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Abstract

Quantum computing is an emerging field of research that harnesses the laws of quantum

mechanics to solve computationally hard problems. In addition to developing better and

bigger quantum computers, a significant challenge is developing techniques to benchmark

these devices. Thus, pushing the barrier of classical simulation goes hand in hand with the

development of quantum computers. In this dissertation, we hope to leverage the existing

work on quantum graphical languages such as the ZX-calculus to aid one of the most

prominent classical simulation tools, tensor network methods. By their very nature,

graphical languages have a more modular representation of quantum circuits, which could

be optimized using the associated rewrite rules of the calculi. We investigate how effective

the existing procedures are at enhancing tensor network contractions and propose new

strategies based on our observations. Furthermore, we evaluate our strategies using a variety

of circuits, including the Sycamore circuits used by Google to demonstrate quantum

supremacy in 2019.
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Chapter 1

Introduction

Quantum computing refers to harnessing quantum mechanical phenomena such as

superposition, interference, and entanglement to perform computation. It is an exciting field

of research widely believed to help solve computationally hard problems much faster than

classical computers [1–3]. As the size of quantum devices grows, benchmarking them

becomes increasingly important. Improving the classical simulation of quantum circuits not

only enables building better quantum computers but also helps in characterizing quantum

advantange.

Tensor networks have been developed as a helpful framework for deriving mathematical

descriptions of quantum many-body wavefunctions [4–9]. In addition to being a helpful

formalism for describing quantum many-body systems, they also serve as powerful numerical

tools and are the basis of many simulation algorithms. Since their inception, they have

found use in applications such as quantum chemistry [10–14], holography [15–20], machine

learning [21–25] and simulation of quantum circuits [26–31].

Quantum graphical languages like ZX-/ZH-calculus [32–34] have a similar motivation to

Tensor Networks in that they use a graphical formalism to reason about quantum systems.

Quantum circuits can be represented using a modular data structure by converting them
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into ZX-/ZH-diagrams. Such transformations allow for better optimization of quantum

circuits [35, 36] and often lead to a more efficient representation of the underlying

computations with no circuit equivalent.

In this dissertation, we wish to enhance the tensor-network-based simulation of quantum

circuits by using quantum graphical calculi. Our framework uses graphical-calculi-based

representations as a bridge between quantum circuits and tensor networks. We convert

quantum circuits into their equivalent ZX-/ZH-diagrams and then use graphical

simplifications to obtain a compressed representation. This representation is then converted

into a standard tensor network representation, potentially leading to more efficient

contractions.

Existing graphical simplifications have proven to be useful for optimizing quantum circuits.

However, using the same procedures for simplifying tensor networks might lead to an increase

in the contraction complexity. In our work, we develop a heuristic measure to guide the

application of simplification procedures and help find tensor networks with efficient contraction

orders. We also develop new graphical simplification strategies using our proposed measure,

designed explicitly for enhancing tensor-network-contractions.

The rest of the dissertation is organized as follows:

In Chapter 2, we give a background on tensor networks and quantum computation. Then

we describe quantum circuit simulation and detail the Sycamore supremacy experiment.

The chapter concludes with a description of a tensor-network-based simulation framework

and a parameterization scheme for the contraction complexity of tensor networks. In

Chapter 3, we give an overview of graphical calculi for quantum computation, namely ZX

and ZH calculus. We present the rewrite rules of the calculi, which enable diagrammatic

reasoning about quantum computation, and also describe graph-based simplification

methods. In Chapter 4, we present our chosen representation of tensor networks enabling

an efficient conversion between graphical diagrams and tensor networks. Then a description
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of our proposed heuristic measure for quantifying contraction complexity is provided. We

then present three heuristic-based-strategies to guide the application of graphical

simplification procedures. Finally, we present the results of applying our strategies on

Sycamore supremacy circuits and discuss observed trends. Chapter 5 evaluates the

proposed strategies on more classes of quantum circuits and concludes with a discussion on

the trends we observed. Chapter 6 summarizes our results and outlines possible research

directions for future work.
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Chapter 2

Background

In this chapter we give a brief background on topics relevant to the dissertation. We begin by

describing Tensor Networks, the underlying graphical language for reasoning about them, and

their ability to capture fundamental linear algebra concepts rigorously. We then summarize

Quantum Computation with the relevant notation and its connection to Tensor Networks.

Finally, we introduce Graphical Calculi for Quantum Computation and present fundamental

rewrite rules for the calculi.

2.1 Tensor Networks

Tensors are objects that encapsulate and generalize the idea of multilinear maps, i.e., functions

of multiple parameters that are linear with respect to every parameter. Formally, we define a

tensor as follows:

Definition 2.1.1. (Tensor) A rank-r tensor T is an r-dimensional array of size d =

(d1, d2, · · · , dr) indexed by the Cartesian product of some set of indices , such that

Ti1,i2,··· ,ir ∈ C
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where (i1, i2, · · · , ir) ∈ [d1]× [d2]× · · · [dr] and [d] = {j ∈ Z|1 ≤ j ≤ d}

Although we presented the definition with all indices clubbed together in subscript, a widely

followed convention is to place input indices as superscript and output indices as subscript.

There exists an intuitive graphical language for reasoning about tensors with the earliest

known use attributed to Roger Penrose in the early 1970s [4]. In such a formalism, a tensor

can be denoted by any shape such as a box, oval or triangle, with zero or more legs attached.

The legs correspond to the indices of the tensor and the rank of a tensor is the number of

indices. Thus a rank-0 tensor is a scalar (λ), a rank-1 tensor is a vector (vi) and a rank-2

tensor is a matrix (Ai
j). The dimension of an index specifies the number of values that index

can take. For instance a vector with four entries can be represented by a rank-1 tensor with

its index having dimension 4.

λ

(a) scalar

v i

(b) vector

Ai j

(c) matrix

Figure 2.1: Tensor diagrams

A computation involving tensors generally involves some of the indices being contracted. A

contraction refers to the sum over all the possible values of the repeated indices of a set of

tensors. For example, the contraction of a rank-2 tensor Ai
k with another rank-2 tensor Bk

j is

given by the following,

Cij =
∑
k

Ai
kB

k
j (2.1)

the corresponding graphical notation for a contraction is denoted by

Ai
k

B jC =i j (2.2)

Here we contracted the common edge between tensors A and B to get a new tensor C. We

can formalise this operation by defining an edge contraction on a graph:

Definition 2.1.2. (Edge Contraction) Edge contraction on a graph G removes an edge uv
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from the graph such that the vertices u and v are replaced by a new vertex w and all edges

previously incident upon u and v, apart from the common edge, are now incident upon w.

Graphically, each edge contraction removes common edges between pairs of tensors, if any,

and represents a product operation on the corresponding tensors, in which one takes the

inner product over common indices or an outer product if there are no common indices. More

complicated contractions like the following:

Ei
op =

∑
jklmn

Ai
jklB

jm
o C lm

n Dkn
p (2.3)

have an intuitive and easy to understand depiction in the graphical notation

A

B

C

D

j

k

l

m

n

o

piE =i

o

p (2.4)

Another fundamental operation on tensors, in addition to contraction of indices, is the tensor

product. Tensor product is a generalisation of outer product of vectors where the value of

the resultant tensor on a given set of indices is the element-wise product of the values of

each constituent tensor. Explicitly, tensor product of two tensors A and B is given by the

following:

[A⊗B]i1,i2...,im,j1,j2...,jn = Ai1,i2...,im ·Bj1,j2...,jn (2.5)

Tensor product in the diagrammatic notation is simply represented by two tensors being

placed next to each other. The value of a network containing disjoint tensors is simply the

product of the constituent values.

[A⊗B] =
A

B
(2.6)

In the above diagrams, we have used wires to denote contraction between two tensors. But
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we can interpret wires as tensors themselves. An idenity wire is defined as:

= δij = I (2.7)

We can use tensor product with identity wires to deform the diagram such that tensors can

freely move past each other:

A

B

A

B

A

B
= = (2.8)

which holds true because of the following relation:

[A⊗ I][I ⊗B] = [A⊗B] = [I ⊗B][A⊗ I] (2.9)

In addition to the identity wire, there are two more wire tensors that are commonly used in

the graphical notation. The first is the cup tensor and the second is the cap tensor.

= δij

(a) Cup tensor

= δij

(b) Cap tensor

Figure 2.2: Wire tensors.

The cup and cap tensors allow us to deform a wire arbitrarily so long as its ends remain

intact. Diagrammatically this is captured by the snake equation:

= = (2.10)

which enables us to move around tensors in our diagrams without changing their meaning.

To demonstrate this, let’s consider the contraction between four tensors A, B , C and D. The

diagram obtained on the right represents the same computation as the diagram presented on

left.
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A

C

B

D

A

C

B

D

= (2.11)

Thus a diagram representing a contraction of tensors can be represented by an undirected

graph wherein vertices correspond to the tensors and edges correspond to contraction between

the tensors. This graph is known as a Tensor Network. Formally:

Definition 2.1.3. (Tensor network) A tensor network (G,M) is an undirected graph G with

edge weights w and a set of tensors M = {Mv|v ∈ V (G)} such that Mv is a |Nv|-rank tensor

having 2deg(v) entries, where |Nv| denotes the cardinality of neighbourhood of vertex v and

deg(v) =
∑

u∈N(v)w({u, v}) is the weighted degree of v. Each edge e corresponds to an index

i ∈ [2w(e)] along with which the adjacent tensors are to be contracted.

2.2 Quantum Computation

In this section, we will discuss the basics of quantum computation namely the qubit,

quantum gates and measurement and then describe the most widely used model for

quantum computation, namely the Quantum Circuit Model. We also briefly outline how

quantum circuits can be cast naturally as Tensor Networks.

2.2.1 Qubit

The fundamental building block of quantum computation is a qubit i.e. the quantum analogue

of a (classical) bit. Where the state of a bit is simply represented by 0 or 1, the state of a

qubit is essentially a unit vector in the two-dimensional complex Hilbert space. Quantum

computation is often presented using Dirac notation which has two types of representation

for a vector, namely bra and ket. A vector ψ is denoted by a ket like |ψ⟩ and the dual of a

vector ϕ is denoted by a bra like ⟨ϕ|. For a system of qubits, we have a computational basis
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state comprising of |0⟩, |1⟩, and their duals ⟨0|, ⟨1| which are defined as follows,

|0⟩ =

1
0

 |1⟩ =

0
1

 ⟨0| =

[
1 0

]
⟨1| =

[
0 1

]

In addition to being in one of the computational basis states, the state of a qubit |ψ⟩ can be

in a superposition of basis states:

|ψ⟩ = α |0⟩+ β |1⟩

where α and β are complex numbers denoting the probability amplitudes. Measuring the

state of a qubit with respect to the computational basis gives |0⟩ with probability |α|2 and

|1⟩ with probability |β|2. Thus α and β are constrained by the relation:

|α|2 + |β|2 = 1

2.2.2 Quantum Gates

Just as classical logical gates are used to perform computation on conventional digital

computers, quantum logic gates (or simply quantum gates) are used to perform

computations on the state of qubits. Unlike classical logic gates however, all quantum gates

are reversible. Quantum gates are unitary operators and can be described as unitary

matrices with respect to a basis. In the quantum circuit notation, gates are usually denoted

by labelled boxes with input wires on the left and output wires on the right.

As an example, let’s consider the Hadamard gate:

H =
1√
2

1 1

1 −1

 (2.12)

Hadamard gate is interesting because it has the ability to transform a qubit in a computational
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basis state into an equal superposition of computational basis states i.e. the probability of

the qubit being in each state is equal.

H |0⟩ =
1√
2

1 1

1 −1


1
0

 =
1√
2

1
1

 = |+⟩

H |1⟩ =
1√
2

1 1

1 −1


0
1

 =
1√
2

 1

−1

 = |−⟩

Morevover, the Hadamard gives rise naturally to another basis called the Hadamard basis

comprising of |+⟩ and |−⟩

|+⟩ =
1√
2

1
1

 |−⟩ =
1√
2

 1

−1

 ⟨+| =
1√
2

[
1 1

]
⟨−| =

1√
2

[
1 −1

]

An important family of single qubit gates are the phase shift gates. Phase shift gates are

single qubit gates that map basis states |0⟩ → |0⟩ and |1⟩ → eiϕ |1⟩. Thus they leave the

probability of measuring the basis states unchanged but modify the phase of the quantum

state. Phase shift gates are represented by:

P (ϕ) =

1 0

0 eiϕ

 (2.13)

A widely used gate-set belongs to the family of Pauli gates, which correspond to the Pauli

Matrices:

Gate-set 1. (Pauli)

 I =

1 0

0 1

 , X =

0 1

1 0

 , Y =

0 −i

i 0

 , Z =

1 0

0 −1



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So far we have seen examples of single-qubit gates. Gates can act on systems of multiple

qubits such that they represent a unitary transformation on the tensor product of the state

of the qubits. The most commonly used two-qubit gate is the Controlled-NOT gate (CNOT)

:

+
=



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


(2.14)

Any unitary operation on a finite number of qubits can be expressed as a quantum circuit

consisting of CNOT and single-qubit gates. An important set of gates is called the Clifford

group.

Definition 2.2.1. (Clifford group) The Clifford group is the set of unitary operators Cn on

a finite n-dimensional Hilbert space such that:

Cn =
{
V ∈ U2n |V PV † = P ′

}
(2.15)

where P, P ′ are Pauli matrices and † denotes the complex conjugate of a matrix.

Simply put, the Clifford group consists of all matrices such their product with any Pauli

matrix, further multiplied with the inverse of the matrix, results in a Pauli matrix. For

single-qubit gates, the Clifford group consists of the gates {I,X, Y, Z,H, S} where S is a

phase shift gate with phase π/2:

S =

1 0

0 eiπ/2

 (2.16)

Just as in classical computing, a finite set of gates suffices to construct a logic circuit computing

any Boolean function, e.g. the NAND gate. For quantum computing, there also exists many

finite gate sets that allow any arbitrary unitary operator to be approximated to arbitrary
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accuracy [37]. One such set is the Clifford+T set [38] which consists of the following gates:

Gate-set 2. (Clifford+T)

{
+

, , , TH S
}

where T is a phase shift gate with phase π/4:

T =

1 0

0 eiπ/4

 (2.17)

Finally we introduce the family of Rotation operator gates which have the effect of rotating the

state of a qubit inside the Bloch sphere about a particular axis. The three rotation operator

gates Rx(θ), Ry(θ) and Rz(θ) are defined as follows:

Gate-set 3.Rx(θ) =

 cos( θ2) −isin( θ2)

−isin( θ2) cos( θ2)

 , Ry(θ) =

 cos( θ2) −sin( θ2)

−sin( θ2) cos( θ2)

 , Rz(θ) =

e−i θ
2 0

0 ei
θ
2




2.2.3 Measurement

To get information out of the state of a quantum system, one needs to perform a measurement.

A measurement is a non-reversible operation that collapses the quantum state of a system

into one of its basis states. The probability of measuring a particular basis state is given

by the square of the amplitude of that basis state. For example, if we measure the state

|ψ⟩ = 1√
2
(|0⟩ + |1⟩) we will get the results |0⟩ and |1⟩ with equal probability. Measurements

are often performed at the end of a quantum circuit to gather information about the final state
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H

H

H

T

S

V

U

|0⟩

|0⟩

|0⟩

Figure 2.3: A quantum circuit diagram.

of a quantum system in the form of a discrete probability distribution in the computational

basis.

2.2.4 Quantum Circuits

Quantum circuit notation is a well known diagrammatic notation for quantum computation

associated with the circuit model of quantum computation. Quantum circuits are represented

by a sequence of quantum gates and measurements applied to an initial quantum state encoded

in a sequence of qubits. The quantum circuit model implicitly assumes that evolution of

underlying quantum system happens in discrete steps, as represented by discrete gates and

that a system remains in the same state unless acted upon by a gate. This enables the

complexity of computations to be readily analysed: if every gate is assumed to take a fixed

amount of time or some other quantifiable resource, then the number of gates in the circuit

or the number of sequential layers of gates is a measure of complexity.

Gates can be combined by stacking them on top of each other, which denotes the tensor

product of corresponding matrices. Alternatively, input of one gate can be plugged into the

outputs of another, which denotes matrix multiplication. An example circuit with one, two

and three qubit gates is shown in Figure 2.3.

2.2.5 Quantum Circuits as Tensor Networks

Quantum circuits are a special class of tensor networks in which the type and arrangement of

tensors are restricted so as to preserve the geometry of the actual hardware implementation.

Quantum gates are interpreted as tensors wherease the wires correspond to edges in the tensor

network. In addition to gates, we also consider the initial qubit state and measurement as
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tensors by interpreting them as a column vector and row vector respectively as shown in

Figure 2.4 .

ψ

(a) State

ϕ

(b) Effect

Figure 2.4: Diagram (a) above represents the state |ψ⟩ i.e. a tensor with single output index
(a column vector) and diagram (b) the effect ⟨ϕ| i.e. a tensor with a single input index (a row
vector)

Measurements are often performed with respect to computational basis. As an example, we

cast the quantum circuit in Figure 2.3 as a tensor network as shown in Figure 2.5.

H

H

H

T

S

V

U

0

0

0 0

1

1

Figure 2.5: A quantum circuit diagram with |000⟩ as the initial state, and ⟨110| as the
measured effect.

2.3 Quantum circuit simulation using tensor network methods

Classical simulation plays an indispensable role in understanding and designing quantum

devices, as it often is the only means to validate and benchmark existing quantum devices.

With quantum devices increasing in size and precision, classical simulation of the

corresponding quantum system becomes increasingly challenging. As quantum technologies

grow, an interesting crossing point called quantum supremacy or quantum advantange is

after which quantum processors can outperform the most advanced classical computing

systems on specialized tasks. A leading candidate for this is the sampling problem from a

random quantum circuit. The key idea is that, unlike quantum algorithms (e.g., Shor [1] or

Grover [2]) that require deep quantum circuits and high gate fidelities — inaccessible in the

near future — to become manifestly advantageous, the task of sampling bit strings from the

output of random quantum circuits is expected to be hard to simulate classically even for
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lowdepth circuits and low-fidelity gates. Although that problem may not have practical

value, it is straightforward to perform on a quantum processor: execute a random sequence

of quantum gates and then output the measurement result of each qubit. From an

engineering perspective, building a quantum processor of sufficient size and accuracy so that

sampling becomes infeasible on a classical computer is still a challenge. The hardness of this

task is mainly attributed [39–43] to the expectation that simulating random circuits takes

time that grows exponentially with circuit size.

The precise threshold for observing a quantum advantage is nonuniversal and largely depends

on the efficiency of classical simulation for each particular combination of circuit model and

chip architecture. An important development in the field was when Google announced in 2019

to have demonstrated quantum supremacy using a 53-qubit Sycamore quantum chip [44].

Though initially this task was estimated to take thousands of years on the fastest classical

supercomputers, later the simulation time was significantly reduced due to the recent progress

on tensor network based quantum simulation algorithms [29, 45, 46]. Tensor network based

simulations have been one of the main contenders at pushing the classical barrier. Thus, the

race for development of higher qubit count devices with high gate fidelities runs in parallel

with a race for development of high-performance simulation techniques for the corresponding

quantum systems.

This section aims to provide a review of a tensor-network-based quantum circuit simulation

framework that represents one of the state-of-the-art approaches in the field. We begin by

first describing the Sycamore supremacy experiment in detail. Then we move our attention

to tensor networks and detail a scheme for parameterizing tensor network contraction costs.

Finally, we describe how this parameterization scheme was used by Gray and Kourtis to

develop their quantum circuit simulation framework using tensor network contractions.
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2.3.1 Sycamore Supremacy experiment

In 2019, Google’s quantum computing group [44] released their Sycamore circuit

experiments and demonstrated quantum supremacy. The authors sample from a family of

random quantum circuits run on the 53-qubit Sycamore device at increasing depth,

measured in terms of “cycles”. Every random circuit is composed of m cycles, each

consisting of a single-qubit gate layer and a two-qubit gate layer. The whole circuit then

concludes with an additional single-qubit gate layer preceding measurement in the

computational basis. In the first single-qubit gate layer, single-qubit gates are chosen for

each individual qubit independently and uniformly as random from the gate set

{
√
X,
√
Y ,
√
W}, where upto a global phase these gates are

Gate-set 4.√X =
1√
2

 1 −i

−i 1

 , √
Y =

1√
2

1 −1

1 1

 , √
W =

1√
2

 1 −
√
i

√
−i 1




For each successive single-qubit layer, gates for each individual qubit are again chosen from

the same set 4 but now excluding the gate applied on the same qubit in previous cycle. This

prevents simplifications while simulation of the circuits. For the two-qubit gate layers, two-

qubit gates are applied according to a specified pairing of qubits in different cycles. There are

four different patterns of pairings, and the 8-cycle pattern ABCDCDAB is repeated.

Each gate in this family can be decomposed into four phase shift gates (see 2.13) described

by three free parameters and the two-parameter fermionic simulation gate

fSim(θ, ϕ) =



1 0 0 0

0 cos(θ) −isin(θ) 0

0 −isin(θ) cos(θ) 0

0 0 0 e−iϕ


(2.18)
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|0⟩

|0⟩

|0⟩

|0⟩

A B C D C D A B

(a)

(b)

Figure 2.6: (a) Schematic diagram of Sycamore circuit (b) Layout of 53 qubits and two-qubit
gates between them.

For the experiments, the fSim gates were tuned such that θ ≈ π/2 and ϕ ≈ π/6.

fSim(π/2, π/6) can be decomposed into the product of a fractional iSWAP and controlled

phase gate [44] defined as follows:

iSWAP (θ) =



1 0 0 0

0 cos(θ) −isin(θ) 0

0 −isin(θ) cos(θ) 0

0 0 0 1



cphase(ϕ) =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eiϕ


A schematic description of the complete two-qubit gate is shown in Figure 2.7.
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Figure 2.7: The two-qubit gate decomposition used in Sycamore circuits

The authors showed that their chosen gates constitute a universal gate-set and thus can be

used to perform universal quantum computation (with arbitrary parameter values for gates).

In these circuits, however, the two qubit gates are not completely random, but are determined

by qubit pair and cycle number.

Due to the noise prevalent in quantum gates, the quantum device samples from a noisy

version of the ideal distribution. However, the distribution can be reliably recovered by

taking a sufficient number of samples. A measure is needed to assess the closeness of the

output distribution to the ideal distribution. The ideal distibution for this problem is called

the Porter-Thomas distribution. The authors in [44] used linear cross-entropy benchmarking

fidelity (XEB) [47] for this purpose. XEB is defined as:

XEB = 2n⟨pI(x)⟩ − 1 (2.19)

where pI(x) is the ideal distribution, x is the sample and n the number of qubits. The

expectation is taken over the output distribution procured from the circuits. XEB is 0 when

the output distribution is uniform and 1 when the output distribution is the ideal distribution.

Simplified quantum circuits run on Sycamore achieved an XEB of approximately 0.2% at 20

cycles [44]. It was argued from numerical evidence that the aforementioned random quantum

circuits had also achieved an XEB of approximately 0.2%. However, this was not directly

verified as simulating these circuits was estimated to be infeasible.
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2.3.2 Parameterization of tensor network contraction

Tensor networks are a powerful tool in the study of classical and quantum many-body systems.

Tensor network based approaches often encode computations into a graphical structure such

that the indices can be contracted to get a minimal representation of the computation.This

contraction of indices to get the smallest possible tensor network representation is called

Tensor Network Contraction. For the contraction procedure, different orders can lead to

exponential, linearized or polynomial-time algorithms depending upon how the size of the

tensor network decreases. Tensor network contraction is #-P hard in general [48].

We now present a parameterization scheme presented by Bryan O’ Gorman [49] to characterize

the complexity of contracting a tensor network with regards to its contraction orders. The

author used tree embeddings of a tensor network, which they called contraction trees, such that

they could express the time complexity of contraction directly as a property of contraction

trees. Most of the notation used in this section is inspired from the original paper [49].

Formally, a tree embedding is defined as follows:

Definition 2.3.1. (Tree embedding) A tree embedding of a graph G is a tuple (T, b) of a

binary tree T and a bijection b : V (G)→ V (T ) between vertices of G and leaves of T.

In their work, they [49] assume tensor network contractions are performed as a series of matrix

multiplications. The tree embedding of a tensor network is created by assigning each leaf of

the contraction tree to be a tensor in the original tensor network and each internal node to

an intermediate contraction. We give an example tensor network along with two possible

contraction trees in Figure 2.8.

Contraction trees exactly model the matrix multiplications done by a contraction algorithm

in an abstract way. This enables directly expressing the time complexity of contraction as

a property of contraction trees. Contraction trees also captures the the space needed by a

matrix-multiplication-based contraction algorithm. Another important characterization used

is called routing. Let Su,v be the unique path between the leaves b(u) and b(v) of T.
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A B C D

(a)

A B C D

(b)

A B C D

(c)

Figure 2.8: (a) A tensor network with 4 tensors (b) Contraction tree for the tensor network
(c) Contraction tree for the tensor network with a different contraction order

Definition 2.3.2. (Routing) An edge e of a tensor network (G,M) between two vertices

u, v ∈ V (G) is said to be routed through a vertex (resp. an edge) of a contraction tree, if the

vertex (resp. the edge) is included in the unique path Su,v joining the leaves of contraction

tree corresponding to u and v.

A B C D

w

A B C D

log(w)

Figure 2.9: Logarithm of bond dimension being routed through the unique path connecting
two leaves in contraction tree.

Each edge in the original tensor network connecting two tensors, is assigned a weight equal

to the logarithm of the bond dimension. Figure 2.9 shows how an edge in the original tensor

network is routed through in a corresponding contraction tree. The congestion of a vertex

of the contraction tree is the sum of weights of edges in the original tensor network that are

routed through it. Similarly the congestion of a contraction tree edge is the sum of weights

of edges in the original tensor network routed through it. The vertex congestion of a graph

G, denoted by vc(G), is the minimum over contraction trees of the maximum congestion of a

vertex, and similarly for the edge congestion, denoted by ec(G).

We state the following result from the paper [49]

Theorem 2.3.3. A tensor network (G,M) can be contracted in time n2vc(G)+1 and space

n2vc(G)+1.
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We can now take an example and see if congestion of a tensor network is a good measure

of the time and space requirements for a particular simulation. The space required to store

a tensor network, (G,M) can be calculated by summing up the space required to store the

matrices in the tensor network. Each tensor Mv contains 2degv numbers. Now for each vertex

v ∈ G, the congestion con(e) of the edge e ∈ E(T ) adjacent to b(v) gives the size of the tensor

Mv because con(e) =
∑

u∈V (G)w(v, u) = degv and therefore 2con(e) = 2degv .

Now, for the contraction of two tensors, assume we are contracting a (dL, dM ) dimensional

tensor Mv1 with a (dM , dR) dimensional tensor Mv2 along the shared dimesnion dM (see

Figure 2.10). The space required to store the input tensors is dM (dL + dR) and the output

tensors is dLdR. Assuming new memory is allocated for the output tensor total space is

given by dM (dL + dR) + dLdR. The author assumed the contractions were performed as

a series of matrix multiplications which means that the implementation of the contraction

algorithm will take time dL · dM · dR. Now consider this contraction from the viewpoint of

the tensor network. In the network, matrix Mv1 is represented by vertex v1 and matrix Mv2

is represented by vertex v2. The edge connecting v1 and v2 in G has a bond dimension of

2w(v1,v2). The product of bond dimensions of Mv1 with tensors besides v2 is 2
degv1−w(v1,v2) and

similarly product of bond dimensions of Mv2 with tensors besider v1 is 2degv2−w(v1,v2). The

contraction can be done in time 2degv1−w(v1,v2) · 2w(v1,v2) · 2degv2−w(v1,v2) = 2w(v1,v2,V (G)\{v1,v2})

where w(v1, v2, V (G)\{v1, v2}) is the total weight of edges across the tripartite cut. This

is corresponds to the congestion of the vertex t ∈ V (T ) adjacent to both b(v1) and b(v2).

The output tensor is represented by the contracted vertex v1,2 and the size of the correspond

output tensor Mv1,2 is 2w(v1,v2,V (G)\{v1,v2}) = 2con({t1,t2})

Mv1 Mv2

dL dM dR

Figure 2.10: Tensor network representing the contraction of a (dL, dM ) dimensional tensor
with a (dM , dR) dimensional tensor.

Thus, we see that the congestion of a vertex serves as a metric to approximate the time to

do the contraction. and the congestion of the adjacent edge approximates the space of the
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resulting contracted tensor. The authors also showed that their framework naturally extends

to tensor networks where the underlying graphical structure is a hypergraph i.e. a graph with

edges connecting arbitrary number of vertices.

2.3.3 Hyper optimized tensor network contractions

In [45], Gray and Kourtis developed randomized protocols that find contraction paths for

arbitrary and large scale tensor networks. They used a hyper-optimization algorithm to

enable different contraction strategies for different geometries of tensor networks. Their

experiments showed that their model was able to perform state-of-the-art simulations of

quantum circuits including simulating Sycamore Supremacy experiments with a speedup of

over 10000x compared to Google’s earlier estimate.

The authors start by constructing a tensor network representing the computation needed

to be performed by the quantum circuit. As we have already described in the previous

sections, quantum circuits can be naturally cast as tensor networks and then simulated via

contraction. The simplest scalar quantity that can be represented by the tensor network

is a “transition amplitude” of one computational basis state to another through a unitary

describing the quantum circuit. Computing the transition amplitude is also called strong

simulation. Assuming that the initial state is the N qubit all-zero bit string |0⟩⊗N . The

transition amplitude for any arbitrary output bitstring x can then be written as:

Ax = ⟨x|UdUd−1 · · ·U2U1|0⊗N ⟩ (2.20)

where the circuit has depth d and the unitary Ui is the unitary that describes the linear algebra

operation for the ith layer of the circuit. Figure 2.11 depicts a tensor network representation

of the transition amplitude of the circuit.

They then use the parameterization developed by Gorman [49] and try to find a contraction

order that minimzes edge and vertex congestion over the possible tree embeddings of the
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Figure 2.11: Tensor network representing transition amplitude Ax of a d-depth circuit with
respect to an output bitstring x encoded in computational basis.

network. Although they don’t explicitly use the congestion measures while performing

optimization, they use quantities proxy to them and employ heuristics based on graph

theoretic properties of the network. However, before performing the optimization they use a

series of simplifications based on the tensor network structure and sparsity of tensors. They

perform such simplifications iteratively until no more operations are possible. These

simplifications decrease the complexity of the tensor network priod to invoking full

contraction path finders and can be performed efficiently as a series of local searches.

Thus the process for computing Ax takes the following steps (see Figure 2.12);

(a) Create the tensor network representation of the circuit

(b) Perform structural simplifications of the tensor network

(c) Find the contraction path for this simplified network

(d) Perform the contraction using the found path

Step (a) is very cheap and the path found in step (c) could be reused for computing the

probability amplitude for different bitstrings. To find a contraction path of the simplified

network, they explicitly construct the contraction tree for the tensor network. The generation

of these trees are driven by various state of the art graph manipulation algorithms combining

agglomerative, divisive and optimal strategies. These algorithm are then hyper-optimized with

respect to the total contraction cost such that both the method applied and its parameters are

varied throughout the contraction path search. The framework has been implemented by the
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Figure 2.12: Pipeline for strong simulation of quantum circuits

authors using a python library called quimb. quimb creates the tensor network representation

of the circuit and applies local simplifications after which it conducts search over contraction

order using another python library cotengra. We will be using quimb both as an evalutation

framework and as a baseline throughout this dissertation.

In this dissertation we focus mainly on step (b) of the pipeline, i.e. the structural

simplifications applied to the tensor network, and consider the rest as a black-box. In the

paper [45] Gray and Kourtis come up with some heuristical simplification inspired from the

properties of quantum circuits and notice that local, cheap to apply structural

simplifications are able to make considerable impact on both the size of the tensor network

and the associated contraction costs. Their heuristics often utilize some known properties of

quantum circuits cast as tensor networks to create a more efficient representation with

respect to contraction order search. We aim to enhance such simplifications by using

quantum graphical languages which could potentially exploit the inherent structure of

quantum circuits better using their rich graphical representation. In the subsequent chapter,

we provide a description of the quantum graphical languages examined in this dissertation.
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Chapter 3

Existing work on Quantum

graphical languages

The most widely used formalization of quantum computing is the quantum circuit model, a

diagrammatical language for representing unitary matrices in two dimensional Hilbert space.

The quantum circuit model is used to describe quantum algorithms, quantifying the

resources they use in their experimental implementations(for e.g. by counting the number of

qubits required or the depth of the circuit) and to classify the entangling properties and

expressive power of specific gate families. While preserving the structure of actual hardware

implementation is helpful, the rigid structure and lack of diagrammatic transforms imposes

restrictions on reasoning about quantum systems.

Quantum graphical languages have been developed to allow a more flexible formalism for

reasoning about quantum systems. These languages relax the unitarity condition and allow

all linear maps to be represented by their generators and associated relations. The

ZX-calculus is one such graphical language, that was introduced in [32, 33] as a part of the

categorical quantum mechanics program. It relies on the interaction between two

complementary observables and is able to capture many important concepts in quantum
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mechanics intuitively. Another graphical language, called the ZH-calculus was later

introduced to include compact encodings of non-linear classical functions and

hypergraph-states [34]. Quantum languages like the ZX- and ZH-calculus share an

important advantage over the quantum circuit model. Processes and matrices are not

represented merely by diagrams, but by graphs (hence the term graphical language). This

allows for a more modular representation of quantum circuits.

In this chapter, we will describe the generators and fundamental rewrite rules associated with

ZX- and ZH-calculus. The initial sections serve as a summary of the excellent introduction

to ZX- and ZH- calculus given by John Van de Wetering in “ZX-calculus for the working

quantum computer scientist” [50]. We then describe more advanced graph-based simplification

procedures developed for the calculi and conclude by briefly discussing the implementation of

these procedures using the PyZX library [51], an open source library programmed in python

for creating, visualizing and rewriting ZX-diagrams.

3.1 ZX-calculus

In the following section we give a short introduction to ZX-calculus. A more in-depth coverage

of the topic can be found in [50] and [52] . The fundamental building blocks of ZX-diagrams

are spiders and wires. A spider is a restriction on the type of tensors that this graphical

language supports. The first kind of spider is called a Z spider which is represented by a

white (also represented as green) dot with arbitrary number of legs attached. A Z-spider is

defined with respect to the eigenbasis of Pauli Z.

Z-spider: α

..
.

..
. := |0 · · · 0⟩⟨0 · · · 0|+ eiα |1 · · · 1⟩⟨1 · · · 1|
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The variable α denotes an angle as a fraction modulo 2π and the “· · · ” notation is translated

as 0 or arbitrary many wires depending on the number of incoming (wires coming in from

the left) and outgoing wires (wires coming out of the right). In the standard linear map

representation, a Z spider is represented by a matrix of the form

α

..
.

..
.m n := 2n

2m︷ ︸︸ ︷

1 0 . . . 0 0

0 0 . . . 0 0

...
...

. . .
...

...

0 0 . . . 0 0

0 0 . . . 0 eiα

:=

n︷ ︸︸ ︷
|0 · · · 0⟩

m︷ ︸︸ ︷
⟨0 · · · 0|+eiα

n︷ ︸︸ ︷
|1 · · · 1⟩

m︷ ︸︸ ︷
⟨1 · · · 1|

The other fundamental generator is a X-spider denoted by a grey (also represented as red) dot

with arbitrary number of legs attached. A X-spider is defined with respect to the eigenbasis

of Pauli X.

X-spider: α

..
.

..
. := |+ · · ·+⟩⟨+ · · ·+|+ eiα |− · · · −⟩⟨− · · · −|

The linear map representation of X-spider can be constructed by Z-spider’s matrix

representation, with a simple change of basis.

α

..
.

..
.m n :=

 1√
2

1 1

1 −1




⊗n

◦ 2n

2m︷ ︸︸ ︷

1 0 . . . 0 0

0 0 . . . 0 0

...
...

. . .
...

...

0 0 . . . 0 0

0 0 . . . 0 eiα

◦

 1√
2

1 1

1 −1




⊗m

:=

n︷ ︸︸ ︷
|+ · · ·+⟩

m︷ ︸︸ ︷
⟨+ · · ·+|+eiα

n︷ ︸︸ ︷
|− · · · −⟩

m︷ ︸︸ ︷
⟨− · · · −|
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From a tensor network viewpoint, we see that Z and X spiders are just tensor networks with

some additional constraints. Each wire corresponds to a 2-dimensional index and the tensors

are defined as follows:

( α )j1...jni1...im
=


1 if i1 = ... = im = j1 = ... = jn = 0

eiα if i1 = ... = im = j1 = ... = jn = 1

0 otherwise

( α )j1...jni1...im
=

1√
2
·


1 + eiα if

⊕
k ik ⊕

⊕
l jl = 0

1− eiα if
⊕

k ik ⊕
⊕

l jl = 1

where ik, jl range over {0, 1} and ⊕ is addition modulo 2 (i.e. XOR).

Some common ZX-diagrams and their linear map representations are given below.

A 1-input, 1-output Z-spider with a phase α corresponds to the RZ(α) phase gate (ref. 3) as

shown below:

α = |0⟩⟨0|+ eiα |1⟩⟨1| =

1 0

0 0

 +

0 0

0 eiα

 =

1 0

0 eiα

 (3.1)

Similarly a 1-input, 1-output X-spider with a phase α corresponds to the RX(α) phase gate

(ref. 3) as shown below:

α = |+⟩⟨+|+eiα |−⟩⟨−| =
1

2

1 1

1 1

 +
1

2
eiα

 1 −1

−1 1

 =
1

2

1 + eiα 1− eiα

1− eiα 1 + eiα


(3.2)

For both the above diagrams, we can choose the phase α = π which gives us the familiar Pauli
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Z and Pauli X matrices respectively (ref. 1).

π = |0⟩⟨0| − |1⟩⟨1| =

1 0

0 −1

 = Pauli Z (3.3)

π = |+⟩⟨+| − |−⟩⟨−| =

 0 1

1 0

 = Pauli X (3.4)

We can also represent the Pauli Z and Pauli X basis states (upto a scalar) using spiders:

= |+⟩+ |−⟩ =
√
2 |0⟩ = |0⟩+ |1⟩ =

√
2 |+⟩ (3.5)

π = |+⟩ − |−⟩ =
√
2 |1⟩ π = |0⟩ − |1⟩ =

√
2 |−⟩ (3.6)

Spiders without any labelled phases are assumed to have a phase α = 0.

..
.

..
. = |0 · · · 0⟩⟨0 · · · 0|+ |1 · · · 1⟩⟨1 · · · 1|

..
.

..
. = |+ · · ·+⟩⟨+ · · ·+|+ |− · · · −⟩⟨− · · · −|

which implies that an identity map in ZX is represented as follows:

= = =

1 0

0 1

 (3.7)

ZX-diagrams have compositions similar to tensor networks where each wire connecting two

tensors corresponds to a contraction. We defined the following two compositions for ZX-

diagrams D1, D2:

Spatial composition D1 ⊗ D2: Putting the diagrams on top of each other corresponds
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to taking the kronecker product of the respective linear maps

As an example let us consider the following diagram:

=



1 0

0 0

0 0

0 1


(3.8)

Suppose we wish to spatially compose this diagram with the identity wire. The way we

do this is by calculating the kronecker product:

=



1 0

0 0

0 0

0 1


⊗

1 0

0 1

 =



1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1



Sequential composition D1 · D2: Placing D1 side by side D2 and connecting the

outputs of D1 to the inputs of D2. This is only possible if the number of outputs of D1

is equal to the number of inputs of D2 and corresponds to matrix multiplication.

To see this in action, let us first consider a similar diagram to 3.8, but using the X
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spider, and its spatial composition with identity:

=

1 0

0 1

 ⊗ 1√
2

1 0 0 1

0 1 1 0

 =
1√
2



1 0 0 1 0 0 0 0

0 1 1 0 0 0 0 0

0 0 0 0 1 0 0 1

0 0 0 0 0 1 1 0



Now, if we want to sequentially compose this diagram with the previously constructed

diagram, we can do this by horizontally stacking the diagrams:

◦ = (3.9)

ZX-diagrams are invariant under spatial isotopy. This means that if one diagram can

be deformed into another, then they are equal. By straightening the wires in the above

diagram, we get a more canonical representaiton of the CNOT gate which resembles the

CNOT gate in conventional circuit notation.

= (3.10)

Considering the linear map representation, horizontal composition of diagrams
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corresponds to matrix multiplication:

1√
2



1 0 0 1 0 0 0 0

0 1 1 0 0 0 0 0

0 0 0 0 1 0 0 1

0 0 0 0 0 1 1 0





1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1



=
1√
2



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



which is indeed the matrix of a CNOT gate upto a scalar factor (ref. 2.14).

ZX-diagrams also posess some useful symmetries. For instance, the spiders are symmetric

tensors which means that they are invariant under swapping of wires:

α

..
.

..
. α

..
.

..
.= α

..
.

..
.=

α

..
.

..
. α

..
.

..
.= α

..
.

..
.=

(3.11)

The calculus also admits the familiar cup and cap tensors

=



1

0

0

1


=

(
1 0 0 1

)
(3.12)

which give rise to the yanking equations of the calculus:

= = (3.13)
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This enables a fundamental property in ZX-diagrams, often termed as as only connectivity

matters, which means it is neither important in which order the spiders are arranged nor how

the wires are formed as long as the order of inputs and outputs of a diagram is preserved.

The following ZX-diagrams illustrate this property:

=

π

π
2

π
4

-π
2π

π

π
2

π
4

-π
2

π
=

π

π
2

π
4

-π
2

π

(3.14)

Because only connectivity matters, all the three diagrams in the above equation represent the

same linear map. In general we can decompose every unitary operation on multiple qubits into

a combination of CNOTs and single qubit unitary operations. Since we are able to represent

CNOT and arbitrary single qubit phase gates with Z and X spiders, Z and X spiders are

the universal building blocks for quantum computation and all quantum operations can be

constructed using these two spiders.

Although ZX-diagrams are just tensor networks, the additional contraints on the type of

tensors and the wires connecting them give rise to associated rewrite rules that allow

transformations on ZX-diagrams. The rules are sound, which means if two diagrams can be

transformed into each other, then their linear map representation is equal. Below we list a

succint description of the ZX-calculus rules set:

Spider fusion The most fundamental rule in ZX-calculus deals with the fusion of spiders.

This rule allows us to merge connected spiders of the same color into a single spider with

the phases summing up (module 2π). Taken the other way, this rule also enables splitting

a spider into any nunmber of spiders of the same color with the phases summing up to the
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original phase.

β

..
.

..
.

α

..
.

..
.

=..
.

..
.

..
.α+β

β

..
.

..
.

α

..
.

..
.

=..
.

..
.

..
.α+β (sf)

Identity rule An empty spider with two connected wires equals an identity.

= = (id)

Moreover, two hadamards in a row cancel each other

= (hh)

These rules are also familiar in conventional quantum computing where two hadamards cancel

each other and a rotation around an axis by zero has no effect on the corresponding qubit.

Hadamard rule The hadamard rule allows us to swap colors of any spider by adding

hadamards on all the input and output legs of the spider. This essentially amounts to changing

from one basis to the other and was used in the definition of X spider in the begining of this

section.

..
. = ..
.

..
.α α ..
. (h)

π rule π rule, as the name suggests deals with π phase gates and their interaction with

spiders. In general, a π phase gate copies through a spider of opposite color and negates the

phase of the spider.

−α=

π

π α ..
.

..
.

π

(π)
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copy rule The copy rule is similar to π rule but ends up killing the original spider

..
.α =..
. (c)

Bi-algebra rule The last major rule of ZX-calculus is the bialgebra rule which deals with

the interaction of opposite color spiders.

= (ba)

3.2 ZH-calculus

ZH-calculus is a related graphical calculus to ZX, but was developed with the motivation of

natively representing hypergraph states [34]. The fundamental generators of ZH-calculus are

Z spiders and H boxes.

An H-box is defined as follows

a nm ..
.

..
.

:=
∑

ai1...imj1...jn |j1 . . . jn⟩ ⟨i1 . . . im| (3.15)

The sum in this equation is over all i1, . . . , im, j1, . . . , jn ∈ {0, 1} and a is an arbitrary complex

number. An H-box in its tensor network representation is denoted as follows

( a )j1...jni1...im
=


eiα if i1 = ... = im = j1 = ... = jn = 1

1 otherwise

Hence, an H-box represents a matrix with all entries equal to 1, except the bottom right

element, which is equal to a. Some examples of H-boxes with their linear map representation
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are as follows:

a =

1 1 1 1

1 1 1 a

 , a =



1 1

1 1

1 1

1 a


, a =

1 1

1 a

 . (3.16)

We see that when a = −1, the 1-input 1-output H-box becomes a Hadamard upto some scalar

factor.

=
1√
2
−1 (3.17)

We will follow the convention of unlabelled H-boxes are assumed to have label -1. Thus, the

H-boxes serve as a generalization of hadamards for arbitrary number of input and output

wires. Now that we have the basic definitions in place, we can move on to stating the rewrite

rules of this calculus. First, note the following relation between an H-box and Z spider.

eiα = α (3.18)

Taking α = 0 and α = π, we get the following useful rules

1 = = π (3.19)

We now present the phase-free rewrite rules of ZH calculus.

H-box fusion rule We have seen in the previous section that two hadamards next to each

other cancel. This further extends to H-boxes leading to the H-box fusion rule stated as

follows:

a..
.

a =..
.

..
.

..
.

(zhf)
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ZH-Bialgebra rule The bialgebra rule in ZX-calculus has a following presentation in ZH:

=··
·

··
·

nm ··
·

··
·

nm (zhba)

Additional phase-free rules The final rules complete the phase-free rules for ZH-calculus:

= π =
π

π
(zhpf)

It is interesting to note that these rules are complete for Hadamard-Toffoli fragment of ZH-

calculus [53]. This implied that any two circuits only consisting of Hadamards and Toffolis

can be reasoned about completely using the stated rules. As Hadamard+Toffoli circuits are

approximately universal [54,55], we can use the rules stated above to do arbitrary calculations

for a approximately universal model of quantum computation.

The second set of rules for ZH-calculus deal with labelled H-boxes and their phases.

Multiply rule The multiply rule enables fusing of phases when a set of H-boxes are

connected to the same set of Z-spiders. The multiply rule and its generalization to arbitrary

arity H-boxes are stated as follows:

b

a
= ab

a

b
= ab..

.

..
.

(zhm)

Average rule The average rule is another rule which deals with the phases of H-boxes. It

is stated as follows:
a

b
= a+b

2
π (zha)
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Introduction rule The introduction allows the introduction of additional edges to an H-

box at the cost of copying the H-box.

a

a
=

π

a (zhi)

Ortho rule The final rule for ZH-calculus is called the ortho rule. It is stated with the help

of a NOT spider defined as:

¬ := 1
2

The rule is stated as follows:

=¬2 ¬ (zho)

3.3 Graph-based simplifications

As we have seen in the previous sections, ZX-/ZH-calculi come equipped with a set of

rewrite rules that help reason about quantum circuits and their properties using a

lower-level graphical language. In addition to the rewrite rules, recent works have found

developing graph-based simplification procedures on top of the rewrite rules to be very

effective at optimising quantum circuits [35, 36]. One can use such procedures to create an

equivalent tensor network representation of a quantum computation task but with fewer

tensors (spiders) and fewer indices (legs). Thus graphical calculus could enable us to

produce a compressed tensor network representation by applying cheap transformations to

the graphical structure.

In this chapter, we review some of the existing graph-based transformations and the

resulting simplification procedures in the literature which have been applied to simplify

ZX-/ZH-diagrams.
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3.3.1 Graph-based ZX-simplifications

This section provides a condensed overview of the ideas presented in [35, 36]. The core of

most ZX-calculus based simplification strategies are two rules named local complementation

and pivoting. These rules are rooted in graph theory and apply when the diagrams are in

a special normal form called graph-like. We begin this section by presenting this normal

form’s definition and then describe the graph-theoretic rewrite rules along with their ZX

counterparts.

Definition 3.3.1. (Graph-like diagrams) We call a diagram to be graph-like when

• Every spider is a Z-spider

• Every spider is connected only via Hadamard edges

• There are no parallel edges or self-loops.

• Every input and output is connected to a spider and every spider is connected to at

most one input or output.

Every ZX-diagram can be efficiently converted to a graph-like diagrams using the rules from

section 3.1. A special instance of graph-like diagrams called graph-states are those that are

in this normal form but with additional constraints.

Definition 3.3.2. (Graph-states) A graph-like diagram is called a graph-state if

• All spiders must be phaseless.

• There are no inputs

• Every spider is connected to a unique output

We can see that the spider unfusion rule can convert any subgraph of graph-like diagram to

a graph state. Graph states have a nice property that two graph states are equal up to a

unitary clifford (ref. 2.2.1) matrix if and only if the underlying graphs can be transformed
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into one another using a series of graphical transformation steps called local complementation.

Thus, we can create an equivalent linear map representaiton of graph states using local-

complementation and some phase manipulation according to the unitary clifford matrix. We

will now describe the transformations briefly.

Local complementation Let G be the underlying graph and u be a vertex in G. The

local complementation of G about u, G ⋆ u is defined as a transformation where the vertices

remain the same but the edges in the neighbourhood of u are toggled. An edge between the

neighbours of u is added if it does not exist and removed if it does.

G

a b

dc

G ⋆ a

a b

dc

(G ⋆ a) ⋆ b

a b

dc

Pivoting Pivoting in another transformation for the graph which occurs about an edge

(u, v) ∈ E and is defined as three successive local complementation steps on alternating

vertices u and v i.e. G ∧ uv = G ⋆ u ⋆ v ⋆ u = G ⋆ v ⋆ u ⋆ v. Pivoting can be understood by

separating the rest of the vertices into three sets:

• NG(u) ∩NG(v) i.e. one where all vertices are connected to both u and v,

• NG(u)\(NG(v) ∩ {v}) i.e. one where all vertices are connected to only u and

• NG(v)\(NG(u) ∩ {u}) i.e. one where all vertices are connected to only v.

In a pivoted graph G ∧ uv, all vertices between those sets are connected which were not

connected in G. Any connections within a set is not modified.

G
A

B C

vu

G ∧ uv A

B C

v u
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Local complementation and Pivoting in ZX

Local complementation and pivoting enable us to apply some very interesting transformations

to ZX-diagrams. Consider a ZX-diagram D which is a graph state. We can transform D into

D’ such that G(D′) = G(D) ⋆u by applying X−π/2 on the spider corresponding to u and Zπ/2

on spiders in the neighbourhood of u:

−π
2

π
2

π
2

π
2

N(u)

u
=... ...

(3.20)

The derivation of this tranformation was given in [56]. We can apply this rule to any spider in

a graph-like diagram since we can always pull the phases out of the spiders via the unfusion

rule. Moreover, for spiders with phase ±π/2 we can apply the rule to remove the spider u

completely:
±π

2
α1 αn

...... ... = ...
α1∓ π

2

...
αn∓ π

2

α2

...

αn−1

...
α2∓ π

2

...
αn−1∓ π

2

...

... (3.21)

Similarly, a pivot G(D′) = G(D) ∧ uv can be introduced by applying Hadamard gates on u

and v and Zπ gates on N(u) ∩N(v) [57] :

...
...

...

...

u v

=

...

u v
π π

... ...

... (3.22)

In case of pivoting, we can remove two adjacent spiders with a phase of 0 or π.

jπ
α1

=
αn

β1

βn

γ1

γn

kπ

..
.

..
.

..
.

αn + kπ

βn + (j + k + 1)π

..
.

β1 + (j + k + 1)π

γ1 + jπα1 + kπ

..
.

..
.

γn + jπ

...

...

...

...

...

...

...

... ...

...

...

...
(3.23)

45



Clifford simplification algorithm

We have seen the Clifford group and Clifford gates in section 2.2.2 (ref. 2.2.1). An important

property about spiders is that the spider types representing the Clifford subset of quantum

gates are exactly all spiders with phase kπ/2 for an integer k. Thus we see that these two

transformation relating to the graph theoretic notions of local complementation and pivoting

can be used to elimiate Clifford spiders from our ZX-diagrams in turn simplifying them. The

following simplification algorithm can be used for eliminating Clifford spiders in ZX-diagrams:

1. Tranform the diagram into a graph-like diagram.

2. Apply identity and fusion rules to maintain graph-like diagram.

3. Apply local-complementation on every spider of phase ±π/2 and pivoting on every

pairs of spider having 0 or π phase as long as possible.

4. Terminate if step 3 didn’t modify the diagram else go to step 2.

This simplification procedure leads to a ZX-diagram that contains no interior spiders with

phase ±π/2 and the only interior Clifford spiders left are spiders with phase 0 or π which are

either adjacent to boundary or to non-Clifford spiders.

Additional simplifications

Although these algorithms already simplify the diagrams drastically, there are some more

strategies that we can apply in addition to the procedure laid above. We now discuss pivot

boundary simplification, which can help further reduce interior Clifford spiders with phase of

0 or π, and phase gadget simplification, which aims to reduce non-Clifford spiders.

Pivot boundary simplification We described how pivoting can be applied on two

connected interior spiders with a phase equal to 0 or π. We can also use pivoting to remove

an internal Pauli spider that is adjacent to a boundary spider with arbitrary phase. We first

use identity rules to replace the non-Hadamard wire with an empty spider surrounded by
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two hadamard wires:

jπ kπ

· · · · · ·

jπ kπ

· · · · · ·

= (3.24)

This transforms the original boundary spider into an interior spider where a pivot rule

application is possible.

jπ α

· · · · · ·

jπ

· · · · · ·

= α (3.25)

Phase Gadget simplification If we have a spider with 0/π phase conntected only to

non-clifford spiders, like as shown here:

jπ

· · · · · ·

α (3.26)

we can use phase gadget simplifications combined with pivoting to simplify the diagram. First

we modify one of these spiders as follows to make the originally non-clifford spider, a spider

with phase 0 connected to a phase gadget with the original phase α:

jπ

· · · · · ·

α

=

jπ

· · · · · ·

α

(3.27)

Now we can perform pivoting/pivot boundary simplification based on the internal spider’s

location and simplify our diagram. For the case when the non-Clifford spider is internal, we
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can apply the following rule:

jπ
α1

=
αn

β1

βn

γ1

γn

α

..
.

..
.

..
.

αn

βn + (j + 1)π

..
.

β1 + (j + 1)π

γ1 + jπα1

..
.

..
.

γn + jπ

...

...

...

...

...

...

...

... ...

...

...

...

(−1)jα

(3.28)

and correspondingly when the non-Clifford spider is a boundary spider, we apply the following

transformation:

jπ
α1

=
αn

β1

βn

γ1

γn

α

..
.

..
.

..
.

αn

βn + (j + 1)π

..
.

β1 + (j + 1)π

γ1 + jπα1

..
.

..
.

γn + jπ

...

...

...

...

...

...

...

... ...

...

...

...

(−1)jα

jπ

(3.29)

Morevoer, phase gadgets have some additional simplifications associated with them. When

a phase gadget is connected to exactly one other spider, its phase can be combined with the

phase on that spider via (ID). This is essentially an application of the rules (i1) and (i2).

βα ...
= α + β ... (3.30)

When two phase gadgets are connected to exactly the same set of spiders, they can be fused
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into one via the gadget-fusion rule (GF).

α1

αn

β

α

...

· · ·

· · ·

α1

αn

...

· · ·

· · ·

α + β= (3.31)

3.3.2 Graph-based ZH-simplifications

In this section, we will summarize the notation and the simplification procedures for ZH-

diagrams laid out in [58]. We begin by describing a new class of ZH-diagrams that generalizes

the definition of graph-like ZX-diagrams from [36].

Definition 3.3.3. (Hypergraph-like diagrams) We call a diagram to be hypergraph-like when

• Every spider is a Z-spider

• Every input and output is connected to a spider and H-boxes don’t have any direct

connection to inputs/outputs.

• Every wire except the input and output wire connects a z spider and a H-box.

• There are no parallel edges between H-box and Z-spider.

• No H-boxes are connected to the same set of Z-spiders.

The underlying hypergraph of a hypergraph-like ZH-diagram is a simple graph iff all H-

boxes have arity 2. Such diagrams are graph-like as defined in [36]. Every ZH-diagram can

be efficiently reduced to a hypergraph-like ZH-diagram representing the same linear map as

shown in [58].

Hypergraph-like diagrams are often represented with the help of exponentiated H-boxes which
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are represented as double bordered boxes annoted with the phase of the H-box:

. . .

α
. . .

:=

. . .

eiα

. . .
(3.32)

We can use the exponentiated H-boxes to pull phases out of a Z-spider as follows:

α :=
. . .

. . .

. . .

. . .
α (3.33)

We also introduce the notation of a !-box. A !-box, drawn as a blue square around a piece of

a ZH-diagram, represents a part of the diagram that may be replicated an arbitrary number

of times, and hence allows one to express a whole family of diagrams at once:

←→

{
, , , , . . .

}

Hyper-local complementation

As shown in the previous section, by using equation 3.21 a Z-spider labelled by a phase of ±π
2

can be deleted from a ZX-diagram without changing the linear map, by performing a local

complementation about the vertex.

Translating the rule to a ZH-friendly notation we obtain:

π
2

..
.

...

..
. =

-π2

...

..
.

-π2

-π2

..
.

-π2

..
.

..
.

...

√
2ei

π
4 (3.34)

As this rule is already proven in ZX-calculus, by completeness, it is also valid in ZH-calculus.

We extend this rule to hyper-local complementation by using a bang-box on each of the Z-
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spiders at the boundary:

π
2

..
.

...

..
. =

-π2

...

..
.

-π2

-π2

..
.

-π2

..
.

..
.

...

√
2ei

π
4 (3.35)

Fourier Hyper pivot

As we saw in the previous section, local complementation complements the connectivity of

the neighbours of a vertex. On the other hand, a pivot along an edge complements between

three groups of vertices: those connected to both the neighbors and those connected to one

but not the other. The following pivoting rule holds in the ZH-calculus for any n,m ∈ N.

=
n m n m

2 (3.36)

We can see that this corresponds to a pivot followed by vertex deletions as every vertex

(spider) connected to the pivoted vertex on the left becomes connected via a 2-ary H-box to

every neighbour of the right pivoted vertex. We also present a slight generalization of the

above rule by allowing each H-box to have arbitrary arity.

=
n m n m

2 (3.37)

Similar to how a pivot is implemented by a combination of three local complementations, the

hyperpivot rule can be implemented by three applications of hyperlocal complementations.

We can go even further and allow arbitrary phase on the H-boxes. But before that, we

construct disconnect boxes from [59].

1 0= = 1
2 (3.38)
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The following equation holds for any set of real numbers α1, α2, · · ·αm

=αk (−2)|b|−1αkbi

n k ∈ [m] i ∈ [n]
b ∈ Bn

∗

k ∈ [m]

2

(3.39)

We can also use the RHP rule to create a more compact ruleset for ZH-calculus as rules (ba)

(zhba) and (zhf) can be proved using Fourier hyperpivot with (sf) and (hh).

3.4 PyZX Implementation

This section gives an overview of the simplification strategies present in the PyZX library

[51]. PyZX is a Python library designed to enable graphical calculus based simplifications to

quantum circuits. At its core, PyZX implements two basic classes: Circuits for representing

quantum circuits and graphs for representing ZX-/ZH-diagrams.

Simplification procedures

There are a number of simplification procedures implemented in PyZX using the rewrite rules

and simplification algorithms we have discussed so far. Each procedure works by first

calculating all suitable non-intersecting sets of spiders where a rule application is possible,

called matches and then applying the rule on the found matches by using a rule application

method. For example, the procedure lcomp simp consists of the method match lcomp which

finds all spiders with phase ±π/2 and the method lcomp (ref. 3.21) which receives a list of

the spiders and applies the local complementation rule on all of them. All the available

simplification procedures can be grouped into the following terminating algorithms:

• interior clifford simp: This function implements the algorithm laid out in 3.3.1. It

begins by converting the given diagram into a graph-like diagram, then applies id simp

(ref. id), spider simp (ref. sf), pivot simp (ref. 3.23), lcomp simp (ref. 3.21) in a loop

until no more rule application is possible.
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• clifford simp: This function adds pivot boundary simplification (ref. 3.25),

implemented as a phase gadget, to interior clifford simp. Each subroutine is

applied in a loop until no more changes occur.

• zx simp (full reduce): This algorithm additionally applies phase gadget

simplifications (ref. 3.28,3.29) to clifford simp and is the most powerful

simplification algorithm in PyZX for ZX-diagrams. This function is implemented as

full reduce in PyZX but we will refer to it as zx simp in this dissertation for clarity.

• zh simp: This function combines ZH-simplification routines with zx simp but with a

change in the order of application of rules. It applies simpler rules like spider simp,

hspider simp (ref. zhf), id simp, par hbox simp (ref. zhm) before applying more

complicated routines like pivot simp (ref. 3.23) and lcomp simp (ref. 3.21). Lastly,

the function applies hpivot simp (ref. 3.37) along with par hbox simp and moves to the

next iteration. All the rules are then again applied in a loop until no more application

is possible.
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Chapter 4

Enhancing Quantum Circuit

Simulation

This chapter provides a description of our proposed strategies for quantum circuit

simulation by enhancing tensor network contractions. We follow the approach used by Gray

and Kourtis [45] where they use tensor network contractions to perform strong simulation.

We try to improve the contraction procedure using graphical-calculi-based simplification

procedures introduced in earlier chapters. Our first step is to describe our chosen

representation of tensor networks, making it possible to efficiently convert between ZX/ZH

diagrams and a more general representation of tensor networks. Then we outline the

modified circuit simulation pipeline to enable the use of graphical-calculi-based

simplifications. We present the results of using existing graphical-calculi-based simplification

procedures and compare that against the original results. We restrict our analysis in this

chapter to Sycamore supremacy circuits and deal with more circuit classes in the following

chapter. To motivate better simplification procedures, we discuss the issues encountered

while applying already existing strategies in the pipeline. We then present our framework to

circumvent these issues by developing a heuristic measure to help guide the application of

simplification subroutines to our diagrams. This chapter concludes with a discussion of the
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results obtained after evaluating the proposed strategies.

4.1 Hypergraph-like Tensor Networks

We will now describe how we can represent a ZX/ZH diagram as a tensor network. To

begin, let’s start with an example of a two tensor contraction. Consider a rank-3 tensor Tabe

contracting with another rank-3 tensor Scde to give a rank-4 tensor Uabcd. The tensor network

representation of this contraction is as follows:

Uabcd =
∑
e

TabeScde =

T

S

a

b

e

d

c

(4.1)

Now, let’s consider a similar ZX diagram with a Z-spider inplace of the T tensor and an

X-spider inplace of the S tensor.

a

b

e

d

c

α

β

(4.2)

We can treat indices a, b as the input to the Z spider and index e as its output. Similarly,

indices c, d can be considered as output for the X spider with index e being the input. To

represent this diagram as a tensor network contraction, we begin by recalling the tensor

network representation of generators Z and X.

Zj1...jn
i1...im

(α) = ( α )j1...jni1...im
=


1 if i1 = ... = im = j1 = ... = jn = 0

eiα if i1 = ... = im = j1 = ... = jn = 1

0 otherwise
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Xj1...jn
i1...im

(α) = ( α )j1...jni1...im
=

1√
2
·


1 + eiα if

⊕
k ik ⊕

⊕
l jl = 0

1− eiα if
⊕

k ik ⊕
⊕

l jl = 1

Thus, the tensor network contraction represented by the ZX diagram equals:

Uabcd =
∑
e

Zab
e (α)Xcd

e (β) =

a

b

e

d

c

α

β

(4.3)

Now let’s consider the tensor network representation of a ZH-diagram. As an example, we take

the same diagram in (4.2) and apply the color change rule to get an equivalent ZH diagram.

α

β

(4.4)

This diagram has hadamard edges between any two internal spiders and a simple edge

connecting spiders to inputs/outputs. To convert this into a tensor network we first take the

phases out of the Z spiders using 1-ary phase H-boxes. Then, we let every hadamard edge

stay as it is, but place a kronecker-box (represented by a dashed box) at every simple edge.

We get the following diagram:

eiα

eiβ (4.5)

So now we have a diagram with phase-free Z spiders and H-boxes. Every edge now either
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contains an H-box or a kronecker-box. The tensor network representation of H-box and

kronecker box is as follows

Hj1...jn
i1...im

(eiα) =
(
eiα

)j1...jn

i1...im
=


eiα if i1 = ... = im = j1 = ... = jn = 1

1 otherwise

δj1...jni1...im
=

( )j1...jn

i1...im
=


1 if i1 = ... = im = j1 = ... = jn

0 otherwise

So to convert the diagram into a tensor network, we consider each H-box/Kronecker-box as a

tensor and each Z-spider as an index. We can do this because a phaseless Z spider is essentially

a copy-tensor that is not zero iff all of its indices are equal. Thus, in addition to labelling the

inputs and outputs, we also label the Z-spiders with indices. We can represent this as follows:

eiα

eiβ
a

p

b

d

cq

(4.6)

and the corresponding contraction is:

Uabcd =
∑
pq

δapδ
b
pHp(e

iα)Hp
q (e

iπ)Hq(e
iβ)Hc

q(e
iπ)Hd

q (e
iπ) (4.7)

=

eiα

eiβ
a

p

b

d

cq

(4.8)

We can use the above transformations to also convert graph-like and hypergraph-like diagrams

into their corresponding tensor network representation. As hypergraph-like diagrams subsume
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graph-like diagrams, we will present a scheme to convert hypergraph-like diagrams into tensor

networks:

1. Start with a hypergraph-like diagram.

2. Pull phases out of every z-spider using 1-ary phase H-boxes.

3. Place Kronecker-boxes at every simple edge.

4. Convert every z-spider into a hyperindex and

5. Convert every H-box/Kronecker-box into a tensor.

We call the graph so obtained a Hypergraph-like Tensor Network.

To further motivate the scheme, we present two of the local simplifications used in [45]. We

show that there exists simplifications corresponding to the local simplifications using basic

graphical-calculi-based rewrites.

Diagonal Reduction For a k-dimensional tensor, ti1,i2···ik , with indices i1, i2 · · · ik, if for

any pair{ix, iy}

ti1,i2···ik = 0 ∀ ix ̸= iy (4.9)

then the tensor is considered diagonal in the indices ix and iy. This enables us to replace

the tensor t with a k − 1 dimensional tensor t̃ such that t̃···ix = t···ixiyδ
ix
iy
. We implement this

in the tensor network by re-indexing iy as ix. This leads to ix becoming a hyperedge in the

tensor network.

t
...

...
· · ·

...
...

· · ·
t̃

ix iy
ix

(4.10)

In case of hypergraph-like diagrams, the corresponding transformation can be achieved using

simple rewrite rules of ZH calculus. Consider a tensor M which is diagonal in its two indices
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a and b. This means that we can place a z-spider connecting the indices a, b and the now

transformed tensor M’.

...
...

· · ·

eiα eiβ

M
a b

Σa,b
...

...

eiα eiβ

a b

· · ·
M’

Σa,b (4.11)

The z-spider can now fuse with indices a, b using spider fusion and the phase of the H-boxes

connected to indices add up because of the multiply rule zhm.

...
...

· · ·
M’

eiα eiβ

...
...

· · ·
M’

ei(α+β)

c c
Σc Σc

...
...

eiα eiβ

a b

· · ·
M’

Σa,b (4.12)

This essentially leaves us with the tensor M’ being connected to other tensors with a

hyperindex c just as in the case before.

Column Reduction For a k-dimensional tensor, ti1,i2···ik , if there exists an index ix and a

column c such that

ti1,i2···ik = 0 ∀ ix ̸= c (4.13)

then the tensor is considered column in ix and we can replace the tensor t with a k − 1

dimensional tensor t̃ such that t̃ = t[ix=c]. This can be implemented in the tensor network as

...
...

· · ·
t

ix ...
...

· · ·
t̃

(4.14)

Now for a hypergraph-like tensor network, if we have a tensor M such that its column in
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a hyperindex, we can sum over all possible values of the corresponding wire. This leads to

creation of an effect tensor (corresponding to the value the tensor is column in), which copies

through the z-spider representing the hyperindex as follows:

...
...

· · ·
M

...
...

· · ·
M

...
...

· · ·
M

(4.15)

4.2 Evaluation Framework

In this section, we will present our framework of using ZX/ZH calculi and their associated

simplification rules to enhance the efficiency of tensor network contractions. We will concern

ourselves with the task of strong simulation i.e. computing the transition amplitude (ref.

section 2.3.3) of quantum circuits in this dissertation. We will extend the framework developed

by Gray and Kourtis [45] and use it to compute the transition amplitude of a circuit. In this

chapter, we will evaluate our strategies on Sycamore supremacy circuits.

Circuit ZX/ZH diagram
Hypergraph-like

Probability

Tensor NetworkZX/ZH diagram
Simplified

λ
Graphical-calculi-based

simplifications

quimb

cotengra
+

Amplitude

Figure 4.1: Modified pipeline for strong simulation of quantum circuits

We begin by creating a ZX diagram out of the circuit and applying the corresponding state

and effect to create the transition amplitude of the circuit. The fSIM gates used in Sycamore

circuits can be represented in ZX notation using phase gadgets. To this end, we first consider

the decompositon of fSim gates as shown below:
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fSim(θ, ϕ) = e−iθ(X⊗X)/2e−iθ(Y⊗Y )/2e−iϕ/4eiϕ(Z⊗I+I⊗Z)/4e−iϕZ⊗Z/4 (4.16)

which leads to the following diagrammatic circuit:

fSim(θ, ϕ) = e−iϕ/4

θ θ

−ϕ/2

−ϕ/2

−ϕ/2

−π/2

−π/2

π/2

π/2

(4.17)

Moreover, similar to the experiments in [44] we will set θ to be π/2 for our experiments.

This enables an iSWAP gate decomposition for the gate and was also used in [45] to simplify

the circuit. All the results reported for quimb in this dissertation assume an iSWAP gate

decomposition as well. Rest of the gates can easily be converted into the corresponding

ZX-diagram following the transformations detailed in 3.1. Then we apply graphical-calculi-

based simplifications to the diagram to simplify it. Finally we convert the diagram into a

Hypergraph-like tensor network representation. This representation is then fed into quimb

which applies local structural simplifications to reduce the complexity of the network. After

this, the we use cotengra to perform a search of contraction tree for the particular tensor

network which returns the found path and the corresponding time and memory requirements

to perform the contraction. It uses congestion metrics of the tree embedding of contraction

orders described in section 2.3.2 to estimate the time and memory requirements. We will

compare different strategies using these estimates.

4.3 Basic Strategies

Table 4.1 summarizes the number of tensors and indices in the tensor network created for

different sizes of Sycamore circuits. We restrict our attention to m = 10 cycles in this

dissertation. In the table we compare the
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Standard Tensor Network Hypergraph-like Tensor Network
cycles (#T , #I) (#T , #I)

4 887 , 972 5403 , 3211

6 1251 , 1379 7947 , 4698

8 1615 , 1786 10499 , 6189

10 1979 , 2193 13035 , 7672

Table 4.1: Summary of the number of tensors (#T) and the number of indices (#I) in the
Tensor Networks representing varying cycle depths of Sycamore circuits.

We see that initially, the Hypergraph-like Tensor Network representation has a lot more

tensors and indices than the standard representation. This is possibly because the generators

of ZX/ZH calculi are very small tensors whereas standard representation allows any gate to

be represented using it’s own tensor representation.

We now compare the performance of the existing strategies in PyZX (see. 3.4) in simplifying

the tensor network against quimb. Table 4.2 compares the number of tensors and indices

remaining in the tensor network after applying zx simp and zh simp to quimb’s contraction

pipeline. We also summarize the FLOP counts of contractions for graphical-calculi-based

strategies against quimb in Table 4.3.

quimb zx simp zh simp

cycles (#T , #I) (#T , #I) (#T , #I)

4 99 , 66 76 , 55 76 , 55

6 217 , 145 137 , 108 136 , 107

8 357 , 238 241 , 176 241 , 176

10 475 , 317 329 , 236 329 , 236

Table 4.2: Number of tensors (#T) and the number of indices (#I) in the Tensor Network
produced after applying existing simplifications.

cycles quimb zx simp zh simp

4 1.86E+04 2.42E+04 2.40E+04

6 9.78E+04 1.37E+05 1.37E+05

8 7.99E+08 8.15E+08 7.14E+08

10 1.07E+10 1.50E+10 1.54E+10

Table 4.3: Comparison of estimated FLOP counts of contraction for strategies.

We see that although the final tensor network we derive after performing zx simp/zh simp
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are almost equivalent to the one we get after quimb, in terms of number of tensors and indices,

there is a considerable difference in the FLOP counts for contraction. This is perhaps due to

the fact that even though we started with a considerable large tensor network when starting

with the ZX/ZH diagram based representation, we ended up with a tensor network almost

the same size as derived using just quimb. This means that the tensor network simplified

using zx simp/zh simp might be too dense to find good contraction paths.

4.3.1 Heuristic measure

To analyze how good a graph-like/hypergraph-like diagram is with respect to contraction,

we would ideally want to compute contraction complexity of the underlying tensor network

after each rule application in the algorithm. As this is too expensive, we propose a heuristic

measure that is a proxy for the contraction complexity of the simplified tensor networks. As

described, the proxy must be cheap to compute so that there is not a significant overhead for

the simplification procedure but also should be accurate enough to help find good contraction

paths. As we saw in section 2.3.2, vertex congestion of contraction trees serve as a good

parameterization for contraction complexity. However, because congestion is defined as a

global property over all possible contraction trees, it is not feasible to use every step of

the simplification procedure. Thus, instead of computing the congestion over all possible

vertices in the contraction tree, we will compute the average congestion of only the leaves

of the contraction tree. We know that all the H-boxes in our hypergraph-like representation

correspond to tensors in the tensor network which in turn corresponds to the leaves of the

contraction tree. The congestion of a vertex of the contraction tree is the sum of weights

of edges in the original tensor network routed through it. Because our tensor network is

a hypergraph-like diagram, the weight of all edges is equal, and because we restrict our

attention to the leaves of the contraction tree, the number of edges routed through an H-box

is equal to the number of its next nearest neighbors. Using theorem 2.3.3 we know that

the contraction complexity scales exponentially with vertex congestion and linearly with the

number of tensors. To keep a similar dependence, we multiply the natural logarithm of the
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number of H-boxes by the congestion of H-boxes defined above to get our proxy to contraction

complexity.

4.4 Advanced strategies

Using the proposed heuristic measures, we wish to develop better simplification strategies for

generating efficiently contractible tensor networks. Two recent master theses [60, 61] used

classical optimization strategies to guide application of graphical simplification procedures

for quantum circuit optimisation. Although they observed promising results, they found the

search space to be restrictive due to the domain being the set of circuit-extractible diagrams.

As we don’t have the restriction of extracting circuits from our simplified diagrams, we hope

to develop better optimization strategies. We now present some strategies using our heuristic

measure as a guide for determining good tensor network candidates for contraction.

4.4.1 Greedy strategies

As described in section 3.4, existing strategies like zx simp and zh simp apply simplifications

until no more rules are applicable. Each such step is often assured with strictly the number

of interior z-spiders from the graph-like/hypergraph-like diagrams. However, it’s impact on

the number of tensors and therefore the contraction complexity is not straightforward. As

a first proposal, we modify the existing algorithms to keep track of the heuristic measure

after every rule application. If we find a diagram that has a better value with respect to

the heuristic measure than the previous one, we store it else we continue. This way, we

find the graph having the lowest value of the heuristic measure generated anytime in the

simplification procedure. We propose greedy versions of the base algorithms zx simp and

zh simp called greedy zx simp and greedy zh simp. We modify the zh simp algorithm

before transforming it into a greedy algorithm. We observed empirically that applying the

hyperpivot rule in batches and then simplifying the resulting graph using parallel H-box

simplification routine led to a better reduction in contraction complexity than applying the

pair of rules one-by-one. We then proceed similarly to the greedy zx simp algorithm by
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keeping track of the heuristic measure at each step and returning the best graph generated

during the simplification procedure. A summary of the sizes of the tensor network is presented

in Table 4.4 and the FLOP counts for contraction are presented in Table 4.5.

greedy zx simp greedy zh simp

cycles (#T , #I) (#T , #I)

4 38 , 40 38 , 38

6 105 , 108 98 , 100

8 183 , 186 187 , 183

10 249 , 248 243 , 241

Table 4.4: Number of tensors (#T) and the number of indices (#I) in the Tensor Network
produced after applying greedy-algorithms-based simplification.

cycles greedy zx simp greedy zh simp

4 1.77E+04 1.83E+04

6 8.78E+04 8.89E+04

8 4.29E+08 4.46E+08

10 1.52E+10 1.00E+10

Table 4.5: Comparison of estimated FLOP counts of contraction for greedy-algorithms-based
strategies.

4.4.2 Simulated annealing

Simulated annealing is a metaheuristic to approximate global optimization in a large search

space for an optimization problem. Simulated annealing takes inspiration from annealing

transaction of metals where the potential energy of the mass is minimized as the metal cools

gradually after being subjected to high heat. We frame our search as a minimization problem

where the objective function f(gi) is our heuristic measure and the input set {g1, g2, · · · , gn}

denotes the search space of diagrams generated via our strategy. If f(gi+1) < f(gi), then gi+1

is selected as the new candidate. Otherwise, it is selected with probability exp(−{f(gi+1) −

f(gi)}/T ) where T is the current temperature observed during a cooling schedule. We use

this stochastic search algorithm to find the best candidate graph for contraction.

For the ZX-based strategy, we begin by splitting the basezx simp algorithm into subroutines

where each subroutine applies a single rule for one iteration. For example we use

lcomp iter which applies local complementation on only one match instead of lcomp simp.
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This increases the search space and also encourages mixing of rule applications. Using proxy

as the objective function, we search for the best candidate graphs for contractions. Similar

to the ZX-based strategy, to create a greedy version of the zh simp algorithm, we split it

into multiple subroutines, each applying a single rule for simplification of the graph. We

however, club hyperpivot rule along with the parallel H-box simplification routine as that

led to better results. Table 4.6 and 4.7 summarize the sizes of the tensor network and the

FLOP counts for contraction after applying the strategies respectively.

sim anneal zx simp sim anneal zh simp

cycles (#T , #I) (#T , #I)

4 54 , 46 38 , 38

6 105 , 108 98 , 100

8 183 , 186 187 , 183

10 249 , 248 243 , 241

Table 4.6: Number of tensors (#T) and the number of indices (#I) in the Tensor Network
produced after applying simulated-annealing-based simplification.

cycles sim anneal zx simp sim anneal zh simp

4 1.79E+04 1.94E+04

6 8.75E+04 8.93E+04

8 6.94E+08 4.41E+08

10 1.15E+10 1.03E+10

Table 4.7: Comparison of estimated FLOP counts of contraction for simulated-annealing-
based strategies.

4.4.3 Genetic algorithms

A Genetic Algorithm is another metaheuristic inspired by natural selection and classified as

an evolutionary algorithm. In a genetic algorithm, the candidate solutions can be thought

of as chromosomes. The objective to maximize (correspondigly minimize) is specified via

the fitness function and the search space is the set of candidate solutions. The algorithm is

initialized with a random population of candidate solutions. After evaluating each candidate

(chromosome) using the fitness function, the algorithm selects the best ones (survival of the

fittest) to generate new candidates (off-springs) through the genetic operation called crossover.

The algorithm then iterates through the entire process until the desired optimal solution is
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achieved. For our algorithm, we chose hypergraph-like diagrams to be the chromosomes and

our proxy to be the fitness function. Each simplification procedure applied on the hypergraph-

like diagram is treated as a crossover step giving rise to new candidates.

Similar to simulated annealing algorithms, we split each simplification procedure of zx simp

into their respective iterative versions and use each such subroutine as a method for crossover.

For the case of ZH simplifications, all simplifications subroutines in zh simp were split into

their iterative versions to be used as individual methods for crossover. Additionally, we club

fourier hyperpivot with parallel H-box simplification into one crossover step. Table 4.8 and

4.9 summarize the sizes of the tensor network and the FLOP counts for contraction after

applying the strategies respectively.

genetic zx simp genetic zh simp

cycles (#T , #I) (#T , #I)

4 38 , 40 38 , 38

6 127 , 113 98 , 100

8 183 , 186 187 , 183

10 249 , 248 243 , 241

Table 4.8: Number of tensors (#T) and the number of indices (#I) in the Tensor Network
produced after applying genetic-algorithms-based simplification.

cycles genetic zx simp genetic zh simp

4 1.83E+04 1.70E+04

6 1.03E+05 8.94E+04

8 7.20E+08 3.67E+08

10 1.23E+10 9.52E+10

Table 4.9: Comparison of estimated FLOP counts of contraction for genetic-algorithms-based
strategies.

Discussion

We compare the estimated FLOP counts of contraction for the proposed strategies with the

existing ones in Table 4.10. First, we note that the time for contraction scales exponentially

with the depth of the circuit for all the strategies. All the new strategies proposed, outperform

the baselines strategies zx simp and zh simp for the given task and most of them are also
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strategy\cycles 4 6 8 10

quimb 1.86E+04 9.78E+04 7.99E+08 1.07E+10

zx simp 2.42E+04 1.37E+05 8.15E+08 1.50E+10

zh simp 2.40E+04 1.37E+05 7.14E+08 1.54E+10

greedy zx simp 1.77E+04 8.78E+04 4.29E+08 1.52E+10

greedy zh simp 1.83E+04 8.89E+04 4.46E+08 1.00E+10

sim anneal zx simp 1.79E+04 8.75E+04 6.94E+08 1.15E+10

sim anneal zh simp 1.94E+04 8.93E+04 4.41E+08 1.03E+10

genetic zx simp 1.83E+04 1.03E+05 7.20E+08 1.23E+10

genetic zh simp 1.70E+04 8.94E+04 3.67E+08 9.52E+09

Table 4.10: Comparison of estimated FLOP counts of contraction for all strategies. Strategies
having FLOP counts higher than or equal to the baseline strategy quimb are highlighted in
light grey while the strategy having the lowest estimated FLOP counts is highlighted in bold.

able to outperform the baseline tensor network contraction library quimb. Among the new

strategies, genetic algorithm-based strategies performed exceptionally well,giving the best

overall results when used with ZH-simplifications. This alludes to the observation that order

of application of graphical-calculi-based simplifications can have significant impact on the

contraction complexity of the resultant tensor network. This also speaks to the importance

of using a well motivated heuristic measure for guiding the strategies. Congestion inspired

heuristic measures perform well for the experiments performed and could give way to more

carefull designed measures in future works. For the range of depths we have shown above,

ZX-based strategies perform better for small depths, while ZH-based strategies have better

scaling and perform better for larger depth circuits. We believe this is because ZH based

simplification procedures have been carefully designed to deal with hypergraphs natively.

Hypergraphs enable a more efficient search over contraction orders for example in the case of

recursive hypergraph bipartitioning based algorithms by allowing more freedom in the search

of graph-cuts [45]. Due to computational constraints, we limited our experiments to m = 10

cycles so it will be interesting to evaluate our strategies on bigger instances of the problem

and analyze if the same relative scaling holds between the strategies.
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Chapter 5

Evaluation

This chapter presents the results of evaluating our algorithms against existing ones on more

classes of randomly generated circuits. We begin by describing the construction of different

families of randomly generated circuits. We then outline the experimental setup we followed

to evaluate the algorithms and present the results of testing our strategies on different

circuit classes. We compare the performance of different algorithms, after which the chapter

concludes with a discussion on the trends we observe.

5.1 Circuit Construction

To gain an understanding of the performance of our proposed algorithms on more general

circuits, we chose to evaluate them on families of randomly generated circuits where we can

control the number of gates, the number of qubits and the type of gates more granularly. To

this end, we considered two classes of circuits described as follows :

• IQP

• Cliffords+T

We now briefly describe the construction of each of these classes of circuits
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5.1.1 IQP

In addition to the Sycamore supremacy circuits, there have been several proposals for

intermediate quantum computing models, which could be used to demonstrate quantum

supremacy [42, 62, 63]. A prominent model among these, known as Instantaneous Quantum

Polynomial-time (IQP) circuits, is a class of commuting quantum circuits which have been

shown to be hard to simulate classically, assuming certain complexity-theoretic

conjectures [64]. Circuits in this class are constructed by placing arbitrary diagonal gates

between a column of Hadamard. An IQP unitary on n qubits can be written in the following

form:

UIQP = H⊗nDH⊗n (5.1)

where D is an arbitrary Z diagonal unitary with a polynomial number of gates. We construct

the diagonal unitary by placing a column of powers of T gate followed by a sequence of powers

of n2−n
2 many CS (controlled-S) gates. We considered IQP circuits with varying qubit counts

ranging from n = 8 to n = 20.

5.1.2 Cliffords+T

Quantum gates are usually distinguished into two classes of primitive gates: Clifford gates and

non-Clifford gates. Circuits consisting only of Clifford gates can be efficiently simulated [65]

but doesn not represent a universal gate set. Achieving universality requires atleast one

non-Clifford gate such as the T gate (see 2). Simulating Cliffords+T circuits often scales

exponentially in the number of T gates present in the circuit [35, 66, 67]. Therefore we chose

to evalue Cliffords+T circuits with varying T-counts. We used two subclasses of Cliffords+T

circuits defined as follows:

• CNOT HAD PHASE : These circuits are constructed by using randomly placed CNOTs,

Hadamard gates and T gates.

• cliffordT : These circuits consist of randomly placed CNOTs, HSH and S gates
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comprising the Clifford fragment of the circuit along with randomly placed T gates.

We considered two size instance of Cliffords+T circuits, one smaller instance with 4 qubits

and 256 gates and the other larger instance with 8 qubits with 512 gates. For each of these

circuits, we vary the T-count by varying the probability of each gate being a T gate. We

consider circuits with each gate being a T gate with probabilities 10%, 20%, 30% and 40%.

5.2 Experimental Setup

We begin by taking the transition amplitude of the given circuit and representing it as a ZX

diagram. Then based on the algorithm applied it is either converted into a graph-like or a

hypergraph-like diagram. The strategy we wish to evaluate is then applied to the diagram

and we transform the simplified diagram into its Hypergraph-like Tensor Network as detailed

in section 4.1. We give this representation into the library quimb, which applies further local

simplifications and uses the library cotengra to perform a search over possible contraction

orders. The estimated contraction costs of the best contraction order found is returned which

we use to evaluate our algorithms. We perform each such experiment 5 times and average the

contraction costs to get a better understanding of general behaviour of each algorithm.

5.3 Results and Discussion

We now discuss the results we obtained by estimating the contraction costs of different

strategies on the previously mentioned classes of circuits.

5.3.1 IQP

Figure 5.1 summarizes the estimated contraction costs of different strategies with varying

sizes of Random IQP circuits. Each subplot compares the ZX-based strategy against the

corresponding ZH-based strategy and the baseline’s i.e. quimb’s performance is included in

all the subplots for reference.
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Figure 5.1: Estimated contraction costs of different strategies for IQP circuits plotted on log
scale with increasing qubit counts.

We observe that the cost of contraction scales exponentially with the number of qubits for

all the strategies.On comparing quimb against existing graphical calculi based strategies

zx simp and zh simp, we see that the existing strategies are outperfromed by quimb. This is

similar to our observation with Sycamore circuits where the existing graphical-calculi-based

strategies led to dense tensor networks which in turn affected the contraction costs. We note

that our proposed strategies, which use heuristic measures to guide application of

simplification procedures, perform better than the existing ones and have costs comparable

to the baseline. Greedy strategies show no clear difference between ZX-based strategies and

ZH-based strategies. For simulated annealing based algorithms however, we not that

ZH-based strategies perform better for smaller circuits while ZX-based strategies perform

better for larger circuits and an opposite trend can be observed for genetic-algorithm based

strategies. Overall, we observe that genetic-algorithm based strategies perform the best and

have similar scaling as compared to the baseline quimb.

5.3.2 Cliffords+T

CNOT HAD PHASE

Figure 5.2 and 5.3 summarize the estimated contraction costs of different strategies with

varying circuit parameters.
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Figure 5.2: Estimated contraction costs of different strategies for CNOT HAD PHASE circuits on
4 qubits and 256 gates plotted against increasing T-gate probability.

For the smaller 4 qubit 256 gatecount circuit, we first observe that the baseline algorithm

quimb has a decrease in contraction costs with increasing T count. This is possibly because

increasing the T count leads to decrease in the CNOT counts which in turn makes the circuits

less dense. As quimb is concerned with the geometry of the tensor networks, and mostly

agnostic to the values of the tensors inside, it is expected to find better contraction orders

with sparser tensor networks. Moving to the comparison of quimb against existing graphical

calculi based strategies zx simp and zh simp, we do not observe a clear advantage. While

zx simp performs well for smaller T-counts, it’s advantage over quimb in the case of larger

T-count circuits is not clear. For zh simp we see that is also performs well from smaller

T-count circuits but does worse as the T-count goes up. Among the proposed strategies, we

observe that almost all perform better than the baseline. In most cases, ZX-based strategies

seem to outperform ZH-based strategies. For higher T count i.e. with circuits having T-gate

probability ≥ 30%, we see that the performance of proposed strategies is close to baseline.

This alludes to the fact that graphical calculi based strategies perform best when the circuits

are mostly Clifford as there is more applicability of simplifications for cliffords.

We now move to the larger 8 qubit 512 gatecount circuits where we see a similar trend of

improvement in the estimated contraction costs for quimb with increasing T-count. The

baseline strategies zx simp and zh simp perform poorly for these large circuits whereas the
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Figure 5.3: Estimated contraction costs of different strategies for CNOT HAD PHASE circuits on
8 qubits and 512 gates plotted against increasing T-gate probability.

newly proposed strategies seem to mostly beat the baseline. While ZX-based strategies

performed better for smaller circuits, we observe that ZH-based strategies perform better for

larger circuits. We also note that the contraction costs for all the proposed strategies

decrease with an increase in T-count and similar to the previous case, circuits having T-gate

probability ≥ 30% have contraction costs very close to baseline.

cliffordT

Figure 5.4 and 5.5 summarize the estimated contraction costs of different strategies with

varying circuit parameters.
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Figure 5.4: Estimated contraction costs of different strategies for clifford T circuits on 4
qubits and 256 gates plotted against increasing T-gate probability.
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Figure 5.5: Estimated contraction costs of different strategies for clifford T circuits on 8
qubits and 512 gates plotted against increasing T-gate probability.

Similar to CNOT HAD PHASE circuits, we see that the contraction costs for quimb decreases

with increase in T-count of the circuits. For the smaller circuits, we again observe that the

performance of zx simp and zh simp is similar to quimb. Most of the proposed strategies

perform better than the baseline and in general ZX-based strategies perform better than

ZH-based strategies. For larger circuits, existing graphical-calculi-based strategies perform

much worse while the proposed strategies are still mostly better than the baseline. For greedy

strategies and simulated annealing based strategies, ZX-based strategies still perform better

while ZH-based subroutines are better for genetic algorithms based strategy.
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Chapter 6

Conclusion and Future Work

In this dissertation, we investigated the use of quantum graphical calculi in enhancing

tensor-network-based quantum circuit simulations. We proposed a framework for using

graphical simplifications to simplify quantum circuits before feeding them into a

tensor-network contraction pipeline. We evaluated existing graphical simplification

procedures in our framework and found that they often resulted in dense tensor networks

and thus adversely affected the complexity of simulations. To help guide simplification

procedures, we proposed a heuristic measure to estimate contraction costs of underlying

graphical representations. We also proposed three new graphical simplification strategies

based on the heuristic measure and evaluated them against existing strategies.

To evaluate our framework, we considered the Sycamore supremacy circuits used to

demonstrate quantum supremacy by Google in 2019. We set the tensor network contraction

framework without any graphical-calculi-based simplifications as the baseline and compared

its performance against the pipeline enhanced with existing and the newly proposed

graphical-calculi-based strategies. On Sycamore circuits, we found that the proposed

strategies perform much better than existing strategies in reducing the contraction

complexity of tensor networks. Moreover, we found at least one proposed strategy to
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outperform the baseline for all the considered circuit depths. We also observed that

ZX-based strategies performed better for smaller circuit instances, but ZH-based strategies

performed much better as the circuit depths grew.

In addition to Sycamore circuits, we evaluated our strategies on Random IQP circuits and

two classes of random Cliffords+T circuits. For Random IQP circuits, we observed similar

behavior to Sycamore circuits, with the proposed strategies outperforming the existing

strategies. The proposed strategies beat the baseline often but were very close. A similar

trend was observed concerning comparing ZX- and ZH-based strategies, with ZX-based

strategies performing better for smaller circuit instances and ZH-based strategies performing

better for larger circuit instances. For Random Cliffords+T circuits, we considered fixed

circuit sizes but varying T-counts. Existing graphical-calculi-based strategies performed

similarly to the baseline for smaller circuit instances but performed much worse for the

larger circuits. The proposed strategies consistently outperformed the baseline, but their

advantage over the baseline decreased with increasing T-counts. This was in accordance

with the fact that graphical-calculi-based strategies can find a lot more simplifications when

the circuits are mostly Clifford and show a decrease in their advantage over the baseline as

the T-counts increase.

Although we observed that our proposed strategies often beat the baseline and the existing

strategies, we were limited by computational resources and could only benchmark a limited

set of circuits. For example we benchmarked Sycamore circuits up to a cycle depth of 10 but

the proposed depth for an experiment demonstrating quantum supremacy was 20. It would

thus be interesting to benchmark bigger circuits and analyze the performance of the proposed

strategies in future work. It will also be useful to evaluate our strategies on more circuit

classes and check if the observations we made still hold for other classes and bigger instances

of the same circuit class.

Our framework used the same heuristic measure for all the strategies and, therefore, might not

be able to make a fair comparison across different strategies. It would be interesting to develop
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strategy-specific heuristic measures and draw comparisons between strategies. Also, because

we observed that genetic-algorithms-based strategies performed the best overall, evaluating

more evolutionary-search-based strategies is a promising research direction.

In this dissertation, we limited our scope to performing structural simplifications on tensor

networks using graphical calculus. An extension to our framework could be analyzing how

to improve the contraction pathfinders using graphical calculi. An idea worth exploring is to

use the graphical-calculi-based representation of quantum circuits to guide hypergraph

partitioning of the tensor network, an algorithm that can often find the most efficient

contraction orders.
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