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Abstract

Quantum circuits require careful and in-depth optimisation to be run on exist-

ing quantum computers. This project investigates the application of the Product

Rotation Lemma, introduced by Will Simmons in [32], as a tool for general cir-

cuit optimisation. These optimisations exploit the initial state information to

identify redundancies in the circuit. This project delves into the lemma’s applic-

ations for the Clifford-Pauli-Exponential form and its synthesis alongside the

practical applications of this theory. The main contributions from this project

are (1) the Pauli DAG Merging Theorem and its surrounding theory that gives

simple necessary, and sufficient conditions for applying the Product Rotation

Lemma in a strictly beneficial way and (2) providing results strongly indicating

the feasibility of the techniques presented here as tools to be used in generic

compilation procedures. This report provides proof of the novel theory com-

ing out of this project, alongside a design and implementation of an end-to-end

QASM-to-QASM compiler using staq as the base [3]. This compiler is very ef-

ficient on large circuits and provides CX count, and depth reductions of up to

42% after existing methods are applied.
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Chapter 1

Introduction

Quantum computing is a topic that has been explored extensively in recent years

to create a tool to allow us to compute answers not efficiently possible through

classical computation. The quantum circuit model for quantum computation is

the most well-known and widely used model and acts as a direct analogue to

traditional circuits. However, instead of classical bits of 0 or 1, we have qubits

that can represent superpositions of such values. Instead of classical gates such

as ∨ and ∧, quantum gates such as rotations and controlled-NOT (CNOT) gates

are used. A subset of these gates, namely the Clifford set, is known to be ef-

ficiently classically simulable from the Gottesman-Knill theorem [14], a crucial

fact for some optimisation procedures.

After creating a circuit, a quantum computer can efficiently apply the gates and

measurements to some initial quantum unit called a state. The results of the

computation are the outcomes of the measurements performed. One method for

creating a quantum computer is via superconductivity appearing at low tem-

peratures. However, superconducting qubits have a short lifetime, and quantum

gates have a chance to produce the wrong result. These issues are solvable
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through Fault-Tolerant Quantum Computing but require far more qubits than

available [18, 31, 34]. These conditions place us in the Noisy Intermediate-Scale

Quantum (NISQ) era, where we cannot avoid these errors or “noise” during our

computation. Having to permit noise is where quantum compilation comes into

play, transforming some higher-level abstraction of a circuit to an optimised set

of gates for a specific quantum computer to apply. The compiler’s optimisations

aim to reduce both the gate count and the depth of the circuit as computable

proxies for reducing noise during computation.

One of the most common applications of quantum computing in the NISQ era

is to compute the ground state energy of a Hamiltonian [27]. This computation

is a fundamental problem in quantum chemistry and condensed matter physics.

Quantum computers solve this problem by the Trotterization of the Hamilto-

nian and application of a Variational Quantum Eigensolver (VQE) [15]. For this

context, we work with circuits consisting of Pauli exponentials and some Clif-

ford component, a natural representation for circuits obtained from Trotterized

Hamiltonians. Current compilation strategies for these circuits take the initial set

of Pauli exponentials, use stabilisers to taper off qubits, choose some ordering

for the Pauli exponentials, and finally synthesise the Pauli exponentials into a

circuit [8, 25]. Commonly, this synthesis uses techniques like diagonalisation and

phase polynomial synthesis, discussed in further detail throughout the project.

Outside of the context of VQE circuits, stabiliser reduction has not seen much use

as a technique. However, it turns out that we can efficiently convert any quantum

circuit into the same Pauli Exponential and Clifford component form [37]. In this

form, we cannot freely change Pauli exponential’s order without changing the

circuit’s meaning, so we must adapt this method to work in our new context.

Introduced in [32] by Will Simmons, the Product Rotation Lemma provides the

rules we need. This lemma assumes knowledge of the initial state and uses
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stabilisers of this state to alter the Pauli exponentials. This lemma has not yet

been studied for usage as a tool for general optimisation, so we seek to answer

this question by testing the limits of this technique by applying it exhaustively

to a given circuit. By choosing the exhaustive approach to this problem, we can

provide insights into whether this technique is worth pursuing and offer tooling

to assist with future work.

1.1 Summary of the Project

This project investigates the power of the Product Rotation Lemma as a general-

purpose feature in current compilation toolchains. To do this, the theory around

applying the Product Rotation Lemma to circuits split into Pauli exponentials

with a Clifford component was first thoroughly investigated. This investigation

led to a new rule dubbed the Pauli DAG Merging Theorem, providing an ef-

ficient check for applying the Product Rotation Lemma to combine two Pauli

exponentials. Under a set of assumptions, we further show that the Pauli DAG

Merging Theorem is a sound and complete rule for merging using the Product

Rotation Lemma. The theory around applying the Product Rotation Lemma to

reduce the complexity of the resulting circuits was also explored, with promising

results applicable to heuristics.

These findings allowed the creation of an efficient end-to-end compiler using an

existing toolkit in staq as a base [3]. This compiler can exhaustively perform

merges using the Pauli DAG Merging Theorem and uses heuristics to apply the

Product Rotation Lemma to improve the final circuit. We further show how this

method applies to Clifford circuits, a technique used by the compiler to improve

the final circuit. Alongside new techniques, the compiler also includes a series
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of existing procedures to complete the compilation pipeline and offer a realistic

look into how useful this tool is in practice. We benchmark this compiler and

show that the techniques give significant improvements for specific classes of

circuits. The compiler also runs within very reasonable time frames, allowing

for use in real-world systems.

1.2 Structure of the Report

This report details the project’s results, beginning with preliminary notation and

background in Chapter 2. In this section, we detail existing knowledge, with

no novel work being presented. Then, Chapter 3 builds on the background to

provide a plethora of new theoretical results, including the Pauli DAG Merging

Theorem. Next, the design and implementation of the full compiler are given

in Chapter 4 and Chapter 5 respectively. Comprehensive benchmarking data

is then presented and analysed in Chapter 6. Finally, Chapter 7 wraps up the

report and provides avenues for future work to extend this project.

8



Chapter 2

Background

Before the main content of this report, the following chapter contains some back-

ground for the project to frame it in the current research. As part of this, basic

definitions, preliminary proofs, and examples will be given to assist with the

understanding of the later chapters. First, we shall introduce quantum com-

putation in more detail; next, we give context on Pauli exponentials, Cliffords,

and the Clifford-Pauli-Exponential form; before finally looking in more depth at

current research in this area and the impact this work could have.

2.1 Quantum Computation

Quantum computation is a new and expanding technique to take advantage

of quantum effects such as entanglement to achieve more efficient computation

than is currently possible by regular, classical computers.
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2.1.1 Classical and Quantum Bits

Quantum bits, or qubits, are the primary resource that makes quantum com-

putation possible. Compared to the bits we find in computers, referred to as

classical bits or just bits, qubits do not restrict themselves to existing in strictly

either 0 or 1, but instead can be placed into what is called a superposition of the

two. They are neither 0 nor 1 but rather exist simultaneously as a coherent com-

bination of both. More concretely, in quantum computation, we represent 0 and

1 as the quantum basis states |0⟩ and |1⟩. A quantum state represents the current

state that the system exists in. For pure quantum states, we can write them as a

linear combination of our two basis states.

Definition 2.1 (Pure Quantum State). A pure quantum state |ψ⟩ = α|0⟩ + β|1⟩

where α, β ∈ C and |α|2 + |β|2 = 1.

Alongside pure states, we also have mixed quantum states which are probab-

ilistic mixtures of any other quantum state. In other words, a mixed state has

a probability distribution over pure states. The Bloch sphere represents all the

states in which a single qubit can be; see Figure 2.1. The points on the surface

of the sphere are the pure states, and those inside are mixed states. As seen on

the sphere, there are three primary axes about which the sphere is rotated, X, Y,

and Z. The sphere’s north pole is usually allocated to |0⟩, while the south pole

of the sphere is allocated to |1⟩.

To gain information about a quantum state, we perform a measurement with re-

spect to the Z-basis. When measuring a quantum state, we non-deterministically

measure one of the |0⟩ or |1⟩ states. The probability with which we observe |0⟩

or |1⟩ as the measurement outcome is defined as the proximity to each state on

the Bloch sphere. As a result, any quantum state appearing on the equatorial
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Z

X Y

|0⟩

|1⟩

Figure 2.1: The Bloch sphere whose surface represents pure single-qubit
quantum states

slice will cause |0⟩ and |1⟩ to be observed with a probability 0.5. More precisely,

the probabilities obey the Born rule [23]. We do not use measurements or mixed

quantum states for the remainder of this report, so no further context is given.

When referring to a quantum state, it will be assumed to be a pure state.

A single qubit alone is not very interesting, so we can also consider a combina-

tion of qubits that exist in parallel. When writing the states for these qubits, we

can write them as |0⟩ ⊗ |0⟩. However, this notation is quite heavy, so for basis

states, we often abbreviate this to |0, 0⟩ or just |00⟩.

2.1.2 Quantum Gates

Once we have a quantum state, we need a way to transform that state. To do

this, we introduce quantum gates. These gates can be applied to a single qubit or

multiple qubits to evolve the represented state. The three main quantum gates

are the Z-Rotation RZ (θ), Hadamard H, and Controlled-NOT CX gates.

The H gate is a single qubit gate that converts Z-basis states to X-basis states

and vice versa. This gate effectively swaps the Bloch sphere’s X and Z axes.

This swap means that applying an H gate just before an RZ (θ) gate followed
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by a H gate causes the application of the rotation to the X axis. This behaviour

results from the Z axis being the X axis during the rotation since it is performed

after the swap. Since the H gate is self-inverse, performing this gate sequence is

equivalent to basis transformation by conjugation.

H

The RZ (θ) gate is a single qubit gate that rotates the Z axis of the Bloch sphere

by θ radians. Note that this leaves |0⟩ and |1⟩ where they are but will cause a

rotation for every other quantum state.

RZ (θ)

The CX gate applies to two qubits; one is the target, and the other is the control.

Assuming both qubits are Z-basis states, a CX gate results in a NOT gate being

applied to the target qubit if the control qubit is in the |1⟩ state. This behaviour

is not very interesting over basis states, but over more complex quantum states,

this gate enables the phenomenon known as entanglement. Entanglement occurs

when two qubits are part of a single quantum state such that the state cannot be

written as the parallel composition of individual single qubit states.

⊕

Like states, these gates can similarly be composed in parallel using ⊗. We can

also specify which qubits of the state to which we wish to apply the gate, equi-

valent to parallel composing with the identity gate. For single qubit gates, we

set the qubit as Hi to apply to the ith qubit. For multiple qubit gates like the
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RZ3 (π)CX1,3CX3,2H1 = ⊕

⊕

H

RZ (π)

Figure 2.2: An example quantum circuit

CX gate, we write CXi,j to apply the control to qubit i and the target to qubit j.

Indexing on gates will always occur from 1. As shown in Figure 2.2, we write

the composition of gates such that the first gate applied appears at the end of

the sequence, a notation commonly used for quantum circuits. The set of gates

RZ (θ), Hadamard H, and Controlled-NOT CX are sufficient to describe any

quantum computation [23]. I.e., they are a universal gate set for quantum com-

putation. As a result, these will be the main gates considered for the remainder

of this report.

2.1.3 Quantum Circuits as Linear Maps

Conveniently, we can model qubit-based quantum circuits as linear maps over

C2. We begin by defining the Z-basis states |0⟩ and |1⟩ where a natural choice is

as follows.

Definition 2.2 (Z-Basis Vectors).

|0⟩ =
[

1
0

]
|1⟩ =

[
0
1

]

We can also define the X-basis states as a combination of |0⟩ and |1⟩. By con-

vention, these are denoted |+⟩ and |−⟩.
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Definition 2.3 (X-Basis Vectors).

|+⟩ = 1√
2
(|0⟩+ |1⟩) = 1√

2

[
1
1

]
|−⟩ = 1√

2
(|0⟩ − |1⟩) = 1√

2

[
1
−1

]

We can now define the Hadamard gate (the H gate). Recalling that it trans-

forms between the Z- and X- bases, it is clear that the definition should be the

following.

Definition 2.4 (H Gate).

H =
1√
2

[
1 1
1 −1

]

We also define the Z-Rotation gate (the RZ (θ) gate) in matrix form as follows.

Definition 2.5 (RZ (θ) Gate).

RZ (θ) =

[
e−i θ

2 0
0 ei θ

2

]

Finally, we can define the CX gate over two qubits. For simplicity, we will

assume the CX gate is applied to adjacent qubits of the state. This assumption

is not required in practice.

Definition 2.6 (CX Gate).

CX =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



Finally, we must define our gates’ and states’ sequential and parallel composi-

tion within linear maps. We can apply a quantum gate to a state by multiplying
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the state by the gate through regular matrix multiplication. This matrix mul-

tiplication is referred to as sequential composition. As matrix multiplication

occurs left to right, we write circuits in this reverse order, as noted previously.

E.g., H|0⟩ rather than |0⟩H. We also need to consider the parallel composition of

states and gates. To do this, we can use the ⊗-product, or tensor product, over

linear maps.

Before moving on, we define the RX (θ), RY (θ) gates and some other commonly

used gates. The RX (θ) and RY (θ) gates perform analogously to the RZ (θ) gate,

performing a rotation of θ radians around the X and Y axes respectively.

Definition 2.7 (RX (θ) Gate).

RX (θ) =

[
cos θ

2 −i sin θ
2

−i sin θ
2 cos θ

2

]

Definition 2.8 (RY (θ) Gate).

RY (θ) =

[
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

]

Some other commonly used gates are as follows.

Definition 2.9 (Common Gates).

S ≈ RZ
(π

2

)
S† ≈ RZ

(
−π

2

)
SX ≈ RX

(π

2

)
SX† ≈ RX

(
−π

2

)
T ≈ RZ

(π

4

)
T† ≈ RZ

(
−π

4

)

In this context, † refers to the conjugate transpose for linear maps over C2. A

helpful property of quantum gates is that they are unitary matrices. In other
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words, we have that U†U = UU† = I for any unitary U and, by extension,

quantum gate. We use ≈ to denote equality up to a global phase. Since all

outputs from a quantum computation come from measurements obeying the

Born rule, all global phases are not observable so they can be ignored [23].

2.2 Pauli Notation

An essential notion for this work is Pauli strings. These are tensor products of

what is referred to as the Pauli matrices: I, Z, X, and Y.

Definition 2.10. The Pauli matrices.

I :=

[
1 0
0 1

]
Z :=

[
1 0
0 −1

]
X :=

[
0 1
1 0

]
Y :=

[
0 −i
i 0

]

The Pauli matrices are all members of the Pauli group P1 acting on a single

qubit. Specifically, they act as generators for the entire group under matrix

multiplication. We have that the Pauli matrices satisfy the following lemmas.

Lemma 1: The Pauli matrices are self-inverse. I.e.,

I I = I ZZ = I XX = I YY = I

Lemma 2: IP = PI = P, for P ∈ {Z, X, Y}. I.e.,

IZ = Z ZI = Z

IX = X XI = X

IY = Y YI = Y
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Lemma 3: Multiplying the non-identity Pauli matrices satisfy the following equa-

tions.

ZX = iY XZ = −iY

XY = iZ YX = −iZ

YZ = iX ZY = −iX

Relating the Pauli matrices to our original gate-set, we have the following lemma.

Lemma 2.1 (Pauli Matrices as Quantum Gates).

Z ≈ RZ (π) X ≈ RX (π) Y ≈ RY (π)

I = RZ (0) I = RX (0) I = RY (0)

These identities are easy to check numerically, so their proofs are omitted.

We combine these Pauli letters via the tensor product to produce full Pauli

strings forming the group Pn, often omitting the tensor product in the nota-

tion in favour of vector notation for brevity. We choose a vector notation here to

differentiate between the sequential and parallel composition of Pauli matrices.

For example, the Pauli string
#               »

IZXYX is given below. In cases where the Pauli

string is sparse, we use the same subscript notation as for gates to omit identity

letters of the string. Often, Pauli strings may need to be negated, i.e., − #               »

IZXYX.

In many cases, this negation is irrelevant or cumbersome to track, so we often
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specify Pauli strings up to a negation.

I ⊗ Z ⊗ X ⊗ Y ⊗ X =

I

Z

X

Y

X

≈
RZ (π)

RX (π)

RY (π)

RX (π)

We can also take the exponential of a given Pauli string
#»

P , written eiθ
#»

P where

θ is a phase. For notational purposes, Pauli exponentials may be denoted by
#»

P (α) = eiθ
#»

P where α = −2θ. A standard result of Pauli strings is the following

lemma.

Lemma 4: Pauli Exponential Expansion

For a Pauli string
#»

P, the following equation holds.

eiθ
#»

P = cos θ I + i sin θ
#»

P

To convert this into a circuit, we first need to convert all letters in the Pauli string

to be Z or I. A Pauli exponential with a Pauli string of this form is referred to as

a diagonal Pauli exponential. We can diagonalise an arbitrary Pauli exponential

using the following lemma.

Lemma 5: Given a Pauli exponential eiθ
#»

P . We can conjugate the qubits containing X

with H gates and Y with SX gates to obtain a diagonal Pauli exponential eiθ
#»

Q .

Proof of Lemma: We proceed inductively over the number of qubits of
#»

P . The

empty string case is trivial, so consider the first Pauli
#»

P = R ⊗
#»

P′ and let C be

a Clifford unitary that diagonalises
#»

P′ by induction. I.e., C† #»

P′C =
# »

Q′ where
# »

Q′

is diagonal. Let C1 be a single qubit Clifford unitary such that C†
1 RC1 ∈ {I, Z}

18



then,

(
C†

1 ⊗ C†
)

eiθ
#»

P (C1 ⊗ C) =
(

C†
1 ⊗ C†

)
eiθ

(
R⊗

#»

P′
)
(C1 ⊗ C)

=
(

C†
1 ⊗ C†

) (
cos θ I + i sin θ

(
R ⊗

#»

P′
))

(C1 ⊗ C)

= cos θ I + i sin θ
(

C†
1 ⊗ C†

) (
R ⊗

#»

P′
)
(C1 ⊗ C)

= cos θ I + i sin θ
(

C†
1 RC1 ⊗ C† #»

P′C
)

= cos θ I + i sin θ
(

C†
1 RC1 ⊗

# »

Q′
)

Since
# »

Q′ is diagonal and C†
1 RC1 ∈ {I, Z}, C†

1 RC1 ⊗
# »

Q′ is diagonal. Therefore,

we conclude that any Pauli exponential can be diagonalised with an appropri-

ate choice of C1. Finally, it is easy to verify numerically that SX† (Y) SX = Z,

H (X) H = Z, I (Z) I = Z, and I (I) I = I. ■

After converting the Pauli string to only contain Z and I, we are left with a

phase polynomial (a sequence of diagonal Pauli exponentials). There is extensive

literature surrounding phase polynomials providing the following synthesis of

a single diagonal Pauli exponential into a circuit [4, 26, 33].

#             »

Z · · · Z (α) ≈ ...

⊕ ⊕
...

...
⊕

⊕ ⊕RZ (α)

⊕

...

This combination allows us to synthesise an arbitrary Pauli exponential where

Ci is defined as in the proof of Lemma 5.
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#»

P (α) ≈ ...

⊕ ⊕
...

...
⊕

⊕ ⊕RZ (α)

⊕

...

C1

C2

Cq−1

Cq

C†
1

C†
2

C†
q−1

C†
q

Pauli strings and Pauli exponentials can also commute with one another. These

rules allow for the reordering of Pauli exponentials within a circuit without

changing the circuit’s meaning.

Lemma 6: Pauli Letter Commutation

Let P, Q ∈ {Z, X, Y}. We have PQ = QP iff P = Q and PQ = −QP otherwise.

Proof of Lemma: This can be seen via inspection of Lemma 2 and Lemma 3.

■

Lemma 7: Pauli String Commutation

Let
#»

P and
#»

Q be Pauli strings.
#»

P
#»

Q =
#»

Q
#»

P iff the number of terms in
#»

P that anti-

commute with their associated term in
#»

Q is even. Otherwise,
#»

P
#»

Q = − #»

Q
#»

P.

Proof of Lemma: Each letter in the Pauli string either commutes or anti-commutes

with the relative Pauli letter in the other Pauli string. For each case of anti-

commutation, a −1 factor is produced by Lemma 6. Combining these gives us
#»

P
#»

Q = (−1)k #»

Q
#»

P where k is the number of anti-commuting pairs. (−1)k = 1 iff

k is even. ■

For Pauli exponential commutation rules, we recall some elementary facts of

matrix exponentiation. If XY = YX then, eXeY = eX+Y. If Y is invertible then

eYXY−1
= YeXY−1.
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Lemma 8: Pauli Exponential Commutation

Let
#»

P and
#»

Q be Pauli strings, and let α and β be phases.
#»

P (α)
#»

Q (β) =
#»

Q (β)
#»

P (α) if
#»

P
#»

Q =
#»

Q
#»

P and
#»

P (α)
#»

Q =
#»

Q
#»

P (α) if
#»

P
#»

Q =
#»

Q
#»

P.

Proof of Lemma: Since
#»

P
#»

Q =
#»

Q
#»

P we get the following.

#»

P (α)
#»

Q (β) = e−i α
2

#»

P e−i β
2

#»

Q

= e(−i α
2

#»

P)+
(
−i β

2
#»

Q
)

= e
(
−i β

2
#»

Q
)
+(−i α

2
#»

P)

= e−i β
2

#»

Qe−i α
2

#»

P

=
#»

Q (β)
#»

P (α)

We also get.

#»

P (α)
#»

Q = e−i α
2

#»

P #»

Q

=
#»

Q
#»

Qe−i α
2

#»

P #»

Q

=
#»

Qe−i α
2

#»

Q
#»

P
#»

Q

=
#»

Qe−i α
2

#»

Q
#»

Q
#»

P

=
#»

Qe−i α
2

#»

P

=
#»

Q
#»

P (α)

■

Lemma 9: Pauli Exponential Fusion

Let
#»

P be a Pauli string and let α and β be phases.
#»

P (α)
#»

P (β) =
#»

P (α + β).

Proof of Lemma: This follows directly from eXeY = eX+Y for commuting X
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and Y.

#»

P (α)
#»

P (β) = e−i α
2

#»

P e−i β
2

#»

P

= e−i α
2

#»

P−i β
2

#»

P

= e−i
(

α+β
2

)
#»

P

=
#»

P (α + β)

■

2.3 Clifford Gates and Stabilisers

An important subset of the universal gate set is the Clifford group. This set is

formally defined as the unitary group that normalises the Pauli group.

Definition 2.11 (The Clifford Group). The Clifford group Cn is defined as follows.

Cn =
{

C|C · Pn · C† = Pn

}

In other words, to check if a gate is in the Clifford group, we need to verify that

conjugating any Pauli string with it corresponds to another Pauli string. The

following generating gates satisfy this property.

Lemma 10: The S, CX, and H gates act as a generating set for all Clifford gates.

This standard result in quantum computing comes from the Gottesman-Knill

theorem [14] and allows us to define a Clifford state.

Definition 2.12 (Clifford State). A state |ψ⟩ is a Clifford state if it can be written as

the composition of |0⟩⊗q and a series of S, CX, and H gates.
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Another important concept is that of a stabiliser. We define stabilisers to act over

states as follows.

Definition 2.13 (Stabilisers). Given a state |ψ⟩, a unitary U is a stabiliser of |ψ⟩ if

U|ψ⟩ = |ψ⟩.

A useful property of stabilisers is that two stabilisers of the same state |ψ⟩ always

commute.

Lemma 11: Given a state |ψ⟩ and unitaries A and B that are stabilisers of |ψ⟩, AB =

BA.

Proof of Lemma: Assume for the sake of contradiction that AB = −BA.

AB = −BA =⇒ AB|ψ⟩ = −BA|ψ⟩

=⇒ A|ψ⟩ = −B|ψ⟩

=⇒ |ψ⟩ = −|ψ⟩

This is a contradiction so AB = BA. ■

Stabilisers allow us to add or remove gates from a state without affecting its

meaning. Starting from a state of |0⟩⊗q, it is easy to verify that Zi is a stabiliser

of this state. Since this is our starting state, we can make the following claim

about Clifford states.

Lemma 12: Pauli strings stabilise Clifford states.

Proof of Lemma: It is easy to verify that |ψ⟩ = |0⟩⊗q is stabilised by Pauli

strings containing only Z and I. We now have the following for any Clifford

unitary C, Pauli string
#»

P such that
#»

P |ψ⟩ = |ψ⟩, and Pauli string
#»

Q such that
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#»

Q = C
#»

PC†.

#»

QC|ψ⟩ = C
#»

PC†C|ψ⟩

= C
#»

P |ψ⟩

= C|ψ⟩

■

Despite many non-Pauli strings stabilising Clifford states, we restrict stabilisers

to Pauli strings for the remainder of this report.

2.4 Clifford-Pauli-Exponential Form

This project aims to investigate the power of the Product Rotation Lemma in the

context of state optimisation. The full Product Rotation Lemma is as follows.

Lemma 13 (Product Rotation Lemma): Let A and B be commuting operators such

that BC = C for some linear map C . Then eiθAC = eiθABC .

The proof of this lemma can be found in [32], but for this context, we only need

to consider a simplification of this lemma.

Lemma 14 (Pauli Product Rotation Lemma): Let
#»

P and
#»

Q be commuting Pauli

strings such that
#»

Q|ψ⟩ = |ψ⟩ for some state |ψ⟩. Letting
#»

R = ± #»

P
#»

Q, then
#»

P (α) |ψ⟩ =
#»

R (±α) |ψ⟩
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Proof of Lemma: Using the expansion of Pauli exponentials, we get the follow-

ing.

#»

P (α) |ψ⟩ = e−i θ
2

#»

P |ψ⟩

=

(
cos

θ

2
I + i sin

θ

2
#»

P
)
|ψ⟩

= cos
θ

2
|ψ⟩+ i sin

θ

2
#»

P |ψ⟩

= cos
θ

2
|ψ⟩+ i sin

θ

2
#»

P
#»

Q|ψ⟩

=

(
cos±θ

2
I + i sin±θ

2
#»

R
)
|ψ⟩

= e∓i θ
2

#»

R |ψ⟩

=
#»

R (±α) |ψ⟩

We require
#»

P and
#»

Q to commute as Lemma 4 requires the exponentiated oper-

ator to be self-inverse. ■

This application of the Product Rotation Lemma requires the stabiliser to be a

Pauli string. We have just seen that this is a property held by Clifford states. As

a result, it is natural to consider circuits containing a Clifford state and a series of

Pauli exponentials that we can manipulate using the Product Rotation Lemma.

We refer to this form as the Clifford-Pauli-Exponential form of a state. We can

omit the state without loss of generality and assume it to be |0⟩⊗q to generalise

the definition to a circuit form defined as follows.

Definition 2.14 (Clifford-Pauli-Exponential Form). A quantum circuit is in Clifford-

Pauli-Exponential form if it consists of a series of Clifford gates, followed by a series of

Pauli exponentials. More formally, there exists a Clifford unitary C and Pauli exponen-

tials
#»

P1 (α1) , . . . ,
#»

Pk (αk) such that the circuit is P1 (α1) · · ·
#»

Pk (αk)C. Or equivalently,
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C
#»

P1(α1)
...

# »

Pn(αn)

· · ·

· · ·

...

Initially, most circuits are not of this form, so we need some conversion method.

For simplicity, we assume that the gates in the given circuit are either Z-Rotations

(i.e., RZ (±θ) gates), Hadamards (i.e., H gates), or CNOTs (i.e., CX gates). This

gate set is known to be universal, so this is done without loss of generality [23].

Considering each gate, the only non-Clifford gates are RZ (θ) where θ is not an

integer multiple of π
2 . Since they are non-Clifford, they need to be converted to

a Pauli exponential.

Lemma 15: RZi (θ) ≈
#»

Zi (θ).

Proof of Lemma: This is true by definition. ■

Using Lemma 15 we can convert our circuit into a sequence of Pauli exponentials

and Clifford terms. It only remains to show how all Clifford terms can be pulled

to the start of the circuit.

Lemma 16: Consider a Clifford unitary C, and Pauli exponential
#»

P (α). Let ± #»

Q =

C
#»

PC†. Then C
#»

P (α) =
#»

Q (±α)C.

Proof of Lemma: This follows directly from eYXY−1
= YeXY−1 for invertible Y.

C
#»

P (α) = C
#»

P (α)C†C

= Ce−i α
2

#»

P C†C

= e−i α
2 C

#»

P C†

= e∓i α
2

#»

QC

=
#»

Q (±α)C
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■

Using Lemma 16, it only remains to show how to calculate C
#»

PC† for every

Clifford C and Pauli string
#»

P . We know this to be possible for every Pauli string

by the definition of the Clifford group. Since CX, H, and S form a complete gate

set for Cliffords [14], it suffices to only show the calculations for CX
(

#»

P
)

CX,

H
(

#»

P
)

H, and S
(

#»

P
)

S†. We first introduce the following lemma to assist with

calculations.

Lemma 17: For any unitary U and Pauli string
#»

P such that
#»

P = α
#»

P1
#»

P2 and

U
#»

PiU† = βi
# »

Qi for i ∈ {1, 2}, then U
#»

PU† = αβ1β2
#  »

Q1
#  »

Q2.

Proof of Lemma:

U
#»

PU† = αU
#»

P1
#»

P2U† = αU
#»

P1U†U
#»

P2U† = αβ1β2
#  »

Q1
#  »

Q2

■

Lemma 18: The following S conjugations hold.

SZS† = Z SXS† = Y SYS† = −X

Proof of Lemma: It is easy to verify SZS† = Z and SXS† = Y by calculation.

By applying Lemma 17 we get S†YS = −iZY = −X. ■

Lemma 19: The following H conjugations hold.

HZH = X HXH = Z HYH = −Y

Proof of Lemma: It is easy to verify HZH = X and HXH = Z by calculation.

By applying Lemma 17 we get HYH = −Y. ■
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Lemma 20: The following CX conjugations hold, assuming the first qubit is the con-

trol and the second qubit is the target.

CX (IZ)CX = ZZ CX (IX)CX = IX CX (IY)CX = ZY

CX (ZI)CX = ZI CX (XI)CX = XX CX (YI)CX = YX

CX (ZZ)CX = IZ CX (XX)CX = XI CX (YY)CX = −XZ

CX (ZX)CX = ZX CX (ZY)CX = IY

CX (XY)CX = YZ CX (XZ)CX = −YY

CX (YZ)CX = XY CX (YX)CX = YI

Proof of Lemma: The equations for IZ, ZI, IX, and XI are easily verified

numerically. The remaining equations follow by the application of Lemma 17.

■

Bringing this all together, we get the following theorem.

Theorem 1: Any circuit of q qubits containing c Clifford gates and k non-Clifford

RZ (θ) gates can be converted into an equivalent Clifford-Pauli-Exponential form in

O
(
min

(
c, q2) · k

)
conjugations of Pauli exponentials.

Proof of Theorem: We can use the following procedure.

1. Convert non-Clifford RZi (θ) to Zi (θ) Pauli exponentials using Lemma 15

2. Use Lemma 16, Lemma 18, Lemma 19, and Lemma 20 to bring all Cliffords

to the start of the circuit

All Cliffords are now at the start of the circuit, and all other gates are Pauli expo-

nentials; thus, we are in Clifford-Pauli-Exponential form. Each Pauli exponential
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is conjugated by each Clifford at most once, giving O (c · k) conjugations total.

We can improve on this when l · q2 < c for some constant l by recognising

that for every Clifford circuit, there is an equivalent circuit using at most O
(
q2)

gates that can be found efficiently [1]. For each Pauli exponential, we can first

compress all Cliffords that appear after it to O
(
q2) gates before pushing them

through. This gives the desired bound of O
(
min

(
c, q2) · k

)
. ■

To illustrate this procedure, we consider the following circuit.

RZ
(
−π

4

) ⊕

RZ
(

π
4

)
⊕ ⊕RZ

(
−π

4

)H S

H

We apply the first step of the procedure to convert the circuit to only contain

Cliffords and Pauli exponentials giving the following circuit.

⊕

⊕ ⊕

H S

H

#    »

I IZ
(
−π

4

) #    »

ZII
(

π
4

) #    »

IZI
(
−π

4

)

We can apply Lemma 20 to the first Pauli exponential and first CX gate. Since

the CX gate applies to the first and third qubit, we apply the (CX) IZ (CX) = ZZ

rule, resulting in the following circuit.

⊕

⊕ ⊕

H S

H

#      »

ZIZ
(
−π

4

) #    »

ZII
(

π
4

) #    »

IZI
(
−π

4

)
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We can repeat this process, leading to the following final circuit in Clifford-Pauli-

Exponential form.

⊕

⊕ ⊕

H S

H

#      »

YIX
(
−π

4

) #    »

YII
(

π
4

) #      »

ZZI
(
−π

4

)
Clifford Pauli Exponential

2.5 Related Work

Before continuing to the main content of this report, we will discuss some related

works and their relations to this technique.

2.5.1 Phase-Folding

Introduced by Matthew Amy in their PhD thesis, phase-folding is a technique

for merging non-Clifford gates by computing their phase polynomial [2]. The

notation for phase polynomials is very involved and will not be listed here. The

algorithm proceeds in two steps, first performing phase analysis to compute the

phase polynomial of the circuit. Then, the phase-folding step takes place, where

all non-Clifford phases in the phase polynomial that are equivalent are com-

bined into a single phase. A technique called phase teleportation is very similar

to this. Introduced by Aleks Kissinger and John van de Wetering, phase tele-

portation uses the rules of the ZX-calculus to locate phases that are about to fuse

using the rewrite rules, allowing them to be merged in the original circuit [16].
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The two phase-folding and phase teleportation algorithms are equivalent when

comparing only the non-Clifford count.

A generalisation of the phase-folding algorithm by Fang Zhang and Jianxin Chen

from 2019 first converts the circuit to the Clifford-Pauli-Exponential form [37].

Then, using the Pauli exponential commutation rules of Lemma 8, the Pauli

exponentials are rearranged to allow trivial merges by Lemma 9. This paper ob-

serves that the phase teleportation algorithm is equivalent to the new algorithm

proposed in terms of non-Clifford count giving equivalence between all three

algorithms. The main difference in the techniques is that the phase-folding

and phase teleportation algorithms do not alter any structure of the original

circuit, simply merging any permitted phases. In contrast, the Clifford-Pauli-

Exponential form algorithm requires the re-synthesis of the Pauli exponentials

into quantum gates to rebuild the circuit after the merging step. The importance

of not having to re-synthesise the circuit is that it allows any circuit to be passed

to the algorithm without affecting important metrics like gate depth and gate

count.

2.5.2 Clifford-Pauli-Exponential Form Usage

Usage of the Clifford-Pauli-Exponential form is quite common within the literat-

ure. It commonly appears that the presence of Clifford gates within the circuit is

irrelevant for metrics, most commonly when optimising the T-count for a circuit.

As mentioned, the paper by Fang Zhang and Jianxin Chen from 2019 uses a near

identical form as seen in this work [37]. They first translate the initial circuit to

Clifford-Pauli-Exponential form before translating the set of Pauli exponentials

into a DAG form. They utilise this DAG form to reduce both the T-count, as
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mentioned previously, and the T-depth of the resulting circuit. The T-depth is

reduced by identifying that the minimum T-depth attainable in the circuit equals

the length of the longest path in the DAG. During their construction phase,

the paper details the same merging technique as given above by exploiting the

commutativity rules of Pauli exponentials.

This form is also used in a paper by David Gosset et al. from 2013, where

the optimal T-Count for circuits is found using an exponential search [13]. As

part of this procedure, they prove that any unitary can be written in a variation

of Clifford-Pauli-exponential form with tighter restrictions called the channel

representation. This representation uses Pauli exponentials as a set of basis

functions which are then searched over for an exact match to construct a T-

optimal implementation of an arbitrary Clifford+T unitary.

We also see this form come up in the restricted context of measurement pat-

tern circuit extraction [32]. This work by Will Simmons collects the Clifford

gates at the beginning of the circuit giving access to the Pauli stabilisers of the

circuit. This work introduced the Product Rotation Lemma as a method for

modifying Pauli exponentials to move the rotation setting the Pauli basis of a

measurement to the output of the measurement pattern1. This work provides an

extraction algorithm using this technique and proves that it succeeds when the

initial measurement pattern has a Pauli flow.

Another similar form to the Clifford-Pauli-Exponential form exists where the

Clifford portion appears after the Pauli exponentials, which is also quite com-

mon. A paper by Daniel Litinski uses it as a convenient form for designing

fault-tolerant for large-scale quantum computing [21]. Since Cliffords are con-

sidered essentially free in this context, it is convenient to shift all Clifford gates

1This was also the first mention in the literature of using the Product Rotation Lemma to
allow for additional Pauli exponential merges
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to one end of the circuit to focus on the non-Clifford components.

2.5.3 Clifford-Pauli-Exponential Form Synthesis

A fundamental problem for this form is synthesising groups of Pauli exponen-

tials. A wide range of research has been done on this topic ranging from smaller

scale systems where pairs of rotations are synthesised simultaneously [7] to lar-

ger groupings where techniques such as diagonalisation come into play [8, 36].

For larger groupings, we can find commuting groups of Pauli exponentials that

are as large as possible. In these groups, all Pauli exponentials commute with

each other but are not diagonal. This form is not well suited for synthesis since

it requires the Clifford conjugation of every Pauli on every qubit containing an

X or a Y as shown in Lemma 5. These single qubit gates often get in the way

of optimising CX gate layers. To reduce the cost of conjugating individual Pauli

exponentials and to improve CX optimisation, we search for a single Clifford

unitary that changes all Pauli exponentials to contain only I and Z terms once

we conjugate the entire group. This process is called diagonalisation, for which

a few different methods exist. This resulting form is a phase polynomial, and

we can then use a standard phase polynomial synthesis algorithm such as Gray-

Synth to complete the extraction [4].

The Gray-Synth algorithm is a heuristic for synthesising phase polynomials in-

troduced by Matthew Amy et al. in [4]. This algorithm takes inspiration from

Gray codes where only a single bit is changed while iterating through all ele-

ments of {0, 1}q.
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2.5.4 Chemistry Circuits and Ansatz

Finally, we frame similar applications of this technique that currently exist. A

typical application of quantum computing is for the computation of the ground

state of an electron configuration for a molecule. A quantum-classical procedure

called the Variational Quantum Eigensolver (VQE) algorithm uses the expecta-

tion value of a cost function applied to some parameterised circuit to approxim-

ate the energy, which it then attempts to minimise. This parameterised circuit,

referred to as an ansatz, prepares the quantum state of the molecule and al-

lows the VQE algorithm to tweak the parameters to minimise the cost function.

The evolution of the electron configurations can be expressed as Hamiltonians

presented as sums over Pauli strings. One method of modelling this evolution

as a circuit is through the Trotterization of the Hamiltonians giving an ansatz

consisting of many Pauli exponentials.

One software to assist with this is the OpenFermion library [25]. This library

allows the generation and optimisation of quantum algorithms for simulating

quantum chemistry. As part of this optimisation, the library uses similar sta-

biliser techniques to perform qubit tapering, where qubits unimportant to the

computation can be removed [5].
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Chapter 3

Theory

This chapter details a novel theory developed to explore applying the Product

Rotation Lemma in varying contexts. The content of this chapter uses large

amounts of the theoretical foundation set out in Chapter 2. A reader unfamiliar

with any concepts is directed there for further explanation.

3.1 Product Rotation Lemma

Pauli strings being stabilisers of Clifford states as seen in Lemma 12 gives ac-

cess to an instrumental technique for handling Pauli exponentials, the Product

Rotation Lemma. The Product Rotation Lemma given in Lemma 14 allows us to

augment the Pauli string of a Pauli exponential so long as we have a stabiliser

that commutes with the string in the exponential.

For example, we can consider the following circuit of a Clifford state C composed

with a Pauli exponential
#      »

ZXI (α). We define C such that
#      »

IXZ is a stabiliser of C.
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Then we get the following.

C
#      »

ZXI(α)
... = C

#      »

ZIZ(α)
...

By applying the Product Rotation Lemma, we can reduce the number of Pauli

exponentials in the circuit by merging them. We can perform this merging step

by changing the string of one into the other. Then, the Pauli exponentials fuse,

their phases adding together. This merging is formalised in the Stabiliser Merge

Rule.

Lemma 21 (Stabiliser Merge Rule): Let
#»

P (α) and
#»

Q (β) be Pauli exponentials

such that
#»

P
#»

Q =
#»

Q
#»

P and |ψ⟩ be a state such that ± #»

P
#»

Q|ψ⟩ = |ψ⟩. Then,

#»

P (α)
#»

Q (β) |ψ⟩ = #»

P (α ± β) |ψ⟩

Proof of Lemma: Since
#»

P and
#»

Q are commuting,
(

#»

Q
) (

#»

P
#»

Q
)
=

(
#»

P
#»

Q
) (

#»

Q
)

.

Therefore, we can apply Lemma 14 on
#»

Q (β) to transform
#»

Q (β) into
#»

P (±β).

#»

P (α)
#»

Q (β) |ψ⟩ = #»

P (α)
#»

P (±β) |ψ⟩ = #»

P (α ± β) |ψ⟩

■

Finally, we can apply the Product Rotation Lemma to cancel out Pauli exponen-

tials. This application changes the final circuit up to a global phase, but this is

not observable in measurements, so it is permissible.

Lemma 22 (Stabiliser Cancel Rule): Let
#»

P (α) be a Pauli exponential and |ψ⟩ be a

state such that ± #»

P |ψ⟩ = |ψ⟩. Then
#»

P (α) |ψ⟩ ≈ |ψ⟩.
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Proof of Lemma: Since Pauli strings trivially commute with themselves, we

can apply the Product Rotation Lemma on
#»

P (α) to convert it to
#»

I , where I is

the identity Pauli.

#»

P (α) |ψ⟩ = #»

I (α) |ψ⟩ ≈ |ψ⟩

Where
#»

I is just the identity Pauli string on all qubits. ■

These applications of the Product Rotation Lemma are only applicable in the

presence of a single Pauli exponential on a state, a very limited context. There-

fore, we also wish to consider how this rule applies in a more general case. For

the remainder of this section, it is essential to note the rule of commutation that

is exclusively used.

Definition 3.1. We say two Pauli exponentials E1 =
#»

P (α), E2 =
#»

Q (β) commute iff
#»

P
#»

Q =
#»

Q
#»

P. This may also be written as E1E2 = E2E1.

Without knowledge of a specific phase or Pauli string, this does hold. However,

where the phase or the Pauli string is known up front, the only if portion does not

hold. We can consider a Pauli exponential with phase 0,
#»

P (0). Since the phase

is 0, this resolves to the identity and commutes with any Pauli exponential. For

this context, we will use the above definition to govern commutation.

3.2 Pauli DAG

Given a circuit in Clifford-Pauli-Exponential form, the commutation laws between

Pauli exponentials permit changes to the order of the Pauli exponentials without

changing the semantics of the circuit. Therefore, we treat the sequence of Pauli
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exponentials as a DAG to abstract the redundancy of total orderings. Before

translation into a DAG, we have a sequence of Pauli exponentials. It is helpful

to define such a sequence formally.

Definition 3.2 (Pauli Exponential Sequence). A Pauli exponential sequence is defined

as a sequence E = (E1, ..., En) where Ei =
#»

Pi (αi) together represent the circuit,

# »

Pn (αn) · · ·
#»

P1 (α1)

We denote the original circuit C (E). We say two sequences E and E′ are equal under

a state |ψ⟩ if their circuits are equal up to a global phase when initialised by the state.

I.e., E ≈|ψ⟩ E′ iff C (E) |ψ⟩ ≈ C (E′) |ψ⟩. We say two sequences E and E′ are equal if

their circuits are equal. I.e., E = E′ iff C (E) = C (E′). We note that E = E′ implies

E ≈|ψ⟩ E′ for any state |ψ⟩.

With these sequences, it is helpful to define the construction of their associated

DAG1.

Definition 3.3 (Pauli DAG). Let E = (E1, ..., En) be a Pauli exponential sequence.

We define the Pauli DAG D (E) = (V, A) where V = {v1, ..., vn} and

A =
{(

vi, vj
)
∈ V2|EiEj ̸= EjEi ∧ i < j

}

Where it is unambiguous, D will be used in place of D (E).

Note that this is not the transitive closure of the dependency graph between

the exponentials but is also not minimal. Over the DAG, we also define three

relations ρ, P and π representing different classes of parents.

1Interestingly, this is the same graph structure used in [37] for a different purpose
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Definition 3.4 (Parent Sets). Given a Pauli DAG D = (V, A), we define ρD : V →

2V as the set of vertices that are a direct parent D. More formally,

ρD (vi) =
{

vj ∈ V|
(
vj, vi

)
∈ A

}
We can then define ρD : 2V → 2V over sets as the union of parents of all members of

the set. More formally,

ρD
(
V′) = ∪vi∈V′ ρD (vi)

Using this, we can also define Pi
D : V → 2V as the set of parents at a distance at most

i. More formally,

P0
D
(
vj
)
= ρ

(
vj
)

,

Pi
D
(
vj
)
= ρ

(
Pi−1

D
(
vj
))

∪ Pi−1
D

(
vj
)

Finally, we define πD : V → 2V as the set of Pauli exponentials that are a parent in the

transitive closure of D. More formally,

πD (vi) = P∞
D (vi)

Defining an ordering between vertices in a Pauli DAG is also helpful.

Definition 3.5 (Pauli DAG Ordering). Given a Pauli DAG D = (V, A), we define

→D over the set of vertices such vi →D vj iff there is a path from vi to vj. More formally,

vi →D vj ⇔ vi ∈ πD
(
vj
)

We can define ∼D over the set of vertices such that vi ∼D vj iff there does not exist a
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path from vi to vj or vice versa. More formally,

vi ∼D vj ⇔ vi ̸→D vj ∧ vj ̸→D vi

Where the choice of D is unambiguous, it will be omitted from the notation.

3.3 Pauli Sequence Rules

Now that we have a well-defined notion of a Pauli exponential sequence and

Pauli DAGs, we can prove the following rules for modifying Pauli exponential

sequences. This first lemma gives us an easy method for commuting Paulis

throughout a Pauli exponential sequence E by permitting permutations that

associate with a topological ordering in the DAG. For this lemma, we first need

to describe the notation for permutation functions.

Definition 3.6 (Permutation Functions). A permutation function Ω : [1, n] → [1, n]

is a bijective function representing a permutation of (1, . . . , n). We denote the resulting

position of element i in the permutation as Ω (i), and denote the original position of the

ith element of the permutation as Ω−1 (i).

Lemma 23 (Topological Reordering Rule): Let E = (E1, · · · , En) be a Pauli expo-

nential sequence with associated Pauli DAG D = (V, A). For any permutation function

Ω, if T =
(

vΩ−1(1), . . . , vΩ−1(n)

)
is a topological ordering of D, the Pauli exponential

sequence E′ =
(

EΩ−1(1), . . . , EΩ−1(n)

)
satisfies E = E′.

Proof of Lemma: We first define E′
i as having the same first i exponentials as

E followed by the remaining elements in the same order as they appear in E′.

We now aim to prove E′
i = E′

i+1. This proof is done by conceptually freezing the
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first i Pauli exponentials of E′
i in place, then showing that Ei+1 can be commuted

to just after this frozen set. Let B =
{

vj ∈ V|Ω (j) < Ω (i + 1) , j > i
}

, this is the

set of vertices of D appearing before vi+1 in the topological ordering, ignoring

any frozen vertices. Since T is a topological ordering of D, ∀vj ∈ B, vi+1 /∈ π
(
vj
)
.

By definition (v1, . . . , vn) is also a topological ordering of D, so we conclude

∀vj ∈ B, vj /∈ π (vi+1). I.e., by the definition of D they commute and ∀vj ∈ B,

Ei+1Ej = EjEi+1. We can then freely commute Ei+1 to position i + 1 of E′
i,

resulting in E′
i+1.

By induction, we can conclude that E′
n = E′

0. It is trivial to see that E = E′
n and

E′
0 = E′, so we conclude that E = E′. ■

Using the Topological Reordering Rule, we can formally define the remaining

rules we permit to apply to Pauli sequences. This second rule governs when we

can use the Product Rotation Lemma to alter a Pauli exponential within a Pauli

exponential sequence.

Lemma 24: Let E = (E1, · · · , En) be a Pauli exponential sequence with associated

Pauli DAG D = (V, A), and |ψ⟩ be a Clifford state. Consider some Ei =
#»

P (α).

Suppose ± #»

Q|ψ⟩ = |ψ⟩ for
#»

Q
#»

P =
#»

P
#»

Q and there exists a permutation function Ω such

that T =
(

vΩ−1(1), . . . , vΩ−1(n)

)
is a topological ordering of D and

∀j : Ω (j) < Ω (i) , Ej
#»

Q =
#»

QEj

Letting
#»

R =
#»

P
#»

Q, we can create a Pauli exponential sequence

E′ =
(

EΩ−1(1), . . . , EΩ−1(Ω(i)−1),
#»

R (±α) , EΩ−1(Ω(i)+1), . . . , EΩ−1(n)

)

Such that E ≈|ψ⟩ E′.
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Proof of Lemma: First, we define

E1 =
(

EΩ−1(1), . . . , EΩ−1(n)

)

By the Topological Reordering Rule, E = E1. Next, we define a state,

|ψ⟩′ = EΩ−1(Ω(i)−1)EΩ−1(Ω(i)−2) · · · EΩ−1(1)|ψ⟩

We can now show that ± #»

Q is a stabiliser of |ψ⟩′. To do this, we use our assump-

tion about the commutation of
#»

Q, ∀j : Ω (j) ≤ Ω (i) , Ej
#»

Q =
#»

QEj. Then, we use

that ± #»

Q is a stabiliser of |ψ⟩.

± #»

Q|ψ⟩′ = ± #»

QEΩ−1(Ω(i)−1)EΩ−1(Ω(i)−2) · · · EΩ−1(1)|ψ⟩

= ±EΩ−1(Ω(i)−1)EΩ−1(Ω(i)−2) · · · EΩ−1(1)
#»

Q|ψ⟩

= EΩ−1(Ω(i)−1)EΩ−1(Ω(i)−2) · · · EΩ−1(1)

(
± #»

Q|ψ⟩
)

= EΩ−1(Ω(i)−1)EΩ−1(Ω(i)−2) · · · EΩ−1(1)|ψ⟩

= |ψ⟩′

Since
#»

P
#»

Q =
#»

Q
#»

P , we can now apply the Product Rotation Lemma on
#»

P (α) and

|ψ⟩′ to show that C (E) |ψ⟩ = C (E′) |ψ⟩.

C (E) |ψ⟩ = C (E1) |ψ⟩

= EΩ−1(n) · · · EΩ−1(Ω(i)+1)
#»

P (α) EΩ−1(Ω(i)−1)EΩ−1(Ω(i)−2) · · · EΩ−1(1)|ψ⟩

= EΩ−1(n) · · · EΩ−1(Ω(i)+1)

(
#»

P (α) |ψ⟩′
)

= EΩ−1(n) · · · EΩ−1(Ω(i)+1)

(
#»

R (±α) |ψ⟩′
)

= EΩ−1(n) · · · EΩ−1(Ω(i)+1)
#»

R (±α) EΩ−1(Ω(i)−1)EΩ−1(Ω(i)−2) · · · EΩ−1(1)|ψ⟩

= C
(
E′) |ψ⟩
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We can now conclude that E ≈|ψ⟩ E′, completing the proof. ■

The following rule governs when we can merge two Pauli exponentials with the

same Pauli string with a Pauli exponential sequence.

Lemma 25: Let E = (E1, · · · , En) be a Pauli exponential sequence with associated

Pauli DAG D = (V, A). Consider some Ei =
#»

P (α) , Ej =
#»

P (β) with i ̸= j. Sup-

pose there exists a permutation function Ω such that T =
(

vΩ−1(1), . . . , vΩ−1(n)

)
is a

topological ordering of D and

Ω (i) + 1 = Ω (j)

Then we can create a Pauli exponential sequence

E′ =
(

E1, . . . , Ei−1,
#»

P (α + β) , Ei+1, . . . , Ej−1, Ej+1, . . . , En

)

Such that E = E′.

Proof of Lemma: First, we define

E1 =
(

EΩ−1(1), . . . , EΩ−1(Ω(i)−1),
#»

P (α) ,
#»

P (β) , EΩ−1(Ω(i)+2), . . . , EΩ−1(n)

)

By the Topological Reordering Rule, E = E1. Next, we define

E2 =
(

EΩ−1(1), . . . , EΩ−1(Ω(i)−1),
#»

P (α + β) , EΩ−1(Ω(i)+2), . . . , EΩ−1(n)

)

We claim that E1 = E2 or equivalently, C (E1) = C (E2)

C (E1) = EΩ−1(n) · · · EΩ−1(Ω(i)+2)
#»

P (β)
#»

P (α) EΩ−1(Ω(i)−1) · · · EΩ−1(1)

= EΩ−1(n) · · · EΩ−1(Ω(i)+2)
#»

P (β)
#»

P (α) EΩ−1(Ω(i)−1) · · · EΩ−1(1)

= EΩ−1(n) · · · EΩ−1(Ω(i)+2)
#»

P (α + β) EΩ−1(Ω(i)−1) · · · EΩ−1(1)

= C (E2)
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Considering the Pauli DAG D (E2), it is immediately clear that it contains the

same vertices and edges as D (E) but with vj removed. As a result, we can con-

clude that
(
v1, . . . , vi, . . . , vj−1, vj+1, . . . , vn

)
is a topological ordering of D (E2).

By the Topological Reordering Rule we see that E2 = E′, and therefore E =

E′. ■

As a consequence of these rules, we can define one final rule. This rule is the

primary tool used throughout the report and allows for merging Pauli exponen-

tials that initially do not have the same string.

Lemma 26: Let E = (E1, · · · , En) be a Pauli exponential sequence with associated

Pauli DAG D = (V, A), and |ψ⟩ be a Clifford state. Consider some Ei =
#»

P (α) , Ej =

#»

Q (β) such that
#»

P
#»

Q =
#»

Q
#»

P. Suppose ± #»

P
#»

Q|ψ⟩ = |ψ⟩ and there exists a permutation

function Ω such that T =
(

vΩ−1(1), . . . , vΩ−1(n)

)
is a topological ordering of D and we

have both

Ω (i) + 1 = Ω (j)

and

∀k : Ω (k) < Ω (i) , Ek
#»

P
#»

Q =
#»

P
#»

QEk

Then we can create a Pauli exponential sequence

E′ =
(

E1, . . . , Ei−1,
#»

P (α ± β) , Ei+1, . . . , Ej−1, Ej+1, . . . , En

)

Such that E ≈|ψ⟩ E′.

Proof of Lemma: First, we define

E1 =
(

EΩ−1(1), . . . , EΩ−1(Ω(i)−1),
#»

P (α) ,
#»

P (±β) , EΩ−1(Ω(i)+1), . . . , EΩ−1(n)

)

As
#»

P
(

#»

P
#»

Q
)
=

#»

P
(

#»

Q
#»

P
)
=

(
#»

P
#»

Q
)

#»

P , and ± #»

P
#»

Q
#»

Q = ± #»

P we satisfy the condi-

44



tions of Lemma 24 and conclude that E ≈|ψ⟩ E1. We can now define

E2 =
(

EΩ−1(1), . . . , EΩ−1(Ω(i)−1),
#»

P (α ± β) , EΩ−1(Ω(i)+2), . . . , EΩ−1(n)

)

Satisfying the conditions of Lemma 25, it is easy to see that E1 = E2. Finally,

by considering the Pauli DAG D (E2), it is immediately clear that it contains

the same vertices and edges as D (E) but with vj removed. As a result, we

can conclude that
(
v1, . . . , vi, . . . , vj−1, vj+1, . . . , vn

)
is a topological ordering of

D (E2). Therefore, by the Topological Reordering Rule we see that E2 = E′.

Putting this all together we get E ≈|ψ⟩ E1 = E2 = E′, so E ≈|ψ⟩ E′ concluding

the proof. ■

We can actually see that Lemma 26 is a strict generalisation of Lemma 25 since
#»

P
#»

P =
#»

I is always a stabiliser and trivially commutes with all Pauli exponen-

tials.

Ignoring the subsumed rule we are left with a set of rules, the Topological

Reordering Rule, Lemma 24, and Lemma 26. The definitions of Lemma 24,

Lemma 26 both use the existence of a topological ordering of a Pauli DAG that

induces a favourable reordering of a Pauli exponential sequence. This notation

is quite cumbersome, so we can instead define less generalised rules as follows.

Lemma 27 (Product Rotation Rule): Let E = (E1, · · · , En) be a Pauli exponential

sequence, and |ψ⟩ be a Clifford state. Consider some Ei =
#»

P (α). Suppose ± #»

Q|ψ⟩ =

|ψ⟩ for
#»

Q
#»

P =
#»

P
#»

Q and

∀j < i, Ej
#»

Q =
#»

QEj

Letting
#»

R =
#»

P
#»

Q, we can create a Pauli exponential sequence

E′ =
(

E1, . . . , Ei−1,
#»

R (±α) , Ei+1, . . . , En

)
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Such that E ≈|ψ⟩ E′.

Proof of Lemma: (v1, . . . , vn) is a topological ordering satisfying the conditions

of Lemma 24, so E ≈|ψ⟩ E′. ■

Lemma 28 (Pauli Merge Rule): Let E = (E1, · · · , En) be a Pauli exponential se-

quence with associated Pauli DAG D = (V, A), and |ψ⟩ be a Clifford state. Consider

some Ei =
#»

P (α) , Ej =
#»

Q (β) such that vi ∼D vj. Suppose ± #»

P
#»

Q|ψ⟩ = |ψ⟩ and

∀vk ∈ π (vi) ∪ π
(
vj
)

, Ek

(
#»

P
#»

Q
)
=

(
#»

P
#»

Q
)

Ek

Letting
#»

R =
#»

P
#»

Q, we can create a Pauli exponential sequence

E′ =
(

E1, . . . , Ei−1,
#»

R (α ± β) , Ei+1, . . . , Ej−1, Ej+1, . . . , En

)

Such that E ≈|ψ⟩ E′.

Proof of Lemma: We can place the elements of π (vi) ∪ π
(
vj
)

before vi, then

place vj and finally the remaining elements after vj to form a topological order-

ing of D. Since the members of π (vi) ∪ π
(
vj
)

are the only members before vi

and vj in the topological ordering we satisfy the conditions for Lemma 26 so

E ≈|ψ⟩ E′. ■

This definition gives us the following corollary for trivial merges of Pauli expo-

nentials.

Corollary 1 (Trivial Merge Rule): Let E = (E1, · · · , En) be a Pauli exponential

sequence with associated Pauli DAG D = (V, A), and |ψ⟩ be a Clifford state. Consider

some Ei =
#»

P (α) , Ej =
#»

P (β) such that vi ∼D vj

E′ =
(

E1, . . . , Ei−1,
#»

P (α ± β) , Ei+1, . . . , Ej−1, Ej+1, . . . , En

)
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Such that E ≈|ψ⟩ E′.

Proof of Corollary: This follows directly from the Pauli Merge Rule using
#»

I

as the merge string as it commutes with every Pauli string. ■

The conditions of the Pauli Merge Rule are precise and computationally ex-

pensive to compute. Every transitive parent of both Pauli exponentials must be

checked for commutation. This motivated the Pauli DAG Merging Theorem,

capturing the conditions for the Pauli Merge Rule in terms of ρ sets.

Theorem 2 (Pauli DAG Merging Theorem): Let E = (E1, · · · , En) be a Pauli

exponential sequence with associated Pauli DAG D = (V, A), and |ψ⟩ be a Clifford

state. The Pauli Merge Rule can be applied to Ei =
#»

P (α) and Ej =
#»

Q (β) iff ρ (vi) =

ρ
(
vj
)

and ± #»

P
#»

Q is a stabiliser of |ψ⟩.

Proof of Theorem: (⇒)

If we can merge Ei with Ej through application of the Pauli Merge Rule then

vi ∼D vj and

∀vk ∈ π (vi) ∪ π
(
vj
)

, Ek

(
#»

P
#»

Q
)
=

(
#»

P
#»

Q
)

Ek

Assume for the sake of contradiction that ρ (vi) ̸= ρ
(
vj
)
. Then, without loss of

generality, there exists vk ∈ ρ (vi) such that vk /∈ ρ
(
vj
)
. There are two cases to

consider. First, where Ek commutes with
#»

Q. In this case, we get the following.
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(
#»

P
#»

Q
)

Ek =
#»

P
(

#»

QEk

)
=

#»

P
(

Ek
#»

Q
)

=
(

#»

P Ek

)
#»

Q

= −Ek

(
#»

P
#»

Q
)

This is a contradiction, so we are left with the case where E anti-commutes with
#»

Q. Since vk /∈ ρ
(
vj
)
, we have that vj ∈ ρ (vk) and so vj ∈ π (vk). However, since

π (vk) ⊂ π (vi), we have that vj ∈ π (vi), contradicting vi ∼D vj. We therefore

conclude that ρ (vi) = ρ
(
vj
)
.

(⇐)

Since ± #»

P
#»

Q|ψ⟩ = |ψ⟩, we need to show that vi ∼D vj and

∀vk ∈ π (vi) ∪ π
(
vj
)

, Ek

(
#»

P
#»

Q
)
=

(
#»

P
#»

Q
)

Ek

vi ∼D vj follows directly from ρ (vi) = ρ
(
vj
)

as if there is a transitive path from

vi to vj then there must exist some vk such that vi → vk and
(
vk, vj

)
∈ A. I.e.,

vk /∈ ρ (vi) and vk ∈ ρ
(
vj
)
, a contradiction.

Finally, we need to show

∀vk ∈ π (vi) ∪ π
(
vj
)

, Ek

(
#»

P
#»

Q
)
=

(
#»

P
#»

Q
)

Ek

by a case analysis on membership of ρ (vi) assuming vk ∈ π (vi) ∪ π
(
vj
)
.
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Case 1: vk ∈ ρ (vi)

In this case, we get vk ∈ ρ
(
vj
)
. Using this we have Ek

#»

P = − #»

P Ek and Ek
#»

Q =

− #»

QEk. Finally, we get the following,

Ek

(
#»

P
#»

Q
)
=

(
Ek

#»

P
)

#»

Q

= −
(

#»

P Ek

)
#»

Q

= − #»

P
(

Ek
#»

Q
)

=
#»

P
(

#»

QEk

)
=

(
#»

P
#»

Q
)

Ek

Case 2: vk /∈ ρ (vi)

In this case, we get vk /∈ ρ
(
vj
)
. Using this we have Ek

#»

P =
#»

P Ek and Ek
#»

Q =
#»

QEk

as vk ∈ π (vi) = π
(
vj
)

so k < j and k < i and since vk /∈ ρ (vi) = ρ
(
vj
)

they

must commute. Finally, we get the following.

Ek

(
#»

P
#»

Q
)
=

(
Ek

#»

P
)

#»

Q

=
(

#»

P Ek

)
#»

Q

=
#»

P
(

Ek
#»

Q
)

=
#»

P
(

#»

QEk

)
=

(
#»

P
#»

Q
)

Ek

■

The Topological Reordering Rule, the Product Rotation Rule, and the Pauli

Merge Rule form a sound ruleset for manipulating Pauli exponential sequences
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that will be used for the remainder of the report. It is easy to see that the full

rules of Lemma 24 and Lemma 26 can be recovered by applications of this simpli-

fied ruleset. We now wish to show that the Pauli Merge Rule is the only required

rule for performing merges. In other words, rearranging the Pauli exponential

sequence or changing Pauli strings using the Product Rotation Lemma cannot

permit additional applications of the Pauli Merge Rule to a Pauli exponential

sequence.

As a warmup, we prove that nothing can be gained from transforming both

Pauli exponentials instead of just one of them. In other words, if two Pauli ex-

ponentials can be merged through the application of the Topological Reordering

Rule, then the Product Rotation Rule and finally the Pauli Merge Rule, they can

be merged by a single application of the Pauli Merge Rule.

Lemma 29: Let E = (E1, · · · , En) be a Pauli exponential sequence with associated

Pauli DAG D = (V, A), and |ψ⟩ be a Clifford state. Consider some Ei =
#»

P (α) , Ej =

#»

Q (β). If ∃ #»

A,
#»

B such that
#»

P
#»

A =
#»

A
#»

P =
#»

Q
#»

B =
#»

B
#»

Q,
#»

A|ψ⟩ = #»

B |ψ⟩ = |ψ⟩, and

∀vk ∈ π (vi) ∪ π
(
vj
)

, Ek
#»

A =
#»

AEk ∧ Ek
#»

B =
#»

B Ek

Then
#»

P
#»

Q|ψ⟩ = |ψ⟩, #»

P
#»

Q =
#»

Q
#»

P, and

∀vk ∈ π (vi) ∪ π
(
vj
)

, Ek

(
#»

P
#»

Q
)
=

(
#»

P
#»

Q
)

Ek

50



Proof of Lemma: First, we recognise that
#»

P
#»

Q =
#»

A
#»

B .

#»

A
#»

P =
#»

B
#»

Q =⇒ #»

A
#»

A
#»

P =
#»

A
#»

B
#»

Q

=⇒ #»

P =
#»

A
#»

B
#»

Q

=⇒ #»

P
#»

Q =
#»

A
#»

B
#»

Q
#»

Q

=⇒ #»

P
#»

Q =
#»

A
#»

B

Using this, we can prove that
#»

P
#»

Q is a stabiliser of |ψ⟩.

#»

P
#»

Q|ψ⟩ = #»

A
#»

B |ψ⟩

=
#»

A|ψ⟩

= |ψ⟩

We can use the facts that A and B must commute by Lemma 11,
#»

P
#»

Q =
#»

A
#»

B , and

that
#»

A
#»

P =
#»

B
#»

Q to show that
#»

P and
#»

Q must commute.

#»

P
#»

Q =
#»

A
#»

B

=
#»

B
#»

A

=
#»

B
#»

A
#»

P
#»

P

=
#»

B
#»

B
#»

Q
#»

P

=
#»

Q
#»

P
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Finally, ∀vk ∈ π (vi) ∪ π
(
vj
)

we have the following.

Ek

(
#»

P
#»

Q
)
= Ek

#»

A
#»

B

=
#»

AEk
#»

B

=
#»

A
#»

B Ek

=
(

#»

P
#»

Q
)

Ek

Concluding the proof. ■

Before demonstrating the full proof, we present an instrumental lemma charac-

terising the changes in ρ sets by applications of the Product Rotation Rule.

Lemma 30: Let E = (E1, · · · , En) be a Pauli exponential sequence with associated

Pauli DAG D = (V, A), and |ψ⟩ be a Clifford state. Fix some Ei =
#»

P (α) ∈ E

that satisfies the conditions of Product Rotation Rule. Let E′ be the Pauli exponential

sequence with associated Pauli DAG D′ = (V, A′) after applying the Product Rotation

Rule to Ei with stabiliser
#»

S . Then, ∀vk ∈ V with Ek =
#  »

Qk (β),

ρD′ (vk) =

{
ρD (vk) where

#  »

Qk
#»

S =
#»

S
#  »

Qk

ρD (vk)△{vi} otherwise

Where △ is the symmetric difference operator.

Proof of Lemma: Fix an arbitrary vertex vk ∈ V. Since only Ei changed, only

edges incident to vi can be affected. After the application, Ei now has the Pauli

string
#»

P
#»

S .

Case 1:
#  »

Qk
#»

S =
#»

S
#  »

Qk

In this case, if
#  »

Qk commutes with
#»

P then,

(
#»

P
#»

S
)

#  »

Qk =
#»

P
#  »

Qk
#»

S =
#  »

Qk

(
#»

P
#»

S
)
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So there is still no edge between vk and vi in D′. If instead
#  »

Qk anti-commutes

with
#»

P then, (
#»

P
#»

S
)

#  »

Qk =
#»

P
#  »

Qk
#»

S = − #  »

Qk

(
#»

P
#»

S
)

So the edge between vk and vi remains in D′. Therefore, we can conclude that

ρD′ (vk) = ρD (vk)

Case 2:
#  »

Qk
#»

S = − #»

S
#  »

Qk

In this case, we first observe that Ei appears before Ek in E. This is a requirement

of the Product Rotation Rule since the stabiliser does not commute with
#  »

Qk.

Therefore, if the edge between vi and vk is updated, it will only affect the ρ set

of vk. First, we assume that
#  »

Qk commutes with
#»

P then,

(
#»

P
#»

S
)

#  »

Qk = − #»

P
#  »

Qk
#»

S = − #  »

Qk

(
#»

P
#»

S
)

This toggles the edge between vi and vk. Next, we assume that
#  »

Qk anti-

commutes with
#»

P then,

(
#»

P
#»

S
)

#  »

Qk = − #»

P
#  »

Qk
#»

S =
#  »

Qk

(
#»

P
#»

S
)

This again toggles the edge between vi and vk, allowing us to conclude that

ρD′ (vk) = ρD (vk)△{vi}

■

Finally, we can prove that the Pauli Merge Rule is sufficient for performing

merges in Pauli exponential sequences.
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Theorem 3: Let E = (E1, · · · , En) be a Pauli exponential sequence with associated

Pauli DAG D = (V, A), and |ψ⟩ be a Clifford state. Using only the Topological Reorder-

ing Rule, the Product Rotation Rule, and the Pauli Merge Rule, two Pauli exponentials

in the sequence can be merged iff they can be merged by a single application of the Pauli

Merge Rule.

Proof of Theorem: (⇐)

Since the Pauli Merge Rule is one of the rules, this direction is trivial.

(⇒)

First, we fix two Pauli exponentials Ei =
#»

P (α) and Ej =
#»

Q (α) and consider a

sequence of rule applications R = (R1, . . . , Rn). such that Rn is an application

of the Pauli Merge Rule to merge Ei and Ej. To simplify this sequence, we can

assume without loss of generality, that applications of the Pauli Merge Rule

within the sequence (excluding Rn) are all trivial merges by the Trivial Merge

Rule. This can be done without loss of generality by observing that the Pauli

Merge Rule is the composition of the Product Rotation Rule and a trivial merge

using Trivial Merge Rule.

We first perform a forward induction on R to show that after the (n − 1)th rule

is applied, any Pauli exponential Ek =
#»

T (γ) not removed by the Pauli Merge

Rule is of the form
#»

T′ (±γ + δ) with
#»

T′ =
#»

T
#»

S where
#»

S is a stabiliser of |ψ⟩,
#»

S
#»

T =
#»

T
#»

S , and δ is a constant.

After no rules have been applied, this is trivially true by choosing
#»

S =
#»

I and

δ = 0. For the inductive step, we have Ek =
#»

T′ (±γ + δ). First, we observe that,

since the Topological Reordering Rule only changes ordering, it will not affect

any Pauli exponentials.
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Next, applications of the Product Rotation Rule to Ek using stabiliser
#»

S′ will

give Ek =
#  »

T′′ (±γ + δ′) where
#  »

T′′ =
#»

T
#»

S
#»

S′ and δ′ = ±δ. Since
#»

S and
#»

S′ are

both stabilisers, they combine to create a new stabiliser
# »

S′′. As
#»

S and
#»

S′ both

commute with
#»

T , so does
# »

S′′. This gives
#  »

T′′ =
#»

T
# »

S′′, giving the Pauli exponential

the desired form.

Finally, we know by the assumption that no rule in the first (n − 1) rules of R

can merge Ek into a different Pauli exponential. Therefore, trivial merges into Ek

will give Ek =
#»

T′ (±γ + δ′) with δ′ = δ + ω where ω is the phase of the Pauli

exponential merged into Ek. This is of the desired form.

Having shown the forward induction, we can use it to show that the Pauli Merge

Rule rule applies to Ei and Ej before the other rules are applied. We do this by

using the conditions of Pauli DAG Merging Theorem. Therefore, we need to

show that ± #»

P
#»

Q is a stabiliser of |ψ⟩ and ρD (vi) = ρD
(
vj
)
.

As Rn merges Ei and Ej using the Pauli Merge Rule, neither can have been

merged into another Pauli exponential. Therefore, after the (n − 1)th rule has

been applied, Ei =
#»

P′ (α ± δ1) and Ej =
# »

Q′ (β ± δ2) with
#»

P′ =
#»

P
#»

S1 and
# »

Q′ =
#»

Q
#»

S2.

As the rule Rn merges Ei and Ej using the Pauli Merge Rule, we know that
#»

P
#»

S1
#»

Q
#»

S2 is a stabiliser of |ψ⟩. As products of stabilisers are also stabilisers and
#»

P commutes with
#»

S1 then,

± #»

P
#»

S1
#»

Q
#»

S2|ψ⟩ = |ψ⟩ =⇒ ± #»

S1
#»

P
#»

Q
#»

S2|ψ⟩ = |ψ⟩

=⇒ ± #»

S1
#»

S1
#»

P
#»

Q
#»

S2
#»

S2|ψ⟩ = |ψ⟩

=⇒ ± #»

P
#»

Q|ψ⟩ = |ψ⟩
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Finally, we need to show that ρD (vi) = ρD
(
vj
)
. To do this, we first define Dk =

D (Ek) where Ek is E after the first k rules in R have been applied and E0 = E.

We now show by backwards induction that ∀l ∈ [0, n], ρDl (vi) = ρDl

(
vj
)
. We

begin with l = n. Since Rn merges Ei and Ej under En, ρDn (vi) = ρDn

(
vj
)

by

the Pauli DAG Merging Theorem.

Next, we consider the case where l < n by assuming it is true for l + 1, breaking

it down into a case for each rule.

Case 1: Applying the Topological Reordering Rule.

Since these operations only permit topological orderings, if,

ρDl+1 (vi) = ρDl+1

(
vj
)

Then,

ρDl (vi) = ρDl

(
vj
)

Case 2: Applying the Product Rotation Rule.

Let
#»

T be the Pauli stabiliser used during the application of the rule. Then we can

prove that
#»

T commutes with
#»

P
#»

S1 if and only if
#»

T commutes with
#»

Q
#»

S2. Without

loss of generality, we assume that
#»

T commutes with
#»

P
#»

S1. As Rn can be applied

after rule l + 1, then
#»

P
#»

S1
#»

Q
#»

S2 is a stabiliser of |ψ⟩. Then, using Lemma 11 to

observe that
(

#»

P
#»

S1
#»

Q
#»

S2

)
#»

T =
#»

T
(

#»

P
#»

S1
#»

Q
#»

S2

)
we get,

#»

T
(

#»

Q
#»

S2

)
=

#»

T
(

#»

P
#»

S1

) (
#»

P
#»

S1

)
#»

Q
#»

S2

=
(

#»

P
#»

S1

)
#»

T
(

#»

P
#»

S1
#»

Q
#»

S2

)
=

(
#»

P
#»

S1

) (
#»

P
#»

S1
#»

Q
#»

S2

)
#»

T

=
(

#»

Q
#»

S2

)
#»

T
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As
#»

T commutes with
#»

P
#»

S1 if and only if
#»

T commutes with
#»

Q
#»

S2, when
#»

T is

applied to any Pauli exponential, by Lemma 30 their ρ sets undergo the same

update. Therefore, ρDl (vi) = ρDl

(
vj
)
.

Case 3: Applying the Pauli Merge Rule to perform a trivial merge.

Since the merge is trivial, only one vertex va is removed by merging Ea with

some Eb. As Ea is merged with Eb, va and vb have identical properties in Dl+1.

Therefore, as ρDl+1 (vi) = ρDl+1

(
vj
)
, we get,

va ∈ ρDl (vi) ⇔ vb ∈ ρDl (vi)

⇔ vb ∈ ρDl+1 (vi) = ρDl+1

(
vj
)

⇔ vb ∈ ρDl

(
vj
)

⇔ va ∈ ρDl

(
vj
)

We conclude ρDl (vi) = ρDl

(
vj
)

By induction, this shows that ρDn (vi) = ρDn

(
vj
)

=⇒ ρD0 (vi) = ρD0

(
vj
)

=⇒

ρD (vi) = ρD
(
vj
)
. This covers all conditions of the Pauli Merge Rule as charac-

terised by the Pauli DAG Merging Theorem, concluding the proof. ■

The main implication of this proof is that the order in which merges are per-

formed does not affect which merges are possible. This means, assuming we

have checked the conditions of the Pauli Merge Rule for two Pauli exponentials

Ei, Ej, if we only perform operations from the ruleset the Topological Reorder-

ing Rule, the Product Rotation Rule, and the Pauli Merge Rule, any subsequent

checks of the conditions will not lead to a merge.

As a consequence of the Pauli DAG Merging Theorem, we can also easily prove
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that merging within a Pauli exponential sequence by the Pauli Merge Rule is

transitive.

Theorem 4: Let E = (E1, · · · , En) be a Pauli exponential sequence with associated

Pauli DAG D = (V, A), and |ψ⟩ be a Clifford state. Let Ei =
#»

P (α) , Ej =
#»

Q (β) , Ek =

#»

R (γ) ∈ E such that applications of the Pauli Merge Rule can merge Ei with Ej and

Ej with Ek. Then we can conclude that the pair Ei and Ek satisfy the conditions for the

Pauli Merge Rule.

Proof of Theorem: As Ei can merge with Ej, we have that ρ (vi) = ρ
(
vj
)
. Since

Ej can merge with Ek, we can conclude that ρ (vi) = ρ
(
vj
)
= ρ (vk).

As Ei can merge with Ej, we have that
#»

P
#»

Q is a stabiliser of |ψ⟩. Since Ej can

merge with Ek, we can conclude that
#»

Q
#»

R is also a stabiliser. Since the product of

any two stabilisers is also a stabiliser,
#»

P
#»

Q
#»

Q
#»

R =
#»

P
#»

R is a stabiliser. This satisfies

the conditions of the Pauli DAG Merging Theorem so the pair Ei and Ek satisfy

the conditions for the Pauli Merge Rule. ■

It also gives us a convenient tool for reasoning about cancelling Paulis in Pauli

exponential sequences.

Lemma 31: Let E = (E1, · · · , En) be a Pauli exponential sequence with associated

Pauli DAG D = (V, A), and |ψ⟩ be a Clifford state. Let Ej =
#»

P (α) ∈ E. Ej can be

cancelled from the Pauli DAG by the rules the Topological Reordering Rule, the Product

Rotation Rule, and the Pauli Merge Rule iff, ρ (vi) = ∅ and
#»

P is a stabiliser of |ψ⟩.

Proof of Lemma: Cancelling is equivalent to merging with the identity Pauli
#»

I . Therefore, we can consider all Pauli exponential sequences as having an

identity element EI =
#»

I (0). This identity element does not change the meaning

of the circuit, so we can do so without loss of generality. Since
#»

I commutes with

any Pauli string, ρ
(

#»

I
)
= ∅. By the Pauli DAG Merging Theorem we therefore
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conclude Ej can be cancelled iff ρ
(

#»

P
)
= ∅ and

#»

P
#»

I =
#»

P is a stabiliser. ■

Finally, we get the following lemma of the number of times we need to perform

cancellations.

Lemma 32: Let E = (E1, · · · , En) be a Pauli exponential sequence with associated

Pauli DAG D = (V, A), and |ψ⟩ be a Clifford state. After exhaustive applications of

the Pauli Merge Rule, at most a single Pauli exponential in E can be cancelled.

Proof of Lemma: If no Pauli exponentials can be cancelled initially, we are

done. Otherwise, this follows directly Lemma 31. Every Pauli exponential Ei =

#»

P (α) that could initially be cancelled has ρ
(
vj
)
= ∅ and

#»

P is a stabiliser of |ψ⟩.

These all satisfy the conditions of the Pauli DAG Merging Theorem. Therefore,

exhaustively applying the Pauli Merge Rule results in a single Pauli exponential

that can be cancelled. ■

3.4 Reducing Pauli Strings

Once we wish to synthesise our Pauli DAG into a circuit, the number of Clifford

gates in the synthesised circuit relies on the Pauli string in the Pauli exponentials

being synthesised. Therefore, we can apply the Product Rotation Lemma before

synthesis to reduce the number of synthesised Cliffords. As part of the synthesis,

it makes sense to do so in mutually commuting groups. We need the following

lemma to maintain the groups while applying the Product Rotation Lemma.

Lemma 33: Let E = (E1, · · · , En) be a Pauli exponential sequence such that for any

Ei, Ej ∈ E, EiEj = EjEi, and |ψ⟩ be a Clifford state. Applications of the Product Rota-

tion Rule maintain the mutually commuting property iff the stabiliser applied commutes

with all members of E.
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Proof of Lemma: As every Pauli exponential commutes, any permutation of

E, E′ satisfies C (E) = C (E′).

(⇒)

Without loss of generality we can apply the Product Rotation Lemma to E1 =

#»

P (α). Let
#»

S be a stabiliser of |ψ⟩, such that
#»

S
#»

P =
#»

P
#»

S and ∀Ei =
#»

Q (β) ∈ E,(
#»

P
#»

S
)

#»

Q =
#»

Q
(

#»

P
#»

S
)

. Fix any Ei =
#»

Q (β) ∈ E, we get the following.

#»

Q
#»

S =
#»

Q
#»

P
#»

P
#»

S

=
(

#»

Q
#»

P
) (

#»

P
#»

S
)

=
(

#»

P
#»

Q
) (

#»

P
#»

S
)

=
#»

P
(

#»

Q
(

#»

P
#»

S
))

=
#»

P
((

#»

P
#»

S
)

#»

Q
)

=
(

#»

P
#»

P
) (

#»

S
#»

Q
)

=
#»

I
(

#»

S
#»

Q
)

=
#»

S
#»

Q

(⇐)

Let
#»

S be a stabiliser of |ψ⟩ such that ∀Ei =
#»

P (α) ∈ E,
#»

S
#»

P =
#»

P
#»

S . Fix any two

Ei =
#»

P (α) , Ej =
#»

Q (β) ∈ E. We can consider any permutation E′ of E such that
#»

P appears at the start. In this case, E′ is directly after |ψ⟩ so we can apply the

Product Rotation Lemma resulting in
#»

P
#»

S . Finally, we must show that the new

60



Pauli commutes with
#»

Q.

#»

Q
(

#»

P
#»

S
)
=

(
#»

Q
#»

P
)

#»

S

=
(

#»

P
#»

Q
)

#»

S

=
#»

P
(

#»

Q
#»

S
)

=
#»

P
(

#»

S
#»

Q
)

=
(

#»

P
#»

S
)

#»

Q

■

Considering Clifford states, we represent the stabilisers using q Pauli stabiliser

generators. Therefore, we need to be able to find a new generating set of Pauli

stabilisers whose group always commutes with an individual Pauli exponential.

Using this observation, we must find Pauli stabiliser generators that commute

with an entire group.

Lemma 34: Consider a set of q Pauli stabiliser generators
#»

S1, ...,
# »

Sn and a Pauli expo-

nential
#»

P (α) such that at least one member of the group spanned by the generators does

not commute with
#»

P (α). There is a new set of Pauli stabiliser generators
#  »

Q1, ...,
#        »

Qq−1

whose group contains all members of the original group that commute with
#»

P (α).

Proof of Lemma: Let A be the subset of stabiliser generators that do not com-

mute with
#»

P (α). Since at least one group member does not commute with
#»

P ,

|A| ≥ 1.

First, we can look at the case where |A| = 1, A =
{

#»

Q
}

. We show that any

product of the stabiliser generators of the group that includes
#»

Q does not com-

mute with
#»

P (α). If this is true and all members without
#»

Q do commute with
#»

P (α), then
#»

Q can be removed from the generators. Let
#»

S =
#»

Si · · ·
#»

Sj where
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#»

Sk /∈ A be an arbitrary member of the group without the generator
#»

Q.

#»

P
(

#»

S
#»

Q
)
=

#»

P
#»

Si · · ·
#»

Sj
#»

Q

=
#»

Si · · ·
#»

Sj
#»

P
#»

Q

= − #»

Si · · ·
#»

Sj
#»

Q
#»

P

= −
(

#»

S
#»

Q
)

#»

P

#»

P
#»

S =
#»

PSi · · · Sj

=
#»

Si · · ·
#»

Sj
#»

P

=
#»

S
#»

P

This confirms that our new group satisfies the conditions. For the case where

|A| > 1, A =
{

#  »

A0, ...,
#  »

Ak

}
we recognise that the product of any two members

of A gives a Pauli string that commutes with
#»

P . Using this knowledge, we

construct a new generating group as follows.

G =
#»

Si, ...,
#»

Sj,
#  »

A0
#  »

A1, ...,
#  »

A0
#  »

Ak,
#  »

A0

We can observe that the group generated by G is the same as the original group,

as all generators can be recovered. However, in this new group, all pairs from

A =
{

#  »

A0, ...,
#  »

Ak

}
now commute with

#»

P so we are back to the original case where

|A| = 1, A =
{

#  »

A0

}
. ■

The consequence of this lemma is that it gives rise to an algorithm where we

can access a generating set of the stabiliser group of a Clifford state after a series

of Pauli exponentials. This generating set allows us to repeatedly apply the

Product Rotation Lemma to change the Pauli exponentials in later groupings
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without checking commutativity with a series of Pauli exponentials for every

applied Pauli stabiliser.
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Chapter 4

Design

The goal of this project is not only to investigate the theory behind applying the

Product Rotation Lemma in the context of general circuits but also to demon-

strate how practical this is as a technique. A software design is presented here

with implementation details given in Chapter 5 of an end-to-end compiler to

demonstrate the effectiveness and practicality of the technique. A common cir-

cuit representation is Quantum Assembly (QASM), a low-level assembly-like

language for describing Quantum circuits. The most common implementation

of QASM is in the form of OpenQASM, a continually updated open-source

standard created by Qiskit [9]. This compiler takes QASM as input and out-

puts optimised QASM. The results of this software system are shown in chapter

Chapter 6. The decision to design an end-to-end compiler allows us to see the

practical applications of this method within a complete optimisation pipeline.

It is hard to say what the new technique adds without other components to

the compiler. However, with additional methods, it is easy to toggle on and

off different elements to observe the benefits gained. We choose this style of

a QASM-to-QASM compiler to allow a wide range of benchmark circuits and
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applications to all circuits.

It is crucial to keep the metrics we are looking to optimise in mind during the

design of a system. The most important metric to consider is the non-Clifford

count. This metric is the number of non-Clifford gates that appear in the cir-

cuit after re-synthesis. The next most impactful metric we will consider is the

final circuit’s two-qubit count. For our context, this is the number of CX gates.

Alongside the number of each type of gate, we also wish to minimise the depth

required in the final circuit of non-Clifford and CX gates. Finally, we want to

minimise the circuit’s total gate number and total gate depth. The motivation for

these three metrics comes from the cost of implementing each type of gate and

the time taken to apply gates sequentially. Implementing a non-Clifford rotation

is several orders of magnitude more expensive than any Clifford gate under the

fault-tolerant model [22]. Implementing a CX gate is an order of magnitude

more costly than a single qubit gate [19].

4.1 Internal Representation

A vital aspect of the optimisation procedure is its internal representation. For

this, we need two data structures, one to handle the Pauli DAG for the circuit

and the other to process the Cliffords. A suitable choice for this Clifford com-

ponent is a unitary tableau while the Cliffords are moving through the circuit

and a stabiliser-destabiliser tableau for describing the Clifford as a state [1]. The

unitary tableau is a space-efficient data structure that defines a Clifford unitary

entirely by tracking an input and output set of Pauli strings. The stabiliser-

destabiliser tableau tracks the stabilisers of the |0⟩⊗q state through a series of

tableau updates leading to a new generating set of stabilisers for a full state. The
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destabilisers of a state are a set of Pauli generators that complete the group Pq.

By the Gottesman-Knill theorem [14], the stabilisers of a Clifford state uniquely

identify it, allowing us to reconstruct the Clifford state during synthesis [1, 24].

As a result of these choices, we refer to the internal representation as the Tableau-

Pauli-DAG form.

4.2 The Pipeline

As mentioned previously, the input to the system will be in the QASM format.

From here, the circuit needs converting to Tableau-Pauli-DAG; optimisations are

applied before the final QASM is synthesised. The main steps of the procedure

are outlined below.

• Conversion to Tableau-Pauli-DAG form

• Repeated application of the Pauli DAG Merging Theorem to the Pauli DAG

• Optimising the Pauli DAG further by recognising Clifford Pauli exponen-

tials

• Pauli Exponential Synthesis

– Grouping into mutually commuting sets of Pauli exponentials

– Reduction of Pauli strings within mutually commuting sets of Pauli

exponentials

– Diagonalisation of mutually commuting groups

– Synthesising remaining Phase polynomials
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• Clifford Synthesis

– Stabiliser-destabiliser tableau synthesis

– Translating Cliffords to Pauli exponentials to apply Pauli DAG mer-

ging optimisations

– Final optimised Clifford synthesis

4.3 Tableau-Pauli-DAG Form

Initially, we need to convert the input into a processable form, requiring the

transformation of the circuit using Theorem 1. This transformation will result

in a list of Clifford gates and a series of Pauli exponentials. I.e., the circuit will

be in Clifford-Pauli-Exponential form. From this point, we need to convert the

sequence of Pauli exponentials into a Pauli DAG and use both the stabiliser-

destabiliser tableau and unitary tableau data structures to store the Cliffords.

4.3.1 Stabiliser-Destabiliser Tableau

Scott Aaronson and Daniel Gottesman present the stabiliser-destabiliser tableau

algorithm in [1]. The complete algorithm is presented as a series of black box

operations, so we give an alternative presentation here.

We begin with an initial state. By convention, we start with the state |ψ⟩ = |0⟩⊗q.

Applying a Z Pauli to each qubit will not change the resulting state, so we

initially have q state stabilisers. By the definition of stabilisers, the product of

any two stabilisers is also a stabiliser. As the q stabilisers for the circuit are

linearly independent, we can conclude we have a group of 2q stabilisers. Since
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every Clifford state has exactly 2q stabilisers, we conclude that we know all

stabilisers of the circuit.

We can now consider applying a Clifford C to the state and attempting to find

the stabiliser of the new state.

C|ψ⟩ = C
#»

S |ψ⟩

= C
#»

S C†C|ψ⟩

=
(

C
#»

S C†
)

C|ψ⟩

This equation tells us that for a stabiliser
#»

S of the state, we can apply any Clif-

ford to the state and obtain an updated stabiliser simply by conjugating the

original stabiliser by the Clifford. As demonstrated in Lemma 18, Lemma 19,

and Lemma 20, where
#»

S is a Pauli string, this is easy to calculate. We can per-

form this operation for every initial stabiliser generator until we are left with a

new set of generators. We know this new set of generators must also span a

group of size 2q since linear independence is preserved.

As an example, consider the two-qubit system initialised by the |00⟩ state. This

state initially has the stabiliser generators ZI and IZ. We can apply the gate

CX1,2 to this state. Using Lemma 20, this transforms the stabiliser generators

such that ZZ and IZ are the new generators. Then, applying H2 to the state

changes the stabilisers such that the new generators are now ZX and IX.

We can look at a worst-case scenario where we have O (n) Pauli exponentials

that need to be conjugated by O (n) Clifford gates. Each conjugation takes con-

stant time, assuming the Pauli string has constant time random access. The
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cost of including a single Clifford gate into the tableau takes time O (q), where

q is the number of qubits. Therefore, including O (n) Clifford gates into the

tableau takes time O (q · n). Overall, this gives the procedure a time complexity

of O
(
n2 + q · n

)
, quadratic in the number of gates in the circuit. To counter this,

we can make use of a unitary tableau.

4.3.2 Unitary Tableau

Unlike a state tableau, where we only wish to know what happens when conjug-

ating the stabilisers of the original state, for a unitary tableau, we need to know

the output of conjugating any Pauli string. This can be achieved by taking an

ordered set of generators for the full Pauli group over the inputs and giving the

action on each of these in order, allowing combinations by Lemma 17. By unit-

arity, these actions are generators of the full Pauli group over the outputs, so we

may refer to them as the Zi and Xi generators. The idea is that conjugating the

input Pauli strings through the Clifford circuit results in the associated output

Pauli strings (and vice versa). To clarify this, we can work through an example

over the two-qubit system to compute the unitary tableau for the following cir-

cuit.

⊕ H ⊕

⊕

S

S

Initially, we start with the empty circuit; for simplicity, we will focus on the

X1 generators, i.e., where the input and output generators are initially both X1.

We split the diagram by the input and output generators, labelled I and O,

respectively.
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X X

I O

Our goal is to fix the input generators and find the output generators, so we

assume this tableau appears at the start of the circuit. Therefore, we wish to

push each gate in the circuit into the central portion by conjugation with the

outputs. We consider the first CX gate and apply Lemma 20 to pull it into the

middle.

X X

I O

⊕
=

X X

I O

⊕ X

We can repeat this for the remaining gates in the circuit using Lemma 18,

Lemma 19, and Lemma 20 to give this final form.

X Z

I O

⊕ YH ⊕

⊕

S

S

From this equation, we conclude that the output stabiliser for the X1 input sta-

biliser is ZY. We can repeat this process for each input stabiliser giving the

following table, the unitary tableau for the circuit1. We include the signs pro-

duced during the process in the tableau for usage during the Product Rotation

Lemma applications.

1We can note that the output generators for the Z1 and Z2 correspond to some choice of
stabiliser generators, and output generators for the X1 and X2 to some choice of destabiliser
generators of the circuit applied to the |0⟩⊗q state
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Input Output

X1 +ZY
X2 +ZI
Z1 +ZZ
Z2 −XX

To ensure that the input stabilisers remain unchanged, we note that Cliffords

can only be included by conjugation with the outputs. However, the algorithm

pushes the unitary tableau from the end of the circuit to the start, accumulat-

ing Cliffords as it goes. Therefore, we need a clear definition of how to push

Cliffords through the tableau before they can be included. One such method is

to represent the Clifford gates as Pauli exponentials. If we can then move these

through the tableau, then can we synthesise the resulting Clifford Pauli expo-

nentials and include the gates into the tableau from the correct side. First, we

define Pauli exponentials for the generators.

Lemma 35 (Cliffords as Pauli Exponentials): The following equations hold.

Si ≈
#»

Zi

(π

2

)
Hi ≈

#»

Zi

(π

2

)
# »

Xi

(π

2

)
#»

Zi

(π

2

)
CXi,j ≈

#      »

ZiXj

(π

2

)
#»

Zi

(
−π

2

)
# »

Xj

(
−π

2

)

Proof of Lemma: These can be easily checked numerically. ■

For pushing a Pauli exponential
#»

P (α) through the tableau, we first make the

simplifying assumption that Q ∈ {I, Z, X} for Q ∈ #»

P . We do this as, for our

context, Y will not be appearing in Pauli exponentials being pushed through a

unitary tableau. Next, we multiply the output stabilisers for all input stabiliser

generators in
#»

P . In our example above, if we wished to push
#    »

ZX through the

unitary tableau, we multiply the output stabilisers corresponding to Z1 and X2,
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e.g.,
#   »

ZZ and
# »

ZI to give
# »

IZ.
# »

IZ is then the new string for the Pauli exponential.

In other words, letting T be the unitary tableau above, the following holds.

TZX(α) = T IZ(α)

To push a Pauli exponential through the unitary tableau, we incur a cost of

O
(
q2), since q Pauli strings of length q are multiplied together in the worst

case. To synthesise a Clifford Pauli exponential creates O (q) gates from the

Pauli exponential synthesis seen in Chapter 2. Each of these Cliffords taking

O (q) to include in the tableau using Lemma 18, Lemma 19, and Lemma 20

over every generator. This gives a running time of O
(
q2 · n

)
for translation. In

our case, all Pauli exponentials pushed through the tableau contain at most 2

active letters. Therefore actual cost of commuting Cliffords through the unitary

tableau becomes O (q · n). However, we still have a worst-case cost of O
(
q2 · n

)
for inclusion.

By initially placing this tableau at the end of the circuit, we can push the circuit

through it collecting Cliffords until the start of the circuit is reached. At this

point, since we are using the |0⟩⊗q state, our stabilisers are the outputs corres-

ponding to Z1, . . . Zq. We now define the following rules for including Clifford

gates and pushing a Pauli exponential through a tableau.

4.3.3 Pauli DAG

The Pauli DAG needs to allow for the following operations.
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• Adding a Pauli

• Removing a Pauli

• Merging two Paulis if they are compatible to be merged

From the Pauli DAG Merging Theorem, we need to ensure that the direct parent

sets ρ
(

#»

P
)

are maintained for every Pauli. Maintaining these ρ
(

#»

P
)

sets allows

us to make efficient and easy comparisons to calculate whether two Paulis expo-

nentials can be merged in the DAG. We can track both the forward and edges in

the DAG to efficiently track the sets during insertions and removals.

From the Pauli DAG’s definition, edges only go from the Pauli exponentials ap-

pearing earlier to those later in the circuit. As a result, it is natural to enforce an

insertion order from the last to the first. The insertion procedure then becomes

simple, presented in the pseudocode below.

void InsertPauliExponential(P: PauliExponential) {
ExistingPaulis.add(P)
for(Q in ExistingPaulis) {

if (
#»

P
#»

Q ̸= #»

Q
#»

P) {
AddEdge(P, Q)

}
}

}

To remove a Pauli exponential from a graph, we must ensure that we remove

all edges incident to the Pauli exponential and that the ρ relation is maintained.

Since we define our edge set by commutation, removing a Pauli exponential does

not affect any commutation for the remainder of the graph. Not changing com-

mutation simplifies the Pauli exponential removal algorithm while maintaining

our definition of ρ.
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void RemovePauliExponential(P: PauliExponential) {
ExistingPaulis.remove(P)
for (e in BackEdges(P)) {

RemoveEdge(e)
}
for (e in ForwardEdges(P)) {

RemoveEdge(e)
}

}

Finally, the two conditions of the Pauli DAG Merging Theorem for merging Pauli

exponentials are that their product is a state stabiliser and that their parent sets

ρ in the DAG are equal. We already know the ρ sets for every Pauli exponential

in the graph, so it remains to maintain them after such a merge. Since a Pauli

exponential is being removed and the other only changing phase, the graph’s

connectivity does not change. The constant connectivity simplifies the merging

algorithm to the following.

void MergePauliExponentials(P: PauliExponential, Q: PauliExponential,
T: StabiliserTableau) {

if (!T.CanCreate(
#»

P
#»

Q)) {
return

}
if (BackEdges(P) ̸= BackEdges(Q)) {

return
}
P.CombineWith(Q, T)
RemovePauliExponential(Q)

}

Since the product
#»

P
#»

Q may produce a negative sign, we must pass the tableau to

the combination procedure.
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4.4 Pauli DAG Optimistaion

There are a few ways to optimise the Pauli DAG once it is created. The primary

method will be through repeated applications of the Pauli DAG Merging The-

orem. However, we can observe that when merging two phases, we may end

up with a Clifford. This Clifford can then be pulled to the start of the circuit

and included in the stabiliser-destabiliser tableau. Finally, it may be possible to

apply Lemma 22 to remove a Pauli exponential entirely.

4.4.1 Merging Pauli Exponentials

Applications of the Pauli DAG Merging Theorem can allow the merging of Pauli

exponentials in the DAG. We also note that by Theorem 3, none of these merges

will cause additional Paulis to be able to merge that could not before. Since no

additional merges can occur, we can do a single pass of the Pauli DAG in any

order. The only time further iterations will need to occur is when Cliffords are

pulled out. By transitivity from Theorem 4, we also see that it does not matter

which of the two the resulting Pauli exponentials remains. These facts allow us

to merge greedily without worrying about disrupting later merges.

One such method is to check all pairs of Pauli exponentials. This method con-

siders O
(
n2) pairs where n is the number of Pauli exponentials. Another ap-

proach is to create a map from sets of ρ to Pauli exponentials. This method

has the advantage of having efficient checks by taking advantage of the transit-

ive properties of merging. However, the construction of such a map itself takes

O
(
n2) since the key is of size O (n), and n Pauli exponentials are to be inserted.

Therefore, checking all pairs was chosen as the more reliable and simple option
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for this design.

As far as is known, we cannot do better than this complexity in the worst case.

However, we can improve substantially by recognising some properties of the

ρ set. We must choose between checking all other nodes that appear before or

after the considered node in the topological ordering. By checking forwards,

we can never gain prior knowledge about later parent sets that would allow us

to shortcut the checking. However, by checking backwards, we can note that

we only need to check as far as it takes for a Pauli exponential that does not

commute with our Pauli exponential to appear. Since we can merge only if

the ρ sets are the same, by checking backwards, the first Pauli exponential that

does not commute will be in the parent set of the considered Pauli exponential.

However, all earlier will not contain this Pauli exponential in their parent set.

In the worst case, this optimisation does not change our overall complexity. To

see this, we can consider the instance where all Pauli exponentials commute but

no products of their Pauli strings stabilise the initial Clifford state. In this case,

no Pauli exponentials can merge, but we also cannot shortcut our check. How-

ever, in real-world circuits, these conditions are unlikely, and it would likely be

clear from their definition that this technique is not well suited for optimisation.

As a result, this technique was chosen for the compiler’s design.

A vital component of the merging conditions is that the product of the two Pauli

strings of the exponentials is a stabiliser for the circuit. As shown in [1], the

tableau presents the q stabiliser generators for the circuit, which we can use to

perform this check. We must find a stabiliser subset such that their product

equals that of the Pauli strings up to a negation. We can represent each Pauli

string by a vector, as shown below. This widley used encoding of the Pauli
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matrices is known as the binary symplectic representation in literature [1, 24, 30].

I =

[
0
0

]
Z =

[
0
1

]

X =

[
1
0

]
Y =

[
1
1

]

Then, we can recognise that the summation of any two of these vectors under

the field F2 is equal to their product up to a constant factor. This fact reframes

the problem as finding a linear combination under the field F2. This technique

allows us to pack our stabilisers into a 2q × q matrix and perform gaussian

elimination.

To make this more apparent, we consider a 3-qubit Clifford state |ψ⟩ with sta-

biliser generators
#      »

ZZI,
#         »

XXX, and
#      »

ZIZ. We wish to know if we can produce a

stabiliser ± #       »

XYY. Recall that since we only care about changing the Pauli string

in the Pauli exponential, the sign of the Pauli string does not affect this. We pack

these stabiliser generators into a matrix as follows.

S =

Z X Z
Z X I
I X Z


Using the binary symplectic representation, this becomes.

S =



0 1 0
1 0 1
0 1 0
1 0 0
0 1 0
0 0 1
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We can write out the target in a similar form to get the following equation.



0 1 0
1 0 1
0 1 0
1 0 0
0 1 0
0 0 1



x1

x2

x3

 =



1
0
1
1
1
1


This is an underdetermined set of linear equations so is not gauranteed to have a

solution, but performing Gaussian elimination under F2 results in the following

solution. 

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0



x1

x2

x3

 =



1
1
1
0
0
0


From here we can read off the solution as x1 = 1, x2 = 1, x3 = 1. Verifying

through multiplication, we see that
#      »

ZZI
#         »

XXX
#      »

ZIZ equals
#       »

XYY up to a negation.

Once the unknown vector is found, it remains to take the product of the sta-

bilisers. This product still needs to be done as we only have the product up to

a negation. Since they commute, their product will never contain an imaginary

component. This method gives an O
(
q3) algorithm to check whether we can ap-

ply the merge rules and identifying any sign updates that need to occur during

the merge.
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4.4.2 Pulling Out Cliffords

The Cliffords that may appear can be pulled to the front of the circuits by The-

orem 1. However, since we are in the context of the Pauli DAG, we can do

slightly better. Instead of choosing some topological ordering and then push-

ing the synthesis of each of the Cliffords through the circuit, we can recognise

that we only need to move the Clifford past the ρ set of the Clifford. This fact

holds because everything else in the circuit can either appear afterwards or will

commute with the Clifford gate set.

Once Cliffords have been pulled out of the Pauli DAG, it splits the circuit into

two sections, those appearing before the Clifford and those appearing after the

Clifford labelled EB and EA respectively.

EB EAC = EB′ EAC

It is clear that connectivity does not change within EA. We can also see that the

connectivity within EB is the same as in EB′ from the following lemma.

Lemma 4.1. Let
#»

P (α),
#»

Q (β) be Pauli exponentials such that
#»

P
#»

Q =
#»

Q
#»

P. Letting C

be a Clifford unitary, then
(

C
#»

PC†
) (

C
#»

QC†
)
=

(
C

#»

QC†
) (

C
#»

PC†
)

.

Proof of Lemma:

(
C

#»

PC†
) (

C
#»

QC†
)
= C

#»

P
#»

QC†

= C
#»

Q
#»

PC†

=
(

C
#»

QC†
) (

C
#»

PC†
)
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■

However, the connectivity between the first and second groups can change due

to the operation, as shown below.

#»

X (α)
#»

Z
(
−π

2

)
#»

Y (β) =
#»

X (α) S† #»

Y (β) =
#»

X (α)
#»

X (β) S†

This connectivity change means we must reconstruct the edges of the graph to

ensure our ρ sets are correct. It also changes the stabilisers that can be applied to

the second group, potentially allowing additional merges. Since the stabilisers

are conjugated in the same way as the Pauli exponentials in the first group, we

can find no further merges within the first group.

4.4.3 Cancelling Pauli Exponentials

When cancelling a Pauli exponential, we can apply Lemma 22. Assuming we

perform as many merges as possible up front, there will only ever be a single

Pauli exponential in the circuit that we can cancel from Lemma 32. Using the

simple properties of Lemma 31, we can remove any Pauli exponentials with a

phase of 0 and perform any cancellations in a single pass through any topo-

logical ordering. Any Clifford in the parent set of a Pauli exponential with a

phase of 0 is removed before we check if the Pauli exponential can be cancelled.

Since Pauli exponentials with phase 0 equal the identity, we also do not need to

recompute ρ sets.
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4.5 Pauli Exponential Synthesis

Once optimised, we finally need to synthesise the Pauli exponentials that still

exist in the circuit. A common technique is partitioning the Pauli exponentials

into mutually commuting groups that still obey a topological ordering. Then the

groups are converted into phase polynomials by conjugating with some Clifford

circuit [8, 36]. Finally, the phase polynomials are synthesised using some phase

polynomial synthesis techniques such as Gray-Synth [4]. In this section, we

discuss these techniques in more depth.

4.5.1 Choosing Groupings

Since we need to maintain a topological ordering while finding mutually com-

muting groups, we can use a greedy technique of deconstructing the Pauli DAG.

Initially, the Pauli DAG will have a set of k Pauli exponentials that have empty

ρ sets. These empty sets imply the existence of a topological ordering in which

they appear as the first k elements. Since all of their ρ sets are empty, all of

them commute with each other by definition. As a result, we can choose this as

the first grouping. We can then remove these Pauli exponentials from the Pauli

DAG and repeat this process until the Pauli DAG is empty. We are left with sets

of mutually commuting Pauli exponentials.

Greedy grouping techniques like these are quite common in optimisation tech-

niques [8]. In this context, we have a strong justification for it. Had no mergings

occurred, we claim that any two Pauli exponentials that would have merged in

the Pauli DAG would appear in the same group after the grouping phase. This

is easy to see by considering the ρ condition of the Pauli DAG Merging Theorem.
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If they could merge, they must have equivalent direct parent sets, so they will

both have empty ρ sets for the same grouping.

Consequently, we recognise that it does not affect the optimisation outcome of

which of the two Pauli strings we choose to remain after a merge. In the group-

ing phase, we can exchange these Pauli strings with each other using the Product

Rotation Lemma.

4.5.2 String Reductions

Once the groupings have been chosen, we can apply the Pauli Rotation Lemma

in what is referred to as the string reduction method. This method aims to im-

prove the metrics resulting from the synthesis and follows the following pseudo-

code.

void StringReductions(stabilisers: Stabiliser[],
groups: PauliExponential[]) {

for (group in groups) {
stabilisers := CommutingStabilisers(stabilisers, groups)
ReduceStrings(group, stabilisers)

}
}

The reduce strings function applies the Product Rotation Lemma using the com-

muting stabilisers to change the Pauli strings according to some metric. Since

the next steps of diagonalisation and Gray-Synth do not rely directly on the

complexity of Pauli strings, we use a heuristic scoring function as a metric. For

this, we first need to define the concept of size. We let k be the number of non

I letters in the Pauli string, and l be the number of X and Y letters in the Pauli

string. By looking at the synthesis of a Pauli exponential on its own as a result of
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Lemma 5, we can see that the Pauli exponential will generate 2k CXs, 2l Clifford

conjugating gates, and a single RZ gate.

Considering our priority of reducing the two-qubit gate count metric over the

single-qubit gate count metric, we define our scoring function first to reduce the

number of non I letters. Then, we break ties by minimising the number of non Z

letters. We can encode this as a scoring function as follows. Let q be the number

of qubits, k′ and l′ be the value of k and l after the application of the Product

Rotation Lemma,

score = k − k′ +
l − l′ + q

2q

Unfortunately, this scoring function is still a heuristic since it does not consider

how the diagonalisation procedure can find a small Clifford set to conjugate the

group with or how the Gray-Synth algorithm chooses to synthesise the result-

ing phase polynomials. However, we can consider our metric of CX gate count

and overall gate count in the case of a single Pauli exponential. Regarding the

synthesis as a result of Lemma 5, maximising this score function corresponds to

minimising our metrics (recalling that the CX gate count is considered a higher

priority). This link provides a strong justification for the usefulness of this tech-

nique.

4.5.3 Diagonalisation

Diagonalisation takes in a set of Pauli exponentials and finds a Clifford such

that conjugating the set of Pauli exponentials transforms the set into a phase

polynomial. The compiler’s design uses the algorithm Alexander Cowtan et al.
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presented in [8]. We choose this algorithm as it takes extra steps to minimise the

size of the resulting Clifford unitary as much as possible.

4.5.4 Gray-Synth

Given a phase polynomial, assuming there are shared qubits in the Pauli strings,

the resulting circuit can cancel out shared CXs compared to the naïve synthesis

as a result of Lemma 5. One well-known algorithm for this procedure is called

Gray-Synth by Matthew Amy et al., introduced in [4]. Gray-Synth is a standard

algorithm used in multiple other pieces of work, so it was the natural choice for

the design of this project [8, 10, 35].

4.6 Clifford Synthesis

We can convert the stabiliser-destabiliser tableau into a circuit using a series of

gaussian elimination steps. For details on this procedure, the reader is directed

to [1] or [24]. Unfortunately, the resulting set of Cliffords is not minimal in

many cases. For example, the empty circuit is re-synthesised as a series of H

and S gates. Many Clifford optimisation techniques exist to solve a problem like

this. However, since the project aims to investigate different areas where this

technique is applicable, a variant of the merging technique was used.

4.6.1 Conversion to Pauli Exponentials

The first step for performing the optimisation technique is to convert the Clif-

ford state into a series of Pauli exponentials. Since the tableau synthesis only
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generates a series of S, H, and CX gates, we can apply Lemma 35. Other

techniques can synthesise Clifford gates into a minimal set of Clifford Pauli

exponentials [28]. However, this technique was not used due to the algorithm’s

complexity and the primary goal of seeing the effects of the new contribution.

The same merging optimisation procedure is now applicable with a few minor

alterations. We perform this optimisation using a default tableau, recalling that

this is where the ith stabiliser is Zi. Since all the Pauli exponentials in this con-

structed circuit are Clifford, pulling Clifford Pauli exponentials to the start of the

circuit does not make sense. Instead, we only pull Cliffords containing a π phase

into the tableau. We choose these Pauli exponentials because of the following

lemma.

Lemma 36: Given a Pauli exponential
#»

P (π), we have
#»

P (π) ≈ #»

P

Proof of Lemma: Using the Pauli exponential expansion of Lemma 4, we get

the following.

#»

P (π) = e−i π
2

#»

P

= cos−π

2
I + i sin−π

2
#»

P

= 0 · I − i
#»

P

≈ #»

P

■

Lemma 7 then tells us that including a Pauli string in the tableau only changes

the sign of rows in the tableau. This fact makes conversion back to a circuit

from the tableau trivial, only requiring us to check the sign of each stabiliser to

determine how to synthesise it.
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We can also note from Lemma 36 combined with Lemma 8 that removing Pauli

exponentials with a phase of π does not affect the commutation rules of the

Pauli DAG, and only affects signs. Therefore, we do not need to reconstruct the

entire Pauli DAG during removal.

4.6.2 Pauli Exponential Synthesis

When synthesising the Pauli DAG containing Cliffords, we first recognise that

the only phases of the Pauli exponentials are ±π
2 since 0 phases are removed,

and π phases are extracted to the front of the circuit. We also recognise there

only to be three types of Pauli exponential in the circuit.

#»

Zi

(
±π

2

)
# »

Xi

(
±π

2

)
#      »

ZiXj

(
±π

2

)

By the definitions given in Lemma 35, and since merges do not introduce changes

to Pauli strings, the initial phases remain. We can use these definitions to define

the following rules for synthesising each Clifford Pauli exponential. Applying

this to each Pauli exponential in the circuit gives us a smaller Clifford set to

optimise.

Lemma 37: The following equalities hold up to a global phase.

#»

Zi

(π

2

)
≈ Si

#»

Zi

(
−π

2

)
≈ S†

i

# »

Xi

(π

2

)
≈ SXi

# »

Xi

(
−π

2

)
≈ SX†

i

#      »

ZiXj

(π

2

)
≈ CXi,jSXjSi

#      »

ZiXj

(π

2

)
≈ CXi,jSX†

j S†
i

Proof of Lemma: These follow directly from Lemma 35 and Definition 2.9. ■
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4.6.3 Single Qubit Optimisation

Once the Cliffords have been reduced, we still wish to perform any single qubit

optimisations. By the Euler decomposition of rotations, any single qubit unitary

can be converted into a series of Z-rotation, then X-rotation, then Z-rotation.

I.e., U = RZ (α) RX (β) RZ (γ). Since we are outputting U3 gates in our final

circuit, we can shift any gates not blocked by CX gates as far left as possible and

compress the final result into a U3 gate. The rules for including an angle into a

U3 gate are as follows.

Lemma 38: The following equations hold.

RZ (δ) RZ (α) RX (β) RZ (γ) = RZ (α + δ) RX (β) RZ (γ) (4.1)

RX (δ) RZ (α) RX (0) RZ (γ) = RZ (0) RX (δ) RZ (γ + α) (4.2)

RX (δ) RZ (α) RX (π) RZ (γ) = RZ (0) RX (π + δ) RZ (γ − α) (4.3)

RX (0) RZ (α) RX (β) RZ (γ) = RZ (α) RX (β) RZ (γ) (4.4)

RX (π) RZ (α) RX (β) RZ (γ) = RZ (−α) RX (π + β) RZ (γ) (4.5)

And the following equation holds for δ = ±π
2

RX (δ) RZ (α) RX
(
±π

2

)
RZ (γ) = RZ (−δ) RX

(
α − δ ∓ π

2

)
RZ

(
γ ∓ π

2

)
(4.6)

Proof of Lemma: These can be easily checked numerically. ■

To demonstrate this method, we begin with the Euler decomposition of the H

gate, i.e., RZ
(

π
2

)
RX

(
π
2

)
RZ

(
π
2

)
then show how to include the following series
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of gates into the following unitary.

RZ
(π

2

)
RX

(π

2

)
RX (π)

We will denote the generic single-qubit unitary U = RZ (α) RX (β) RZ (γ) as

U = (α, β, γ). This gives the following:

RZ
(π

2

)
RX

(π

2

)
RX (π)

(π

2
,

π

2
,

π

2

) (4.5)
= RZ

(π

2

)
RX

(π

2

) (
−π

2
,−π

2
,

π

2

)
(4.6)
= RZ

(π

2

) (
−π

2
,−π

2
, π

)
(4.1)
=

(
0,−π

2
, π

)
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Chapter 5

Implementation

This chapter details the implementation decisions of the project as well as any

difficulties reached throughout development. The main elements of algorithms

are held within the design chapter of this report, but we will discuss specific

details here. The main goals of the compiler are to try and match the meaning

of the original circuit where possible while mapping to the same form.

5.1 staq

C++ was chosen as the base language for implementing the compiler for a mix-

ture of its high efficiency and support for existing functionality. One of the more

complex algorithms in the process is the Gray-Synth algorithm. The staq lib-

rary was in part developed by the original creators of the algorithm, giving an

efficient implementation for use in the new compiler’s pipeline.

Alongside Gray-Synth, another complex component is parsing into a standard
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form. staq provides functionality to translate any input QASM file to consist

only of U3 and CX. Translating the input to this form reduces the complexity of

processing the input for the compiler rather than considering all gate types. An

alternative would be to fix a smaller gate set. However, this technique allows the

compiler to be used across any circuit. Since part of the optimisation procedure

is converting to Pauli exponentials and a stabiliser tableau, changing the gate set

to this form does not affect the compiler’s output.

5.2 Parsing the QASM Files

staq offers a plethora of tools for working with QASM abstract syntax trees

(ASTs). However, in this case, the main computation steps take place in custom

data structures. As a result, a standard way of converting the input file into a

local form must occur. staq allows all gate definitions to be inlined, leaving us

with U3 and CX gates. From here, we wish to generate as few internal gates

as possible. We can recognise a few forms such as U3
(

π
2 , 0, π

)
as represent-

ing Hadamard gates, and U3
(
θ,−π

2 , π
2

)
for RX gates to simplify this process,

but generally use the form U3 (θ, ϕ, λ) ≈ RZ
(
λ − π

2

)
RX (θ) RZ

(
ϕ + π

2

)
. This

method allows us to extract a series of RZ, RX, and CX gates.

Given a gate set, we recognise all RX and RZ gates with non-Clifford phases.

These gates are represented as single-qubit Pauli exponentials that we can use

in the algorithms for building the data structures. All other gates are Clifford

gates, so we store them as just that.
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5.3 Qubits Management

Since we wish to have the output format have a similar meaning to the original

circuit, it is essential to allocate identical qubits with the same names in the

correct ordering. To do this, we can implement a qubit manager that stores the

original information about the qubit allocations. When a qubit reference from

the QASM file appears, this component provides an integer representation for

the qubit to reduce memory usage.

5.4 Conversion to Tableau-Pauli-DAG Form

As discussed in the design chapter, there are two techniques for converting

to this form: pushing a full tableau back through the circuit vs pushing indi-

vidual Cliffords back. The complexity of pushing the entire tableau through

is O
(
q2 · n

)
compared to O

(
n2 + q · n

)
. In most cases, q ≪ n, so O

(
q2 · n

)
is

cheaper than O
(
n2 + q · n

)
. However, where q2 > n, we see that O

(
q2 · n

)
dom-

inates O
(
n2 + q · n

)
. In other words, for smaller circuits with large tableaus,

more specifically where q2 > n, the cost of pushing through a tableau is far

greater, so the simple Clifford pushing technique should be used.

We can take this further by recognising that we can push the first O
(
q2) Clif-

fords through Pauli exponentials as, with lower complexity and constants, the

technique is more efficient. Including a single Clifford into the unitary tableau

being pushed through requires a decomposition into Pauli exponentials. Then,

the Pauli exponentials must be commuted with the tableau and synthesised back

into Cliffords. Finally, we must include the gates in the tableau.
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Once these first O
(
q2) Clifford gates are pushed through the circuit, a tableau

can be placed just before them in the circuit. The Clifford gates can be pulled

into the tableau freely without extra computation. From an implementation

perspective, we track the first O
(
q2) Clifford gates, iterating backwards through

the list of gates. When coming across any Pauli exponential, we conjugate it

with all the Clifford gates we have currently seen. Once more Clifford gates are

found, we include all Clifford gates into a tableau and continue by pushing the

tableau to the start of the circuit.

We can add Pauli exponentials to the Pauli DAG as soon as they are pushed

through the tableau or are conjugated by all Clifford gates appearing after them.

The construction algorithm set out in Section 4.3.3 noted that reverse construc-

tion is favourable, so we need not wait until all are processed before inclusion.

5.5 Merging Algorithm

The next step of the implementation is handling merges. Once we have con-

structed the Pauli DAG, the number of checks we need to perform is n(n−1)
2 for

each merging iteration (each pair). In many cases, we can observe that many

circuits have few merges that occur beyond the start of the circuit. As a result,

a majority of the checks will not cause any change to the Pauli DAG. Therefore,

we can perform all comparisons of parent sets to find merges and store merges

to be completed at the end.

This observation gives a framework that can be trivially parallelised. We can

define an ordering to the nodes we wish to consider before placing every node

into a concurrent queue shared between workers in that order. Then, each

worker takes a batch of Pauli exponentials to consider. The worker only con-
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siders pairs with Pauli exponentials appearing later in the fixed ordering for

each batch. We can choose any topological order for simplicity, providing a

reasonably balanced workload between workers.

Once a worker identifies two Pauli exponentials that can merge, it stores any

information required for that merge, including the sign of the stabiliser that

causes the merge. That Pauli exponential is removed from later consideration as

we will have merged it. We note that this does not cause us to miss any merges

by the transitivity of merging. All information is stored thread locally, and once

all workers have finished, the main process can apply all merges found. After

performing each merge, we must remove the later node. Otherwise, removing

the later node from consideration while finding pairs is not safe.

Unfortunately, this method does come with overhead if there is a Pauli expo-

nential that can be merged with many others. Assuming the node merges with

k elements, then by transitivity, if different workers process all k elements, each

will find it can merge with later Pauli exponentials. This gives k(k−1)
2 impossible

merges being stored. Thankfully, we miss a lot of these extra merges in practice

by choosing our ordering as a topological ordering and recognising that most

merges will be close to each other in the ordering.

5.6 Pauli DAG

A large memory consumer is the storage of both forward and back edges needed

for maintaining ρ sets. However, this is not entirely true. During the merging

phase, we do not change whether or not two Pauli exponentials can merge. That

only occurs when Clifford gates are pulled out of the circuit. However, the entire

DAG requires reconstruction when Clifford gates are pulled out of the circuit.
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Therefore, we can choose not to store the forward edges and only remove the

back edges to remove nodes once merges occur. This memory optimisation does

cause an increase in the cost of comparisons between back edge sets for instances

where there are many merges. Still, it cuts down on the number of edges created

initially and the cost of removing nodes.

This memory optimisation changes how we find groups and perform cancella-

tions. First, we can recognise that cancellations can only occur for nodes that

do not have parents in the Pauli DAG. This group corresponds to the first set of

groupings. Then, we can notice that since we still have back edges, we have a

record of all commutation between Pauli exponentials. Finally, we need to recog-

nise that cancellations must occur before a later node has its grouping decided.

Otherwise, a Pauli exponential that should be in the first grouping may appear

later as the first grouping contains a cancellable Pauli exponential that does not

commute with it. Putting all of this together, we get the following procedure.

Groups Groupings() {
Groups := [[]]
T := tsort()
for (t in T) {

for (g in Groups.reverse()) {
if (t commutes with all in g) {

current = g
} else {

break
}

}
if (current is the first group) {

if (Cancel(t)) {
continue

}
}
if (current = []) {

Groups.append([])
}
current.append(t)

}
}
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We can combine this memory-saving technique with a more memory-efficient

data structure for unordered_set to save massively on memory. We use the

sparsepp set for its high efficiency yet very low memory usage for the imple-

mentation [29].

5.7 String Reduction

For the string reduction procedure, it is unclear whether there is an efficient

algorithm that, given an initial Pauli and a set of stabiliser generators to multiply

it with, can generate the smallest resulting Pauli string. As a result, we can use

a randomised greedy algorithm to apply stabilisers to the string and take it if it

is better. We take random subsets of the stabiliser set for each Pauli exponential

and use them if they improve the score function.

5.8 Key Issues With Implementation

The most challenging problem with the implementation was ensuring the cor-

rectness of the code. It is often challenging to verify that signs are being carried

through correctly since the rules around signs are not trivial for Pauli matrix

multiplication. Thankfully, these errors were easy to spot in the integration test-

ing phase, where they could be ironed out.

95



5.9 Testing

Google Test was chosen as the library for unit testing as a reliable and well-

engineered tool with industry usage [12]. All separate components of the system

were unit tested using the Google Test, making finding errors in the implement-

ation much more straightforward.

Integration tests were written alongside unit testing to check full system correct-

ness. A subset of the benchmark data was chosen as a test verification set. A

script was then used to automatically run the compiler on the code, where the

quantum circuit library PyZX was used to compare the input and output QASM

files up to a global phase [17].
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Chapter 6

Results

This chapter details the benchmarking of the resulting compiler. First, the meth-

odology and parameters taken into consideration while benchmarking are dis-

cussed. Then, the data will be presented and discussed.

6.1 Methodology

The project’s goal is first to test the limits of this as a technique for optimisation.

Then, test the feasibility of it as a method concerning running time. Finally, see

how feasible this is across different types of circuits. As a result, we track the

following metrics.

• The gate, CX, and non-Clifford count and depth before and after optimisa-

tion

• The gate and CX counts without string reductions

• The gate, CX, and non-Clifford depth without string reductions
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• Number of trivial merges that took place

• Number of Clifford removals that took place

• Number of cancellations that took place

• The string reduction score

• Time taken

This set of metrics allows us to answer all of the above questions. We convert

all gates in the input circuits to U3 and CX gates. This conversion combats

issues where some gates generate more U3 gates than necessary to avoid global

phases. Since we are not considering global phases in this context, we ignore

these discrepancies. The input circuit is set to be as similar as possible to the

original circuit. This restriction means that manual checks took place for the

preprocessing of the circuits to process different gate types properly.

Unfortunately, some of the circuits included in the benchmark sets allowed more

complex gates not supported by the data structures here. These include mid-

circuit measurements and reset gates. These circuits were omitted from the

benchmark sets used. Another simplifying assumption is that the input state

is fully prepared as |0⟩⊗q, and any end-of-circuit measurements are ignored.

Ignoring the end of circuit measurements does not affect the procedure since it

just deals with the simplification of the state. However, oracle circuits generally

consist of many Toffoli gates that will reduce to a Clifford state when the |0⟩⊗q

state is applied.

For this reason, the benchmark sets have been split into oracle and non-oracle

datasets. The full results for all benchmark sets are provided as a spreadsheet

in the implementation’s source code for the interested reader. They are omitted

98



here for brevity.

6.2 Running Parameters and Device

The compilation program was run on an AMD Ryzen 9 5900X 12-Core CPU run-

ning at 4.2Ghz, combined with 32GB of Corsair Vengeance LPX DDR4 memory

running at 3600 MT/s with an 18-22-22-42 CAS Latency, and a Sabrent Rocket

4.0 1TB NVMe SSD. The program was compiled and run on Ubuntu 22.04.1 LTS

using g++ (Ubuntu 11.2.0-19ubuntu1) 11.2.0 with the following compiler argu-

ments: -std=c++2a -Ofast -DNDEBUG. The program was run with 12 threads,

utilised during the merging phase of the procedure. The build system used was

Bazel, chosen for the author’s familiarity with the software and ease of use for

external libraries [11].

6.3 Benchmark Sets

The original use case for this method is within Chemistry circuits. We wish to

see how applicable this method is for both circuits of this form and more general

circuits. As a result, the general purpose QASM Bench benchmark set will be

used to evaluate general circuits [20]. Secondly, the benchmark sets produced by

TKET provide both Chemistry circuits and general circuits [6]. In combination,

these two sets provide enough variety in size and complexity.
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6.3.1 TKET Benchmarking

The TKET Benchmarking dataset includes both chemistry sets formed from the

UCCSD ansatz method with a single Trotterization step and regular circuits. The

chemistry sets are split by molecules and have three components. A complete

representation (cmplt) or one with frozen orbitals (frz), using Jordan-Wigner

(JW), Bravyi-Kitaev (BK), or Parity (P) qubit encodings, and the size of the basis

set used either sto3g, 631g, ccpvdz, or ccpvtz. These circuits range anywhere

from 4 qubits up to 56 and from 100 gates to 1.25 million. The QASM files used

for the benchmarks contain different molecules, including H2, H4, H8, LiH, NH,

H2O, CH2 and C2H4.

A large portion of the regular circuits in the TKET Benchmarking set are oracle

circuits. There are still many circuits that are not oracle circuits that will be of

further interest. The sizes of the circuits are from 20 gates up to around 10,000.

6.3.2 QASM Bench

The QASM Bench benchmark set provides circuits of three different sizes: small,

medium, and large. The small circuits generally have at most 10 qubits and

only a few hundred gates. The medium circuits have up to 20 qubits and up to

a few thousand gates. The large set has up to 500 qubits and anywhere from

a few thousand to millions of gates. The circuits are often hand optimised or

come from machine learning contexts. As a result, we are unlikely to see merges

beyond trivial merges.
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6.4 TKET Benchmarking Results

This section is split by the types of circuits being processed. This splitting gives

a more precise context to where this technique is more applicable by splitting in

this way and, as such, is better for a fair analysis.

6.4.1 Chemistry Circuits

Starting with the Chemistry circuits, no trivial merges occurred in any circuits.

Unfortunately, the number of non-trivial merges remained very small, save a few

outliers. For H2 complete circuits in the sto3g basis, 8 of the 12 original Pauli

exponentials were merged for all qubit encodings. For H4 complete circuits in

the sto3g basis, 10 of the 160 Pauli exponentials were merged. Aside from these

cases, the number of merges occurred was 2 for every other chemistry circuit.

This low merge count is thought to come from the order of Pauli exponentials

chosen for the QASM files. Since these circuits come from Hamiltonians, we

can choose any ordering of the Pauli exponentials when we create the circuit.

Therefore, if there is initially an unfavourable ordering that does not allow for

merges to occur, the resulting circuit will not permit merges. This unfavourable

ordering can manifest in stabilisers being blocked from propagating far into the

circuits and transitive edges appearing between Pauli exponentials that could

otherwise merge.

Another possible reason is that a similar technique may be applied to the Hamilto-

nians before they are synthesised into QASM files. This application would

massively stunt the effectiveness of the process being applied afterwards, pos-

sibly leading to the results observed.
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Mean Reduction (%) Max Reduction (%) Min Reduction (%)

Encoding Count Depth Count Depth Count Depth

JW 79.9 81.0 85.3 85.6 72.4 74.6

BK 71.9 74.0 81.6 81.8 61.9 63.7

P 70.3 72.6 83.3 83.7 59.4 61.6

Table 6.1: Comparing CX count and depth reductions for different qubit
encodings for the full optimisation

Interestingly, the use of string reduction is highly effective against these circuits.

Circuits saw up to 42% CX count and depth reductions and 36% total gate count

and depth reductions from the repeated applications of string reduction tech-

niques. Due to string reductions, the non-Clifford depths were slightly improved

across nearly all circuits. A possible reason for this is that the Pauli exponentials

that make up the circuits could allow a subset of the stabilisers to move through

the entire circuit. This movement gives a large amount of freedom to string re-

duction techniques giving significant gains across every grouping found during

synthesis.

The running time of the compiler on each of the Chemistry sets remains relat-

ively low across the board. For even the largest dataset containing 1.25 million

gates initially, the total running time is at most 40 seconds. For larger circuits,

the majority of the running time for the program came from the construction of

the Pauli DAG. The compiler stayed well within memory limits across all runs.

It can be seen in Table 6.1 that the JW encoding is much better suited for re-

duction by this technique showing a much greater reduction in both CX count

and depth, while the BK and P encodings are very similar in their performance.

However, in all cases, the performance seen is excellent. We see a slight improve-

ment in the CX depth on top of the CX reduction suggesting improvements in

the structure of the final circuit and gate reductions.
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Mean Reduction (%) Max Reduction (%) Min Reduction (%)

Encoding Count Depth Count Depth Count Depth

JW 22.6 23.3 42.6 41.6 10.3 11.1

BK 6.0 6.9 22.6 23.1 1.2 1.3

P 12.4 12.1 29.5 29.8 5.1 5.2

Table 6.2: Comparing CX count and depth reductions for different qubit
encodings gained by string reduction

Qubit Encoding Mean Reduction Score (%) Mean Reduction (%)

JW 5.1 22.6

BK 1.1 6.0

P 0.8 12.4

Table 6.3: Comparing CX count reduction for different qubit encodings gained
by string reduction with the score function

Table 6.2 shows significant additional CX count and depth reductions by includ-

ing the string reduction technique in the procedure. Once again, this impact is

felt most when looking at circuits using the JW qubit encoding and less so by

BK and P. The technique also seems better suited for the P qubit encoding than

the BK. These reductions in CX count and depth suggest that the JW encoding

has more redundancy than the other encodings.

These reductions allow us to look for correlations between the scoring function

used for performing the string reductions and the actual reductions achieved.

Instead of the raw score, we consider the average score per Pauli exponential.

We can see from Table 6.3 that the more significant improvements correlate with

a larger overall reduction score. However, the disparity between the average

score and the relative improvements of BK and P suggests that the heuristic may

be inaccurate. This disparity could be caused by strings seeing reductions that

would have been later subsumed by the diagonalisation or phase polynomial

synthesis steps. As the score function does not attempt to cross this complex

optimisation landscape, it is expected not to see gains everywhere it predicts.
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Qubit Encoding CX vs Total Gate Count (%)

JW 74.9

BK 54.7

P 50.6

Table 6.4: Comparing CX count to total gate count for different qubit encodings
before optimisation

Mean Reduction (%) Max Reduction (%) Min Reduction (%)

Encoding Count Depth Count Depth Count Depth

JW 84.7 78.0 90.7 84.2 79.2 70.1

BK 79.1 71.7 84.8 79.5 75.5 63.3

P 79.6 71.2 85.6 82.4 75.2 61.1

Table 6.5: Comparing gate count and depth reductions for different qubit
encodings for the full optimisation

Another metric we consider is the overall reduction of gates in the circuit, not

just CX gates. An important consideration is the ratio between the original gate

count and the number of CX gates. As seen in Table 6.4, we can see that the CX

count relative to the total gate count in the original circuit is much higher for the

JW encodings, while the BK and P are very similar. These higher original counts

could also have been the cause of the higher reductions seen earlier.

Looking at the gate reductions, we can see in Table 6.5 that the gate count reduc-

tions achieved are much more similar across the different encodings than the CX

reduction. These results suggest that the BK and P qubit encodings contain more

unnecessary single qubit unitaries in their computation. This observation makes

sense by looking at the ratio of CX count to gate count. We see that these cir-

cuits’ gate depth reduction is considerably lower than the gate count reduction

in all cases. This provides evidence to suggest that while we are improving the

number of gates in the circuit, we are losing some relative parallelism. Different

synthesis techniques for mutually commuting groups could assist with such a

problem.
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Mean Reduction (%) Max Reduction (%) Min Reduction (%)

Encoding Count Depth Count Depth Count Depth

JW 17.1 17.8 36.9 36.1 7.1 7.6

BK 3.9 5.4 15.6 17.3 0.7 1.2

P 8.3 9.7 19.0 21.0 3.3 4.5

Table 6.6: Comparing gate count and depth reductions for different qubit
encodings gained by string reduction

Qubit Encoding Mean Reduction (%) Max Reduction (%) Min Reduction (%)

JW 0.3 3.5 -0.8

BK 7.1 12.0 0.5

P 8.7 13.9 0.9

Table 6.7: Comparing non-Clifford depth reduction for different qubit
encodings for the full optimisation

Table 6.6 shows the (%) improvements for the single qubits are much less than

for CX gates. Looking at the scoring function, this makes sense as the priority of

the scoring function is to minimise the number of CX gates. We see similar per-

formance between the different methods. We do see that the depth reduction is

very similar to the reduction in the gate count, suggesting that this optimisation

does not negatively impact the parallelism in the circuit.

Finally, we wish to look at the non-Clifford depth improvements across the dif-

ferent qubit encodings. We first examine the overall reductions in non-Clifford

depth from the complete optimisation procedure.

As is shown in Table 6.7, there are minimal reductions in the non-Clifford depth

with some cases showing an increase in non-Clifford depth. Unlike the other

metrics, the data shows that circuits using the BK and P encodings enjoy much

greater benefits from this optimisation than the JW encoding. A possible reason

for these small improvements comes from a reduction in CX gates in the cir-

cuit. These allow more non-Clifford gates to be composed in parallel. The size

of these reductions being so small and sometimes negative likely comes partly
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Qubit Encoding Mean Reduction (%) Max Reduction (%) Min Reduction (%)

JW 0.2 0.9 0.0

BK 1.6 4.6 0.04

P 0.4 2.8 -0.02

Table 6.8: Comparing non-Clifford depth reduction for different qubit
encodings gained by string reduction

from the Gray-Synth algorithm not accounting for gate depth [4]. Applications

of a different synthesis method for mutually commuting sets may yield better

non-Clifford depth statistics. The larger improvements seen in the BK and P en-

codings suggest some hidden structure that is untangled during this synthesis

allowing for further parallelism.

Considering non-Clifford depth from string reductions, Table 6.8 shows minimal

benefits to this technique, but it is also unlikely to impact the non-Clifford depth

metric negatively. The usage of diagonalisation and Gray-Synth after the string

reduction technique makes it very difficult to predict how the final synthesis will

appear. The non-Clifford count is hard to affect through changing Pauli strings

and is a property not encoded into the scoring function.

6.4.2 General Circuits – Oracle

The system performed exceptionally well for all oracle circuits in the TKET

benchmarking set, reducing the number of non-Clifford gates to 0 in all but

one case. This reduction always came as a mixture of trivial merges, regular

merges, and cancellations. In some cases, there were also significant amounts of

Cliffords pulled out of the circuit leading to further merges and cancellations.

The running time for all oracle circuits was less than a second. This spread of

reductions shows that all techniques are helpful.
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The only exception to reducing to 0 non-Clifford gates came from square_root_7.

In this circuit, we saw a mixture of trivial and non-trivial merges and a single

cancellation1leading to a 79% reduction in non-Clifford gates. Furthermore,

string reduction methods were able to reduce the number and depth of CXs

in the resulting circuit by 34% and the overall gate count and depth by 24%. The

non-Clifford depth reduction from the complete optimisation was reduced by

62% with negligible benefits from string reductions. A possible reason for this

outlier could come from some non-Clifford identity in the circuit that allows

commutations beyond those allowed by the rules of commuting Pauli strings. A

further investigation into this circuit could provide further insights into improv-

ing the technique described here.

6.4.3 General Circuits – Non-Oracle

For the general, non-oracle circuits in this benchmark set, all merges were trivial

merges. This merge type led to a 57% reduction in the number and a 52%

reduction in the depth of non-Clifford gates. Looking at the gate count difference

due to the full optimisation, the number of CX gates in the circuit increased by

at least 100%. Since all merges were trivial, phase-folding would have found

these merges without increasing the gate count in the circuit. This increase

likely comes from the re-synthesis of the Pauli exponentials into the final circuit

and suggests this type of circuit is not well suited for this type of optimisation.

Despite the high string reduction score for a few circuits, string reductions did

not affect the resulting gate count across all circuits.

1Recall that the number of cancellations is at most 1 unless there are Clifford removals chan-
ging commutation
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Metric Small Medium Large

Mean Non-Clifford Reduction (%) 25.5 57.1 27.3

Mean Non-Clifford Depth Reduction (%) 14.2 40.4 -1444.9

Mean Trivial Merge (%) 29.0 91.9 83.3

Mean CX Reduction (%) -22.3 -13.7 -2315.3

Table 6.9: Metrics for QASM Bench non-oracle circuits of all sizes

6.5 QASM Bench Results

Overall, the system performed very well on all oracle circuits within the QASM

Bench dataset, reducing the non-Clifford count to 0 in all cases. Across the

board, average non-Clifford reductions for non-oracle circuits mainly come from

trivial merges, as shown in Table 6.92. However, many of these merges come

from non-trivial applications of the Pauli Merge Rule. We also see from the

data that the application of this technique heavily impacts parallelism. Even

where the number of non-Cliffords is reduced, the relative reduction in the non-

Clifford depth is relatively poor, with some cases giving substantial increases in

the non-Clifford depth of the circuit.

Again from Table 6.9, we see CX count increases by applications of this tech-

nique. The specific circuits of vqe_uccsd_n4, vqe_uccsd_n6, and vqe_uccsd_n8

are somewhat exceptions to this. For these circuits, we see much better improve-

ments of up to a 50% reduction non-Clifford count reduction and an 80% CX

count and depth reduction. These results are more consistent with the results

seen in the TKET Benchmarking dataset, suggesting that this technique is bested

suited for application on circuits obtained from the UCCSD ansatz.

Considering string reductions for the circuits vqe_uccsd_n4, vqe_uccsd_n6 and

2The large 500 qubit circuit partially skews the data in this table for the large circuits. For full
results, the reader is directed to the entire dataset.
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Circuit Total Gates Non-Clifford Count Time (seconds)

ising_n26 100 280 0.13

vqe_n24 85,560 2,306,072 985.85

wstate_n27 52 157 0.109

dnn_n16 992 2,016 0.49

swap_test_n25 108 230 0.12

ising_model_n500 1,996 5,494 131.649

multiplier_n25 770 1,743 0.27

bigadder_n18 112 284 0.4

qft_n20 570 970 0.14

Table 6.10: Running times for QASM Bench large circuits

vqe_uccsd_n8, we see CX count reductions of over 22% and over 14% total gate

reduction. We also see a 31–35% CX depth reduction, 30–40% overall gate depth

reduction, and 20–36% overall non-Clifford depth reduction. All other circuits

do not change from string reductions.

The time and memory utilisation of the small and medium datasets were min-

imal, taking at most 1 second. For the large datasets, Table 6.10, we see that the

running times for each circuit are reasonable and scale well with the original cir-

cuit’s size. In the case of vqe_n24, before a memory-efficient hash set was used,

this circuit ran out of memory. However, after the change, the memory usage

remained at most 50%. These factors suggest that these methods are feasible for

application in current compilers, adding very little overhead.
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Chapter 7

Conclusions

This project has introduced a new theory surrounding the merging of Pauli ex-

ponentials within circuits composed with a Clifford state. We use existing tech-

niques to translate general circuits to this form, allowing the application of the

technique to general circuits. These circuits are then synthesised using existing

techniques of diagonalisation and phase polynomial synthesis combined with

the new string reduction technique. This project provides an implementation

of the techniques discussed that shows that they are efficient for usage in prac-

tice, even for circuits too large for current quantum computers. This efficiency

comes from the Pauli DAG Merging Theorem and its surrounding theory that

provides a small and efficient set of checks to apply all possible merges under

a set of assumptions. This theorem subsumes the previous techniques of phase

teleportation, phase-folding, and trivial merges that appear as special cases of

the rule. This optimisation proved very efficient for certain circuit classes and

significantly reduced tracked metrics.

This technique is very good at optimisation for oracle circuits, reducing the num-

ber of non-Clifford circuits to 0 in nearly all cases. This behaviour is expected as
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the |0⟩⊗q states often reduce oracle circuits to some Clifford state. Unfortunately,

this means it is unrealistic to see in practice. However, this also has applications

in circuits where a partially non-Clifford initial state is used, making the clas-

sical simulation computationally intractable for larger circuits, but it would still

permit the application of this technique. Aside from oracle circuits, the main

benefits seen were in VQE circuits, especially those using the UCCSD Ansatz.

For these circuits, we see a substantial reduction in CX count and depth from

the original optimisation of up to 85%, seeing considerable, further benefits in

CX count and depth of up to 42% from the string reduction technique.

The string reduction appears to be an excellent technique for reducing the num-

ber of Cliffords in the resulting circuit. In nearly all cases, string reduction either

improved or gave no change to metrics depending on the circuit; in only two of

the 266 test cases, we see an increase in non-Clifford depth by at most 1. All

other metrics were improved or stayed the same by this heuristic. The running

time of the optimisation stays within reasonable limits for all circuits making

this technique feasible in practice.

7.1 Future Work

The section details recommendations for potential future work to continue this

project. The proposed work involves in-place merging, improvements of tech-

niques for implementation, better heuristics for the synthesis stage of the optim-

isation, and the expansion of the implementation to support other gate types for

broader applications and study of the technique.
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7.1.1 In Place Merging

A considerable drawback of this technique for optimisation is the requirement

to translate to Clifford-Pauli-Exponential form to gain access to the stabilisers

and Pauli DAG. Since many circuits are hand optimised to reduce their Clifford

count, in many cases, the re-synthesis of this form introduces far more gates

than in the original circuit. Future work should include a formalism for per-

forming these merges that captures this relationship and allows these merges to

occur without changing the structure of the circuit. This technique is used by

algorithms like phase-folding and phase teleportation and has been shown to be

successful [2, 16]. Not changing the structure of the original circuit would make

the technique more applicable to general circuits.

7.1.2 Memory Efficient Merges

The first area for optimisation is to find more memory-efficient ways of com-

puting the conditions of the Pauli Merge Rule. While the Pauli DAG Merging

Theorem does provide a good characterisation that can be efficiently implemen-

ted, for this technique to be efficient, it requires the full construction of the Pauli

DAG. Some ways to improve this method could be to: recognise portions of

the circuits that no stabilisers can reach by Lemma 34 or provide a new char-

acterisation of the Pauli DAG Merging Theorem that does not require the full

construction of the Pauli DAG.
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7.1.3 Better Groupings

The current method for choosing the groupings for synthesis, while well foun-

ded in theory, does not utilise the Product Rotation Rule to change the group-

ings. Circuits can exist where the application of the Product Rotation Rule al-

lows for larger groupings to be found or different groupings better suited for

later synthesis stages. We show one example below where the application of the

Product Rotation Rule allows for the inclusion of multiple Pauli exponentials

into a group.

We consider a state where all consecutive Pauli exponentials do not commute

(resulting in multiple groups). For example,

C
#      »

ZZI(α)
#        »

ZXX(β)
#        »

ZZX(γ)

We can define C such that
#       »

YXY and
#      »

IZX are stabilisers of it. Then, using the

stabiliser
#       »

YXY, we apply the Product Rotation Rule to
#        »

ZXX resulting in the

following state.

C
#      »

ZZI(α)
#      »

XIZ(β)
#        »

ZZX(γ)

Finally, we apply the Product Rotation Rule to
#      »

ZZI using the stabiliser
#      »

IZX

giving us,
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C
#      »

ZIX(α)
#      »

XIZ(β)
#        »

ZZX(γ)

Where all Pauli exponentials now commute and form a single group.

7.1.4 Improved Heuristics for Pauli String Reduction

Currently, the heuristics for Pauli string reduction do not account for the diag-

onalisation and phase polynomial synthesis techniques. This future work would

aim to find heuristics for navigating this complex search space to improve the

heuristics used for string reductions. The techniques used for this may need

to consider specific implementations for diagonalisation and phase polynomial

synthesis. However, ideally, they would be agnostic of the implementations.

7.1.5 Improved Gate Support

Currently, the implementation provided only considers gates that can be decom-

posed to U3 and CX gates. This simplification does not account for many circuits

that use more complex gates, such as reset gates and mid-circuit measurements

that alter the Clifford tableau throughout the circuit. Future work in this area

should investigate how those gates can be included in the implementation and

benchmark the results of the technique for circuits of this form.
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