
Discrimination Nets:

Improvement and Extension

to Bang Graphs

Fabio Massimo Zennaro

Balliol College

University of Oxford

A thesis submitted for the degree of

MSc in Mathematics and Foundations of Computer Science

September 2012

Abstract

String graphs constitute a graphical language to represent many types of pro-

cesses and phenomena, including quantum phenomena. Because of their discrete

nature, string graphs can be easily processed by a computer. A well-known fam-

ily of �ltering techniques used to speed up the process of graph matching are

discrimination nets. Discrimination nets were applied to string graphs by Dou-

glas in 2010. In this dissertation we �rst propose an improved algorithm for

discrimination nets when working with string graphs; then we de�ne an exten-

sion of the algorithm for discrimination nets when dealing with !-graphs. We

give a proof of the correctness of our algorithms and we o�er an implementation

of these algorithms within the context of Quantomatic. Finally we present a

set of results obtained by running simulations of our algorithms with randomly

generated string graphs and !-graphs.

Acknowledgements

First of all, I would like to thank Aleks Kissinger. Thanks for your constant help

during the months I spent working on my thesis, for your patience and your being

always available to meet with me, for your suggestions and your explanations

during our discussions.

An equally sincere thank is for Bob Coecke. Thanks for your overwhelming

passion and trust which persuaded me to undertake this project.

I would also like to express my gratitude to all the people that made this course

and my study here possible: Dan Olteanu, Michael Collins, Wendy Adams,

Margaret Sloper, Torimitsu Keiichi, Matteo Matteucci, Rossella Blatt, Gianluigi

Furioli, Roberto Sassi, Roberto Negrini and Franca Chiusi. A list of names will

never do justice to the unique contribution that each of you o�ered me.

The last line is for my parents and my friends. You do not have an explicit

thanks here on this page. It would be diminutive. You have my daily, most

heartfelt thanks.

Contents

1 Introduction 6

1.1 Motivation and Aim . 6

2 Background 9

2.1 Categorical Quantum Mechanics . 10

2.2 String Graphs . 13

2.3 Bang Graphs . 17

2.4 Rewriting Systems . 20

2.5 String Graph Rewriting Systems . 22

2.6 Regular Expressions . 25

3 Algorithms for Rewriting 28

3.1 Discrimination Nets . 28

3.1.1 De�nition of Discrimination Nets . 28

3.1.2 Correctness of Discrimination Nets . 29

3.2 Standard Topography-based Discrimination Net for String Graphs 30

3.2.1 Algorithm . 31

3.2.2 Correctness . 35

3.2.3 Complexity . 35

3.3 Improved Topography-based Discrimination Net for String Graphs 38

3.3.1 Algorithm . 38

3.3.2 Correctness . 40

3.3.3 Complexity . 43

3.4 Extended Topography-based Discrimination Net for Bang Graphs 43

3.4.1 Algorithm . 43

3.4.2 Correctness . 50

3.4.3 Complexity . 53

4

4 Implementation 55

4.1 Quantomatic . 55

4.2 Implementation of the Algorithms . 56

4.3 Results . 60

4.3.1 Simulations . 61

4.3.2 Results of Abstract Simulations . 62

4.3.3 Results of Concrete Simulations . 67

5 Conclusion and Future Work 70

5.1 Summary of Results . 70

5.2 Future Work . 71

A Documentation for the Code 72

A.1 Structures . 72

A.2 Work�ow . 81

A.2.1 Generating the Topography Tree . 81

A.2.2 Generating a Contour List . 82

A.2.3 Generating a Contour . 83

A.2.4 Adding a Contour List to the Topography Tree 84

A.2.5 Pruning the Tree . 84

A.3 Testing . 84

A.4 Simulation . 86

5

Chapter 1

Introduction

1.1 Motivation and Aim

This dissertation stands at the convergence of two main �elds of study: categorical quantum

mechanics and term rewriting theory.

Categorical quantum mechanics (CQM) is a recent �eld of research devoted to the study

of quantum mechanics using the tools o�ered by category theory.

One of the main advantages of CQM is the possibility of representing and reasoning about

quantum phenomena in a graphical way. String diagrams provide an intuitive diagrammatic

language to represent quantum phenomena in a visual, yet rigorous, way. The diagrammatic

language of string diagrams de�nes an abstraction layer which allows a researcher in the

�eld of quantum physics or quantum information to reason at a higher level than the level

of physical quantum phenomena.

In order to work with string diagrams, it is crucial to develop our ability to process

these diagrams e�ciently. We can discretize and convert string diagrams into string graphs.

In this way, a string graph can be fed into a computer and can be quickly processed and

mechanically manipulated.

Term rewriting theory is a branch of mathematics and computer science dealing with

abstract term systems and studying ways in which terms can be rewritten into other terms.

The original problem that term rewriting tries to solve is the so-called word problem: given

two terms and a set of identities, we would like to know if it is possible to transform the

�rst term in the second one using the identities as a set of rewrite rules. Term rewriting

de�nes then a set of mechanical procedures by which we can manipulate a term in order to

generate new, potentially interesting, terms.

6

By implementing term rewriting systems on a computer we can create basic automated

reasoning software tools or basic proof assistants. These software tools can work with terms

or graphs and mechanically process them in order to �nd out ways in which terms or graphs

can be rewritten. As an exhaustive search of all the possible ways in which a term or a

graph can be rewritten is, in general, uncomputable, di�erent techniques have been devel-

oped and implemented to make this process more e�cient than a simple exhaustive research.

In this dissertation we will consider the application of term rewriting techniques to CQM

string graphs.

As we have said before, after encoding quantum phenomena with the language of string

diagrams and after feeding string graphs to a computer, we need a fast and e�cient way

to process these diagrams. Term rewriting theory provides us with the theory and with

the techniques to manipulate mechanically string graphs. Indeed, if we start from string

graphs encoding a set of theorems from the �eld of quantum mechanics, we can use term

rewriting techniques to manipulate the set of graphs and potentially discover new, unforeseen

theorems.

Being able to reason automatically and e�ciently about string graphs is then a very

important task which allows us to discover new theorems and new facts about quantum

physics and quantum information in a quick and systematic way. Di�erent algorithms can

be implemented to make this task computable and e�cient.

Quantomatic, for example, is a software tool built to o�er to the researcher in the �eld

of CQM a tool to help him working and reasoning with string graphs.

An extension to the language of string graphs which has been proposed recently is the

de�nition of the language of !-graphs (�bang graphs�). !-graphs provide a way to express

abstract string graphs which can then be instantiated into several di�erent string graphs.

While a string graph rewrite rule can represent a single quantum theorem, a !-graph rewrite

rule can represent a family of quantum theorems. From a single !-graph we can derive an

in�nite number of di�erent string graphs.

Several algorithms for term rewriting which could be straightforwardly implemented in

the case of string graphs require to be reviewed and modi�ed in order to be applied to

!-graphs.

Among these techniques, discrimination nets can be used to improve and speed up the

process of rewriting through a reduction of the search space of the rewrite rules. While the

implementation of discrimination nets for string graphs is known, the application to !-graphs

requires a rede�nition and a generalization of the algorithm.

7

The main aim of this dissertation is then to analyze how discrimination nets work for

string graphs, examine how they can be improved and extended in the case of !-graphs,

de�ne a new algorithm and prove its correctness.

Once a new algorithm has been de�ned and proved to be correct, the next goal of the

dissertation is to provide a working implementation of the algorithm as an extension of

Quantomatic.

After this introduction, in the second chapter we will give a brief outline of the work

done in the �elds of categorical quantum mechanics and graph rewrite theory; we will review

all the background notions required to deal with the problem of working with !-graphs. In

the third chapter we will introduce an existing technique used to improve the performance of

graph matching for string graphs; we will then present an improved version of this algorithm

working with string graphs and then an extended version of the algorithm working with !-

graphs. In the fourth chapter we will discuss how our algorithms have been implemented

within the framework of Quantomatic and we will comment on their performance. In the

�fth chapter we will summarize the results we obtained and we will suggest possible future

developments of this project.

In a �nal appendix we will give a more detailed and exhaustive explanation of the

algorithm we implemented in Poly/ML.

8

Chapter 2

Background

The research in the �eld of CQM started in 2004 with the proposal by Abramsky and Co-

ecke [1] to adopt a categorical approach to the study of quantum mechanics. In their article,

they showed that only abstract, categorical structure was necessary to explain many quan-

tum phenomena; quantum information phenomena, such as teleportation or entanglement-

swapping, could be easily formalized using the language of strongly compact closed categories

with biproducts. In 2005 Selinger [26] formalized the graphical language for dagger com-

pact closed categories (which he called strongly compact closed categories) and showed their

completeness for equational reasoning. The graphical language used by Abramsky, Coecke

and Selinger to deal with dagger compact categories is rooted in the work on string diagrams

started by Penrose [25] and in the work on tensor categories done by Joyal and Street [14].

Term rewriting is born out from the study of logic, universal algebra, automatic theorem

proving and functional programming [3]. The study of term rewriting systems dates back to

the results on λ-calculus by Church and Rosser in the beginning of the 20th century, to the

development of combinatory logic by Curry in the 1960s and to the research on denotational

semantics of programming languages by Scott and Plotkin in the 1970s [19]. Tackling the

problem of termination and convergence, Knuth and Bendix proposed in 1970 the Knuth-

Bendix completion algorithm to convert a set of terms into a con�uent term rewriting system

[20, 6].

The e�ort to make implemented rewrite systems more e�cient led to the development of

several algorithms. In the 1970s researchers in the �eld of expert systems developed discrim-

ination net algorithms to speed up the solution of matching problems; at the beginning of

1990s these algorithms were �rst used to improve the performance of rewriting and theorem

proving systems [4, 22]. More recently, other algorithms and techniques have been intro-

duced to simplify and improve rewriting; in 2010 Johansson, Dixon and Bundy proposed the

9

conjecture synthesis technique to prevent the generation of reducible formulas during the

process of rewriting [13]; in the same year Montano-Rivas, McCasland, Dixon and Bundy

described the scheme-based synthesis technique used to direct the rewriting process through

the de�nition of schemes.

The study of string graph theory within the �eld of CQM is based on the results proved

in the recent years by Dixon, Duncan and Kissinger; in 2010 they described string graphs

using the formalism of open graphs and they showed how string graph rewriting can be per-

formed using the double-pushout technique [9]; in 2012 Kissinger showed how the conjecture

synthesis technique can be applied to the synthesis of graphical theories [16].

The idea of !-graphs was introduced for the �rst time in 2008 by Dixon and Duncan

[7]; later, in 2012, Kissinger, Merry and Soloviev formalized the concept and the theory of

!-graphs [18].

Tools to help researchers working with string graphs and !-graphs have been implemented

within the Quantomatic Project [17]; the Quantomatic Project was developed using the Is-

abelle theorem prover libraries [23] and provides the user with a graphical user interface to

work with string graphs and !-graphs.

In this chapter we will give an introduction to the background topics in which this dis-

sertation is grounded; we will deal with topics from categorical quantum mechanics (section

2.1), theory of string graphs (section 2.2 and 2.3), rewrite theory (section 2.4), string graph

rewrite theory (section 2.5) and regular expressions (2.6).

2.1 Categorical Quantum Mechanics

Quantum computing is an area of research devoted to the exploitation of quantum mechan-

ics to perform computations; in particular, quantum computing tries to exploit particular

quantum phenomena, such as superposition or entanglement, to develop algorithms which

can perform signi�cantly better than their classical counterparts.

Traditionally, (pure state) quantum mechanics is mathematically represented using the

Von Neumann formalism in which quantum states are vectors in a Hilbert space, state evolu-

tion is represented by linear unitary maps and measurements are represented by projections

[8].

An alternative approach to the study of quantum mechanics using category theory was

proposed by Abramsky and Coecke in 2004 [1]. This new �eld of research, called categorical

quantum mechanics (CQM), de�nes a new way to model quantum phenomena using the

10

formalism of category theory and relies on the use of a diagrammatic notation to perform

computations [11, 5]. Instead of working in the context of Hilbert spaces, CQM focuses on

more abstract structures, such as monoidal categories, in order to study the categorical and

compositional aspects of quantum phenomena [15].

Monoidal categories provide a versatile setting to describe quantum phenomena and

o�ers an intuitive and elegant way to represent these phenomena using diagrams [12]. A

(planar) monoidal category is a category C equipped with:

• A tensor product ⊗ : C×C→ C;

• A unit object I ∈ C;

• Associators, that is a family of natural isomorphisms αA,B,C : (A ⊗ B) ⊗ C → A ⊗
(B ⊗ C) for all objects A,B,C ∈ C;

• Left unitors, that is a family of natural isomorphisms λA : I ⊗ A → A for all objects

A ∈ C;

• Right unitors, that is a family of natural isomorphisms ρA : A⊗ I → A for all objects

A ∈ C;

• A coherence property for α, λ and ρ, guaranteeing that every well-formed equation

built from ◦,⊗, id, α, α−1, λ, λ−1, ρ, ρ−1 is satis�ed.
The coherence property can be stated as the condition that, given the natural isomor-

phisms α, λ and ρ, then for any A,B,C ∈ C the triangle diagram (see �gure 2.1)

commutes and for any A,B,C,D ∈ C the pentagon diagram (see �gure 2.2) com-

mutes. It was proved by Mac Lane [21] that for any monoidal category C, the natural

isomorphisms α, λ and ρ are coherent if and only if the triangle equation and the

pentagon equation hold.

(A⊗ I)⊗B A⊗ (I ⊗B)

A⊗B

αA,I,B

ρA ⊗ idB idA ⊗ λB

Figure 2.1: Triangle diagram.

Monoidal categories de�ne a framework to work with generalized processes: given a

monoidal category C, its morphisms can be interpreted as processes, its objects de�ne

how processes can be combined, the categorical composition (◦) allows the composition of

processes in time and the tensor product (⊗) allows composition of processes in space [16].

11

(A⊗ (B ⊗ C))⊗D A⊗ ((B ⊗ C)⊗D)

((A⊗B)⊗ C)⊗D A⊗ (B ⊗ (C ⊗D))

(A⊗B)⊗ (C ⊗D)

αA,B⊗C,D

αA,B,C ⊗ idD idA ⊗ αB,C,D

αA⊗B,C,D αA,B,C⊗D

Figure 2.2: Pentagon diagram.

FdHilb, the category of �nite-dimensional Hilbert spaces, is an example of a monoidal

category.

In the context of CQM, it is often convenient to work with categories having more

structure than simple monoidal categories. One speci�c kind of monoidal category of interest

is a symmetric traced category [27]. A symmetric traced category is a monoidal category C

equipped with:

• A family of natural isomorphisms σA,B : A⊗B → B ⊗A for all objects A,B ∈ C;

• A symmetry property σB,A ◦ σA,B = idA⊗B for all objects A,B ∈ C;

• A right trace, that is a family of operations between hom-sets trX : hom(A⊗X,B ⊗
X)→ hom(A,B) satisfying the following axioms:

Tightening (naturality in A,B): trX((g ⊗ idX) ◦ f ◦ (h⊗ idX)) = g ◦ (trX(f)) ◦ h;

Sliding (dinaturality in X): trY (f ◦(idA⊗g)) = trX((idB⊗g)◦f), where f : A⊗X →
B ⊗ Y and g : Y → X;

Vanishing : trI(f) = f and trX⊗Y (f) = trX(trY (f));

Strength: trX(g ⊗ f) = g ⊗ trX(f)

Symmetric traced categories extend simple monoidal categories allowing us new operations

on the processes: the symmetry property allows us to perform swaps in space, the trace

allows us to perform feedbacks in time [16].

Diagrammatic notation is an elegant way to express complex term-based expressions

using a graphical, intuitive diagram relying on the idea of processes and composition of

processes. When representing a planar monoidal category in the diagrammatic notation,

morphisms or processes are represented as boxes, the composition of processes is represented

by wires connecting boxes and the tensor product is represented as the simple juxtaposition

12

of boxes (see �gure 2.3); when representing a symmetric category, the symmetry property al-

lows us the crossing of wires (see �gure 2.4); when representing a traced symmetric category,

the trace allows us to draw feedbacks to the boxes (see �gure 2.5).

f
C D

BA

g

E F

h
G

i

H

Figure 2.3: Example of diagrammatic notation for planar monoidal categories.

f
D C

BA

g

E F

DC

h

G

Figure 2.4: Example of diagrammatic notation for symmetric categories.

f
D C

BA

g

F G

D EC

h
EH

Figure 2.5: Example of diagrammatic notation for symmetric traced categories.

Diagrams are then a versatile and powerful way to represent information graphically

and to reason about it. The speci�c family of diagrams used within the context of monoidal

categories is called string diagrams.

2.2 String Graphs

As explained in the previous section, string diagrams arise from the diagrammatic notation

used to represent monoidal categories. String diagrams are widely used to model several

13

types of compositional structures such as physical processes, logic circuits or tensor networks

[18].

Generally speaking, a string diagram G is composed by nodes connected by directed

edges, called wires (see �gure 2.6). Nodes are used to represent processes with a �xed

number of inputs and outputs, while wires are used to represent transitions from one process

to another.

1

2 3

4

Figure 2.6: Example of a string diagram.

Topological graphs such as string diagrams are di�cult to represent and manipulate

on a computer; for this reason, it is convenient to discretize string diagrams and convert

them to string graphs [9]. A string graph is a discrete version of a string diagram, in which

every node has been substituted with an equivalent node-vertex and every wire has been

substituted with a chain of wire-vertices.

So, a string graph G is a graph made up by (see �gure 2.7):

Node-vertices are vertices representing a process; every node-vertex n has a given kind,

kindNV (n), a �xed input arity, input(n), and a �xed output arity, output(n);

the set of all the node-vertices of a string graph G is denoted as NV (G); the set

of all the kinds of node-vertices is denoted as NVK(G);

Wire-vertices are vertices representing connections between processes; wire-vertices are con-

nected to other wire-vertices or to node-vertices by directed edges; every wire-

vertex w has a given kind, kindWV (w), and it has at most one input and one

output; wire-vertices can not split nor merge; the set of all the wire-vertices of

a string graph G is denoted WV (G); the set of all the kinds of the wire-vertices

in G is denoted as WVK(G).

When we convert a wire into a chain of wire-vertices, the speci�c number of wire-vertices

instantiated is not semantically relevant (see �gure 2.8) [16]. Indeed, we can de�ne an

equivalence relationship called wire-homeomorphism between a wire chain with a single

wire-vertex and a wire chain with an arbitrary number of wire-vertices. Given two graphs

di�ering only for the number of wire-vertices in their wire-chains, we say that the two graph

14

a (A)

1
b

(B)
c

(C)

2 3
e(A)

d (C) f(A)

4

g(A)

Figure 2.7: Example of a string graph where NV = {1, 2, 3, 4}, NVK = {”white”, ”gray”},
WV = {a, b, c, d, e, f, g}, WVK = {A,B,C}, Input = {d, g}, Output = {a} and Bound =
{a, d, g}.

are wire-homeomorphic and then, for the task of representing string diagrams, equivalent.

Wire-homeomorphism can be formalized as a convergent graph rewrite system (see section

2.4). We de�ne a string graph a reduced string graph if all the wire chains are composed by

a single wire-vertex [15]. In the following chapter we assume that we will always work with

reduced string graphs.

A conversion A
A A

A

A conversion A
A

A

A
A A

A

∼ A
A

A

∼ A
A

Figure 2.8: Conversion of a wire into a wire chain.

Given a string graph G and a directed edge e, we de�ne source(e) the node-vertex

n ∈ NV (G) or the wire-vertex w ∈ WV (G) from which the edge e originates; we de�ne

target(e) the node-vertex n ∈ NV (G) or the wire-vertex w ∈ WV (G) in which the edge e

ends.

Given a string graph G, a wire-vertex w ∈ WV (G) with an output, but no input, is

de�ned input ; we denote Input(G) as the set of all the input wire-vertices of the graph

G, that is all the w ∈ WV (G) such that there is no edge e such that target(e) = w.

Conversely, given a graph G, a wire-vertex w with an input, but no output, is de�ned

output ; we denote Output(G) as the set of all the output wire-vertices of the graph G, that

is all the w ∈WV (G) such that there is no edge e such that source(e) = w.

Together, Input(G) and Output(G) constitute the boundary of a string graph G. We

de�ne Bound(G) = Input(G) ∪Output(G).

15

An important notion to deal with string graphs is neighbourhood. Given a string graph

G and a node-vertex n ∈ NV (G), we de�ne neighbourhood of n, nhd(n), the set of all the

edges adjacent to n, that is all the edges e such that target(e) = n or source(e) = n.

String graphs can be interpreted as objects in the category SGraphT [16]. Let T be a

(small, strict) monoidal signature composed of:

• a set O of objects;

• a setM of morphisms;

• two functions dom, cod : M → w(O), where w(O) is the set of lists over the set O,
assigning input and output kinds to each morphism.

Then SGraphT is the category of string graphs parametrized by the monoidal signature T ,

where the objects of SGraphT are string graphs and the morphisms of SGraphT are string

graph homomorphisms, that is graph homomorphisms respecting the types of node-vertices

and wire-vertices.

In the next pages, we will consider string graphs parametrized by a signature T in which

the set of objects O is composed by a single element; this means that the domain and the

codomain of all the morphisms is the same. We will also assume that all the morphisms are

commutative and cocommutative. Practically, instead of working with speci�c morphisms

(f, g, h...) we will work with families of morphisms having a given input arity and a given

output arity (f00 , f
1
0 , f

0
1 , f

1
1 , f

2
0 ...).

Given a category C and an object C belonging to C the slice category C/C is a category

such that [2]:

• the objects of C/C are the arrows f belonging to C such that cod(f) = C

• the morphisms of C/C are morphisms g from f : X → C to f ′ : X ′ → C such that

g : X → X ′ is a morphism in C such that f ′ ◦ g = f (see �gure 2.9)

X X ′

C

g

f f ′

Figure 2.9: Morphisms for C/C.

Using this de�nition, SGraphT can also be considered as a full subcategory of the slice

category Graph/GT [9], where:

16

• Graph is the category of graphs, de�ned as a functor category [G,Set], G being:

E
s
⇒
t
V

where E are the edges of the graph, V the vertices (node-vertices and wire-vertices)

of the graph, s the function taking each edge to its source and t the function taking

each edge to its target.

• GT is the derived typegraph, de�ning the type and the kind of the vertices and the

way in which they are connected; given a graph G we say that a graph is typed if

there is a typing morphism τ : G→ GT ; for a string graph composed by node-vertices

having a single kind and wire-vertices having a single kind we will use the typegraph

2G (see �gure 2.10) de�ning node-vertices (V) and wire-vertices (W); for a string graph

composed by node-vertices having two kinds and wire-vertices having a single kind we

will use the typegraph represented in �gure 2.11.

V W

Figure 2.10: Typegraph 2G.

Vwh

Vgr

W

Figure 2.11: Typegraph de�ning �white� node-vertices (Vwh), �gray� node-vertices (Vgr) and
wire-vertices (W).

2.3 Bang Graphs

A useful extension of string graphs are !-graphs (�bang� graphs) [15]. !-graphs are created

from string graphs by introducing !-vertices or !-boxes. Given a string graph G a !-vertex is

a special type of vertex connected to a portion of the graph (including its incident edges)

which can be instantiated an arbitrary number of times. For simplicity a !-graph can be

represented drawing !-boxes instead of !-vertices: all the portion of the graph reached by a

!-vertex can be drawn inside a !-box (see �gure 2.12 and 2.13)

So a !-graph is a graph made up of:

Node-vertices as in the case of string graphs;

17

2i

1

!

Figure 2.12: Example of a !-graph with !-vertices.

2i

1
!

Figure 2.13: Example of a !-graph with !-boxes.

Wire-vertices as in the case of string graphs, but with the exception that a wire-vertex w

can now have multiple inputs, a single input coming from a node-vertex or a

wire-vertex and multiple optional inputs coming from !-vertices;

!-vertices are abstract vertices representing the possibility of duplicating a set of processes

an arbitrary number of times; every !-vertex b can have out-edges going to node-

vertices, wire-vertices and other !-vertices, but it can have in-edges coming only

from other !-vertices; the set of all the !-vertices of the !-graph is denoted as

!V (G).

For consistency, we require the content of a !-box to be an open graph. Given a string graph

G we say that a subgraph O contained in G is an open subgraph if Input(G\O) ⊆ Input(G)

and Output(G\O) ⊆ Output(G). The notion of open subgraph guarantees that by subtract-

ing the subgraph O from G no new boundaries are created and so it implies that the content

of a !-box contains complete wires [18]. This means that if a !-vertex b has an out-edge to

a wire-vertex w1 in a wire chain, then all the wire-vertices wi in the same wire chain must

have an in-edge coming from b; this is equivalent to say that if a wire-vertex w1 belonging

to a wire chain is in the !-box b, then all the wire-vertices wi in the same wire chain must

be inside the !-box b. In this way, graphs as the one shown in �gure 2.14 are ruled out as

incorrect. Indeed, considering the graph in �gure 2.14, if the !-box would be instantiated

more than one time, so it would be the wire-vertex w2; but this would force the input arity

of the wire-vertex w1 to be greater than one, which is not acceptable.

Notice that, because of the way in which the inputs of a wire-vertex has been rede�ned,

also the notion of input of a !-graph must be rede�ned. Given a !-graph G, we de�ne input

of G a wire-vertex w ∈ WV (G) without any incoming edge or a wire-vertex w ∈ WV (G)

such that all its incoming edges come from !-vertices; the set of these input wire-vertices is

18

2i

1

w1

w2

!

Figure 2.14: Example of an incorrect !-graph.

denoted Input(G).

The de�nition of outputs Output(G) does not change.

Because of the presence of !-boxes (or !-vertices) a !-graph can not be considered a

concrete string graph anymore; indeed a !-graph can be interpreted as a rule to generate

concrete string graphs which can be instantiated using operations inspired to the bang

operations of the linear logic [18] (see �gure 2.15). Given a !-graph G, the instantiation

G �! G
∗ is a string graph G∗ generated from G applying one or more of the following four

operations:

• Copy : duplicates a !-box and its content;

• Drop: removes a !-box;

• Kill : removes a !-box and its content;

• Merge: joins together two !-boxes and their content.

2i

1
! instantiation

1 ,

21

1

,

21 22

1

,

21 22 23

1

...

Figure 2.15: Instantiation of a !-graph.

!-graphs can be interpreted as objects in the category !Graph, whose objects are !-

graphs and whose morphisms are !-graph homomorphisms, that is graph homomorphisms

respecting the types of node-vertices, wire-vertices and !-vertices.

!Graph can also be considered as a full subcategory of the slice category Graph/GT ,

where the typegraph GT de�nes the type and the kind of vertices in the !-graph; for a !-

graph having a single kind of node-vertices and a single kind of wire-vertices the typegraph

19

V W

!

Figure 2.16: Typegraph 3G.

3G (see image 2.16) de�nes how node-vertices (V), wire-vertices (W) and !-vertices (!) can

be connected [18].

A graph G is then a !-graph if it is a typed graph and if it respects the following

constraints:

1. the full subgraph with vertices NV (G) ∪WV (G) is a string graph;

2. the full subgraph with vertices !V (G) is posetal, that is !-vertices have at most one

wire between them and they form a partial order;

3. for all b ∈ !V (B), the graph B in the !-box associated with b is an open subgraph of

G;

4. for all b, b′ ∈ !V (B), if b′ is contained in the !-box associated with b, then all the

elements in the !-box associated with b′ must also be in the !-box associated with b.

2.4 Rewriting Systems

We now introduce the de�nition of a rewriting system, which will be applied to string graphs

and !-graphs.

An abstract rewriting (or reduction) system R is a pair (A,→) where:

• A is a set;

• →⊆ A×A is a binary relation on the set A.

Interpreting A as a set of formulas, R de�nes a set of rewrite rules f → f ′ specifying how a

formula f can be rewritten into an equivalent formula f ′ [3].

Given a rewrite rule f → f ′ and a generic formula g, matching is the process in which we

look for a matching between the formula g (or a subpart of the formula g) and the formula

f ; replacement is the process in which the formula g (or the subpart of the formula g) which

matched f is substituted with f ′.

Given a rewrite system R and a formula f , we say that:

• f is reducible if R contains a rewrite rule matching f (or a subpart of f);

20

• f is irreducible if R does not contain a rewrite rule matching f (or a subpart of f); in

this case we say that f is in normal form.

We de�ne
∗→ as the re�exive and transitive closure of the binary relation →. f

∗→ f ′ is

equivalent to f → f1 → f2 → . . . → f ′, which means that in the rewrite system R there is

a sequence of rules which allow us to rewrite f as f ′.

When working with a rewrite system R we are interested in the following properties :

• Termination: a rewrite system R is terminating if, given any formula f ∈ A, then

any chain of reductions, f
∗→ f̂ leading from f to the normal form f̂ , contains a �nite

number of reductions; termination guarantees that the reduction process will not end

up in in�nite loops.

• Con�uence: a rewrite system R is con�uent if, given any formula f ∈ A, then for any

two chains of reductions f
∗→ f1 and f

∗→ f2, leading from f to f1 and from f to f2,

there is a formula f3 such that there exist the re�exive and transitive closures f1
∗→ f3

and f2
∗→ f3; if f has a normal form f̂ , then con�uence guarantees the uniqueness of

the normal form f̂ .

• Convergence: a rewrite system R is convergent if it is terminating and con�uent;

convergence guarantees the well-behaviour of a rewriting system: for any formula f it

is always possible to get to its normal form f̂ in a �nite number of reductions [3].

It is worth noticing that if it is possible to �nd an ordering in the rewrite rules of a rewrite

system R, then R is terminating. More precisely, given a well-founded poset (P,≤), that

is a partially ordered set with a smallest element and no in�nite sequence of strictly de-

creasing elements, if the rewrite system R admits a function ω : A → P such that for any

f1, f2 ∈ A, f1 → f2 ⇒ ω(f1) > ω(f2), then R is terminating [15].

An example of very well-known and well-studied concrete rewrite systems are term rewrit-

ing systems. In a term rewrite system the set A is a set of terms, where a term is a formula

built out from a set of variables V and from a set of function symbols F , and the binary

relation → is the relation specifying how a term is reduced to another term.

Another example of concrete rewrite systems closer to our interest are graph rewrite

systems. In a general graph rewrite system (A,→) the set A is a set of graphs and the

binary relation→ is the relation determining how a graph can be redrawn as another graph.

A speci�c type of graph rewrite systems are string graph rewrite systems.

21

2.5 String Graph Rewriting Systems

A string graph rewriting system R = (A,→) is a pair composed by a set A of string graphs

and by a binary relation → determining how to convert a string graph into another string

graph. The set of rules composing R is a set of rules of type L→ R, de�ning how the string

graph L on the left hand-side can be converted into the string graph R on the right hand-side.

Let's recall that given a category C and two objects X and Y belonging to C, then a

span is a diagram of the form shown in �gure 2.17, where S is an object of C.

X Y

S
f g

Figure 2.17: Span of X and Y in C.

A string graph rewrite rule L→ R can be de�ned as [16]:

De�nition (String graph rewrite rule) A string graph rewrite rule L → R is a span

of monomorphisms L
b1← B

b2→ R such that:

• b1(B) = Bound(L)

• b2(B) = Bound(R)

• ∀b ∈ B, b1(B) ∈ Input(L)⇔ b2(B) ∈ Input(R)

Therefore, the monomorphisms b1 and b2 map the objects in B to the boundary of L and to

the boundary of R in such a way that if b ∈ B is mapped by b1 to the input (resp. output)

of L then it is mapped by b2 to the input (resp. output) of R and vice versa.

Now, given a string graph rewrite rule and a string graph G we are interested in �nding

a possible matching between G (or a subpart of G) and L. Before giving a de�nition of a

matching, it is useful to introduce the concept of local isomorphism [16]:

De�nition (Local isomorphism for string graphs) Given two string graphs G and

H and a string graph homomorphism between them f : G → H, f is a local isomorphism

if for every node-vertex n ∈ NV (G) then the restriction of f on the nhd(n) restricts to a

bijection of the edges f |nhd(n): nhd(n)→̃nhd(f(n)).

22

In other words, f : G→ H is a local isomorphism if f is a monomorphism and for every

node-vertex n ∈ NV (G) the image of the neighbourhood of n is equal to the neighbourhood

of the image of n, f(nhd(n)) = nhd(f(n)).

This de�nition can be easily extended to the case in which we have a string graph and

a !-graph:

De�nition (Local isomorphism for bang graphs) Given a !-graph G, a string graph

H, a map f∗ : G∗ → H is a local isomorphism if there exists an instantiation G �! G
∗ such

that f∗ is a string graph homomorphism and for every node-vertex n ∈ NV (G∗) then the

restriction of f to nhd(n) restricts to an bijection of the edges f |nhd(n): nhd(n)→̃nhd(f(n)).

Similarly to the previous case, given a !-graph G and a string graph H, a map f∗ : G∗ →
H is a local isomorphism if we can �nd an instantiation G∗ of G such that f∗ is a string

graph homomorphism and for every node-vertex n ∈ NV (G∗) the image of the neighbour-

hood of n is equal to the neighbourhood of the image of n, f(nhd(n)) = nhd(f(n)).

Now we can de�ne a string graph matching as:

De�nition (String graph matching) Given a string graph rewrite rule L → R and a

string graph G, we de�ne matching a monic local isomorphism m : L→ G.

After �nding �nding a matching m between the string graphs L and G, we can replace

the occurrence of L within G with R. The replacement operation is made up of the following

steps:

• Disconnection and removal of L from G;

• Insertion and re-connection of R to G.

During these operations it is important to keep constantly track of how L (or R) are con-

nected to G.

Let's de�ne interface (or boundary) B of L the set of node-vertices belonging to L which

are directly connected to G; let's also de�ne interior of L as L−B, that is the set of node-
vertices belonging to L which are not directly connected to G. Notice that by the de�nition

of string graph rewrite rule we have given above, the boundary B of L and R are the same.

The replacement operation can then be performed more precisely in the following way:

• Identify the boundary B of L;

23

• Disconnect and remove the interior of L, that is L−B;

• Identify the interior of R, that is R−B;

• Insert the interior of R and connect it back to the boundary B.

This procedure can be formalized using the notion of pushouts and it takes the name of

double pushout technique (DPO) [15, 9]. Let's de�ne the graph G′ as the graph G with the

interior of L removed, that is the graph whose node-vertices and edges are:

VG′ = VG − (VL − VB)

EG′ = EG − (EL − EB)

and where the source s and the target t of the edges are de�ned as the restrictions

sG′ = sG|G′ and tG′ = tG|G′ . Notice that these restrictions are well-de�ned as the matching

m of L on G is a local isomorphism; this guarantees that in G′ there are no edges without

a target or a source. We can now interpret G′ as the pushout complement of B
b1
↪→ L

m→ G

and G as the pushout of B
m′→ G′ and B

b1
↪→ L (see �gure 2.18).

B L

G′ G

b1

m′ m

Figure 2.18: Pushout complement.

Similarly, if we consider R and we de�ne H as the �nal string graph obtained by replac-

ing L with R in G, we can interpret G′ as the pushout complement of B
b2
↪→ R

m→ H and H

as the pushout of B
m′→ G′ and B

b2
↪→ R (see �gure 2.19).

B R

G′ H

b2

m′

Figure 2.19: Pushout complement.

The technique of graph rewriting based on the computation of these two pushouts is

called double pushout and it is usually expressed in a single diagram (see �gure 2.20).

24

B R

G′ H

L

G

b2b1

m′m

Figure 2.20: Double Pushout.

This means that G can be interpreted as the gluing of L and G′ along the boundary B

and that the �nal string graph H can be computed by the gluing of R (instead of L) and

G′ along the boundary B. The picture in �gure 2.21 exempli�es how the double pushout

technique is used in a concrete case.

Even if in a category with all pushouts, pushout complements does not need to exist or

to be unique, it is possible to prove the uniqueness of rewriting. The following theorem,

proved in [9], guarantees for the uniqueness of rewriting:

Theorem (Existence and uniqueness of pushout complement) Given a boundary

span L
b1← B

b2→ R and a matching m : L → G, then B
b1→ L

m→ G has a unique pushout

complement G′ and both the pushout squares in the DPO diagram (see �gure 2.20) are

preserved by the embedding of SGraphT into Graph/GT .

2.6 Regular Expressions

Finally, we brie�y recall the formalism of regular expressions, which will be useful when

dealing with the representation of discrimination nets for !-graphs (see chapter 3).

A regular expression is a rule used to generate strings. More formally, given a �nite

alphabet Σ = {a1, a2, a3 . . . an}, a regular expression r is a rule to produce strings s from

the alphabet Σ.

Given the alphabet Σ = {a1, a2, a3 . . . an} a string s over the alphabet Σ can be:

• s = ε: the empty string;

• s = ai: a literal element belonging to alphabet Σ;

• s = si.sj (or simply s = sisj): the concatenation of two strings si and sj over the

alphabet Σ;

A regular expression r over a �nite alphabet Σ = {a1, a2, a3 . . . an} can be the rule:

25

• r = si generating si (constant);

• r = ri.rj (or simply r = rirj) generating the concatenation of the string produced by

ri and the string produced by rj (concatenation).

• r = (ri)|(rj) generating ri or rj (alternative);

• r = (ri)
∗ generating ε or ri or riri or ririri... (repetition zero or more times);

• r = (ri)
+ generating ri or riri or ririri... (repetition one or more times);

• r = (ri)
? generating ε or ri (occurrence zero or one time);

Notice that the repetition one or more time (ri)
+ and the occurrence zero or more time (ri)

?

are derived expressions as they could be written using other expressions:

• (ri)
+ = ri(ri)

∗

• (ri)
? = (ε|ri)

Notice also that when we de�ne r we use parentheses to group those literals comprising ri

which are the object of the operation of alternative, repetition or occurrence; if ri is a single

literal, parentheses can be omitted.

Given a regular expression r and a string s, we say that r matches s if s can be generated

from the regular expression r.

26

Rewrite rule L→ R :

String Graph G :

Double pushout:

m m′

Final String Graph H :

Figure 2.21: Example of use of the double pushout.

27

Chapter 3

Algorithms for Rewriting

In this chapter we focus on the main problem we tackle in this dissertation; we will �rst

introduce a family of algorithms devised to improve the performance of graph matching

(section 3.1); then we will described a standard implementation of these algorithms for

string graphs (section 3.2); next we will explain how we improved this algorithm in the case

of string graphs (section 3.3) and �nally how we extended it to !-graphs (section 3.4).

3.1 Discrimination Nets

In this section we introduce the basic concepts common to all the algorithms belonging to

the family of discrimination nets.

3.1.1 De�nition of Discrimination Nets

Discrimination nets are a family of algorithms introduced in the 1990s to speed up the

search for matchings in term rewriting systems [22]. A discrimination net is a �ltering al-

gorithm, not a matching algorithm; it can implemented before a matching algorithm, but it

does not replace it. Given a rewrite system R made up of a set of rewrite rules ri and a

generic formula f , a discrimination net is not designed to evaluate exact matchings between

f and ri, but to exclude in a fast and e�cient way all those rewrite rules ri that certainly

do not match f ; a discrimination net returns a smaller set of rewrite rules R′ ⊆ R, con-
taining only those rewrite rules ri which are likely to match f . Therefore, a discrimination

net is implemented in order to improve the overall performance of a matching algorithm by

reducing the search space of the matching algorithm.

Discrimination nets are based on the idea of building a data structure, called index,

which can be used to e�ciently query many rewrite rules at the same time. Given a rewrite

28

system R made up of a set of rewrite rules ri, a discrimination net generates a data structure

containing information about all the rewrite rules ri. Given a new formula f , the discrim-

ination net can e�ciently compare the formula f against all the rewrite rules stored in its

data structure and return only the formulas ri which are likely to match f .

When using discrimination nets with string graphs, it is convenient to consider the in-

put and output wire-vertices of a string graph connected to a special type of node-vertex

called boundary node-vertex ; a boundary node-vertex n is a node-vertex with kindNV (n) =

�boundary� and with an unde�ned input arity and an unde�ned output arity. Conceptually,

a boundary node-vertex n is just a placeholder which can be substituted with any other

node-vertex or with an arbitrary string graph; through a boundary node-vertex a string

graph G can be connected to another string graph H. For example, the string graph in

�gure 2.7 will be represented as the string graph in �gure 3.1.

b1

a

1
b c

2 3

ed

4

f

b2

b3

Figure 3.1: Example of a string graph with boundary node-vertices.

We will use the term concrete node-vertex to refer to a node-vertex having a kind di�erent

from �boundary�.

3.1.2 Correctness of Discrimination Nets

In returning the reduced set of rewrite rules R′ ⊆ R, the discrimination net is allowed to

commit false positives (keeping in R′ rules which do not match f), but it is not allowed

to commit any false negative (not keeping in R′ rules which match f). The discriminatory

power of the discrimination net can be computed as inversely proportional to the number

of false positives.

29

In order to enforce these constraints, we say that a discrimination net is correct if:

(i) R′ ⊆ R: the �nal reduced rewrite system R′ produced by the discrimination net is a

subset of the original rewrite system R.

(ii) ∀ri ∈ R, ri matches f ⇒ ri ∈ R′: if a rewrite rule ri matches the formula f , then ri

must belong to the reduced rewrite system R′ produced by the discrimination net.

In the speci�c case of graph matching we will make the following assumptions:

1. The generic object f is a concrete string graph; we will call this graph target graph T .

We assume that target graphs are always concrete string graphs, containing any kind of

node-vertex, excluding boundary node-vertices; this choice is justi�ed by the idea that

our aim is to �nd matchings between speci�c instances of a graph (target graph) and

a set of generic rules for generating graphs, which can be non-concrete string graphs

or !-graphs. As boundary node-vertices and !-vertices are used to convert concrete

graphs in abstract graphs which can be instantiated in several ways, we forbid the use

of boundary node-vertices and !-vertices in target graphs.

2. The rewrite system R is a collection of graph rewrite rules ri of the type l → r; as

we are interested only in the matching between the LHS l of a rewrite rule ri and a

generic graph f , we will work only with the set of LHS graphs l; we will call the set

of all the LHS graphs l set of pattern graphs P and we will call an element of this set

pattern graph Pi.

Two families of discrimination nets which have been studied and applied to the problem of

graph matching are [10]:

1. Hashing-based discrimination nets: relying on a index containing hashed values de-

scribing the pattern graphs (e.g. histogram-based discrimination nets);

2. Topography-based discrimination nets: relying on a index built as the tree containing

information about the pattern graphs.

Given the better performance on a theoretical and a practical level [10], we will focus on

topography-based discrimination nets.

3.2 Standard Topography-based Discrimination Net for String

Graphs

In this section we describe a topography-based discrimination net algorithm proposed by

Douglas in [10] to speed up graph matching.

30

3.2.1 Algorithm

In a topography-based discrimination net the index data structure is built as a tree, gener-

ated by the merging of the contour lists of all the pattern graphs.

De�nition (Contour) Given a pattern graph Pi from the pattern set P we de�ne

mth contour of Pi, the set pm of all the node-vertices n belonging to Pi such that:

(i) n belongs to the set of node-vertices connected to the neighbourhood of the (m− 1)th

contour, pm−1;

(ii) for all j < m, n does not belong to the jth contour, pj .

De�nition (Contour List) Given a pattern graph Pi, the contour list (or topography)

of Pi is the list of all the contours starting from an initial node-vertex n0 assumed as the

0th contour.

So, in order to build the contour list of a pattern graph Pi we need a starting point; to

choose the initial node-vertex we de�ne a function, called targeting function, which receives

as input a pattern graph Pi and returns a concrete node-vertex n0 ∈ Pi.

By de�nition, the node-vertex n0 returned by the targeting function will be considered

the 0th contour of the pattern graph Pi. Starting from this contour, all the following contours

can be computed one after the other (see �gure 3.2).

The algorithm of the targeting function may vary from implementation to implementa-

tion: it may return a random node-vertex n0 or it can perform a search in order to return a

speci�c node-vertex; as it will become clear in the next sections, a sensible choice could be

to return a node-vertex n0 which maximizes the number of contours between the 0th contour

and the �rst contour containing a boundary node-vertex.

In order to be e�cient, every contour should store only the information useful to the

discrimination task. For each node-vertex, we need to know its kind and its input and

output arity.

When dealing with string graphs, we consider each contour as a multiset of node-vertices.

We can represent the node-vertices graphically or, for the sake of writability, as tuples of the

form (ki, ini, outi) where ki is the kind, ini is the input arity and outi is the output arity

of the ith node-vertex (see �gure 3.3). Notice that since boundary node-vertices have an

unde�ned input arity and an unde�ned output arity, then we denote their arities as ini =

�−� and outi = �−�.

31

b1

a

1
b c

2 3

ed

4

f

b2

b3

Figure 3.2: Example of a topography where the 0th contour = {1}, 1st contour = {2, 3, b1},
2nd contour = {4, b2}, 3rd contour = {b3}.

b1

a

1
b c

2 3

ed

4

f

b2

b3

0th contour:
[]
[("grey",2,1)]

1st contour:
[]
[("white",1,1), ("gray",1,1), ("bound",-,-)]

2nd contour:
[]
[("gray",1,1), ("bound",-,-)]

3rd contour:
[]
[("bound",-,-)]

Figure 3.3: Example of a topography for a string graph.

Once the contour lists for all the pattern graphs Pi have been built, all the contour lists

li can be merged into a topography tree (or discrimination tree) T . The topography tree T
is built starting from a tree made up by a single empty root node r. Given a contour list

li, we insert it in T by inserting a contour at each level. Starting from the root node r, we

check if the 0th contour of li is present among the children of r; if the contour is present

we move to the corresponding tree node n1; if the contour is not present we create a tree

node n1 containing the 0th contour of li, we append it to r and we move to the tree node

n1. Then, one by one, for all the contours in li we follow the same procedure: if the contour

is present among the children of the current tree node ni we move on to the corresponding

tree node ni+1; if the contour is not present we create the tree node ni+1, we append it and

32

we move to it. At the last stage, when all the contours of li have been added to the tree,

we create and append a last tree node containing a reference to the original pattern graph

Pi we have processed. In this way we can build the complete topography tree T containing

the contour lists of all the pattern graphs (see �gure 3.4).

Topography of P1: [] [] [] []

Topography of P2: [] [] []

Topography of P3: [] [] [] []

Topography Tree T for P1, P2 and P3:

Root

[] []

[] [] []

[] [] []

[] P2 []

P1 P3

Figure 3.4: Example of a topography tree.

After building the topography tree T , the discrimination net algorithm receives and

processes a target graph T . For each node-vertex n ∈ T , the discrimination net algorithm

builds a contour list cn starting at n. Each contour list cn is then checked against the to-

pography tree T . The contour list cn is used to prune from T all those branches which are

not compatible with the target graph T .

The operation of pruning is based on the notion of compatibility. When we work with

string graphs, contours are represented as multisets and the de�nition of compatibility is:

De�nition (Compatibility) Given two contours c1 and c2, we say that c1 is compatible

with c2, that is c1 B c2, if we can de�ne an injective function f : c2 → c1 preserving the

kind and the arities of the node-vertices in c2.

Practically, if we are working with string graphs and we are given a contour t belonging

to a target graph T and a contour p belonging to a pattern graph Pi, we say that t is

33

compatible with p, t B p, if we can �nd an injective function f : p → t such that for every

node-vertex pj ∈ p, tl ∈ t, if f(pj) = tj then:

(i) kind(pj) = kind(tl) and input(pj) = input(tl) and output(pj) = output(tl)

OR

(ii) kind(pj) = �boundary�

that is: if pj is a node-vertex with kind di�erent from �boundary�, then pj and tl must have

the same kind, the same input arity and the same output arity; if pj is a node-vertex with

kind �boundary�, then tl can have any kind, any input arity and any output arity. See �gure

3.5.

t =[] t is compatible with:

p =[]

p =[]

p =[]

p =[]

p =[]

t is not compatible with:

p =[]

p =[]

p =[]

p =[]

Figure 3.5: Examples of compatibility for string graphs.

Notice that, because of the injectivity of p, the relation of compatibility is not symmetric;

c1 B c2 (�c1 is compatible with c2�) does not imply c2 B c1 (�c2 is compatible with c1�). The

relation of compatibility is indeed antisymmetric as c1 B c2 and c2 B c1 implies c1 = c2.

Because of the injectivity of p, it is also easy to see that the relation of compatibility is

re�exive (c1 B c1) and transitve (c1 B c2 and c2 B c3 implies c1 B c3). The relation of

compatibility de�nes then a partial order.

In general, we will say that, given two string graphs T and Pi, T is compatible with Pi,

T B Pi, if, for all the contours j in Pi, then tj B pj .

Using the notion of compatibility, for each contour list cn, the discrimination net algo-

rithm prunes T and returns a set R′n ⊆ P of pattern graphs Pi which could match T . This

set R′n is then sent along with T to the matching algorithm in order to check for exact

34

matchings between T and the pattern graphs Pi ⊆ R′n. See �gure 3.6.

Topography of T : [] [] [] []

Pruning T using T

Root

[] []

[] [] []

[] [] []

[] P2 []

P1 P3

pruning

Root

[]

[]

[]

P2

Reduced set of pattern graphs P ′ = {P2}

Figure 3.6: Example of pruning of a topography tree.

The overall discrimination net algorithm is summarized in the algorithm table 1.

3.2.2 Correctness

The proof of the correctness of the algorithm for the standard topography-based discrimi-

nation net is given by Douglas in [10].

3.2.3 Complexity

The asymptotic complexity of each step of the standard topography-based discrimination

net is computed in the algorithm table 2.

If we analyze the algorithm we could divide it in two parts: the �rst part (steps 1 to 3)

which is a setup part, executed only once in order to build the topography tree T ; and a

second part (steps 4 and 5) which is executed every time we want to check a target graph

T for matching.

In the worst case the asymptotic complexity of the �rst part is O(1) + O(|P| |Pi|2 +

|P| |Pi|) + O(|P| |Pi|) ∼ O(|P| |Pi|2); so the complexity grows linearly with the number

of pattern graphs in P and quadratically with the number of node-vertices in the pattern

graphs Pi.

35

Algorithm 1 Standard Algorithm for the Discrimination Net

(i) Receive the set P of pattern graphs Pi

(ii) For each pattern graph Pi in P:

• Send Pi to the targeting function and receive back a concrete node-vertex n ∈ Pi

• Generate the contour list ci starting at n

(iii) For each contour lists ci:

• Add ci to the topography tree T

(iv) Receive the target graph T

(v) For all node-vertices n in T :

• Generate the contour list cn starting at n

• Prune T using cn according to the notion of compatibility

• Obtain a set R′n ∈ P of pattern graphs Pi potentially matching T

• Send R′n and T to a matching algorithm

For the second part, the asymptotic complexity in the worst case is O(1) + O(|T |2 +

|T |2 |P|+ |T |) ∼ O(|T |2 |P|); in this case, the complexity grows linearly with the number of

pattern graphs in P and quadratically with the number of node-vertices in the target graph

T . The algorithm could be improved, without changing its overall worst-case complexity

though, by merging together the �rst two sub-steps of step 5; instead of generating a contour

list for T in advance, we can generate it just-in-time when we need to compare one contour

with the topography tree; this would avoid the generation of unused contour in case the

topography tree is completely pruned before processing all the contours of the target graph.

Notice that by implementing the discrimination net algorithm we reduce the complexity

of the following matching algorithm from O(|P| |T |M), where M is the complexity of the

matching operation, to O(|R| |T |M), where |R| is the number of pattern graphs Pi contained

in the reduced set of pattern graphs [10]. A good discrimination net algorithm is one with

a high discriminative power reducing the size of the set of pattern graphs P as much as

possible.

36

Algorithm 2 Complexity of the Discrimination Net Algorithm

(i) O(1)

(ii) O(|P|) where |P| is the number of pattern graphs Pi in P;

• O(targeting function) depending on the implementation of the targeting func-
tion; it can range from O(1) if the targeting function returns a random node-
vertex in Pi to O(|Pi|2 k), where |Pi| is the number of node-vertices n in Pi, if
it has to build the contour list of every node-vertex and evaluate it in constant
time k;

• O(|Pi| k) where k is the cost of generating a contour; the number of repetitions
depends on the number of contours which is bounded by the number of node-
vertices in Pi.

(iii) O(|P|);

• O(|Pi| k) where k is the cost of appending a node and moving inside the topog-
raphy tree; the number of repetitions depends on the number of contours which
is bounded by the number of node-vertices in Pi.

(iv) O(1)

(v) O(|T |) where |T | is the number of node-vertices n in T :

• O(|T | k) where k is the cost of generating a contour; the number of repetitions
depends on the number of contours which is bounded by the number of node-
vertices in T .

• O(|T | |P| k) where k is the cost of making a comparison and executing a pruning;
the number of repetitions depends on the number of levels to check, bounded by
the number of node-vertices in T , and on the number of nodes on each level of
the tree T , bounded by the number of pattern graphs in P.
• O(1)

• O(1)

37

3.3 Improved Topography-based Discrimination Net for String

Graphs

In this section we show how to rede�ne the standard topography-based discrimination net

algorithm by modifying the notion of compatibility. In this way we will have a more strict and

rigorous notion of compatibility which guarantees the same or a higher discriminative power.

Moreover this new notion will make it easier to extend a topography-based discrimination

net to !-graphs.

3.3.1 Algorithm

In the improved algorithm we substitute the original and basic idea of compatibility with

two di�erent notions of compatibility between contours: strong compatibility and weak com-

patibility.

De�nition (Strong Compatibility) Given two contours c1 and c2, we say that c1 is

strongly compatible with c2 if we can de�ne an bijective function f : c2 → c1 preserving the

kind and the arities of the node-vertices in c2.

De�nition (Weak Compatibility) Given two contours c1 and c2, we say that c1 is

weakly compatible with c2 if we can de�ne an injective function f : c2 → c1 preserving the

kind and the arities of the node-vertices in c2.

Practically, if we are given a contour t belonging to a target graph T and a contour

p belonging to a pattern graph Pi, we look for a function f : p → t, such that, given a

node-vertex pj ∈ p and a node-vertex tl ∈ t, if f(pj) = tl then the kind-preservation and

arity-preservation constraints given above are satis�ed:

(i) kind(pj) = kind(tl) and input(pj) = input(tl) and output(pj) = output(tl)

OR

(ii) kind(pj) = �boundary�

In conclusion, t is strongly compatible with p if all the node-vertices in p are matched to

t and vice versa; if all the node-vertices in p are matched to t but not vice versa then t is

weakly compatible with p. See �gure 3.7.

Notice that, because of bijectivity, the relation of strong compatibility with no bound-

aries is symmetric (c1 B c2 implies c2 B c1) while the relation of weak compatibility remains

38

t =[] t is strongly compatible with:

p =[]

p =[]

p =[]

t is weakly compatible with:

p =[]

p =[]

t is not compatible with:

p =[]

p =[]

p =[]

p =[]

Figure 3.7: Examples of strong compatibility and weak compatibility for string graphs.

antisymmetric (c1 B c2 and c2 B c1 implies c1 = c2).

Notice also that the previous notion of compatibility and the new notion of weak compat-

ibility coincide; this means that by using strong compatibility we enforce stronger conditions

for compatibility, while the weak compatibility works as in the case of the standard algo-

rithm.

We will keep saying that two contours c1 and c2 are compatible, c1 B c2, if c1 and c2 are

strongly compatible or if c1 and c2 are weakly compatible.

We can now modify the algorithm for the standard topography-based discrimination net

adding the notions of strong compatibility and weak compatibility (see algorithm table 3).

After building the topography tree T as explained in the previous section, we start

pruning using the notion of strong compatibility to compare contours; when, during the

processing of the contours, we �nd a boundary node-vertex, then we switch from using the

notion of strong compatibility to using the notion of weak compatibility.

The intuition behind this algorithm is the following: before �nding a boundary node-

vertex, we require a (kind-wise and arity-wise) bijective matching between the contour of

the pattern graph Pi and the contour of the target graph T ; after �nding a boundary node,

part of the target graph T can develop unconstrained and, therefore, we can require only a

(kind-wise and arity-wise) injective matching between the contour of the pattern graph Pi

and the contour of the target graph T . The correctness of this new version of the algorithm

is formally proved in the next section.

39

Algorithm 3 Improved Algorithm for the Discrimination Net

(i) Generate topography tree T and receive the target graph T as before.

(ii) For all node-vertices n in T :

• Generate the contour list ci starting at n

• Prune T using ci according to the new notions of compatibility

� If no boundary node-vertex has occurred in a previous contour, prune ac-
cording to the notion of strong compatibility

� If a boundary node-vertex has been found, prune according to the notion of
weak compatibility

• Obtain a set Rn ∈ P of pattern graphs Pi potentially matching T

• Send Rn and T to a matching algorithm

3.3.2 Correctness

In order to prove the correctness of the discrimination net algorithm using strong compati-

bility and weak compatibility, it will be useful to introduce two lemmas about compatibility

between contours.

Lemma (Strong compatibility of contours without boundary node-vertices) Let

A and B be two string graphs, such that A matches B, that is there is a matching m : A→
B.

Assume n0 to be the starting node-vertex of the topography of A.

We know that there are no boundary node-vertices in B and we assume also that the

�rst boundary node-vertex has been found at radius k from n0 in A.

Then for every contour j within or on radius k, bj is strongly compatible with aj .

Proof. To prove this lemma we can show that for every contour j within or on radius k,

aj ⊆ bj and bj ⊆ aj .

First of all, aj ⊆ bj is easily proved, because the monomorphism m : A→ B guarantees

that every element in A (and therefore every element in any contour of A) has an image in B.

As a second step, let's focus on proving bj ⊆ aj . We will prove this by induction:

(i) Base case: let's prove b1 ⊆ a1.
This is trivially true, since the �rst contour of every graph is just a single node-vertex;

and, since by assumption we have a matching between A and B, then it must be

40

b1 = a1 = {n0}, which implies b1 ⊆ a1.

(ii) Inductive step: let's prove bk ⊆ ak assuming that bk−1 ⊆ ak−1.
Consider a node-vertex nb,k ∈ bk. There must exist a node-vertex nb,k−1 ∈ bk−1

connected to nb,k; since bk−1 ⊆ ak−1, there must also exist a node-vertex na,k−1 ∈ ak−1
such that m(na,k−1) = nb,k−1. Now, since by assumption na,k−1 is not a boundary

node-vertex, to respect the property of local isomorphism of the matching, the image

of the neighbourhood of na,k−1 must be in bijection with the neighbourhood of the

image m(na,k−1) = nb,k−1. Therefore there must exist a node-vertex na,k ∈ pk such

that m(na,k) = nb,k. And so it holds that bk ⊆ ak.

So, having proved that for every contour j within or on radius k, aj ⊆ bj and bj ⊆ aj , we

can conclude that for every contour j within or on radius k, bj is strongly compatible with

aj . �

Lemma (Weak compatibility of contours with boundary node-vertices) Let A

and B be two string graphs, such that A matches B, that is there is a matching m : A→ B.

Assume n0 to be the starting node-vertex of the topography of A.

We know that there are no boundary node-vertices in B and we assume also that the

�rst boundary node-vertex has been found at radius k from n0 in A.

Then for every contour j beyond radius k, bj is weakly compatible with aj .

Proof. To prove this lemma we have to show that for every contour j beyond radius k,

aj ⊆ bj . As before, this is easily proved, because the monomorphism m : A→ B guarantees

that every element in A (and therefore every element in any contour of A) has an image in

B.

Therefore, we can state that for every contour j beyond radius k, bj is weakly compatible

with aj . �

We now present a proof of the theorem of the correctness of the improved algorithm for

the topography-based discrimination net following a similar proof given in [10].

Theorem (Correctness of the algorithm for the improved topography-based dis-

crimination net) The algorithm for the improved topography-based discrimination net

for string graphs is correct, i.e. it satis�es the two conditions for the correctness of a dis-

crimination net we stated in 3.1.2.

41

Proof. Let P be a set of pattern graphs {P1, P2 . . . Pn} and let T be a target graph. Let

T be the topography tree built from the set of pattern graphs P.
Suppose that Pi matches T , that is there a matching m : Pi → T .

Assume n0 to be the starting node-vertex of the topography of Pi.

In order to prove that the discrimination procedure of the improved topography-based

algorithm is correct we have to prove the two conditions for the correctness of a discrimina-

tion net we stated in 3.1.2.

First of all we have to prove P ′ ⊆ P, that is the set of pattern graphs P ′ returned by

the topography-based algorithm is contained in the original set of pattern graphs P.
This holds because of the way in which the algorithm is constructed: starting from the topog-

raphy tree T containing all the pattern graphs in P, the algorithm proceeds exploring and

pruning the tree; the data structure returned by the algorithm is a pruned tree T ′ contain-
ing branches leading only to a �nite subset of the original pattern graphs. Therefore P ′ ⊆ P.

Next, we have to prove Pi ∈ P ′, that is the pattern graph Pi matching the target graph

T belongs to the set of pattern graphs P ′ returned by the improved topography-based algo-

rithm.

In order for this statement to hold, the branch of the topography tree T leading to the

pattern graph Pi must not be pruned; this branch will not be pruned if and only if T B Pi .

As the algorithm iterates through all the possible lists of contours of T , assume that the

list of contours of T we consider is the one starting at m(n0). For T to be compatible

with Pi it must hold that for every contour j then tj B pj ; more precisely, in the improved

topography-based algorithm, if pk is the contour where we found the �rst occurrence of a

boundary node-vertex, it must hold that for every j ≤ k, tj is strongly compatible with pj

and, for every j > k, tj is weakly compatible with pj .

Let's prove the two parts of this assertion:

(i) Assume that the �rst boundary node-vertex has been found at radius k from n0.

Then, by the lemma on the strong compatibility of contours it follows that for every

contour j within or on radius k, tj is strongly compatible with pj .

(ii) Again, assume that the �rst boundary node-vertex has been found at radius k from

n0.

Now, by the lemma on weak compatibility of contours, it follows that for every contour

j beyond radius k, tj is weakly compatible with pj .

42

In this way we have proved that Pi ⊆ P ′.

Hence, in conclusion, the algorithm for the improved discrimination net has been proved

to be correct. �

3.3.3 Complexity

The main di�erence between the standard algorithm and the improved algorithm is in the

way in which compatibility is evaluated between contours; the standard algorithm uses weak

compatibility during the whole execution, while the improved algorithm starts using strong

compatibility and switches to weak compatibility only when it �nds a boundary node-vertex.

As the complexity of evaluating strong and weak compatibility is asymptotically equiv-

alent, the complexity of the two algorithms is the same (see algorithm table 2 and the

discussion in section 3.2.3).

3.4 Extended Topography-based Discrimination Net for Bang

Graphs

In this section we explain our idea to extend our improved algorithm for topography-based

discrimination net from string graphs to !-graphs.

3.4.1 Algorithm

Analogously to the previous algorithms, also the algorithm for the extended topography-

based discrimination net for !-graph is based on the construction of an index, a topography

tree T containing the contour lists of all the pattern graphs Pi in the set of pattern graphs P.

When dealing with !-graphs, we are working with a set of pattern graphs P containing

string graphs and !-graphs and a target graph T . As speci�ed above (see section 3.1.2)

the target graph is required to be a concrete string graph, that is a string graph without

boundary node-vertices.

Given a pattern graph Pi ∈ P we use the targeting function to select a node-vertex

n0 ∈ Pi to be the 0th contour. As Pi could be a !-graph we impose a new constraint on the

targeting function: we require the targeting function to return a concrete node-vertex n0, a

node-vertex that is not a boundary node-vertex nor is contained in a !-box. The reason for

this constraint is that we want the contour list for the pattern graph Pi to be built starting

from a node-vertex which will be present and which will have a given kind and arity in all

43

the possible instances of the pattern graph Pi.

Now, in order to represent contours, using multisets is not convenient anymore. The

notation using multisets does not indeed provide a natural way to represent node-vertices

that can be instantiated an arbitrary number of times. To solve this problem, we use the

formalism of regular expressions. Contours can now be represented using regular expres-

sions r built from the alphabet Σ containing the node-vertices making up the pattern graphs

Pi and the target graph T . As before, the elements of the alphabet Σ can be represented

graphically or, for the sake of writability, they can be represented as tuple of the form

(ki, in
�
i , out

�
i) where ki, ini and outi are the kind, the input arity and the output arity of

the ith node-vertex and � is a placeholder that, as it will be explained soon, can be dropped

or replaced with the ∗ operator (see �gure 3.9).

The language of regular expression provides us with the two operators that allow us to

deal with !-boxes:

• the repetition operator (∗) allows us to specify that a node-vertex is contained in a

!-box; we will use the repetition operator:

1. if a node-vertex ni is inside a !-box bi, then we will mark the node-vertex ni as n
∗
i

(as the node-vertex ni inside the !-box bi can be instantiated an arbitrary number

of times);

2. if a node-vertex ni has an input edge coming from a node-vertex n∗j inside a !-box

bj , then we will mark the input arity of the node-vertex ni as in
∗
ni
, where inni

is the number of input edges from concrete node-vertices; the input arity in∗ni

represents now a minimum number of input edges for the node-vertex ni: inni

is the �xed number of input edges coming from concrete node-vertices, while ∗

denotes that more input edges can be added if bj is instantiated multiple times;

3. if a node-vertex ni has an output edge going to a node-vertex n∗j inside a !-box

bj , then we will mark the output arity of the node-vertex ni as out
∗
ni
, where

outni is the number of output edges to concrete node-vertices; the output arity

out∗ni
represents now a minimum number of output edges for the node-vertex ni:

outni is the �xed number of output edges going to concrete node-vertices, while ∗

denotes that more output edges can be added if bj is instantiated multiple times;

• the optional operator (?) allows us to specify that a node-vertex could end up being

disconnected by the graph in case a !-box is killed or in the case a boundary node-vertex

is merged with another boundary node-vertex; we will use the optional operator:

44

1. if a node-vertex ni, which is not in a !-box and belongs to the mth contour, has

connections only to node-vertices n∗j inside !-boxes and belonging to the (m−1)th

contour, then we will mark the node-vertex ni as n
?
i (as the node-vertex ni may

end up being disconnected from the graph in case the !-boxes in the (m − 1)th

contour are killed);

2. if a node-vertex ni, which is not in a !-box and belongs to the mth contour, has

connections only to node-vertices n∗j belonging to the (m − 1)th contour or to

node-vertices n?j belonging to the (m− 1)th contour, then we will mark the node-

vertex ni as n
?
i (as the node-vertex ni may end up being disconnected if nj too

is disconnected);

3. if a contour contains more than one boundary node-vertex ni, then all the bound-

ary node-vertices are marked as n?i since multiple boundary node-vertices may

be joined in a single concrete node-vertex (see �gure 3.8).

2

1

b1 b2

Pi : [] []

2

1

3

T : [] []

Figure 3.8: Instantiation of two boundary node-vertices in a single concrete node.

When we represent a contour using regular expressions, we want the order of the single

elements to be irrelevant; therefore we de�ne a particular type of regular expressions where

the order of the elements does not matter:

De�nition (Permutative regular expression) Given a regular expression r, we de�ne

permutative regular expression a regular expression r′ given by the alternative of all the

permutations of the elements in r.

Recall that when we build a contour for a !-graph we use regular expressions r built from

the alphabet Σ containing the node-vertices making up the pattern graphs Pi and the target

graph T . The elements comprising r are therefore tuples of the form ai = (ki, in
�
i , out

�
i)�

where � is again a placeholder that can be dropped or replaced with ∗ or with ?; we will

45

b1

a

1
b c

2 3

ed

4

f

b2

b3

0th contour:
[∗]
[("grey",1∗,1)]

1st contour:
[∗]
[("white",1,1), ("gray",1,1)∗, ("bound",-,-)]

2nd contour:
[?
∗

]

[("gray",1,0∗)?, ("bound",-,-)]

3rd contour:
[?]

[("bound",-,-)?]

!

Figure 3.9: Example of a topography for a !-graph.

call these elements atomic expressions. The permutative regular expression r′ derived from

r is then given from the alternative of all the permutations of the atomic expressions; for

example, if r = a1a2a3 then r
′ = a1a2a3|a1a3a2|a2a1a3|a2a3a1|a3a1a2|a3a2a1. Given a string

s and a permutative regular expression r′ generated from r, we say that r′ matches s if s can

be generated from a regular expression obtained as a permutation of the atomic expressions

comprising r.

Notice that, even if the expansion and the computation of all the permutations of a regu-

lar expression r is computationally very expensive, this will never be carried out in practice;

in the implementation, we will just ignore the ordering of the atomic expressions.

Once the contour lists of all the pattern graphs have been generated, they can be merged

in a tree in the same way we did for the standard topography-based discrimination net (see

�gure 3.10).

Now, in order for the algorithm to prune the topography tree T and produce a reduced

set of pattern graphs R′ ⊆ P, the notions of strong compatibility and weak compatibility

must be rede�ned to take into account the fact that we are working with regular expressions.

De�nition (Strong Compatibility) Given two contours c1 and c2, if c1 is a string and

c′2 is a permutative regular expression, then c1 is strongly compatible with c2 if c′2 matches

c1.

In other words, c1 is strongly compatible with c2 if the string c1 can be generated from

one of the permutations of the atomic expressions of c2.

46

Topography of P1: [∗] [∗] [?
∗

] [?]

Topography of P2: [∗] [∗] [∗]

Topography of P3: [] [
∗
] [∗] [∗ ∗]

Topography Tree T for P1, P2 and P3:

Root

[∗] []

[∗] [∗] [
∗
]

[?
∗

] [∗] [∗]

[?] P2 [∗ ∗]

P1 P3

Figure 3.10: Example of a topography tree with !-graphs.

De�nition (Weak Compatibility) Given two contours c1 and c2, if c1 is a string and

c′2 is a permutative regular expression, then c1 is weakly compatible with c2 if there exists a

substring c̄1 ⊆ c1 such that c′2 matches c̄1.

In other words, c1 is weakly compatible with c2 if a substring of c1 can be generated

from one of the permutations of the atomic expressions of c2.

So, c1 and c2 are strongly compatible if the entire string c1 can be generated by c
′
2; if only

a substring of c1 can be generated by c
′
2 then c1 and c2 are weakly compatible. See �gure 3.11.

The de�nitions we have given of strong and weak compatibility �t the task of verifying

the compatibility between the contour t of a target graph T and the contour p of a pat-

tern graph Pi. According to the requirements given above, a target graph T never contains

boundary node-vertices or !-boxes; all the atomic expressions comprising the contour t have

the form ai = (ki, ini, outi); t can then be treated as a string. Vice versa, as the pattern

graph Pi may contain boundary node-vertices and !-boxes, then the atomic expressions com-

prising p have the form ai = (ki, in
�
i , out

�
i)�; therefore p must be treated as a permutative

regular expression.

Given an atomic expression of the form tl = (kl, inl, outl) from the contour t of the target

graph T , we say that an atomic expression pj from the contour p of a pattern graph Pi can

47

t =[] t is strongly compatible with:

p =[∗]

p =[
∗

]

p =[∗]

t is weakly compatible with:

p =[?]

p =[∗]

t is not compatible with:

p =[? ∗]

p =[∗]

p =[∗]

p =[?]

Figure 3.11: Examples of strong compatibility and weak compatibility for !-graphs.

generate ai if one of the following condition is satis�ed:

• pj = (�boundary�, −,−)�

• pj = (kj , inj , outj)
�, kj 6= �boundary�, and kl = kj , inl = inj , outl = outj

• pj = (kj , in
∗
j , outj)

�, kj 6= �boundary�, and kl = kj , inl ≥ inj , outl = outj

• pj = (kj , inj , out
∗
j)
�, kj 6= �boundary�, and kl = kj , inl = inj , outl ≥ outj

• pj = (kj , in
∗
j , out

∗
j)
�, kj 6= �boundary�, and kl = kj , inl ≥ inj , outl ≥ outj

So, if pj represents a boundary node-vertex, it can generate any tl. If pj represents a concrete

node-vertex, then the kinds of tl and pj must be the same; moreover it must be possible to

make the input and the output arities of pj equal to the input and the output arities of tl.

This means that if the arities of pj do not have any ∗ operator, arities in pj and in tl must

be exactly the same; if an arity in pj has a
∗ operator then the arity in pj must be less or

equal to the corresponding arity in tl (this is due to the fact that if an arity in pj is marked

by ∗ operator, then the arity can increase as a node-vertex inside a !-box connected to the

current atomic expression is instantiated more times).

Notice that, while verifying the compatibility between the contour t of a target graph T

and the contour p of a pattern graph Pi, the concept of weak compatibility could be reduced

to the concept of strong compatibility if we arti�cially insert a boundary node-vertex of the

form (�boundary�, −,−)∗ in the contour p.

48

In general, we will say that two contours c1 and c2 are compatible, c1 B c2, if c1 and c2

are strongly compatible or if c1 and c2 are weakly compatible.

Compatibility could equivalently be stated using the notion of multisets by considering

each atomic expression of the regular expression as an element of a multiset. In this case,

if we are given two contours c1 and c2, we de�ne c∗i ⊆ ci and c?i ⊆ ci as the multisets

containing all the elements of ci having a ∗ operator or a ? operator. We say that c1 is

strongly compatible with c2 if we can de�ne a function f : c1 → c2 which:

• preserves the kind and the arities of the node-vertices in c1;

• is injective on the elements of c1 whose image belongs to c2 − c∗2;

• is surjective on c2 − (c∗2 ∪ c?2).

This de�nition requires that all the elements of c1 mapped to concrete or optional elements

of c2 must be mapped in a bijective fashion; moreover, the de�nition requires that all the

elements of c2 which do not have a ∗ operator or a ? operator must be mapped in a surjective

fashion by f . The �rst condition guarantees that all the elements of c1 are correctly mapped

to elements of c2; the second condition guarantees that all the concrete elements of c2 have

a correct mapping from elements of c1.

We say that c1 is weakly compatible with c2 if we can de�ne a function f : c2−(c∗2∪c?2)→
c1 which:

• preserves the kind and the arities of the node-vertices in c2 − (c∗2 ∪ c?2);

• is injective in c2 − (c∗2 ∪ c?2).

This de�nition simply requires that all the concrete elements in c2 are injectively mapped

to elements in c1; the mapping of elements of c2 which have a ? operator or which have a

∗ operator is considered irrelevant in evaluating weak compatibility; all the elements of c2

which have a ? operator or which have a ∗ operator can indeed be dropped.

Notice that the de�nition of f could be extended to take into consideration the mapping

of elements of c2 which have a ? operator (by representing the operation of dropping them as

a mapping to an unde�ned element ⊥), but it cannot be extended to take into consideration

the mapping of elements of c2 which have a ∗ operator as these elements could be mapped

to many elements in c1.

The de�nition of compatibility using multisets is equivalent to the de�nition of com-

patibility using regular expression and all the results stated using the formalism of regular

expressions could be restated using the formalism of multisets.

49

3.4.2 Correctness

In order to prove the correctness of the algorithm for the extended topography-based dis-

crimination net for !-graphs, we will start by proving a couple of lemmas on the compatibility

between contours.

Lemma (Strong compatibility of contours without boundary node-vertices) Let

A be a !-graph and B a string graph, such that A matches B, that is there is an instantiation

A �! A
∗ such that there is a matching m : A∗ → B.

Assume n0 to be the starting node-vertex of the topography of A∗.

We know that there are no boundary node-vertices in B and we assume also that the

�rst boundary node-vertex has been found at radius k from n0 in A.

Then for every contour j within or on radius k, bj is strongly compatible with aj .

Proof. To prove this lemma we have to show that for every contour j within or on

radius k, bj is generated by aj . First, we will prove that every atomic expression in aj has

a corresponding generated atomic expression in bj ; then, we will prove that every atomic

expression in bj has a corresponding generating atomic expression in aj .

First, let's focus on proving that every atomic expression (k, in, out)a in aj has a corre-

sponding generated atomic expressions (k, in, out)b in bj .

Since A matches B, there is an instantiation A �! A
∗ such that we have a monic local

isomorphism m : A∗ → B; as every contour in A∗ is an instantiation of a contour in A,

then:

(i) every concrete node-vertex in A must be instantiated to an equivalent concrete node-

vertex in A∗; this node-vertex is represented by the atomic expression (kl, inl, outl)A in

aj and by (kl, inl, outl)A∗ in a
∗
j ; (kl, inl, outl)A∗ is mapped through the matching m :

A∗ → B to the corresponding generated equivalent atomic expression (kl, inl, outl)B

in bj ;

(ii) every concrete node-vertex in A which has ? operator is instantiated to an equivalent

concrete node-vertex in A∗ which is connected to the graph, to a concrete node-vertex

in A∗ which is disconnected from the graph (because one or more !-boxes were killed)

or is not instantiated in A∗. The node-vertex is represented by the atomic expres-

sion (kl, inl, outl)A
? in aj and by (kl, inl, outl)A∗ or by ∅ in a∗j . If (kl, inl, outl)A

? is

instantiated to (kl, inl, outl)A∗ and it is connected to the graph, then (kl, inl, outl)A∗

in aj is mapped through the matching m : A∗ → B to the corresponding generated

50

equivalent atomic expression (kl, inl, outl)B in bj ; if (kl, inl, outl)A
? is instantiated to

(kl, inl, outl)A∗ but it is disconnected from the graph, (kl, inl, outl)A∗ does not belong

to any contour of A∗ and therefore there is no atomic expression in any contour aj to

map; if (kl, inl, outl)A
? is instantiated to ∅, then there is no atomic expression to map.

(iii) every node-vertex in a !-box in A is instantiated to an arbitrary number of equivalent

concrete node-vertices in A∗; this node-vertex is represented by the atomic expres-

sion (kl, inl, outl)A
∗ in aj and by zero or more (kl, inl, outl)A∗ in a∗j ; now, for every

(kl, inl, outl)A∗ in aj , (kl, inl, outl)A∗ is mapped through the matching m : A∗ → B to

a corresponding generated equivalent atomic expression (kl, inl, outl)B in bj .

Let's now focus on proving that every atomic expression (k, in, out)b in bj has a corresponding

generating atomic expression (k, in, out)a in aj . We will prove this by induction:

(i) Base case: let's prove b1 has a generating atomic expression in a1.

This is trivially true, since the �rst contour of every graph is always a single concrete

node-vertex; let n0 be the concrete node-vertex returned by the targeting function

applied to A or to A∗; since by assumption we have a matching between A and B, then

it must be b1 = a1 = {n0}; we then have the same atomic expression (kn0 , inn0 , outn0)

in a1 (generating) and in b1 (generated).

(ii) Inductive step: let's prove that for every atomic expression in bk there is a generating

atomic expression in ak, assuming that bk−1 is strongly compatible with ak−1.

We want to prove that all the atomic expressions in bk are generated by atomic ex-

pressions in ak or, equivalently, by the instantiation a∗k. Suppose there is an atomic

expression (kl, inl, outl)B in bk corresponding to a node-vertex nb,k ∈ bk; we want

to prove that there must be an atomic expression (kl, inl, outl)A∗ in a∗k generating

it and corresponding to to the node-vertex na∗,k ∈ a∗k such that m(na∗,k) = nb,k.

Of course there must be an atomic expression (kl, inl, outl)B in bk−1 corresponding

to the node-vertex nb,k−1 ∈ bk−1 connected to nb,k; since bk−1 is strongly compat-

ible with ak−1, there must also exist an atomic expressions (kl, inl, outl)A∗ in a∗k−1

generating (kl, inl, outl)B in bk−1 and corresponding to na∗,k−1 ∈ a∗k−1 such that

m(na∗,k−1) = nb,k−1. Now, by assumption na∗,k−1 is not a boundary node-vertex;

moreover, according to the property of local isomorphism of the matching there must

be a bijection between image of the neighbourhood of na∗,k−1 and the neighbourhood

of the image of na∗,k−1. This means that there must be a node-vertex na,k ∈ ak such

that its instantiation na∗,k ∈ ak guarantees m(na∗,k) = nb,k. Consequently, there must

be an atomic expression (kl, inl, outl)A in ak and an instantiation (kl, inl, outl)A∗ in

a∗k that generates (kl, inl, outl)B.

51

So, having proved that for every contour j within or on radius k, every atomic expression

in aj has a corresponding generated atomic expression in bj and every atomic expression in

bj has a corresponding generating atomic expression in aj , we can conclude that for every

contour j within or on radius k, bj is strongly compatible with aj . �

Lemma (Weak compatibility of contours with boundary node-vertices) Let A

be a !-graph and B a string graph, such that A matches B, that is there is an instantiation

A �! A
∗ such that there is a matching m : A∗ → B.

Assume n0 to be the starting node-vertex of the topography of A∗.

We know that there are no boundary node-vertices in B and we assume also that the

�rst boundary node-vertex has been found at radius k from n0 in A.

Then for every contour j beyond radius k, bj is weakly compatible with aj .

Proof. To prove this lemma we have to show that for every contour j beyond radius

k, there is a substring b′j ⊆ bj generated by aj . To do this, notice that we can ignore the

atomic expressions in aj which have an operator ? or ∗ as they can always be instantiated to

no node-vertex in a∗j ; we then focus on �nding a substring b′j ⊆ bj generated by the concrete

node-vertices of aj which can not be dropped. Now, it is easy to �nd a substring b
′
j ⊆ bj such

that b′j is generated by aj ; indeed because of the matching m : A∗i → B, it is guaranteed

that every element in Ai not belonging to a !-box (marked by ∗ operator) or being droppable

(marked by ? operator) has an image in B, which means that for every atomic expression

which has no operator ? or ∗ in aj there is a generated atomic expression in bj .

Therefore, we can state that every contour j beyond radius k, bj is weakly compatible

with aj . �

We can now state our theorem on the correctness of the algorithm for the extended

topography-based discrimination net for !-graphs.

Theorem (Correctness of the algorithm for the extended topography-based dis-

crimination net) The algorithm for the the extended topography-based discrimination

net for !-graphs is correct, i.e. it satis�es the two conditions for the correctness of a discrim-

ination net we stated in 3.1.2.

Proof. Let P be a set of pattern graphs {P1, P2 . . . Pn} and let T be a target graph. Let

T be the topography tree built from the set of pattern graphs P.

52

Suppose that the !-graph Pi matches the string graph T ; this means that there exists an

instantiation Pi �! P
∗
i such that there is a matching m : P ∗i → T .

Assume n0 to be the starting node-vertex of the topography of Pi.

In order to prove that the discrimination procedure of the extended topography-based

algorithm is correct, we have to prove two conditions for the correctness of a discrimination

net (see section 3.1.2).

First, we have to prove P ′ ⊆ P; this condition can be proved as in the proof for the

correctness of the improved discrimination net (see section 3.3.2).

Next, we have to prove Pi ∈ P ′, that is the pattern graph Pi matching the target

graph T belongs to the set of pattern graphs P ′ returned by the extended topography-based

algorithm.

In order for this statement to hold, the branch of the topography tree T leading to the

pattern graph Pi must not be pruned; this branch will not be pruned if T B Pi .

As the algorithm iterates through all the possible lists of contours of T , assume that the

list of contours of T we consider is the one starting at m(n0). For T to be compatible

with Pi it must hold that for every contour j then tj B pj ; more precisely, in the extended

topography-based algorithm, if pk is the contour where we found the �rst occurrence of a

boundary node-vertex, it must hold that for every j ≤ k, tj is strongly compatible with pj

and, for every j > k, tj is weakly compatible with pj .

Let's prove the two parts of this assertion:

(i) Assume that the �rst boundary node-vertex has been found at radius k from n0.

Then, by the lemma on the strong compatibility of contours it follows that for every

contour j within or on radius k, tj is strongly compatible with pj .

(ii) Again, assume that the �rst boundary node-vertex has been found at radius k from

n0.

Now, by the lemma on weak compatibility of contours, it follows that for every contour

j beyond radius k, tj is weakly compatible with pj .

In this way we have proved that Pi ⊆ P ′.

Hence, in conclusion the extended algorithm has been proved to be correct. �

3.4.3 Complexity

The main di�erence between the extended algorithm and the improved algorithm is in the

type of operation required to check compatibility. The improved algorithm requires to

53

compare two multisets and checks if the elements of one multiset (the contour of a pattern

graph) are contained in the other multiset (the contour of the target graph); the extended

algorithm requires to compare if a permutative regular expression (the contour of a pattern

graph) can generate a string (the contour of the target graph). However, we have already

shown that compatibility in terms of regular expressions can be restated as compatibility in

terms of multisets. Practically, the problem of checking if a permutative regular expression

can generate a given string (or a substring of it) can be reduced to the equivalent problem

of the evaluation of the function de�ned in section 3.4.1 between multisets; the elements

composing the permutative regular expression and the elements composing the string can

be converted into elements of a multiset and then they can be checked for compatibility by

evaluating the function mapping one multiset to the other.

Therefore, as the complexity of evaluating compatibility with multisets and permutative

regular expressions is asymptotically equivalent, the complexity of the extended algorithm

is the same as the complexity of the standard algorithm (see algorithm table 2 and the

discussion in section 3.2.3).

54

Chapter 4

Implementation

In this chapter we discuss how the algorithms for the topography-based discrimination net

discussed in the previous chapter have been implemented within the Quantomatic frame-

work. We will �rst give a short presentation of the framework in which the algorithms

were developed (section 4.1); we then give details of the implemented algorithm in a high-

level functional-like pseudo-code (section 4.2); and �nally we discuss the performance of the

algorithms (section 4.3).

4.1 Quantomatic

Quantomatic [17] is a set of software tools developed to support reasoning and manipulation

of string graphs and !-graphs. Quantomatic is a modular software composed by three main

components [15].

The core of the system is a module called QuantoCore, a library written in Poly/ML, a

dialect of Standard ML [24]. This module is responsible for representing, manipulating and

rewriting graphs.

In order to interact with QuantoCore, QuantoGUI o�ers a high-level graphical user inter-

face. Through QuantoGUI the user can draw, edit and process (manually or automatically)

graphs.

Over QuantoCore, a third component, QuantoCoSy, has been built. QuantoCoSy is

the module responsible for performing automatic reasoning using the conjecture synthesis

technique [13]; QuantoCoSy synthesizes conjectures (graphical identities) and checks them

in a concrete model [16].

55

4.2 Implementation of the Algorithms

The algorithms we described in the previous chapter have been implemented in Poly/ML

inside the QuantoCore module of Quantomatic.

The implementation can be examined analyzing separately the two main functionalities

o�ered by the code: generating a topography tree and pruning the topography tree.

Before considering how these functionalities are implemented, we recall the de�nition of

few general-purpose standard functions:

:: : α→ α list→ α list

rev : α list→ α list

map : (α→ β)→ α list→ β list

:: is the in�x notation of the cons operator, which add an element of type α to the head

of a list of elements of the same type. rev receives a list of elements of type α and returns

the same list in reverted order. map receives a function f from type α to type β and a list

of elements of type α; it then applies f to each element in the list and it returns a list of

elements of type β.

The �rst functionality implemented is the generation of the topography tree. The process

by which the topography tree is built can be seen as a top-down process that add one by

one each pattern graph Pi in the set of pattern graphs P to the topography tree.

First of all, let's represent in ML the set P of pattern graphs as a list P of pattern graphs.

For each pattern graph in P we need to compute its contour list:

cl = map generate_contour_list P

cl is then the list of all the contour lists built from P.

For each pattern graph pi, its contour list cli is built by calling a targeting function to

select the node-vertex comprising the 0th contour, contour0, and then recursively building

all the following contours, contourn:

56

contour0 = targeting_function pi

contours = recursively_build_contours pi contour0

contours = rev contours

cli = contour0 :: contours

where recursively_build_contours, which receives as inputs a graph g and a contour c

and which returns as output a contour list, is de�ned as:

fun recursively_build_contours g c =

new = compute_contour g c

if (new is empty)

then return new

else return new :: (recursively_build_contours g new)

cli is then the contour list of the pattern graph pi built from the concatenation of all the

contours contourn.

For each contour list cli, a contour, contourn, is generated by �nding all the node-vertices

which are adjacent to the last contour contourn−1 and by �ltering the atomic expressions of

the node-vertices which appear in previous contours:

contourn = (get_adjacent_atomic_expr pi contourn−1)− contouri<n

where the function get_adjacent_atomic_expr collects all the node-vertices adjacent to

the contour contourn−1, and transforms each of them in an atomic expression.

Once all the contour lists cli have been built they can be added to the topography tree

by calling for each contour list cli the following instruction:

tree = add_cl_to_tree cl tree

add_cl_to_tree then recursively calls the function add_contour_to_tree to add each

contour in cli to the tree:

57

fun add_contour_to_tree tree cl c =

tree = update_tree tree c

new = next_contour cl c

if (new is empty)

then return tree

else return add_contour_to_tree tree cl new

At each iteration add_contour_to_tree updates tree by checking if the contour c already

exists in tree at the current level; if not, a new tree node is instantiated in the tree. At the

end, the function return the new tree in which all the contours belonging to cli have been

added.

Once this operation has been performed for all the contour lists cli, then the topography

tree is ready.

The second functionality implemented is the pruning of the tree. Given a topography

tree, tree, we can now use a string graph, target, to prune the tree and to �nd the graphs

contained in the topography tree that are likely to match target.

The �rst step of the pruning is the generation of the list as containing all the atomic

expressions composing target:

as = get_atomic_expressions target

For each atomic expression a in as we then generate the contour list of target starting at

a:

cls = generate_contour_list target as

where cls is the list of all the possible contour lists generated from target.

Now we can prune tree calling the following function:

trees = strong_pruning tree cls

where strong_pruning invokes the function strong_prune for each contour list cl in cls:

tree = strong_prune tree cl c

58

The function strong_prune receives the tree, tree, to traverse, a contour list cl and the

current contour c and executes the following code:

fun strong_prune tree cl c =

if (tree traversal is over)

then return tree

else if (c has no boundaries)

then tree = strong_update tree

new = next_contour cl c

strong_prune tree cl new

else tree = strong_update tree

new = next_contour cl c

weak_prune tree cl new

At each recursive call, strong_prune checks if the exploration of the tree has terminated,

in which case it returns the pruned tree. If the exploration is still active, then the function

checks if the current contour contains any boundary node-vertex. If there are no boundary

node-vertices then the function uses strong compatibility to prune nodes at the current level

of the tree and then it recursively calls itself. If it �nds a boundary node, then the function

uses strong compatibility to prune nodes at the current level of the tree and then it switches

to weak compatibility by calling the function weak_prune:

fun weak_prune tree cl c =

if (tree traversal is over)

then return tree

else tree = weak_update tree

new = next_contour cl c

weak_prune tree cl new

weak_prune works exactly like strong_prune except for the fact that it skips the check on

the boundaries as now there is no need to switch from one type of compatibility to the other.

In this way, strong_pruning implements the algorithm for extended discrimination nets

59

String graphs !-graphs

Standard pruning
(weak pruning)

Algorithm for

standard

discrimination net

(sec 3.2)

Algorithm for weaker

extended discrimination

net

Extended pruning
(strong pruning)

Algorithm for

improved

discrimination net

(sec 3.3)

Algorithm for extended

discrimination net

(sec 3.4)

Table 4.1: Algorithms implemented in the code.

we have described in section 3.4.

Beside strong_pruning we have also implemented another variant of the pruning func-

tion called weak_pruning which works by calling since the beginning weak_prune instead of

strong_prune.

So, practically, the code we have written implements two di�erent pruning functions:

(i) Extended pruning (or strong pruning) is the algorithm which starts the pruning process

using the notion of strong compatibility and switches to weak compatibility after

�nding a boundary;

(ii) Standard pruning (or weak pruning) is the algorithm which uses only weak compati-

bility during the entire pruning process.

Considering that we have two di�erent types of inputs (string graph or !-graph), at the end

we practically have four di�erent algorithms (see table 4.1). We have implemented all the

three algorithms described in chapter 3 and moreover we got for free a fourth algorithm

(algorithm for weaker extended discrimination net) which works as a weaker version of the

extended algorithm without using the notion of strong compatibility.

4.3 Results

Using the implementation of the algorithms, we were able to run simulations to compare the

performance through the evaluation of the size of the �nal search space produced by each

algorithm.

60

4.3.1 Simulations

Simulations work by generating a set of random pattern graphs and a random target graph,

by creating the topography tree of the pattern graphs and, �nally, by pruning the topography

tree using the target graph and one of the algorithms implemented. The generation of the

pattern graphs and the target graph follows the same procedure and it is regulated by a

set of parameters de�ned by the user (number of node-vertices, set of kinds, number of

edges, number of !-boxes, maximum number of node-vertices per !-box, number of boundary

node-vertices). The random generation of a graph is executed step-by-step in the following

way:

(1) Generate a number of node-vertices as speci�ed by the parameter number of node-

vertices; determine the kind of each one selecting a random value from the parameter

set of kinds (this parameter is supposed to contain only concrete kinds and not to

contain the �boundary� kind);

(2) Instantiate a number of edges as speci�ed by the parameter number of edges; for

each edge, select randomly a source and a target among the node-vertices instantiated

during the previous step;

(3) Instantiate a number of !-boxes as speci�ed by the parameter number of !-boxes; for

each !-box, select randomly a number of adjacent node-vertices between one and the

parameter maximum number of node-vertices per !-box and add them to the !-box;

(4) Instantiate a number of boundary node-vertices as speci�ed by the parameter number

of boundary node-vertices; for each boundary node-vertex, select randomly a node-

vertex; then connect the boundary node-vertex to the selected node by randomly

choosing the direction of the connecting edge.

Whenever generating a target graph, the parameters number of !-boxes, maximum number

of node-vertices per !-box, number of boundary node-vertices are forced to zero.

A �nal user-de�ned parameter, number of graphs, de�nes how many graphs must be

instantiated. When generating pattern graphs this parameter is equal to the size of the

pattern graphs set; when generating a target graph this parameter is forced to one.

Notice that the outcome of the random graph generation has a certain probability (given

by the number of node-vertices and the number of edges) of being disconnected. This means

that we could end up working with a connected component made up by a number of node-

vertices smaller than the one de�ned by the parameter number of node-vertices.

61

In all the simulations we run, our aim was to evaluate the e�ciency of our algorithm by

computing the size of the �nal search space, that is counting the number of pattern graphs

contained in the branches of the topography tree which were not pruned. Indeed, the num-

ber of pattern graphs which are present in the topography tree at the end of the pruning

procedure de�nes the number of times the full matching algorithm must be run. The e�-

ciency of the discrimination procedure is therefore inversely proportional to the number of

times the full matching algorithm must be run.

Every time we computed the e�ciency of our algorithms, we estimated the �gure of the

e�ciency over one hundred iterations; we repeated the process of random graph generation,

topography tree building and pruning one hundred times and then we computed the sample

average and the sample variance of the e�ciency.

We executed two main sets of simulations:

• Abstract simulations: simulations to evaluate the performance of the algorithms in

general cases;

• Concrete simulations: simulations to evaluate the performance of the algorithms in

cases similar to ones that researchers in the �eld of CQM have to face.

4.3.2 Results of Abstract Simulations

First of all, we implemented a simulation to evaluate how the performance of the standard

algorithm (section 3.2) and the performance of the improved algorithm (section 3.3) di�er.

In order to work only with concrete graphs, the parameters number of !-boxes, maximum

number of node-vertices per !-box, number of boundary node-vertices were set to zero for all

the graphs. Keeping the parameters of the target graph and the number of pattern graphs

constant we evaluated the performance as a function of the number of node-vertices (and

the number of edges) in the pattern graphs (see �gure 4.1).

Both the algorithms provide a signi�cant improvement to the overall matching algorithm

by reducing the size of the search space of more than one order of magnitude. The standard

algorithm and the improved algorithm have a very similar performance (the scale of the

�gure 4.1 does not allow to see this minimal di�erence). Nonetheless, it is interesting to

notice that their performance, even if extremely close, is not exactly the same. The improved

algorithm guarantees a stricter �ltering in that, using strong compatibility, it is able to rule

out some instances of target graphs which do not match a pattern graph, but still satisfy

weak compatibility (see �gure 4.2).

62

10 20 30 40 50 60 70 80 90 100

101

102

103

104

Number of node-vertices in pattern graph

It
er
at
io
n
of

th
e
m
at
ch
in
g
al
go
ri
th
m

no dnet

standard dnet

extended dnet

Figure 4.1: Number of times the matching algorithm must be run as a function of the
number of node-vertices and the number of edges of the pattern graphs.
In this simulation we kept the parameters of the pattern graphs constant (number of graphs =
100, number of node-vertices = 30, number of edges = 30, number of !-boxes = 0, maximum

number of node-vertices per !-box = 0, number of boundary node-vertices = 0); we varied
the number of node-vertices and the number of edges of the target graph (number of node-
vertices = number of edges) between 10 and 100.

These few cases account for the slightly better performance of the improved algorithm

over the standard algorithm.

The next tests were designed to work with !-graphs. From this point on, we can not use

the standard algorithm as a reference anymore, since the standard algorithm is not designed

to work with !-boxes. In the following test we will compare the performance only of the

algorithms we have proposed in the previous chapter.

The second test evaluates how the introduction of !-boxes a�ects the performance of the

algorithms. In this case we evaluated the performance of the extended algorithm (section

3.4) against the performance of the weak version of the extended algorithm, that is the

algorithm which uses only the notion of weak compatibility to prune the topography tree.

Keeping the parameters of the target graph and the parameters of the pattern graph (except

the number of !-boxes) constant, we evaluated the performance as a function of the number

of !-boxes (see �gure 4.3).

The results show an increasing gap between the performance of the extended algorithm

and the performance of the weaker version of the extended algorithm. As the number

of !-boxes increases, the weaker version of the extended algorithm becomes less and less

63

1

2 3

4

Pi : [] [] []

1

2 3

4 5

T : [] [] []

Figure 4.2: Example of a pattern graph and a target graph being weakly compatible but
not strongly compatible.

e�cient. This is due to the fact that using only the notion of weak compatibility we are

always looking for a matching between the regular expression of the contour of a pattern

graph and a substring of the contour of the target graph; as we are looking for matching on a

substring, all the !-boxes can be ignored and will not be used to discriminate. Instead when

we use strong compatibility we are looking for a matching between the regular expression

of the contour of a pattern graph and the entire string of the contour of the target graph;

in this case !-boxes can not be ignored as they may be used to �nd a correct matching.

In presence of !-boxes, the extended algorithm can then o�er a signi�cantly better per-

formance.

A third test was implemented to see how boundary node-vertices a�ect the performance

of the extended algorithm against the performance of the weaker version of the extended

algorithm. Keeping the parameters of the target graph and the parameters of the pattern

graph (except the number boundary node-vertices) constant, we evaluated the performance

as a function of the number of boundary node-vertices (see �gure 4.4).

At the beginning, for low values of the number of boundary node-vertices, the perfor-

mance of the extended algorithm and the performance of the weaker version of the extended

algorithm are separated by the same gap we assessed during the previous test. As the num-

ber of boundary node-vertices increases, the performances of the two algorithms get closer to

each other. This is due to the fact that having more boundary node-vertices, it is more likely

that the extended algorithm will incur in one of these boundary node-vertices during the

�rst steps; but as soon as the extended algorithm �nds a boundary node-vertex, it switches

from strong compatibility to weak compatibility, thus behaving as the weaker version of the

extended algorithm.

64

1 2 3 4 5 6 7

102

103

Number of !-boxes in pattern graph

It
er
at
io
n
of

th
e
m
at
ch
in
g
al
go
ri
th
m

no dnet

standard dnet

extended dnet

Figure 4.3: Number of times the matching algorithm must be run as a function of the
number of !-boxes in the pattern graphs.
In this simulation we kept the parameters of the target graph constant (number of node-

vertices = 50, number of edges = 50) and we kept all but one of the parameters of the
pattern graphs constant (number of graphs = 100, number of node-vertices = 10, number

of edges = 10, maximum number of node-vertices per !-box = 1, number of boundary node-

vertices = 0); we varied the number of !-boxes in the pattern graph (number of !-boxes)
between 1 and 7.

65

1 2 3 4 5 6 7

102.5

103

103.5

Number of boundary node-vertices in pattern graph

It
er
at
io
n
of

th
e
m
at
ch
in
g
al
go
ri
th
m

no dnet

standard dnet

extended dnet

Figure 4.4: Number of times the matching algorithm must be run as a function of the
number of boundary node-vertices in the pattern graphs.
In this simulation we kept the parameters of the target graph constant (number of node-

vertices = 50, number of edges = 50) and we kept all but one of the parameters of the
pattern graphs constant (number of graphs = 100, number of node-vertices = 10, number

of edges = 10, number of !-boxes = 5, maximum number of node-vertices per !-box = 1);
we varied the number of boundary node-vertices in the pattern graph (number of boundary
node-vertices) between 1 and 7.

66

20 30 40 50 60 70 80 90 100 110 120 130 140 150

102

103

Number of graphs in pattern set

It
er
at
io
n
of

th
e
m
at
ch
in
g
al
go
ri
th
m

no dnet

standard dnet

extended dnet

Figure 4.5: Number of times the matching algorithm must be run as a function of the num-
ber of pattern graphs in the pattern set.
In this simulation we kept the parameters of the target graph constant (number of node-

vertices = 30, number of edges = 30) and some of the parameters of the pattern graphs
constant (number of node-vertices = 4, number of edges = 4, number of !-boxes = 3, max-

imum number of node-vertices per !-box = 1, number of boundary node-vertices = 1); we
varied the number of pattern graphs instantiated (number of graphs) between 20 and 150.

4.3.3 Results of Concrete Simulations

Lastly, we implemented simulations in which we set the parameters with values resembling

the real values which are normally found in CQM scenarios.

We set pattern graphs to be small graphs having 4 node-vertices, 4 edges, from 2 to 4

!-boxes containing 1 node-vertex and 1 boundary node-vertex. The set of pattern graphs is

expected to have a size ranging from 20 to 150 graphs. For the target graph, we instantiated

a large graph having a number of node-vertices (and a number of edges) between 10 and 50.

We evaluated the performance of the extended algorithm and the performance of the

weaker version of the extended algorithm as a function of the number of graphs in the

pattern set (see �gure 4.5), as a function of the number of node-vertices in the target graph

(see �gure 4.6) and as a function of the !-boxes in the pattern graphs (see �gure 4.7).

The �rst two real-world cases show that the extended discrimination net algorithm can

o�er a better performance than the weaker version based only on the concept of weak

compatibility. On average, the extended discrimination net requires approximately only

half of the iterations of the full matching algorithm compared to the weaker algorithm. For

the last real-world simulation we allowed a higher number of node-vertices and edges in order

67

10 15 20 25 30 35 40 45 50

102

103

Number of node-vertices in target graph

It
er
at
io
n
of

th
e
m
at
ch
in
g
al
go
ri
th
m

no dnet

standard dnet

extended dnet

Figure 4.6: Number of times the matching algorithm must be run as a function of the
number of node-vertices in the target graph.
In this simulation we kept the parameters of the pattern graph constant (number of graphs
= 100, number of node-vertices = 4, number of edges = 4, number of !-boxes = 3, maximum

number of node-vertices per !-box = 1, number of boundary node-vertices = 1); we varied
the number of node-vertices and the number of edges of the target graph between 10 and
50 (number of node-vertices = number of edges).

0 1 2 3 4 5 6 7

101

102

103

Number of !-vertices in pattern graph

It
er
at
io
n
of

th
e
m
at
ch
in
g
al
go
ri
th
m

no dnet

standard dnet

extended dnet

Figure 4.7: Number of times the matching algorithm must be run as a function of the
number of !-boxes in the pattern graph.
In this simulation we kept the parameters of the target graph constant (number of node-

vertices = 30, number of edges = 30) and some of the parameters of the pattern graphs
constant (number of graphs = 100, number of node-vertices = 7, number of edges = 7,

maximum number of node-vertices per !-box = 1, number of boundary node-vertices = 0);
we varied the number of !-boxes (number of !-boxes) between 0 and 6.

68

to instantiate more !-boxes and collect more data points. This case con�rms that the better

performance of the extended algorithm is connected to the number of !-boxes in the pattern

graphs; for a low number of !-boxes the performance of the extended algorithm and the

performance of the weaker version of it tend to be very similar, but as the number of !-boxes

increases the performances diverge, with the extended algorithm obtaining a signi�cant edge

over the weaker one.

69

Chapter 5

Conclusion and Future Work

5.1 Summary of Results

In this dissertation we have studied and analyzed how discrimination nets can be used to

speed up the process of graph matching when working with string graphs and !-graphs.

Starting from the standard algorithm for discrimination nets used when working with

string graphs, we have proposed a new improved version of this algorithm. Introducing

the concepts of strong compatibility and weak compatibility we were able to write an algo-

rithm which guarantees a stricter discrimination compared to the standard algorithm. The

correctness of our improved algorithm has been formally proved.

Moving beyond string graphs, we have extended our improved algorithm to !-graphs.

Rede�ning the formalism of the discrimination net and adapting the concepts of strong

compatibility and weak compatibility we were able to de�ne an algorithm which can work

both with string graphs and !-graphs. The correctness of our extended algorithm has been

formally proved, too.

The next step was the implementation of our algorithms within the Quantomatic frame-

work. This allowed us to run a set of simulations to evaluate empirically the performance of

our algorithms. When working with string graphs, the simulations showed that the improved

algorithm performs indeed better than the standard algorithm; however the conceptual im-

provement of having two di�erent types of compatibility translate in a very limited practical

improvement. When working with !-graphs, the simulations showed all the importance of

the concepts of weak and strong compatibility; as the number of !-boxes in the target graphs

increased, the extended algorithm guaranteed better and better results compared to a dis-

crimination net algorithm based only on the concept of weak compatibility; in other words,

our extended algorithm proved to perform signi�cantly better than a simple extension of

the standard algorithm applied to !-graphs.

70

5.2 Future Work

Future developments on graph matching and discrimination nets could be done both at a

theoretical level and at a practical level.

On the theoretical side, a major improvement could be a merge of the discrimination net

algorithm and the graph matching algorithm; as the two algorithms use common data and

common procedures, it could be possible to devise and to de�ne a single algorithm carrying

out discrimination and matching at the same time. Right now, in our implementation,

no information is shared by the algorithms, but part of the information generated by the

discrimination net algorithm could be forwarded to the graph matching algorithm without

the need of being recomputed. Beyond working on the integration of the algorithms, it

is also possible to consider di�erent types of discrimination algorithms and evaluate their

discriminatory power by comparing their performance with the results obtained using our

extended discrimination net algorithm.

On the practical side, we can suggest some improvements that can be done to our imple-

mentation. The main improvement could be a deeper integration within Quantomatic and

within the module QuantoCoSy; the aim would be to exploit discrimination nets every time

the user runs the algorithm for graph matching from the graphical interface of QuantoGUI.

Smaller improvements can be made to the code to increase its e�ciency, for example: atomic

expressions could have a cardinality �eld, so that, instead of having more di�erent atomic

expressions for equivalent node-vertices we could have a single atomic expression having a

cardinality greater than one; the targeting function could be rede�ned; a hash-based search

could be implemented for searches within a list of atomic expressions or a list of contours;

contours could be built only on-the-�y, when required.

71

Appendix A

Documentation for the Code

In this appendix, we give the documentation of the implementation of the algorithms for the

topography-based discrimination net using Poly/ML language. We �rst de�ne the structures

implemented in the code (section A.1) and then we give an outline of the ideal work�ow

of the code (section A.2); �nally we explain the tests we performed on the code to check

its correctness (section A.3) and we describe the script we used to run the simulations to

evaluate the performance of the algorithms (section A.4).

All the code is available at:

https : //github.com/Quantomatic/quantomatic/tree/dnets.

The code speci�c to the algorithms we discussed in chapter 3 is contained in the folder

/core/dnets.

This documentation refers to the version of the code committed on GitHub on the 19th

August 2012.

A.1 Structures

Being integrated in Quantomatic, the algorithms we implemented rely on the structures

already de�ned by Quantomatic; in particular we use the structure BANG_GRAPH to

represent and to manipulate !-graphs and to get access to all the data about a graph.

The implementation of the algorithm for the discrimination net is based on the de�nition

of the following entities:

(1) LITERAL (Literal.ML): a functor de�ning literals and atomic expressions (see signa-

ture in algorithm 5). LITERAL de�nes a types for multiplicity, literal and boundary.

72

Algorithm 4 Literal signature

s i gna tu r e LITERAL =
s i g

type T
type mu l t i p l i c i t y

s t r u c tu r e G : BANG_GRAPH

val boundary : G.VData . data

(∗ CONSTRUCTORS ∗)
va l mk : G.T −> V. name −> T
val bu i ld : V. name ∗ G.VData . data ∗ mu l t i p l i c i t y ∗

i n t ∗ mu l t i p l i c i t y ∗ i n t ∗ mu l t i p l i c i t y −> T

(∗ COMPARISON FUNCTIONS ∗)
va l eq : T ∗ T −> bool
va l equiv : T ∗ T −> bool
va l match : T ∗ T −> bool

(∗ GETTERS ∗)
va l get_name : T −> V. name
va l get_kind : T −> G.VData . data
va l get_kind_mult : T −> mu l t i p l i c i t y
va l get_input_arity : T −> in t
va l get_input_mult : T −> mu l t i p l i c i t y
va l get_output_arity : T −> in t
va l get_output_mult : T −> mu l t i p l i c i t y

va l get_adj : G.T −> T −> T l i s t
va l get_pred : G.T −> T −> T l i s t
va l get_succ : G.T −> T −> T l i s t

va l is_boundary : T −> bool

(∗ MULTIPLICITY FUNCTIONS∗)
va l mult_none : mu l t i p l i c i t y
va l mult_star : mu l t i p l i c i t y
va l mult_qm : mu l t i p l i c i t y
va l is_kind_mult_none : T −> bool
va l is_kind_mult_star : T −> bool
va l is_kind_mult_qm : T −> bool
va l mult_eq : mu l t i p l i c i t y ∗ mu l t i p l i c i t y −> bool

(∗ PRINT FUNCTION ∗)
va l p r in tout : T −> s t r i n g

end

73

Multiplicity is implemented as a datatype having three possible values (none, star and

question mark). Literal represents an atomic expression and it is implemented as a

record storing all the information about a node-vertex (name of the generating node-

vertex, kind of node-vertex, multiplicity of the node-vertex, input arity, multiplicity of

the input arity, output arity, multiplicity of the output arity). Boundary de�nes the

kind for boundary node-vertices.

The generation process of an atomic expression is implemented as a two-steps process:

in the �rst step a literal is generated from a graph and a node-vertex; in the second

step, the multiplicities of the atomic expression are evaluated considering the contour

to which the atomic expression belongs.

LITERAL provides the following subsets of functions to work with atomic expressions:

Constructors: a set of functions to generate an atomic expression; an atomic expres-

sion can be built automatically starting from a string graph and a node-vertex

(mk) or it can be manually built passing all the parameters required to generate

an atomic expression (build);

Comparison functions: a set of functions to compare atomic expressions between

each other; three types of comparison between atomic expressions are possible

(see �gure A.1):

v1

v2 v3

v4

v5
!

a1 = v1, a2 = v2, a3 = v2
a4 = Lit(name="v2", kind="white", kind-
mult="none", input-arity=2, ..)

a5 = v3, a6 = v4, a7 = v5

a2 and a3 are equal, equivalent and matching as they have the same gen-
erating node and the same data (kind, arities and multiplicities);
a2 and a4 are equal but not equivalent and not matching as they have the
same generating node but di�erent data (di�erent input-arity);
a2 and a5 are not equal but they are equivalent and matching as they
have a di�erent generating node but equal data (kind, arities and multi-
plicities);
a1 and a6 are not equal, not equivalent but matching as they have a dif-
ferent generating node and di�erent but matching data (input arities can
be matched as input_arity(a1) = 2 and input_arity(a6) = 1∗).

Figure A.1: Comparisons between atomic expressions.

74

• Equality (eq): two atomic expressions are considered equal if they are gen-

erated by the same node-vertex. When comparing two atomic expressions

for equality, only their generating node-vertex is compared (no other infor-

mation about the atomic expressions is compared). Notice that two atomic

expressions having the same generating node-vertex but containing di�erent

data (such as a di�erent input multiplicity) will be evaluated as equal. This

is useful when comparing an atomic expression a1 in the �rst step of the

generation process and an atomic expressions a2 in the second step of the

generation process; a1 and a2 may represent the same generating node-vertex

but they may di�er on their multiplicities; by comparing only the generating

node-vertex we save the computation required to perform the second step

of the generating process on a1 to make a1 having the same data as a2.

Equality comparison is used during the generation of contours and atomic

expressions to guarantee that a single atomic expression for each node-vertex

is instantiated;

• Equivalence (equiv): two atomic expressions are considered equivalent if

their kind, their arities and their multiplicities are the same. Two equiv-

alent atomic expressions may be generated by di�erent node-vertices. When

comparing two atomic expressions for equivalence, the two atomic expres-

sions are compared on all the information available except their generating

node-vertex. This type of comparison is used during the generation of the to-

pography tree to guarantee that contours containing equivalent node-vertices

generate a single tree node in the tree;

• Matching (match): two atomic expressions matches if, considering their mul-

tiplicities, kind and arities can be made equivalent (e.g.: a boundary kind

can be made equivalent to any other kind, an input arity equal to 1∗ can

be made equivalent to an input arity of 2). This type of comparison is used

during the pruning of the topography tree to prevent pruning those contours

whose node-vertices match the contours of the target graph;

Getters: a set of functions to get information about atomic expressions; there are

three groups of getters: getters to obtain information about the data stored in

a given atomic expression (get_name, get_kind, get_kind_mult, get_input_-

arity, get_input_mult, get_output_arity, get_output_mult), getters to retrieve

the neighbourhood of a given atomic expression (get_adj, get_pred, get_succ)

and a getter to query if an atomic expression represents a boundary node-vertex

(is_boundary);

75

Multiplicity functions: a set of functions to work with multiplicity; there are three

groups of multiplicity functions: functions to expose the multiplicity datatype

(mult_none, mult_star, mult_qm), functions to test the kind multiplicity of an

atomic expression (is_kind_mult_none, is_kind_mult_star, is_kind_mult_-

qm) and a function to compare multiplicities for equality (mult_eq);

Print function a function to print an atomic expression for feedback or debug (print-

out).

(2) CONTOUR (Contour.ML): a functor de�ning contours (see signature in algorithm 5).

CONTOUR implements the concept of a contour as a list of atomic expressions.

CONTOUR provides the following subsets of functions to work with contours:

Constructors: a set of functions to generate a contour; a contour can be generated as

an empty list (empty) or it can be built given a graph and another contour (mk).

Two starting constructor to build the 0th contour are also provided: one builds the

0th contour using the target function (target_function), the other one generates

the 0th contour given a graph and a node-vertex (mk_�rst_contour). Finally a

function to add an atomic expression to a contour is provided too (add_literal);

Getters: a set of functions to get information about contours; there are three groups

of getters: a getter to obtain an atomic expression in the contour (get_�rst_-

literal), getters to retrieve a contour containing all the atomic expressions with a

speci�ed multiplicity (get_contour_mult_none, get_contour_mult_star, get_-

contour_mult_qm, get_contour_mult_star_or_qm) and a getter to query if the

contour contains any boundary node-vertex (contains_boundary);

Comparison functions: a set of functions to compare contours between each other;

the same kind of comparisons explained above have been implemented: equality

(eq), checking if all the atomic expressions in two contours are equal; equivalence

(equiv), checking if all the atomic expressions in two contours are equivalent;

matching (check_strong_compatibility, check_weak_compatibility), checking for

matching between the atomic expressions in two contours;

Comparison-equality functions: a set of functions to perform set-like operations

on contours using the notion of equality (subtract_eq_contour, intersect_eq_con-

tours, complement_eq_contour, remove_eq_duplicate, is_eq_literal_contained);

Comparison-matching functions: a function to perform a set-like operation on

contours using the notion of matching (is_matching_contour_contained);

Print function: a function to print a contour for feedback or debug (printout).

76

Algorithm 5 Contour signature

s i gna tu r e CONTOUR =
s i g

type T
s t ru c tu r e G : BANG_GRAPH
s t ru c tu r e L : LITERAL

(∗ CONSTRUCTORS ∗)
va l empty : T
va l mk : G.T −> T −> T
val mk_first_contour : G.T −> V. name −> T
val ta rge t_funct ion : G.T −> T
val add_l i t e r a l : T −> L .T −> T

(∗ GETTERS ∗)
va l g e t_ f i r s t_ l i t e r a l : T −> L .T

va l get_contour_mult_none : T −> T
val get_contour_mult_star : T −> T
val get_contour_mult_qm : T −> T
val get_contour_mult_star_or_qm : T −> T

val contains_boundary : T −> bool

(∗ COMPARISON FUNCTIONS ∗)
va l eq : T ∗ T −> bool
va l equiv : T ∗ T −> bool
va l check_strong_compat ib i l i ty : T ∗ T −> bool
va l check_weak_compatibi l ity : T ∗ T −> bool

(∗ COMPARISON−EQUALITY FUNCTIONS ∗)
va l subtract_eq_contour : T ∗ T −> T
val intersect_eq_contours : T ∗ T −> T
val complement_eq_contour : T ∗ T −> T
val remove_eq_duplicate : T −> T
val i s_eq_l i t e ra l_conta ined : L .T ∗ T −> bool

(∗ COMPARISON−MATCHING FUNCTIONS ∗)
va l is_matching_contour_contained : T ∗ T −> bool

(∗ PRINT FUNCTION ∗)
va l p r in tout : T −> s t r i n g

end

77

Algorithm 6 Contour list signature

s i gna tu r e CONTOUR_LIST =
s i g

type T
s t ru c tu r e G : BANG_GRAPH
s t ru c tu r e C : CONTOUR

(∗ CONSTRUCTORS ∗)
va l empty : T

va l mk : G.T −> T
val mk_from : G.T −> V. name −> T

(∗ COMPARISON FUNCTION ∗)
va l equiv : T ∗ T −> bool

(∗ PRINT FUNCTION ∗)
va l p r in tout : T −> s t r i n g

end

(3) CONTOUR LIST (ContourList.ML): a functor de�ning contour lists (see signature in

algorithm 6). CONTOUR LIST implements the concept of a contour list as a list of

contours.

CONTOUR LIST provides the following subsets of functions to work with contour

lists:

Constructors: a set of functions to generate a contour list; a contour list can be

generated as an empty list (empty) or it can be built giving only a graph, and

relying then on the target function (mk), or it can be generated giving a graph

and specifying a starting node-vertex for the 0th contour (mk_from);

Comparison functions: a function to check for equivalence (equiv) between the con-

tours comprising two contour lists;

Print function: a function to print a contour list for feedback or debug (printout).

(4) TOP_DNET (Top_DNet.ML): a functor de�ning a topography tree (see signature in

algorithm 7). TOP_DNET implements the concept of a topography tree de�ning a

datatype for a tree; every node of the tree contains a contour and a list of children,

that is a list of all the children tree nodes; the leaves of the tree contain the name of

the graph which is de�ned by the list of all the contours encountered going from the

root to the leaf itself. The information stored in the leaves is useful as, once pruned,

the remaining leaves correspond to those pattern graphs on which we have to run

78

Algorithm 7 Topography discrimination net signature

s i gna tu r e TOP_DNET =
s i g

type T
type t r e e
s t r u c tu r e G : BANG_GRAPH
s t ru c tu r e CL : CONTOUR_LIST

(∗ CONSTRUCTORS ∗)
va l empty : T
va l mk : G.T GraphName .NTab .T −> T
val add_cl_to_dnet : T −> CL.T −>

−> GraphName . name −> T
val add_cl_list_to_dnet : T −> CL.T l i s t −>

−> GraphName . name l i s t −> T

(∗ PRUNING FUNCTIONS ∗)
va l extended_pruning : T −> G.T −>

−> (V. name ∗ GraphName . name l i s t) l i s t
va l standard_pruning : T −> G.T −>

−> (V. name ∗ GraphName . name l i s t) l i s t
va l extended_prune : V. name −> G.T −> T −> T
val standard_prune : V. name −> G.T −> T −> T
val graphs : T −> GraphName . name l i s t

(∗ FOLD FUNCTION ∗)
va l f o l d : ((' a ∗ ' b) −>

−> G.T GraphName .NTab .T −> G.T GraphName .NTab .T)
−> ' a l i s t −> 'b l i s t −> G.T GraphName .NTab .T −>
−> G.T GraphName .NTab .T

(∗ GETTERS ∗)
va l is_node : t r e e −> bool
va l get_contour : t r e e −> CL.C.T
va l get_ch i ldren : t r e e −> t r e e l i s t
va l get_graph : t r e e −> GraphName . name

(∗ COMPARISON FUNCTION ∗)
va l is_eq_graphs : GraphName . name l i s t ∗

∗ GraphName . name l i s t −> bool

(∗ PRINT FUNCTION∗)
va l p r in tout : t r e e l i s t −> s t r i n g

end

79

the exact matching algorithm. The information contained in the leaves can be easily

modi�ed by changing the de�nition of this datatype in TOP_DNET.

TOP_DNET implements the two types of pruning algorithm described in section 4.2.

TOP_DNET provides the following subsets of functions to work with topography

trees:

Constructors: a set of functions to generate a topography tree; a topography tree

can be generated as an empty tree containing only the root node (empty) or it

can be built starting from a set of graphs (mk); the topography tree can also be

built incrementally by adding a contour list to the tree (add_cl_list_to_dnet)

or by adding single contours one at a time (add_cl_to_dnet);

Pruning functions: a set of functions to prune the tree and collect the result. Two

functions (extended_pruning, standard_pruning) run the complete extended al-

gorithm or the weaker version of the extended algorithm starting from a topogra-

phy tree and a target graph and returning the list of the names of all the graphs

which were not pruned. Two functions (extended_prune, standard_prune) exe-

cute only one step of the extended algorithm or the weaker version of the extended

algorithm starting from a topography tree, a target graph and a node-vertex to

build the contour of the target graph and returning a pruned topography tree;

these two function are called inside the complete algorithm. A last function

(graphs) collect all the names of the graphs contained in the leaves of a pruned

tree.

Fold function: a folding function used to generate the pattern set containing all the

pattern graphs and their names (fold);

Getters: a set of functions to get information about the tree; there is a function to

query if a tree node is a node or a leaf (is_node) and a set of getters to retrieve

information stored in a node or in a leaf of the tree (get_contour, get_children,

get_graph);

Comparison functions: a function to check if two lists of graph names (ideally col-

lected from a pruned tree) are equal (is_eq_graphs);

Print function: a function to print a topography tree for feedback or debug (print-

out).

(5) TDNET LIBRARY (DNetsLib.ML): a structure collecting functions which are shared

by the other functors (see signature in algorithm 8). TDNET LIBRARY implements

generic library functions which can be called by the other functors.

TDNET LIBRARY provides the following subsets of functions:

80

Algorithm 8 DNet library list signature

s i gna tu r e TDNET_LIBRARY =
s i g

(∗ GENERIC FUNCTIONS ∗)
va l maps2 : (' a −> 'b −> 'b l i s t) −>

−>'a l i s t −> 'b l i s t −> 'b l i s t
va l maps3 : (' a −> 'b −> ' c l i s t) −>

−> ' a −> 'b l i s t −> ' c l i s t

(∗ LIST FUNCTIONS ∗)
va l i s_conta ined : (' a ∗ ' a −> bool) −>

−> ' a −> ' a l i s t −> bool
va l rm_duplicates : (' a ∗ ' a −> bool) −>

−> ' a l i s t −> ' a l i s t
va l rm_element : (' a ∗ ' a −> bool) −>

−> ' a −> ' a l i s t −> ' a l i s t
va l sub_x_y : (' a ∗ ' a −> bool) −>

−> ' a l i s t −> ' a l i s t −> ' a l i s t
end

Generic functions: a set of generic functions to work with functions and lists (maps2,

maps3);

List functions: a set of generic functions to work with lists; these functions receive a

boolean function to make comparisons between the elements of a list and perform

basic set-like operations on the lists (is_contained, rm_duplicates, rm_element,

sub_x_y).

Notice that all the functions we have described are only the functions de�ned in the signa-

tures, that is those functions which are exposed to allow the user to work with discrimination

nets or those functions which have been exposed for testing purposes. The actual imple-

mentation of the functors contains several other helper functions. Refer to the code and the

inline comments for an explanation of these functions.

A.2 Work�ow

We now explain how the main operations for building and pruning topography trees are

carried out.

A.2.1 Generating the Topography Tree

Given a list of !-graphs graphs, the topography tree is generated by the following call:

81

val dnet = TOP_DNET.mk graphs

TOP_DNET.mk then invokes:

val cl_lists = map CONTOUR_LIST.mk graphs

val dnet = TOP_DNET.empty

val dnet = add_cl_list_to_dnet dnet cl_list graph_names

where the �rst instruction generates a list of contours by applying the function CON-

TOUR_LIST.mk to each element of the list of pattern graphs graphs; the second instruc-

tion produces an empty topography tree; the third instruction adds all the generated con-

tours to the topography tree; TOP_DNET.add_cl_list_to_dnet works by invoking TOP_-

DNET.add_cl_to_dnet for each generated contour.

A.2.2 Generating a Contour List

Given a !-graph graph, its contour list is generated by the following call:

val clist = CONTOUR_LIST.mk graph

CONTOUR_LIST.mk then invokes:

val clist = CONTOUR_LIST.empty

val first_contour = CONTOUR_LIST.target_function graph

val clist = first_contour :: clist

val remaining = (∗get literals∗)

build_contours(graph, first_contour, clist, remaining)

where the �rst instruction produces an empty contour list; the second instruction gen-

erates the �rst contour for the graph; the third instruction inserts the �rst contour in the

contour list; the fourth instruction retrieves the list of all the atomic expressions in the

graph except the one in the �rst contour (for detailed implementation see the code); the

82

�fth instruction generates recursively all the other contours taking into account the previ-

ous contour and the list of remaining atomic expressions; CONTOUR_LIST.build_contours

invokes:

val new_contour = CONTOUR.mk graph contour

val new_contour = CONTOUR.intersect_eq_contours(new_contour, remaining)

val remaining = CONTOUR.subtract_eq_contour(remaining, new_contour)

build_contours(g, new_contour, new_contour :: clist, remaining)

where the �rst instruction generates a new contour given the graph and the previous con-

tour; the second instruction �lters the generated contour keeping only those atomic expres-

sions which are not in any previous contour; the third instruction updates the list of remain-

ing atomic expressions; the fourth instruction recursively calls CONTOUR_LIST.build_-

contours until the list of remaining atomic expressions is empty or all the connected nodes

have been processed.

A.2.3 Generating a Contour

Given a !-graph graph and a contour contour, a new contour is generated by the following

call:

val new_contour = CONTOUR.mk graph contour

CONTOUR.mk then invokes:

val new_contour = maps2 L.get_adj graph_contour

val new_contour = remove_eq_duplicate new_contour

val new_contour = complement_eq_duplicate contour new_contour

val new_contour = rebuild_literals graph contour new_contour

val new_contour = rebuild_boundaries new_contour

where the �rst instruction retrieves a list containing all the atomic expressions which

are adjacent to the atomic expressions in contour; the second instruction removes duplicate

83

atomic expressions in new_contour; the third instruction removes from new_contour the

atomic expressions which are contained in contour; the fourth instruction recomputes the

multiplicity of the atomic expressions in new_contour; the �fth instruction evaluates the

multiplicity of boundary atomic expressions in new_contour.

A.2.4 Adding a Contour List to the Topography Tree

Given a topography tree dnet and a contour list clist, the contour list is added to the

topography tree by the following call:

val dnet = TOP_DNET.add_cl_to_dnet dnet clist

TOP_DNET.add_cl_to_dnet then traverses the discrimination net dnet and adds the

tree nodes and the leaf representing the current contour list clist to dnet (for the detailed

implementation see the code).

A.2.5 Pruning the Tree

Given a topography tree dnet and a target graph target, the pruning of the topography tree

using the extended algorithm is executed by the following call:

val dnet = TOP_DNET.extended_pruning dnet target

For every node-vertex v in target, TOP_DNET.extended_pruning then invokes:

val dnet = TOP_DNET.extended_prune v dnet target

val graphs = TOP_DNET.graphs dnet

where �rst instruction generates the contour list of the target graph target starting at

the node-vertex v and then traverses and prune the topography tree dnet (for the detailed

implementation see the code); the second instruction collects the name of all the graphs

which have not been pruned.

A.3 Testing

A set of tests has been written during the development of the code to guarantee the cor-

rectness of the algorithm against the test cases we devised. All the tests are contained in a

single �le (test.ML) which veri�es all the functionalities of the code. The test �le is divided

in two main sections:

84

• The �rst part (Building tests) builds the pattern graphs and then test all the func-

tions related to the creation of a topography tree; this section is divided in the follow-

ing subsections: tests checking basic set operations, tests checking atomic expression

functions, tests checking contour functions, tests checking contour list functions, tests

checking topography tree generation functions;

• The second part (Pruning tests) builds the target graphs and then checks all the

functions related to the pruning of a topography tree; this section is composed of a

single subsection testing both the extended algorithm and the weaker version of the

extended algorithm.

Beside testing the correct working of the algorithms in the general case we also performed

a set of test on limit cases of particular interest, for example:

(1) The case depicted in �gure 3.8 allowed us to test if the algorithms can correctly map

two boundary node-vertices to a single concrete node-vertex;

(2) The case depicted in �gure 4.2 allowed us to verify that the extended algorithm does

indeed provide a stricter discrimination than the weaker version of the extended algo-

rithm;

(3) The case depicted in �gure A.2 allowed us to assess if the extended algorithm cor-

rectly switches from strong compatibility to weak compatibility when encountering a

boundary node-vertex.

1

2 3

4

Pi : [] [] []

1

2 3

5 4

T : [] [] []

Figure A.2: Example of a case in which the extended algorithm is required to switch correctly
between strong compatibility and weak compatibility to recognize that the pattern Pi is
contained in the target T .

85

A.4 Simulation

In order to collect statistical data on the performance of the algorithms we implemented, a

script (perf.ML) has been written.

The core of this script instantiates random generated pattern graphs and target graphs

using a set of parameters (number of node-vertices, number of edges, number of kinds,

number of !-boxes, maximum number of node-vertices per !-box, number of boundary node-

vertices) speci�ed by the user. After generating the graphs, the script computes the topog-

raphy tree for the pattern graphs and prunes it, �rst using the extended algorithm and then

the weaker version of the extended algorithm.

The script iterates this procedure a number of times de�ned by the user; at the end,

the script returns statistical data (sample mean and sample variance of the number of non-

pruned graphs) about the performance using the extended discrimination net algorithm,

using the weaker version of the extended algorithm or using no algorithm at all.

86

Bibliography

[1] Samson Abramsky and Bob Coecke. A categorical semantics of quantum protocols. Pro-

ceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 415:425,

2004.

[2] Steve Awodey. Category Theory. Oxford University Press, 2006.

[3] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University

Press, 1999.

[4] Jim Christian. Flatterms, discrimination nets, and fast term rewriting. Journal of

Automated Reasoning, 10:95�113, 1993.

[5] Bob Coecke. Quantum picturialism. 2009.

[6] J. J. Dick. An introduction to knuth-bendix completion. The Computer Journal, 34,

1991.

[7] Lucas Dixon and Ross Duncan. Graphical reasoning in compact closed categories for

quantum computation. 2008.

[8] Lucas Dixon and Aleks Kissinger. Monoidal categories, graphical reasoning, and quan-

tum computation. 2009.

[9] Lucas Dixon and Aleks Kissinger. Open graphs and monoidal theories. 2010.

[10] Joe Douglas. Discrimination nets for faster quantum reasoning. Master's thesis, Uni-

versity of Edinburgh, 2010.

[11] Ross Duncan. Lectures on categorical quantum mechanics. 2010.

[12] Chris Heunen and James Vicary. Lectures on categorical quantum mechanics. 2012.

[13] Moa Johansson, Lucas Dixon, and Alan Bundy. Conjecture synthesis for inductive

theories. Journal of Automated Reasoning, 2010.

87

[14] André Joyal and Ross Street. The geometry of tensor calculus i. Advances in Mathe-

matics, 88:55�112, 1991.

[15] Aleks Kissinger. Pictures of Processes: Automated Graph Rewriting for Monoidal Cat-

egories and Applications to Quantum Mechanics. PhD thesis, University of Oxford,

2011.

[16] Aleks Kissinger. Synthesising graphical theories. 2012.

[17] Aleks Kissinger, Alex Merry, Lucas Dixon, Ross Duncan, Matvey Soloviev, and Ben

Frot. Quantomatic, 2011.

[18] Aleks Kissinger, Alex Merry, and Matvey Soloviev. Pattern graph rewrite systems.

2012.

[19] J.W. Klop. Term Rewriting Systems, pages 2�116. Oxford University Press, 1987.

[20] D. E. Knuth and P. B. Bendix. Simple word problems in universal algebras. Computa-

tional Problems in Abstract Algebra, pages 263�297, 1970.

[21] Saunders Mac Lane. Categories for the Working Mathematician. Springer, 1971.

[22] William McCune. Experiments with discrimination-tree indexing and path indexing for

term retrieval. 1990.

[23] L. C. Paulson. Isabelle: A generic theorem prover. Springer, 2004.

[24] Lawrence C. Paulson. ML for the Working Programmer. Cambridge University Press,

1996.

[25] Roger Penrose. Applications of negative dimensional tensors. Combinatorial Mathe-

matics and its Applications, pages 221�244, 1971.

[26] Peter Selinger. Dagger compact closed categories and completely positive maps (ex-

tended abstract). 2005.

[27] Peter Selinger. New Structures for Physics, pages 289�355. Springer, 2011.

88

