ⊗ ck. After applying (ω′)1,1, these terms

are in groups of size B (with elements within the group indexed by k). But we want them in

groups of size C (with elements in the group indexed by i). The initial position of ai ⊗ bi,k ⊗ ck

is B(i− 1) + k, but we want to move it to C(k − 1) + i. Thus, if (ω′′)1,1 is created as a matrix of

chunk dimension CB×CB, we want to put an aibi,kck×aibi,kck identity matrix at chunk position

(C(k − 1) + i, B(i− 1) + k).53

((ω′′)1,1)C(k−1)+i,B(i−1)+k = Iaibi,kck×aibi,kck (78)

for all i and k, and everything else is zero (q.v. footnote 46 as this is not a trivial operation).

Finally, (ωg3,g2,g1)1,1 is given by

(ωg3,g2,g1)1,1 = ((ω′′)1,1)((ω′)1,1) (79)

i.e. the matrix product of the two steps. As expected, if any of the parameters are 0, everything

still works as described using the rules for zero-dimensional matrices.

Thus, the top left element-matrix of ωg3,g2,g1 is solved. The other element-matrices are solved

analogously and everything can be done in a tidy way using generalized operations. Essentially, a

51q.v. footnote 46 for ways to construct such a matrix.
52While constructing τ involved two steps as well, this second step is di�erent from the second step involved with

τ , q.v. Section 3.4.2.
53These chunk sizes are di�erent than the chunk sizes discussed going into equation 76.
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generalized matrix product can be used to generate the parameters governing an element-matrix

(i.e. a1, . . ., ai,. . ., aC , b1,1, . . ., bi,1,. . ., bC,1, b1,k, . . ., bi,k,. . ., bC,k, b1,B , . . ., bi,B ,. . ., bC,B c1, . . .,

ck,. . ., and cB), and then for each element-matrix, a generalized unary element operation is called

using the algorithm just described to generate (ωg3,g2,g1)1,1.

Furthermore, it is worth mentioning that as a type of associator (for horizontal composition,

•), ω will satisfy some higher order pentagon equation. However, this pentagon equation would

be above the 2-cell level and could not be explicitly described or solved for within 2Vect in the

manner that the monoidal associator can be described for all objects (q.v. Section 4.1.3). However,

in this case, solving such an equation is unnecessary because we explicitly constructed a solution.

3.4.4 Other Associator Structures

In Section 3.4.3, we considered an associator for horizontal composition, the • operation. For

completeness, it is worth considering if structural isomorphisms are necessary for other operations

on 2-cells. First, the association of vertical composition, or ◦, is guaranteed by the axioms of

2-categories [26]. Given the following de�nitions of 1-cell and 2-cells,

A
f2 ((

f3

66

⇓µ1

f1

��

f4

⇓µ3

KK⇓µ2 B

we have that (µ3 ◦ µ2) ◦ µ1 = µ3 ◦ (µ2 ◦ µ1). Since ◦ is given by a binary element operation with

matrix products as the generalized operation, the fact that 2-cell vertical composition is associative

is really just the statement that the matrix product is associative.

That leaves the 2-monoidal product, �. That is, for µ1 : f1 ⇒ g1, µ2 : f2 ⇒ g2, and

µ3 : f3 ⇒ g3, do we have (µ3 � µ2) � µ1 = µ3 � (µ2 � µ1)? This is exactly a question of

whether the version of 2Vect we are using is strict, i.e. whether the associator for its 2-monoidal

structure is equal to the identity. Since � is a generalized tensor product with the tensor product

as the generalized times, this operation is essentially a tensor product. Since the tensor product

is associative, then (µ3 � µ2) � µ1 = µ3 � (µ2 � µ1) will hold and the 2-associator is equal to the
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identity.

4 Diagrammatic Language

The diagrammatic language (or graphical calculus) as formulated by Joyal and Street for working

with symmetric monoidal categories [21] needs to be extended in two ways to work with symmetric

monoidal 2-categories, such as 2Vect.

For 1-categories, each picture represents a morphism or process54�time �ows from bottom

to top, objects are represented by lines, and morphisms are represented by boxes. Objects are

monoidally combined by being placed next to each other. The identity morphism is just a line�

i.e. nothing happens to the object. Two di�erent pictures, two di�erent morphisms, are either

equal or unequal; the structure of 1-categories does not allow for any other relationship.

In 2-categories, pictures can be related in many ways�they can be equal, they can be isomor-

phic, or related by a non-invertible 2-cell. Thus, we can have arrows between pictures�arrows

between morphisms�i.e. 2-cells. In order to �nd modular tensor categories within the structure

of 2Vect, we will write its axioms as an equation among 2-cells. By going to the 2-cell level, we

ensure that we con�rm the axioms for all objects in the category.55 Thus, we will have two sets

of pictures for each axiom, one for each path through the commutative diagram representing the

axiom.

As explained in Section 3.4, some structural equations in symmetric monoidal 1-categories only

hold up to isomorphism in our monoidal 2-categories. It was mentioned that this is due to the

related 1-cells being of di�erent type and was caused by the stricti�cation of our representation.

For instance, the structural isomorphism τ was required because the 1-cells (g ◦ f) � (i ◦ h) and

(g � i) ◦ (f � h), while represented by the same matrix, are, in fact, di�erent functors. However,

in monoidal 1-categories, they are equal and thus represented by the same picture. Thus, for 2-

categories, we need a way to pictorially capture the fact that they have di�erent bracketings. The

solution is to two-dimensionally bracket or box the diagram. Figure 1 is the diagram for the 2-cell

τg,f,i,h, which mediates between the 1-cells (g ◦ f) � (i ◦ h) and (g � i) ◦ (f � h). Here, one can

54This goes hand-in-hand with the focus of category theory being the morphisms rather than the objects.
55The semisimple property of 2Vect ensures that if we just test the axioms for all the di�erent combinations of

the simple objects, the axioms will hold for all objects. This is exactly what testing the axioms at the 2-cell level
does.
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τg,f,i,h

f

g

h

i

f

g

h

i

Figure 1: τ structural isomorphism

σf,g

f g

g f

Figure 2: σ structural isomorphism

see that without the boxing, i.e. as it would be for 1-categories, both the source and destination

1-cells would be represented by the same picture.

Thus, we require diagrams for the other structural isomorphisms. Figure 2 is the diagram for

the 2-cell σf,g, which moves the 1-cells f and g past a swap (and in the process swaps their order).

Figure 3 is the diagram for the 2-cell ωh,g,f , which mediates between the 1-cells h ◦ (g ◦ f) and

(h ◦ g) ◦ f .

Furthermore, all diagrams of 2Vect in our representation must be boxed. A 2-cell, de�ned

diagrammatically, will have a speci�c source and destination diagram. A 2-cell can only be applied

if the boxing�i.e. the type�matches. As we will see, when rewriting the axioms of modular tensor

categories in the diagrammatic language, we will encounter cases where we will want to apply a

2-cell, such as the associator, but the boxing is wrong�a type mismatch. However, the structural

isomorphisms can change the boxing�they can rebox. Thus, many structural isomorphisms will
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ωh,g,f

f

g

h

f

g

h

Figure 3: ω structural isomorphism

need to be inserted into the MTC axioms in order to represent them within a symmetric monoidal

2-category, like 2Vect. These three structural isomorphisms, τ , σ, and ω, and their inverses (just

reverse the source and destination 1-cells), provide enough structure to overcome our stricti�cation

and allow us to represent all the MTC axioms in the diagrammatic language�which will then let

us represent the axioms in 2Vect in our computer algebra system.56

The testing of the MTC structures proceeds very straightforwardly and will become clear in

the following example for the pentagon equation. The testing of the MTC properties rigidity and

modularity requires slightly more than rote translation of the axioms into 2Vect diagrams. Finally,

since 2Vect and Vect are automatically semi-simple, we do not have to test this property.

4.1 Monoidal Categories: Pentagon Equation

As an example, we will show how to convert the pentagon equation for monoidal categories�

equation 1, reproduced below for convenience�into a diagrammatic form. This is a necessary step

in order to get a handle on all the implied structural isomorphisms made necessary by our repre-

sentation. Once in this form, the axiom can be understood by our computer algebra representation

56Technically, σ is a rewriting rule, not a reboxing rule.
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of 2Vect as described in Section 3.

((A⊗B)⊗ C)⊗D
αA⊗B,C,D

))

αA,B,C ⊗ idD

uu
(A⊗ (B ⊗ C))⊗D

αA,B⊗C,D

��

(A⊗B)⊗ (C ⊗D)

αA,B,C⊗D

��
A⊗ ((B ⊗ C)⊗D)

idA⊗αB,C,D

// A⊗ (B ⊗ (C ⊗D))

(80)

First, for all the new structures, we need to establish the source and destination type�i.e. the

boxing of the source and destination 1-cells�so we won't have a type mismatch when applying

them. In this case, the new structure is α, and we will establish its type by boxing the source and

destination as shown in Figure 4. Remember, from the perspective of 1-categories, α is a natural

transformation with components αA,B,C : (A⊗B)⊗C → A⊗(B⊗C). However, in 2Vect, natural

transformations are 2-cells, and the tensor product functor for the MTC inside 2Vect (which was

just shown as ⊗) is a 1-cell of 2Vect that we call m. Thus, we represent (A⊗B)⊗C as a diagram

in 2Vect with stacked m's, and we represent A⊗ (B⊗C) as a diagram in 2Vect with stacked m's

in a di�erent way, to show their di�erent bracketing. Additionally, we must box these source and

destination diagrams. Since we are de�ning α, we can pick any boxing�i.e. since it's a de�nition

we get to de�ne its type. Boxing is done by picking two elements of the diagram at a time (that are

either next to each other or follow each other) and putting a box around them.57 Once the type

is set, it must be used consistently through the same equation. Thus, in order to apply a 2-cell,

such as α, it may be necessary to rearrange the boxing into the appropriate form to get the correct

type. This can only be done by the structural isomorphisms, and this process of diagramming the

equation will force us to insert all the necessary structures.

Once we have diagrams for all our new structures, we start by drawing the 1-cell start state,

((A ⊗ B) ⊗ C) ⊗D, as a diagram in 2Vect. This is done using the same method above to draw

A⊗ (B⊗C), including the boxing. Again, the start state may be arbitrarily boxed (as long as the

rules for boxing are followed) from the beginning as long as it is kept consistent. However, let us

box in the way shown in Figure 5.

57N.B. Lines are implicitly the identity 1-cell. Thus, an arbitrary number of boxes may be drawn and removed
from lines, since they may represent one or more identities.
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Figure 5: The start state to the pentagon equation, ((A⊗B)⊗ C)⊗D.
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Figure 6: pentagon equation, path 1, step 1: αA,B,C ⊗ idD

Now, since both paths through the pentagon must be equal, we will have a string of diagrams

for each path.

4.1.1 Path 1

We we start with the longer three-legged path. Thanks to our fortuitous initial boxing, the diagram

is in the right form for αA,B,C ⊗ idD (as it is written from the MTC perspective) to be applied�

we can see embedded in the lower left of the diagram the correct type for the source of α as we

boxed it in Figure 4. Thus, we apply α to that part and apply the 2-cell identity to the m at the

top. The result is shown in Figure 6. In the destination 1-cell, we see that α was applied in the

lower left, and the rest of the diagram remained unchanged. The 2-cell we applied, αA,B,C ⊗ idD

from the view of the MTC, is shown drawn above the arrow. From the 2Vect perspective, this is

idm ◦ (α� ididN), where N is the base 0-cell for this MTC. In this, we correspond the αA,B,C with

the α, the idD with the ididN (that is, the identity 2-cell taken from the identity 1-cell on the base

0-cell of the category), and the ⊗ with the idm. Thus, we can begin to see that by writing this

equation within the semisimple category 2Vect, we will be able to test the equation for all simple

objects (and thus all objects) of the MTC. We are no longer concerned with arbitrary objects A,

B, C, and D, but instead will test for every combination by operating at the 2-cell level of 2Vect.
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Figure 7: pentagon equation, path 1, step 2: τ reboxing

Now, we want to apply (from the MTC perspective) αA,B⊗C,D�however, the type is not right.

In fact, we need to make two reboxing moves. First, as we see the source types match, we need to

apply τ . This is shown in 7. In order to apply τ , we implicitly used a box in the right-most line of

the source 1-cell of the diagram to conform with the input source type for τ . This can be added

since there is an implied boxing of the many identities that the line consists of (q.v. footnote 57).58

Now, we will apply ω to the outer two boxes, which will �nally align the top part of the diagram

so that the next step in the actual pentagon equation may be applied. This is shown in Figure 8,

where we have used an implicit box around the top m in the source 1-cell�any single element can

be considered boxed�to make the input consistent with the source 1-cell of ω.

Now, we will apply the next actual step in the pentagon equation αA,B⊗C,D. We see that the

top of the 1-cell destination diagram from our last step is in the correct form for the application

of α, and this corresponds to exactly the next step in the pentagon equation. The application of

this step is shown in Figure 9.

Now, again, before we can apply the �nal leg of this path through the pentagon, we need to

rebox�this time to e�ectively undo the reboxing from before. First we apply a ω−1, Figure 10,

58For the pentagon equation, all of the τ 's will take at least two identities as arguments�rendering the τ equal
to the identity 2-cell�and thus could be omitted. However, they have all been included in all the equations we will
present, for completeness, and so the reader can gain an understanding of how they ought to be applied.
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Figure 8: path 1, step 3: ω reboxing.
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Figure 9: pentagon equation, path 1, step 3: αA,B⊗C,D
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m
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m

Figure 10: pentagon equation, path 1, step 4: ω−1 reboxing

and then we apply a τ−1, Figure 11. However, notice the di�erence in the bottom row boxing

from the destination 1-cell from Figure 10 and the source 1-cell from Figure 11, which, ostensible,

should be the same picture. However, using the freedom given to us because the associator for the

2-monoidal structure of 2Vect, �, is the identity (q.v. Section 3.4.4), we can associate parallel

levels without applying any structural isomorphism 2-cell. Also, for clarity, we have omitted the

box around the left-most line in the destination 1-cell of Figure 11.59

Finally, we are in exactly the correct form to apply the last leg of the pentagon, which is (from

the MTC perspective) idA ⊗ αB,C,D. This is shown in Figure 12. The destination 1-cell of this

Figure is required result; the diagram represents a particular boxing (although many are possible)

of A⊗ (B ⊗ (C ⊗D)).

4.1.2 Path 2

The short path through the pentagon proceeds in an identical fashion, with two caveats.

First, since we started with an arbitrary boxing of the �rst 1-cell state, ((A⊗ B)⊗ C)⊗D�

which happened to be convenient for application of the �rst leg of the �rst path�we cannot simply

apply the �rst leg of the new path. Almost always, some reboxing will be necessary. In this case,

59If this was not true (for instance, if we used a di�erent 2-monoidal structure on 2Vect), then this reboxing
would come at the cost of applying another structural isomorphism 2-cell).
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Figure 11: pentagon equation, path 1, step 5: τ−1 reboxing
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Figure 12: pentagon equation, path 1, step 6: idA ⊗ αB,C,D
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to apply αA⊗B,C,D, we �rst need to apply τ , followed by ω.

Second, similar to the �rst caveat, just because the end state, A⊗ (B ⊗ (C ⊗D)), is reached,

does not mean that the process is complete. For the �rst path, we ended with an arbitrary boxing

of that state. For the second path, most likely we will end with a di�erent boxing. Thus, reboxing

steps will need to be taken to ensure that the �nal diagrams for both paths match�i.e. so they are

the same type and �t for comparison. Thus, the construction of the second path is not any di�erent

from the construction of the �rst path, except that it requires both reboxing at the beginning and

at the end, which is necessitated by the boxing we chose to start and end with in the �rst path.

4.1.3 Comparison of Paths

Now, we can use the diagrams of both paths to implement the pentagon equation in our computer

algebra system so that it may be used to check whether an associator and product functor satisfy

it, or so that given a product functor, associators can be solved for. While the 1-cells play the

most important role in drawing the diagrams (and it's there boxing that determines the need for

structural isomorphisms), we are ultimately interested in the 2-cells. It may not look like it, but

each path really speci�es a 2-cell. The statement that both paths through the pentagon equation

are equal is the statement that the 2-cell represented by both paths are equal.

The full diagrams were drawn to determine where the structural isomorphisms were needed.

Now, we focus on the 2-cells, the diagrams above the arrows in each path. These arrows are

the 2-cells, and the vertical composition of the entire path represents the 2-cell of that path.60

Each diagram that sits on an arrow represents a 2-cell that can be represented in our computer

algebra system. Each 2-cell is built up and then composed, so that the entire path is constructed.

Then, the 2-cells from each path are equated. This can either return true or false (if the relevant

structures were entered completely with the purpose of being tested) or the equations generated

can be used to solve for a structure (i.e. in this case, the associator).

Finally, an alternate interpretation of the structural isomorphisms is that they exist to ensure

both paths operate in consistent bases. For instance, a di�erent boxing of the �nal state, A⊗ (B⊗

(C ⊗ D)), for the second path means that the 2-cell's element-matrices resulting from that path

60N.B. Horizontal composition is represented as bottom to top �ow within the 2-cell diagram that sits above the
arrow.
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with be expressed in a di�erent basis. In fact, given that the 2-cells are matrices of matrices and

the element-matrices of the structural isomorphisms are unitary, it is clear that ω and τ are applied

exactly as would be expected for changing the basis of a 2-cell. Heuristically, �rst we applied τ ,

then we applied ω, then we applied the 2-matrix whose basis we are changing, αA,B⊗C,D, then

we applied ω−1, and �nally we applied τ−1. Schematically, (using the right to left order of 2-cell

vertical composition), this looks like τ−1 ◦ ω−1α ◦ ω ◦ τ , which we are allowed to associate as

τ−1 ◦ (ω−1α ◦ ω) ◦ τ .

As an example of this, let us consider the pentagon equation for Fib. We will focus on the

matrix ατ,τ,τ , which is the two-dimensional change of basis matrix for the fusion of three τ anyons.61

Let us assume it is unknown and write it as

ατ,τ,τ =

 w x

y z

 (81)

Let us also assume the rest of the 2-cell α is trivial (as it is). Now, if we were to compute both paths

of the pentagon equation, we will get a 2-cell for each path, P and Q. Let P represent path 1 (the

path with three legs), and Q represent path 2 (the path with two legs). The pentagon equation is

the statement that P = Q. For each of these 2-cells, there is a three-dimensional element-matrix

for the fusion of four τ anyons, Pτ,τ,τ,τ and Qτ,τ,τ,τ . If we naïvely did not use τ and ω, we would

�nd

Pτ,τ,τ,τ =

 1 0

0 (ατ,τ,τ )3

 (82)

Qτ,τ,τ,τ =

 1 0

0 (ατ,τ,τ )2

 (83)

i.e. the equation would e�ectively be α2 = α3, leading to a trivial associator. Every application of

61N.B. α mediates changes of basis in the fusion space. However, the structural isomorphisms change the basis of
2-cells themselves, such as the basis of α.
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a leg of the pentagon equation would just multiply the matrix


1 0 0

0 w x

0 y z

 (84)

which is clearly incorrect. However, the structural isomorphisms will change that basis of that

matrix�mixing around w, x, y, and z�leading to the correct expressions for Pτ,τ,τ,τ and Qτ,τ,τ,τ :

Pτ,τ,τ,τ =


w xy xz

xy w2 + xyz wx+ xz2

yz wy + yz2 xy + z3

 (85)

Qτ,τ,τ,τ =


xy w xz

w 0 x

yz y z2

 (86)

The solution of P = Q will now provide the correct α for Fib. Thus, we see that type safety and

boxing are the same as ensuring consistent bases are used.

4.2 Monoidal Categories: Triangle Equation

As we have seen, essentially, the game is to use the reboxing tools to get the diagram into the

appropriate form to apply the structure required in the axiom. As such, we will no longer describe

the step by step process, but simply show de�nitions of the new structures and list any di�culties

or peculiarities speci�c to the equation in question.

The de�nitions for the new structures, λ and ρ, are shown in Figures 13 and 14, respectively.

The formulation of the diagrams for the triangle equation, equation 2, proceeds exactly as it did

in the previous section.
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Figure 13: λ
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Figure 14: ρ
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Figure 15: β

4.3 Braided Monoidal Categories

For both hexagon equations, equations 3 and 4, there is one additional structure, the braid β,

whose de�nition is shown in Figure 15.

Additionally, these are the �rst equations to require the use of the swap 1-cell (constructed in

Section 3.3.2), which is drawn as wires crossing. Necessary to the construction of these paths (and

previously unmentioned) is the fact that the swap satis�es the following properties:

(SA,C � idB) ◦ (idA � SB,C) = SA�B,C (87)

(idB � SA,C) ◦ (SA,B � idC) = SA,B�C (88)

In our representation, we �nd that these 2-cells are just equal and do not require any structural

isomorphism. The respective 1-cell diagrams for these equations are shown in Figures 16 and 17.

With the addition of these swap properties, the formulation of the hexagon diagrams proceeds

exactly as they did in the previous sections.

4.4 Twisted Braided Monoidal Categories

For the twist axiom, equation 6, the newly de�ned structure is the twist, θ, shown in Figure

18. Remember, the twist goes from the identity 1-cell to the identity 1-cell. In the particle
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=

Figure 16: swap property: (SA,C � idB) ◦ (idA � SB,C) = SA�B,C

=

Figure 17: swap property: (idB � SA,C) ◦ (SA,B � idC) = SA,B�C
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θ

Figure 18: θ

interpretation, θ causes a 2π rotation�thus, if our lines had width, we would show its action as

the twisting of a ribbon. Additionally, a property of the swap 1-cell that was described in Section

3.3.2 is required for making these diagrams: SM,N ◦ SN,M = idN�M. Otherwise, the formulation

of these diagrams is very straightforward.

4.5 Monoidal Functors

For the monoidal functor equations, equations 11�13, there are three new structures: F , φ, and

φu. The �rst one, F , is the monoidal functor. A functor is a 1-cell of 2Vect, thus, this will be

represented as a 1-cell (a box) with the symbol F . The second one, φ, is a natural transformation

and will be represented as a 2-cell (and is shown in Figure 19). Finally, φu, is a morphism of the

destination category. Morphisms internal to a category within 2Vect�i.e. morphisms internal to

an MTC�can be accessed from the 2-category perspective via 2-cells. Thus, φu will be represented

as a 2-cell and is shown in Figure 20. Since we are dealing with two categories, the monoidal

structures from the source category are labeled with the subscript 1, and the monoidal structures

from the destination category are labeled with the subscript 2.

4.6 Rigidity

In Section 2.1.4, we provided the conditions for a category to be rigid (equations 7 and 8)�

essentially that every object must have a dual. However, we did not specify how to construct the

duals, which is necessary for actually checking the rigidity conditions.
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Figure 19: φ
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Figure 20: φu
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Figure 21: Frobenius condition

4.6.1 The Frobenius Condition and Constructing Duals

Luckily, there is an easy way to �nd a dual �candidate� for a given object [8]. If tensor product

functor for the monoidal category satis�es the Frobenius condition, then there is a simple formula

to �nd the dual candidate given an object.

The Frobenius condition is shown in Figure 21, where m† is taken to mean the adjoint of

the 1-cell m (which, of course, represents the fusion rules) and is given by the matrix adjoint of

the matrix representation of m. Categorically, we are guaranteed that this adjoint exists by the

structure of 2Vect [6]. The Frobenius condition�which is a relationship only among 1-cells and

does not involve boxing�is a precursor for a category to be rigid.

If a category satis�es the Frobenius condition, then there is an easy way to construct the dual

candidate for a given object.62 The formula, for the dual A∗ to the object A, is shown in Figure

22. Heuristically, using the particle interpretation of rigidity, a particle antiparticle pair is created

from the vacuum�where the unit, as always, is e�ectively the vacuum, and m† is a �reverse fusion�

that creates the pair. Then, A†, the adjoint of the morphism representing the object A, is in a

sense �contracted� with original particle, thus projecting onto the space of the antiparticle, the

dual A∗.
62We say dual candidate because equations 7 and 8 still need to be satis�ed for the category to be rigid.
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Figure 22: dual candidate A∗

4.6.2 Testing Rigidity

Since our category is semisimple, we only have to worry about testing the simple objects. How-

ever, testing the rigidity property is slightly more complicated than just creating diagrams of the

equations. For each pair of objects A and A∗, the maps ηA : u → A ⊗ A∗ and εA : A∗ ⊗ A → u

also need to be constructed. Luckily, there is only a one-dimensional space of such maps, and they

can just be picked to within a scalar constant. Thus, the nontrivial path through equation 7 (or

equation 8) may be o� by a constant, which can be rescaled in the de�nitions of ηA and εA. The

only way these equations can fail to hold is if the nontrivial path is zero.

Thus, rigidity�at its essence�is a question of whether certain contractions of the 2-cell as-

sociator α and its inverse α−1 are zero. Let's focus on equation 7, and thus α, as an example.

For each simple object, �rst we generate its dual as per the prescription in Figure 22. Then, we

look at the element-matrix αA,A∗,A. The dimensions of this square matrix are determined by the

dimension d of the fusion space of A× A∗ (with the very likely possibility that d < n, where n is

the number of simple objects). Since ηA is a map from u to A⊗A∗ and εA is a map from A∗ ⊗A

to u, we want to contract αA,A∗,A with the basis vectors for fusing to and fusing from u�i.e. make

the quadratic form −→x †αA,A∗,A−→x , where −→x is the basis vector for fusing to u in the d-dimensional

fusion subspace. If this number is not equal to zero for all objects A, then the condition set by

equation 7 is satis�ed. The condition set by equation 8 is similar except it concerns α−1 instead
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of α.

As a speci�c example, consider a category with three simple objects: u, σ, and ψ. The nontrivial

fusion rules are σ × σ = u+ ψ, σ × ψ = ψ × σ = σ, and ψ × ψ = u [33]. The MTC resulting from

these fusion rules is commonly called the Ising MTC. Now, from this it is clear that σ is self-dual.

Furthermore, let the morphism that represents the unit, u : 1 → 3, and the nontrivial particles,

σ : 1→ 3 and ψ : 1→ 3, be given by63

u =


1

0

0

 (89)

σ =


0

1

0

 (90)

ψ =


0

0

1

 (91)

To test the duality condition equation 7 for σ, we need the matrix ασ,σ,σ. For this category, it is

given by

ασ,σ,σ =
1√
2

 1 1

1 −1

 (92)

which is two-dimensional, since σ × σ can fuse to either u or ψ. However, the basis given by

equations 89�91 is three-dimensional, corresponding to the total number of simple objects in the

category. Since σ× σ cannot fuse to ψ, we want to take the basis vector given by equations 89 for

u and remove the space corresponding to ψ�in this case the �rst zero�to give

uσ =

 1

0

 (93)

63q.v. equations 18 and 19.
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Figure 23: The braid and twist are compatible with rigidity if these 2-cells are equal.

If there were other simple objects that the object and its dual could not fuse to, we would have to

remove them as well. Thus, it is this basis vector, uσ, that we want to contract ασ,σ,σ with, giving

u†σασ,σ,σuσ = 1√
2
, which is not equal to zero.

4.6.3 Testing Braid and Twist Coherence with Rigidity

We also need to test equation 9 to ensure that our twisted braided monoidal category is compatible

with our rigid structure. However, rather than test each simple object and its dual individually,

we can apply an elegant 2-cell method to test them all at once. If we start with our unit, u, and

then compose with m†, we have a map, m† ◦ u : 1 → N � N, where N is the number of simple

objects. This map will give all the pairs of simple objects and their duals. Thus, we can apply our

twist, θ, to the left leg for a 2-cell representing one path and the right leg for a 2-cell representing

the other path. These 2-cells are shown in Figure 23. Equating the two 2-cells will give equation

9.

95



4.7 Modularity

The diagrammatic form of the modularity equation, equation 10, proceeds exactly as the others.

A category is modular when�for all simple objects that are not the unit�there exists another

simple object such that the equation does not hold.

To test this property in our computer algebra system, we compute the 2-cell (β • idSN,N
) ◦ β,

where N is the base 0-cell of the category. Now, each column in our 2-cell representation represents

the fusion of two simple objects, and the row represents the di�erent fusion paths. For each simple

object, A that is not the unit (there are N − 1 of them), we look at all the columns that represent

the fusion A×B, where B is any other simple object that is not the identity. If for each A, at least

one row in one of the A×B fusion columns is not the identity�i.e. every nontrivial simple object

braids nontrivially with at least one other nontrivial simple object (including, possibly itself)�then

the category is modular.

5 Conclusion and Further Research

Having developed this computer algebra system for 2Vect and modular tensor categories, the

following directions are possible for further research:

1. Implement the ability to solve for the structures of the MTCs (as opposed to just verifying

they satisfy the correct equations).

2. Determine high-level structures necessary for TQC using MTCs.

Both of these represent di�erent research directions and can be implemented in either order or

even in parallel.

5.1 Solver

The solver will allow users to propose fusion rules and have then have the system �nd structures

that satisfy the categorical axioms with those rules. Thus, the program will be able to �solve� for

these types of categories. Since it is interesting in its own right to �nd and classify these categories

(speci�cally MTCs) [33], this part would be an end in itself in addition to the TQC application.
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Currently, we have implemented a basic solver, but is not e�cient. It can solve for the associator

of certain small64 monoidal categories. With certain trivial bits �lled in, it can solve for slightly

more complicated categories. Additionally, it is able to solve for the equivalence functor of the

monoidal category Fib (i.e. Fib while forgetting about its braiding and twisting structures),

showing that there are two inequivalent families of monoidal categories, Fib. One possible direction

for this project is the optimization of the solver.

As an example, when given the fusion rules for Fib (described in Section 2.3.3 by equation

17), the unit, and the trivial elements of the associator, our code in Mathematica can solve the

pentagon equation for αττττ .65 Furthermore, it gives two one-parameter families of solutions

(αττττ )+ =

 ϕ−1 a

(aϕ)−1 −ϕ−1

 (94)

(αττττ )− =

 −ϕ b

−ϕb−1 ϕ


where a and b are arbitrary parameters. We recognize (αττττ )+ as the solution given in Section

2.3.3, with the substitution a→ ϕ−
1
2 . The other solution represents a di�erent, but equally valid,

Fibonacci anyon model that makes use of the negative root (remember, the solution to the de�ning

equation for the golden ratio, ϕ+ 1 = ϕ2, gives two solutions: 1±
√

5
2 ) and corresponds to a model

where the braiding phase for τ and I are e�ectively swapped�i.e. the eigenvalues of βττ de�ned

in equation 29 are switched (modulo other minus signs that may crop up).66

However, the one-parameter family of solutions for each of these needs to be discussed. By

Ocneanu Rigidity, up to equivalence, for a given set of fusion rules�i.e. a product functor for

a monoidal category�there cannot be an in�nite number of categories�there cannot be a one-

parameter family of solutions to the pentagon equation [10]. The key in the de�nition is up to

equivalence. Thus, we need to �nd a monoidal functor between di�erent associators parametrized

by a (and b) to show that these categories are equivalent. It is essential for us to show this as a

64i.e. few simple objects, for instance, the base 0-cell is 2.
65For certain simpler categories, it can solve the entire associator�for Fib it will run out of memory unless the

trivial elements are entered.
66Of course, there are also two di�erent solutions of the hexagon equations for a given associator, corresponding

to interchanging clockwise and counterclockwise braiding.
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way of validating our solution given by equation 94.

In fact, our solver can handle this full problem; given a monoidal functor, F : 2 → 2, can

we �nd a natural transformation φ : m ⇒ m (since the product functor in both categories is the

same) and a 2-cell φu : u⇒ u (where here u : 1→ 2 is the morphism that picks out the unit, and

again, we have the same unit in both categories) that allow the functor to be coherent with the

monoidal structures for both categories. For the functor, we choose the trivial functor, so that our

anyons remain the same and do not transform into each other.

F =

 1 0

0 1

 (95)

Then, we attempt to solve the three coherence equations for monoidal functors (equations 11�13).

First, we �nd no solution between categories given by the associators (αττττ )+ and (αττττ )−; these

categories are inequivalent families, as expected. However, we do �nd the categories parametrized

by a (or b) to be equivalent. For instance, for a, we �nd an equivalence between a category with

(αττττ )+ and an arbitrary a, and a category with (αττττ )+ and a = 1. We �nd

φ =


[c] ∅0×0 ∅0×0

[
d2

ca

]

∅0×0 [c] [c] [d]

 (96)

φu =


[
c−1
]

∅0×0


where c and d are new arbitrary parameters. First, we see that φ is dependent on the choice of

a. Second, for a given a and the trivial functor F , there is a two-parameter family of natural

transformations that solve the coherence equations. The ability to quickly verify properties and

structures of MTCs would be a huge advantage in categorical study of TQC, since MTCs are

currently very di�cult to work with. With this solver, we were easily able to identify equivalence

between categories, rather than having to work through the three commuting diagrams of the
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monoidal functor coherence equations by hand.

5.2 Higher-Level Structures

The ability to �nd higher-level structures in MTCs is a big motivation for this project. We are

interested in the investigation of higher-level structures within MTCs in order to better understand

the mathematical why behind topological quantum computation. We will be applying the same

type of reasoning to anyons and MTCs that was applying to general quantum information principles

and Hilb (i.e. Vect with some additional structure), as pioneered by Abramsky, Coecke, and

collaborators [1, 11, 15, 16, 13].

Abramsky and Coecke [1] explain that by recasting quantum information in categorical terms,

quantum compounds systems are naturally explained within the categorical structure. The monoidal

structure of Hilb allows qubits to be combined, but does not allow for cloning or deleting. Further-

more, the fact that Hilb is rigid and symmetric allows for entangled pair creation and measure-

ment. Adding to compact closure the fact that Hilb has biproducts, then we have an explanation

for quantum teleportation and other similar protocols. Essentially, in diagrammatic language, the

fact that a snake diagram can be pulled straight allows for teleportation. Coecke, Pavlovic and

Vicary identify how the existence of a certain Frobenius algebra object in Hilb is the structure

behind the existence of orthonormal bases�which is, in quantum protocols, essential to the prepa-

ration of states and measurement of outcomes [15]. Coecke and Perdrix �nd in [16] how classical

channels and information exist within this structure and there interaction with quantum informa-

tion. Essentially, the existence of Frobenius algebras allows classical structures and the interaction

of quantum and classical information. From this, they work out graphical spiders, thus extending

the graphical language to classical information and the environment.

We hope to apply similar reasoning to anyon models and further understand them within

the setting of category theory (as MTCs). Unlike Hilb, all the additional structures of modular

tensor categories have previously made them somewhat intractable to work with. The advent of

our computer algebra system should alleviate much of the di�culty and allow more �high-level�

categorical progress to be made.
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