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This thesis details a class of partial orders on the space of probabil-
ity distributions and the space of density operators which capture
the idea of information content. Some links to domain theory and
computational linguistics are also discussed. Chapter 1 details some
useful theorems from order theory. In Chapter 2 we define a notion of
an information ordering on the space of probability distributions and
see that this gives rise to a large class of orderings. In Chapter 3 we
extend the idea of an information ordering to the space of density op-
erators and in particular look at the maximum eigenvalue order. We
will discuss whether this order might be unique given certain restric-
tions. In Chapter 4 we discuss a possible application in distributional
language models, namely in the study of entailment and disambigua-
tion.
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I N T R O D U C T I O N

One of the most fundamental ideas in mathematics (if not the most)
is that of ordering objects. Even before you can count numbers, you
have to be able to say which number is bigger than another (idea
stolen from [9]).

One of the most fundamental ideas in science (if not the most) is
that of information. Science is ultimately about the pursuit of more
accurate knowledge about the world and this knowledge is gained
somehow via information transfer.

Combining these two fundamental idea’s then gives rise to a nat-
ural question: what kind of order structure exists with relation to
information content?

To start answering this question we have to precisely define what
we mean by ’order structure’ and ’information content’. The order
structure we will take to be a partial order, some properties of which
we will look at in Chapter 1. Information content we will take to be
a collection of certain properties of a state an agent can be in. That is:
certain states are more informative than others. The agent has a pref-
erence of being in the more informative state. The precise question
we wish to answer in this thesis will then be: is there a natural choice
of partial order on the space of states (either classical or quantum)
that orders the states according to their information content?

Note that we haven’t actually defined yet what we mean by infor-
mation content. We will actually not give a complete definition of
that in this thesis. We will skirt the issue by specifying some minimal
set of properties that a notion of information content should satisfy
in Chapter 2, and look at what kind of partial orders are compatible
with these properties. An exact definition of information content is
left as an exercise to the reader.

In classical physics, a state can be represented by a probability dis-
tribution over the different definite (pure) states a system can be in.
A partial order over classical states will thus be a partial order on
the space of probability distributions. In a similar vein in quantum
physics a state can be represented by a density matrix. We will be
looking at classical states (probability distributions) in Chapter 2, and
at quantum states (density matrices) in Chapter 3.

A possible application of this theory is in computation. When we
want to know if a certain computation is producing valuable output
we might want to check whether the information content of the state
the process is in is actually increasing or not. A powerful way to study
the behaviour of processes is by using a special kind of partial order
called a domain. For this reason we will also show properties related
to domain theory. Another application is in computational linguistics.
Some concepts in language are related to the information content
present in words. This is studied in detail in Chapter 4.

1





1
O R D E R I N G S

1.1 definitions

We’ll start with the basic definitions related to orders.

definition 1 .1 .1 : A preorder v on a set P is a binary relation which
is

• Reflexive: ∀x ∈ P : x v x.

• Transitive: ∀x,y,z ∈ P : x v y and y v z =⇒ x v z.

A partial order is a preorder that is also antisymmetric:

• if x v y and y v x then x = y.

A set which has a partial order defined on it is called a poset and
is denoted as (P,v) or just as P when it is clear which partial
order we are referring to.

definition 1 .1 .2 : For an element x in a poset (P,v) we define the
upperset of x as ↑ x = {y ∈ P ; xv y} and conversely the downset
of x as ↓ x = {z ∈ P ; z v x}.

definition 1 .1 .3 : Let S ⊆ P be a subset of a poset. The join (or
supremum) of S if it exists is the smallest upper bound of S and
is denoted as ∨S. Conversely the meet (or infinum) of S if it exists
is the largest lower bound of S and is denoted as ∧S.

So if the meet and join of S exist we have for all s ∈ S s v ∨S (∨S is
an upperbound) and for all p ∈ P that are upperbounds of S ∨S v p
(∨S is minimal), and the same with the directions reversed for ∧S.

A specific kind of particularly nice type of poset is a domain. In
order to define what a domain is we need some further definitions.

definition 1 .1 .4 : A subset S ⊆ P of a poset P is called (upwards)
directed iff for all x,y∈ S there is a z∈ S such that xv z and yv z.
A particular kind of directed subset is an increasing sequence.
This is a set of elements (ai)i∈N such that ai v aj for i ≤ j.

definition 1 .1 .5 : For x,y ∈ P we define x� y iff for all directed
subsets S ⊆ P with existing supremum we have that when y v
∨S then there exists an s ∈ S such that x v s. We call � the
approximation relation and say that x approximates y. We denote
Approx(y) = {x ∈ P ; x� y}. We call the poset P continuous iff
Approx(y) is directed with supremum y, for all y ∈ P.

definition 1 .1 .6 : If all directed subsets of a poset P have a join
we call P directed complete and say that P is a directed complete
poset which we will abbreviate to dcpo.

3



4 orderings

definition 1 .1 .7 : A poset P is a domain if it is a dcpo and continu-
ous.

Since we will often be talking about different partial orders on the
same space, we will often say that a partial order itself is a dcpo/do-
main when it turns the underlying set into a dcpo/domain.

Domains are spaces that allow a natural way to talk about con-
tinuous approximation of elements[1]. This is why they are used
when talking about for instance formal semantics of programming
languages such as in [25]. We will not specifically use the theory of
domains, but we will note it when certain partial orders have a dcpo
or domain structure.

When talking about mathematical structures we are of course inter-
ested in the structure preserving maps.

definition 1 .1 .8 : A map f : (S,vS)→ (P,vP) between posets (or
preorders) is called monotone if for all a,b ∈ S with a vS b we
have f (a) vP f (b). The map is called Scott-continuous iff it pre-
serves all directed joins. That is, if we have a directed subset of
S called D whose join exists we have ∨ f (D) = f (∨D).

The relevant morphisms for posets are monotone maps, and for dcpo’s
they are Scott-continuous maps. Note that Scott-continuous maps are
always monotone. If a monotone map f is bijective and its inverse is
also monotone then f is called an order isomorphism and S and P are
called order isomorphic.

definition 1 .1 .9 : Let f : (S,vS) → (P,vP) be a monotone map
from a preordered set S to a poset P. We call f strict monotone
iff for all a,b ∈ S with a v b and f (a) = f (b) then a = b. If f
is furthermore Scott-continuous and P a dcpo then we call f a
measurement.

Note that if S is a preorder and it allows a strict monotone map to
a poset, then S is a partial order. Because a vS b implies f (a) vP f (b)
and b vS a implies f (b) vP f (a), and since vP is antisymmetric we
have f (a) = f (b) which by strictness implies a = b so that vS is also
antisymmetric. Any injective monotone map is also strict monotone,
so strict monotonicity can be seen as a generalisation of injectivity.

1.2 some examples

Partial orders occur everywhere in mathematics, so we could list hun-
dreds of examples, but a few will hopefully suffice.

example 1 .2 .1 : For any set X the powerset P(X) is a poset with the
partial order given by inclusion. The maximal element is X and
the minimal element is the empty set. P(X) is in fact a complete
lattice: all joins and meets exist and are given respectively by the
union of the sets, and the intersection of the sets.
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example 1 .2 .2 : The real line R is a poset with x v y iff x ≤ y. In
fact, it is totally ordered: for all x 6= y in R we have either x v y
or y v x. R is also a lattice with the join and meet of finite
sets given by the maximal and minimal elements of the set. For
any poset (P,v) we denote the dual order as (P∗,v∗), which is
given by xv∗ y iff yv x. Let [0,∞)∗ be the restriction of R to the
positive reals with the reversed order. The maximal element is 0

and any directed set is an decreasing sequence in R bounded by
0, so the supremum is well defined. So [0,∞)∗ contains all joins
of directed sets, so it is a dcpo. We furthermore have x� y iff
y < x which means that it is continuous, so [0,∞)∗ is a domain.

example 1 .2 .3 : For a locally compact space X its upper space is
given by

UX = {K ⊆ X ; ∅ 6= K compact}.

When equipped with the reversed inclusion order: A v B iff
B ⊆ A it is a continuous dcpo with the join of a directed sub-
set given by the intersection (which is again a compact set, and
garantueed non-empty because of directedness) and A� B iff
B⊆int(A), where int(A) denotes the interior of a set. The maxi-
mal elements are the singletons, and UX has a minimal element
if and only if X is compact, in which case X is the minimal ele-
ment.

If X is compact then UX is compact, and if X is a compact metric
space then UX is also a compact metric space with the metric given
by

dUX(A, B) = max

{
sup
a∈A
{dX(a, B)}, sup

b∈B
{dX(A,b)}

}
.

1.3 proving directed completeness

There are some general methods to show that a partial order is di-
rected complete. A useful one was given in [17, Theorem 2.2.1]:

theorem 1 .3 .1 : Given a poset (P,v) and a map µ : P→ [0,∞)∗ that
is strict monotone and preserves the joins of directed sequences
we have the following:

• P is a dcpo.

• µ is Scott continuous

• Every directed subset S⊆ P contains an increasing sequence
whose supremum is ∨S.

• For all x,y ∈ P, x� y iff for all increasing sequences (ai)

with y v ∨ai then there is an n such that x v an.

• For all x ∈ P Approx(x) is directed with supremum x if
and only if it contains an increasing sequence with supre-
mum x.
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In short, such a map µ makes sure P is a dcpo and that wherever
you normally have to work with a directed set you can instead sim-
plify to working with an increasing sequence.

We will now show that a certain class of topological posets has the
same sort of properties. Results very similar to these can be found
in [13, Chapter VI] although the results proven here are sometimes
slightly more general. We also use different terminology1.

definition 1 .3 .2 : Let X be a Haussdorff topological space. It is
called first countable if it admits a countable neighbourhood ba-
sis. It is called separable if it contains a countable dense subset,
and it is called sequentially compact iff any sequence contains a
convergent subsequence.

X being Haussdorf means that limits of nets and sequences are unique
when they exist. First countable means that the topology can be un-
derstood in terms of sequences, instead of the more general nets. Sep-
arable ensures that the space isn’t too large. Sequentially compact is
a different notion of compactness. For metric spaces it is equivalent
to the requirement of compactness.

definition 1 .3 .3 : Let (X,v) be a poset with X first countable Hauss-
dorff. We call v upwards small iff for every x ∈ X, ↑ x is sequen-
tially compact and ↓ x is closed. Dually, it is called downwards
small if ↓ x is sequentially compact and ↑ x is closed. It is called
small iff it is downwards small and upwards small.

An upwards small poset has uppersets that are bounded in a cer-
tain sense. Indeed for X a subset of Euclidean space, sequentially
compact is equivalent to bounded and closed. Note that a sequen-
tially compact subspace is always closed. Closedness of uppersets (or
downsets) means that if we have a convergent sequence an → a and
x v an (or an v x) for all n, then x v a (or a v x). Note that if X is
sequentially compact, then a poset is upwards small if and only if it
is downwards small. This definition als works for preorders, since the
required properties have nothing to do with antisymmetry, but when
not otherwise specified we will assume v to be a partial order. Up-
wards small partial orders turn out to interact really nicely with the
topology. They are a special case of what in the literature is known as
a pospace: a topological poset (X,v) where the graph of v is a closed
subset of X2.

lemma 1 .3 .4 : Let (X,v) be a first countable Haussdorff space with
v upwards small, then

• All increasing sequences have a join.

• All increasing sequences converge.

• the join of an increasing sequence is equal to its limit.

1 The proofs given here are original because the author wasn’t aware that these state-
ments were already proven. Since the source mentioned is behind a paywall, the
proofs here can be seen as a public service.
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Proof. Let (xi) be an increasing sequence in X. We have x1v xi for all i,
so xi ∈↑ x1. The sequence lies in ↑ x1 which is sequentially compact, so
there exists a convergent subsequence xmj → x. Since we have xmj v
xmk for j ≤ k, we can take the limit on the right side and use the
closedness of the uppersets to get xmj v x. So x is an upper bound of
(xmj). Suppose y is also an upper bound. Then we get xmj v y for all
j. By the closedness of lowersets we get x v y, so that x is the least
upper bound of (xmj). Now, since for any xi we can find a j such that
xi v xmj we see that x is also an upper bound of xi. Any upper bound
of (xi) will also be an upper bound of (xmj), so that x is the least
upper bound of (xi). By the same argument as above, any convergent
subsequence of (xi) will converge to a least upper bound of (xi). A
least upper bound is unique, so they all converge to x. Therefore (xi)

is convergent and we have

∨xi = lim
i→∞

xi

lemma 1 .3 .5 : Let (X,v) be a first countable Haussdorff space with
v upwards small and let S be a directed set. S denotes the clo-
sure of S. Then

• S is directed.

• S has a least upper bound if and only if S has a least upper
bound.

• If either S or S has a least upper bound, then ∨S = ∨S.

Proof. An element in S is the limit of a sequence in S, so take si→ s∈ S
and ti → t ∈ S, where s and t are arbitrary elements in S. Because of
the directedness of S we can find zi such that si, ti v zi. Let z′1 = z1

and let z′i be chosen so that it is bigger than zi and z′i−1, then (z′i) is
an increasing sequence. By the lemma above it is convergent, so that
the limit/join z′i → z lies in S and we have si v z for all i. Because
downsets are closed we then get s v z, and the same for t v z. So for
any s, t ∈ S we can find z ∈ S such that s, tv z. So if S is directed, then
S is directed as well.

Suppose S has a join: ∨S = x. Then S ⊆↓ x. Taking the closure on
both sides and using that downsets are closed we get S ⊆↓ x, so x is
an upper bound of S. Suppose y is another upper bound of S, then
we get S ⊆ S ⊆↓ y, so that y is an upper bound of S as well, so that
y v x. The other direction works similarly.

If we also require that X is separable we can do a bit more than
this. We get an analog of Theorem 1.3.1:

theorem 1 .3 .6 : Let (X,v) be a first countable separable Hauss-
dorff space with v upwards small, then

1. X is a dcpo.

2. Every directed set S ⊆ X has a join in its closure: ∨S =

∨S ∈ S.
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3. Every directed set S ⊆ X contains an increasing sequence
with the same join.

4. For all x,y ∈ X, x� y iff for all increasing sequences (ai)

with y v ∨ai there is an n such that x v an.

5. For all x ∈ X, Approx(x) is directed with supremum x if
and only if it contains an increasing sequence with supre-
mum x.

Proof. Let S ⊆ X be a directed subset. If it is finite then it contains its
maximal element and we are done, so suppose it is infinite. Because
of the previous lemma we can take S to be closed.

Let (si) be any countable collection of elements in S. Then set x1 =

s1. By directedness, there exists an element x2 in S such that x1, s2v x2.
Continuing this procedure we construct an increasing sequence (xi)

in S such that si v xi. We know that (xi) has a join equal to its limit.
Since xi ∈ S and S is closed, the limit is an element s ∈ S. So we
know that s is an upperbound of (si). We conclude that any countable
subset of S contains an upperbound in S.

Now because X is separable, there exists a countable dense subset
A ⊆ X. Dense here means that A = X. A ∩ S is a dense subset of S,
because S is closed. Since A∩ S is a countable subset of a directed set,
it has an upper bound x ∈ S. So we have A ∩ S ⊆↓ x. Now taking the
closure on both sides we get A ∩ S = A ∩ S = X ∩ S = S ⊂ ↓ x =↓ x.
So x is an upperbound of S. Now suppose y is another upper bound
of S. Since x ∈ S, we must have x v y. So x is the least upper bound
of S.

If S is not necessarily closed, then we can use the above argument
for S, to find a least upper bound x ∈ S that is also a least upper
bound of S.

Since the least upper bound of any directed set S is contained in
its closure there is a convergent sequence si→∨S. Set x1 = s1, and let
x2 be such that x1, s2 v x2, then we construct an increasing sequence
(xi) in S. This sequence is necessarily convergent: xi→ y and we have
si v y for all i, so we also have lim si = ∨S v y, but since ∨S is the
least upper bound of S we get y v ∨S, so that y = ∨S.

For the last two points we only need to prove the only if part. Sup-
pose we have x and y such that for all directed sequences (ai) with
yv ∨ai there is an n such that x v an. Let S be a directed subset such
that y v ∨S. There is a directed sequence (si) in S such that si→∨S.
So yv lim si = ∨si, but then there is an n such that xv sn. Since sn ∈ S,
we have x� y.

For the last point, suppose Approx(x) contains an increasing se-
quence with join x. Call this sequence (xi). Let z1,z2 ∈ Approx(x).
We have x v x = lim xi = ∨xi, so there are n and m such that z1 v xn

and z2 v xm. Let k = max{n,m}. Then z1,z2 v xk ∈Approx(x). So
Approx(x) is directed. Since it is contained inside of ↓ x, its join is
smaller than x, and because ∨xn = x, the join is exactly x.
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So we see that these type of spaces are really well behaved. The
closedness of the upper and lowersets ensures that the joins of di-
rected sets are “nearby” to the set (in the closure of the set).

We can actually weaken the requirements on X a bit further, by
moving the separable condition from X to the directed sets in X. For
instance, we have the following:

theorem 1 .3 .7 : Let (X,v) be a metric space with an upwards small
partial order v. Then the above theorem still holds.

Proof. Since X is a metric space, it is first countable and Haussdorff so
we can use the lemma’s proved earlier. For a metric space sequential
compactness is equivalent to compactness.

Let S be a closed directed set in X. Pick an arbitrary s ∈ S. Then ↑ s
is a compact set and ↑ s ∩ S is the intersection of a closed set with a
compact set, so is compact. Furthermore ↑ s ∩ S is a directed set. A
compact subset of a metric space inherits the metric, so is a compact
metric space. Compact metric spaces are always separable, so we can
use the previous theorem to find a least upper bound of ↑ s ∩ S. Call
this x. Let t ∈ S. By directedness there is a z ∈ S such that t, sv z. But
then z ∈↑ S, so t v z v x. So x is also an upper bound for S and if y
is another upper bound of S then it must also be an upper bound of
↑ s ∩ S, so that x v y. For S not closed, we can use Lemma 1.3.5.

Due to these theorems, directedness can be understood in terms of
increasing sequences:

lemma 1 .3 .8 : Let X and P be first countable separable Haussdorff
with partial orders that are upwards small, then for a monotone
map f : X→ P we have that it is Scott-continuous iff it preserves
suprema of increasing sequences.

Proof. A Scott-continuous map obviously preserves suprema of in-
creasing sequences, so we only have to check the other direction. Let
f be a map that preserves the join of increasing sequences and let
S be a closed directed set. Then f (S) is also a directed set by mono-
tonicity of f . Then there is an increasing sequence f (si) in f (S) with
f (si)→ ∨ f (S), and si is a sequence in S, and we can construct an
increasing sequence xi → x in S with si v xi v x. Then f (si) v f (x)
and by closedness lim f (si) = ∨ f (S) v f (x), but because S is closed
we have x ∈ S, so f (x) ∈ f (S), so f (x) v ∨ f (S), so f (x) = ∨ f (S).
Since x v ∨S we have so f (x) = ∨ f (S) v f (∨S). For the other di-
rection: there exists an increasing convergent sequence si→∨S. Then
f (∨S) = f (∨si) = ∨ f (si)v∨ f (S), because we are taking the join over
a subset of f (S) so that the join will be smaller. We conclude that
f (∨S) = ∨ f (S).

Now suppose S is not necessarily closed. We know that f (∨S) =
f (∨S) = ∨ f (S) and since S ⊆ S we have ∨ f (S) v ∨ f (S) = f (∨S). In
the other direction we again have f (∨S) = f (∨sn) = ∨ f (sn) v ∨ f (S),
so f (∨S) = ∨ f (S).
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From now on, when we are talking about a set with an upwards
small partial order, it is to be understood that the space is first count-
able separable Haussdorff.

lemma 1 .3 .9 : Let X and P be posets with an upwards small partial
order. Any continuous (in the topologies of X and P) monotone
map f : X→ P is Scott-continuous.

Proof. Due to the previous lemma we only have to prove that f pre-
serves suprema of increasing sequences. But if (xi) is an increasing
sequence in X, then it is also convergent, and the join is equal to the
limit. Note that for any continuous map f (lim xn) = lim f (xn), so we
get

f (∨xn) = f (lim xn) = lim f (xn) = ∨ f (xn).

This is not too surprising. In fact a map between posets is Scott-
continuous when it is continuous with respect to their Scott topology.
The closed sets in this topology are given by Scott downsets, a basis
of which is given by the downsets of all elements in x. Since all these
downsets are closed with respect to the original topology, we see that
the original topology is finer than the Scott topology. So if we have
a continuous map from X in its Scott topology to P in its original
topology (a monotone continuous map) we can replace the topology
on P with a coarser topology, in this case the Scott topology, and we
are left with a Scott continuous map. For this reason such a partial
order is also called compatible (with the topology) in the literature.

1.4 examples of upwards small posets

example 1 .4 .1 : Any metric space satisfies the necessary topologi-
cal conditions for Theorem 1.3.8, so for X a metric space the
requirement for upwards smallness becomes that uppersets are
compact and the downsets are closed. If X is compact itself, it is
enough to require that uppersets and downsets are closed. We
call a partial order whose uppersets and downsets are closed, a
closed partial order.

For any (sequentially) compact, first countable, separable Hauss-
dorff space X with partial order v. The closedness, upward
smallness and downward smallness of v are equivalent.

example 1 .4 .2 : The real line with its standard ordering is a closed
poset. So any closed subset of the real line that is bounded
from above is upwards small. When equipped with the reversed
ordering, any closed subset bounded from below is upwards
closed. For example: [0,∞)∗.

example 1 .4 .3 : Any poset (X,v) where we equip X with the dis-
crete topology is closed. It is upwards small iff all the uppersets
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are finite. Since any discrete space can be seen as a metric space
with the discrete metric, Theorem 1.3.8 applies. For instance N

with a v b iff b ≤ a is upwards small. Similarly the set of finite
subsets of N with the reversed inclusion order and the topology
of the upper space is upwards small.

example 1 .4 .4 : Define PO(n) = {A ∈ Mn×n(C) ; A† = A,∀v ∈ Cn :
v† Av ≥ 0} the space of positive operators on Cn. We write the
condition that v† Av ≥ 0 for all v as A ≥ 0. PO(n) allows a natu-
ral choice for a partial order called the Löwner order: AvL B iff
B− A ≥ 0. PO(n) can be seen as a subset of Cn2

, so it satisfies
the necessary topological conditions. This means that the map
fv(A) = v† Av is continuous for any v ∈Cn. This ensures that vL

is closed. Note that all the elements in ↓ A have a smaller trace
than A, so ↓ A is bounded, which together with its closedness
makes it compact, so vL is downwards small. Any compact sub-
set of PO(n) will therefore be a dcpo, and the dual order of vL

on PO(n) is upwards small so that it is a dcpo. More on this in
Chapter 3.

We can construct new upwards small partial orders from other
ones.

lemma 1 .4 .5 : For 1≤ i≤ k let (Pi,vi) be a finite collection of closed/up-
wards small posets/preorder spaces, then P=∏i Pi is a a closed/up-
wards small poset/preorder space, given by the product partial
order/preorder.

Proof. We equip P with the regular product topology. Since we are
considering finite products, this preserves the Haussdorff, separable,
first countable and possibly (sequential) compactness properties. For
(xi), (yi) ∈ P where xi,yi ∈ Pi define (xi) v (yi) iff for all 1 ≤ i ≤ k
xi vi yi. Transitivity and reflexitivity (and antisymmetry in the case
of a partial order) carry over from the vi. And we have ↑ (xi) = ∏i ↑ xi
and the same for downsets, so closedness and sequential compactness
are preserved.

Note also that the projection maps πi : P→ Pi are monotone and
continuous, so they are Scott-continuous (when all the Pi are partial
orders).

theorem 1 .4 .6 : Let X be a sequentially compact first countable sep-
arable Haussdorff space and P some first countable Haussdorff
space with a closed partial order (respectively a preorder) v
and f : X→ P continuous and injective, then X inherits a small
partial order (respectively a preorder) from P via f .

Proof. Define the partial order v f for x,y ∈ X as x v f y iff f (x) v
f (y). Reflexivity and transitivity follow from those properties on v
and antisymmetry follows from injectivity of f . Suppose ai → a is a
convergent sequence in X and xv f ai. Then f (x)v f (ai) and because
of the continuity of f f (ai)→ f (a), so by the closedness of v we get
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f (x) v f (a) so that x v a. We can do the same thing for sequences
with ai v x, so the partial order v f is closed under limits, so it is
closed. Since X is sequentially compact, v f is also small.

We also have a theorem that classifies closed partial orders on com-
pact metric spaces [13, Excercise VI-1.18]:

theorem 1 .4 .7 : Urysohn-Carruth Metrization Theorem. Let (X,v)
be a compact metrizable pospace (poset with closed uppersets
and downsets), then there is a homeormorphic order-isomorphic
map g : X→ g(X)⊆ [0,1]N which induces a radially convex met-
ric on X.

A radially convex metric d on a pospace X is a metric such that when
x v z v y we have d(x,y) = d(x,z) + d(z,y). The important part of
this theorem is usually considered to be that each compact metric
pospace can be equipped with a radially convex metric. The part we
are interested in in this paper however is that we can understand any
closed partial order on a compact metric space to be induced by a
continuous injective map g : X→ [0,1]N.

1.5 the upperset map

So far we have shown that there is a class of partial orders called
upwards small that are all dcpo’s. Can we also say something about
their approximation structure? Recall that a poset is called continuous
when Approx(x) is a directed set with supremum x, for all x.

We will work with a slightly stricter type of space. Namely, we
require that X is locally compact in addition to it being Haussdorff,
first countable and separable. In addition we require that our upper-
sets are compact instead of sequentially compact. Note that in first
countable spaces compactness implies sequential compactness, so the
partial order is still upwards small.

Recall that we defined K(X) = {A ⊆ X;∅ 6= A compact}, which
when equiped with the reversed inclusion order is a domain. Since
we required that the uppersets in X are compact, we have for every
x ∈ X: ↑ x ∈ K(X). In fact suppose we have x v y, then for any z ∈↑ y,
we have x v y v z so that z ∈↑ x, which gives ↑ y ⊆↑ x. The converse
is true as well, so we have x v y if and only if ↑ y ⊆↑ x.

This means that the upperset map

↑: X→ K(X)

is a strict monotone map. It is also injective, so ↑ (X) is embedded
into K(X), and in fact ↑ (X) is order isomorphic to X. Because it
is an order isomorphism it is also Scott-continuous. It is helpful to
show this explicitly though. Let (xi)→ x be an increasing sequence
convergent to its join x. Since xi v x we have ↑ x ⊆↑ xi for all xi, so in
fact ↑ x ⊆ ⋂i ↑ xi. For the other direction, let y ∈ ⋂i ↑ xi, then xi v y,
and by closedness of v we get x v y, so that y ∈↑ x, so ↑ x =

⋂
i ↑ xi.

So we in fact have ↑ (∨xi) =↑ (lim xi) =↑ (x) = ∨ ↑ (xi) =
⋂

i ↑ xi.
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We can view X as a subset of K(X) with the reversed inclusion
order using the upperset map. So when we have ↑ (x) �↑ (y) in
K(X) we also have x� y. The converse is not true, since in general it
will be easier to satisfy the � condition in X as it is a smaller space
that allows a smaller set of increasing sequences. Recall that A� B
in K(X) iff B ⊆int(A), so when ↑ y ⊆int(↑ x) we have x� y.

If X is compact, then we can also look at K(X) with the regular
(not reversed) inclusion order. So A v B iff A ⊆ B. The join of an
increasing sequence is then ∨S =

⋂
S. Note that X compact ensures

that this is again a compact space, since any closed subspace of a
compact space is again compact. We also have A� B iff A ⊆int(B),
but note that K(X) is no longer a domain as any singleton {x} has
Approx({x}) = ∅.

In a similar way as before we can order embed X into K(X) with the
downset map ↓: X→ K(X). So then we see that when ↓ (x)⊆int(↓ (y))
we have x� y.

Unfortunately it doesn’t seem we can say much more about the
approximations of an upwards closed poset without restricting our-
selves further.

1.6 convex uppersets

The condition for upwards smallness refers to the uppersets and downsets
of elements. For a certain well behaved class of partial orders, it is
enough to say something about only the uppersets.

Let X ⊆ Rn be a compact subset of Euclidean space. And denote
KC(X) ⊆ K(X) the space of compact and convex subsets of X. Be-
cause X is a compact metric space, KC(X) is one as well. KC(X) in-
herits the domain structure from K(X). The reversed inclusion order
is closed, so the order on KC(X) is upwards small.

Let Ln denote the Lebeque measure on Rn. Denote the interior of a
set A as Ao.

lemma 1 .6 .1 : Let A, B ⊆ Rn such that Ln(A), Ln(B) 6= 0 and both
finite. Then if A ⊆ B we have Ln(A) ≤ Ln(B) (monotonicity). If
furthermore Ao = A and Bo = B then if A ⊆ B and Ln(A) =

Ln(B) we have A = B (strict monotonicity).

Proof. The first statement on monotonicity follows directly from the
definition of the Lebeque measure. For the second statement: Let
A and B as described. Since A ⊆ B we can write B = B\A ∪ A, so
that Ln(B) = Ln(B\A) + Ln(A). From Ln(B) = Ln(A) we then get
Ln(B\A) = 0. Then we can write Bo = (B\A∪ A)o = (B\A)o ∪ Ao = Ao

because the interior of any zero measure set is empty. Since Bo = Ao

we can take the closure on both sides: B = Bo = Ao = A and we are
done.

Any closed and bounded (so compact) convex subset A with non-
empty interior has this property that Ao = A.2 If the interior of such

2 It would also hold for slightly more complex spaces, such as a finite union of convex
spaces.
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a set is empty then there is a hyperplane into which the convex set
embeds, so that we can view the set as ‘lower dimensional’: there is
an isometric homeomorphic map f : U→ A ⊆Rn where U ⊆Rk is a
compact convex set in Rk with nonempty interior. We can then define
Lk(A) = Lk(U), its k-dimensional measure. We can also do a similar
thing when the interior of A is not empty:

definition 1 .6 .2 : Define the k-dimensional measure of a compact
convex set A as

µk(A) = sup{Lk(U) ; f : U ⊆Rk→ A, f isometric homeomorfic}.

It then follows that when A embeds into Rk we have Lk(A) = µk(A).
Furthermore we also have that A ⊆ B implies that µk(A) ≤ µk(B).

lemma 1 .6 .3 : Let µ : KC(X)→ [0,∞)∗ be the total measure defined
as µ(A) = ∑n

k=1 µk(A). µ is a strict monotonic continuous and
thus Scott-continuous map.

Proof. Let A, B ∈ KC(X) be compact convex sets and B v A so A ⊆ B.
Then for all k, µk(A) ≤ µk(B), so also µ(A) = ∑k µk(A) ≤ ∑k µk(B) =
µ(B). Suppose furthermore that µ(A) = µ(B). This is only possible
when µk(A) = µk(B) for all k. Pick the highest k such that µk(A) =

µk(B) 6= 0, then A and B embed into Rk and we can use the above
lemma to conclude that A= B. Continuity follows because the Lebeque
measure is continuous and the fact that the supremum in the defini-
tion of µk changes smoothly when the set is slightly changed. Scott-
continuity then follows because both KC(X) and [0,∞)∗ are upwards
small.

Note also that the maximal elements of KC(X) are precisely the
singletons, so we have A ∈ KC(X) maximal iff µ(A) = 0.

Now let (X,v) be a compact subset of Euclidean space and let v
be such that the upperset of any element in X is a closed convex set.
Then the uparrow map maps order isomorphically into a subset of
KC(X). Specifically, this map preserves joins of directed sets.

theorem 1 .6 .4 : If (X,v) is a compact subset of Euclidean space
and the upperset of any element is a closed convex subspace,
then v is a dcpo, and Theorem 1.3.1 applies.

Proof. In this case ↑: X→ KC(X) is a strictly monotone map that pre-
serves joins of increasing sequences. µ : KC(X)→ [0,∞)∗ is a Scott-
continuous strict monotone map. In particular it preserves joins of
increasing sequences. Then the composition µ◦ ↑: X→ [0,∞)∗ is also
strict monotone and preserves joins of increasing sequences so Theo-
rem 1.3.1 applies.

Note that this theorem also holds when the uppersets of X are
slightly more complex, for instance when they are finite unions of
closed convex sets. Then the upperset map no longer maps to KC(X),
but we can still use the map µ in the same capacity.



2
O R D E R I N G D I S T R I B U T I O N S

In this chapter we will postulate a minimal set of conditions that any
order of information content should satisfy. We will study a subset of
these dubbed restricted information orders in great detail. In this chapter
we restrict ourselves to studying classical states.

2.1 information orders

A finite classical state is given by a probability distribution on some
finite amount of points, which we will label n ∈N>0. Such a probabil-
ity distribution x is a set of n real numbers xi such that for all 1≤ i≤ n
xi ≥ 0 and ∑i xi = 1. In this case x refers to the entire probability dis-
tribution, while xi referred to a specific component or coordinate of x.

definition 2 .1 .1 : The space of probability distributions on n points
is

∆n = {x ∈Rn ; xi ≥ 0,∑
i

xi = 1}.

Geometrically ∆n can be interpreted as the (n− 1)-simplex. So ∆2

is a line while ∆3 is a triangle. The figures in this chapter will often
use that depiction of ∆3. ∆n is a compact convex subspace of Rn:

definition 2 .1 .2 : A subspace A ⊆ Rn is called convex iff for all
a,b ∈ A and 0 ≤ t ≤ 1 we have (1− t)a + tb ∈ A. Informally, A
contains the line connecting two arbitrary points in A. A point
a ∈ A is called an extremal convex point when for any x,y ∈ A, if
a = (1− t)x + ty for a 0 < t < 1, then x = y = a. Intuitively this
means that a is in a corner of A.

The extremal convex points of ∆n are precisely the pure distribu-
tions >i = (0, . . . ,0,1,0, . . . ,0). The distributions that are 1 on their i-th
component, and 0 everywhere else.

There is another special distribution in ∆n: the uniform distribution
⊥n =

1
n (1, . . . ,1). This is the unique probability distribution with xi =

xj for all i and j. It can be seen as lying in the ‘middle’ of ∆n.
The pure distributions and the uniform distribution have a special

role concerning information content. Namely, let us define the stan-
dard notion of information content:

definition 2 .1 .3 : The Shannon entropy of a probability distribution
x is given by µS(x) = −∑i xi log(xi).

The Shannon entropy is a positive value corresponding to the uncer-
tainty that a distribution represents. For instance, the only distribu-
tions that have µS(x) = 0, no uncertainty, are the pure distributions

15
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>i. The unique distribution on n points with the highest entropy (the
most uncertainty) is ⊥n.

This intuitively makes a lot of sense. Suppose you have n boxes,
where there is a bar of gold in precisely one of the boxes. You are
also given a probability distribution that tells you the probability that
a certain box contains this gold bar. What kind of probability distri-
butions would you like to be given? Of course you would be really
happy with a pure distribution, as you would be sure to get the gold
(if we assume that the probability distribution actually describes the
real world, and you haven’t been lied to). You would be the least
happy with the uniform distribution as that doesn’t give you any ex-
tra information regarding which box contains the gold. The Shannon
entropy of a distribution is a measure of how happy you should be
when given that distribution in this scenario (with lower values cor-
responding to more happiness).

For our information orders it would therefore make sense to re-
quire that ⊥n is the least element of the partial order, and that the >i
are the maximal elements. Since you would be happier with replac-
ing ⊥n with any state x we say that ⊥n v x for all x. For the >i the
situation is slightly more complicated, since we would still be hap-
pier when our distribution were a pure distribution, but it would still
have to represent compatible information: >1 and >2 are obviously
incompatible. Since >1 would tell you that the gold is definitely in box
1, while >2 would tell you that the gold is definitely in box 2. We will
therefore require that each x is smaller than at least one pure state >i.

Suppose we have x,y ∈ ∆n and some partial order v that captures
the idea of information content on ∆n, so that x v y would mean “y
contains at least all the information x has”. Suppose now that we have
two other distributions x′ and y′ that are the same as x and respec-
tively y, but with their first and second components interchanged. We
didn’t really change any of the information content, we just changed
in which order the coordinates were presented, so we would assume
that x′ v y′.

definition 2 .1 .4 : Let Sn be the permutation group on n points. So
σ ∈ Sn is a bijection σ : {1, . . . ,n}→ {1, . . . ,n}. Then we define for
x ∈ ∆n: σ(x)i = xσ(i). We call a partial order on ∆n permutation
invariant when for all x,y ∈ ∆n and σ ∈ Sn we have x v y ⇐⇒
σ(x) v σ(y).

We need an additional ingredient to arrive at our minimal defi-
nition of an information order. Suppose we have a state x that has
less information than a state y. Now we can imagine a process that
transforms the state x into y, thereby gaining information. The most
simple mix of states would be (1− t)x + ty for any 0 ≤ t ≤ 1, which
is guaranteed to be a distribution by convexity of ∆n.

definition 2 .1 .5 : We say that a partial order v on a convex space
C allows mixing iff for all x,y ∈ C we have x v y =⇒ x v (1−
t)x + ty v y for all 0≤ t ≤ 1.
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And finally, we have the logical inclusion ∆k⊆∆n by sending (x1, . . . , xk)

to (x1, . . . ,k ,0, . . . ,0). We want the restriction of an information order
on ∆n to ∆k to still be an information order.

We now have all we need to make a basic definition of what we call
an information order.

definition 2 .1 .6 : Let v be a partial order on ∆n. We call v an
information order if and only if all the following hold

• v is permutation invariant.

• v allows mixing.

• ⊥n v x for all x ∈ ∆n.

• The >i are maximal and for all x ∈ ∆n: x v >i for some i.

• v restricted to ∆k is also an information order.

2.2 examples

We’ll start with giving the example that guided this minimal defini-
tion for an information order.

2.2.1 Bayesian order

The Bayesian order was defined in [10] as an example of a partial
order on ∆n that captures the idea of information content. It is defined
inductively using the example above about the boxes and the bar of
gold.

Suppose we have Alice and Bob that each have some information
about where the gold is, which is captured by probability distribu-
tions x and y. Suppose that for some definition y has more informa-
tion than x which we denote as x v y. Now, if someone who knew
where the gold was revealed that box k didn’t contain it, then x and y
can now be updated to reflect that they have certainty that k doesn’t
contain the gold. So xk = yk = 0, and the rest of the probabilities is
rescaled. Then we would still expect the updated probabilities y to
have more information than x: x v y. We can then define v induc-
tively in the following way: Let x,y ∈ ∆n, and supposed vn−1 is de-
fined for ∆n−1. Then set x vn y if and only if for all i ≤ n such that
xi 6= 1 and yi 6= 1 we have

1
1− xi

(x1, . . . , xi−1, xi+1, . . . , xn)vn−1 1
1− yi

(y1, . . . ,yi−1,yi+1, . . . ,yn)

where we define v2 in the only sensible way possible: x v2 y iff
µS(x)≥ µS(y), or equivalently, (x1, x2)v2 (y1,y2) iff x1 ≥ x2 and y1 ≥
y2 and x1 ≤ y1, or x2 ≥ x1 and y2 ≥ y1 and x2 ≤ y2.

As is shown in [10], this inductive procedure gives you a valid
partial order. To give a concise description of this order we need an
extra definition.

definition 2 .2 .1 : The monotone sector of ∆n is Λn = {x ∈ ∆n ; ∀i :
xi ≥ xi+1}. A sector of ∆n is a region equal to σ(Λn) for some
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σ ∈ Sn. We have ∆n =
⋃

σ∈Sn σ(Λn). The boundary of the mon-
tone sector consists of the degenerated distributions: ∂Λn = {x ∈
Λn ; ∃i : xi = xi+1}

definition 2 .2 .2 : The Bayesian order on ∆n is given by x vB y if
and only if there exists σ ∈ Sn such that σ(x),σ(y) ∈ Λn and

∀1≤ k ≤ n− 1 : σ(x)kσ(y)k+1 ≤ σ(y)kσ(x)k+1.

So two distributions x and y are comparable in the Bayesian order
when they belong to the same sector of ∆n. Lets take x and y to belong
to Λn so we can take σ = id, and suppose xi,yi 6= 0 for all i. Then we
can write the comparisons in the Bayesian order as

∀1≤ k ≤ n− 1 :
xk

xk+1
≤ yk

yk+1
.

We see that x vB y means that the coordinates of x and y can be si-
multaneously ordered and that the coordinates of y are more sharply
decreasing. It is routine to check that the Bayesian order as given in
this form satisfies the properties for an information order outlined in
Definition 2.1.6.

Figure 1: Illustration of the upperset (in red) and downset (blue) of a specific
point in Λ3 in the Bayesian order.

In Figure 1 you can see an illustration of the upperset and downset
of a specific point in Λ3. As you can see, the upper- and downset are
contained inside of Λ3.

2.2.2 Renormalised Löwner orders

In Chapter 3 we will be looking at partial orders on density oper-
ators, which come from the Löwner order, which is the ‘standard’
partial order structure that the positive operators carry. Its restriction
to diagonal matrices, that is, the space Rn is just vvL w iff vi ≤ wi for
all i ≤ n. If we put this order on ∆n and we have x vL y, then xi ≤ yi,
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but also ∑i xi = ∑i yi = 1, so we must have xi = yi, which gives x = y.
So this partial order reduces to x vL y iff x = y.

There are ways to change this partial order into something nontriv-
ial. The two ways we will show here are what we refer to as eigenvalue
renormalisations. The fact that vL is trivial on ∆n is a result of the nor-
malisation of the elements in ∆n. By changing the normalisation, we
can create a nontrivial partial order.

Define x+ = max{xi} the maximum eigenvalue (or coordinate) of
x. So the normalisation of x such that x+ = 1 is given by x

x+ . If we
use vL on the maximum eigenvalue renormalised distributions and
switch to the dual of vL we get the partial order

x v+ y ⇐⇒ ∀k : x+yk ≤ y+xk.

Transitivity and reflexivity follow easily. Antisymmetry is a result of
the normalisation of distributions in ∆n: if x v+ y and y v+ x then
x+
y+ = xk

yk
for all k. So if x+ > y+ then also xk > yk for all k, which breaks

the normalisation. So xk = yk for all k. That ⊥n is minimal and that
the >i are maximal is also easily checked. Permutation invariance
follows because a permutation would just switch around the order of
the inequalities.

Mixing is slightly more tricky. First, suppose x v+ y, and suppose
yk = y+, then x+yk = x+y+ ≤ y+xk. So x+ ≤ xk, but also xk ≤ x+ by
definition, so xk = x+. So, when x v+ y there is a k such that yk = y+

and xk = x+. Now define z = (1 − t)x + ty. Then z+ ≤ (1 − t)x+ +

ty+ = (1− t)xk + tyk = zk, so zk = z+ and z+ = (1− t)x+ + ty+. That
x v+ z v+ y then follows easily by just substiting in the definition of
z into the inequalities.
v+ satisfies all the conditions of Definition 2.1.6. Since all the in-

equalities involved are continuous it is also not hard to see that the
uppersets and downsets are closed. Because ∆n is a compact set, v+

is upwards small. So v+ is a dcpo.
We can do a similar sort of construction with a renormalisation to

the lowest eigenvalue, although we do run into some extra difficulties
here. First, when x and y contain no zeroes, we can simply take x− =

min{xi}, and set x v− y iff for all k: xky− ≤ ykx−. It then follows in
the same way as above that this has all the correct properties. Now, if
x and y contain some zeroes, but we have xk = 0 if and only if yk = 0,
then we can simply ignore these zeroes, and set x− = min{xi ; xi 6= 0}.
We then still get the definition above and everything works out. But
now suppose that y contains more zeroes than x. In the case that there
is a k such that yk = 0 while xk = x− 6= 0 the renormalisation to the kth
coordinate would ‘blow up’ y to infinity while x stays bounded. So
we simply define xv− y. If however there is no such k then there is no
easy choice of normalisation, so we say that x and y are incomparable.

Now let Z(x) = {k ; xk = 0} be the set of zeroes of x and x− the
lowest nonzero coordinate and set x v− y if and only if one of the
following (mutually exclusive options) holds:

• Z(x) = Z(y) and for all k : xky− ≤ ykx−.

• Z(x) ⊂ Z(y) and there exists a k such that yk = 0 and xk = x−.
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lemma 2 .2 .3 : v− as defined above is an information order.

Proof. Reflexivity is trivial. Antisymmetry follows because in that
case we must have Z(x) = Z(y), so that it reduces to the same prob-
lem as for v+. For transitivity we distinguish 4 cases. Let x v− y and
y v− z. If Z(x) = Z(y) = Z(z), then it follows easily. If Z(x) = Z(y)
then we note that in the same way as for v+, when yk = y− we
also have xk = x−. So if Z(y) ⊂ Z(x), then there is a k such that
zk = 0 and yk = y−, but then xk = x− as well, so x v− z. If instead
Z(x)⊂ Z(y) = Z(z), then there is a k such that yk = 0 and xk = x−, in
which case zk = 0 as well, so that xv− z. Suppose Z(x)⊂ Z(y)⊂ Z(z),
so there is a k such that yk = 0 and xk = x−, but then also zk = 0 so
again x v− z.

The minimality and maximality of⊥n and>i can be directly checked,
and permutation invariance is also clear from the definition. For mix-
ing we split into two different cases. Either Z(x) = Z(y) in which case
we can use the same argument as for v+, or Z(x) ⊂ Z(y), in which
case there is a k such that yk = 0 and xk = x−. Let z = (1− t)x + ty,
then zk = (1− t)xk + tyk = (1− t)x− = z−. For t > 0 we have Z(x) =
Z(z) ⊂ Z(y), so we immediately have x v− z, and since yk = 0 and
zk = z− we also have z v− y.

v− is also a dcpo: any element which has a nondegenerated lowest
nonzero coordinate has a closed convex upperset. If it is degenerated
then the upperset will be a finite union of convex spaces, so we can
use Theorem 1.6.4 to prove directed completeness.

(a) v+
L . (b) v−L .

Figure 2: Upperset (red) and downset (blue) of the distribution y =
1

30 (15,10,5) with respect to the renormalised Löwner orders. The
point x = 1

10 (6,2,2) is denoted in green.

We now already have 3 very different orders that satisfy the in-
formation order conditions. In fact, in Figure 2 it is easily seen how
different the two renormalised Löwner orders are. In fact, the two
orders are contradicting: The illustrated points x = 1

10 (6,2,2) and y =
1

30 (15,10,5) have x v+
L y and y v−L x. In so far as Definition 2.1.6 de-

fines a notion of information content, the conditions are not strong
enough to define a unique direction of information content, as illus-
trated by this example.
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2.3 basic properties

Information orders (partial orders satisfying Definition 2.1.6) have a
certain kind of minimal structure, which we will look at in detail in
this section. Let v denote an information order for the duration of
this section.

lemma 2 .3 .1 : Let x ∈ ∆n and σ ∈ Sn such that σ(x) v x or x v σ(x).
Then σ(x) = x.

Proof. Suppose σ(x) v x. We have σk = id for some k, so by permuta-
tion invariance we get x = σk(x) = σk−1(σ(x))v σk−1(x) = σk−2(σ(x))v
. . . v σ(x). So x v σ(x), but also σ(x) v x, so by antisymmetry of v
we have σ(x) = x. The other case follows analogously.

Now, consider an information order for n = 2. ⊥2 = ( 1
2 , 1

2 ) is the
minimal element and (1,0) and (0,1) are the maximal elements. Call
z(t) = (1− t)⊥2 + t(1,0), then by mixing we have z(t) v z(t′) when-
ever t ≤ t′. There are no other comparisons possible because of the
above lemma. The entire partial order is determined on ∆2. We get
the structure as seen in Figure 3.

(0,1) ( 1
2 , 1

2 ) (0,1)

Figure 3: The unique information order on ∆2.

The condition that an information order on ∆n restricts to an infor-
mation order on ∆k ⊆ ∆n is equivalent to a simpler demand.

theorem 2 .3 .2 : An information order vn on ∆n induces an infor-
mation order vk on ∆k iff ⊥m v ⊥l for all 1≤ l ≤ m ≤ n.

Proof. Define vk as follows for any x,y ∈ ∆k:

(x1, . . . , xk)vk (y1, . . . ,yk) ⇐⇒ (x1, . . . , xk,0, . . . ,0)vn (y1, . . . ,yk,0, . . . ,0)

That is: we interpret ∆k as the subset of ∆n given by setting the last co-
ordinates to zero. Note that due to permutation invariance it doesn’t
matter which coordinate we take to be zero: the partial order will be
the same. The only if direction follows because an information order
on ∆k has ⊥k as a minimal element. Since ⊥l ∈ ∆k for l ≤ k, we have
⊥k v ⊥l .

For the other direction we will work by induction. Since vk is de-
fined as a restriction of vn, it is again a partial order, and it carries
over the mixing requirement and the maximal elements. The only
property left to check is that vk has the correct least element. For
k = 2 we have that ⊥2 v⊥1 =>1, so by using permutation invariance
and mixing, the entire partial order is determined and we are done.

For the induction hypothesis we will assume that ⊥k−1 is the least
element of vk−1. We know that ⊥k v ⊥k−1, so for any element y ∈
∆k−1 we have ⊥k v y. Let x ∈ ∆k and define z(λ) = (1− λ)⊥k + λx.
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For 0 ≤ λ ≤ 1 this is the line between ⊥k and x, but if we take λ ≥
1 then we extend the line further. We can take this extension until
the point where z(λ) doesn’t lie in ∆n anymore. Since normalisation
is preserved, at this point one of the coordinates of z(λ) must have
become less than zero. Take λ to be the exact value when z(λ) is at the
border of ∆n. At this point z(λ) has at least one more zero than x, so
z(λ) ∈ ∆k−1. But then ⊥k v ⊥k−1 v z(λ) and by the mixing property
we get ⊥k v x = z(1) v z(λ), so ⊥k is indeed the least element of
∆k.

An illustration of what this structure looks like graphically is given
in Figure 4.

(0,0,1) (1,0,0)

(0,1,0)

(0, 1
2 , 1

2 ) ( 1
2 , 1

2 , 0)

( 1
2 , 0, 1

2 )

⊥

Figure 4: An illustration of the minimal structure of an information order
on ∆3.

The smaller triangles are the sectors σ(Λn), the arrows denote the
direction of the comparisons.

2.4 restricted information orders

We will be looking at a subclass of information orders in detail. We
will start by motivating this restriction.

definition 2 .4 .1 : For each x ∈ ∆n there is a unique y ∈ Λn such
that y = σ(x) for some σ ∈ Sn. Denote this unique y as r(x). We
call r : ∆n→ Λn the monotone retraction.

What r does is ordering the coordinates from high to low for any
distribution x.

lemma 2 .4 .2 : If v is an information order on ∆n, then r : (∆n,v)→
(Λn,v) is a strict monotonic map. Furthermore, if v is a closed
partial order, than r is Scott-continuous.

Proof. Let x,y ∈ ∆n with x v y. Because of permutation invariance,
without loss of generality we can take x to be in Λn, so that r(x) = x.
If y ∈ Λn, then we are done, so suppose it is not. Let y be in a ‘neigh-
bouring sector’ of Λn: there exists a σ ∈ Sn, such that σ(y) ∈Λn where
σ is given by a single permutation of successive coordinates. Name
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these coordinates i and i + 1. We then have xi ≥ xi+1 and yi ≤ yi+1.
Let z(t) = (1− t)x + ty. For some t we must then have z(t)i = z(t)i+1.
But then σ(z(t)) = z(t), so x v z(t) v y translates by permutation in-
variance to σ(x) v σ(z(t)) = z(t) v σ(y). So we have x v z(t) v σ(y),
which means that r(x) v r(y). If y doesn’t lie in a neighbouring sec-
tor than z(t) crosses every sector in between and we can repeat this
procedure for a finite amount of z(t) in each of these intermediate
sectors. So r is monotone.

Now suppose x v y and r(x) = r(y). Again, without loss of gener-
ality we can take x ∈ Λn so that r(x) = x = r(y) = σ(y) for some σ.
Then x = σ(y) v y and from Lemma 2.3.1 we then get σ(y) = y = x.

r is a contraction: d(r(x),r(y)) ≤ d(x,y) so r is continous. Since ∆n

is a compact subset of Rn, when v is closed, it is upwards small, so
that any monotone continuous map is also Scott-continuous (Lemma
1.3.9).

This lemma shows us that the behaviour of v on Λn gives us a
lot of information of v on ∆n: r is a measurement of v. We can then
wonder when r gives us all the information of v: when do we have
x v y if and only if r(x) v r(y)? Let x be in Λn. Then for any σ ∈ Sn

we have r(σ(x)) = x and of course x = r(x) v x = r(σ(x)), so by the
if direction we get x v σ(x) for any sigma, which can’t happen for an
information order.

This procedure then doesn’t work, but we can define an informa-
tion order on ∆n that is completely defined by its behaviour on Λn in
a different way:

Set x v y if and only if r(x) vΛn r(y) and there exists a σ such that
x,y ∈ σ(Λn), or equivalently, there exists a σ such that σ(x),σ(y) ∈Λn.

This extra condition, which makes sure that x and y belong to the
same sector, ensures that the situation we described above where we
would get xv σ(x) can’t occur. Now, when does a partial order on Λn

extend to an information order on ∆n? It is clear that the partial order
on Λn, should have >1 as the maximal element and ⊥n as the mini-
mal element, and furthermore that the partial order should support
mixing. There is however one extra condition that the partial order
on Λn should satisfy.

Let y ∈ int(Λn) and suppose there is an x v y where x is a border
element of Λn. Then it is also in a different sector σ(Λn). Suppose
there is a w ∈ int(σΛn) such that wv x. By transitivity we must have
w v y which is a comparison between elements in different sectors
which isn’t allowed by the form of the partial order.

This problem arises when border elements of Λn are sometimes
smaller and sometimes bigger than an element in the interior of Λn.
It is fixed if the partial order has all the border elements below or
above the interior elements. Picking them above creates all sorts of
problems (not least of which is that ⊥n is a border element, so the
partial order will need to have some ‘discontinuities’), so we will have
to choose them below:
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definition 2 .4 .3 : We say that an information order v on ∆n has
the degeneracy condition when for all x,y ∈ ∆n, if x v y and for
some i and j yi = yj 6= 0, then xi = xj 6= 0.

Recall that an element x is a border element of Λn if it has a de-
generated spectrum. That is, there is an i such that xi = xi+1 6= 0. It
has to be nonzero, because otherwise it wouldn’t be a border element.
This condition precisely states that elements with a degeneracy on a
pair of coordinates (i, j) can’t be above elements that don’t have a
degeneracy on coordinates (i, j).

There is some intuition behind this related to information content.
Suppose again we have the situation where Alice and Bob are look-
ing at some boxes of which they know one contains a bar of gold.
Their knowledge is represented by probability distributions p and q.
Suppose p is degenerated on coordinates i and j, so pi = pj, while q
isn’t. Now someone comes along and forces them to choose between
boxes i and j. Alice wouldn’t like this, since she has no preference for
any of these boxes so she would have to pick randomly. Bob might
also not be too happy about this, but his probability distribution does
reflect a difference between these boxes which gives him the oppor-
tunity to pick the box which he thinks has the highest probability of
containing the gold. Since in this case you would prefer to be Bob, it
is not unreasonable to say that we at least know that Alice does not
have more information than Bob.

The degeneracy condition turns out to be enough to be able to
restrict to a partial order on Λn:

lemma 2 .4 .4 : Suppose v is an information order with the degener-
acy condition on ∆n, then v can be written as x v y if and only
if there exists a σ such that x,y ∈ σΛn and r(x) v r(y).

Proof. Let x ∈int(Λn) and y not in Λn, such that x v y. Let z(t) =
(1− t)x + ty. At some t z(t) ∈ ∂Λn, so then xv z(t), which breaks the
degeneracy condition. So elements are only comparable when they
belong to the same sector: x v y implies that there is a σ such that
x,y ∈ σΛn. But then r(x) = σ−1(x) and r(y) = σ−1(y). By permutation
invariance, x v y implies σ−1(x) = r(x) v σ−1(y) = r(y). The other
direction works similarly.

From this we easily get:

lemma 2 .4 .5 : There is a one-to-one correspondence between infor-
mation orders on Λn with the degeneracy condition and infor-
mation orders on ∆n with the degeneracy condition.

So when assuming the degeneracy condition we can interchangably
talk about information orders on ∆n and on Λn. Let’s define a short-
hand for this.

definition 2 .4 .6 : An information order on ∆n or equivalently Λn

is called a restricted information order (RIO) iff it satisfies the
degeneracy condition.
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We have already seen a RIO: The Bayesian order. The renormalised
Löwner orders aren’t restricted.

Because Λn is a simpler space than ∆n restricted information orders
are a good place to start the study of information orders.

2.5 classification of restricted information orders

We will give a classification of a limited set of these restricted orders.
Since a restricted order is completely defined by its behaviour on

Λn, we will be working exclusively on Λn instead of ∆n in this section.
The assumption here will be that, since a restricted order encodes

information, this information should somehow be encodable in a set
of real numbers that represent the information features and the partial
order would then consist of comparing these features.

Specifically, we would want to define our partial order by an injec-
tive map F : Λn → Rk, where we equip Rk with the product partial
order: v v w iff vi v wi for all i ≤ k. Λn then inherits a partial order
via F (it is antisymmetric iff F is injective). Furthermore if F is contin-
uous, then since the order on R is closed, the partial order on Λn will
be a dcpo.

Note that due to the Urysohn-Carruth Metrization Theorem (Theo-
rem 1.4.7), any closed partial order on Λn is induced by a continuous
injective map F : Λn → [0,1]N, so this is less of a restriction then it
might seem.

We will however be carrying on in a slightly different way. Recall
that the Bayesian order (which is a restricted information order) was
given by a set of inequalities of the form xiyi+1 ≤ yixi+1. Defining
Fi(x) = xi

xi+1
we can fit it into this model, but it will go wrong if xi+1 =

0. This could potentially be fixed by allowing F to map into the one-
point compacted reals R ∪ {∞}, but then what to do when xi is zero
as well? How would you define 0

0 ?
We will fix this problem by taking inspiration from the Bayesian

order and mapping Λn into a product of a slightly bigger space.

definition 2 .5 .1 : Define the extended reals ER = R2 with an order
given by: for x = (x1, x2),y = (y1,y2) ∈R2 = ER, xv y iff x1y2 ≤
y1x2.

Transitivity and reflexivity of this order are easy enough to check,
but it is not antisymmetric. There is a continuous order isomorphic
embedding R→ ER given by r 7→ (r,1), so this is a valid extension
of the real numbers. There is also a map defined on the subset of ER

where the second component is nonzero that reflects back: (x1, x2) 7→
x1
x2

which is monotonic.
The reason we work with this space is because it allows us to rep-

resent infinities in a consistent way. These correspond to the elements
where the second coordinate is zero. Note also another peculiar prop-
erty: ↑ (0,0) =↓ (0,0) = ER. The zero is bigger and smaller than any
other element. This turns out to be really useful.

So let’s look at partial orders defined by an injective map F : Λn→
(ER)k. Such a map is given by k pairs of functions fi, gi : Λn → R,
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where we then have F(x)i = Fi(x) = ( fi(x), gi(x)). F is continuous iff
all the fi and gi are continuous. The preorder on ER is closed, so if F
is continous than the induced partial order on Λn will be closed, so
that it is a dcpo.

So suppose a partial order on Λn is given in this way. Then we
would have xv y iff F(x)v F(y) iff for all i≤ k: fi(x)gi(y)≤ fi(y)gi(x).
Note that F is required to be injective for it to result in a partial order,
but it is not the case that any injective F will result in a partial order
since ER is only a preorder. Antisymmetry will have to be checked
independently.

As the canonical example, for the Bayesian order we have k = n− 1,
and Fi(x) = (xi, xi+1). This approach makes clear what would happen
if xi = xi+1 = 0. Since this would map Fi(x) = (0,0) in ER, this element
would be bigger and smaller than any other element. In other words,
there is no information to be gained from the ith componenet of F
for this x in comparison with any other y ∈ Λn. This makes sense,
because if x ∈ Λn, with its last k coordinates equal to zero, then it
is actually an element of Λn−k, so that we should be able to use the
Bayesian order on Λn−k which is given by an F defined with n− k− 1
components.

2.5.1 Polynomials and affine functions

If we want to classify these partial orders, we have to know what kind
of functions we can choose for fi and gi. We will be working with
continuous functions. This seems like a reasonable enough demand
and we will later see an argument for why the only valid information
orders are produced by continuous maps.

Note that Λn is a compact subset of Rn so that for a continuous
function f : Λn → R the Stone-Weierstrass theorem states that f can
be approximated arbitrarily well by a polynomial. The uppersets and
downsets of the partial order are determined by the function values of
the fi and gi. If we can arbitrarily approximate those by polynomials,
we can also get arbitrarily close to the correct upper and downsets. So
let’s look at the situation where we have two kth order polynomials f
and g.

Any kth order polynomial can be written as the product of k affine
functions (an affine function is a linear map plus a constant, or equiv-
alently a 1st order polynomial), so we can write f (x) = ∏j f j(x) and
g(x) = ∏j gj(x) where the f j and gj are affine functions. The inequal-
ity is f (x)g(y) ≤ f (y)g(x). Suppose we have f j(x)gj(y) ≤ f j(y)gj(x)
for all j, then we can take the product of all these inequalities to ar-
rive at ∏j f j(x)gj(y) = ∏j f j(x)∏l gl(y) = f (x)g(y) ≤ ∏j f j(y)gj(x) =
f (y)g(x). So, suppose ( f , g) was part of some F to determine a par-
tial order on Λn. If we were to replace these ( f , g) in F by the k pairs
( f j, gj) we would arrive at a more strict partial order.

We can actually do quite a bit more than this. It turns out that
any higher order polynomial will not produce a valid information
order, because they don’t allow mixing. So first, let’s assume f and g
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are first order polynomials. Or in other words: they are affine maps.
The defining characteristic of an affine map is that f ((1− t)x + ty) =
(1− t) f (x) + t f (y) for all x,y and 0≤ t≤ 1. Now suppose f (x)g(y)≤
f (y)g(x) with f and g affine maps. Let z(t) = (1− t)x + ty, then

f (x)g(z(t)) = f (x)g((1− t)x + ty) = (1− t) f (x)g(x) + t f (x)g(y)

f (z(t))g(x) = f ((1− t)x + ty)g(x) = (1− t) f (x)g(x) + t f (y)g(x).

This means that f (x)g(z(t))≤ f (z(t))g(x) if and only if f (z(t))g(y)≤
f (y)g(z(t)) if and only if f (x)g(y) ≤ f (y)g(x). With affine maps, we
get mixing “for free”.

For higher order polynomials this doesn’t work. We will work with
a second order polynomial, and show that it can’t have mixing, and
then give an argument for why this generalises to higher order poly-
nomials.

Write f (x) = f1(x) f2(x) and g(y) = g1(y)g2(y) with fi and gi affine
maps. We can suppose that fi(x) is nonnegative otherwise we would
relabel, the same goes for gi. For the duration of the argument we will
also assume that f (x), g(x), f (y), g(y) 6= 0, as this would just compli-
cate the situation. Suppose f (x)g(y)≤ f (y)g(x). We’ll assume that for
the pair of coordinates x and y this inequality was the ‘deciding factor’
that determined that xv y (such a pair must exist, otherwise we could
remove this inequality and keep the same partial order), then we must
also have f (x)g(z(t))≤ f (z(t))g(x) and f (z(t))g(y)≤ f (y)g(z(t)) for
0≤ t ≤ 1. Let’s calculate the first expression:

f (x)g(z(t)) ≤ f (z(t))g(x) ⇐⇒
f (x)[(1− t)2g1(x)g2(x) + t(1− t)(g1(x)g2(y) + g1(y)g2(x)) + t2g1(y)g2(y)]

≤ [(1− t)2g1(x)g2(x) + t(1− t)( f1(x) f2(y) + f1(y) f2(x)) + t2 f1(y) f2(y)]g(x)

⇐⇒ t2[ f (x)g(y)− f (y)g(x)] ≤
t(1− t)g(x)( f1(x) f2(y) + f1(y) f2(x))− t(1− t)(g1(x)g2(y) + g1(y)g2(x)) f (x)

= t(1− t) f (x)g(x)
(

f1(y)
f1(x)

+
f2(y)
f2(x)

− g1(y)
g1(x)

− g2(y)
g2(x)

)
.

The LHS is negative by assumption, and if t→ 0 it decreases faster
to zero than the RHS, because of the quadratic factor so that the RHS
must be nonnegative for this to hold. we assumed that f (x)g(x) > 0,
so we must have

f1(y)
f1(x)

+
f2(y)
f2(x)

− g1(y)
g1(x)

− g2(y)
g2(x)

≥ 0.

We can perform the same type of calculation for f (z(t))g(y) ≤
f (y)g(z(t)) and arrive at

g1(x)
g1(y)

+
g2(x)
g2(y)

− f1(x)
f1(y)

− f2(x)
f2(y)

≥ 0.
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At this point it will prove helpful to define some new variables. De-
note fi = fi(x)/ fi(y) and gi = gi(x)/gi(y), then we can rewrite these
inequalities to

f−1
1 + f−1

2 − g−1
1 − g−1

2 = A ≥ 0

g1 + g2 − f1 − f2 = B ≥ 0.

These two inequalities are not independent. Note that ( f1 + f2) f−1
1 f−1

2 =

f−1
1 + f−1

2 and that f1 f2 ≤ g1g2. Write

A = f−1
1 + f−1

2 − g−1
1 − g−1

2 = ( f1 + f2) f−1
1 f−1

2 − (g1 + g2)g−1
1 g−1

2

⇐⇒ f1 f2g1g2A = ( f1 + f2)g1g2 − (g1 + g2) f1 f2

= g1g2( f1 + f2 − g1 − g2) + (g1 + g2)(g1g2 − f1 f2)

⇐⇒ −B = f1 + f2 − g1 − g2 = A f1 f2 − (g−1
1 + g−1

2 )(g1g2 − f1 f2).

Now suppose f (x)g(y) = f (y)g(x), then g1g2 − f1 f2 = 0 so that 0 ≥
−B = A f1 f2 ≥ 0. So A = B = 0.

Now set g1 = f1− ε. Since B = 0 we then also have g2 = f2 + ε, then

g−1
1 + g−1

2 =
1

f1 − ε
+

1
f2 + ε

=
f1 + f2

( f1 − ε)( f2 − ε)
.

We also have

0= A= g−1
1 + g−1

2 − f−1
1 − f−1

2 = ( f1 + f2)

(
f−1
1 f−1

2 +
1

( f1 − ε)( f2 − ε)

)
.

Since we assumed that f1 + f2 > 0 this is only true when f1 f2 = ( f1 −
ε)( f2 + ε), which is the case when ε = 0 or when ε 6= 0 and f1− f2 = ε.
If ε 6= 0 we then get f1− g1 = ε = f1− f2 = g2− f2, so that g1 = f2 and
f1 = g2. If ε = 0, we have by the starting assumption g1 = f1 and
g2 = f2. By relabelling we can assume that this is the case.

So from f (x)g(y) = f (y)g(x) we get fi(x)gi(y) = fi(y)gi(x) for i =
1,2 and otherwise the mixing condition will be violated. If there are
no x and y where this equality holds then we must have f (x)g(y) <
f (y)g(x) for all x and y so that we can remove the inequality without
changing the partial order. Since fi and gi are affine maps, the surface
where fi(x)gi(y) = fi(y)gi(x) is given by a plane, while if f and g
are true 2nd degree polynomials the equality surface would be some
curved space, so this property can in fact only hold when f and g are
actually affine maps in disguise for instance with f2(x) = g2(x) = 1
for all x and y. This proves that second order polynomials can’t give
information orders. If one of the fi or gi were zero we could still do
the same kind of arguments.

For higher order polynomials we can use that for an arbitrary y
there will be x smaller than it arbitarily close (in the usual metric) to
y (because of the mixing property). We can then approximate f and
g by a second order Taylor series and arrive at the same conclusions.
The reason the mixing conditions fails for any higher order polyno-
mial is because mixing ‘ensures’ that the boundaries of uppersets and
downsets are straight surfaces. The levelset of a polynomial however
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is curved. For this reason we also don’t have to look at arbitrary (non-
polynomial) continuous functions, because at small distances we can
also approximate this by a quadratic polynomial.

For discontinuous functions the boundaries of uppersets and downsets
will also not be straight, so we can disregard these kinds of functions
as well, with a small caveat: the function has to be continuous (and
thus affine) on the interior of Λn. On the boundary, so with xk = 0
or xk = xk+1 for some k we can in general no longer use these tech-
niques, and in fact some discontinuity when going from the interior
to the boundary can still produce a valid information order. See for
instance the second renormalised Löwner order v−.

To conclude: to study restricted information orders of the type
x v y iff for all i ≤ k: fi(x)gi(y) ≤ fi(y)gi(x) it suffices to look at fi
and gi affine. The minimal value for k is n− 1, because Λn is n− 1 di-
mensional, so F can’t be injective otherwise. If we take k to be bigger
the partial order is defined by strictly more inequalities so that we get
a stricter partial order. So we’ll first look at the case for k = n− 1 first.

2.5.2 Classification

A long and complete proof of the statement in this section is given
in the appendix, here he will present a less extensive proof that relies
more on intuition.

Call H(x,y) = f (x)g(y)− f (y)g(x). Then xv y would give H(x,y)≤
0. If f and g are affine, then H is affine as well in both arguments.
Furthermore H is antisymmetric. Λn is a convex space with extremal
points ⊥k =

1
k (1, . . . ,1,0, . . . ,0). We can write any x ∈ Λn as a convex

sum of the ⊥k in the following way. Set ak = k(xk − xk+1), then x =

∑k ak⊥k. Also write y = ∑k bk⊥k. Then H(x,y) = H(∑k ak⊥k,∑l bl⊥l) =

∑k,l akbl H(⊥k,⊥l). Using that H is antisymmetric, we can write this as
H(x,y) = ∑k<l(akbl− albk)H(⊥k,⊥l). Since we have⊥l v⊥k when l≥
k, we have H(⊥l ,⊥k) ≤ 0, so by antisymmetry H(⊥k,⊥l) ≥ 0. Define
H(⊥k,⊥l) = Hkl , so that we can write H(x,y) = ∑k<l(akbl − albk)Hkl .

Now, we have n− 1 such functions H. The degeneracy conditions
state that when x v y and yi = yi+1 6= 0 we must have xi = xi+1 6= 0.
So we actually see that these are n − 1 seperate conditions. Each of
the H’s will have to take care of one of these degeneracy conditions.
Suppose H has to ‘enforce’ the kth degeneracy condition. So when
H(x,y) ≤ 0 and yk = yk+1, then xk = xk+1. From the definition of the
ai and bi we see that yk = yk+1 precisely when bk = 0. Write out the
double sum in H with respect to k:

H(x,y) =∑
i<j

(aibj− ajbi)Hij = ∑
i<j,i 6=k,j 6=k

(aibj− ajbi)Hij + ∑
k=i,k<j

akbjHij≤ 0.

Here we have already used that bk = 0 in the last double sum. This
last term is nonnegative. The first term can be positive and negative
depending on how we choose ai and bi as long as one of the Hij for
i, j 6= k is nonzero. But in that case, there will be a combination of ai
and bi with ak 6= 0, such that H(x,y)≤ 0 which breaks the degeneracy
condition. So we must have Hij = 0 for all i and j where there is not
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at least one equal to k. The nonzero terms are then Hkj for k < j and
by antisymmetry also the Hik for i < k.

Knowing this, we can write

H(x,y) = ∑
i=k<j

(akbj − ajbk)Hkj = ak

n

∑
j=k+1

Hkjbj − bk

n

∑
j=k+1

Hkjaj

= f (x)g(y)− f (y)g(x)

where f (x) = ak and g(y) = ∑n
j=k+1 Hkjbj. We would like to write f

and g in terms of the coordinates of the distributions in Λn. Con-
verting back, and rescaling will give us f (x) = xk − xk+1 and g(y) =
∑n

j=k+1 Akjyj for some parameters Akj.
The form of the f ensures that it is always positive, and f (x) is

zero exactly when x is degenerated. Let l ≥ k + 2, then g(⊥l) =
1
l (1 +

∑l
j=k+2). Suppose g(⊥l) ≤ 0. Let y be any nondegenerated element

with yj = 0 for j > l, then we should have ⊥l v y which means
f (⊥l)g(y) = 0 · g(y) = 0≤ f (y)g(⊥l) where the RHS is a strictly pos-
itive number f (y) multiplied by a negative number g(⊥l) which
breaks the inequality. This means that g will also always be nonnega-
tive.

Combining all this, we get the following classification for RIO’s
defined by n− 1 pairs of affine maps fi and gi:

x vA y ⇐⇒ fi(x)gi(y) ≤ fi(y)gi(x) for all 1≤ i ≤ n− 1

where

fi(x) = xi − xi+1

gi(x) = yi+1 +
n

∑
j=i+2

Ai
jyj where 1 +

k

∑
j=i+2

Ai
j > 0

for i + 1 < k ≤ n

We denote it vA because the partial order is determined by a
set of parameters Ai

j. In total there are O(n2) free parameters, or

specifically, (n−2)(n−1)
2 . The Bayesian order corresponds to the situa-

tion where Ai
j = 0 for all the parameters. Note that all the parameters

are bounded from below, but not from above. Note also that each in-
equality has a different amount of free parameters. For i = n− 1 there
are no free parameters, and the inequality is always (xn−1 − xn)yn ≤
(yn−1− yn)xn which can be simplified to xn−1yn ≤ yn−1xn. The next in-
equality i = n− 2, has 1 free parameter: (xn−2− xn−1)(yn−1 + An−2

n yn)≤
(yn−2− yn−1)(xn−1 + An−2

n xn). The next inequality has 2 free parame-
ters, and so forth.

2.5.3 Adding additional inequalities

The above classification is only for partial orders given by n − 1 in-
equalities: the minimal amount. what would happen if we added
other inequalities? So suppose we already have a partial order vA,
and that we want to add an inequality f (x)g(y)≤ f (y)g(x). The func-
tions f and g have to be affine. We again write x,y ∈Λn in the convex
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extremal basis introduced in the previous section: ak = k(xk − xk+1)

and bk = k(yk − yk+1) so that x = ∑k ak⊥k and y = ∑k bk⊥k. In this ba-
sis f and g are still affine functions, so we can write f (x) = ∑i Aiai
and g(y) = ∑j Bjbj.

We note that we must have ⊥k v y if yk+1 = 0, so the inequality
must satisfy f (⊥k)g(y) ≤ f (y)g(⊥k). Noting that if we take x = ⊥k
then we have ak = 1 and the other ai’s equal to zero, and for y we
have bj = 0 if j > k. This inequality then becomes

Ak

k ∑
i≤k

Bibi ≤
Bk

k ∑
i≤k

Aibi.

Which can equally be written as

∑
i<k

bi(Bi Ak − AiBk) ≤ 0.

Since we can simply take bi = 1 for an arbitrary i (and the other bi’s
equal to zero) we must then have

Bi Ak − AiBk ≤ 0 for all 1≤ i < k ≤ n.

Now we take x and y arbitrary again.

f (x)g(y) ≤ f (y)g(x) ⇐⇒
∑

i
Aiai ∑

j
Bjbj ≤∑

i
Aibi ∑

j
Bjaj ⇐⇒

∑
i

∑
i<j

AiaiBjbj + ∑
i

∑
j≤i

AiaiBjbj ≤∑
i

∑
i<j

AibiBjaj + ∑
i

∑
j≤i

AibiBjaj.

Call fi(x) = Aiai and gi(y) = ∑i<j Bjbj, then we can write this as

∑
i
[ fi(x)gi(y)− fi(y)gi(x)] ≤∑

i
∑
j≤i

(
AibiBjaj − AiaiBjbj

)
=−∑

k
∑
i<k

bkai (Bi Ak − Bk Ai)

where in the last line we relabelled the coordinates so that it is easily
seen to be always positive (since Bi Ak − AiBk ≤ 0). We then see that
instead of adding the inequality f (x)g(y) ≤ f (y)g(x) to the partial
order, we could make a stricter partial order by adding the set of
inequalities fi(x)gi(y)≤ fi(y)gi(x). These inequalities are precisely of
the form we have already seen with fi(x) = xi − xi+1 and gi(y) =
yi+1 + ∑n

j=i+2 Ai
jyj (after rescaling). So adding an arbitrary inequality

to a partial order vA will create a partial order that in strictness lies
between vA and an intersection of partial orders vA(i), where A(i)
as a set of parameters is the same as A, but the parameters relating
to the ith inequality are taken from fi(x)gi(y) ≤ fi(y)gi(x).

With this in mind it suffices to study the family of partial orders
vA to ascertain many properties of the restricted information orders.

2.5.4 Changing parameters

We have a family of partial orders vA indexed by the set of param-
eters A that define the partial order. We will call a partial order vA
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stricter than a partial order vB iff for all x and y with x vA y we have
x vB y. That is: the identity map (Λn,vA)→ (Λn,vB) is monotone.

Let us fix a set of parameters A and pick x and y such that x vA
y. So we have fi(x)gi(y) ≤ fi(y)gi(x) for all i. We can rewrite these
inequalities to

gi(y)
gi(x)

≤ fi(y)
fi(x)

=
yi − yi+1

xi − xi+1
.

Note that only the lefthandside (LHS) depends on the parameters A.
The righthandside is constant. If we fix x and y we can view gi as a
function of the parameters. If we take the derivative of the LHS with
respect to a given parameter and this derivative is nonpositive, than
this means that increasing the parameter will decrease the LHS, so
that the inequality will still hold. We will show that the derivative to
certain parameters is always negative regardless of x and y, so that
increasing that parameter creates a less strict partial order.

The derivative to gi(y)/gi(x) with respect to Ai
j is given by the

quotient rule as

gi(x)yj − gi(y)xj

gi(x)2 .

The sign of that expression is equal to the sign of

gi(x)yj − gi(y)xj = (xi+1yj − yi+1xj) +
n

∑
k=i+2,k 6=j

Ai
k(xkyj − ykxj).

Let’s in particular look at the inequality i = n− 2 which has one free
parameter j = n. The above expression then simply becomes xn−1yn−
yn−1xn which is precisely the i = n− 1 inequality, so we know that this
is negative. So increasing An−2

n gives us a less strict partial order. We
can rewrite the i = n− 2 inequality to the following form:

xn−2yn−1− yn−2xn−1 ≤ An−2
n ((yn−2− yn−1)xn − (xn−2− xn−1)yn)

Suppose An−2
n ≥ 0 and that the righthandside (RHS) term is negative.

Increasing An−2
n would then decrease the RHS, so that at one point

the inequality stops holding. So the RHS must be positive. If An−2
n < 0

then it is a stricter partial order than the one with An−2
n = 0, so we

must have that the RHS term is positive as well.
So for any vA and x and y, if x vA y, we must have

(yn−2 − yn−1)xn − (xn−2 − xn−1)yn ≥ 0.

This inequality can be rewritten to

0≥ xn−1yn − yn−1xn ≥ xn−2yn − yn−2xn.

Now we move on to the next inequality: i = n − 3, j = n. The ex-
pression of the sign of the derivative to An−3

n is

(xn−2yn − yn−2xn) + An−3
n−1(xn−1yn − yn−1xn).
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We know that both the terms involving x and y components are neg-
ative so if An−3

n−1 is positive this expression is negative. Checking back
to the classification we have 1+ An−3

n−1 > 0. So, taking An−3
n−1 < 0 we can

write

(xn−2yn − yn−2xn) + An−3
n−1(xn−1yn − yn−1xn)

≤(xn−2yn − yn−2xn) + An−3
n−1(xn−2yn − yn−2xn)

=(An−3
n−1 + 1)(xn−2yn − yn−2xn)

≤0.

So the derivative to An−3
n is again always negative. Using the same

argument as before we get (yn−3 − yn−2)xn ≥ (xn−3 − xn−2)yn which
can be used to form a chain of inequalities:

0≥ xn−1yn − yn−1xn ≥ xn−2yn − yn−2xn ≥ xn−3yn − yn−3xn.

This allows us to continue this procedure until we get down to i = 1.
So we know that for each parameter Ai

n where 1≤ i≤ n− 1 increasing
it will create a less strict partial order, and for any set of parameters
A when x v y we have

(xi − xi+1)yn ≤ (yi − yi+1)xn for 1≤ i ≤ n− 1.

Adding these inequalities together we get

(xi − xj)yn ≤ (yi − yj)xn where 1≤ i < j ≤ n.

This turns out to be very useful.

2.5.5 Antisymmetry and non-contradicting orders

We can use the previously derived inequalities to derive some nice
properties of the partial orders vA.

lemma 2 .5 .2 : If xvA y and xn ≤ yn 6= 0 then x = y. So if xvA y then
xn ≥ yn.

Proof. Suppose we have x vA y and xn ≤ yn 6= 0. If xn = 0, then the
above inequalities directly give (xi − xj)yn ≤ 0. Taking j = n then im-
mediately gives yn = 0, so we must have xn 6= 0. Then the inequalities
proven above give

xi − xj ≤ yi − yj where 1≤ i < j ≤ n.

Specifically, taking j = n gives xi − yi ≤ xj − yn ≤ 0, so that xi ≤ yi
for all i. Because x and y are normalised, this is only possible when
x = y.

So we now know that when x vA y we have xn ≥ yn.
The lemma above also ensures that when x vA y and xn = 0, then

yn = 0. In this case all the parameters Ai
n don’t influence vA and

we can prove all the statements about increasing parameters with n
replaced by n− 1. The lemma here then works for xn−1 ≥ yn−1. In fact
we get a more general statement.
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lemma 2 .5 .3 : Let x− denote the smallest nonzero coordinate of x
and let Z(k) = #{k ; xk = 0} the zero counting function, then if
x vA y

• For all k where xk = 0 we have yk = 0, so Z(y) ≥ Z(x).

• If Z(x) = Z(y), then x− ≥ y−.

• If Z(x) = Z(y) and x− = y−, then x = y.

Proof. Note that x,y ∈ Λn, so xk ≥ xk+1, so if xk = 0, then xk+1 = 0.
So the first point follows by induction, because we know that when
xn = 0, yn = 0 and then we can reduce the situation to that of Λn−1.

If the amount of zeroes in x and y is equal, then there is a unique k
such that x− = xk and y− = yk and xk+1 = 0 and yk+1 = 0. But then x
and y are in the situation of the previous lemma, so we get x− = xk ≥
yk = y−.

If furthermore we also have x− = y−, then we have x− ≤ y−, so by
the previous lemma we get x = y.

This allows us to define a useful map.

theorem 2 .5 .4 : Define µ− : Λn→ [0,∞)∗ as µ−(x) = 2n− 3− 2Z(x)+
x−. µ− is a strict monotonic map for any vA.

Proof. The constant 2n − 3 in µ− is chosen so that µ−(>1) = 0, it
doesn’t affect any of the properties of µ−. Let x vA y. We know that
Z(y) ≥ Z(x). If Z(y) is strictly greater than Z(x), than in particular
−2Z(y) + y− ≤ −2Z(y) + 1 < −2Z(x) ≤ −2Z(x) + x−, so µ−(x) ≥
µ−(y). If Z(x) = Z(y), then we know that x− ≥ y−, so still µ−(x) ≥
µ−(y). This proves the monotonicity of µ−.

For strictness assume that x vA y, and µ−(x) = µ−(y). We then
must have Z(x) = Z(y), so that from µ−(x) = µ−(y) we get x− = y−.
Using the previous lemma then gives us x = y.

Note that the map µ− is not Scott-continuous: take an arbitrary point
x ∈ int(Λn), and let z(t) = (1− t)x + t>1, and construct the sequence
xi = z(1− 1/i). This sequence is obviously increasing with limit and
join >1. Z(xi) = 0 while Z(>1) = n − 1, so there is no way that
limµ−(xi) = µ−(lim xi).

The existence of this map has an important consequence. First of
all: we haven’t actually shown yet that the vA are partial orders!
But now it follows easily, because when x vA y and y vA x, we have
µ−(x)≥ µ−(y) and µ−(y)≥ µ−(x), so that µ−(x) = µ−(y) which gives
x = y. So the vA are indeed antisymmetric.

Furthermore, call two partial orders v1 and v2 on the same set
contradicting if there exist x and y 6= x such that x v1 y and y v2 x.
We then immediately see that the vA are not contradicting because
of the µ− map. The restrictions that produced these partial orders are
strict enough to ‘force’ the comparisons in a certain direction.

lemma 2 .5 .5 : The renormalised Löwnner orders also don’t contra-
dict any restricted order.



2.5 classification of restricted information orders 35

Proof. The order v−L also has µ− as a strict monotone map, so this fol-
lows immediately. For v+ we have to do a little bit more work to get
the same result. Suppose x vA y. We have already seen that we then
have (xi − xj)yn ≤ (yi − yj)xn where i < j (we’ll assume xn,yn 6= 0, the
argument still works if these are zero). Take i = 1, and rewrite the in-
equalities to x1yn− y1xn ≤ xjyn− yjxn. Now suppose that yv+

L x. This
implies x1yn ≥ y1xn so that xjyn − yjxn ≥ 0 for all j. We can rewrite
this to xjyn ≥ yjxn. x vA y implies xn ≥ yn so that this inequality can
only be satisfied when xj ≥ yj for all j, but then x = y.

Because the restricted information orders don’t contradict we could
consider the ‘union’ of the partial orders. This turns out to be a re-
stricted information order as well.

2.5.6 The maximum restricted order

Consider the specific case of n = 3. A partial order vA is then given by
one parameter, and has the form xvA y iff x2y3≤ y2x3 and f (x)g(y) =
(x1− x2)(y2 + A1

3y3)≤ (y1− y2)(x2 + A1
3y3) = f (y)g(x). We have shown

in the previous section that increasing A1
3 gives a more general (less

strict) partial order. It would then seem that in the limit of taking this
value to infinity we would get the most general partial order.

Suppose x3 6= 0 and y3 6= 0. Note that we can rescale the inequality
f (x)g(y) ≤ f (y)g(x) by an arbitrary constant. Divide it by A1

3 so that
the expression will remain bounded when A1

3 → ∞. Then we have
g(y)/A1

3→ y3. In the limit the inequality would become (x1− x2)y3≤
(y1 − y2)x3. Note that the other inequality x2y3 ≤ y2x3 can also be
written as (x2 − x3)y3 ≤ (y2 − y3)x3 so that the partial order now is

x v y ⇐⇒ (xk − xk+1)yn ≤ (yk − yk+1)xn for 1≤ k ≤ n− 1.

This is the case for y3 6= 0 and x3 6= 0. If we have x3 = 0, then by
necessity also y3 = 0 in which case the partial order simplifies to xv y
iff x1y2 ≤ y1x2 which is the unique information order on Λ2.

There is one case left: y3 = 0 and x3 6= 0. In this case for very large
A1

3 the inequality gets close to

(x1 − x2)y2 ≤ (y1 − y2)A1
3x3.

We must again distinguish two cases. If y1 6= y2, then the RHS blows
up while the LHS stays bounded, so in this case the inequality would
be trivial. The other inequality (x2− x3)y3 = 0≤ (y2− y3)x3 = y2x3 is
also trivially satisfied. If y1 = y2 then the RHS is zero, so that this in-
equality is only satisfied when x1 = x2 (this is simply the degeneracy
condition).

This motivates the definition of the maximal order.

definition 2 .5 .6 : For x,y ∈ Λn we set x vn
max y if and only if one

of the following mutually exclusive options hold.

• yn = xn = 0 and x vn−1
max y.

• xn,yn 6= 0 and for all 1≤ k≤ n− 1 we have (xk − xk+1)yn ≤
(yk − yk+1)xn.
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• yn = 0 and xn 6= 0 and for all 1 ≤ k ≤ n− 1 such that yk =

yk+1 we have xk = xk+1.

The base case v2
max is defined as x v2

max y iff x1 ≥ y1.

We call vn
max the maximal restricted order on Λn.

theorem 2 .5 .7 : vn
max is indeed the maximal restricted order:

• vn
max is a restricted information order.

• If x vA y for any vA and x,y ∈ Λn, then x vn
max y.

Proof. We prove by induction. We know that v2
max is a restricted infor-

mation order and for n = 2 any vA is equal to the unique information
order on n = 2. Suppose it is true for vn−1

max . Reflexivity is trivial. For
transitivity we have to distinguish cases. Let x vn

max y and y vn
max z.

If xn = yn = zn = 0 we reduce to vn−1
max . So suppose xn 6= 0. If yn = 0

then zn = 0, and for all k where zk = zk+1 we have yk = yk+1 so that
xk = xk+1, so x vn

max z. When yn 6= 0 and zn = 0 we can do it similarly.
When xn,yn,zn 6= 0, we rewrite the inequalities to xk−xk+1

xn
≤ yk−yk+1

yn
in

which case transitivity is clear.
For antisymmetry we can assume that x and y contain no zero

coordinates since otherwise we would simplify to vn−1
max . So x vn

max
y and y vn

max x would give (xk − xk+1)yn = (yk − yk+1)xn. We can
rewrite this to xkyn − ykxn = xk+1yn − yk+1xn. For k = n − 1 we get
0 = xn−1yn − yn−1xn. So we in fact get yk

xk
= yn

xn
for all k. If we suppose

that xn 6= yn, then we see that either yk > xk for all k or yk < xk for
all k, both can’t happen. So we must have xn = yn, which then gives
yk = xk for all k, so x = y.

The proof that this partial order allows mixing is similar to the
proof that the renormalised Löwner orders allow mixing. That ⊥n is
the minimal element and that >1 is the maximal element can simply
be checked directly.

Now suppose x vA y. vA satisfies the degeneracy condition so we
know that when yk = yk+1 6= 0 then xk = xk+1 6= 0 and when xn = 0
then yn = 0. So if yn = 0 and xn 6= 0, we immediately have xvn

max y. If
xn,yn 6= 0 we have already seen that we can derive that (xi − xj)yn ≤
(yi − yj)xn for all 1 ≤ i < j ≤ n− 1, so that we also have x vn

max y. If
xn = yn = 0 we use the induction hypothesis.

vn
max is less well behaved than the vA. In particular, it is not closed

and it is not a dcpo. We will show this explicitly: Take an arbitrary
element x = (x1, x2, x3,0, . . . ,0) ∈ Λn with x1 > x2 > x3 and let ⊥2 =

( 1
2 , 1

2 ,0, . . . ,0) ∈ Λn. We know that x vn
max ⊥2 is not the case because

(⊥2)1 = (⊥2)2 while x1 6= x2. Define z(t) = (1 − t)x + t⊥2, and let
xi = z(1− 1/i) for i ≥ 1, so x1 = x and all the xi have their first three
coordinates nonzero and the rest zero, so to derive if xi vn

max xj we can
restrict to n = 3. We have (x1− x2)z(t)3 = (x1− x2)(1− t)x3≤ (z(t)1−
z(t)2)x3 = (1 − t)(x1 − x2)x3 and x2z(t)3 = (1 − t)x2x3 ≤ z(t)2x3 =

(1− t)x2x3 + t 1
2 x3, so xvn

max xi for all i. We can use the same argument
to show that xi is an increasing sequence. Any element y = (p,1−
p,0, . . . ,0) with p > 1

2 is an upper bound of this sequence. In fact, we
can set yk =

1
2 (1+ 1/k,1− 1/k,0, . . . ,0) which is a decreasing sequence
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of upperbounds of (xi). This sequence has a highest lower bound: ⊥2.
Since ⊥2 is not a upper bound of (xi) we see that (xi) has no least
upper bound.

The reason vn
max is not a dcpo is because we had to exclude ele-

ments like ⊥2 from being above any nondegenerated element to pre-
serve the degeneracy condition. If we were to include these elements
in the uppersets we would have a dcpo, but in that case by transi-
tivity x v ⊥2 v (0,1,0), so if we want to preserve mixing we would
also have to include the line between x ∈ Λ3 and (0,1,0). In fact: the
smallest information order that is a dcpo that covers vn

max is v−L . This
is best seen when comparing the uppersets in a picture. See Figure 5.

(a) v3
max. (b) v−L .

Figure 5: Upperset (red) and downset (blue) of the distribution y =
1

30 (15,10,5) with respect to v3
max and v−L . Note that ⊥2 is not in

the upperset in the case of v3
max.

2.5.7 Entropy

The Shannon entropy µS(x) = −∑i xi log xi is a strict monotone Scott-
continuous map for the Bayesian order [10]. We can wonder when
this is the case for the other information orders as well.

We turn back to the method of taking the derivatives of the param-
eters to prove inequalities about the partial orders. Suppose x vA y.
Recall that the sign of the derivative with respect to Ak

i of the LHS of

gk(y)
gk(x)

≤ fk(y)
fk(x)

is equal to the sign of

gk(x)yi− gk(y)xi = xk+1yi− yk+1xi +
i−1

∑
j=k+2

Aj(xjyi− yjxi)−
n

∑
j=i+1

Aj(xiyj− xjyi).

In Section 2.5.4 we showed that for i = n this expression is always
negative, which also produced the inequalities

0≥ xkyn − ykxn ≥ xk−1yn − yk−1xn

for 1 ≤ k ≤ n − 1. Now set k = n − 3 and i = n − 1, then the sign
equation is

xn−2yn−1 − yn−2xn−1 − An−3
n (xn−1yn − yn−1xn).



38 ordering distributions

Recall that the (n− 2)th inequality is

(xn−2 − xn−1)(yn−1 + An−2
n yn) ≤ (yn−2 − yn−1)(xn−1 + An−2

n xn)

which can be rewritten to

xn−2yn−1− yn−2xn−1 ≤ An−2
n [(yn−2− yn−1)xn − (xn−2− xn−1)yn].

We have already seen that (yn−2 − yn−1)xn − (xn−2 − xn−1)yn ≥ 0, so
if An−2

n ≤ 0, then the RHS is negative, which means that xn−2yn−1 −
yn−2xn−1 ≤ 0. Looking back at the sign equation for k = n − 3 and
i = n− 1 we can see that if we also take An−3

n ≤ 0, the expression will
always be negative. We will then get some new inequalities we can
use in our derivations of the sign of An−4

n−1, and we can continue this
procedure. The inequalities resulting from this procedure are

(xi − xj)yk ≤ (yi − yj)xkfor all 1≤ i < j ≤ k ≤ n.

The clue here is that we took the parameters to be negative. If some
parameters are positive then we can’t say anything in general about
the sign of the derivative of Ak

j . For the partial orders given by small
(negative) parameters we can say something general.

lemma 2 .5 .8 : Let vA and vB be restricted information orders given
by sets of parameters A and B, with Ak

j ≤ 0 for all k and j. If
Ak

j ≤ Bk
j for all k and j, then vA is stricter than vB: x vA y

implies x vB y.

Proof. For all components where Bk
j is negative this follows directly

from the sign equations as defined above. If some of the components
of B are positive it follows because we can start from the lowest values
of j and work our way up. So let C be the set of parameters given
by Ck

j = min(0,max(Ak
j , Bk

j )), then it should be clear that vC is less
strict than vA. Then we can pick the lowest j and k such that Bk

j ≥ 0.
Increasing this parameter on C still gives a more general order, since
all the relevant parameters in C for this to hold are nonpositive, so
let C′ be C but with Ck

j = Bk
j , then vC′ lies above vC. We can then

carry on to the next positive parameter which only depends on the
parameters with a higher value for k and j. In the end we indeed have
vA stricter than vB.

Recall that the Bayesian order is given by vA with Ak
j = 0 for all

k and j. This lemma shows that the Bayesian order is the maximal
order with respect to these negative parameter orders. It then follows
that these orders also allow Shannon entropy as a strict monotone
Scott-continuous map (Scott-continuity folllows from the continuity
of the entropy function and the closedness of the orders).

We can now also consider a minimal information order as the or-
der given by the intersection of all the vA’s. Since the RIO’s with
negative parameters are already stricter than the ones with positive
parameters, we only have to consider the intersection of the negative
parameter orders. For illustration, consider the n = 3 case. Then there
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is one free parameter A1
3, and we have the condition 1 + A1

3 > 0, so
the intersection would consist of taking the limit A1

3→−1. Let’s look
at the order given by A1

3 = −1. It looks like

xv y ⇐⇒ (x1− x2)(y2− y3)≤ (y1− y2)(x2− x3) & x2y3 ≤ y2x3.

This works completely fine as an information order, except when we
have a pair x and y with x1 = x2 and x2 = x3 and y2 = y3. In this
case both inequalities reduce to 0 ≤ 0, so that x v y and y v x. The
problem is that x has a double degeneracy that the first inequality
can’t deal with. Fortunately, this is only the case when x1 = x2 = x3

in which case x = ⊥3. So this problem is easily fixed by adding the
extra requirement to the above order that y 6= ⊥3.

For n > 3 there are multiple parameters that we could take the limit
of. In general these all produce different partial orders, where one is
not stricter than the order. The minimal order is then the intersection
of all these limit orders. This order is the following:

xvn
min y ⇐⇒ y 6=⊥n and (xk− xk+1)(yk+1− yj)≤ (yk− yk+1)(xk+1− xj)

for all 1≤ k < j ≤ n.
The Bayesian order is not the maximal restricted order having Shan-

non entropy as a measurement. As a counter example let

xvE y ⇐⇒ (x1− x2)(1− y1)≤ (y1− y2)(1− x1) & xkyk+1≤ ykyk+1

for all 2 ≤ k ≤ n− 1. This partial order looks almost the same as the
Bayesian order except for the first inequality. Note that this partial
order is given by Aj

k = 0 for 2 ≤ j < k ≤ n, and A1
k = 1 for 3 ≤ k ≤ n

where we use that y2 + ∑n
k=3 A1

kyk = y2 + ∑n
k=3 yk = 1− y1 due to the

normalisation of y. Because these parameters are all bigger than (or
equal to) zero this order is indeed less strict than the Bayesian order.

lemma 2 .5 .9 : The order vE has the following properties.

• The map µ+ : Λn → [0,∞)∗, µ+(x) = 1− x1 is a measure-
ment.

• If x vE y then there is a k such that yi ≥ xi for i ≤ k and
yi ≤ xi for i > k.

• vE allows Shannon Entropy as a measurement.

Proof. Let x vE y, and suppose x1 ≥ y1. Then 1− x1 ≤ 1− y1. Since
(x1 − x2)(1 − y1) ≤ (y1 − y2)(1 − x1) we must then have x1 − x2 ≤
y1 − y2. Rewriting then gives 0 ≤ x1 − y1 ≤ x2 − y2, so that x2 ≥ y2.
The second inequality is x2y3 ≤ y2x3 which then gives y3 ≤ x3. We
repeat so that we get xk ≥ yk for all k. This is only possible when
x = y. So if x vE y we have y1 ≤ x1, and if x1 = y1 then x = y. This
proves that µ+ is strict monotone. Scott-continuity follows from the
continuity of the map and the closedenss of vE.

Let x vE y. Suppose that xk ≥ yk for a k ≥ 2. Then xkyk+1 ≤ ykxk+1,
so then also xk+1 ≥ yk+1. So if for some k, xk ≥ yk, then also xj ≥
yj for all j ≥ k. Since xn ≥ yn and x1 ≤ y1, there is a minimal such
k. The proof that vE has Shannon Entropy as a measurement then
follows completely analogous to the proof that the Bayesian order
allows Shannon Entropy as a measurement in [10].
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At the moment it is not clear if this is the maximal restricted order
that is compatible with Shannon entropy.

The majorization preorder is a partial order when restricted to Λn

and is given by

x vM y ⇐⇒
k

∑
i=1

xi ≤
k

∑
i=1

yi for all 1≤ k ≤ n.

It is well known that the majorization order is monotone over all
Schur-convex functions, an example of which is Shannon Entropy
[22, Chapter 12]. This means that an order that contradicts the ma-
jorization order on a pair of points can’t be monotone over Shannon
Entropy. Note that µ− is monotone over vM. This means that any re-
stricted information order is compatible with majorization. Majoriza-
tion is also monotone over µ+. Note that majorization does not satisfy
the degeneracy conditions, so it doesn’t extend to an information or-
der on ∆n. The maximum order vn

max does not agree with entropy, but
it still allows µ− as a strict monotone map, so it doesn’t contradict ma-
jorization. This shows that non-contradiction with majorization is not
enough to prove that it is compatible with entropy.
vE is not the least restrictive information order that has µ+ as a

measurement.

xv1 y ⇐⇒ (xk− xk+1)(1−
k

∑
i=1

yi)≤ (yk− yk+1)(1−
k

∑
i=1

xi) for 1≤ k≤ n− 1.

We call it v1, because this is the order where Ak
j = 1 for all k and j.

Suppose again that x v1 y and x1 ≥ y1, then as in the other lemma
we get x2 ≥ y2. We then have x1 + x2 ≥ y1 + y2, so using the second
inequality we must have x2 − x3 ≤ y2 − y3, which rewrites to 0 ≤
x2 − y2 ≤ x3 − y3 so that x3 ≥ y3. Rinse and repeat: xk ≥ yk for all k,
so x = y. This order does not have the property that xk ≤ yk for small
k and xk ≥ yk for large k, so the proof that vE has Shannon entropy
as a measurement can’t be applied here. It is not clear if this partial
orders is compatible with entropy. Some new proof method would be
needed. Note that for n ≤ 3, v1 and vE are the same.

2.6 domains

theorem 2 .6 .1 : Λn is a domain (continuous dcpo) when equipped
with any vA.

Proof. This proof is an adapted more general version of the proof that
the Bayesian order is a domain as given in [10]. We have already seen
that vA is a dcpo, so we only have to show that vA is continuous: that
for each y ∈ Λn Approx(y) is a directed set with least upper bound
y. Since vA is an upwards small partial order, it suffices to find an
increasing sequence (xi) with ∨xi = y such that xi� y. We will show
that x(t)� y for t < 1 with x(t) = (1− t)⊥n + ty which proves the
statement.

Let an→ a with join/limit a such that y v a. We note that we then
have fk(y)gk(a)− fk(a)gk(y) ≤ 0 for all k. Since all the fk and gk are
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continuous and the an are converging, for any ε > 0 there will be an N
such that for all n > N we have fk(y)gk(an)− fk(an)gk(y)≤ ε. We note
further that if fk(an) = 0 then either fk(a) = 0 in which case fk(y) = 0
so that we can ignore this kth inequality, or fk(a) > 0, in which case
there is an N such that fk(an) >

1
2 fk(a) for all n > N. Now choose

ε =
1
4

1− t
t

min{ fk(a)gk(⊥n) ; ∀k : fk(a) 6= 0} .

Since gk(⊥n) > 0 for all k we have ε > 0, then take N such that for
all n > N we have fk(y)gk(an)− fk(an)gk(y) ≤ ε and fk(an) >

1
2 fk(a).

Pick a n > N. We can now calculate:

fk(x(t))gk(an)− fk(an)gn(x(t))

=t fk(y)gk(an)− fk(an)[(1− t)gk(⊥n) + tgk(y)]

=t( fk(y)gk(an)− fk(an)gk(y)]− (1− t) fk(an)gk(⊥n)

≤tε− (1− t) fk(an)gk(⊥n)

≤1
4
(1− t) fk(a)gk(⊥n)− (1− t) fk(an)gk(⊥n)

≤0

for all k where fk(a) 6= 0. If fk(a) = 0 then fk(y) = 0 so because x(t)≤ y
we also have fk(x(t)) = 0 so that the kth inequality trivially holds. So
x(t) v an. Since the sequence (an) was arbitrary we have x(t)� y
which proves that (Λn,vA) is a domain.

We can use a similar argument for v+
L : recall that it was defined

as x v+
L y iff x+yk v y+xk. Now if for a certain k yk = y+, then we

must also have xk = x+. This means that when an → a increasing
and x v y v a, there is a k such that ak = a+, yk = y+, xk = x+ and
a+n = (an)k. So writing fi(x) = xk = x+ and gi(x) = xi for all i we can
use exactly the same argument as above. So v+

L is also a domain.
When restricted to Λn, the second renormalised Löwner order is

also a domain: when we only consider x,y ∈ Λn we can write

x v−L y ⇐⇒ Z(x)< Z(y) or xky− ≤ ykx−for all k with xk,yk 6= 0

where Z(x) is the zero counting function. Again let x(t) = (1− t)⊥n +

ty for 0 ≤ t < 1 then Z(x(t)) = 0. Let am → a be an increasing se-
quence. Suppose (am) contains an element with Z(am) > 0, then we
have x(t) v−L am and we are done, so assume Z(am) = 0. Suppose
Z(a) > 0, then (am)n → 0. But then x(t)k(am)n → 0 ≤ (am)kxn, so at
some point x(t) v−L am. So finally suppose Z(a) = 0, then if y v−L a
we also have Z(y) = 0. But in this case we can just set fi(x) = xi and
gi(x) = xn and use the same arguments as above.

We have now shown that all these partial orders are domains when
restricted to Λn. However they do not produce domains on ∆n in
general. This is best illustrated with a picture: see Figure 6.

Let y = (y1,y2,y3) with y1 > y2 > y3 > 0 and a =>1 = (1,0,0), then
yv a and construct an = (1− 1

n ,0, 1
n ) for n≥ 3, then an is an increasing

sequence with join a. For any vA and v−L there is not any element in
int(Λn) that is bigger then any of these (an), so there can’t possibly
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a

y

a1 a2 a3 a4 a5 a6

Figure 6: An increasing sequence an → a = (1,0,0). Upperset and downset
of y are denoted in red and respectively blue.

be an increasing sequence that converges to y (which is in the interior
of Λn).

The maximum eigenvalue Löwner order is still a domain on ∆n.
The argument used in Theorem 2.6.1 also works for v+ in ∆n. The
reason why it doesn’t fail for this specific an is because >1 is in the in-
terior of the upperset of any element, so that any sequence converging
to the top element will at some point lie in the upperset itself.

2.7 summary and conclusions

In this chapter we defined a new kind of structure called an informa-
tion order. These are partial orders on ∆n that carry a certain kind
of information-like structure. We looked in detail at a certain class of
these orders called restricted information orders (RIO’s) and found
that these can be classified by a group of real parameters. See Fig-
ure 7 for a short summary of the different properties of a couple of
information orders encountered.

Name Symbol Measurements Restricted? dcpo? closed? domain?

Bayesian order vB µ−,µ+,µS X X X X

RIO parametrized by A vA µ− X X X X

Maximal order vn
max µ− X X X X

Minimum eigenvalue v−L µ− X X X X

Maximum eigenvalue v+
L µ+ X X X X

Figure 7: Table of the various information orders encountered and their
properties.

Note that all the orders in the table that are dcpo’s are also do-
mains when restricted to Λn, the monotone sector. The only order
found so far that is also a domain on the entirety of ∆n is v+

L . With
‘measurements’ we mean maps that are strict monotone in that or-
der. µ+(x) = 1− x+ and µS the Shannon entropy are continuous so
that they are also Scott-continuous for closed partial orders. µ− is not
continuous and is also not Scott-continuous.
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We’ve seen that some restricted information orders have Shannon
entropy as a measurement and some have µ+ as a measurement (Sec-
tion 2.5.7), but is not yet clear whether these are the maximal orders
with these properties. It is also not yet clear if v+

L has µS as a mea-
surement.

Other open questions relate to what kind of information orders ex-
ist that are not of the restricted kind like the renormalised Löwner
orders. v+

L still satisfies the degeneracy condition on the first coordi-
nate, while v−L satisfies it on the last coordinate, perhaps there are
other information orders that only satisfy the degeneracy condition
on the kth coordinate?

It is clear that for an information order to be a domain on ∆n any
element x ∈ Λn must have >1 in the interior of its upperset. This
means that any information order that is also a domain can’t have
the degeneracy condition on the kth coordinate for k≥ 2. Information
orders that are domains will in that sense be ‘similar’ to v+

L . We’ll
investigate this in more detail in the following chapter.

We’ll also look at how the orders studied here can be extended to
the space of density operators. In particular, we’ll take a closer look at
v+

L and v−L and see that they have some more interesting properties.





3
O R D E R I N G D E N S I T Y O P E R AT O R S

In the previous chapter we looked at information orders on the space
of probability distributions. In this chapter we will extend this idea to
the space of density operators. We will also define some extra prop-
erties and hypothesise that the maximum eigenvalue renormalised
Löwner order is the unique order satisfying these properties.

3.1 preliminaries

definition 3 .1 .1 : A linear operator1 A : Cn→ Cn is called positive
when for all v ∈ Cn, v† Av ≥ 0. We denote the space of positive
operators on Cn as PO(n). If A is positive we also write A ≥ 0.

A positive operator is necessarily Hermitian, so it has a spectrum
of eigenvalues. It is not too hard to see that a Hermitian operator
is positive iff all its eigenvalues are nonnegative. Note that if A, B ∈
PO(n) and r ∈ R≥0, then A + B ∈ PO(n) and tA ∈ PO(n), so PO(n)
is a cone (a special type of convex subspace) in the space of linear
operators on Cn.

definition 3 .1 .2 : A matrix U is called unitary if U−1 = U†. If A as
a matrix is written in a certain orthonormal basis, then for any
basis transformation there is a unitary U such that A written in
that basis is UAU†. We denote the space of unitary matrices as
U(n).

definition 3 .1 .3 : For a given orthonormal basis (ei) we call a lin-
ear operator M diagonal with respect to this basis iff Mei = λiei
for a set of eigenvalues λi. Denote the space of Hermitian diago-
nal matrices on Cn as Diag(n). For any Hermitian matrix A we
can find an unitary U and a diagonal D such that A = UDU†.

Note that Diag(n) ∼= Rn since for a Hermitian matrix all the eigen-
values are real and PO(n)∩Diag(n) ∼= Rn

≥0.

definition 3 .1 .4 : The trace of a matrix M is given by Tr(M) =

∑i e†
i Mei where (ei) is an orthonormal basis.

lemma 3 .1 .5 : Let M, N and K be matrices, U unitary, A a Hermitian
matrix with A = UDU† where D = diag(λ1, . . . ,λn) is diagonal.
The trace has the following properties.

• The trace of a matrix is linear and independent of the cho-
sen orthonormal basis.

• The trace is permutation invariant: Tr(MNK) = Tr(KMN) =

Tr(NKM).

1 We will use the terms ‘operator’ and ‘matrix’ interchangeably in this chapter.
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• The trace is invariant under basis change: Tr(UMU†) =

Tr(M).

• The trace of a Hermitian matrix is equal to the sum of its
eigenvalues: Tr(A) =Tr(UDU†) = Tr(D) = ∑i e†

i Dei = ∑i λi.

• The trace of a positive matrix B is positive and is zero iff
B = 0.

definition 3 .1 .6 : We call a positive operator A normalised iff Tr(A) =

1. A normalised operator is also called a density operator. The
space of density operators is denoted as DO(n). Note that DO(n) =
{A : Cn → Cn linear ; A† = A, A ≥ 0,Tr(A) = 1}. We will from
now on denote density operators by greek letters (such as ρ and
π).

All the density operators are positive and thus Hermitian. This
means that for ρ ∈ DO(n) we can find a unitary matrix U and diago-
nal matrix D such that ρ = UDU†. We have 1 = Tr(ρ) = Tr(D) = ∑i λi.
Since λi ≥ 0 and ∑i λi = 1, the eigenvalues of ρ form a probability dis-
tribution. So in fact we have Diag(n) ∩ DO(n) ∼= ∆n. Because of this
we will simply denote the space of diagonal density operators as ∆n

and identify them with probability distributions.
This is no coincidence. A probability distribution is a classical no-

tion of a state: a configuration that a classical system can be in. A
density matrix on the other hand represents a quantum state. Such a
state can be more complex because there are observables that don’t
commute with each other (such as position and momentum). This is
represented in DO(n) by the fact that not all density matrices can
be diagonalised simultaneously. The diagonal density operators can
then be seen as the subspace where all the observables do commute,
so this is again a purely classical state.

In the previous chapter we were discussing orders that capture the
idea of information content on classical states (probability distribu-
tions). Can we extend these to these quantum states (density matri-
ces). This is in fact the case.

definition 3 .1 .7 : Define the uniform distribution of DO(n) as ⊥n =
1
n In where In is the identity operator on Cn. ⊥n is obviously di-
agonal and when interpreted as en element of ∆n it is precisely
the uniform distribution in ∆n.The pure states of DO(n) are pre-
cisely the rank-1 projections, or in other words: ρ ∈ DO(n) is a
pure state if there is a normalised vector v ∈Cn such that ρv = v
(so v is an eigenvector of ρ with eigenvalue 1. By normalisation
all the other eigenvalues are then equal to zero).

theorem 3 .1 .8 : Let v be an information order as defined in Defini-
tion 2.1.6 on ∆n. This extends to a partial order on DO(n) that
allows mixing with least element ⊥n and the pure states as the
maximal elements.

Proof. For ρ,π ∈ DO(n) define ρvDO(n) π iff there is a U ∈U(n) such
that UρU†,UπU† ∈ ∆n (that is: π and ρ can be diagonalised at the
same time) and UρU† vUπU†.
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Simultaneous diagonalisability defines an equivalence relation on
DO(n) so the transitivity, reflexivity and antisymmetry of v carries
over to vDO(n). Note that the unitary matrix U is not uniquely de-
fined: we can permute the coordinates in the basis and still be left
with diagonal matrices, but this doesn’t matter for the partial order
precisely because v is permutation invariant.

For any U ∈ U(n) we have U⊥nU† = 1
n UInU† = ⊥nUU† = ⊥n, so

⊥n is simultaneously diagonalisable with any density matrix, so it is
indeed the least element. For any ρ we have the n pi that project to one
of the eigenspaces of ρ. When simultaneously diagonalised, these pi
have a 1 somewhere on the diagonal and zeroes everywhere else, so
they are represented as the >i on ∆n, which indeed makes them max-
imal elements by the properties of v. That vDO(n) also allows mixing
follows from the mixing property on v and the fact that if ρ and π

are simultaneously diagonalisable, then any convex combination of
them will also be simultaneously diagonalisable.

It is also true that if v is closed or a dcpo on ∆n that this extension
will also be closed or a dcpo on DO(n). None of these extensions will
be a domain. This can be demonstrated using the same argument as
is demonstrated in Figure 6: for any π we can make an increasing
sequence converging to the projection operator of the highest eigen-
value of π such that this increasing sequence is everywhere written
in a different basis than π is.

Although these extensions give information-like orderings on DO(n)
they might be considered too restrictive: the requirement that opera-
tors be simultaneously diagonisable for them to be comparable is
very strong and trows away most of what makes DO(n) interesting.
We might hope there is a better set of information orders on DO(n).

On the space of positive operators PO(n) there is a natural choice
of partial order [15].

definition 3 .1 .9 : Define the Löwner order vL on PO(n) as follows.

A vL B ⇐⇒ B− A ≥ 0.

lemma 3 .1 .10 : Some properties of the Löwner order.

• The Löwner order is invariant under basis transformations
(unitary invariant), allows mixing and has zero as the unique
least element.

• The Löwner order is downwards small (so the dual is a
dcpo).

• The Löwner order has kernel inclusion: if AvL B and Bv =
0 for some v, then Av = 0. In other words ker(B)⊆ ker(A).

• The trace is strict monotone. For the dual order the trace
is also Scott-continuous when we consider Tr: PO(n) →
[0,∞)∗.

Proof. Let U be a unitary operator and suppose A v B, so for all v:
v†(B− A)v ≥ 0. Since this holds for all v. This also holds for all Uv,
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as U is a bijection of Cn. Then for all v: (Uv)†(B− A)(Uv)≥ 0 which
can be rewritten to v†(U†BU −U† AU)v ≥ 0, so U† AU vU†BU.

Define C = (1 − t)A + tB for 0 ≤ t ≤ 1. Then C − A = t(B − A)

and B− C = (1− t)(B− A), so it is clear that when A v B then also
A v C v B for all t.

Suppose A v B, then B − A ∈ PO(n), so then Tr(B − A) ≥ 0, and
by linearity of the trace: Tr(B)≥ Tr(A). So the trace is monotone over
the Löwner order. Furthermore if Tr(B) = Tr(A) then Tr(B− A) = 0
and since B − A is a positive operator, we must then have B − A =

0, so B = A, which proves strictness. The monotonicity of the trace
means that the downset of a positive operator B is contained in {A ∈
PO(n) ; Tr(A) ≤ Tr(B)} which is a bounded set. Now downwards
smallness follows if we prove that the Löwner order is closed. To do
this note that fv(A) = v† Av is a linear (and thus continuous) map
to the real numbers. So suppose Ci → C converging and that B v
Ci for all i. Then Ci − B → C − B and for a given v fv(Ci − B) ≥
0. fv is continuous so it preserves limits, so that we then also have
fv(C− B) ≥ 0 for any v which proves that B v C. The same holds for
downsets of B. The Scott-continuousness of the trace with respect to
the dual order then follows by noting that the trace is a continuous
map.

theorem 3 .1 .11 : The dual of the Löwner order is a domain.

Proof. Since the Löwner order is downwards small, the dual is up-
wards small, so it suffices to find for each B ∈ PO(n) an increasing se-
quence A(t) such that A(t)→ B and A(t)� B, and to prove this con-
dition we only need to work with converging increasing sequences.

Define A(t) = tIn + B, then A(t) − A(t′) = (t − t′)In so it is clear
that A(t) is increasing for t→ 0 and that A(t)→ B as t→ 0. Note that
PO(n) is a subset of the Euclidean space Cn2

, so it is a metric space.
There are multiple equivalent metrics but for this proof it is easiest if
we work with the sup-norm induced metric:

d(A, B) = sup
v,w

{∣∣∣∣v†(A− B)w
‖v‖‖w‖

∣∣∣∣} .

Let Ci → C be an increasing sequence such that B v∗ C, so B− C ≥
0. Because of upwards smallness the sequence is converging in the
metric. In particular from some i onward we have d(Ci,C)≤ t, which
means that for all normalised v: v†(C− Ci)v ≥ −t. Then we have for
all normalised v:

v†(A(t)− Ci)v = v†(B− Ci)v + tv† Inv = v†(B− C + C− Ci)v + t

=v†(B− C)v + v†(C− Ci)v + t ≥ v†(B− C)v− t + t ≥ 0.

So A(t)v∗ Ci and since this increasing sequence was arbitrary A(t)�
B.

While the dual of the Löwner order is a domain, the Löwner order
isn’t even directed complete. This is because any sequence An = n · A,
is increasing and obviously does not have any least upper bound. The
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restriction of PO(n) to any compact subset is directed complete with
the Löwner order.

The Löwner order might be seen as a good candidate for an infor-
mation order on DO(n), but unfortunately as the strict monotonicity
of the trace demonstrates, when restricted to DO(n) the Löwner or-
der is trivial: ρ v π if and only if ρ = π. Fortunately there are some
other candidates.

3.2 renormalising the löwner order

We revisit the two renormalised Löwner orders that we looked at
in Chapter 2, but now we define them in the bigger context of the
density operators. So first of all, some definitions.

definition 3 .2 .1 : Let ρ ∈ DO(n) with its set of eigenvalues in de-
scending order (with degeneracies) (λ1, . . . ,λk,0, . . . ,0) with cor-
responding eigenvectors vi, then ρ+ = λ1 denotes the maximum
eigenvalue of ρ. ρ− = λk denotes the smallest nonzero eigen-
value. Define Lλj(ρ) = {v ∈Cn ; ρv = λjv} the linear span of the
jth eigenvalue, and specifically L+(ρ) = Lρ+(ρ) and similarly for
ρ−. The kernel of ρ is given by ker(ρ) = {v ∈ Cn ; ρv = 0}.

We are now ready to define the renormalised Löwner orders.

definition 3 .2 .2 : For ρ,π ∈ DO(n) define

ρ v+ π ⇐⇒ ρ

ρ+
− π

π+
≥ 0 ⇐⇒ π+ρ− ρ+π ≥ 0.

v+ is called the maximum eigenvalue order.

lemma 3 .2 .3 : v+ has the following properties.

• v+ is closed and a dcpo.

• If ρ v+ π then ker(ρ) ⊆ ker(π).

• If ρ v+ π then L+(π) ⊆ L+(ρ).

• v+ allows mixing.

• v+ is unitary conjugation invariant: for all U ∈U(n): ρv+

π iff UρU† v+ UπU†.

• The uniform distribution ⊥n is the least element and the
pure states are the maximal elements.

Proof. We can viewv+ as being implemented by the map F : DO(n)→
(PO(n),v∗L) where F(ρ) = ρ/ρ+ in the sense of Theorem 1.4.6: F is
continuous and injective and v∗L is a closed partial order. Further-
more DO(n) is a compact metric space, so F induces a small partial
order on DO(n), which is v+. So v+ is a dcpo and closed.

Let v ∈ Cn be a normalised vector. If ρv = 0, then −ρ+v†πv ≥ 0
which is only the case when πv = 0. So indeed ker(ρ)⊆ ker(π). Sup-
pose πv = π+v. Then π+v†ρv− ρ+π+ ≥ 0, so v†ρv ≥ ρ+. The LHS is
a convex combination of the eigenvalues of ρ while the RHS is the
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highest eigenvalue of ρ, so this equality can only hold when we have
equality: ρv = ρ+v, so L+(π) ⊆ L+(ρ).

Suppose ρ v+ π. Let z(t) = (1− t)ρ + tπ. In general z(t)+ ≤ (1−
t)ρ+ + tπ+, but because of the above, there is a v such that ρv = ρ+

and πv = π+, so z(t)v = (1− t)ρ+ + tπ+, which means that z(t)+ =

(1 − t)ρ+ + tπ+. Now we calculate z(t)+ρ − ρ+z(t) = (1 − t)ρ+ρ +

tπ+ρ − ρ+(1− t)ρ + ρ+tπ = t(π+ρ − ρ+π) ≥ 0, so ρ v z(t) and we
can use the same argument to get z(t) v π.

For unitary conjugation invariance we note that (UρU†)+ = ρ+

since a basis transformation doesn’t change the eigenvalues. We then
note that

v†((UπU†)+UρU†− (UρU†)+UπU†)v = (U†v)†(π+ρ− ρ+π)(U†v).

Since U is a bijection it maps the v one to one, which means it pre-
serves the positivity structure.

That the uniform distribution is minimal and the pure states are
maximal can be checked directly.

definition 3 .2 .4 : For ρ,π ∈ DO(n) define ρ v− π iff one of the
following mutual exclusive options holds.

• ker(ρ) = ker(π) and ρ−π − π−ρ ≥ 0.

• ker(ρ) ⊂ ker(π) and L−(ρ)∩ ker(π) 6= {0}.
v− is called the minimal eigenvalue order.

lemma 3 .2 .5 : v− has the following properties.

• v− is a dcpo (but is not closed).

• If ρ v+ π then ker(ρ) ⊆ ker(π).

• v− allows mixing.

• v− is unitary conjugation invariant.

• The uniform distribution ⊥n is the least element and the
pure states are the maximal elements.

Proof. That v− is a dcpo (and not closed) is done in the same way as
for v− on ∆n. The clue is that for a given ρ its upperset is a closed
convex space if L−(ρ) is 1-dimensional (so if its lowest nonzero eigen-
value is nondegenerated). Otherwise the upperset will be a finite
union of closed convex spaces. We can then use Theorem 1.6.4.

Suppose ρ v− π. If ker(ρ) = ker(π), then just as in the proof for
v+ we see that L−(π)⊆ L−(ρ) so that z(t)− = (1− t)ρ−+ tπ− where
z(t) = (1 − t)ρ + tπ. Mixing then follows easily. If ker(ρ) ⊂ ker(π)

then because L−(ρ)∩ ker(π) 6= {0} there is a v such that ρv = ρ−v
and πv = 0. Then z(t)v = (1− t)ρ−v = z(t)−v and we proceed in the
same way.

For unitary conjugation invariance we note that ker(UρU†) = Uker(ρ)
and the same for L−(ρ). The invariance then follows easily.

That ⊥n is the minimal element follows because L−(⊥n) is equal to
the entire space Cn. Similarly let p be a pure state and suppose p v−
π, then either ker(p) ⊆ ker(π) in which case π is also a pure state
which means that π = p. So the pure states are indeed maximal.
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Note that the condition L+(π)⊆ L+(ρ) (or the same with L−) is es-
sentially a degeneracy condition of the highest (or lowest) eigenvalue
as we say in the previous chapter, because it implies dim(L+(π)) ≤
dim(L+(ρ)).

There is another property the partial orders share relating to conju-
gation invariance.

lemma 3 .2 .6 : Let (DO(n),v) be a poset with a conjugation invari-
ant closed v. Then if ρ vUρU† we must have ρ = UρU†.

Proof. Denote U(ρ) =UρU†. Assume ρvU(ρ). By conjugation invari-
ance then also U(ρ) v U2(ρ), and so on. So (Un(ρ)) is an increasing
sequence. Because v is closed it is a dcpo so that this sequence has a
join, and moreover this sequence is convergent, but that is only possi-
ble if U(ρ) = ρ.

Note that although v− is not closed, it still has this property which
can be checked directly. This property is the density operator analog
of Lemma ??, that for probability distributions states that x v σ(x)
implies x = σ(x).

3.3 composing systems

The renormalised Löwner orders also share another property with the
normal Löwner order: the ability to compose systems. We’ll define
what we mean by that, but first we need some preliminaries.

definition 3 .3 .1 : Let V be a n-dimensional vector space with basis
(vi)

n
i=1 and W a m-dimensional vector space with basis (wj)

m
j=1.

We define their tensor product V ⊗W to be the nm-dimensional
vector space with basis (vi⊗wj) with 1≤ i≤ n and 1≤ j≤m. An
arbitrary vector in V ⊗W can then be written as ∑i,j ci,jvi ⊗ wj.
Given linear operators A : V→V and B : W→W we define their
tensor product A⊗ B : V⊗W→V⊗W as the unique linear map
with (A⊗ B)(vi ⊗ wj) = (Avi)⊗ (Bwj).

.

lemma 3 .3 .2 : Let A and B be Hermitian linear operators on some
finite dimensional vector spaces V and W.

• As a map ⊗ : V ×W→ V ⊗W, ⊗ is bilinear.

• If Av = λv and Bw = µw, then (A⊗ B)(v⊗w) = λµ(v⊗w).

• Tr(A⊗ B) = Tr(A)Tr(B).

• (A⊗ B)+ = A+B+.

• (A⊗ B)− = A−B−.

• if A and B are positive/Hermitian, then A⊗ B is also pos-
itive/Hermitian.
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Note also that if we have two finite dimensional complex vector
spaces V and W and dim(V) = dim(W), then for any choice of ba-
sis (vi) of V and (wj) of W we have an isomorphism vi 7→ wi so
that V ∼= W. Because of this we can identify Cn ⊗ Cm ∼= Cnm for a
given choice of basis. In fact if we pick the standard basis of Cn:
ei = (0, . . . ,0,1,0, . . . ,0), then we can identify Cn ⊆ Cm when n≤ m. In
this case we can construct C∞ =

⋃
n Cn and view the tensor product

as ⊗ : C∞ ×C∞→ C∞.
This sort of construction also works for PO(n) and DO(n): since

the tensor product of A ∈ PO(n) and B ∈ PO(m) is again positive, we
have (A ⊗ B) ∈ PO(nm) for some choice of basis, and if Tr(A) = 1
and Tr(B) = 1, then Tr(A⊗ B) =Tr(A)Tr(B) = 1, so if A ∈ DO(n) and
B ∈ DO(m) then (A⊗ B) ∈ DO(nm) for some choice of basis.

Now why is this useful? A finite quantum state is decribed by a
density matrix. For instance, the state of n qbits is described by a den-
sity matrix in DO(2n). Now suppose we have two quantum systems
that don’t interact with each other with the first one described by
the state ρ1 ∈ DO(n) and the second one described by ρ2 ∈ DO(m).
The fact that the systems don’t interact precisely means that we can
describe the composite system as the tensor product of the states:
ρ1 ⊗ ρ2. If they had some sort of interaction then the composite sys-
tem is more complex than the sum of its parts and we wouldn’t be
able to describe it as a pure tensor of the individual states.

Taking this idea a bit further. Suppose we had some measure of
information content on the density operators that then also describes
the information content in the particular quantum states. So suppos-
ing that we have quantum systems 1 and 2 that are either described
by states ρi or states πi for i = 1,2 and ρi v πi, so that the states ρi
contain less information than the states πi. If we suppose that system
1 and 2 are noninteracting then we can describe the composite sys-
tem as either ρ1 ⊗ ρ2 or π1 ⊗ π2. Now of course since the ρi contain
less information then the πi we would assume that composing these
noninteracting systems together would not change the information
content. In fact we might assume that information in composite system
= information in system 1 + information in system 2, so this information
order should also have ρ1 ⊗ ρ2 v π1 ⊗ π2.

definition 3 .3 .3 : If we have a family of posets (DO(n),vn) we’ll
say this family allows composing when ρi v πi for i = 1,2 implies
ρ1 ⊗ ρ2 v π1 ⊗ π2.

definition 3 .3 .4 : Let Let Fn : DO(n)→ PO(n) for n≥ 1 be a family
of maps. We say that the Fn are compatible when for any n ≤ m,
Fn = Fm

|DO(n). So if ρ ∈ DO(n) then Fn(ρ) = Fm(ρ). We say that
this family splits under tensor products when for ρ1 ∈ DO(n) and
ρ2 ∈ DO(m) we have Fnm(ρ1 ⊗ ρ2) = Fn(ρ1) ⊗ Fm(ρ2). Instead
of DO(n), we can also take PO(n) to be the domain in this
definition.
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Examples of a compatible family of maps that splits under tensor
products is given by the set of identities idn : PO(n) → PO(n), or
Fn : DO(n)→ PO(n) where Fn(ρ) = ρ/ρ+ or similarly Fn(ρ) = ρ/ρ−.

theorem 3 .3 .5 : Let Fn : DO(n) → PO(n) be a compatible family
that splits under tensor products. For ρ,π ∈ DO(n) define ρ vn

π iff Fn(π)− Fn(ρ)≥ 0. Then this family of partial orders allows
composing.

Proof. Let ρ1,π1 ∈DO(n) and ρ2,π2 ∈DO(m) and ρ1vn π1 and ρ2vm

π2 then we need to show that ρ1 ⊗ ρ2 vnm π1 ⊗ π2.

Fnm(π1 ⊗ π2)− Fnm(ρ1 ⊗ ρ2)

=Fn(π1)⊗ Fm(π2)− Fn(ρ1)⊗ Fm(ρ2)

=Fn(π1)⊗ Fm(π2)− Fn(ρ1)⊗ Fm(π2) + Fn(ρ1)⊗ Fm(π2)− Fn(ρ1)⊗ Fm(ρ2)

=(Fn(π1)− Fn(ρ1))⊗ Fm(π2) + Fn(ρ1)⊗ (Fm(π2)− Fm(ρ2))

≥0

because by assumption Fn(π1)− Fn(ρ1)≥ 0 and the same for π2 and
ρ2, so indeed ρ1 ⊗ ρ2 vnm π1 ⊗ π2.

This proves that the Löwner order and the maximum eigenvalue
order allow composing. For the minimal eigenvalue order we need
to some extra work. Supposing that ρi v− πi, if ker(ρi) = ker(πi) for
i = 1,2 we can use the theorem above. If however ker(ρ1) ⊂ ker(π1),
so that L−(ρ1)∩ ker(π1) 6= {0}. Let v be such that ρ1v = ρ−1 v and
π1v = 0. We have

ker(ρ1⊗ ρ2) = ker(ρ1)⊗ker(ρ2)⊂ ker(π1)⊗ker(π2) = ker(π1⊗π2),

and for any w ∈ L−(ρ2) we have (ρ1 ⊗ ρ2)(v⊗ w) = ρ−1 ρ−2 (v⊗ w) =

(ρ1⊗ ρ2)−(v⊗w) and (π1⊗π2)(v⊗w) = (π1v)⊗ (π2w) = 0⊗ (pi2w) =

0. So indeed ρ1 ⊗ ρ2 v− π1 ⊗ π2.
We also have the following.

lemma 3 .3 .6 : Let vn be a family of partial orders on DO(n) in-
duced by a family of compatible maps that split under tensors
products. Let κ ∈DO(m) be such that Fm(κ) 6= 0. The right tensor
map Rκ : DO(n)→ DO(nm) defined as Rκ(ρ) = ρ⊗ κ is a strict
monotone continuous map and DO(n) is order isomorphic to
Rκ(DO(n)). The same holds for the left tensor map Lκ given
by Lκ(ρ) = κ ⊗ ρ. This also works when working with PO(n)
instead of DO(n).

Proof. Monotonicity follows by the previous theorem. Strictness fol-
lows from injectivity of Rκ. Continuity follows from the linearity of
the tensor product. To prove that this map is an order isomorphy we
only have to show that if Rκ(ρ)v Rκ(π) then ρv π. If Rκ(ρ)v Rκ(π)

then F(π ⊗ κ) − F(ρ ⊗ κ) = F(π) ⊗ F(κ) − F(ρ) ⊗ F(κ) = (F(π) −
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F(ρ)) ⊗ F(κ) ≥ 0. Since F(κ) 6= 0, there is a w such that F(κ)w 6= 0.
Pick this w, then we must have, for all v:

(v⊗w)†(F(π)− F(ρ))⊗ F(κ)(v⊗w) = v†(F(π)− F(ρ))v ·w†F(κ)w≥ 0.

In particular for all v: v†(F(π)− F(ρ))v ≥ 0, so indeed ρ v π.

Although v− is not completely described by a family of maps spli-
iting under tensor producs you can still check that this property holds
for v− for any κ ∈ DO(m).

This property has an intuitive explanation: κ can be seen as a sort of
‘external environment’ that does not interact with the system we are
interested in. Adding such an environment to the description of your
system should not change any of the fundamental properties of the
system. In this case this translates to DO(n) being order isomorphic
to DO(n)⊗ κ: the relative information content of states in DO(n) isn’t
in any way affected by adding an external state.

It should be noted that any of the restricted information orders
on ∆n extended to DO(n) does not in any way allow composing of
systems in a natural way. The reason for this is that elements in ∆n

are comparable when they belong to the same sector, for instance
Λn. The problem is that there is no obvious way in which the tensor
product of x1 ∈ Λn and x2 ∈ Λm is an element of Λnm. We’d have to
choose some kind of basis that maps the coordinates of x1 ⊗ x2 in a
descending order so that it belongs to Λnm, but this mapping would
depend on the x1 and x2 you started with. The only properties that
are preserved by this tensor product are the highest values of x1 and
x2 and their lowest values, which is why the renormalised Löwner
orders do allow composing.

So far we have two partial orders on DO(n), the renormalised
Löwner orders, that seem to behave really nicely: they are directed
complete, they have mixing, they allow composing, they both have
reasonable behaviour on kernels, the least element is the uniform
distribution and the maximal elements are the pure states. The max-
imum eigenvalue order however seems to work better then the min-
imal eigenvalue order. We have already seen that the minimal eigen-
value order is not closed, while the maximum eigenvalue is. There
is however another way in which they are different. We have already
seen that v− when restricted to ∆n is not a domain so it is also not a
domain on DO(n). However:

theorem 3 .3 .7 : (DO(n),v+) is a domain:

• For all π ∈ DO(n) and 0≤ t < 1: (1− t)⊥n + tπ� π.

• If ρ� π then ker(ρ) = {0}.
• If ρ� π then for 0 < t < 1: ρ� (1− t)ρ + tπ� π.

Proof. This proof is an adaption of the proof in Theorem 2.6.1 and is
also similar to the proof that the dual of the Löwner order is a do-
main. v+ is upwards small so we only have to work with converging
increasing sequences and it suffices to find for any π ∈ DO(n) an
increasing sequence (ρ(t)) such that ρ(t)� π and ρ(t)→ π.
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Let ai → a be an increasing sequence in DO(n) with limit/join a.
We have L+(a)⊆ L+(aj)⊆ L+(ai) for all i ≤ j. From some N we must
have equality for all i ≥ N: suppose this is not the case, then there
is a normalised v such that aiv = a+i v for all i while av 6= a+v. Then
‖aiv‖ = a+i . Since we have ai → a we also have a+i → a+, so ‖aiv‖ →
a+, but ‖av‖ ≤ a+ − δ for some δ. (ai) converges in the matrix norm
so this is a contradiction. We will now assume that L+(a) = L+(aj),
otherwise we could just take the tail of the sequence where this is the
case.

Let ρ(t) = (1− t)⊥n + tπ. Assume π v+ a. Then L+(aj) = L+(a)⊆
L+(π). The goal is to find a i such that ρ(t) v+ ai. This is the case
when for all normalised v:

v†(a+i ρ(t)− ρ(t)+ai)v

= tv†(a+i π − π+ai)v + (1− t)v†(a+i ⊥n −⊥+
n ai)v

= tv†[(a+i − a+)π − π+(ai − a)]v + tv†(a+π − π+a)v +
1− t

n
(a+i − v†aiv)

≥ 0.

Suppose aiv = a+i v, then πv = π+v as well, which implies ρ(t)v =

ρ(t)+v so that the expression above is equal to zero. We can therefore
restrict to the v’s where aiv 6= a+i v. Then the last 2 terms in the ex-
pression above are strictly positive, say bigger than some ε > 0. Now
since ai→ a in the sup-norm, we can find an N such that for all i≥ N
|a+i − a+| ≤ ε

2tπ+ and also |v†(ai − a)v| ≤ ε
2tπ+ for all v. We can then

write ∣∣∣tv†[(a+i − a+)π − π+(ai − a)]v
∣∣∣ ≤ 2tπ+ ε

2tπ+
= ε.

This means that (a+i ρ(t)− ρ(t)+ai)v≥ 0 for all v, so indeed ρ(t)v+ ai.
We therefore have ρ(t)� π which proves that (DO(n),v+) is indeed
a domain.

Now suppose ρ� π. Then for some 0≤ t < 1 we have ρv ρ(t). We
then have ker(ρ) ⊆ ker(ρ(t)) = {0}.

Define z(t) = (1− t)ρ + tπ for 0 < t < 1. In the same way as above
we write

v†(a+j z(t)− z(t)+aj)v

= (1− t)v†(a†
j ρ− ρ+aj)v + tv†(a+j π − π+aj)v.

Just as before we can ignore the v where ajv = a+j . Since ρ� π we
can pick j high enough such that the first term is then strictly positive.
The second term goes to zero just as we saw earlier in this proof. So
at some point this expression is positive. So indeed z(t)� π. That
ρ� z(t) works similarly.

3.4 unicity of the maximum eigenvalue order

We’ll now try to establish some ways in which the maximum eigen-
value order is unique. Unique in what way?
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definition 3 .4 .1 : Let (DO(n),vn) be a family of posets. We’ll call
the sequence of partial orders v= (vn) a quantum information
order iff

• The uniform distribution ⊥n is the minimal element in
DO(n).

• The pure states are the maximal elements in each DO(n).

• The partial orders are compatible: if we view DO(n) ⊆
DO(m) for m ≥ n, then for ρ,π ∈ DO(n) we have ρ vn π

iff ρ vm π.

• The partial orders are unitary invariant: For all U ∈ U(n):
ρ vn π iff UρU† vn UπU†.

• The partial orders allow mixing: for ρ,π ∈DO(n), if ρvn π

then ρ vn (1− t)ρ + tπ vn π.

• The partial orders allow composing: for ρi,πi ∈ DO(ni)

with ρi vni πi for i = 1,2 then ρ1 ⊗ ρ2 vn1n2 π1 ⊗ π2.

• Items increase in specificity: If ρvn π then ker(ρ)⊆ ker(π).

Note that these properties are not all independent (for instance,
the increase in specificity ensures that the pure states are maximal).
The identification of DO(n) ⊆ DO(m) is done in a chosen basis: if
we have ρ ∈ DO(n) then we can add extra columns are rows o the
matrix representation of ρ that are filled with zeroes. Because of the
unitary invariance, it doesn’t matter in which basis we do this, the
resulting order structure is the same. The last property in this defini-
tion ensures that for ρ ∈ DO(n) ↑ ρ⊆ DO(n). This definition can also
be used for an order structure on PO(n), in which case we require
that the maximal element is the zero element, and that there are no
minimal elements.

We have already seen that both v+ and v− satisfy these conditions
(and the dual Löwner order satisfies the definition on PO(n)), so ob-
viously these properties do not define a unique order on DO(n). We
hypothesize (not prove) the following:

Hypothesis: The only quantum information order that is
also a domain is the maximum eigenvalue order.

It might be that the question we should be trying to answer is that
the maximum eigenvalue order is the only closed quantum informa-
tion order, or even the only closed order which is also a domain, or it
might be that all these coincide.

We will show a specific construction that uniquely produces the
maximum eigenvalue order, but so far there is no proof that this is
the only possible construction.

Specifically, we will consider partial orders on DO(n) that are in-
duced by a continuous map F : DO(n)→ (PO(n),v∗L). In fact, we will
consider a compatible family of continuous injective maps that split
under tensor products given by Fn : DO(n)→ PO(n). It should be
clear that the family of partial orders induced by such a family of
maps is closed (so they are dcpo’s), compatible and allow composing.
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Note that this construction is similar to how we constructed partial
orders on Λn. In that case we looked at an embedding F : Λn → Rn,
which can be seen as the diagonal restriction of a map F : DO(n)→
PO(n).

Pick a given n and for brevity denote Fn = F. Note that if F(π) = 0,
then π will be the unique maximal element of DO(n), which can’t be
the case. So F(π) 6= 0 for all π ∈ DO(n). Define f : DO(n)→ R>0

as f (π) = 1/Tr(F(π)) and define K : DO(n) → DO(n) as K(π) =

F(π)/Tr(π). Then we can write F(π) = K(π)/ f (π) where K is some
self map of DO(n) and f is a map from DO(n) to the positive reals.
Note that since Tr(A ⊗ B) = Tr(A)Tr(B), both K and f split under
tensor products. Both K and f are also continuous. Furthermore f is
a strict monotonic map to R>0 with the regular ordering. Note that
although F is injective, K doesn’t have to be.

A partial order is not uniquely defined by a F: if we were to scale
F by a positive constant, this would not change the induced order so
there is some gauge freedom in choosing F. What kind of freedom
do we have? Suppose we have some linear matrix valued map H :
Mn → Mn and that we transform F to H ◦ F. Then we should have
ρ vF π iff ρ vH◦F π iff H ◦ F(ρ) − H ◦ F(π) = H(F(ρ) − F(π)) ≥ 0
iff F(ρ)− F(π) ≥ 0. H should be injective to preserve antisymmetry
(and so is a bijection), and it should be clear that this holds only
if H maps all positive operators to positive operators and doesn’t
map any nonpositive operator to a positive operator. That is: H is
a positive map and its inverse is positive as well. It turns out these
maps have been classified [6]: H is either H(X) = AXA† for all X or
H(X) = AXT A† where A is some invertible matrix and XT denotes
the transpose of X. So in particular, we can transform F by rescaling,
taking the transpose or conjugate it with a unitary operator and it
wouldn’t change the partial order.

Note that the restriction of vF to the diagonal operators gives an
information order on ∆n. As we saw in the previous chapter, such
a partial order has to be defined by affine maps. So we will take
K to be an affine map. This makes additional sense as the primary
structure of DO(n) is that of a convex space, so the affine maps are
the structure preserving maps. We’ll now proceed with a short proof
of a well known fact.

lemma 3 .4 .2 : There is a one-to-one correspondence between affine
maps K : DO(n)→ DO(n) and linear positive trace preserving
maps Km : Mn→Mn, where Mn denotes the space of all complex
valued n× n matrices.

Proof. The restriction of a linear positive trace preserving map to
DO(n) is clearly an affine self map. We’ll look at the other direction.

Start with an affine map K : DO(n)→ DO(n). We extend this to a
map on the positive operators Kp : PO(n)→ PO(n) by setting Kp(0) =
0 and Kp(A) =Tr(A)K( A

Tr(A)
) for A 6= 0. It should be clear that then

Kp(rA) = rKp(A) for all r≥ 0 and by using the affineness of K we can
prove Kp(A + B) = kp(A) + Kp(B).
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Now we extend to Hermitian matrices. For any Hermitian A we
can uniquely write A = A+ − A− where A+ and A− are positive op-
erators. We then define Kh(A) = Kp(A+)− Kp(A−). That Kh is linear
is routine to check.

And finally to extend to all matrices we note that any matrix A can
be written as the sum of a Hermitian matrix and an anti-Hermitian
matrix: A = Ah + iAa where Ah and Aa are both Hermitian. Again we
define Km(A) = Kh(Ah) + iKh(Aa).

The resulting map Km : Mn → Mn is linear and sends positive ma-
trices to positive matrices. It is furthermore easy to check per step
that it preserves the trace. We also have that K is injective iff Km is
injective, and if K is surjective then Km is surjective. If K splits under
tensor products then Km does so as well.

3.4.1 The rank of operators

The rank of an operator is the dimension of the subspace covered by
its image: rnk(A) =dim(Im(A)). For a hermitian operator it is the
sum of the amount of nonzero eigenvalues (counting multiplicities).
So for instance rnk(⊥n) = n, and for a pure state p rnk(p) = 1. Indeed
another way to define pure states is as the rank 1 projections. The
rank, just like the trace, distributes over tensor products: rnk(A ⊗
B) =rnk(A)rnk(B).

Choose an orthonormal basis (ei) and fix it for all DO(n). Let P1 be
the projection to the first basis element e1. So P1e1 = e1 and P1ej = 0
for all j ≥ 2. Then we can view P1 ∈ DO(n) for all n since the matrix
representation of P1 is just a 1 in the left upper corner followed by
zeroes everywhere else. The tensor product P1 ⊗ P1 is represented
in the same way (although in a bigger space), so we can identify
P1 ⊗ P1 = P1. Recalling that F splits under tensors we get F(P1) =

F(P1 ⊗ P1) = F(P1)⊗ F(P1). Calculating the rank on both sides gives
rnk(F(P1)) = rnk(F(P1))

2, so rnk(F(P1)) = 1. This is not a completely
rigorous argument since we are abusing notation here, but it should
make intuitive sense. If the rank of F(P1) would be bigger than 1, then
taking the repeated tensor product F(⊗nP1) = ⊗nF(P1) would result
in an operator with an arbitrarily high rank, while the underlying
operator ⊗nP1 would still have rank 1.

The basis we chose was arbitrary, so P1 was also arbitrary. Any
other rank 1 projection can be found by taking a unitary conjugation
of P1 which corresponds to a basis change. If we want the partial or-
der to be unitary conjugation invariant then it makes sense to require
that all rank 1 projections preserve their rank. So we’ll assume that if
rnk(P) = 1 then rnk(F(P)) = 1.

Any rank 1 operator R can be written as R = cP where c is some
nonzero complex number and P is a rank 1 projection. For K an affine
map on DO(n) we then have Km(R) = Km(cP) = cK(P), so if K pre-
serves rank 1 operators, then Km does so as well. Since F = K

f pre-
serves rank 1 operators, K does so as well, so we are left with a linear
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rank 1 preserving operator Km on Mn. It just so happens that [16] has
classified these operators:

lemma 3 .4 .3 : Let T : Mn→Mn be a linear map preserving the rank
of all rank 1 operators, then there exist invertible matrices A, B∈
Mn such that for all M ∈ Mn, T(M) = AMB or T(M) = AMTB.

As we’ve already seen, we have gauge freedom to apply transpose
to F, so we can assume that we are dealing with the first case. This
means we have Km(M) = AMB. Noting that Km is trace preserving
we get Tr(M) = Tr(Km(M)) = Tr(AMB) = Tr(BAM) for all M. This is
only possible if BA = In, so B = A−1. Km is a positive linear map. In
[6] they showed that for any such map we have Km(M)† = Km(M†).
This is now only possible when A−1 = A†, so A is a unitary matrix.
We then have Km(M) = UMU† for some U ∈U(n), and by using our
gauge freedom we can simply set U = In. This means we can take K
to be the identity.

3.4.2 Alternative derivations

Since the argument from the rank 1 operators is not completely rig-
orous we offer some other assumptions on K that would produce the
same result.

Once we get Km(M) = AMB we can simplify Km to be the identity.
There are other ways to prove Km must have this form. [16] lists a
few possibilities: If a linear map T : Mn → Mn preserves one of the
following:

• the determinant of every matrix or

• the rank of all rank n matrices or

• the rank of rank 2 matrices

then it must be of the form T(M) = AMB or T(M) = AMTB. In [6]
they show that a positive linear bijection T : Mn → Mn with positive
inverse has to be of the form T(M) = AMA† or T(M) = AMT A†. In
particular, if we assume that K : DO(n)→ DO(n) is surjective and
affine, then the inverse of the extension Km is positive, and this holds.
In fact, because K is affine, it is enough to require surjectivity to the
pure states.

There are also results for bijective (not necessarily affine) maps K :
DO(n)→ DO(n). If K preserves one of the following:

• the fidelity between all matrices,

• the transition probabilities,

• the Bures metric,

• the trace distance metric,

• the relative entropy between all matrices, or
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• the Jensen-Shannon divergence between all matrices

then K has to be of the form K(A) = UAU† where U is a unitary or
anti-unitary operator [18, 20, 19, 21].

We will not use any of these results, but it should be clear that if
K is to preserve any kind of structure on DO(n) it has to be a very
simple map.

3.4.3 Last steps

Now that we’ve established (or at least made it very plausible) that
we can set K(ρ) = ρ for all ρ ∈ DO(n) we are left with F(ρ) = ρ/ f (ρ).
The partial order is then given by

ρv π ⇐⇒ ρ

f (ρ)
− π

f (π)
≥ 0 ⇐⇒ ∀v : v†( f (π)ρ− f (ρ)π)v≥ 0.

So we simply modify the Löwner order by dividing all the elements
by a scalar.

We can reuse the argument about rank 1 operators here. We know
that f splits over tensors, so let P1 denote the projection to the first
basis element, so that we can identify P1 ⊗ p1 = P1.Then we should
also have f (P1) = f (P1⊗ P1) = f (P1)

2, so f (P1) = 1. Again, the choice
of basis is arbitrary, so set f (P) = 1 for all rank 1 projections P.

The rank 1 projections are the maximal elements. Suppose we have
ρv P for ρ∈DO(n) and P some rank 1 projection. Let v be the unique
normalised vector such that Pv = v. Then we must have

v†( f (P)ρ− f (ρ)P)v = v†ρv− f (ρ) ≥ 0,

or slightly rewritten: v†ρv≥ f (ρ). The rank 1 projections are the only
maximal elements, so there must be a projection where this inequality
holds. the LHS is a convex sum of ρ’s eigenvalues. In particular, it is
smaller than ρ+. So we must at least have f (ρ) ≤ ρ+.

lemma 3 .4 .4 : f is unitary conjugation invariant: f (UρU†) = f (ρ)
for all U ∈U(n) and ρ ∈ DO(n).

Proof. The only maximal elements are the rank 1 projections, so for
each ρ ∈ DO(n) there must exist a projection P such that ρ v P. Be-
cause of unitary conjugation invariance, we must then for all U ∈
U(n) have

UρU† vUPU† ⇐⇒U
(

f (UPU†)ρ− f (UρU†)P
)

U† ≥ 0

⇐⇒ ρ− f (UρU†)P ≥ 0.

So we must have ρ − f (ρ)P ≥ 0 if and only if ρ − f (UρU†)P ≥ 0.
This is only possible when f (ρ) = f (UρU†) for all U ∈ U(n) and
ρ ∈ DO(n).

This has important consequences: any ρ ∈ DO(n) can be written as
ρ = UDU† where D ∈Λn is the diagonal matrix with on the diagonal
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the eigenvalues of ρ in decreasing order. f (ρ) = f (UDU†) = f (D), so
f only depends on the ordered eigenvalues of an operator.

As was discussed earlier in this chapter, the space Λn doesn’t be-
have well under tensor products: there is not a single choice of basis
such that when x ∈Λn and y∈Λm then x⊗ y∈Λnm since in general it
is not possible to preserve the order of the eigenvalues. In fact, there
are 3 preserved quantities when tensoring: the highest eigenvalue,
the lowest eigenvalue, and the lowest nonzero eigenvalue. Since f
splits under tensor products, it can only depend on these quanti-
ties. The lowest nonzero eigenvalue is noncontinuous, and since f
is continuous it can’t depend on that. That leaves two variables f
can depend on: f (ρ) = h(ρ+,ρ−) where in this case ρ− denotes the
lowest eigenvalue, not the lowest nonzero eigenvalue. We then have
f (ρ1 ⊗ ρ2) = h(ρ+1 ρ+2 ,ρ−1 ρ−2 ) = f (ρ1) f (ρ2) = h(ρ+1 ,ρ−1 )h(ρ

+
2 ,ρ−2 ). So h

is a function that satisfies h(x1x2,y1y2) = h(x1,y1)h(x2,y2). We fur-
thermore know that f (P1) = 1, and P+

1 = 1, P−1 = 0, so f (ρ ⊗ P1) =

f (ρ) · 1 = h(ρ+ · 1,ρ− · 0) = h(ρ+,0) = h(ρ+,ρ−) · h(1,0) = h(ρ+,ρ−),
so we have h(x,y) = h(x,0) which means that h is only a function of
its first argument: h(x,y) = h(x). Then h : [0,1]→ R>0 with h(xy) =
h(x)h(y). In other words: h is a group homomorphism from a sub-
group of (R>0, ·) to itself. These have all been classified: such a group
homomorphism is always of the form h(x) = xr for some r ∈R. Since
f (ρ) = h(ρ+) is a strict monotone function we must have r > 0. We
have already seen that f (ρ) ≤ ρ+, which is only the case when r ≥ 1.

lemma 3 .4 .5 : The partial order induced by f (ρ) = (ρ+)r for r ≥ 1
only allows mixing when r = 1.

Proof. As we’ve seen in Chapter 2, an information order follows from
an affine map, so mixing only holds when r = 1, but in this case we
can show this explicitly. Suppose we have the partial order given by
f (ρ) = (ρ+)r with r > 1. Let ρ be a diagonal matrix, and let Ti be the
diagonal matrix (0, . . . ,0,1,0, . . . ,0) with the 1 at the ith position. We
have ρ v Ti iff (ρ+)r(Ti)j ≤ (T+

i )rρj for all the diagonal components
indexed by j. The LHS is zero except for j = i. So we have ρ v Ti iff
(ρ+)r ≤ ρi. Now, since r is strictly bigger then 1, there exist ρ such
that ρ v Ti with ρi 6= ρ+ = ρk where i 6= k. Pick such a ρ. Let z(t) =
tρ + (1− t)Ti. The mixing condition then says that ρ v z(t) for all t.
Note that z(t)i = tρi + (1− t) and z(t)k = tρ+. For some 0 < t < 1 we
will have z(t)i = z(t)k = z(t)+. Since we have ρ v z(t) we must have
(ρ+)rz(t)k ≤ (z(t)+)rρk. Filling in the values of z(t)k we get t(ρ+)r+1≤
tr(ρ+)r+1 so that t ≤ tr, which is never the case for any 0 < t < 1 and
r > 1. We conclude that for r > 1 there exists a diagonal ρ such that
ρ v Ti while there is a 0 < t < 1 such that ρ v z(t) does not hold. So
the partial order doesn’t satisfy the mixing condition. That the partial
order does satisfy the mixing requirement for r = 1 has already been
shown.

The proof of the unicity of the maximum eigenvalue order above is
far from rigorous at some points. We will list some of the problems
in the proof.
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• Why would a general quantum information order on DO(n)
have to be induced by a map F : DO(n)→ PO(n)?

• Can the affineness of K be derived explicitly instead of implic-
itly? Can it perhaps be shown that it has to satisfy some other
property mentioned in Section 3.4.2?

• Can the argument using the rank 1 operators be made more
rigorous?

• Can the argument about f only depending on “quantities pre-
served by the tensor product” be made more rigorous?

The first point might be solved by applying something similar to
the Urysohn-Carruth Metrization Theorem, but that instead of the
partial order being induced by a map to [0,1]∞, it will be induced by
a map to PO(n).

For the third point it might be possible to use the fact that the
family of Kn’s which extend to Kn

m : Mn→ Mn can be combined into
a single linear positive trace preserving map that splits under tensor
products K : M→ M, where M =

⋃∞
n=1 Mn. The preservation of rank

1 operators might then be cast in terms of the continuity of K, or that
we want to describe K in a coordinate free way.

That f has to depend solely on the maximum eigenvalue can pos-
sibly also be derived in another way: the reason f is affine between
operators with ρ v+ π is because L+(π) ⊆ L+(ρ), if f (ρ) were to de-
pend on other eigenvalues of ρ as well, then these eigenspaces must
also be preserved in some way by ρ v f π, because otherwise affine-
ness would fail. But in general, when mixing the operators together,
the ordered eigenvalues might change in order, so it is not clear how
a partial order would work that also depended on, say the second
highest eigenvalue.

3.4.4 Graphical intuition

There is a nice graphical intuition behind the operation of the map
F+ : ρ 7→ ρ/ρ+. Consider n = 2, and pick the subset of diagonal matri-
ces in DO(2) and PO(2). PO(2) can then be seen as [0,∞)2 and DO(2)
is a diagonal line between the points (1,0) and (0,1). See Figure 8.

(0, 0)

(0, 1)

(1, 0)

⊥2

(1, 1)

Figure 8: An illustration of the area of diagonal matrices in PO(2) with high-
est eigenvalue less than 1.
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The subspace of PO(2) with highest eigenvalue less than 1 is then
a square with with the sides given by (0,0), (1,0), (0,1), (1,1). The
red area illustrates the image of F+. The comparable elements be-
long to the same red line segment. These lines correspond to different
eigenspaces L+(ρ).

The entirety of DO(2) can be seen as U(1)×Λ2 ∼= S(1)× [ 1
2 ,1], or

in other words, it is the filled circle with ⊥2 in the middle and the
pure states on the outside. See Figure 9.

⊥2

P1 ⊥2

I2

P1

Figure 9: An illustration of DO(2) being transformed by F+ into a cone in
PO(2).

The map F+ ‘pulls’ the middle up so that the circle becomes a cone.
The points of F+(DO(2)) lie on the outside of the cone. Two points
in DO(2) are comparable if they belong to the same line piece from
I2 to a pure state.

We can draw a similar picture for DO(3). Because humans are bad
at visualising high dimensional spaces we’ll only consider the diago-
nal matrices. See Figure 10.

⊥3

⊤3

⊤1

⊤2

Figure 10: ∆3 as embedded in the space of positive operators with high-
est eigenvalue less than 1. The grey arrows denote where certain
points are mapped to.

The triangle ∆3 that is embedded into this cube is mapped into
three of the faces of the cube. These faces correspond to the eigenspace
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of the highest eigenvalue L+(ρ). Points mapped to different faces of
the cube are not comparable in v+. The reason v+ allows mixing is
then simply that the map F+ is affine as long as points belong to the
same ‘face’.

3.5 extending the order to positive operators

The Löwner order gives an order structure on the positive operators,
that allows comparisons between operators that have a different trace:
If A, B ∈ PO(n) and Tr(A) = Tr(B) then either A vL B or B vL A
implies A = B (in other words, the trace is a strict monotone map).
The ‘distance’ between operators AvL B can be seen as measured by
the difference in the trace: Tr(B− A).

The maximum eigenvalue order as defined on DO(n) allows non-
trivial comparisons and is not bound by the trace of the operators (as
they all have the same trace). Instead the ‘distance’ between two com-
parable items can be seen as the difference between the maximum
eigenvalues. Seeing as DO(n) is a subset of PO(n), one can wonder
if we can extend this partial order in a natural way to the entirety of
PO(n). We’ll show a couple of ways that it can be extended, and the
different properties that each of these extensions have.

definition 3 .5 .1 : The minimal extension: For A, B∈ PO(n) let Av+
min

B iff Tr(A) = Tr(B) and A/Tr(A) v+ B/Tr(B).

This extension has (PO(n),v+
min)
∼= (DO(n) ×R>0 ∪ (0,0),v+ × =)

order isomorphically, where R>0 is equipped with the equality order:
sv t ⇐⇒ s = t. This is a product of two domains with an additional
element (0,0), so it is still a domain, and it obviously preserves all the
other properties that v+ has, but this extension is not very interesting.
It merely glues together copies of DO(n) onto PO(n) and doesn’t use
any of the extra structure that PO(n) has.

Any map F : DO(n)→ PO(n) can be extended to a map Fp : PO(n)→
PO(n) by setting Fp(0) = 0 and Fp(A) = Tr(A)F(A/Tr(A)). If we ap-
ply this procedure to F(ρ) = ρ/ρ+ we get

definition 3 .5 .2 : The intuitive extension: For A, B∈ PO(n) let Av+
int

B iff Tr(B)B/B+ vL Tr(A)A/A+, and we set 0 as the unique
maximal element.

This extension works pretty well. In particular it allows composing,
and it is a domain, but it doesn’t allow mixing: Let A = diag(2,3) and
B = diag(2,1), then A v+

int B, but C = 1
2 A + 1

2 B = diag(2,2), then not
A v+

int C.
We can also define a sort of ‘maximal extension’:

definition 3 .5 .3 : The maximal extension: For A, B∈ PO(n) let Av+
max

B iff Tr(A) = Tr(B) and B/B+ vL A/A+ or Tr(A) > Tr(B) and
ker(A) ⊆ ker(B).

This extension is a quantum information order and includes the Löwner
order (if A v∗L B then A v+

max B), but it is no longer closed or even a
dcpo.
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definition 3 .5 .4 : The natural extension: For A, B∈ PO(n) let Av+
nat

B iff Tr(A) ≥ Tr(B) and B/B+ vL A/A+.

The order v+
nat has all the properties we require of a quantum in-

formation order. Furthermore it is closed, so it is a dcpo, and for
any A ∈ PO(n) let Z(t) = A + t⊥n. Then Z(t) � A is an increas-
ing sequence for t → 0, so v+

nat is also a domain. We also have: if
A v+

nat B and B v∗L A, then Tr(A) = Tr(B) so that A = B. So v+
nat and

v∗L, the dual Löwner order, are non-contradicting. Furthermore we
have Z(t)� A in v+

int and in v∗L, so the intersection of the orders will
again be a domain and this domain also preserves all the properties
of a quantum information order. Note that this is indeed a stricter or-
der: if we take A = diag(3,1) and B = diag(2,1), then Av∗L B but not
A v+

nat B and if we let C = diag(1,0) then ⊥2 v+
nat C but not ⊥2 v∗L C,

so it is not the case that one of the orders is contained in the other.
The dual Löwner order gives information on operators with dif-

ferent traces, while the natural extension of the maximal eigenvalue
order also gives information on operators with the same trace. Since
they are non-contradictory, a natural question to ask next is wether
there is an order that includes the both of them. The answer to that
is yes, because the maximal extension does precisely that. However,
this extension is not a dcpo and doesn’t really use any information
on the content of operators with different traces. So the question then
becomes, “is there a quantum information order that encapsulates
both v∗L and v+

nat and is itself also a domain?” If such an order were
to exist we would have a very rich information content structure on
the space of positive operators that allows comparisons between op-
erators with the same, or with different traces. Such a partial order
would have to include at least the transitive closure of the following
relation:

A v B iff Tr(A) = Tr(B) and A v+ B or ∃B′ ∈ PO(n) such
that Tr(B′) = Tr(B) and B′ v+ B and A v∗L B′.

Since this relation contains an existential quantifier on the downset of
B the transitive closure would be very big indeed. It is not clear at the
moment what a partial order containing this relation would look like.
It could very well be that v+

max is also the minimal order containing v∗L
and v+

nat. If this is the case then there is a sort of trade-off in having a
partial order based on the structure of PO(n): either you can compare
elements with different traces in detail, or you can compare elements
with the same trace in detail.





4
E N TA I L M E N T I N D I S T R I B U T I O N A L S E M A N T I C S

In this chapter we will outline a potential application of the structures
studied in Chapter 2 and 3. This application is the study of entailment
and disambiguation in distributional natural language models. We’ll
also take a short look at the question of how we can apply entailment
at the sentence level by composing words.

4.1 distributional natural language models

The problem of making computers deal with natural language when
you are interested in the semantic content of sentences and words
is often tackled by using a distributional natural language model.
This is a model based on the distributional hypothesis: the meaning
of a word is defined by the context in which it is used. What this means
is that if you have a large database of written text (a corpus), then
by merely looking at the context in which each word occurs, that is,
which words surround it, you can infer the meaning of the word. Or
rather: the meaning is the context in which it occurs.

How this works in practice usually is that you take a large corpus
of text, for instance the British National Corpus, and you pick a few
thousand basis words, usually the most occurring words. Then for
every unique word in the corpus you count how many times it co-
occurres with each of the basis words, say within a distance of five
words of the basis word. The result is that for each word in the corpus,
you have a vector representing how the word is distributed trough it.
This vector is then often normalised in some way to ensure that the
vectors are sufficiently comparable.

You can do all kinds of things with this model. For instance, a
measure of how similar two words are is the cosine distance between
the distributions of the words: if word a and b are represented by
vectors va and vb, then the similarity is given by

Sim(a,b) =
< va,vb >

‖va‖‖vb‖
.

We will be looking in more detail at another application.

4.2 entailment and disambiguation

A common relation between words that often occurs is that of entail-
ment: word a entails word b if in a true sentence containing the word
a, a can usually be replaced by b and still produce a true sentence. An
example of such a pair is dog and animal. If we know that the dog bites
the cat is true, then the animal bites the cat is also true since every dog
is an animal. Note that we said that in an entailment pair, the word

67
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can usually be replaced. It can for instance go wrong when using uni-
versal quantifiers: all dogs eat meat does not entail all animals eat meat.
This has to do with the positivity of words. In a positive sentence, if
we have entailment on each of the words, then we have entailment
on the sentence. An existential quantifier is positive, but universal
quantifiers and negations are negative.

Another important thing happening in language is disambiguation.
This is when an ambiguous word is disambiguated by the context
in which it occurs. Consider for instance the word bank. Without a
suitable context you can’t say whether the speaker meant river bank
or financial institution.

While disambiguation and entailment might be seen as two dis-
parate structures in language, distributionally they have something
in common. The word dog is more narrowly used then the word ani-
mal since it is more specific. We would expect this to be reflected in
the distributional properties of the words. Namely, that dog is used
in less contexts than animal. We expect the same thing to happen in
the case of disambiguation. River bank disambiguates bank because it
is more specific, so again we would expect to see it in less contexts.

Another way of viewing these problems is trough the lens of infor-
mation content. Dog contains more information than animal, precisely
because it is more specific. Dog bites cat gives you more information
about the situation than Animal bites cat. The same goes for I went to
the bank and I went to the river bank (although in this case you would
probably expect the first sentence to be referring to the financial insti-
tution. Technically you can’t know for certain). This view of looking
at these problems points towards an application for the partial orders
studied in this thesis so far. But first, an overview of what has been
done so far in this field.

4.3 known methods

A very comprehensive paper on different kinds of measures of entail-
ment and other assymetric texual relations was written by Kotlerman
et al. [14]. In it they distinguish three important properties that a
measure of entailment should have:

• Promoting the similarity scores if included features are highly
relevant for the narrower term; the estimation of feature rele-
vance may be better based on feature ranks rather than on fea-
ture weights.

• Promoting the similarity scores when included features are placed
higher in the vector of the broader term as well.

• Demoting similarities for short feature vectors

Features here refer to the components of the word vector, and fea-
ture relevance is the relative size of the component with respect to
the other components. A short feature vector is a vector that contains
many zero components. This is a word that doesn’t occur much in



4.4 applications of information orders 69

the corpus, and thus there is more uncertainty about the properties
of the word. In the paper they produce a similarity measure based
on the Average Precision measure taking these points into account,
which does well on standard tests.

Another approach that focuses more on the relation between entail-
ment and compositionality (how entailment at the word level transi-
tions to entailment at the sentence level) is taken in [3]. Instead of
using vectors to represent words, they use density matrices, the logic
behind this being that density matrices are more suitable to represent
correlations between features which is important for these kinds of
problems. The function they based their similarity measure on is the
Kullback-Leibler (KL) divergence:

KL(ρ,π) = Tr(ρ(lnρ− lnπ))

which is the density matrix analog of the relative entropy between prob-
ability distributions. The normalised version of KL-divergence which
they call the representativeness is given by

R(ρ,π) =
1

1 + KL(ρ,π)
.

This is a number between zero and one. It is only 1 when ρ = π.
The model based on the representativeness performed well when pre-
sented with simple sentences.

Another approach was taken in [4] where they looked at graded en-
tailment: a pair like dog and pet can be considered a partial entailment
pair. A lot of dogs are pets, but not all of them. This can be presented
by a probability specifying with what chance the entailment holds.
This is what is meant by grading. They implement this by represent-
ing words by density matrices and then using a graded version of the
Löwner order:

ρ ≤k π ⇐⇒ π − kρ ≥ 0

where k is the value of the grading. We will not go into detail here
how the compositionality in distributional models is achieved. For
us it suffices to say that the composition of words is achieved by
tensoring together the representations of words and then performing
some linear map on the resulting tensor that reduces it to a simpler
object. For the details see for instance [7, 11]. This graded entailment
preserves its structure when words are composed together.

4.4 applications of information orders

Entailment and disambiguation relations are related to the informa-
tion content in words or similarly in the distributions that represent
those words. Since the information orders on ∆n and DO(n) stud-
ied in Chapter 2 and 3 were expressly designed to incorporate this
idea of information content they might prove suitable for the task of
entailment and disambiguation.
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Let’s first consider the case of restricted information orders (RIO).
In empirical natural language models the vector spaces used often
have at least a few thousand dimensions. As we saw in Chapter 2, the
amount of free parameters that can be chosen for a RIO scales with
the square of n, so there is a lot of freedom in choosing which particu-
lar order you’ll use for a specific linguistic application. The downside
however is that RIO’s can only compare elements that belong to the
same monotone sector. The amount of sectors in ∆n scales with the
factorial of n. When we have n in the thousands this would probably
mean that each words belongs to its own sector, so that no words are
comparable at all. This is a problem for the other information orders
as well, so let’s discuss some possible remedies.

4.4.1 Smoothing

A technique often used in information retrieval tasks is to use some
form of smoothing to deal with zeroes in distributions that would oth-
erwise cause problems (by causing singularities on some points for
instance). Such smoothing often takes the form of adding a small
constant term somewhere or mixing together different distributions
in some way to produce a more homogeneous distribution.

In the case of information orders we will consider the following
form of smoothing:

x vα y ⇐⇒ x v αx + (1− α)y.

The advantage of this is that it leaves the original partial order
structure intact, because the orders allowed mixing. So when we have
x v y then also x v αx + (1− α)y. What this smoothing does, is that
while x and y might be in incomparable regions of the distributional
space (for instance, for RIO’s they could belong to different sectors),
if we take a mix of them we might cross into the right sector which
makes the distributions comparable. See Figure 11. Here z denotes
the smoothed element between x and y. While x would originally not
be comparable to y, with this smoothing we do have a comparison.

y
x

z

Figure 11: An example of how smoothing can produce a new comparison.
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It should be noted that this kind of smoothing breaks transitivity, so
it is in general no longer a partial order. The other similarity measures
used to study entailment are not partial orders either, so this is not
necessarily a problem.

4.4.2 Forms of grading

There are multiple forms of grading we can consider. We’ll start with
the most intuitive form, based on the grading of the Löwner order
considered in [4].

The orders on ∆n studied in this thesis have the form xv y iff for all
i: fi(x)gi(y)≤ fi(y)gi(x) (except for the maximum RIO and v−, there
the behaviour is slightly different when presented with elements with
different amounts of zeroes, but the general idea still holds). Grad-
ing on this partial order can be easily implemented by saying that
k-graded entailment is given by x vk y iff for all i: k · fi(x)gi(y) ≤
fi(y)gi(x). In the same vain, if we have an order on DO(n) given by
ρ v π iff F(ρ) − F(π) ≥ 0, then grading is implemented by ρ vk π

iff F(ρ) − kF(π) ≥ 0. This is a straightforward generalisation of the
grading in [4] where they took F = id.

Another form of grading can be considered based on the three im-
portant properties that an asymmetric similarity measure should have
as outlined in Kotlerman et al. For a RIO the partial order consists
of n− 1 comparisons and if all these comparisons hold then we say
that the elements are comparable. Recall that the jth inequality only
makes reference to coordinates j and higher (where the coordinates
are ordered from high to low). If we take the advice from Kotlerman
et al. then these last inequalities should count less towards our un-
derstanding of the entailment relations. Instead of letting the partial
order return a binary 1 or 0 determining whether there is entailment
or not we can count the amount of inequalities that point the right
way, and scale the points awarded based on the exact inequality. So if
the partial order is given by x v y iff for all i: Fi(x,y) ≤ 0 (for a RIO
Fi(x,y) = fi(x)gi(y)− fi(y)gi(x)), then we could make an assymetric
similarity measure in the following way:

Sim(x,y) = ∑
i

Aisign(Fi(x,y)).

The Ai are weights that determine how important a certain inequality
is. Following the advice of Kotlerman et al. these should be decreas-
ing with increasing i. The Ai’s should be positive and sum up to 1, so
that when xv y we have Sim(x,y) = 1.1 If the Fi is antisymmetric in its
arguments (as it the case for a RIO), then we also have Sim(x,y) = −
Sim(y, x).

Something similar can be done for the maximum eigenvalue order
on DO(n). Let ρ,π ∈DO(n), and let (vi) and (wi) denote orthonormal

1 These conditions actually ensure that (Ai) ∈ Λn−1.
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bases of eigenvectors for ρ respectively π. Call si = v†
i (π

+ρ− ρ+π)vi
and ti = w†

i (π
+ρ− ρ+π)wi, then we can define

Sim(ρ,π) = ∑
i

Ai(sign(si) + sign(ti)).

Since again, the spaces corresponding to the higher eigenvalues cor-
respond to the features occurring most of the time they should be
assigned higher weights.

It might be that slightly different forms of similarity measures
prove more useful in practice. This is merely to show that similar-
ity measures can be constructed from these partial orders. Empirical
research is needed to assess the practical usefulness of these partial
orders, and the specific combination of smoothing and grading of the
first and second type that works best.

4.5 compositionality

The graded entailment of [4] uses the Löwner order as the structure
that defines the grading. Since the Löwner order is the trivial order
on DO(n) you only have ρ vk π with k = 1 when ρ = π. This might
not be what you want since k determines the degree of entailment.
It is reasonable to assume that there are pairs of distinct terms that
have a ‘perfect’ entailment relation, but this can’t fit into this model.
In this model when ρ1 vk π1 and ρ2 vl π2 then ρ1 ⊗ ρ2 vkl π1 ⊗ π2.
If the ρi and πi are distinct then k and l will always be smaller than
1, so we see that tensoring terms together (composing words) gives a
smaller level of entailment: kl < k, l.

As they already touched on in their paper, this problem is allevi-
ated by normalising the positive operators in some other way. They
reference [12] as using the space of positive operators with the maxi-
mum eigenvalue bounded by 1. Call this space MO(n) for maximum
eigenvalue normalised operators. We then see that the map used in
Chapter 3 to describe the maximum eigenvalue order F(ρ) = ρ/ρ+

is actually a map F : DO(n)→ MO(n). So this idea is actually using
the maximum eigenvalue order in a disguised way.

Using the maximum eigenvalue order instead of the normal Löwner
order doesn’t change much. If we have ρv+

k π ⇐⇒ π+ρ− kρ+π ≥ 0
then we have πvk′ ρ with k′ = kρ+/π+. The only difference is in what
the exact value of k is. The grading with the maximum eigenvalue
order behaves better with respect to composing however, since the
values for k will in general be higher, so that the entailment strength
doesn’t artificially drop off as you compose words together. It there-
fore seems that the maximum eigenvalue order is a more natural
choice for doing this kind of entailment.



C O N C L U S I O N

In this thesis we set out to define some properties that a partial or-
der on ∆n or DO(n) should satisfy to qualify as an information order.
Starting from a minimal set of properties we saw that there were
many examples of such partial orders on ∆n. When given another
restriction, the degeneracy condition, the resulting class of partial
orders could be classified, and we saw that this uniquely defines a
direction for the partial orders. This class generalises the Bayesian
order, which is a specific example of a restricted information order.
These restricted information orders can be seen as being defined on
the monotone sector Λn and when restricted to Λn they are continu-
ous dcpo’s (domains). This seems to imply that Λn is a more simple
space than ∆n: the information orders on Λn have a unique direction,
and they are all domains. For information orders on ∆n this is no
longer the case. There are for instance the two renormalised Löwner
orders that contradict each other in some points. The only informa-
tion order that has been found to be a domain on ∆n is the maximum
eigenvalue Löwner order. It was further put forward (and hopefully
made likely) that this might be the only domain structure on ∆n that
is also an information order.

When looking for information orders on DO(n) we saw that those
coming from ∆n are too restrictive. We could reformulate the renor-
malised Löwner orders to get information orders on DO(n), and they
satisfied a new property: the order structure is preserved when com-
posing systems together using the tensor product. It was again seen
that only the maximum eigenvalue Löwner order was a domain, and
it was shown that a certain construction had this order as the unique
solution.

In the introduction it was stated that the question of combining an
order and the idea of information content is a rather fundamental
one. The only direct work in the direction of this question was done
with regard to the Bayesian order, which served as starting point for
this thesis. It is the hope of the author that this thesis might serve as
a starting point for looking into this question in a bit more depth.

Some interesting open questions that have arisen from this thesis:

• What is the least restrictive information order on ∆n having µS
(Shannon entropy) as a measurement? What about µ+? Does
v+

L have Shannon entropy as a measurement?

• What kind of nonrestricted information orders are there on ∆n

next to the renormalized Löwner orders? Specifically, are there
information orders that satisfy the kth degeneracy condition,
but not any of the others?

• What kind of orders are there on DO(n) that allow the compos-
ing of systems? Are there more quantum information orders on
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DO(n) next to v+
L and v−L ? Is v+

L the unique quantum infor-
mation order that is also a domain?

• Is there a way to combine v+
L and the dual Löwner order into

a single order on PO(n)? If this is not possible is there some
deeper reason behind this?

Next to these more formal mathematical questions it might also be
interesting to see if the orders seen in this thesis would be practically
applicable to computational linguistics.
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A
C L A S S I F I C AT I O N O F R E S T R I C T E D O R D E R S

Here we will show a complete proof that restricted information or-
ders on Λn given by n− 1 pairs of affine functions have to be of the
form as seen in Section 2.5.2.

Let f (x)g(y) ≤ f (y)g(x) be the inequality we want to study. We
write

f (x) =
n

∑
i=1

aixi + c, g(x) =
n

∑
i=1

bixi + d.

Writing out the inequality then gives us

∑
i

daixi + cbiyi +∑
i,j

aibjxiyj + cd≤∑
i

cbixi + daiyi +∑
i,j

ajbixiyj + cd

which by grouping terms together can be written as

n−1

∑
i=1

n

∑
j=i+1

Aij(xiyj − xjyi) ≤
n

∑
i=1

Bi(yi − xi)

or more succinctly as xT Ay ≤ BT(y− x) for some antisymmetric ma-
trix A and a vector B.

The condition ⊥n v y then translates into the inequality

n−1

∑
i=1

n

∑
j=i+1

Aij
1
n
(yj − yi) ≤

n

∑
k=1

Bk(yk −
1
n
).

Setting y1 = . . . = yn−1 then gives

0≤
n

∑
k=1

Bk(y1 −
1
n
)

where the last term is not negative since y1 ≥ 1
n so that we get

n

∑
k=1

Bk ≥ 0.

Now comes the main problem. We want to show what restriction
on A and B we get when the inequality must satisfy one of the degen-
eracy conditions. We’ll show here the proof for the first degeneracy
condition (so when x v y and y1 = y2), the others follow analogously.
So what we want to show is that when f (x)g(y) ≤ f (y)g(x) with
y1 = y2, then we must have x1 = x2. Write y = (p, p,q3, . . . ,qn−1,qn)

and x = (x1, . . . , xn). Expanding the inequality gives

A12 p(x1 − x2) +
n

∑
j=3

(A1j(x1qj − pxj) + A2j(x2qj − pxj))

+
n−1

∑
i=3

n

∑
j=i+1

Aij(xiqj − qixj) ≤ B1(p− x1) + B2(p− x2) +
n

∑
k=3

Bk(qk − xk).
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Since it is our goal to prove x1 = x2, we will write this inequality
in terms of the difference between x1 and x2: Write x2 = x1 − ε and
xi = x1 − ε− δi. We then get the following relations:

x1qj − pxj = p(x1 − xj)− (p− qj)x1 = p(ε + δj)− (p− qj)x1,

x2qj − pxj = pδj − (p− qj)(x1 − ε),

xiqj − qixj = x1(qj − qi)− ε(qj − qi)− (δiqj − δjqi),

B1(p− x1) + B2(p− x2) = −B1ε + (B1 + B2)(p− x2),

qk − xk = p− xk − (p− qk).

We can then write the lefthandside (LHS) after dividing by p as

A12ε +
n

∑
j=3

(
A1j(ε + δj) + A2jδj − A1j

p− qj

p
x1 − A2j

p− qj

p
(x1 − ε)

)

+
n−1

∑
i=3

n

∑
j=i+1

Aij

(
(x1 − ε)

qj − qi

p
− δiqj − δjqi

p

)
=

ε

(
n

∑
j=2

A1j +
n

∑
j=3

A2j
p− qj

p
−

n−1

∑
i=3

n

∑
j=i+1

Aij
qj − qi

p

)

+
n

∑
l=3

δl

(
A1l + A2l −

n

∑
j=l+1

Al j
qj

p
+

l−1

∑
i=3

Ail
qi

p

)

+x1

(
n

∑
j=3

(A1j + A2j)
p− qj

p
+

n−1

∑
i=3

n

∑
j=i+1

Aij
qj − qi

p

)
.

And the righthandside (RHS) after dividing by p as

− B1

p
ε +

B1 + B2

p
(p− x1 + ε) +

n

∑
k=3

Bk

(
p− xk

p
− p− qk

p

)

=
B2

p
ε +

n

∑
k=3

Bk

p
ε +

n

∑
l=3

δl
Bl

p
+

(
n

∑
k=1

Bk

)
(1− x1

p
)−

n

∑
k=3

Bk
p− qk

p
.

In the original inequality we bring every ε or δl term to the left and
the rest to the right:

ε

(
n

∑
j=2

A1j +
n

∑
j=3

A2j
p− qj

p
−

n−1

∑
i=3

n

∑
j=i+1

Aij
qj − qi

p
−

n−1

∑
k=2

Bk

p

)

+
n

∑
l=3

δl

(
A1l + A2l −

n

∑
j=l+1

Al j
qj

p
+

l−1

∑
i=3

Ail
qi

p
− Bl

p

)
≤(

n

∑
k=1

Bk

)
(1− x1

p
)−

n

∑
k=3

Bk

p
(p− qk)

+
x1

p

(
n

∑
j=3

(A1j + A2j)(p− qj) +
n−1

∑
i=3

n

∑
j=i+1

Aij(qj − qi)

)
.
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Now let x1 = p and δl = p− ql , then the δl tems on the left cancel
out against all the terms on the right so that we are left with

ε

(
n

∑
j=2

A1j +
n

∑
j=3

A2j
p− qj

p
−

n−1

∑
i=3

n

∑
j=i+1

Aij
qj − qi

p
−

n

∑
k=2

Bk

p

)
≤ 0

This inequality holds whenever ε = 0 (which is fine) or when ε > 0
and the term after it is negative or zero. Therefore, for any allowable
values of p and qj this term must be strictly positive. Write C for this
value. So we have C > 0. For brevity we will also write B = ∑n

k=1 Bk.
Note that the ⊥n v y condition tells us that B ≥ 0.

Now let x1 < p, but keep the δl at the same values: δl = p− ql . By
taking the δl terms on the LHS to the RHS we can combine the terms:

Cε ≤ B(1− x1

p
) + (

x1

p
− 1)

(
n

∑
j=3

(p− qj)(A1j + A2j) +
n−1

∑
i=3

n

∑
j=i+1

Aij(qi − qj)

)

=

(
1− x1

p

)(
B−

(
n

∑
j=3

(p− qj)(A1j + A2j) +
n−1

∑
i=3

n

∑
j=i+1

Aij(qi − qj)

))

If the RHS is positive then we can find a strictly positive ε that
satisfies this inequality. So the RHS must be negative for any al-
lowable values of p and qi. Since x1 < p we have 1 − x1

p > 0. Take
p = q3 = . . . = qn−1. Then all the Aij terms cancel and we we are left
with

Cε ≤ (1− x1

p
)B

so that we must have B ≤ 0, which gives B = 0.
Now let all the δl terms be free and take them to the RHS. Then the

inequality becomes

Cε ≤
n

∑
k=3

Bk

p
(δk − (p− qk)) +

n

∑
j=3

(A1j + A2j)((p− qj)
x1

p
− δj)

+
n−1

∑
i=3

n

∑
j=i+1

Aij((1−
δj

p
)qi − (1− δi

p
)qj)

.

Define a new quantity φk = δk− (p− qk). This value can be positive
and negative. Rewriting the inequality with this new quantity gives

Cε≤
n

∑
k=3

Bk

p
φk +

n

∑
j=3

(A1j + A2j)((p− qj)(
x1

p
− 1)−φj)+

n−1

∑
i=3

n

∑
j=i+1

Aij

(
φi

p
qj −

φj

p
qi

)
Let φi = 0 for all i < n and set p = q1 = q2 = . . . = qn−1, then again

many terms cancel and we are left with

Cε ≤ 1
p

Bnφn + (p− qn)(
x1

p
− 1)(A1n + A2n)− φn

n−1

∑
i=1

Ain

By setting x1 = p we then must have φn(
Bn
p −∑n−1

i=1 Ain)≤ 0 for any
allowable p and φn. Since φn can change sign the only way to let this
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hold is to have the term be equal to zero. But since this must hold for
multiple values of p this can only be the case when Bn = 0 = ∑n−1

i=1 Ain.
We can repeat this procedure, by keeping x1 = p and setting all

the φi = 0 except for φn−1 and letting p = q1 = q2 = . . . = qn−1 The
inequality then becomes

Cε ≤ φn−1

(
Bn−1

p
−

n−2

∑
i=1

Ai(n−1) + A(n−1)n
qn

p

)

The term must again be zero because φn−1 can change sign and each
individual term must also be zero since we can independently change
p and qn. So Bn−1 = ∑n−2

i=1 Ai(n−1) = An−1)n = 0.
We can continue this procedure k times where n− k ≥ 3. The kth

term will look like

φn−k

(
Bn−k

p
−

n−k−1

∑
i=1

Ai(n−k) +
n−1

∑
j=n−k+1

A(n−k)j
qj

p

)
.

Therefore we will have Bi = 0 for i > 2 and B1 + B2 = 0 and A1j + A2j =

0 and Aij = 0 when i > 2 and j > 2. This procedure gives no condition
on A12.

When we do all this for the kth degeneracy condition where yk =

yk+1, the results are

Bk + Bk+1 = 0

Bi = 0 ∀i 6= k,k + 1

Akj + A(k+1)j = 0 ∀j 6= k,k + 1

Aij = 0 ∀i, j 6= k,k + 1

where we define Aji = −Aij. Note that we have no condition on
Ak(k+1).

Now writing out the original inequalities again in terms of A and
B with these new conditions we get

n

∑
j=1

Akj(xjyk+1 − yjxk+1)− Akj(xjyk − yjxk)

=
n

∑
j=1

Akj[yj(xk − xk+1)− xi(yk − yk+1)]

≤Bk(yk − xk)− Bk(yk+1 − xk+1) = Bk((yk − yk+1)− (xk − xk+1)

which after grouping terms together becomes

(xk − xk+1)g(y) ≤ (yk − yk+1)g(x)

where g(x) = ∑n
i=1 Akixi + Bk. Since ∑i xi = 1, we can absorb this Bk

term into the Aki constants, so that we can write g(x) = ∑i Aixi.
We require that if yk+1 = 0, then ⊥k v y, which translates into

1
k

g(y) ≤ ykg(⊥k) = yk

k

∑
i=1

Ai

k
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which can be rewritten as

k−1

∑
i=1

(yi − yk)Ai ≤ 0

for all combinations of yi, so in fact Ai ≤ 0 for i < k. We can absorb
the parameter Ak into Ak+1 because the parameter Ak gives the term
(xk− xk+1)Akyk− (yk− yk+1)Akxk =−Ak(xkyk+1− ykxk+1), so that we
can just as well set A′k+1 = Ak+1 − Ak. So we take Ak = 0.

Now note that if we take x = ⊥k+1 then the inequality becomes

0≤ (yk − yk+1)
1

k + 1
(

k−1

∑
i=1

Ai + Ak+1)

so that Ak+1 ≥ 0 to offset the negative ∑k−1
i=1 Ai.

Now let k = n− 1 and pick x with xn−1 = xn. The inequality then
has the form

0≤ (yn−1 − yn)g(x)

Suppose there is an Ai < 0 with i < k = n− 1. Then if we take xn−1 =

xn → 0, at some point the RHS becomes strictly negative which pre-
vents any y from being bigger than x. So Ai = 0 for i < n − 1. As
we saw we can take Ak = 0 and we have Ak+1 ≥ 0, so this inequality
simply becomes

(xn−1 − xn)yn ≤ (yn−1 − yn)xn

by dividing out the An term. We can do exactly the same procedure
for the other k’s, so that Ai = 0 for i ≤ k. So the inequality for a kth
degeneracy has a g of the form

g(x) = yk+1 +
n

∑
j=k+2

Ajyj

where we have divided out the Ak+1 term. This concludes the proof
of the categorization of the inequalities.
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