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Abstract

Dagger compact closed categories are consider to be the abstract categorical frame-

work for quantum computation and quantum mechanics. They also provide a description

of classical structures and quantum measurements with no additional assumptions, but

relying only on dagger compact closed structure. One advantage of this framework is that

it can be applied in many different models. In this disertation we study discrete models

of categorical quantum computation.

First we review how this categorical framework is obtained and how the underlying

graphical calculus can be a concise representation of the categorical quantum semantics.

The main body of work is an investigation into discrete models of categorical quantum

semantics, namely FRel, the category of finite sets, relations and the cartesian product,

and Spek, a subcategory of the former which formalizes Rob Spekken’s toy model. In

particular, we characterize the classical structures and the quantum measurements within

these models. Finally, the quantum state transfer computational model is described and

its application on the discrete models FRel and Spek is explored.
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Chapter 1

Introduction

Three quarters of a century have passed since the discovery of quantum mechanics

and half a century since the birth of information theory, but only a quarter of a century

before people finally realized that quantum mechanics dramatically alter the character of

information processing and digital computation. The research that started at mid ’90s on

quantum mechanics provides new powerful computation paradigms, which can be applied

to the processing of knowledge in an entirely new manner. Nowadays, quantum compu-

tation offers a conceptual arena of a better understanding of quantum oddness and at the

same time gives a new perspective on interpretational questions. Therefore, the idea of

using the possibilities and potentials of quantum mechanics in computation looks more

and more appealing. Furthermore, experimental work has already begun. However, the

physical realization of quantum computers appears at the moment very unclear and it

could take some decades to achieve essential progress. Hence, the fundamental accom-

plishments in this area are mainly of purely theoretical and mathematical nature.

Since John von Neumann’s quantum mechanical formalism in terms of Hilbert spaces,

there have been many discoveries, insights and developments towards a more high-level

formalism of quantum mechanics. A recent publication by S. Abramsky and B. Coecke [1]

has developed the categorical foundations of quantum mechanics using dagger compact

closed categories as the core of categorical semantics.

Category theory as a pure mathematical abstraction provides a new environment of
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economy of thought and expression. Also, it allows easier communication among basic

ideas of various theorems and constructions and helps to determine and delineate the ex-

act deepness and power of classical results [2]. Although, it is a relatively new area of pure

mathematics, it plays a significant role in theoretical computer science in the areas, where

operations and processes play a principal role. Examples can be found in programming

and semantic models of programming languages, constructive logic, automata and proof

theory and development of algorithms. Therefore, the combination of category theory and

quantum computation provides a new context in which quantum mechanics are revealed

under a new formalism.

Quantum mechanics involve measurements as well as operations, which depend on

measurements. Dagger compact closed categories can embody them by conditioning on

classical data. Hence, various quantum protocols can be handled by dagger compact

closed categories. However, viewing classical data only as a category structure forces us

to go beyond dagger compactness. In their article [1] S. Abramsky and B. Coecke used

dagger compact closed categories with biproducts. They proved that this categorical

structure can describe compound systems and allows preparations and measurements of

entangled states. Additionally, biproducts capture the classical communication, indeter-

ministic branching and superposition [1]. Nevertheless, the additive structure of direct

sums, i.e. biproducts does not yield a simple graphical calculus and does not capture the

essential decoherence component of quantum measurements. Therefore, biproducts end

up to be unusable in many cases.

To overcome this problem P. Selinger [3] introduced the “category of positive

maps”(CPM), which applies to every dagger compact closed category. Also B. Coecke [4]

resolved this matter by introducing density operators. Furthermore, B. Coecke and D.

Pavlovic [5] described quantum measurements explicitly by using the multiplicative ten-

sor structure of the dagger compact closed categories. In the present dissertation we use

this approach in order to define measurements. A classical structure (or basis structure

as presented in [6, 7]) is a special dagger compact closed Frobenius algebra that comes

with coping and deleting operators and connects the classical capabilities of copying and

deleting with the mechanism of quantum measurement. More precisely, classical struc-

tures exploit the fact that quantum data can not be copied or deleted, while only classical

data can do so.
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Moreover, B. Coecke, D. Pavlovic and J.Vicary [8] showed that classical structures are

in one-to-one correspondence with orthonormal bases and B. Coecke, E.O. Paquette, S.

Perdrix [6] elaborated the classical structure axiomatization by introducing dagger dual

Frobenius structures.

Additionally, since classical structures are in one-to-one correspondence with or-

thonormal bases, they correspond to non-degenerate observables [7,9]. We are particularly

interested in incompatible observables. Therefore, dagger symmetric monoidal categories

that have enough incompatible classical structures are suitable for describing various fea-

tures of quantum mechanics. Such categories are FdHilb, but also discrete ones such

as FRel and Spek. However, in these discrete models one expects to be able to ex-

press less quantum features than in FdHilb. Hence, by examining them we can identify

what mathematical structures are required for full description of quantum mechanics and

quantum computation.

1.1 Outline of dissertation

The purpose of this dissertation is to study discrete models of categorical quantum

computation. Also, we present how quantum mechanics can be expressed using categories

and especially dagger compact closed categories.

More explicitly:

• discrete models of categorical quantum computational semantics are presented (i.e.

FRel and Spek),

• we investigate what features of these models are essential, i.e. the existence of

complementary observables,

• we observe if these models can hold abstractly, i.e their soundness and completeness

with respect to dagger compact closed categories,
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• the behavior of these models is examined in the quantum state transfer protocol.

In Chapter 2 we introduce the basic concepts towards the definition of dagger compact

closed category. Also, we provide the corresponding graphical language, which is essen-

tial for the pictorial interpretation of categorical semantics and for providing justification

about several issues in the following chapters. Next, in Chapter 3 we give a description

of classical structures and provide an “approximate” definition of quantum measurements.

The original work in this dissertation is the investigation of discrete models FRel

and Spek and the application of the quantum state transfer protocol in them. The

importance of classical structures in our categorical quantum computation framework

is revealed in Chapter 4, where we present the discrete models FRel and Spek and

investigate the quantum spectra of these models. In Chapter 5 we provide a description

of the quantum state transfer protocol and its application to FRel and Spek. Finally,

Chapter 6 draws the conclusions from this performed research regarding these models and

suggests directions for further work.
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Chapter 2

Categorical Semantics and

Preliminaries

In this chapter we present the basic categorical definitions and semantics around

dagger compact closed categories (originally presented in [1] as strongly compact closed

categories). The structure of dagger compact closed categories is the central mathemati-

cal object of categorical quantum computational semantics.

The beauty of this structure is that it admits sound and complete graphical represen-

tations. In this sense, equations that use the categorical tensor calculus are provable from

the dagger compact closed categories axioms if and only if the corresponding graphical

representation is valid in the graphical language.

Also, another important aspect of dagger compact closed categories is that they pro-

vide a simple and complete axiomatic framework for essential structures of the quantum

mechanical formalism such as unitarity, self-adjointness, trace, scalars, bell-states, Dirac

notation. Therefore we are able to design and explain various quantum protocols like

quantum teleportation, quantum entanglement and dense coding.

5



2.1 Categorical concepts

We give some basic categorical definitions as introduced by S. Eilenberg and S.

MacLane [10] which are essential for defining dagger compact closed categories.

Definition 2.1. A category C is a collection of:

• objects A,B,C, . . .,

• morphisms (often called arrows) f, g, h ∈ C(A,B) for each pair of A,B (here

C(A,B) is the collection of all morphisms f : A→ B),

• a composition operation for each pair of morphisms f ∈ C(A,B) and g ∈ C(B,C),

resulting in g ◦ f ∈ C(A,C) such that the following associativity law is satisfied:

(h ◦ g) ◦ f = h ◦ (g ◦ f)

for each morphism f ∈ C(A,B), g ∈ C(B,C), h ∈ C(C,D),

• identity morphisms idA ∈ C(A,A) for each object A which satisfy the following

identity law:

f ◦ idA = idB ◦ f = f

for any morphism f ∈ C(A,B).

Typical examples of categories arise from various mathematical structures. For exam-

ple Set is the category with sets as objects and total functions as morphisms, Rel has sets

as objects and relations as morphisms, Group has groups and group homomorphisms,

Top has topological spaces and continuous maps and FDHilb has finite dimensional

Hilbert spaces and linear maps.

Definition 2.2. A morphism f : A → B is an isomorphism (iso) if it has an inverse

f−1 : B → A such that

f−1 ◦ f = idA and f ◦ f−1 = idB.
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Therefore, a group G is a category with a single object in which elements are the iso-

morphisms of this object to itself. A monoid (M, ·, e) can be represented as a category with

a single object, in which the elements of M are the morphisms from M to itself, the binary

operation · is represented as composition of morphisms such that (x·y)·z = x·(y ·z) for all

x, y, z ∈M and the identity element e is the identity morphism such that e ·x = x · e = x

for x ∈M . In that sense, a monoid is just a group without inverses. Also we can consider

the category Mon which has monoids as objects and monoid homomorphisms as mor-

phisms, i.e. functions f : M →M ′ from monoid (M, ·, e) to (M ′, ∗, e′) such that f(e) = e′

and f(x · y) = f(x) ∗ f(y) for x, y ∈ M . Composition of morphisms, associativity and

identical laws are as in category Set.

Moreover, we can consider the category Cat which has categories as objects and

functors as morphisms. Below we give the definition of functors as morphisms between

categories and natural transformations as morphisms between functors, as introduced by

S. Eilenberg and S. MacLane [10].

Definition 2.3. Let C and D be categories. A functor F : C → D is a morphism which

preserves the structure of categories, i.e. it takes each C-object A to a D-object F (A)

and each morphism f ∈ C(A,B) to F (f) ∈ D(F (A), F (B)), such that for each C-object

A and C-morphisms f, g we have:

F (g ◦ f) = F (g) ◦ F (f) and F (idA) = idF (A).

For example in the category Group a group homomorphism can be consider as a

functor between groups, since if G1, G2 are groups then F : G1 → G2 satisfies F (x · y) =

F (x) ∗ F (y) for x, y ∈ G1 and F (e) = e′ for e, e′ being the identity morphisms of G1 and

G2 respectively. Furthermore functor F preserves the inverses since:

a−1 · a = e = a · a−1 ⇒ F (a−1 · a) = F (e) = F (a · a−1)

⇒ F (a−1) ∗ F (a) = e′ = F (a) ∗ F (a−1)

⇒ (F (a))−1 = F (a−1).

Definition 2.4. Let F,G : C → D be two functors for categories C,D. Then a natural

transformation ξ : F → G is a family {ξA : F (A) → G(A)}A of morphisms in D that
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assigns to every C-object A a D-morphism ξA : F (A) → G(A) such that for every C-

morphism f : A→ B the following diagram commutes in D:

F (A)
F (f)

- F (B)

G(A)

ξA

?

G(f)
- G(B)

ξB

?

If each component ξA of ξ is an isomorphism in D then ξ is called natural isomorphism.

For instance if F : C → D is a functor then the family of identity natural transforma-

tions {ι : F (A) → F (A)}A are the identity morphisms of the objects in the image of F ,

i.e. F (A). Therefore ιA = idF (A) and since idF (A) is an isomorphism for every D-object

F (A), then ι : F → F is a natural isomorphism.

Definition 2.5. A monoidal category is a structure (C,⊗, I) where C is a category which

comes with a monoidal tensor ⊗ : C×C → C as multiplication and a distinguished neutral

object I as the multiplication unit. The monoidal tensor is an assignment on both pairs

of objects and pairs of morphisms such that:

(A,B) 7→ A⊗B

(A
f- B,C

g- D) 7→ A⊗ C f⊗g- B ⊗D.

Moreover the monoidal category (C,⊗, I) is equipped with left and right natural isomor-

phisms:

λA : I ⊗ A
∼=- A and ρA : A⊗ I

∼=- A

and an associativity natural isomorphism:

αA,B,C : A⊗ (B ⊗ C)
∼=- (A⊗B)⊗ C,

such that for all objects A,B,C,D the following diagrams commute (ensuring coherence):
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(A⊗B)⊗ (C ⊗D)

A⊗ (B ⊗ (C ⊗D))

α

-

((A⊗B)⊗ C)⊗D

α

-

A⊗ ((B ⊗ C)⊗D)

idA ⊗ α

?

α
- (A⊗ (B ⊗ C))⊗D

α⊗ idD

6

(2.1.1)

A⊗ (I ⊗B)
α

- (A⊗ I)⊗B

A⊗B
� ρA

⊗
idB

id
A ⊗

λ
B -

(2.1.2)

Finally a monoidal category is called strict if the isomorphisms α, λ, ρ are all identities.

The monoidal tensor ⊗ is a bifunctor, i.e. a functor that is bifunctorial. In quantum

mechanics bifunctoriality stands for:

(g1 ⊗ g2) ◦ (f1 ⊗ f2) = (g1 ◦ f1)⊗ (g2 ◦ f2), (2.1.3)

where f1 : A1 → B1, f2 : A2 → B2, g1 : B1 → C1, g2 : B2 → C2.

Conceptually, the above means that it does not matter if we consider the sequential

composition of f1 ⊗ f2 and g1 ⊗ g2 or the parallel composition of the pairs (g1, f1) and

(g2, f2) along the tensor. Actually, what the monoidal tensor ⊗ does is to conceive two

systems A1 and A2 to a compound one A1 ⊗ A2 and then considering the compound

morphism f1⊗f2 inherited from the morphisms f1 and f2 on the individual systems. Also

we require that:

idA1 ⊗ idA2 ⊗ · · · ⊗ idAn = idA1⊗A2⊗···⊗An .
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From bifunctoriality of the tensor it easily follows that:

(idB1 ⊗ g) ◦ (f ⊗ idA2) = (idB1 ◦ f)⊗ (g ◦ idA2)

= (f ◦ idA1)⊗ (idB2 ◦ g) = (f ⊗ idB2) ◦ (idA1 ⊗ g)
(2.1.4)

for morphisms f : A1 → B1, g : A2 → B2, which is expressed by the following commutative

diagram:

A1 ⊗ A2

f ⊗ idA2- B1 ⊗ A2

A1 ⊗B2

idA1 ⊗ g

?

f ⊗ idB2

- B1 ⊗B2

idB1 ⊗ g

?

Hence it does not matter if we apply first the morphism f to the first system and later

the morphism g to the other system, or vice versa. This express some notion of locality

of space-liked separated systems, since what is at the left of the tensor does not inflect or

temporally compare with what is at the right.

Finally, consider the functor F : C × C → C, such that F (A,B) = A ⊗ B and

F (f, g) = f ⊗ g, where C ×C is the category with objects the pairs (A,B) and morphisms

the pairs (f, g) for f, g ∈ C(A,B), for each C-objects A,B. The composition is pairwise

defined, i.e. (g1, g2) ◦ (f1, f2) = (g1 ◦ f1, g2 ◦ f2) and the identity morphisms are the pairs

(idA, idB). F is indeed a functor since from bifunctoriality we have:

F (g1 ◦ f1, g2 ◦ f2) = (g1 ◦ f1)⊗ (g2 ◦ f2) = (g1 ⊗ g2) ◦ (f1 ⊗ f2) = F (g1, g2) ◦ F (f1, f2)

and

F (idA, idB) = idA ⊗ idB = idA⊗B = idF (A,B).

But since F (−,−) = −⊗−, functor F is nothing else but the monoidal tensor ⊗.

Proposition 2.6. In a monoidal category the equality

λI = ρI : I ⊗ I
∼=- I

holds and the following diagrams commute:
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A⊗ (B ⊗ I)
α

- (A⊗B)⊗ I

A⊗B
�

ρA
⊗B

id
A ⊗

ρ
B -

(2.1.5)

I ⊗ (A⊗B)
α

- (I ⊗ A)⊗B

A⊗B
� λA

⊗
idBλ

A⊗
B

-

(2.1.6)

Proof. Since λI : I ⊗ I
∼=- I and ρI : I ⊗ I

∼=- I are natural isomorphisms then the

following diagrams:

I ⊗ (I ⊗ I)
idI ⊗ λI- I ⊗ I I ⊗ (I ⊗ I)

idI ⊗ ρI- I ⊗ I

I ⊗ I

λI⊗I

?

λI
- I

λI

?
I ⊗ I

λI⊗I

?

λI
- I

λI

?

both commute, so idI⊗λI = idI⊗ρI . By naturality of λI and ρI we deduce that λI = ρI .

To prove that the diagram (2.1.5) commutes consider the following diagram:
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(A⊗B)⊗ (I ⊗ I)

A⊗ (B ⊗ (I ⊗ I))

α

-

(2) ((A⊗B)⊗ I)⊗ I

α

-

(3)

(1) A⊗ (B ⊗ I)
α

-

id
A ⊗

(id
B ⊗

λ
I )
-

(A⊗B)⊗ I

id
A
⊗
B
⊗
λ
I

-

�

ρ A
⊗B
⊗
id
I

(4)

A⊗ ((B ⊗ I)⊗ I)

idA ⊗ α

?

α
-

id
A
⊗

(ρ
B
⊗
id
I
)
-

(A⊗ (B ⊗ I))⊗ I

(∗) α⊗ idI

6

�
(id

A ⊗
ρ
B )⊗

id
I

This diagram commutes since the inside regions (1), (2) commute from Definition 2.5, the

regions (3), (4) from naturality of α and the outside diagram from Definition 2.5. There-

fore, the region indicated by (∗) commutes and hence, from naturality and invertibility

of ρ and α we deduce commutation of diagram (2.1.5).

Similarly for the diagram (2.1.6) we consider the following diagram:
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(A⊗ I)⊗ (B ⊗ I)

A⊗ (I ⊗ (B ⊗ I))

α

-

(2) ((A⊗ I)⊗B)⊗ I

α

-

(3)

(∗∗) A⊗ (B ⊗ I)
α

-

id
A ⊗

λ
B
⊗
I
-

(A⊗B)⊗ I

ρ
A ⊗

id
B
⊗
I

-

�
(ρ
A
⊗
id
B

)⊗
id
I

(4)

A⊗ ((I ⊗B)⊗ I)

idA ⊗ α

?

α
-

id
A
⊗

(λ
B
⊗
id
I
)
-

(A⊗ (I ⊗B))⊗ I

(1) α⊗ idI

6

�
(id

A ⊗
λ
B )⊗

id
I

In the same vein the above diagram commutes, therefore the diagram indicated by (∗∗)
commutes and hence, from naturality and invertibility of λ and α the diagram (2.1.6)

commutes.

Definition 2.7. A symmetric monoidal category is a monoidal category (C,⊗, I) with an

additional natural isomorphism (symmetry):

σA,B : A⊗B
∼=- B ⊗ A,

such that for all C-objects A,B,C the following diagrams commute:
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(A⊗B)⊗ C
σA⊗B,C- C ⊗ (A⊗B)

A⊗ (B ⊗ C)

α

-

(C ⊗ A)⊗B

α

-

A⊗ (C ⊗B)
α
-

id
A ⊗

σ
B
,C -

(A⊗ C)⊗B
σA
,C
⊗
idB

-

A⊗ I
σA,I - I ⊗ A A⊗B

idA⊗B - A⊗B

A
�

λA
ρ
B

-

B ⊗ A

σB
,A

-

σ
A
,B

-

The diagrams of Definitions 2.5 and 2.7 and of Proposition 2.6 ensure coherence such

that all the natural isomorphisms introduced above do coexist peacefully. Therefore, as

described by S. MacLane [11] any formal diagram involving the natural isomorphisms

α, λ, ρ and σ must commute.

Remark: S. MacLane [11] states that for every monoidal category there is an equivalent

strict monoidal category. Hence, any commutative diagram of monoidal categories can be

replaced by an equivalent commutative diagram of strict monoidal categories. Given this,

we will assume from now on that any monoidal category under discussion is strict, unless

otherwise stated. The reader may consider [11] and [12] for further reading regarding

strict monoidal categories.
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2.2 Dagger compact closed categories

As introduced by S. Abramsky and B. Coecke [1] by the name “strong compact closed

categories”, dagger compact closed categories play a crucial role in quantum mechanics

axiomatization. Many of the structural properties of FdHilb can be axiomatized by

dagger compact closed categories, so we can form a suitable and complete framework

for quantum computation and information. Originally, compact closed categories were

introduced by G.M. Kelly and M.L. Laplaza [13] and there are an enrichment of symmetric

monoidal categories where every object A has its dual (or adjoint) object. Furthermore,

dagger compact closed categories extend compact closed categories with a linear algebra

notion of adjointness on the morphisms.

Definition 2.8. A compact closed category is a symmetric monoidal category where every

object A is assigned by a dual (or adjoint) object A∗, together with a unit morphism (or

bell-state):

nA : I → A∗ ⊗ A

and a counit morphism:

εA : A⊗ A∗ → I,

such that the following equations hold:1

λA ◦ (εA ⊗ idA) ◦ αA,A∗,A ◦ (idA ⊗ nA) ◦ ρ−1
A = idA (2.2.1)

ρA∗ ◦ (idA∗ ⊗ εA) ◦ α−1
A∗,A,A∗ ◦ (nA ⊗ idA∗) ◦ λ−1

A∗ = idA∗ , (2.2.2)

i.e. diagrammatically:

A
ρ−1
A - A⊗ I

idA ⊗ nA- A⊗ (A∗ ⊗ A)

A

idA

?
�

λA
I ⊗ A �

εA ⊗ idA
(A⊗ A∗)⊗ A)

αA,A∗,A

?

1Assuming strict monoidal categories, equations (2.2.1) and (2.2.2) are written (εA⊗idA)◦(idA⊗nA) =

idA and (idA∗ ⊗ εA) ◦ (nA ⊗ idA∗) = idA∗ , respectively.
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A∗
λ−1
A∗- I ⊗ A∗

nA ⊗ idA∗- (A∗ ⊗ A)⊗ A∗

A∗

idA∗

?
�

ρA∗
A∗ ⊗ I �

idA∗ ⊗ εA
A∗ ⊗ (A⊗ A∗)

α−1
A∗,A,A∗

?

From the previous definition it follows that the dual of A is unique up to isomorphism.

In fact we have the following proposition:

Proposition 2.9. [12] If A′ and A′′ are duals of A then A′ ∼= A′′ and this isomorphism is

natural in the sense that if B′ and B′′ are also duals of B and f : A→ B, then there exist

f ′ : B′ → A′ and f ′′ : B′′ → A′′ duals to f such that the following diagram commutes:

B′
f ′

- A′

B′′

dB

?

f ′′
- A′′

dA

?

where {dA : A′ → A′′}A is a family of natural isomorphisms.

Proof. Consider that A′ and A′′ are duals of A. Then we have unit and counit morphisms

nA, εA and n
′
A, ε

′
A for each dual respectively. Let

d1 := ρA′′ ◦ (idA′′ ⊗ εA) ◦ α−1
A′′,A,A′ ◦ (n

′

A ⊗ idA′) ◦ λ−1
A′ : A′ → A′′

and

d2 := ρA′ ◦ (idA′ ⊗ ε
′

A) ◦ α−1
A′,A,A′′ ◦ (nA ⊗ idA′′) ◦ λ−1

A′′ : A′′ → A′.
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Assuming a strict monoidal category, we then have:

d1 ◦ d2 = (idA′′ ⊗ εA) ◦ (n
′

A ⊗ idA′) ◦ (idA′ ⊗ ε
′

A) ◦ (nA ⊗ idA′′)

= (idA′′ ⊗ εA) ◦ (idA′′⊗A⊗A′ ⊗ ε
′

A) ◦ (n
′

A ⊗ idA′⊗A⊗A′′) ◦ (nA ⊗ idA′′)

= (idA′′ ⊗ ε
′

A) ◦ (idA′′ ⊗ εA ⊗ idA⊗A′′) ◦ (idA′′⊗A ⊗ nA ⊗ idA′′) ◦ (n
′

A ⊗ idA′′)

= (idA′′ ⊗ ε
′

A) ◦ (idA′′ ⊗ ((εA ⊗ idA) ◦ (idA ⊗ nA))⊗ idA′′) ◦ (n
′

A ⊗ idA′′)

= (idA′′ ⊗ ε
′

A) ◦ (idA′′ ⊗ idA ⊗ idA′′) ◦ (n
′

A ⊗ idA′′)

= (idA′′ ⊗ ε
′

A) ◦ (n
′

A ⊗ idA′′)

= idA′′ .

Similarly d2 ◦ d1 = idA′ and therefore d1 and d2 are isomorphisms making A′ ∼= A′′. To

show now that this isomorphism is natural notice that:

f ′′ ◦ dB = f ′′ ◦ (idB′′ ⊗ εB) ◦ (n
′

B ⊗ idB′)

= (f ′′ ⊗ idI) ◦ (idB′′ ⊗ εB) ◦ (n
′

B ⊗ idB′)

= (idA′′ ⊗ εB) ◦ (f ′′ ⊗ idB⊗B′) ◦ (n
′

B ⊗ idB′)

= (idA′′ ⊗ εB) ◦ (idA′′ ⊗ f ⊗ idB′) ◦ (n
′

A ⊗ idB′)

and

dA ◦ f ′ = (idA′′ ⊗ εA) ◦ (n
′

A ⊗ idA′) ◦ f ′

= (idA′′ ⊗ εA) ◦ (n
′

A ⊗ idA′) ◦ (idI ⊗ f ′)

= (idA′′ ⊗ εA) ◦ (idA′′⊗A ⊗ f ′) ◦ (n
′

A ⊗ idB′)

= (idA′′ ⊗ εB) ◦ (idA′′ ⊗ f ⊗ idB′) ◦ (n
′

A ⊗ idB′)

as required.

Moreover, every compact closed category comes with the contravariant2 functor

(−)∗ : Cop → C, which preserves the structure of the symmetric monoidal categories and

maps objects A to A∗ and morphisms f : A→ B to f ∗ : B∗ → A∗ such that:

f ∗ = (idA∗ ⊗ εB) ◦ (idA∗ ⊗ f ⊗ idB∗) ◦ (nA ⊗ idB∗), (2.2.3)

2A contravariant functor F : C → D is a functor that turns morphisms around and reverse the direction

of composition, i.e. for every C-morphism f : A→ B we have F (f) : F (B)→ F (A) and for C-morphisms

f, g we have F (g ◦ f) = F (f) ◦ F (g).
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i.e. diagrammatically:

B∗
∼=- I ⊗B∗

nA ⊗ idB∗- A∗ ⊗ A⊗B∗

A∗

f ∗

?
�
∼=

A∗ ⊗ I �
idA∗ ⊗ εB

A∗ ⊗B ⊗B∗

idA∗ ⊗ f ⊗ idB∗

?

The morphism f ∗ is called the transpose of f .

Proposition 2.10. The (−)∗ : Cop → C defines a contravariant functor.

Proof. We will first show that (f ∗⊗ idB) ◦nB = (idA∗ ⊗ f) ◦nA, where f ∗ : B∗ → A∗ and

f : A→ B. Assuming a strict monoidal category, we have

f ∗ = f ∗ ◦ idB∗ = f ∗ ◦ (idB∗ ⊗ εB) ◦ (nB ⊗ idB∗)

= (f ∗ ⊗ idI) ◦ (idB∗ ⊗ εB) ◦ (nB ⊗ idB∗),

= (idA∗ ⊗ εB) ◦ (f ∗ ⊗ idB⊗B∗) ◦ (nB ⊗ idB∗), (2.2.4)

where the second line follows by naturality of ρ and the third by bifunctoriality. From

(2.2.3) and (2.2.4) it follows that:

(f ∗ ⊗ idB) ◦ nB = (idA∗ ⊗ f) ◦ nA.

Now

f ∗ ◦ g∗ = f ∗ ◦ (idB∗ ⊗ εC) ◦ (idB∗ ⊗ g ⊗ idC∗) ◦ (nB ⊗ idC∗)

= (f ∗ ⊗ idI) ◦ (idB∗ ⊗ εC) ◦ (idB∗ ⊗ g ⊗ idC∗) ◦ (nB ⊗ idC∗)

= (idA∗ ⊗ εC) ◦ (f ∗ ⊗ idC⊗C∗) ◦ (idB∗ ⊗ g ⊗ idC∗) ◦ (nB ⊗ idC∗)

= (idA∗ ⊗ εC) ◦ (idA∗ ⊗ g ⊗ idC∗) ◦ (f ∗ ⊗ idB⊗C∗) ◦ (nB ⊗ idC∗)

= (idA∗ ⊗ εC) ◦ (idA∗ ⊗ g ⊗ idC∗) ◦ (idA∗ ⊗ f ⊗ idC∗) ◦ (nA ⊗ idC∗)

= (idA∗ ⊗ εC) ◦ ((idA∗ ⊗ g) ◦ (idA∗ ⊗ f))⊗ (idC∗ ◦ idC∗) ◦ (nA ⊗ idC∗)

= (idA∗ ⊗ εC) ◦ (idA∗ ⊗ (g ◦ f)⊗ idC∗) ◦ (nA ⊗ idC∗)

= (g ◦ f)∗.
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Finally

(idA)∗ = (idA∗ ⊗ εA) ◦ (idA∗ ⊗ idA ⊗ idA∗) ◦ (nA ⊗ idA∗)

= (idA∗ ⊗ εA) ◦ idA∗⊗A⊗A∗ ◦ (nA ⊗ idA∗)

= (idA∗ ⊗ εA) ◦ α−1
A∗,A,A∗ ◦ (nA ⊗ idA∗)

= idA∗ .

Lemma 2.11. In a compact closed category the following natural isomorphisms exist:

1. (A⊗B)∗ ∼= B∗ ⊗ A∗

2. A∗∗ ∼= A

3. I∗ ∼= I.

Proof. We need to find for each case unit and counit morphisms such that the equations

(2.2.1) and (2.2.2) hold.

1. Consider

nA⊗B := (idB∗ ⊗ nA ⊗ idB) ◦ nB : I → B∗ ⊗ A∗ ⊗ A⊗B

εA⊗B := εA ◦ (idA ⊗ εB ⊗ idA∗) : A⊗B ⊗B∗ ⊗ A∗ → I.

Then

(εA⊗B ⊗ idA⊗B) ◦ (idA⊗B ⊗ nA⊗B)

=
(
(εA ◦ (idA ⊗ εB ⊗ idA∗))⊗ idA⊗B

)
◦
(
idA⊗B ⊗ ((idB∗ ⊗ nA ⊗ idB) ◦ nB)

)
= (εA ⊗ idA⊗B) ◦ (idA ⊗ εB ⊗ idA∗ ⊗ idA⊗B) ◦ (idA⊗B ⊗ idB∗ ⊗ nA ⊗ idB) ◦ (idA⊗B ⊗ nB)

= (εA ⊗ idA⊗B) ◦ (idA ⊗ nA ⊗ idB) ◦ (idA ⊗ εB ⊗ idB) ◦ (idA⊗B ⊗ nB)

= (idA ⊗ idB) ◦ (idA ⊗ idB)

= idA⊗B.

Similarly

(idB∗⊗A∗ ⊗ εA⊗B) ◦ (nA⊗B ⊗ idB∗⊗A∗) = idB∗⊗A∗ .

2. Consider

nA∗ := σA∗,A ◦ nA : I → A⊗ A∗

εA∗ := εA ◦ σA∗,A : A∗ ⊗ A→ I.
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Then

(εA∗ ⊗ idA∗) ◦ (idA∗ ⊗ nA∗) = ((εA ◦ σA∗,A)⊗ idA∗) ◦ (idA∗ ⊗ (σA∗,A ◦ nA))

= (εA ⊗ idA∗) ◦ (σA∗,A ⊗ idA∗) ◦ (idA∗ ⊗ σA∗,A) ◦ (idA∗ ⊗ nA)

= (idA∗ ⊗ εA) ◦ (nA ⊗ idA∗)

= idA∗ .

Similarly

(idA ⊗ εA∗) ◦ (nA∗ ⊗ idA) = idA.

3. Consider

nI := λ−1
I : I → I ⊗ I

εI := λI : I ⊗ I → I.

Then clearly

(εI ⊗ idI) ◦ (idI ⊗ nI) = (idI ⊗ εI) ◦ (nI ⊗ idI) = idI .

By Proposition 2.9 duals are naturally isomorphic and that completes the proof.

Lemma 2.12. In a strict compact closed category the following are equivalent:

1. (idA∗ ⊗ f) ◦ nA = (f ∗ ⊗ idB) ◦ nB

2. εB ◦ (f ⊗ idB∗) = εA ◦ (idA ⊗ f ∗)

3. f = (idB ⊗ εA∗) ◦ (idB ⊗ f ∗ ⊗ idA) ◦ (nB∗ ⊗ idA)

4. f ∗ = (idA∗ ⊗ εB) ◦ (idA∗ ⊗ f ⊗ idB∗) ◦ (nA ⊗ idB∗),

where f : A→ B.

Proof. See [13].

Recall that the reason for defining compact closed categories is to address a complete

framework for quantum mechanics and computation. However, taking in account that the

John von Neumann’s formalism takes place in FdHilb, the language of compact closed

categories does not provide a complete description of FdHilb structure. What is missing

is the inner product, which is essential for many parts of quantum mechanics. Therefore,

the definition of dagger compact closed categories comes to fulfill this lacuna.
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Definition 2.13. A dagger symmetric monoidal category (†-symmetric monoidal cate-

gory) is a symmetric monoidal category with a contravariant functor (−)† : Cop → C,

which is identity on the objects and involutive on the morphisms, i.e. it maps every mor-

phism f : A → B to f † : B → A, where f † is called the adjoint of f . Also for every

f : A→ B and g : B → C the following hold:

(g ◦ f)† = f † ◦ g† : C → A

f †† = f : A→ B

id†A = idA : A→ A.

Finally the contravariant functor (−)† : Cop → C must coherently preserve the structure

of the symmetric monoidal category, such that for every f : A→ B and g : C → D:

(f ⊗ g)† = f † ⊗ g† : B ⊗D → A⊗ C

α†A,B,C = α−1
A,B,C : (A⊗B)⊗ C → A⊗ (B ⊗ C)

λ†A = λ−1
A : A→ I ⊗ A

ρ†A = ρ−1
A : A→ A⊗ I

σ†A,B = σ−1
A,B : B ⊗ A→ A⊗B.

Remark: Since (−)† : Cop → C is identity on objects and preserves the symmetric

monoidal structure we have that (A ⊗ B)† = A† ⊗ B† = A ⊗ B, namely the following

diagram commutes:

A† ⊗B†

A⊗B

id

?

id
- (A⊗B)†

id

-

Similarly to Proposition 2.10 the adjoint functor (−)† : Cop → C indeed defines a con-

travariant functor by definition.

Definition 2.14. In a †-symmetric monoidal category a morphism f : A → B is called

unitary if it is an isomorphism and f−1 = f †. A morphism f : A→ B is called self-adjoint

if f † = f .
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Definition 2.15. A dagger compact closed category (†-compact closed category) is a dag-

ger symmetric monoidal category that is also compact closed. In addition we require the

following coherence conditions:

• every natural isomorphism ξ that derives from the symmetric monoidal category

must be unitary.

• nA∗ = ε†A = σA∗,A ◦ nA, i.e. the following diagram commutes:

I
nA∗ = ε†A- A⊗ A∗

A∗ ⊗ A

σA∗,A

6

n
A

-

Note that we can now replace f : A→ B by f † : B → A in equation (2.2.3) extending

in this way the duality assignment on objects A 7→ A∗ by the morphism assignment

f 7→ f∗. Therefore we have:

f∗ = (idB∗ ⊗ εA) ◦ (idB∗ ⊗ f † ⊗ idA∗) ◦ (nB ⊗ idA∗),

i.e. diagrammatically:

A∗
∼=- I ⊗ A∗

nB ⊗ idA∗ - B∗ ⊗B ⊗ A∗

B∗

f∗

?
�
∼=

B∗ ⊗ I �
idB∗ ⊗ εA

B∗ ⊗ A⊗ A∗

idB∗ ⊗ f † ⊗ idA∗

?

giving rise to the following definition.

Definition 2.16. In a †-compact closed category the covariant functor (−)∗ : C → C maps

objects A to A∗ and morphisms f : A→ B to f∗ : A∗ → B∗, such that f † = (f∗)
∗ = (f ∗)∗

for every morphism f : A→ B. The morphism f∗ is called the conjugate of f .

Similarly to Lemma 2.12 we then have the following lemma:
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Lemma 2.17. In a strict †-compact closed category the following are equivalent:

1. (idB∗ ⊗ f †) ◦ nB = (f∗ ⊗ idA) ◦ nA

2. εA ◦ (f † ⊗ idA∗) = εB ◦ (idB ⊗ f∗)

3. f † = (idA ⊗ εB∗) ◦ (idA ⊗ f∗ ⊗ idB) ◦ (nA∗ ⊗ idB)

4. f∗ = (idB∗ ⊗ εA) ◦ (idB∗ ⊗ f † ⊗ idA∗) ◦ (nB ⊗ idA∗),

where f : A→ B.

2.3 Graphical language

Graphical calculi have been an important part of computation in quantum mechanics

and a protuberant research area in category theory. The categorical graphical calculus

of †-compact closed categories admits a sound and complete interpretation of the axioms

in quantum mechanics and computation, such that every equation that can be proved in

the categorical calculus can also be proved in the graphical calculus and vive versa. The

graphical language of symmetric monoidal categories and compact closed categories were

introduced by G.M. Kelly, A. Joyal and R. Street in [13–15]. An extension to †-compact

closed categories was given by P. Selinger [3] and also by B. Coecke [16,17] and in [5] by

B. Coecke and D. Pavlovic.

The graphical language consists of pictures with some primitive data, in which two

kinds of composition take place, namely the sequential composition for the concatenation

in time and the parallel composition for conceiving two systems to a compound one. Anal-

ogously to the categorical semantics these compositions correspond to usual composition

and tensor product respectively. The primitive data consists of:

• lines which may carry a symbol referring to the kind or type of system (i.e. one

qubit, n-qubits, classical data, quantum data e.t.c),

• input/output boxes which depict morphisms (i.e. operations, physical processes),
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• triangles with only an output which correspond to states or preparation procedures,

• triangles with only an input which correspond to costates or measurement branches,

• diamonds without input or output lines which correspond to values or probabilities

or weights.

The above can be depicted as follows:

which respectively correspond to idA : A → A, f : A → B, ψ : I → A, π : A → I,

s : I → I. Here we assume that in all pictures the sequence of time is from the bottom

to the top, as denoted by the arrows.

Remark: Note that a single line denoted by a letter may correspond to the type of the

system or the identity morphism. Also the multiplicative unit I corresponds to the “no

system”, so is depicted by the empty line. Finally, the state ψ : I → A and the costate

π : A→ I are called “ket”and “bra” in Dirac’s notation [18].

Sequential composition is obtained by connecting the inputs and the outputs of the

boxes (if there exist any) by lines and parallel composition is obtained by placing two

boxes side by side. For example the following pictures:
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correspond to:

idA ⊗ idB = idA⊗B : A⊗B → A⊗B

g ◦ f : A→ C

f ⊗ g : A⊗ C → B ⊗D

f ⊗ idC : A⊗ C → B ⊗ C

f ◦ ψ : I → B

f ⊗ ψ : A⊗ I → B ⊗ C

(f ⊗ g) ◦ h : A→ D ⊗ E.

Recall the Definition 2.7 of symmetric monoidal categories. Based on the definition

of graphical calculus, we can now depict what bifunctoriality and natural isomorphisms

stand for. Therefore we have for bifunctoriality (equation (2.1.3)) that:

and hence equation (2.1.4) is depicted as:
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Similarly the equation

σB,D ◦ (f ⊗ g) = (g ⊗ f) ◦ σA,C ,

where f : A→ B, g : C → D, that stands for swapping the systems, can be depicted as:

and the equation

αA2,B2,C2 ◦ (f ⊗ (g ⊗ h)) = ((f ⊗ g)⊗ h) ◦ αA1,B1,C1 ,

where f : A1 → A2, g : B1 → B2, h : C1 → C2, that stands for associating the systems is

in a picture:

Thus, every equation is depicted in the graphical language in the sense that the graphical

representation of the left-hand-side and the right-hand-side are isomorphic as graphs with

respect to a fixed orientation of input and output.

Extending the graphical language of symmetric monoidal categories we can have a

graphical structure for compact closed categories and hence for †-compact closed cate-

gories. The unit (bell-state) nA : I → A∗ ⊗ A and the counit εA : A ⊗ A∗ → I are

represented as follows:
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where the dual A∗ of A can be represented by changing the orientation of the arrow, that

is:

In that sense equation (2.2.1) is depicted as:

Remark: Note that in the previous picture the left-hand-side represents the physical

flow of information with respect to casual ordering and the right-hand-side the logical

flow of information. Using the second interpretation we actually viewing a transfer of the

input through the counit and unit procedures and finally receiving it as an output at the

other end. Also from now on we will omit the type of the system on a line when it is

straightforward.

Having the graphical representation of n and ε we can now depict the equations in

Lemma 2.12:
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Finally for the †-compact closed categories if f : A→ B is a morphism then f † : B →
A is depicted by reversing the picture vertically, that is:

and hence we introduce pictures for n† and ε†:

Notice that indeed the equations n†A = εA∗ and ε†A = nA∗ both hold in the graphical

language. Therefore, we depict the equations of Lemma 2.17 as follows:
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The equation nA∗ = ε†A = σA∗,A ◦ nA of the Definition 2.15 is depicted as:

To sum up everything, we present the following theorem [3] which illustrates the

coherence for the graphical language of †-compact closed categories. Similarly, we have

equivalent theorems for the symmetric monoidal categories and compact closed categories.

Theorem 2.18. A well-typed equation between morphisms in the language of †-compact

closed categories follows from the axioms of †-compact closed categories if and only if it

holds, up to graphical isomorphism, in the graphical language.

Proof. See [3].
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2.4 Scalars and trace

Definition 2.19. Given a monoidal category C we define C(I, A) to be the state space,

C(A, I) the costate space of a system A and C(I, I) the scalar monoid.

As mentioned in section 2.3 diamonds are endomorphisms of type s : I → I, called

scalars and can arise by composition of a state with a costate, that is:

I
s

- I

A
π
-

ψ -

and in a picture:

The composition π ◦ψ is called “bra-ket” in Dirac’s notation [18]. What is remarkable

about scalars is that the scalar monoid is always commutative. That is for s, t ∈ C(I, I)

we have s ◦ t = t ◦ s. In fact we have an even stronger result presented in the following

lemma:

Lemma 2.20. [12] Given scalars s, t ∈ C(I, I) then s ◦ t = t ◦ s and the composite

s⊗ t : I ∼= I ⊗ I → I ⊗ I ∼= I

is equal to s ◦ t = t ◦ s.

Proof. Let s, t ∈ C(I, I). Then the following diagram commutes due to naturality of λ

and ρ in left and right hand-side diagrams and diagrams (1)-(4) and due to bifunctoriality
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of the middle diagram.

I �
∼=

I ⊗ I
∼= - I

(1) (2)

I

t

?
�

∼=
I ⊗ I

�

id I
⊗
t

I ⊗ I ∼=
-

s⊗
id
I

-

I

s

?

(3) (4)

I

s

?
�

∼=
I ⊗ I

s⊗ t

?

∼=
-

�
id I
⊗
ts⊗

id
I -

I

t

?

Therefore, s ◦ t = t ◦ s. Furthermore it is noticed that the left-hand-side diagram gives

s ◦ t = s⊗ t : I ∼= I ⊗ I → I ⊗ I ∼= I.

Definition 2.21. Given a monoidal category C, a scalar multiplication is the composition:

s • f := ρB ◦ (f ⊗ s) ◦ ρ−1
A : A→ B,

where s : I → I, f : A→ B.

Remark: An equivalent definition of the scalar multiplication could have been the fol-

lowing:

s • f := λB ◦ (s⊗ f) ◦ λ−1
A : A→ B,

i.e. defining the multiplication on the left rather than on the right. It appears that the

two definitions are equivalent [12], since {uA = λ−1
A ◦ ρA}A is a natural isomorphism,

making the following diagram to commute:

A⊗ I
f ⊗ s
- B ⊗ I

A

ρ
−1

A
-

B

ρ
B

-

I ⊗ A

uA

?

s⊗ f
-

λ −1
A

-

I ⊗B

uB

? λB

-

Lemma 2.22. For scalars s, t ∈ C(I, I) the following hold:
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1. s • (t • f) = (s ◦ t) • f , where f : A→ B

2. (s • f) ◦ (t • g) = (s ◦ t) • (f ◦ g), where g : A→ B and f : B → C

3. (s • f)⊗ (t • g) = (s ◦ t) • (f ⊗ g), where f : A→ C and g : B → D.

Proof. We prove the three equations diagrammatically.

1. For f : A→ B, s, t ∈ C(I, I) the following diagram commutes:

A
ρ−1
A - A⊗ I �

ρA⊗I
A⊗ I ⊗ I

B

s • (t • f)

?
�

ρB
B ⊗ I

(t • f)⊗ s

?
�
ρB⊗I

B ⊗ I ⊗ I

f ⊗ t⊗ s

?

due to naturality of ρ and Definition 2.21. Note that from Lemma 2.20 (t⊗s) = t◦s = s◦t.
Since ρ◦ρ is a natural transformation then by Definition 2.21 we have s•(t•f) = (s◦t)•f .

2. For g : A→ B and f : B → C, s, t ∈ C(I, I) the following diagram commutes:

A⊗ I
(f ◦ g)⊗ (s ◦ t)

- C ⊗ I

B ⊗ I

f ⊗
s

-
g ⊗

t

-

A

ρ−1
A

6

t • g
- B

ρB

?

ρ−1
B

6

s • f
- C

ρC

?

due to Definition 2.21 and to bifunctoriality for the upper diagram. Now by Definition

2.21

(s ◦ t) • (f ◦ g) = ρC ◦ ((f ◦ g)⊗ (s ◦ t)) ◦ ρ−1
A ,

therefore

(s • f) ◦ (t • g) = (s ◦ t) • (f ◦ g).
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3. For g : B → D and f : A→ C, s, t ∈ C(I, I) the following diagram commutes:

A⊗B �
ρA ⊗ ρB

A⊗ I ⊗B ⊗ I
ρA ⊗ idB⊗I - A⊗B ⊗ I �

ρ−1
A⊗B

A⊗B

C ⊗D

(s • f)⊗ (t • g)

?
�

ρC ⊗ ρD
C ⊗ I ⊗D ⊗ I

(f ⊗ s)⊗ (g ⊗ t)

?

ρC ⊗ idD⊗I
- C ⊗D ⊗ I

(f ⊗ g)⊗ (s ◦ t)

?

ρC⊗D
- C ⊗D

(s ◦ t) • (f ⊗ g)

?

since it uses naturality of ρ and Definition 2.21 for the right-hand-side diagram. Therefore

(s • f)⊗ (t • g) = (s ◦ t) • (f ⊗ g).

Scalars are viewed as probabilities or weights and hence, they can move freely in

“time”and “space”, that is:

We have the same property for ψ ◦ π : A → B, since the following diagram commutes,

using naturality of λ and ρ, λI = ρI and bifunctoriality:

A �
λA

I ⊗ A

I

π

?
�
λI = ρI

I ⊗ I
�

id I
⊗
π

B

ψ

?
�

ρB
B ⊗ I

ψ ⊗ π

?

ψ ⊗
id
I

-
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Hence, ψ ◦ π = ρB ◦ (ψ ⊗ π) ◦ λ−1
A and in a picture:

The notion of trace was first introduced by A. Joyal and R. Street [15]. The definition

relevant to compact closed categories is the following:

Definition 2.23. Given a symmetric monoidal category C a trace is a family of mor-

phisms trCA,B : C(C ⊗ A,C ⊗ B) → C(A,B), such that for every morphism f : C ⊗ A →
C ⊗B:

trCA,B(f) = λB ◦ (εC∗ ⊗ idB) ◦ (idC∗ ⊗ f) ◦ (nC ⊗ idA) ◦ λ−1
A ,

i.e. diagrammatically:

A
λ−1
A - I ⊗ A

nC ⊗ idA- C∗ ⊗ C ⊗ A

B

trCA,B(f)

?
�

λB
I ⊗B �

εC∗ ⊗ idB
C∗ ⊗ C ⊗B

idC∗ ⊗ f

?

We can depict trCA,B in a picture:
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Similarly to Definition 2.23 we can define the partial transpose for a morphism

f : C ⊗ A→ D ⊗B.

Definition 2.24. Given a symmetric monoidal category C a partial transpose is a family

of morphisms ptC,DA,B : C(C⊗A,D⊗B)→ C(D∗⊗A,C∗⊗B), such that for every morphism

f : C ⊗ A→ D ⊗B:

ptC,DA,B(f) = (idC∗⊗λB)◦ (idC∗⊗εD∗⊗ idB)◦ (σD∗,C∗⊗f)◦ (idD∗⊗nC⊗ idA)◦ (idD∗⊗λ−1
A ),

i.e. diagrammatically:

D∗ ⊗ A
idD∗ ⊗ λ−1

A- D∗ ⊗ I ⊗ A
idD∗ ⊗ nC ⊗ idA- D∗ ⊗ C∗ ⊗ C ⊗ A

C∗ ⊗B

ptC,DA,B(f)

?
�
idC∗ ⊗ λB

C∗ ⊗ I ⊗B �
idC∗ ⊗ εD∗ ⊗ idB

C∗ ⊗D∗ ⊗D ⊗B

σD∗,C∗ ⊗ f

?

In a picture ptC,DA,B(f) is:

Note that in the above picture the arrows present the logical flow of information.

Therefore, partial transpose can be viewed as a swapping and transposition of an input

and an output.
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Chapter 3

Classical Structures and

Measurements

Our aim in this chapter is to present what classical structures stand for and to define

the quantum measurement. Abstractly, a quantum measurement can be described as an

operation or physical procedure that takes a quantum state as an input and produces a

measurement outcome, together with a quantum state. Due to the fundamental property

of collapse during the measurement, the outcome quantum state is typically different from

the input one, therefore the quantum measurement performs a change of the input state.

To distinguish between quantum and classical data we introduce the notion of classical

structure as a special †-compact closed Frobenius algebra as presented in [5] and we define

quantum measurements based on that categorical concept.

3.1 Classical structures

The definition of a quantum measurement is based on the representation of classical

data in the categorical concept of †-compact closed categories. This leads us to define

classical data as a structured object (X, δ, γ) where X is a classical object, δ : X → X⊗X
is a copying operation and γ : X → I a deleting operation. The axiomatization of classical
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structure is based on the particular axioms that morphisms δ and γ satisfy, yielding the

definition of special †-compact closed Frobenius algebra [5].

3.1.1 Axiomatization of classical structures

Definition 3.1. Given a monoidal category C an internal monoid is a structure

(X,µX , νX), where

µX : X ⊗X → X

νX : I → X,

such that

µX ◦ (idX ⊗ µX) = µX ◦ (µX ⊗ idX)

and

µX ◦ (νX ⊗ idX) = λX

µX ◦ (idX ⊗ νX) = ρX .

The morphisms µ and ν are called multiplication and multiplication unit, respectively.

Dually to Definition 3.1 we can define an internal comonoid (X, δ, γ) as follows:

Definition 3.2. Given a monoidal category C an internal comonoid is a structure

(X, δX , γX), where

δX : X → X ⊗X

γX : X → I,

such that

(idX ⊗ δX) ◦ δX = (δX ⊗ idX) ◦ δX

and

(γX ⊗ idX) ◦ δX = λ−1
X

(idX ⊗ γX) ◦ δX = ρ−1
X .

The morphisms δ and γ are called comultiplication and comultiplication unit, respectively.
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Diagrammatically the above equations can be presented by the following commutative

diagrams:

X
δX - X ⊗X X

X ⊗X

δX

?

δX ⊗ idX
- X ⊗X ⊗X

idX ⊗ δX

?
I ⊗X �

γX ⊗ idX

�

λ
−1
X

X ⊗X

δX

?

idX ⊗ γX
- X ⊗ I

ρ −1X

-

Definition 3.3. Given a symmetric monoidal category C the internal monoid and the

internal comonoid are commutative if and only if

µX ◦ σX,X = µX

and

σX,X ◦ δX = δX ,

respectively.

In the graphical language we can depict the morphisms δX and γX as:

and hence the equations of Definition 3.2 and 3.3 for the internal comonoid (X, δX , γX)

are in pictures:
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Note that the above pictures express exactly what is expected from a copying and

deleting operation. Explicitly, the first picture expresses that it does not matter which

object is copied twice, the second expresses that copying and then deleting one of the

copied objects is equivalent with doing nothing1 and the last one that swapping the two

copied objects does not alter something, i.e. the objects in the output of the copying

operation are exactly the same.

Definition 3.4. A symmetric Frobenius algebra is a structure that combines an internal

commutative monoid (X,µX , νX) and the internal commutative comonoid (X, δX , γX) such

that:

δX ◦ µX = (µX ⊗ idX) ◦ (idX ⊗ δX), (3.1.1)

that is diagrammatically:

X ⊗X
µX - X

X ⊗X ⊗X

idX ⊗ δX

?

µX ⊗ idX
- X ⊗X

δX

?

Moreover a symmetric Frobenius algebra is special if

µX ◦ δX = idX ,

1Here we assume a strict symmetric monoidal category since we require λX = ρX = idX .
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i.e.:

X
δX- X ⊗X

X

idX

?�

µX

Equation (3.1.1) is known as the Frobenius identity.

When we have a †-symmetric monoidal category then a †-Frobenius algebra can be

constructed, since every internal commutative comonoid (X, δX , γX) defines an internal

commutative monoid (X, δ†X , γ
†
X). Therefore, the equations of Definition 3.4 can be re-

spectively depicted by:

In [5] it is showed that δX ◦ γ†X : I → X ⊗ X and γX ◦ δ†X : X ⊗ X → I satisfy the

equations of Definition 2.8, therefore they provide a unit morphism nX = δX ◦ γ†X and a

counit morphism εX = γX ◦ δ†X , provided that X = X∗. In a picture that stands for:

and hence equation (2.2.1) can be depicted as:
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We are now in a position to give the exact definition of a classical structure as pre-

sented in [5].

Definition 3.5. In a †-compact closed category a classical structure (X, δX , γX) is defined

to be a special †-compact closed Frobenius algebra, i.e. a special †-Frobenius algebra where

nX = δX ◦ γ†X , with X = X∗.

3.1.2 Classical structures in FdHilb

Recall that in FdHilb a classical structure corresponds to the space C⊕n and there-

fore is the structure (C⊕n, δ(n), γ(n)). Fixing a basis {|i〉}i in C⊕n we have:

δ(n) : C⊕n → C⊕n ⊗ C⊕n :: |i〉 7→ |ii〉

γ(n) : C⊕n → C :: |i〉 7→ 1

In FdHilb the copying map δ(n) is indeed a copying operation of classical data. Notice

that δ(n) can copy only the base vectors, namely |i〉, but not arbitrary states |ψ〉 =∑n
i ai|i〉:

|ψ〉 =
n∑
i

ai|i〉
δ(n)
-

n∑
i

ai|ii〉 6= |ψ〉 ⊗ |ψ〉 =
( n∑

i

ai|i〉
)
⊗
( n∑

i

ai|i〉
)
.

As mentioned in [5] δ is base dependent as it captures the base {|i〉}i, since

δ
(∑
i∈I

ai|i〉
)

=
∑
i∈I

ai|ii〉
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and hence, the set I has to be a singleton in order for
∑

i∈I ai|ii〉 to be a disentangled

state. Therefore
∑

i∈I ai|i〉 boils down to base vector |i〉. The fact that the copying op-

eration δ is base dependent prevents it from being a natural transformation, even if it is

diagonal. This result is also derived from the No-Cloning theorem [5]. Since δ is restricted

to copy only base vectors, is a copying operation of classical data only.

Note also that δ† is defined by:

δ† : C⊕n ⊗ C⊕n → C⊕n ::

{
|ij〉 7→ ~o , i 6= j

|ii〉 7→ |i〉 , else

and hence

δ ◦ δ† ::

{
|ij〉 7→ ~o 7→ ~o , i 6= j

|ii〉 7→ |i〉 7→ |ii〉 , else

i.e. δ ◦ δ† erase the non-diagonal elements. Classical data are deleted by γ, hence

idC⊕n ⊗ γ :: |ij〉 7→ |i〉

and finally

δ† ◦ δ = (idC⊕n ⊗ γ) ◦ δ = (γ ⊗ idC⊕n) ◦ δ :: |i〉 7→ |ii〉 7→ |i〉.

3.1.3 Self-adjointness with respect to a classical structure

For simplicity reasons we will denote from now on a classical structure (X, δX , γX)

by its classical object X, where this is clear by the context, meaning that whenever an

object X is referred as classical, then it posses a classical structure (X, δX , γX) and is not

an unstructured quantum object.

Definition 3.6. Given a classical structure X and a quantum object A, a morphism

F : A→ X ⊗ A is called self-adjoint with respect to X (or X-self-adjoint) if

F = (idX ⊗F †) ◦ (nX ⊗ idA) ◦ λ†A,
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i.e. if the following diagram commutes:

A
F

- X ⊗ A

I ⊗ A

λ†A

?

nX ⊗ idA
- X ⊗X ⊗ A

idX ⊗F †
6

We can depict the above by the following picture, where quantum data is denoted by

red colour and classical by black.

Proposition 3.7. [5] Given a classical structure (X, δX , γX) then δX and γX are always

X-self-adjoint.

Proof. We assume a strict †-compact closed category, therefore we need to show that

δX = (idX ⊗ δ†X) ◦ (nX ⊗ idX) and γ†X = (idX ⊗ γX) ◦ nX . Note that whenever F is X-

self-adjoint for a morphism F : A→ X ⊗A then F † is. Therefore if γ† : I → X ∼= X ⊗ I
is X-self-adjoint, then γ†† = γ is. We then have:

δ = δ ◦ idX = δ ◦ δ† ◦ (γ† ⊗ idX)

= (idX ⊗ δ†X) ◦ (δX ⊗ idX) ◦ (γ†X ⊗ idX)

= (idX ⊗ δ†X) ◦ ((δX ◦ γ†X)⊗ idX)

= (idX ⊗ δ†X) ◦ (nX ⊗ idX)

γ†X = idX ◦ γ†X = (idX ⊗ γX) ◦ δX ◦ γ†X
= (idX ⊗ γX) ◦ nX

and these can be also viewed in pictures:
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Also, given an internal commutative comonoid (X, δX , γX), then Definition 3.6 implies

the self-duality of X and X-self-adjointness of δX and γX imply that nX = δX ◦ γ†X which

can be proved by:

Hence in a †-compact closed category we can define an X-self-adjoint internal

comonoid (X, δX , γX) and therefore we have the following lemma:

Lemma 3.8. Given an X-self-adjoint internal comonoid (X, δX , γX), then δX satisfies

the Frobenius identity (equation (3.1.1)), is invariant under partial transposition, i.e.

ptX,XI,X (δX) = δX and is self-dual, i.e. (δX)∗ = δX .
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Proof. We prove the lemma graphically. For the Frobenius identity we have:

and for the partial-transpose-invariance:

For the self-duality just consider:
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Note that the arrows in the above pictures represent the physical flow of information.

Theorem 3.9. For a classical structure (X, δX , γX) we have (δX)∗ = δX and (γX)∗ = γX .

Proof. From Lemma 3.8 we have that (δX)∗ = δX . For the comultiplication unit notice

that the self-adjointness of γX and Definition 3.2 imply that (γX)∗ = γX , since

We can therefore have an equivalent definition of a classical structure based on self-

adjointness [5]:

Theorem 3.10. [5] A classical structure is equivalently defined as a special X-self-adjoint

internal commutative comonoid (X, δX , γX).
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3.2 Quantum measurements

Before we describe a quantum measurement we introduce some essential concepts.

Definition 3.11. Given a classical structure X and a quantum object A, a morphism

F : A→ X ⊗ A is called X-idempotent if

(idX ⊗F) ◦ F = (δX ⊗ idA) ◦ F ,

i.e. the following diagram commutes:

A
F

- X ⊗ A

X ⊗ A

F

?

δX ⊗ idA
- X ⊗X ⊗ A

idX ⊗F

?

Moreover F is called complete if

λA ◦ (γX ⊗ idA) ◦ F = idA,

i.e. the following diagram commutes:

A
F
- X ⊗ A

A

idA

?
�

λA
I ⊗ A

γX ⊗ idA

?

In pictures the above are shown respectively:
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Definition 3.12. A morphism F : A → X ⊗ A is said to be an X-projector if it is

X-self-adjoint and X-idempotent. A morphism F : A→ X ⊗A is an X-projector-valued

spectrum if it is an X-projector and moreover if it is X-complete.

Hence, in FdHilb we have the following theorem:

Theorem 3.13. [5] In FdHilb the projector-valued spectra relative to C⊕n exactly cor-

respond to the complete family of mutually orthogonal projectors {Pi}i, i ∈ {1, . . . , n}.

Proof. In FdHilb a C⊕n-projector-valued spectrum is a morphism P : H → C⊕n ⊗ H.

where dim(H) = n, i.e H ∼= C⊕n.

Generally for a classical structure X a morphism F : A → X ⊗ A can be thought

as an X-indexed family of morphisms {FX : A → A}X . Therefore, that means we

can view X-self-adjointness of morphism F as self-adjointness of the X-indexed family

{FX : A → A}X , that is F †X = FX . In the same sense X-idempotent is viewed as

FX ◦ FX = FX .

Back to FdHilb, the family of C⊕n-indexed projectors {Pi : H → H}i corresponds to

morphism P : H → C⊕n⊗H. Therefore, C⊕n-self-adjointness of P yields self-adjointness

of projectors P†i = Pi and C⊕n-idempotence yields idempotence Pi ◦ Pi = Pi and mutual

orthogonality since Pi ◦ Pj = O, for i 6= j. Finally C⊕n-completeness gives
∑n

i Pi = 1H

and that completes the proof.

We are now in a position to define the abstract notion of quantum measurement. In

fact projector-valued spectra F : A→ X⊗A are actually a composition type of quantum

measurements.

However as stated in [5] projector-valued spectra are an approximate notions of quan-

tum measurements. To realize this first notice that the comultiplication morphism δX is

indeed a projector-valued spectrum, since X-self-adjointness follows from Proposition 3.7

and X-idempotence and X-completeness from Definition 3.2. Therefore in FdHilb the

canonical projector-valued spectrum δ(n) : A→ X ⊗ A yields

δ(n)
( n∑

i

ai|i〉A
)

=
n∑
i

ai(|i〉X ⊗ |i〉A),
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where A = X := C⊕n and |i〉X is the measurement outcome, |i〉A the resulting quantum

state and ai the probability amplitudes captured in the outcome. Hence, projector-valued

spectra in FdHilb maintain the relative phases present in probability amplitudes ai, so we

do not have a fully abstract quantum measurement. To solve this, P. Selinger introduced

the category of complete positive maps (CPM) [3]. He proved that for every †-compact

closed category C there is a construction of a correspondent CPM(C) and hence, the ap-

proximate measurements turn into exact quantum measurements [5]. However, for many

practical reasons the approximate notion of quantum measurements suffices and is the

one used in this dissertation.

Note also that in FdHilb a measurement is described by a self-adjoint operator

H =
∑
i

λiPi,

where Pi = |i〉〈i| and hence the action of the above spectra decomposition on the state

|ψ〉 is ∑
i

λiPi|ψ〉 =
∑
i

λ
′

i|i〉,

where λ
′
i = λi〈i|ψ〉 is the measurement outcome and |i〉 the resulting state. Therefore the

above description of measurement concises with the approximate description of quantum

measurement, i.e. that of projector-valued spectra.
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Chapter 4

Discrete Models

In this chapter we present the discrete models FRel and Spek as introduced by B.

Coecke and B. Edwards in [7]. As shown in the previous chapters quantum mechanics

can be abstractly expressed by †-compact closed categories. Actually, is sufficient to have

a †-symmetric monoidal category with enough classical structures that enable compact

closure. Since n = δ ◦γ†, as mentioned in section 3.1 and in [5,7], then every morphism of

a †-symmetric monoidal category can be formed using a classical structure. Hence, if all

objects of a †-symmetric monoidal category have basis structures then we get a †-compact

closed category.

4.1 The category FRel

The category FRel consists of finite sets and relations as morphisms. One can eas-

ily verify that (FRel,×) is a †-symmetric monoidal category, where × is the cartesian

product and the identity object I is the singleton {∗}. The functor (−)† corresponds

to the relation converse, i.e. if R ⊆ X × Y and R = {(x, y) : x ∈ X, y ∈ Y } then

R† ⊆ Y × X and R† = {(y, x) : x ∈ X, y ∈ Y }. Also we have R∗ = R† and R∗ = R.

Finally for a finite set X the compact closure is captured by nX := {(∗, (x, x)) : x ∈ X}
and εX = n†X := {((x, x), ∗) : x ∈ X}. Therefore, (FRel,×) is indeed a compact closed

category.
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Now let X to be a set with n elements. The following relations constitute a classical

structure:

δ ⊆ X × (X ×X) :: i ∼ (i, i) γ ⊆ X × I :: i ∼ ∗

therefore, (X, δ, γ) is a classical structure in FRel.

Recall that an observable in FdHilb is represented by a self-adjoint operator H in

the spectra decomposition:

H =
∑
i

aiPi,

where ai are the eigenvalues of H and Pi are projectors. In particular the eigenvalues ai

are real since H is self-adjoint and the projectors Pi are mutually orthogonal. If the set

{Pi}i has dimension equal to the dimension of the state space, i.e.
∑

iPi = 1 then we

have a non-degenerate observable.

Recently has been proved that in FdHilb classical structures are in one-to-one cor-

respondence with orthonormal bases [8]. If we have orthonormal bases we then have

non-degenerate measurements and non-degenerate spectral decompositions, so classical

structures correspond to non-degenerate observables. However, more interesting are the

observables that are complementary, i.e. the observables whose operators are the most

incompatible possible [9]. We state below the basic definitions of the abstract characteri-

zation of complementary classical structures given by B. Coecke and R. Duncan in [9].

Definition 4.1. Given a classical structure (A, δ, γ), a state ψ : I → A is unbiased

relative to (A, δ, γ) if

δ† ◦ (ψ ⊗ idA) = (ψ† ⊗ idA) ◦ δ.

Definition 4.2. Given a classical structure (A, δ, γ), a state ψ : I → A is classical relative

to (A, δ, γ) if ψ is a real comoinoid homomorphism, i.e.:

ψ∗ = ψ δ ◦ ψ = ψ ⊗ ψ γ ◦ ψ = idI .

Definition 4.3. [7] Two classical structures (A, δ1, γ1) and (A, δ2, γ2) are complementary

if and only if:
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• whenever ψ : I → A is classical for (A, δ1, γ1), it is unbiased for (A, δ2, γ2),

• whenever ψ : I → A is unbiased for (A, δ1, γ1), it is classical for (A, δ2, γ2),

• γ†2 is classical for (A, δ1, γ1) and γ†1 is classical for (A, δ2, γ2).

4.2 The discrete model FRel

We are interested in the two element set, which we will denote by II := {0, 1}. One

can easily verify that the structure (II, δZ , γZ) deduced by:

δZ ⊆ II× (II× II) ::

{
0 ∼ (0, 0)

1 ∼ (1, 1)
γZ ⊆ II× I ::

{
0 ∼ ∗
1 ∼ ∗

is a classical structure. In [7] B. Coecke and B. Edwards observed that besides this

classical structure the set II has another one, that is (II, δX , γX), where

δX ⊆ II× (II× II) ::

{
0 ∼ {(0, 0), (1, 1)}
1 ∼ {(0, 1), (1, 0)}

γZ ⊆ II× I :: 0 ∼ ∗.

Clearly (II, δX , γX) is an internal commutative comonoid, since

(δX×idII)◦δX = (idII×δX)◦δX ::

{
0 7→ {(0, 0), (1, 1)} 7→ {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}
1 7→ {(0, 1), (1, 0)} 7→ {(0, 0, 1), (1, 1, 1), (0, 1, 0), (1, 0, 0)}

and trivially (idII × γX) ◦ δX = idII = (γX × idII) ◦ δX = {(0, 0), (1, 1)} and σII,II ◦ δX = δX .

Finally, (II, δX , γX) is a special †-compact closed Frobenius algebra, because

δX ◦ δ†X = (δ†X × idII) ◦ (idII × δX) ::


(0, 0) 7→ {(0, 0), (1, 1)}
(0, 1) 7→ {(1, 0), (0, 1)}
(1, 0) 7→ {(0, 1), (1, 0)}
(1, 1) 7→ {(0, 0), (1, 1)},

δ†X ◦ δX = idII and nII = δX ◦ γ†X = {(∗, {(0, 0), (1, 1)})}. Therefore, by Definition 3.5

(II, δX , γX) is a classical structure.
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The states over the set II are

z0 ⊆ I× II :: ∗ ∼ 0 z1 ⊆ I× II :: ∗ ∼ 1 x0 ⊆ I× II :: ∗ ∼ {0, 1}

As stated in [7] we have the following theorem:

Theorem 4.4. The classical structures (II, δZ , γZ) and (II, δX , γX) are complementary in

the sense of the Definition 4.3.

Proof. We prove that z0, z1 are classical for (II, δZ , γZ) and x0 is classical for (II, δX , γX).

We have

δZ ◦ z0 :: ∗ 7→ 0 7→ {(0, 0)} z0 × z0 :: ∗ 7→ {(0, 0)}

δZ ◦ z1 :: ∗ 7→ 1 7→ {(1, 1)} z1 × z1 :: ∗ 7→ {(1, 1)}

and

idI = γZ ◦ z0 :: ∗ 7→ 0 7→ ∗

idI = γZ ◦ z1 :: ∗ 7→ 1 7→ ∗.

Also

δX ◦ x0 :: ∗ 7→ {0, 1} 7→ {(0, 0), (1, 1), (0, 1), (1, 0)},

x0 ◦ x0 :: ∗ 7→ {0, 1} × {0, 1} = {(0, 0), (1, 1), (0, 1), (1, 0)}

and

idI = γX ◦ x0 :: ∗ 7→ {0, 1} 7→ ∗.

Similarly it can be proved that z0 and z1 are unbiased for (II, δX , γX) and x0 is unbiased

for (II, δZ , γZ). Finally γ†X is classical for (II, δZ , γZ) since

δZ ◦ γ†X :: ∗ 7→ 0 7→ {(0, 0)} γ†X × γ
†
X :: ∗ 7→ {(0, 0)}

idI = γZ ◦ γ†X :: ∗ 7→ 0 7→ ∗,

and γ†Z is classical for (II, δX , γX) since

δX ◦ γ†Z :: ∗ 7→ {0, 1} 7→ {(0, 0), (0, 1), (1, 0), (1, 1)} γ†Z × γ
†
Z :: ∗ 7→ {0, 1} × {0, 1}

idI = γX ◦ γ†Z :: ∗ 7→ {0, 1} 7→ ∗.
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The previous theorem states that in FRel the set II represents a system with only two

complementary observables. In FdHilb a standard qubit has a continuum of observables

each with two classical objects and only three complementary observables can exist at

the same time [7]. Hence, FRel with the set II is a more prefect model than a qubit in

FdHilb. We state an important proposition mentioned in [7]:

Proposition 4.5. The two-observable structure {(II, δZ , γZ), (II, δX , γX)} in FRel is rich

enough to simulate quantum teleportation and dense coding protocols.

Proof. See [7].

4.3 Quantum spectra in FRel

Generally in FRel a II-projector-valued spectrum corresponds to relation R ⊆ A ×
(II × A), where A is a finite set, such that the following equations are satisfied (see

Definition 3.12):

R = (idII ×R†) ◦ (nII × idA) ◦ λ†A (4.3.1)

(δ × idA) ◦R = (idII ×R) ◦R (4.3.2)

idA = λA ◦ (γ × idA) ◦R (4.3.3)

for a classical structure (II, δ, γ) in FRel. As shown in the previous section there are two

classical structures in FRel, namely Z = (II, δZ , γZ) and X = (II, δX , γX).

4.3.1 The Z classical structure

Fixing the classical structure (II, δZ , γZ) then II-projector-valued spectra in FRel are

the identity relations:

R0 ⊆ A× (II× A) :: i ∼ (0, i)

R1 ⊆ A× (II× A) :: i ∼ (1, i),
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where A ⊆ N is a finite set with |A| = n. We show that R0 and R1 satisfy equations

(4.3.1), (4.3.2) and (4.3.3)1:

1. II-self-adjointness:

i
R0 - (0, i) i

R1 - (1, i)

(∗, i)

λ†A

?

nII × idA
- {(0, 0, i), (1, 1, i)}

idII ×R†0

6

(∗, i)

λ†A

?

nII × idA
- {(0, 0, i), (1, 1, i)}

idII ×R†1

6

2. II-idempotence:

i
R0 - (0, i) i

R1 - (1, i)

(0, i)

R0

?

δZ × idA
- (0, 0, i)

idII ×R0

?

(1, i)

R1

?

δZ × idA
- (1, 1, i)

idII ×R1

?

3. II-completeness:

i
idA - i i

idA - i

(0, i)

R0

?

γZ × idA
- (∗, i)

λA

6

(1, i)

R1

?

γZ × idA
- (∗, i)

λA

6

Therefore, if A := II then R0 and R1 become:

R0 ⊆ II× (II× II) ::

{
0 ∼ (0, 0)

1 ∼ (0, 1)
R1 ⊆ II× (II× II) ::

{
0 ∼ (1, 0)

1 ∼ (1, 1)

1Here due to associativity we have ((a, b), c) ∼= (a, b, c) ∼= (a, (b, c)) for a, b, c ∈ N.
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Also, δZ ⊆ II × (II × II) is trivially a II-projector-valued spectrum due to Proposition 3.7

and Definition 3.2. However, is not the only one. If we consider:

δ
′

Z ⊆ II× (II× II) ::

{
0 ∼ (1, 0)

1 ∼ (0, 1)

then the equations (4.3.1), (4.3.2) and (4.3.3) are satisfied. Respectively we have:

1. II-self-adjointness:

0
δ
′
Z - (1, 0) 1

δ
′
Z - (0, 1)

(∗, 0)

λ†II

?

nII × idII

- {(0, 0, 0), (1, 1, 0)}

idII × (δ
′
Z)†

6

(∗, 1)

λ†II

?

nII × idII

- {(0, 0, 1), (1, 1, 1)}

idII × (δ
′
Z)†

6

2. II-idempotence:

0
δ
′
Z - (1, 0) 1

δ
′
Z - (0, 1)

(1, 0)

δ
′
Z

?

δZ × idII

- (1, 1, 0)

idII × δ
′
Z

?

(0, 1)

δ
′
Z

?

δZ × idII

- (0, 0, 1)

idII × δ
′
Z

?

3. II-completeness:

0
idII - 0 1

idII - 1

(1, 0)

δ
′
Z

?

γZ × idII

- (∗, 0)

λII

6

(0, 1)

δ
′
Z

?

γZ × idII

- (∗, 1)

λII

6

Summarizing all the above, the relations R0, R1, δZ , δ
′
Z of type II → II × II are II-

projector-valued spectra for the classical structure (II, δZ , γZ). We prove that these are
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the only relations of type II→ II× II.

First of all, the relation

δX ⊆ II× (II× II) ::

{
0 ∼ {(0, 0), (1, 1)}
1 ∼ {(0, 1), (1, 0)}

does not satisfy the equation (4.3.2) since

(δZ × idII) ◦ δX :: 1 7→ {(0, 1), (1, 0)} 7→ {(0, 0, 1), (1, 1, 0)}

and

(idII × δX) ◦ δX :: 1 7→ {(0, 1), (1, 0)} 7→ {(0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 1, 1)}.

We also observe that all five relations arising from δX by permutations fail to satisfy the

equation (4.3.2). Furthermore, if we consider the relation

R ⊆ II× (II× II) ::

{
0 ∼ (0, 0)

1 ∼ {(0, 1), (1, 0)}

the equation (4.3.2) is not satisfied because

(δZ × idII) ◦R :: 1 7→ {(0, 1), (1, 0)} 7→ {(0, 0, 1), (1, 1, 0)}

and

(idII ×R) ◦R :: 1 7→ {(0, 1), (1, 0)} 7→ {(0, 0, 1), (0, 1, 0), (1, 0, 0)}.

Finally it can be shown that all permutations of R do not satisfy equation (4.3.2). Also

the permutations of R0, R1, δZ , δ
′
Z fail to satisfy the required equations as well.

In the case that A := III = {0, 1, 2}, there are eight relations Rk ⊆ III × (II × III),

k ∈ {1, 2, . . . , 8}, namely:

R1 ::


0 ∼ (0, 0)

1 ∼ (0, 1)

2 ∼ (0, 2)

R2 ::


0 ∼ (0, 0)

1 ∼ (0, 1)

2 ∼ (1, 2)

R3 ::


0 ∼ (0, 0)

1 ∼ (1, 1)

2 ∼ (0, 2)

R4 ::


0 ∼ (0, 0)

1 ∼ (1, 1)

2 ∼ (1, 2)

R5 ::


0 ∼ (1, 0)

1 ∼ (0, 1)

2 ∼ (0, 2)

R6 ::


0 ∼ (1, 0)

1 ∼ (0, 1)

2 ∼ (1, 2)
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R7 ::


0 ∼ (1, 0)

1 ∼ (1, 1)

2 ∼ (0, 2)

R8 ::


0 ∼ (1, 0)

1 ∼ (1, 1)

2 ∼ (1, 2)

that satisfy equations (4.3.1), (4.3.2) and (4.3.3) and therefore there are II-projector

valued spectra relative to (II, δZ , γZ). Note that further permutations of Rk can not be

projector-valued spectra.

We can generalize this result, stating that the relations

Rk ⊆ A× (II× A) :: i ∼ (j, i),

where |A| = n, i ∈ {0, 1, . . . , n − 1}, j ∈ {0, 1} and k ∈ {1, . . . , 2n} are projector-valued

spectra relative to the classical structure (II, δZ , γZ).

4.3.2 The X classical structure

Fixing now the classical structure (II, δX , γX) we observe that in opposition to the

classical structure (II, δZ , γZ) the relations

Rk ⊆ A× (II× A) :: i ∼ (j, i),

as stated previously are not projector-valued spectra relative to (II, δX , γX). For example

if A := II then for the relation

R7 ⊆ II× (II× II) ::

{
0 ∼ (1, 0)

1 ∼ (1, 1)

we have that

(δX × idII) ◦R7 :: 0 7→ (1, 0) 7→ {(0, 1, 0), (1, 0, 0)}

but

(idII ×R7) ◦R7 :: 0 7→ (1, 0) 7→ (1, 1, 0).

We restrict our study to A := II. Obviously the relation

δX ⊆ II× (II× II) ::

{
0 ∼ {(0, 0), (1, 1)}
1 ∼ {(1, 0), (0, 1)}
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is a II-projector-valued spectrum for (II, δX , γX). Checking all the permutations of δX only

one satisfies the equations (4.3.1), (4.3.2) and (4.3.3). Analytically the relations arising

by permutations of δX are:

δ
(1)
X ::

{
0 ∼ {(0, 0), (0, 1)}
1 ∼ {(1, 0), (1, 1)}

δ
(2)
X ::

{
0 ∼ {(0, 0), (1, 0)}
1 ∼ {(0, 1), (1, 1)}

δ
(3)
X ::

{
0 ∼ {(0, 1), (1, 0)}
1 ∼ {(0, 0), (1, 1)}

δ
(4)
X ::

{
0 ∼ {(0, 1), (1, 1)}
1 ∼ {(0, 0), (1, 0)}

δ
(5)
X ::

{
0 ∼ {(1, 0), (1, 1)}
1 ∼ {(0, 0), (0, 1)}

All the above relations except δ
(2)
X do not satisfy equation (4.3.3), therefore δX and δ

(2)
X are

the only projector-valued spectra of type II→ II×II relative to (II, δX , γX). We demostrate

that δ
(2)
X is a II-projector-valued spectrum:

1. II-self-adjointness:

0
δ
(2)
X - {(0, 0), (1, 0)} 1

δ
(2)
X - {(0, 1), (1, 1)}

(∗, 0)

λ†II

?

nII × idII

- {(0, 0, 0), (1, 1, 0)}

idII × (δ
(2)
X )†

6

(∗, 1)

λ†II

?

nII × idII

- {(0, 0, 1), (1, 1, 1)}

idII × (δ
(2)
X )†

6

2. II-idempotence:

0
δ
(2)
X - {(0, 0), (1, 0)}

{(0, 0), (1, 0)}

δ
(2)
X

?

δX × idII

- {(0, 0, 0), (1, 1, 0), (0, 1, 0), (1, 0, 0)}

idII × δ(2)
X

?

1
δ
(2)
X - {(0, 1), (1, 1)}

{(0, 1), (1, 1)}

δ
(2)
X

?

δX × idII

- {(0, 0, 1), (1, 1, 1), (0, 1, 1), (1, 0, 1)}

idII × δ(2)
X

?
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3. II-completeness:

0
idII - 0 1

idII - 1

{(0, 0), (1, 0)}

δ
(2)
X

?

γX × idII

- (∗, 0)

λII

6

{(0, 1), (1, 1)}

δ
(2)
X

?

γX × idII

- (∗, 1)

λII

6

4.4 The discrete model Spek

The category Spek (the name is derived by the Spekken’s toy model of categorical

quantum mechanics) is a sub-category of FRel, where we consider the four elements set

IV := {1, 2, 3, 4}.

Definition 4.6. [7] The category Spek consists of objects of the form IV× IV× · · · × IV

and the identity object is I := {∗}. For convenience we assume strictness of associativity

and left and right unit isomorphisms. The morphisms in Spek are generated by relational

composition, cartesian product of relations and relational converse from:

• permutations {σi ⊆ IV × IV}i,

• a copying relation δZ ⊆ IV × (IV × IV) defined by

δZ ::


1 ∼ {(1, 1), (2, 2)}
2 ∼ {(1, 2), (2, 1)}
3 ∼ {(3, 3), (4, 4)}
4 ∼ {(3, 4), (4, 3)}

• and a deleting relation

γZ ⊆ IV × I :: {1, 3} ∼ ∗.
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We observe that the states of type I→ IV in Spek correspond to permutations of γ†Z ,

these are:

z0 :: ∗ ∼ {1, 2} x0 :: ∗ ∼ {1, 3} y0 ::∼ {1, 4}

z1 :: ∗ ∼ {3, 4} x1 :: ∗ ∼ {2, 4} y1 ::∼ {2, 3}.

Here we set z0, z1 for the states that are copied by δZ . Therefore, z0, z1 are classical for the

classical structure (IV, δZ , x
†
0), where x†0 := γZ , and hence x0 is unbiased for (IV, δZ , x

†
0)

as required. However, there are other three distinct states, namely x1, y0, y1 that are also

unbiased for the classical structure (IV, δZ , x
†
0).

As stated in [7] we can obtain further copying relations for each state x1, y0, y1 by

applying various permutations to δZ . Therefore, by setting

δ
′

Z := (σ(12)(34) × σ(12)(34)) ◦ δZ ◦ σ(12)(34)

δ
′′

Z := (σ(34) × σ(34)) ◦ δZ ◦ σ(34)

δ
′′′

Z := (σ(12) × σ(12)) ◦ δZ ◦ σ(12),

we get classical structures (IV, δ
′
Z , x

†
1), (IV, δ

′′
Z , y

†
0) and (IV, δ

′′′
Z , y

†
1). Since all of these struc-

tures share the same classical states as (IV, δZ , x
†
0) - these are z0 and z1 - then we can refer

to this family of four structures as an observable [7]. Hence, we have the observable

Z := {(IV, δZ , x†0), (IV, δ
′

Z , x
†
1), (IV, δ

′′

Z , y
†
0), (IV, δ

′′′

Z , y
†
1)},

where

δ
′

Z ::


1 ∼ {(1, 2), (2, 1)}
2 ∼ {(1, 1), (2, 2)}
3 ∼ {(3, 4), (4, 3)}
4 ∼ {(3, 3), (4, 4)}

x†1 :: {2, 4} ∼ ∗

δ
′′

Z ::


1 ∼ {(1, 1), (2, 2)}
2 ∼ {(1, 2), (2, 1)}
3 ∼ {(3, 4), (4, 3)}
4 ∼ {(3, 3), (4, 4)}

y†0 :: {1, 4} ∼ ∗
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δ
′′′

Z ::


1 ∼ {(1, 2), (2, 1)}
2 ∼ {(1, 1), (2, 2)}
3 ∼ {(3, 3), (4, 4)}
4 ∼ {(3, 4), (4, 3)}

y†1 :: {2, 3} ∼ ∗

Clearly it can be verified that z0, z1 are classical for the observable Z, hence

δZ , δ
′
Z , δ

′′
Z , δ

′′′
Z copy z0, z1 and x0, x1, y0, y1 are unbiased for the observable Z.

Furthermore, it is shown in [7] that new observables can be found by applying per-

mutations to the copying operations of the Z observable. Therefore, setting

δX := (σ(23) × σ(23)) ◦ δZ ◦ σ(23)

we obtain

δX ::


1 ∼ {(1, 1), (3, 3)}
2 ∼ {(2, 2), (4, 4)}
3 ∼ {(1, 3), (3, 1)}
4 ∼ {(2, 4), (4, 2)}

Note that now x0, x1 can be copied by δX hence we can form the observable X:

X := {(IV, δX , z†0), (IV, δ
′

X , z
†
1), (IV, δ

′′

X , y
†
0), (IV, δ

′′′

X , y
†
1)},

for which x0, x1 are classical and z0, z1, y0, y1 are unbiased. Similarly by setting

δY := (σ(24) × σ(24)) ◦ δZ ◦ σ(24)

we obtain

δY ::


1 ∼ {(1, 1), (4, 4)}
2 ∼ {(3, 2), (2, 3)}
3 ∼ {(2, 2), (3, 3)}
4 ∼ {(1, 4), (4, 1)}

and hence, we can form the observable Y :

Y := {(IV, δY , x†0), (IV, δ
′

Y , x
†
1), (IV, δ

′′

Y , z
†
0), (IV, δ

′′′

Y , z
†
1)},

for which y0, y1 are classical and x0, x1, z0, z1 are unbiased. Further permutations of the

copying relations yield no more observables.
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Definition 4.7. [7] Two observables A and B are called complementary if there exist

classical structures (X, δA, γA) ∈ A and (X, δB, γB) ∈ B which are complementary.

Based on the previous definition we have the following theorem:

Theorem 4.8. The observables X,Z, Y are mutually complementary.

Proof. As seen before classical structures of observable Z are complementary with the

ones of observables X, Y since

• z0, z1 are classical for the observable Z and unbiased for observables X, Y ,

• x0, x1 and y0, y1 are classical for the observables X, Y , respectively, and unbiased

for observable Z.

Similarly observable X is complementary with observables Z, Y and observable Y is com-

plementary with observables Z,X.

Also we can form “bell-states”:

nIV := δZ ◦ x†0 ⊆ I× (IV × IV) :: ∗ ∼ {(1, 1), (2, 2), (3, 3), (4, 4)}

and the requirements for compact closure are inherited form FRel, therefore Spek is a

†-compact closed category [7].

4.5 Quantum spectra in Spek

In Spek a IV-projector-valued spectrum corresponds to relations R ⊆ A× (IV×A),

where A is a finite set and R satisfies equations (4.3.1), (4.3.2) and (4.3.3). We restrict

set A, such that A := IV.
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It is clear that for every classical structure in each of the three observables Z,X, Y

the corresponding copying relation is a IV-projector-valued spectrum. However, it can be

shown that for the classical structure (IV, δZ , x
†
0) the copying operations δ

′
Z , δ

′′
Z , δ

′′′
Z fail to

satisfy equation (4.3.3) and hence there are not IV-projector-valued spectra with respect

to (IV, δZ , x
†
0). For example we have for δ

′′′
Z :

λIV ◦ (x†0 × idIV) ◦ δ′′′Z :: {2, 3} 7→ {(2, 2), (1, 1), (3, 3), (4, 4)} 7→ {(∗, 1), (∗, 3)} 7→ {1, 3}

so

λIV ◦ (x†0 × idIV) ◦ δ′′′Z 6= idIV.

Similarly all copying relations of observables X and Y are not IV-projector-valued spectra

for (IV, δZ , x
†
0). Likewise, this stands for every classical structure and for all three observ-

ables, hence for each classical structure only its copying relation is a IV-projector-valued

spectrum.

However, we can apply different permutations on δZ yielding other relations R ⊆
IV × (IV × IV). For example consider the relation:

δ := (idIV × σ−1
(23)) ◦ δZ ◦ σ(23) ::


1 ∼ {(1, 1), (2, 3)}
2 ∼ {(3, 2), (4, 4)}
3 ∼ {(1, 3), (2, 1)}
4 ∼ {(3, 4), (4, 2)}

We show that δ satisfies eqautions (4.3.1), (4.3.2) and (4.3.3):

1. IV-self-adjointness:

1
δ

- {(1, 1), (2, 3)}

(∗, 1)

λ†IV

?

nIV × idIV

- {(1, 1, 1), (2, 2, 1), (3, 3, 1)(4, 4, 1)}

idIV × δ†
6
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2
δ

- {(3, 2), (4, 4)}

(∗, 2)

λ†IV

?

nIV × idIV

- {(1, 1, 2), (2, 2, 2), (3, 3, 2)(4, 4, 2)}

idIV × δ†
6

3
δ

- {(1, 3), (2, 1)}

(∗, 3)

λ†IV

?

nIV × idIV

- {(1, 1, 3), (2, 2, 3), (3, 3, 3)(4, 4, 3)}

idIV × δ†
6

4
δ

- {(3, 4), (4, 2)}

(∗, 4)

λ†IV

?

nIV × idIV

- {(1, 1, 4), (2, 2, 4), (3, 3, 4)(4, 4, 4)}

idIV × δ†
6

2. IV-idempotence:

1
δ

- {(1, 1), (2, 3)}

{(1, 1), (2, 3)}

δ

?

δZ × idIV

- {(1, 1, 1), (1, 2, 3), (2, 1, 3), (2, 2, 1)}

idIV × δ

?

2
δ

- {(3, 2), (4, 4)}

{(3, 2), (4, 4)}

δ

?

δZ × idIV

- {(3, 3, 2), (4, 4, 2), (3, 4, 4), (4, 3, 4)}

idIV × δ

?
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3
δ

- {(1, 3), (2, 1)}

{(1, 3), (2, 1)}

δ

?

δZ × idIV

- {(1, 1, 3), (2, 2, 3), (1, 2, 1), (2, 1, 1)}

idIV × δ

?

4
δ

- {(3, 4), (4, 2)}

{(3, 4), (4, 2)}

δ

?

δZ × idIV

- {(3, 3, 4), (4, 4, 4), (3, 4, 2), (4, 3, 2)}

idIV × δ

?

3. IV-completeness:

1
idIV - 1 2

idIV - 2

{(1, 1), (2, 3)}

δ

?

x†0 × idIV

- (∗, 1)

λIV

6

{(3, 2), (4, 4)}

δ

?

x†0 × idIV

- (∗, 2)

λIV

6

3
idIV - 3 4

idIV - 4

{(1, 3), (2, 1)}

δ

?

x†0 × idIV

- (∗, 3)

λIV

6

{(3, 4), (4, 2)}

δ

?

x†0 × idIV

- (∗, 4)

λIV

6

Generally, we observe that if R ⊆ A × (X × A) is an X-projector valued spectrum,

then by applying permutations {σi ⊆ A× A}i on the quantum object A we get

R
′
:= (idX × σ−1

i ) ◦R ◦ σi.
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In a picture R
′

is:

It can be proved that R
′

is also an X-projector valued spectrum. We prove this

statement graphically: (note that X-self-adjointness is established since σi is unitary)

1. X-self-adjointness:

2. X-idempotence:
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3. X-completeness:

Therefore, for relations R ⊆ IV× (IV× IV) and classical structure (IV, δZ , x
†
0) we have

that

δi := (idIV × σ−1
i ) ◦ δZ ◦ σi,

are IV-projector valued spectra for (IV, δZ , x
†
0), where {σi ⊆ IV × IV}i are permutations

over the set IV. So we have 24 different IV-projector valued spectra relative to (IV, δZ , x
†
0).

Generalizing the above, for each classical structure in the three observables Z,X, Y ,

we have 24 different IV-projector valued spectra in each case.
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Chapter 5

State transfer protocol

With the framework of †-symmetric monoidal categories with classical structures we

are now able to expose and explain certain quantum protocols. In this dissertation we

confine our interest to the state transfer protocol [6] and we study its application on the

discrete models FRel and Spek. We begin by introducing some concepts necessary for

the description of the protocol.

Definition 5.1. [6] Given two classical structures (A, δA, γA), (B, δB, γB) then a mor-

phism f : A→ B is a partial map if

δB ◦ f = (f ⊗ f) ◦ δA,

i.e. in a picture:

Furthermore morphism f : A→ B is a total map if also

γB ◦ f = γA,

which is depicted as:
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Finally, f : A→ A is a permutation, if in addition to the previous, f is unitary.

Definition 5.2. [6] Given a classical structure (A, δA, γA), then a unitary morphism

f : A→ A is a phase map if

δA ◦ f = (f ⊗ idA) ◦ δA = (idA ⊗ f) ◦ δA,

and it is depicted as:

Firstly, we describe the state transfer in FdHilb. Unlike the quantum teleportation

protocol the quantum state transfer protocol involves only two qubits. At the beginning

the first qubit is in an unknown state |ψ〉 and the other is in the state |+〉 = 1√
2
(|0〉+ |1〉).

Then the two qubits are measured according to the a partial measurement described by

the projectors

Πi = (idQ ⊗ fi) ◦ δ ◦ δ† ◦ (idQ ⊗ f †i ) i ∈ {0, 1},

where morphisms fi, i ∈ {0, 1} are permutations. Hence, we have a degenerate mea-

surement. After a 1-qubit measurement is applied on the first qubit described by the

projector

Pj = gj ◦ γ† ◦ γ ◦ g†j j ∈ {0, 1},

where morphisms gj, j ∈ {0, 1} are phase maps. At the end we apply a correction

Uij = gj ◦ f †i i, j ∈ {0, 1},
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on the second qubit, resulting the initial state |ψ〉 as an outcome.

In our graphical language of †-symmetric monoidal categories with classical structures

the state transfer protocol can be depicted as:

Based an the properties of classical structures, permutations and phase maps, we

provide a diagrammatic proof of state transfer [7]:
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Remark: Note that in FdHilb the above equations describe the state transfer with

(Q, δ, γ) being the classical structure, in the standard computational basis {|0〉, |1〉} of

Q := C⊕ C, where

δ : Q → Q⊗Q :: |i〉 7→ |ii〉

γ : Q → C :: |i〉 7→ 1.

Also the permutation maps fi, i ∈ {0, 1} correspond to the matrix operators

Xi =

{
I, i = 0

X − Pauli, i = 1

and the phase maps gj, j ∈ {0, 1} to

Zj =

{
I, j = 0

Z − Pauli, j = 1.

5.1 State transfer in FRel

In order to describe the state transfer protocol in FRel we need to find permutations

fi, i ∈ {0, 1} and phase maps gj, j ∈ {0, 1} for each classical structure (II, δZ , γZ) and

(II, δX , γX). Therefore we are looking for relations {σi ⊆ II× II}i and these are only two,

the identity relation e = (0)(1) and σ1 = (01).

Fixing the classical structure (II, δZ , γZ) we have that σ1 is a permutation since

δZ ◦ σ1 ::

{
0 7→ 1 7→ (1, 1)

1 7→ 0 7→ (0, 0)

(σ1 × σ1) ◦ δZ ::

{
0 7→ (0, 0) 7→ (1, 1)

1 7→ (1, 1) 7→ (0, 0)

and

γZ ◦ σ1 = γZ :: {0, 1} 7→ ∗.
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Obviously e is both a permutation and a phase map, but σ1 is not a phase map, since

δZ ◦ σ1 = {(0, (1, 1)), (1, (0, 0))} 6= {(0, (0, 1)), (1, (1, 0))} = (idII × σ1) ◦ δZ .

Similarly for the classical structure (II, δX , γX), σ1 is a phase map:

δX ◦ σ1 = (idII × σ1) ◦ δX = (σ1 × idII) ◦ δX =

{(
0,
{

(0, 1), (1, 0)
})
,
(

1,
{

(0, 0), (1, 1)
})}

,

but σ1 is not a permutation because

δX ◦ σ1 :: 0 7→ 1 7→ {(0, 1), (1, 0)}

and

(σ1 × σ1) ◦ δX :: 0 7→ {(0, 0), (1, 1)} 7→ {(1, 1), (0, 0)}.

To conclude, in both classical structures (II, δZ , γZ) and (II, δX , γX) in FRel we do

not have the degenerate measurements required for the state transfer protocol, so this

quantum protocol is not stimulated in FRel.

5.2 State transfer in Spek

Working in the same way as in section 5.1 we search for relations {σi ⊆ IV× IV}i for

each observable Z,X, Y as candidates for permutations fi, i ∈ {0, 1} and phase maps gj,

j ∈ {0, 1}.
Having the classical structure (IV, δZ , x

†
0) we observe that the relations e =

(1)(2)(3)(4), σ1 = (13)(24) and e = (1)(2)(3)(4), σ2 = (12)(34) are respectively per-

mutations and phase maps with respect to (IV, δZ , x
†
0). We demonstrate this explicitly:

δZ ◦ σ1 = (σ1 × σ1) ◦ δZ =

{(
1,
{

(3, 3), (4, 4)
})
,
(

2,
{

(3, 4), (4, 3)
})
,(

3,
{

(1, 1), (2, 2)
})
,
(

4,
{

(1, 2), (2, 1)
})}
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and

x†0 ◦ σ1 = x†0 = {({1, 3}, ∗)}.

For σ2 = (12)(34) we have:

δZ ◦ σ2 = (idIV × σ2) ◦ δZ = (σ2 × idIV) ◦ δZ =

{(
1,
{

(1, 2), (2, 1)
})
,
(

2,
{

(1, 1), (2, 2)
})
,(

3,
{

(3, 4), (4, 3)
})
,
(

4, {(3, 3), (4, 4)
})}

.

Trivially e is both a permutation and a phase map. One can easily verify that the same

permutations and phase maps apply for the classical structure (IV, δ
′
Z , x

†
1). However, these

do not apply for the classical structures (IV, δ
′′
Z , y

†
0) and (IV, δ

′′′
Z , y

†
1). For example, we have

for (IV, δ
′′
Z , y

†
0) that σ1 is not a permutation because

δ
′′

Z ◦ σ1 :: 1 7→ 3 7→ {(3, 4), (4, 3)}

but

(σ1 × σ1) ◦ δ
′′

Z :: 1 7→ {(1, 1), (2, 2)} 7→ {(3, 3), (4, 4)}.

However we can prove that for classical structures (IV, δ
′′
Z , y

†
0) and (IV, δ

′′′
Z , y

†
1) the

relation σ3 = (14)(23) is a permutation. For example for (IV, δ
′′
Z , y

†
0) we have:

δ
′′

Z ◦ σ3 = (σ3 × σ3) ◦ δ
′′

Z =

{(
1,
{

(4, 4), (3, 3)
})
,
(

2,
{

(3, 4), (4, 3)
})
,(

3,
{

(1, 2), (2, 1)
})
,
(

4,
{

(1, 1), (2, 2)
})}

and

y†0 ◦ σ3 = y†0 = {({1, 4}, ∗)}.

The relations e and (12)(34) are phase maps for classical structures (IV, δ
′′
Z , y

†
0) and

(IV, δ
′′′
Z , y

†
1).

Therefore for observable Z we have that the phase maps are e and (12)(34). For the

classical structures (IV, δZ , x
†
0) and (IV, δ

′
Z , x

†
1) the permutations are e and (13)(24) and

for (IV, δ
′′
Z , y

†
0) and (IV, δ

′′′
Z , y

†
1) the permutations are e and (14)(23).

In the same way the phase maps for observable X are the relations e and (13)(24).

For the classical structures (IV, δX , z
†
0) and (IV, δ

′
X , z

†
1) the permutations are the relations
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e and (12)(34) and for classical structures (IV, δ
′′
X , y

†
0) and (IV, δ

′′′
X , y

†
1) the permutations

are e and (14)(23).

Similarly for observable Y phase maps are the relations e and (14)(23). For the

classical structures (IV, δY , x
†
0) and (IV, δ

′
Y , x

†
1) the permutations are the relations e and

(13)(24) and for classical structures (IV, δ
′′
Y , z

†
0) and (IV, δ

′′′
Y , z

†
1) the permutations are e

and (12)(34). All the results are demonstrated in the following table:

Observable Classical structures Permutations Phase maps

Z

(IV, δZ , x
†
0) e

(IV, δ
′
Z , x

†
1) (13)(24) e

(IV, δ
′′
Z , y

†
0) e (12)(34)

(IV, δ
′′′
Z , y

†
1) (14)(23)

X

(IV, δX , z
†
0) e

(IV, δ
′
X , z

†
1) (12)(34) e

(IV, δ
′′
X , y

†
0) e (13)(24)

(IV, δ
′′′
X , y

†
1) (14)(23)

Y

(IV, δY , x
†
0) e

(IV, δ
′
Y , x

†
1) (13)(24) e

(IV, δ
′′
Y , z

†
0) e (14)(23)

(IV, δ
′′′
Y , z

†
1) (12)(34)

Taking everything into account we proved that, in opposition to FRel, the quantum

state transfer protocol can be stimulated in Spek.
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Chapter 6

Conclusion

We conclude by summing up the main points we have covered about the discrete

models FRel and Spek, outlining the results and suggesting topics for future work.

6.1 Discussion

The main aim of this dissertation is to present discrete models of categorical quantum

computation. The discrete models that are illustrated are FRel and Spek. Categorical

quantum computation semantics are based on the †-compact closed categories which are

introduced in Chapter 1. Furthermore, the notion of classical structure is needed in or-

der to provide a full description of the discrete models FRel and Spek and Chapter 2

presents this issue explicitly. In this study quantum measurements are considered to be

projector-valued spectra with respect to a classical structure, i.e. we use an “approxi-

mate” definition. This is also shown in Chapter 2.

In Chapter 3, from the description of discrete models FRel and Spek it is denoted

that features of categorical quantum computation and mechanics can be presented not

only in FdHilb, but also in any †-symmetric monoidal category that has enough com-

plementary classical structures. As mentioned in [5] this changes the current approach

of establishing complementary classical structures for a †-symmetric monoidal category.
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Until now †-symmetric monoidal categories with biproducts [1] were considered to pro-

vide all †-symmetric monoidal categories with enough complementary classical structures

arising from the matrix calculus [5]. However, Spek is not a biproduct category and in

FRel one of the two complementary observables do not arise from biproduct structure,

even though FRel is a biproduct category. It is clear that classical structures equip a

certain †-symmetric monoidal category with enough complementary classical structures

and this enables the description of many features of quantum mechanics.

In FRel the existence of the two complementary structures is sufficient to provide

us with a simpler and smaller quantum model than that of a qubit in FdHilb. As ex-

plained in [7] this occurs because of the matrix representation of relations in FRel and

the fact that classical structures in FdHilb can be described by matrices. Actually, the

matrix representation of the copying and deleting relations of the two classical structures

(II, δZ , γZ) and (II, δX , γX) in FRel is exactly the same with that of the morphisms in

FdHilb that copy the Z-basis and the X-basis, respectively. Thus, there is a one-to-one

correspondence between (II, δZ , γZ) in FRel and (Q, δZ :: |i〉 7→ |ii〉, γZ :: |i〉 7→ 1) in

FdHilb and also between (II, δX , γX) in FRel and (Q, δX :: |j〉 7→ |jj〉, γX :: |j〉 7→ 1) in

FdHilb, where i ∈ {0, 1} and j ∈ {+,−}.

Furthermore, we have seen that in FRel we have four II-projector-valued spectra of

type II→ II× II relative to (II, δZ , γZ). What it is interesting is that δX and δ
(2)
X , as defined

in Section 4.3.2, are II-projector-valued spectra in FRel relative to (II, δX , γX), but their

equivalent morphisms in FdHilb are not. To demonstrate this explicitly notice that δX

corresponds to |0〉 ⊗ I + |1〉 ⊗ X and δ
(2)
X to |0〉 ⊗ I + |1〉 ⊗ I in the standard basis of

FdHilb, where I is the identity matrix and X the X-Pauli matrix. Both fail to satisfy

equation (4.3.3), since

|0〉 ⊗ I + |1〉 ⊗ I
γZ⊗idQ- 1⊗ I + 1⊗ I = 2I 6= I

and

|0〉 ⊗ I + |1〉 ⊗X
γZ⊗idQ- 1⊗ I + 1⊗X = I + X 6= I,

where γZ : Q → C :: |i〉 7→ 1 for i ∈ {0, 1}.

Regarding the discrete model Spek, as it is shown in Section 4.4, it comes with three

complementary observables enabling a full description of the quantum phenomena that
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are experienced in FdHilb. In [7] it is stated that there is no connection with biproducts

since the classical structures on set IV are not inherited from FRel. Also, it is proved

that for each classical structure in Spek we have 24 different IV-projector-valued spectra

arising by permutations of the corresponding copying relation (see Section 4.5). However,

in every observable the copying relations of classical structures are not measurements

relative to other classical structures of the observable. Extending the table presented

in [7] we have the following results, where in FdHilb the Z-basis is {|0〉, |1〉}, the X-basis

is {|+〉, |−〉} and the Y -basis is {|i〉, | − i〉}:

FdHilb
Matrix

FRel Spek
representation

|0〉
classical for Z

(
1

0

)
z0

classical for Z
z0

classical for Z

unbiased for X,Y unbiased for X unbiased for X,Y

|1〉
classical for Z

(
0

1

)
z1

classical for Z
z1

classical for Z

unbiased for X,Y unbiased for X unbiased for X,Y

|+〉
classical for X

(
1

1

)
x0

classical for X
x0

classical for X

unbiased for Z, Y unbiased for Z unbiased for Z, Y

|−〉
classical for X

(
1

−1

)
none x1

classical for X

unbiased for Z, Y unbiased for Z, Y

|i〉
classical for Y

(
1

i

)
none y0

classical for Y

unbiased for Z,X unbiased for Z,X

| − i〉
classical for Y

(
1

−i

)
none y1

classical for Y

unbiased for Z,X unbiased for Z,X

Finally, concerning the state transfer protocol we have shown in Chapter 5 that is not

stimulated in FRel, but only in Spek. This is because stage transfer, while it requires

less qubits than teleportation it needs more structural resources, i.e. the morphisms fi

and gj as stated in Chapter 5 have to be permutations and phase maps respectively.

We notice that for every observable in Spek these requirements are met. Hence, we can

perform the protocol in Spek. On the other hand, in FRel this is not possible because the

lack of negative and complex numbers prevents the generation of phases for (II, δZ , γZ)

and permutations for (II, δX , γX). However, in FRel as Proposition 4.5 demonstrates

we can stimulate quantum teleportation. As presented in [7] this is because quantum

teleportation is based on the existence of a “Bell-basis”, i.e. a structure (A,Bell : A⊗A→
B) relative to a basis structure (B, δ, γ). Also, in [7] it is proved that the complementary
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observables (II, δZ , γZ) and (II, δX , γX) are sufficient to construct such a structure. It is

noteworthy, that while quantum teleportation relies on the existence of a “Bell-basis”,

that is in compact structure only, this does not happen in the state transfer protocol.

The basic resource for state transfer is the classical structure, that is why this protocol is

not present in FRel.

6.2 Future work

The study of discrete models in categorical quantum computation is obviously an im-

portant aspect of quantum computer science. The examination of discrete models allows

a better understanding of the mathematical structures that are essential in describing the

various phenomena of quantum mechanics. Therefore, we can clarify which mathematical

features can describe and how, certain physical features. Moreover, discrete models have

important computer science applications such as checking technics. In that sense if a

property is violated in the discrete model then it can not hold in the abstract †-compact

closed category. Hence, further investication of these discrete models is needed to expose

their full capabilities.

Also, future work may involve a more abstract description of quantum measurement

in discrete models as well as the investigation of other models, for example Spek model

over the 4n × 4m matrices in Z2. Finally, the connection of Spek with Spekken’s toy

theory [19, 20], already started in [7], worths more investigation. Possible topic could

be a detailed description of the connection between Spek and the toy theory and the

interpretation of the results following from toy theory in a categorical framework.
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