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Abstract

Programming languages usually impose a definite order over the instructions to

be executed, but quantum mechanics permits processes to be combined in a su-

perposition of configurations. This thesis provides the first higher-order quantum

programming language featuring indefinite causal orders. This model introduces a

new primitive for the quantum switch - a resource that can combine two channels in

a superposition of causal orders. The quantum switch itself is generalised from the

usual definition to control the connections between higher-order maps. Our type

system incorporates a large fragment of linear logic; this enables signalling-aware

types, preventing the construction of causal loops where information is sent back-

wards in time. In developing this model, we prove new results about the behaviour

of the direct sum in the category Caus[CP(FHilb)] of causal quantum processes.
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Chapter 1

Introduction

Recent years have seen exciting advances in the production of practical quantum

computers. As a result, there has been a surge of interest in providing tools for

quantum programming. A number of popular (classical) programming languages

have been outfitted with libraries for quantum constructs, e.g. the quantum IO

monad in Haskell [4]. We have also seen the emergence of bespoke languages for

quantum computing such as Quipper [28] and LIQUi ∣⟩ [50].

Most of the practical quantum programming languages currently available follow

the paradigm of “quantum data, classical control” [44]: the computer performs

operations on quantum systems, but the instructions are scheduled by a classical

device. This gives a definite order over the instructions of a program. However,

it is entirely possible in quantum mechanics for two events to be connected in a

superposition of causal orders.

Some programming languages such as QML [3] and the language of [52] pro-

vide mechanisms for quantum alternation. This is a more general notion, allowing

two distinct programs to be executed in superposition coherently with the input

state. This allows the expression of programs with indefinite causal order. How-

ever, these languages lack the generality of higher-order programming and they can

only simulate the effects of indefinite causal order over white-box processes.

This thesis presents a higher-order programming language for quantum compu-

tation with indefinite causal order. We achieve this in such a way that permits the

modelling and management of black-box processes.

The quantum switch is a computational resource that takes two black-box chan-

nels and composes them in a superposition of causal orders. We generalise this here

to operating on higher-order processes of type Â ⊸ Â. This generalised switch is

provided as a primitive in our programming language. This is a very timely develop-

ment given the recent interest in theoretical [18, 54] and experimental constructions

[38, 41, 41] of the switch, in addition to results on the computational advantages it

provides [12, 22, 5].

A notable constraint on the quantum switch is the requirement for the channels

to be non-signalling. If this is not satisfied, then some information must be sent

backwards in time, violating laws of special relativity ([30] presents a good exam-

ple from the swap operation). In quantum programming languages, linear type

systems have seen great use to enforce compliance with the no-cloning theorem.

Similar techniques are used in this thesis to handle the non-signalling constraint by

providing signalling-aware types. In particular, we introduce the ability to operate
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locally on each side of higher-order bipartite processes, preserving any signalling

relation between them.

Our work takes Selinger and Valiron’s quantum lambda calculus [45] as a starting

point. We extend the computational model from qubit computing to quantum

operations in arbitrary finite-dimensional Hilbert spaces. Programs reference a

collection of registers, each of which may contain a physical higher-order quantum

process. Processes can be built into these registers from their program descriptions,

and connected via function application.

The theory behind the signalling-aware types lies in categories of higher-order

causal processes [29]. We make progress in this area by adding the direct sum of

processes and introduce new results on the signalling induced by quantum alterna-

tion.

Chapter 2 presents the necessary foundations on quantum mechanics and com-

putation. In Chapter 3, we cover the required background on signalling between

quantum systems, including the construction for categories of causal processes [29]

and an introduction to indefinite causal orders. Chapter 4 revues some trends in

quantum programming languages and examines the work of Selinger and Valiron

[45] as a case study, highlighting its shortcomings as a general model of quantum

computation. The main results of the thesis are contained within Chapter 5, bring-

ing together the topics of the previous sections to give the schema for a new pro-

gramming language and demonstrating the features with some example programs.

Chapter 6 goes into some of the design choices in detail, reasoning about them

using the category theoretic framework, and presenting useful operational proper-

ties of the language. Finally, in Chapter 7 we discuss several avenues down which

the language could still be extended to give a more complete picture of quantum

computing, followed by some concluding remarks.
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Chapter 2

Quantum Structures

In the typical classical setting, every property has a fixed state which will not change

unless acted on directly. Furthermore, this state can be freely interrogated without

any side-effects. Quantum systems contrast this by being in superpositions of states,

possibly entangled with other systems, and observing/measuring is a probabilistic

action that irreversibly alters a state. These can be used as computational resources

allowing a variant of parallelism via superposition, or giving a new type of shared

cryptographic secret in the form of entangled systems.

The simplest non-trivial quantum system is the qubit, with states corresponding

to superpositions of two orthonormal basis states. Typical (reversible) transforma-

tions are change-of-basis operations, rebalancing the superposition in some way.

Observing the system will cause the state to instantaneously snap to one of the

basis states - this happens probabilistically depending on the coefficients of super-

position prior to the observation. A wide selection of physical systems can exhibit

the behaviour of a qubit. Common examples include (superpositions of) particle

trajectories, photon polarisation angles, and electronic states of ions.

2.1 Systems and States

Each quantum system is associated with its corresponding Hilbert space. The di-

mension of the Hilbert space corresponds to the number of degrees of freedom in

the system, which may potentially be infinite.

Definition 2.1.1 (Hilbert space). A Hilbert space H is an inner product space which

is complete in the sense that, given any sequence v0, v1, . . . ∈H where ∑
∞
i=0 ∥vi∥ <∞,

there exists some v ∈H such that lim
n→∞ ∥v −∑

n
i=0 vi∥ = 0.

The internal state of a system can be represented by a normalised density matrix.

Definition 2.1.2 (Density matrix). A density matrix ρ on a Hilbert space H is a

positive linear map H →H (ρ = ψ†
○ψ for some Hilbert-Schmidt operator ψ ∶H → K).

ρ is normalised when it satisfies Tr[ρ] = 1 or partial when Tr[ρ] ≤ 1.

The two main ways of combining Hilbert spaces are via tensor product ⊗, mod-

elling compound systems, and direct sum ⊕, modelling systems in superposition

over the component Hilbert spaces.

Trivial systems are those with no inputs or outputs. States have a single degree

of freedom, describing the probability of some event occurring - the set of partial
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density matrices for the one-dimensional Hilbert space (C) corresponds exactly to

the range [0,1]. Taking the direct sum over two trivial state spaces gives a super-

position over two of these fixed states, i.e. a qubit. The trivial system allows us to

define purity of a state:

Definition 2.1.3 (Purity). A state ρ is pure when there exists some ψ ∶ H → C
such that ρ = ψ†

○ ψ.

Quantum processes can be desribed by completely positive maps. We will use

the notation L(H) to refer to the set of linear maps from H to itself.

Definition 2.1.4 (CP-maps). A completely positive (CP) map from H to K is an

operator Ψ ∶ L(H) → L(K) such that, for every H′, if ρ ∈ L(H ⊗H
′
) is positive,

then so is (Ψ⊗ idH′)(ρ).

Definition 2.1.5 (Pure Process). A process Ψ ∶ L(H) → L(K) is pure when, for

every H′, if ρ ∈ L(H⊗H
′
) is pure, then so is (Ψ⊗ idH′)(ρ).

Every linear map ψ ∶ H → K gives rise to a pure process ψ̂ ∶ L(H) → L(K)

defined as ψ̂(ρ) ∶= ψ ○ ρ ○ ψ†. Whilst not every process is pure, every CP-map

can be represented by a set of pure processes via a (not necessarily unique) Kraus

decomposition - Ψ(ρ) = ∑i ψ
†
i ○ρ○ψi for some maps ψi ∶H → K such that ∑i ψ

†
iψi =

idH.

From these definitions, it is clear that (pure) states are the special case of (pure)

processes with a trivial input system.

2.2 Graphical Calculus

Quantum circuits are comprised of collections of processes, connected either in par-

allel or series. This can be neatly represented by a diagrammatic calculus which

makes interchange laws and permutations trivial operations. We will use such dia-

grams within this thesis to give examples and aid explanations when appropriate.

We will assume the convention that time flows from the bottom of a diagram to the

top.

Figure 2.1 demonstrates the graphical representations of quantum processes. A

process with inputs I0, . . . , In−1 and outputs O0, . . . ,Om−1 is drawn as a box with n

input wires and m output wires. Wedges are used to distinguish between a process

and its conjugate (flipped horizontally), adjoint (flipped vertically), and transpose

(rotated). Each wire carries a density matrix over some Hilbert space. Wires

carrying trivial systems are not drawn since there is intuitively nothing to carry.

[21] gives a full introduction to the graphical constructs and these notations.

2.3 The Choi-Jamio lkovski Isomorphism

Quantum theory admits a bijection between processes from L(H) to L(K) and

states in L(K⊗H). This process-state duality is useful to provide a uniform repre-

sentation of any quantum process as a state in some large Hilbert space.

Entanglement describes an interdependence between the individual components

of a compound system. For any Hilbert space H with an orthonormal basis {∣i⟩}i,

4



Ψ

I0 In−1⋯

O0 Om−1⋯

(a) A general process.

ρ

O0 Om−1⋯

(b) A process with no in-

puts (i.e. a state).

Ψ

π

ρ

O

I

(c) A circuit formed by

composing processes.

Figure 2.1: Examples of structures in the graphical calculus.

we can define the maximally entangled vector as ∣IH⟩ = ∑i ∣i⟩ ⊗ ∣i⟩ and the corre-

sponding state ∣IH⟩ ⟨IH∣. Note that this is not a normalised state in general since

Tr[∣IH⟩ ⟨IH∣] = dim(H).

In the graphical calculus, the maximally entangled state can be represented by

a curved piece of wire since combining it with its adjoint yields the identity. It also

relates a process to its transpose in a natural manner.

IH =
= Ψ = Ψ

(2.1)

The Choi-Jamio lkovski isomorphism formalises this bijection between maps and

states.

Definition 2.3.1 (Choi-Jamio lkovski Isomorphism). Given a CP-map Ψ ∶ L(H)→

L(K), its Choi-Jamio lkovski operator is defined as

C(Ψ) ∶= (Ψ⊗ idH)(∣IH⟩ ⟨IH∣) (2.2)

and the inverse operation is

[C−1(M)](ρ) ∶= TrH[(idK ⊗ ρT )M] (2.3)

The isomorphism is very clear to see in the graphical calculus (note that the

partial trace has been absorbed into the box for the transposed ρ state).

[C−1C(Ψ)](ρ) =

C(Ψ)

ρ

= Ψ ρ =

Ψ

ρ

Since this isomorphism can be applied to any quantum process to reduce it to

a density matrix, higher-order processes/supermaps [17] (those where the input or
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output is a generic process as opposed to a first-order state) can be represented as

processes acting on Choi-Jamio lkovski operators. This turns it into a process with

first-order inputs and outputs, allowing the isomorphism to be applied to yield a

state. Density matrices can hence be used as universal descriptions of any quantum

process.

For example, given a second-order process Ψ, the isomorphism works as follows:

C(Ψ)

C(Φ) ρ

= Ψ

Φ ρ

= Ψ Φ

ρ

2.4 Measurements

The main method of extracting information from a quantum system is to perform a

measurement. Any measurement is made with respect to a collection of subspaces

spanning the system’s Hilbert space - a pure quantum process is applied before

projecting into the specified subspaces. This projection causes a probabilistic col-

lapse of the state onto a single subspace. The only information obtained from the

measurement is which subspace the state was projected into. An extreme case of

this is a measurement on an orthonormal basis, where the collapse yields an exact

state.

As an example, suppose we are given a qubit in the normalised pure state ∣φ⟩ ⟨φ∣

where ∣φ⟩ = α ∣0⟩ + β ∣1⟩. Measuring it in the computational basis ({∣0⟩ , ∣1⟩}) yields

∣0⟩ ⟨0∣ with probability ∣α∣2 and ∣1⟩ ⟨1∣ with probability ∣β∣2. Note that, in performing

this operation, we lose any off-diagonal information (the coefficients of ∣0⟩ ⟨1∣ and

∣1⟩ ⟨0∣).

Measurements can furthermore be divided into two classes. Demolition measure-

ments completely remove a state, reducing it to the trivial system. On the other

hand, non-demolition measurements retain the state after the collapse, allowing it

to be used for further processing. Every demolition measurement is equivalent to

the corresponding non-demolition measurement followed by discarding the residual

quantum system.

The most general definition is a Positive-Operator Valued Measure (POVM):

Definition 2.4.1 (POVM). A POVM is a collection {Mi}i of measurement oper-

ators satisfying

∑

i

M†
iMi = id (2.4)

Applying a POVM to a normalised state ρ gives the result i with probability
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p(ρ, i) ∶= Tr[MiρM
†
i ] (2.5)

and the state of the system after the measurement is

ρ′ ∶=
MiρM

†
i

Tr[MiρM
†
i ]

(2.6)

If the measurement operators are projectors onto orthogonal subspaces (such

as the case for orthonormal basis measurements) then the measurement map from

Equation 2.6 will be idempotent - after applying it once, we can continue to apply

it without changing the state or outcome.

2.5 No-Go Theorems

Here, we present three no-go theorems that are useful in the remainder of this thesis.

The no-cloning theorem [51] states the impossibility of a physical process which

takes a single token of a state ρ and produces two tokens ρ⊗ ρ. Data is constantly

being copied in classical computers, whether it be through fetching instructions or

data from registers/RAM/storage, performing any data analysis whilst retaining

the data, or explicitly copying states within some algorithm. However, we find that

the map which copies every quantum state is not linear, so no physical process

can realise this map. A similar result holds for classical probability distributions -

given one source of a distribution, we cannot produce two independent sources. The

difference between the probabilistic and quantum cases is that we can broadcast a

probability distribution, where each output appears to act like the input distribution

locally (ignoring the other output). Broadcasting of states in this sense is not

viable with quantum data [10]. In a higher-order context, we find similar no-cloning

theorems which prevent us using a single instance of a channel to perfectly simulate

the effect of running it on two inputs in parallel [14] or iterating it multiple times

on a single input [46].

When we move into higher-order processing, we start to become interested in

control structures as our computational primitives. In classical computing, one

of the most significant control structures is conditional execution - the controlled

execution of some program dependent on some state. There are two ways this can be

mapped into a quantum environment: either some test state can be measured and

the outcome used to classically control the execution, or the conditional execution is

done coherently with the control system retaining any superposition. The latter case

gives rise to the idea of a controlled unitary which is the process with Kraus operator

∣0⟩ ⟨0∣⊗ id+ ∣1⟩ ⟨1∣⊗U for some given unitary U . Whilst each controlled-unitary is a

valid quantum process, the no-controlling theorem [6] shows the impossibility of a

physical process which transforms an arbitrary Û into the corresponding controlled

unitary. A similar result has been shown for the impossibility of a process producing

a fixed superposition of two pure input states [36].

For higher-order processing on classical computers, we can encode instructions as

data, so it suffices to build our computers to operate only on simple first-order data

units (i.e. bits). Unfortunately, the no-programming theorem [34] means we can-

not encode arbitrary channels in finite-dimensional systems - or rather, to reliably

encode one of n possible processes, we need to use a Hilbert space with at least n

dimensions. Whilst the Choi-Jamio lkovski isomorphism provides such a mechanism
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for the purposes of modelling processes, this does not provide a practical encoding

scheme for physical processes since we cannot perform the inverse operation with

certainty.
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Chapter 3

Signalling Structures

Drawing arbitrary connections between the inputs and outputs of processes could

allow us to construct descriptions of circuits which send information into the past

with perfect accuracy. However, relativistic physics does not permit information

to be sent out of the future light cone of its origin, let alone into the past. At a

mathematical level, this constraint is captured by the definitions of causal processes

and associated signalling constraints.

3.1 Causality

Every Hilbert space has a unique associated map, called the discarding map, which

corresponds to the action of discarding a system living in that space.

Definition 3.1.1 (Discarding Map). The discarding map H ∶ L(H) → L(C) for

a given Hilbert space H acts by applying the trace operator to the state - H(ρ) ∶=

Tr[ρ]. Applying a discarding map locally on a larger system corresponds to applying

a partial trace - ( H ⊗ idK)(ρ) = TrH[ρ].

Definition 3.1.2 (Causal Process). A process is causal when applying it and dis-

carding all outputs gives the same effect as discarding all inputs.

Ψ = (3.1)

This is exactly the class of processes which can be implemented physically with

certainty (as opposed to non-deterministic processes which yield multiple opera-

tions, each occurring with some probability). The definition is equivalent to saying

that the process is trace-preserving, or (for pure processes) an isometry. As a special

case of the causality property, a state is causal iff it is normalised.

A higher-order process is causal when it transforms causal processes into causal

processes. For example, we say that a process is second-order if it transforms

processes of Ai → Ao to processes of Bi → Bo. Second-order causality is satisfied

by processes Φ ∶ (Ai → Ao) → (Bi → Bo) where, for all causal Ψ ∶ Ai → Ao, Φ(Ψ) is

causal.
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C

D

Figure 3.1: Some causal structures in which processes A and B are non-signalling

(left) and one-way signalling A ≺ B (right). In both cases, it is possible for them to

have some shared past C and future D. The graph on the right is an example of a

linear causal structure with the unique ordering of events being C ≺ A ≺ B ≺D.

3.2 Causal Structures

We can picture each quantum process as acting in some region of spacetime. Sup-

pose we break all regions down to a collection of specific points called events. Special

relativity tells us that each event can only influence those in its future light cone

(the region of space-time that can be accessed by travelling no faster than light)

and can only be influenced by those in its past light-cone (the region from which it

is accessible by travelling no faster than light). We can then construct the relation

of possible influences between the events. This gives us a restriction on how we can

connect the set of processes together to form a valid circuit.

Mathematically, we can represent the relation between spacetime points that

can signal to one another by a partial order. Given a discrete model of spacetime,

this can be drawn as a directed acyclic graph. Such graphs are referred to as causal

structures or quantum causal networks [16]. In particular, linear causal structures

are those where there is a unique ordering of the events.

A circuit satisfies a given causal structure if all wires in the circuit lie on edges

of the graph. It is possible for each circuit to satisfy multiple causal structures.

3.3 One-Way Signalling

The most common signalling constraints can be examined by considering a bipartite

process from a system Ai ⊗Bi to Ao ⊗B0, viewed as a pair of (possibly connected)

channels at locations A and B. In the general case, we can imagine that both

inputs could influence both outputs. One-way signalling (A ≺ B) is a property that

states the independence of the input of one side (B) of the bipartite process and

the output of the other (A) [11, 15].

Definition 3.3.1 (One-Way Signalling). A causal process Φ ∶ Ai⊗Bi → Ao⊗Bo is

one-way signalling with A ≺ B if discarding Bo permits a factorisation of the form:

Φ

Ai Bi

Ao

= Φ′

Ai

Ao

Bi

(3.2)
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Definition 3.3.2 (Non-Signalling). A causal process Φ ∶ Ai⊗Bi → Ao⊗Bo is non-

signalling when it satisfies the one-way signalling condition with both A ≺ B and

B ≺ A.

It is important to note that the definition of non-signalling is different from that

of a product/separable state. It is entirely possible that A and B have some shared

cause in the past (as in Figure 3.1) which allows them to be entangled without any

signalling occurring between them.

3.4 Causal Categories

Categories are well-known for their generality as mathematical objects and numer-

ous applications across Computer Science; quantum theory is no exception to this.

Monoidal categories permit clear diagrammatic reasoning where any combination

of the associators and unitors corresponds to a simple graphical identity. Dagger

compact closed categories [2] have sufficient structure to represent the process-state

duality exhibited by the Choi-Jamio lkovski isomorphism. On top of this, we can

build the CPM construction [43] which exactly captures the set of completely posi-

tive maps. Finally, Frobenius algebras give rise to classical structures (representing

orthonormal bases) which form the basis of the ZX-calculus [20], providing a way of

reasoning the equivalence of programs that is complete for the stabilizer fragment

[8] and can be extended for completeness of qubit computation [33].

This section covers some of the content of [29] which presents the Caus construc-

tion and gives proofs on the representation of signalling constraints in the objects

of the category.

3.4.1 The Caus Construction

We will start with compact closed categories and progressively build up more struc-

ture. For clarity, we use implicit associators and unitors for the monoidal structure.

Definition 3.4.1 (Compact Closed Category). A symmetric monoidal category C

with tensor unit I is compact closed if, for every object A, we have a dual object A∗

and morphisms ηA ∶ I → A∗
⊗A and εA ∶ A⊗A∗

→ I satisfying:

(εA ⊗ idA) ○ (idA ⊗ ηA) = idA (idA∗ ⊗ εA) ○ (ηA ⊗ idA∗) = idA∗ (3.3)

ηA

εA

=

ηA

εA

=

In every compact closed category, the tensor unit I is isomorphic to its dual

(I ≅ I∗) and we generally identify them. We can use these dualities to introduce

the transposition functor.

Definition 3.4.2 (Transposition Functor). For a compact closed category C, we

define the transposition functor (−)
∗
∶ C
op
→ C mapping objects A to their duals A∗

11



and morphisms f ∶ A → B to their transpose f∗ ∶= (idA∗ ⊗ εB) ○ (idA∗ ⊗ f ⊗ idB∗) ○

(ηA ⊗ idB∗) ∶ B
∗
→ A∗.

f∗ ∶= f

ηA

εB

(3.4)

The dualities allow us to represent a process Φ ∶ A→ B as a state (Φ⊗idA∗)○ηA ∶

I → B ⊗ A∗, generalising the Choi-Jamio lkovski isomorphism. We then obtain

higher-order processes as morphisms between such types. For example, a second-

order process from Ai → Ao to Bi → Bo is a morphism of Ao ⊗A
∗
i → Bo ⊗B

∗
i . We

will continue to draw these as combs for clarity.

Definition 3.4.3 (Precausal Category). A compact closed category is precausal if:

• It has a discarding process for every system satisfying:

A⊗B = A ⊗ B (3.5) I = 1(= idI) (3.6)

• The dimension dim(A) ∶= A ○
∗
A of any non-zero system A is an invertible

scalar.

• It has “enough causal states” (if f ○ ρ = g ○ ρ for all causal ρ, then f = g).

• Second-order causal processes factorise as:

∃Φ1,Φ2 causal . Ψ =

Φ1

Φ2

(3.7)

We know that signalling and non-signalling processes occupy the same Hilbert

space, so in order to distinguish between them we need to consider more specific

sets of processes. We introduce causal sets to solve this problem.

Definition 3.4.4 (Dual Sets). For any set c ⊆ C(I,A), its dual set c∗ ⊆ C(I,A∗
) is

defined as:

c∗ ∶= {π ∶ A∗
∣∀ρ ∈ c.π∗ ○ ρ = 1} (3.8)

Furthermore, c is closed if c = c∗∗ and it is flat if both c∗ contains A and c

contains
∗
A up to invertible scalars.

From this definition, we can show that c ⊆ c∗∗ always holds, and c∗ = c∗∗∗ (hence

(−)
∗∗ is an idempotent “closure” operation).

The category Caus[C] of higher-order causal processes for C can now be defined:

12



Definition 3.4.5 (Caus Construction). For a precausal category C, the objects

of Caus[C] are pairs A ∶= (A, cA) where the object’s causal set cA ⊆ C(I,A) is

closed and flat. Morphisms f ∶ A → B are morphisms f ∈ C(A,B) such that

∀ρ ∈ cA.f ○ ρ ∈ cB.

Caus[C] is a symmetric monoidal category with the tensor product defined by:

A⊗B ∶= (A⊗B, (cA ⊗ cB)
∗∗

) (3.9)

where cA ⊗ cB ∶= {ρ1 ⊗ ρ2∣ρ1 ∈ cA, ρ2 ∈ cB}, and the tensor unit is I ∶= (I,{1}).

We also find dual objects as A∗
∶= (A∗, c∗A).

It is important to note that CP(FHilb) is a precausal category, so it is useful

to consider Caus[CP(FHilb)] when discussing quantum processes.

3.4.2 ` and ⊸

One important property of this construction is that duals do not distribute over the

tensor product; that is, (cA ⊗ cB)
∗
≠ c∗A ⊗ c∗B. We can bridge this gap by adding a

new definition for the “par” of two systems A ` B as the De Morgan dual of the

tensor product:

cA`B ∶= (c∗A ⊗ c∗B)
∗
= {ρ ∶ A⊗B∣∀π ∈ c∗A, ξ ∈ c

∗
B.(π

∗
⊗ ξ∗) ○ ρ = 1} (3.10)

Informally, the definition of cA⊗B lets it be the set of processes which can be

embedded in environments matching any causal structure. There should not be any

signalling between the A and B components as the environment could add signalling

in the opposite direction, introducing a causal loop. On the other hand, processes in

cA`B only need to interact nicely with local effects that cannot introduce signalling

between A and B. This means we are free to have any causal relationship between

them. Naturally, Caus[C] has a canonical embedding A⊗B→A`B.

Definition 3.4.6 (First-Order System). A system A = (A, cA) in Caus[C] is first-

order if it is of the form (A,{ A}
∗
).

Lemma 3.4.7. For any first-order systems A,B in Caus[C], A⊗B ≅ A`B.

This lemma matches our intuition regarding first-order processes as those with

trivial inputs - there is only one causal state for the trivial system, so there is no

information to signal.

We now have a way to represent functions by the internal hom A ⊸ B ∶=

(A⊗B∗
)
∗
≅ A∗`B. This may be read as “processes which eliminate something of

type A and can signal information to an output of type B”. Using these operators,

we can now construct objects of higher-order types which appropriately describe

the signalling between the subsystems.

3.4.3 Signalling Constraints as Types

In the context of causal categories, we say that a process is “of type A” when it is a

morphism in Caus[C](I,A). The following lemmas are proved in [29] and confirm

our informal arguments about the relationships between ⊗, `, and signalling. Let

A,A′,B,B′ be first-order systems.

13



Lemma 3.4.8. A bipartite process Φ is of type (A⊸A′
)⊗(B⊸ B′

) iff it is causal

and non-signalling.

Lemma 3.4.9. A bipartite process Φ is of type A⊸ (A′
⊸ B)⊸ B′ iff it is causal

and one-way signalling with A ≺ B.

Lemma 3.4.10. A bipartite process Φ is of type (A ⊸ A′
) ` (B ⊸ B′

) iff it is

causal.

These results generalise to n-partite processes. In particular, one-way signalling

with A1 ≺ . . . ≺ An is equivalent to the type A1 ⊸ (A′
1 ⊸ (. . .)⊸An)⊸A′

n which

is the general type for an n-comb [13, 16]. This provides a correspondence between

the quantum comb formalism and linear causal structures.

3.5 Indefinite Causal Order

If we are given two channels F,G ∶ L(H)→ L(H), there are three ways of combining

them classically: F ○G, G ○ F , and F ⊗G. These correspond to the three possible

directed acyclic graphs/causal structures that can be constructed with two points.

Choosing one of these combinations dependent on some test produces a process

which will not necessarily fit any of these causal structures until the result of the

test is determined. If, instead of a classical test, we let this be a coherent quantum

controlled-operation, we can obtain a superposition of causal orders of events.

The quantum switch [18] is a quantum process which creates exactly this super-

position of orders. It takes two black-box channels and composes them such that

the order is controlled coherently by some qubit. The switch is formally defined to

be the operation taking channels F,G with some Kraus operators {fi}i,{gj}j , and

produce the channel with Kraus operators:

wi,j ∶= (gj ○ fi)⊗ ∣0⟩ ⟨0∣ + (fi ○ gj)⊗ ∣1⟩ ⟨1∣ (3.11)

It should be noted that the switch is only valid when the pair of channels pro-

vided are non-signalling. For example, attempting to apply it over the two sides of

a swap gate will immediately create a causal loop, even if we fix it to one of the

classical orders [30]. Lemma 3.4.8 tells us that the process combining two channels

of type A⊸A in a fixed order should be of type (A⊸A)⊗(A⊸A)⊸ (A⊸A).

The type of the quantum switch is C2
⊸ C2` ((A⊸A)⊗ (A⊸A)⊸ (A⊸A)).

We examine this claim in more detail in Section 6.2.

Several physical embodiments for a switch have been proposed in the literature.

Supposing we have wires that can be moved in accordance with the quantum control

system, we can arrange them to connect the two input boxes in one order or the

other [18]. Strong gravitational forces are capable of tilting the light cones of nearby

processes, so by carefully positioning a large mass closer to one process than the

other we can control the order in which they occur; entangling the position of

this mass with some control system gives the gravitational switch [54]. Laboratory

experiments [38, 41, 40] have been able to construct a switch using optical circuits

where the control qubit is encoded in the spatial trajectory of a photon and the gates

applied affect the photon’s polarisation; although, controversially, similar setups [25]

have been shown to circumvent the no-controlling theorem. The switch can also be

simulated if we have multiple copies of the pure transformations [18].
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The quantum switch offers numerous advantages in computation. For exam-

ple, inserting commuting or anti-commuting channels into a switch induces a phase

change on the control qubit which can be measured. This allows for perfect discrim-

ination between the two cases which is not possible when executing them in a fixed

order [12]. We also find that, using a switch with a fixed control system, we can

construct a channel with non-zero capacity from completely depolarising channels

[22], exceeding the bounds predicted by standard information theory.
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Chapter 4

Quantum Programming

4.1 Practical Programming

The recent development of quantum computers has tended to fall in line with the

QRAM (Quantum Random Access Machine) model [31], whereby each machine

instruction corresponds to an elementary operation (state preparation, unitaries,

measurement, etc.) on any of the quantum registers. In practice, they tend to be

implemented as a coprocessor for a classical device; the host system sends off lists

of instructions to the quantum computer in a batch, which then executes them and

returns the results of measurements when complete.

Since the turn of the century, a number of quantum programming languages have

been proposed. [26] provides a good survey of the early developments in this area.

A large number took direct inspiration from or are embedded in popular classical

languages, such as QCL [35], Quipper [28], and LIQUi ∣⟩ [50]. These practical

languages tend to be designed for completeness with respect to the quantum circuit

model, with Quipper extending this to classical-quantum circuits with classically-

controlled quantum gates. However, since processes exhibiting indefinite causal

structures such as the quantum switch cannot be constructed by any quantum

circuit [18], we would need to extend the model in order to capture this.

Several quantum programming languages have given rise to new concepts and

type-theoretic constructs for solving problems in quantum computing. The func-

tional language QML [3] introduced the notion of quantum control flow and used a

type system inspired by linear logic to prevent the copying of quantum information.

Additionally, in the language of [37], we see two connectives for describing pairs of

objects, distinguishing between separable and potentially entangled states.

4.2 Modelling Languages

Many of the languages defined for quantum programming were not intended to be

convenient for practical use, but instead focussed on other goals such as minimality

or the ability to perform model checking.

Lambda calculi, such as those of Van Tonder [49], Selinger and Valiron [45],

and Arrighi and Dowek [7], aim to provide a complete model of computation with

a minimal syntax and well-defined semantics. They provide a great setting for

demonstrating new ideas for type systems or for observing links with logics and
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category theory. Such a link exists in the classical case with a correspondence

between the simply-typed lambda calculus and cartesian-closed categories [32]. A

particular example from [45] is the use of the ! modality to represent copyable

objects such as classical data.

Languages such as CQP [27] and the extension of PRISM used by QPMC [24]

were designed with the intention of enabling automated verification. In the latter

case, the programs are converted to quantum Markov chains and checked against

properties described in quantum computational tree logic [23].

Other languages have often been constructed to consider new and interesting

concepts in quantum computing. Ying [52] discusses recursively defined programs

where the internal control flow is quantum. Under these circumstances, the number

of recursive calls the program can make is potentially indefinite. This model uses

Fock spaces to handle the undetermined number of potential control systems used by

the quantum controlled operations. More recently, [42] provided an alternative view

on the construction of programs with quantum recursion using pattern-matching

isomorphisms and purely quantum fixpoints.

4.3 Quantum Control Flow

When adopting classical control flow in programs, each run of a program follows a

definite computation path. Each branching point in the tree of computation paths is

a conditional test - a test state is measured and we take the branch corresponding to

the measurement outcome. As mentioned in previous sections, we can (in principle)

extend this idea to taking superpositions of the computation paths coherently with

the test state, giving a quantum control flow.

This idea was introduced in the QML programming language [3] with the case○

statement. This takes any state of type A ⊕ B, then runs one branch on the A

portion and the other branch on the B portion, preserving any superposition. It

requires each of the branches to produce orthogonal first-order states and for each

branch to be pure in order for the resulting process to be an isometry. For example,

the Hadamard gate can be defined by the program:

had c = case○ c of

{inl x⇒ {(

1
√

2
) inl x ∣ (

1
√

2
) inr x}

∣ inr y⇒ {(

1
√

2
) inl y ∣ (−

1
√

2
) inr y}}

A simple way to enforce orthogonality of the branches is to rebuild the decom-

posed state, giving programs of the form case○ c of {inl x⇒ (inl x,F ) ∣ inr y ⇒

(inr y,G)}. This is often referred to as quantum alternation of programs F and

G [9, 53]. We can view this as a bipartite process with one side working on the

control system (the input c) and the other on an affected system (that which F

and G can modify). This is reflected by the Kraus operator of the alternation being

P0⊗F +P1⊗G (where P0 and P1 are projectors onto orthogonal subspaces spanning

the control system). In most cases, we assume that the control system is a qubit,

though this need not be the case in general.
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A common example is the notion of a controlled-unitary, which is the alterna-

tion of a given unitary and the identity map. Despite controlled-unitaries being

admissible for any unitary, the no-controlling theorem (as discussed in Section 2.5)

states that there is no process taking a single black-box instance of a unitary and

producing the corresponding controlled-unitary.

Even with quantum alternation, we require each of the programs being com-

bined to be pure. In theory, we could propose a definition for the alternation of

mixed processes based on Kraus operators, taking {fi}i and {gj}j and returning

{
1√∣{gj}j ∣P0 ⊗ fi +

1√
∣{fi}i∣

P1 ⊗ gj}
ij

. [9] shows why this fails outside of the pure case,

where this matches the previous definition.

Quantum alternation is closely related to the matrix direct sum: given pure

processes ψ̂0 ∶ L(H0) → L(K0) and ψ̂1 ∶ L(H1) → L(K1), their direct sum is the

process with block matrix form of Equation 4.1.

[ψ̂0 ⊕ ψ̂1](ρ) ∶= (
ψ0 0

0 ψ1
)ρ(

ψ0 0

0 ψ1
)

†

∶ L(H0 ⊕H1)→ L(K0 ⊕K1) (4.1)

In fact, when H0 = H1 and K0 = K1, this is equivalent to the qubit-controlled

alternation of ψ̂0 and ψ̂1. To see this, we note that H ⊕H ≅ (I ⊗H) ⊕ (I ⊗H) ≅

(I ⊕ I) ⊗H ≅ C2
⊗H via unitality and distributivity. We can then observe that

the Kraus operator of the direct sum process is exactly ∣0⟩ ⟨0∣ ⊗ ψ0 + ∣1⟩ ⟨1∣ ⊗ ψ1.

Quantum alternation with more general control systems can arise from the matrix

direct sum where H0 and H1 are not identical, but possibly share some subspace.

We find that the quantum switch is given by quantum alternation of the higher-

order maps denoted by λx.λy.λz.x(yz) and λx.λy.λz.y(xz). The switch and its

direct generalisation to n channels only give superpositions over linear causal struc-

tures, though one can imagine a higher-order version of the case○ statement allowing

more complex scenarios with indefinite causal ordering.

4.4 Case Study: Quantum Lambda Calculus

Motivation for the work presented in this thesis came from evaluating the quantum

lambda calculus by Selinger and Valiron [45]. Rather than capturing the entire

program and state in a single term like other lambda calculi, this uses a larger

structure called the quantum closure. Each closure is a tuple [Q,L,M] consisting

of a vector Q ∈ ⊗
n
i=1C2, a list L of n variables, and a term M with free variables in

L. This resembles the QRAM model: Q describes the state of a collection of qubit

registers (called the quantum array) which are referenced by the program described

by M .

Whilst the quantum lambda calculus introduced a number of innovative features,

this section presents some shortcomings of the language to highlight the importance

of the specific developments made in this thesis.

Selinger and Valiron’s aim was to create a complete model of qubit quantum

computing with classical control structures. In the advent of theoretical benefits

[12, 22, 5] and experimental results [38, 41, 40] relating to indefinite causal orders

of events, there is interest in adding these into our computational models. Whilst

the choice of classical control flow makes the calculus easy to understand and pro-

vide physical realisations of programs, this restriction to the quantum circuit model
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prevents the construction of the quantum switch and indefinite orders [18]. More

generally, in the interest of introducing quantum control flow, constructing a con-

trolled unitary from a classical representation of the corresponding unitary would

require substantial knowledge of the specific set of elementary gates used in the

language.

A prerequisite to introducing the quantum switch or a mechanism for alterna-

tion would be the reinterpretation of the ⊕ operator from classical sum types to the

direct sum of the subsystem Hilbert spaces, or, more specifically, allowing arbitrary

superpositions of states of the same type. This presents us with a choice for how

to decompose values of type A⊕B: coherent decomposition would preserve any su-

perposition (as in QML’s case○ statement), whilst decoherent decomposition would

add a measurement which projects the value to either an object of type A or one

of B.

The main reason for focussing on qubit computation is in the simplicity, scala-

bility, and convenience of qubit computers (especially given the number of physical

systems which can be used to encode them), in much the same way that classical

computers operating on bits are often easier to design and more reliable than us-

ing larger units. From the perspective of quantum mechanics, however, systems

with two degrees of freedom are not particularly special. We also know from the

no-programming theorem that first-order systems alone are not sufficient for repre-

senting higher-order state in a reliable and compact manner. One could imagine a

more general language would permit higher-order mixed processes over any finite-

dimensional Hilbert space to be embedded into programs, as opposed to the current

model with only pure states from C2.

The semantics of qubit measurement in the quantum lambda calculus appears

as a demolition measurement from the perspective of the lambda term, but the

measured qubit persists in the environment. On the one hand, this allows us to

keep track of the measurement results, giving each computation path a unique

signature recording all instances of non-deterministic actions taken. However, this

also means the use of ancillas has a lasting effect on the state of the program which

is generally not desirable from a programmer’s perspective.

Furthermore, this calculus is missing some canonical morphisms between types

which occur in the standard categorical interpretations. In particular, we note that

the relation between isomorphic types is not a congruence. For example, we can

exhibit an isomorphism between qbit and ⊺ ⊸ qbit where ⊺ denotes the type of a

trivial system. There are no terms of type !qbit as this would indicate the presence

of copyable quantum data, going against the no-cloning theorem. However, there

do exist terms of type !(⊺ ⊸ qbit), such as the program generating a qubit in the

standard state ∣0⟩ ⟨0∣. Clearly, no isomorphism can exist here between !qbit and

!(⊺⊸ qbit).

The type system of the quantum lambda calculus is not rich enough to describe

signalling to the extent discussed in section 3.4.3. We cannot identify A∗ with

the type A ⊸ ⊺ as we could not construct the canonical map from (A∗
)
∗ to A.

As a result, we are not able to encode A ` B as the De Morgan dual of ⊗ via

((A⊸ ⊺)⊗ (B ⊸ ⊺))⊸ ⊺.

Even when types exist which represent some signalling constraints, we may not

have all canonical morphisms between them. For instance, there is no morphism

which takes the 2-comb of qubits (qbit ⊸ (qbit ⊸ qbit) ⊸ qbit) to the generic

bipartite channel type (qbit ⊗ qbit ⊸ qbit ⊗ qbit) which does not involve discard-
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ing systems and replacing them by fixed states, despite the canonical morphism

appearing trivial in graphical notation:

Ψ0

Ψ1

∶ qbit ⊸ (qbit ⊸ qbit)⊸ qbit ↦

Ψ0

Ψ1

∶ (qbit⊗qbit)⊸ (qbit⊗qbit)

(4.2)

This can be solved by allowing the local use of a term Φ ∶ A ⊸ B ⊗D as the

input to Ψ ∶ (A⊸ B)⊸ C as shown below.

Ψ Φ
A

B

C D

(4.3)

Suppose Ψ is the comb built from Ψ0 and Ψ1 in the example (4.2) and Ψ is

a swap gate (both with an input state provided). This diagram then allows us to

build the solution on the right hand side of 4.2. Moreover, local application in this

manner can be used to solve the problem of identifying A∗ with A⊸ ⊺.
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Chapter 5

A Programming Language

with Indefinite Causal Order

This chapter covers the primary novel contribution of this thesis: a programming

language capable of describing processes with indefinite causal structure. We adopt

a collection of elementary higher-order circuits and provide methods of composing

them, following the operations available in a laboratory setup. Given the physical

admissibility of indefinite causal orders, we add a higher-order quantum switch as

a primitive construction.

This language addresses the issues covered in Section 4.4:

• We enable arbitrary higher-order quantum processes to be embedded into

programs, using the Choi-Jamio lkovski isomorphism to describe the state of

a higher-order register in a succinct manner.

• We provide a restricted model of quantum direct sums - restricted in the

sense that we can only achieve superposition of processes with linear types

(not containing !).

• We introduce the ` operator to the language of types to express compound

systems with potential for signalling. Objects of this form can then be handled

by local application, or converted to a pair type if both subsystems are first-

order.

5.1 Computational Model

At any point in a laboratory experiment, there will be a collection of physical

quantum systems and a sequence of instructions still to be completed. In this

programming language, we say that each of these physical systems is contained

within a quantum register. We refer to the collection of registers as the quantum

array. We assume that each quantum register can store any higher-order process as a

black-box, including first-order states and channels as special cases. Each quantum

register is assumed to be completely disconnected from the others in the sense that

there is no physical connection between them that permits signalling, although

entanglement between the contents of registers is allowed. When we introduce the

semantics of the language, we will represent the state of the quantum array by the

combined Choi-Jamio lkovski operator over the registers.
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We supplement this state by a term of the language representing the program

to be executed. The quantum registers are labelled by variables which may be

referenced within the program.

In Section 5.5, we provide operational semantics for the language in the form of a

reduction relation. This breaks computation down into individual elementary steps,

such as applying a process to an input state or measuring a system. Computation

stops once we reach a value.

A key feature is the ability to take a program which describes some quantum

state or process and build it into a quantum register. In particular, we build pro-

cesses by starting with an identity channel and applying the process to the output.

This breaks down the procedure of building a circuit into multiple, simpler compu-

tation steps. In any implementation of the programming language, we are given a

collection of elementary circuits which we can build into a quantum register in a

single step.

The only point in a program at which we may proceed non-deterministically is

when performing a measurement. We only provide measurements with two out-

comes corresponding to projecting a system living in a Hilbert space HA⊕HB into

either HA or HB . If more than two measurement outcomes are required, multiple

measurements can be used in succession.

With regards to terminology, in the following we will refer to processes and cir-

cuits synonymously. We do not assume they necessarily fit the traditional quantum

circuit model as they may include processes exhibiting indefinite causal order such

as the quantum switch.

5.2 Type Hierarchy

This language utilises a hierarchy of type classes, with certain operations only valid

on the more specific classes. General types (A,B, . . .) encompass all types repre-

sentable within the language. Quantum types (Â, B̂, . . .) correspond to the physical

processes which we can hold in a quantum register. Such processes can be described

by a Choi-Jamio lkovski operator. Finally, the first-order types (Ã, B̃, . . .) are those

quantum types which contain no inputs, and so we allow the construction of the

isomorphism Ã⊗ B̃ ≅ Ã` B̃ as in Lemma 3.4.7.

Definition 5.2.1. The sets of general, quantum, and first-order types are respec-

tively defined by the following abstract syntaxes:

A,B ∶∶= ⊺ ∣ A⊗B ∣ A⊕B ∣ A`B ∣ A⊸ B ∣ !A

Â, B̂ ∶∶= ⊺ ∣ Â⊗ B̂ ∣ Â⊕ B̂ ∣ Â` B̂ ∣ Â⊸ B̂

Ã, B̃ ∶∶= ⊺ ∣ Ã⊗ B̃ ∣ Ã⊕ B̃

Qubits are represented in this type system as the first-order type ⊺ ⊕ ⊺. These

type operators are not strictly symmetric/associative/distributive - for instance,

qutrits (systems in a superposition over three orthogonal states) can be either (⊺⊕

⊺)⊕⊺ or ⊺⊕(⊺⊕⊺) and the distinction is crucial for specifying a unique measurement

operation. If we have the qutrit p ∣0⟩ ⟨0∣ + q ∣1⟩ ⟨1∣ + r ∣2⟩ ⟨2∣ as type (⊺ ⊕ ⊺) ⊕ ⊺ and

measure it, we will either get p ∣0⟩ ⟨0∣ + q ∣1⟩ ⟨1∣ or r ∣2⟩ ⟨2∣, whereas measuring it as

⊺ ⊕ (⊺ ⊕ ⊺) will give either p ∣0⟩ ⟨0∣ or q ∣1⟩ ⟨1∣ + r ∣2⟩ ⟨2∣.
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5.3 Higher-Order Quantum Switch

The quantum switch is an exotic computational resource which permits two channels

to be composed in a superposition of classical orders, mediated by an external

control system. The traditional definition requires the channels to be over first-order

systems, each matching some type Ã⊸ Ã. However, superpositions are possible in

instances of any quantum type Â as they are associated to finite-dimensional Hilbert

spaces, and furthermore there are two canonical ways to classically compose any

two processes of the form Â ⊸ Â. This sets the stage for the higher-order switch

that is presented in this programming language.

Given any process of a quantum type Â, we can use the Choi-Jamio lkovski iso-

morphism to describe it by a state ρ ∈ L(HÂ). Suppose we are given two transforma-

tions of type Â⊸ Â, each of which can be described as CP-maps in L(HÂ)→ L(HÂ)

and consequently permit some Kraus decompositions {fi}i,{gj}j . Inserting these

into a quantum switch gives the process with Kraus operators {wij}ij given by:

wij = (gj ○ fi)⊗ P0 + (fi ○ gj)⊗ P1 (5.1)

where P0 and P1 are projectors onto orthogonal subspaces of the control system.

This control system need not be a qubit, but instead can be any first-order system

of the form Ã ⊕ B̃, where P0 and P1 are the projectors onto the spaces of Ã and

B̃ respectively. When Ã = B̃ = ⊺, these correspond exactly to the projectors onto

the computational basis of a qubit (P0 = ∣0⟩ ⟨0∣ and P1 = ∣1⟩ ⟨1∣), as in the usual

definition of the switch.

For a more concrete example, we look at the case where Φ0 and Φ1 are second-

order processes. Figure 5.1 shows the two ways to compose such processes classically.

V0

V1

U0

U1

V1

V0

U1

U0

Figure 5.1: The two ways of composing second-order processes classically.

Suppose each Φi decomposes into a pair of unitaries Ui and Vi with no memory

channel. From the diagrammatic interpretation, we can see that this could equiva-

lently be achieved by using a pair of first-order switches, with one switching U0 and

U1 and the other switching V0 and V1. These are synchronised by using the same

control system for both switches (i.e. feeding the control output of one into the

control input of the other), but they need to switch U0/V0 and U1/V1 in opposite
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orders. This conforms with categorical interpretations of quantum mechanics where

composing processes acts contravariantly on the corresponding processes between

the dual objects (e.g. the Hilbert spaces for inputs). It is unknown whether ev-

ery instance of a higher-order switch can be broken down into multiple first-order

switches or simulated in such a manner.

We can also simulate the switch over pure second-order processes using a second

copy of the processes and controlled-swap gates as shown in Figure 5.2. This con-

struction exactly matches the simulation of the two-first order switches using the

technique from [18].

5.4 Terms and Types

The terms of the language mostly follow those of other lambda calculi with some

new additional terms: syntax for promotion and dereliction, the quantum switch,

building circuits from their instructions, and handling `-systems.

Definition 5.4.1. The set of terms for the language are defined by the following

abstract syntax:

M,N,P ∶∶= U ∣ x ∣ x̂ ∣ ∗ ∣ Choi x̂ into M ∣ λx ∶ A.M ∣ MN

∣ ⟨M,N⟩ ∣ let ⟨x, y⟩ =M in N

∣ inj−⊕B(M) ∣ injA⊕−(M) ∣ match P with (x↦M ∣ y ↦ N)

∣ let rec fx ∶ A =M in N ∣ switch M and N by P

∣ promote(M) ∣ derelict(M) ∣ build(M)

∣ separate(M) ∣ mix(M) ∣ local P in (x↦M ∣ y ↦ N)

We shall provide some intuitive interpretations of these constructions:

• The following constructs retain their standard interpretations from other lambda

calculi:

Lambda abstractions λx ∶ A.M and application MN ;

Pair constructors ⟨M,N⟩;

Pair destructors let ⟨x, y⟩ =M in N ;

Direct sum constructors inj−⊕B(M), injA⊕−(M);

Trivial systems/units ∗;

Recursive function definitions let rec fx ∶ A =M in N .

• Variables come in two flavours: term variables x and register variables x̂. The

term variables are bound in the surrounding term, providing a placeholder for

another term to be substituted in at a later point. On the other hand, each

register variable refers to the quantum register with the same name.

• U represents the name of an elementary operation. These can be built into a

quantum register in a single computation step. The set of elementary oper-

ations should be specified for any given implementation of this programming

language. This will typically include standard unitaries, such as the Pauli
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ρ

φ̂1

φ̂0

φ̂1

Figure 5.2: Simulation of a second-order switch using a second copy and controlled-

swaps. φ̂0 and φ̂1 are the two pure transformations being switched. For the

controlled-swaps, the purple paths are taken if the qubit control system is in ∣0⟩ ⟨0∣

and the green for ∣1⟩ ⟨1∣. ρ is some initial state for the ancilla.
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gates for qubits, as well as some key isomorphisms between types which only

perform a permutation of the basis states, including:

Associativity (Â⊕ B̂)⊕ Ĉ ≅ Â⊕ (B̂ ⊕ Ĉ)

Distributivity (Â⊕ B̂)⊗ Ĉ ≅ (Â⊗ Ĉ)⊕ (B̂ ⊗ Ĉ)

Unitality Â⊗ ⊺ ≅ Â

Side-channel equivalence Â⊸ B̂ ` Ĉ ≅ (Â⊸ B̂)` Ĉ

• Given a term P of type Â⊕ B̂, we can decompose this using terms of the form

match P with (x ↦ M ∣ y ↦ N). This performs a projective measurement

onto the Â and B̂ subspaces. Depending on the measurement outcome, this

would apply λx.M to the output if it is of type Â or λy.N for B̂. We extend

this to when P is of a general type A ⊕ B: if the type does not permit

superposition then P either returns an A object or a B object, so we choose

M or N appropriately.

• build takes a description of a circuit and builds it in a register in the quan-

tum array. In order to build a lambda abstraction λx.M of type Â⊸ B̂, we

start with the identity process on Â in the quantum register and then apply

M to the output of this process. Since we model processes by their Choi-

Jamio lkovski operator, at any point we will have an operator on the Hilbert

space HĈ ⊗HÂ. Choi x̂ into M represents such an intermediate point, where

x̂ is the free input of type Â (treated as a separate register) and M is the

remainder of the function to be applied. build and Choi x̂ into M are neces-

sary for the reduction mechanism but do not need to directly be used by the

programmer.

• promote and derelict are the constructor and destructor for the ! modality.

Promotion takes a self-contained program and makes it a copyable value, and

dereliction recovers the program from one of these values. A key feature of

promotion is that it will prevent any internal computation from occurring

until dereliction is applied - it immediately generates a value (a !-suspension)

much like a lambda abstraction. We resume the suspended computation upon

dereliction.

• switch M and N by P takes a higher-order quantum switch (of the form dis-

cussed in Section 5.3) and applies it to the processes M and N with control

system P . We could have included this as one of the elementary circuits U ,

but we keep it separate to emphasise that the quantum switch is intended to

be a new way of composing processes.

• With regards to handling `-systems, mix allows us to replace an instance

of ⊗ with one of `, in accordance with the mix rule of linear logic or the

canonical map in Caus[C] from A ⊗B to A ` B. Recall from Lemma 3.4.7

that this becomes an isomorphism A⊗B ≅ A`B when A and B are first-order

systems. separate realises the other direction of this isomorphism, allowing us

to convert any value of the first-order type Ã` B̃ to Ã⊗ B̃. When P gives us

a value of type Â` B̂, we use local P in (x ↦ M ∣ y ↦ N) to perform local

transformations; λx.M is applied on the Â subsystem and λy.N on B̂.
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We forbid substitution in place of register variables, allowing it only in place

of term variables. Beyond this caveat, substitution and α-equivalence follow their

standard definitions.

The type system for this language also falls in line with those for other lambda

calculi.

Definition 5.4.2 (Typing Context). A typing context ∆ is a finite set {x1 ∶

A1, . . . , xn ∶ An} of pairs mapping variables to types (∆(xi) = Ai), such that no

variable appears in more than one pair. This can include both term variables and

register variables.

Remark. We use !∆ for contexts of the form {xi ∶!Ai}i. If ∆ and Γ range over

disjoint sets of variables, then we write ∆,Γ for the union of the contexts. ∣∆∣ is

the set of variable names occurring in ∆.

Definition 5.4.3 (Typing Judgement). A typing judgement ∆▷M ∶ A is a sequent

consisting of a typing context ∆, a term M , and a type A. We interpret this

judgement to say that M returns a value of type A, assuming the free variables of

M are typed according to ∆.

Figure 5.3 details the typing rules for this programming language. In the case of

the elementary unitaries, each operation U is provided with a predefined type AU .

As an example, we can consider the algorithm from [12] for discrimination be-

tween commuting and anti-commuting channels. Let’s define the shorthand types

qbit ∶= ⊺⊕⊺ and chan ∶= qbit ⊸ qbit . Suppose we have some program ▷π ∶ chan ⊸ ⊺

which eliminates qubit channels by providing some input state and discarding the

output, and elementary unitaries ▷LUnit ∶ (⊺` qbit) ⊸ qbit (absorbing a trivial

system) and ▷H ∶ chan (a Hadamard gate).

λa.λb.LUnit[local (switch a and b by Hinj−⊕⊺(∗)) (5.2)

in (x↦ πx ∣ y ↦ match Hy with (x′ ↦ inj−⊕⊺(x′) ∣ y′ ↦ inj⊺⊕−(y′)))]

This program can be typed as chan ⊸ chan ⊸ qbit , as shown by the derivation in

Figure 5.4. The intention behind this algorithm is that either a and b or commuting

or anti-commuting, with each case inducing a different measurable phase change on

the control qubit.

5.5 Reduction

We adapt the notion of a quantum closure from [45] to the following:

Definition 5.5.1 (Quantum Closure). A quantum closure is a tuple [ρ,L,M] con-

sisting of:

• A Choi-Jamio lkovski operator ρ representing the state of the quantum array;

• An ordered list L of maps from distinct register variables to (quantum) types;

• A term M with all its free variables in L.

A quantum closure is well-formed [ρL,M] ∶ A when ∆L ▷M ∶ A, where the

type context ∆L is obtained by forgetting the order of L.
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(U)
!∆▷U ∶ AU

(⊺)
!∆▷∗ ∶ ⊺

(var1)
!∆, x ∶ A▷ x ∶ A

(var2)
!∆, x̂ ∶ A▷ x̂ ∶ A

∆, x ∶ A▷M ∶ B
(λ)

∆▷ λx ∶ A.M ∶ A⊸ B

!∆,Γ1 ▷M ∶ A⊸ B !∆,Γ2 ▷N ∶ A
(app)

!∆,Γ1,Γ2 ▷MN ∶ B

∆▷M ∶ B̂
(Choi)

∆, x̂ ∶ Â▷Choi x̂ into M ∶ Â⊸ B̂

!∆,Γ1 ▷M ∶ A !∆,Γ2 ▷N ∶ B
(⊗.I)

!∆,Γ1,Γ2 ▷ ⟨M,N⟩ ∶ A⊗B

!∆,Γ1 ▷M ∶ A⊗B !∆,Γ2, x ∶ A,y ∶ B▷N ∶ C
(⊗.E)

!∆,Γ1,Γ2 ▷ let ⟨x, y⟩ =M in N ∶ C

∆▷M ∶ A
(⊕.I1)

∆▷ inj−⊕B(M) ∶ A⊕B

∆▷M ∶ B
(⊕.I2)

∆▷ injA⊕−(M) ∶ A⊕B

!∆,Γ1 ▷ P ∶ A⊕B !∆,Γ2, x ∶ A▷M ∶ C !∆,Γ2, y ∶ B▷N ∶ C
(⊕.E)

!∆,Γ1,Γ2 ▷match P with (x↦M ∣ y ↦ N) ∶ C

!∆, f ∶!(A⊸ B), x ∶ A▷M ∶ B !∆,Γ, f ∶!(A⊸ B)▷N ∶ C
(rec)

!∆,Γ▷ let rec fx ∶ A =M in N ∶ C

!∆▷M ∶ A
(!.I)

!∆▷ promote(M) ∶!A

∆▷M ∶!A
(!.E)

∆▷ derelict(M) ∶ A
∆▷M ∶ Â

(build)

∆▷ build(M) ∶ Â

!∆,Γ0 ▷M ∶ Â⊸ Â !∆,Γ1 ▷N ∶ Â⊸ Â !∆,Γ2 ▷ P ∶ B̃ ⊕ C̃
(switch)

!∆,Γ0,Γ1,Γ2 ▷ switch M and N by P ∶ (Â⊸ Â)` (B̃ ⊕ C̃)

∆▷M ∶ Ã` B̃
(separate)

∆▷ separate(M) ∶ Ã⊗ B̃

∆▷M ∶ Â⊗ B̂
(mix)

∆▷mix(M) ∶ Â` B̂

!∆,Γ0 ▷ P ∶ Â` B̂ !∆,Γ1, x ∶ Â▷M ∶ Ĉ !∆,Γ2, y ∶ B̂▷N ∶ D̂
(local)

!∆,Γ0,Γ1,Γ2 ▷ local P in (x↦M ∣ y ↦ N) ∶ Ĉ ` D̂

Figure 5.3: The rules of the type system.

Given a closure [ρ,L,M], we assume that any processes from distinct registers

of the quantum array are completely disconnected, in the sense that we can build

an “overall type” for L by taking the tensor product over all of its elements.

This Choi-Jamio lkovski operator represents processes in the expected manner:

• Trivial systems (⊺) are associated to the Hilbert space H⊺ = C.

• Direct sums Â⊕ B̂ are associated to HÂ⊕B̂ =HÂ ⊕HB̂ .

• Pairs Â⊗ B̂ are associated to HÂ⊗B̂ =HÂ ⊗HB̂ . Connected pairs Â` B̂ also

live in space, but contain a larger family of possible operators.

• Functions Â⊸ B̂ are associated to HÂ⊸B̂ =HÂ⊗HB̂ in accordance with the

Choi-Jamio lkovski isomorphism.

We will define an operational semantics for this programming language in the

form of a reduction relation between quantum closures. Allowing measurement of

quantum states introduces non-determinism into our reduction.

28



a ∶ chan ▷ a ∶ chan b ∶ chan ▷ b ∶ chan

▷H ∶ chan

▷∗ ∶ ⊺

▷inj−⊕⊺(∗) ∶ qbit

▷Hinj−⊕⊺(∗) ∶ qbit

a ∶ chan, b ∶ chan ▷ switch a and b by Hinj−⊕⊺(∗) ∶ chan ` qbit

▷H ∶ chan y ∶ qbit ▷ y ∶ qbit

y ∶ qbit ▷Hy ∶ qbit

x′ ∶ ⊺ ▷ x′ ∶ ⊺
x′ ∶ ⊺ ▷ inj−⊕⊺(x′) ∶ qbit

y′ ∶ ⊺ ▷ y′ ∶ ⊺
y′ ∶ ⊺ ▷ inj⊺⊕−(y′) ∶ qbit

y ∶ qbit ▷match Hy with (x′ ↦ inj−⊕⊺(x′) ∣ y′ ↦ inj⊺⊕−(y′)) ∶ qbit

a ∶ chan, b ∶ chan ▷⋯ ∶ chan ` qbit
▷π ∶ chan ⊸ ⊺ x ∶ chan ▷ x ∶ chan

x ∶ chan ▷ πx ∶ ⊺ y ∶ qbit ▷⋯ ∶ qbit

a ∶ chan, b ∶ chan ▷ local (⋯) in (x↦ πx ∣ y ↦ ⋯) ∶ ⊺` qbit

▷LUnit ∶ (⊺` qbit)⊸ qbit a ∶ chan, b ∶ chan ▷⋯ ∶ ⊺` qbit

a ∶ chan, b ∶ chan ▷LUnit[⋯] ∶ qbit

a ∶ chan ▷ λb.LUnit[⋯] ∶ chan ⊸ qbit

▷λa.λb.LUnit[⋯] ∶ chan ⊸ chan ⊸ qbit

Figure 5.4: A complete derivation of the type of Program 5.2.

It is important to note that, even if the end value of a term is copyable, the term

itself may still reference existing quantum processes before reaching this value (e.g.

z ∶ ⊺ ⊕ ⊺, a ∶ ⊺ ⊸!A, b ∶ ⊺ ⊸!A▷ match z with (x ↦ ax ∣ y ↦ by) ∶!A). Non-linear

substitution of such a term would require the referenced quantum process (z) to be

copied to each location, violating the no-cloning theorem. Building a call-by-value

scheme into the reduction relation prevents this case from occurring.

Definition 5.5.2. The set of values of the language is defined by the following

abstract syntax:

V,W ∶∶= U ∣ x ∣ x̂ ∣ ∗ ∣ λx ∶ A.M ∣ promote(M) ∣ ⟨V,W ⟩ ∣ inj−⊕B(V ) ∣ injA⊕−(V )

Descriptive values are defined by the following fragment of the values:

V ∗,W ∗
∶∶= U ∣ x ∣ ∗ ∣ λx ∶ A.M ∣ promote(M) ∣ ⟨V,W ⟩ ∣ inj−⊕B(V ) ∣ injA⊕−(V )

From these definitions, we see that a value is either a descriptive value or a

register variable. From the perspective of the programmer, the contents of the

registers can be treated as black-boxes. Descriptive values are not black-boxes

since they describe some structure within the value. For example, if we reach the

value inj−⊕B(V ) ∶ A⊕B, we know that the state lives entirely in the A subspace. We

use the distinction between descriptive values and register variables in the reduction

rules to indicate how we handle registers differently from a circuit description.

We define the reduction relation → between quantum closures inductively over

the syntax of the program term. At any point, we may apply α-equivalence or

a permutation of L and ρ, so the following rules are specified without reference
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to specific variable names and orders. We also note that any variable introduced

during reduction is assumed to be fresh (it does not already appear in the rest of

the quantum closure).

We use the notation M[V /x] to indicate the substitution of V in place of every

occurrence of x in M .

Application

Here we present the semantics regarding application of processes. These rules cover

the cases of classically applying some function and composing two processes from

quantum registers.

If ρ = ∑iEi⊗Fi⊗Xi (where the Ei represent environment states, Fi the function,

and Xi the argument), then we define ρapp ∶= ∑iEi ⊗ TrHÂ
[(idHB̂

⊗ XT
i )Fi] in

accordance with the inverse Choi-Jamio lkovski transformation.

[ρ,L, (λx ∶ A.M)V ]→ [ρ,L,M[V /x]]

[ρ, [. . . , x̂ ∶ Â⊸ B̂, ŷ ∶ Â], x̂ŷ]→ [ρapp, [. . . , ẑ ∶ B̂], ẑ]

If we want to apply one of the elementary circuits, it must first be built into a

register. Moreover, when we have a physical process in a register, we can only run

it on physical inputs, so we must build the argument.

[ρ,L,UV ]→ [ρ,L, build(U)V ]

[ρ,L, x̂V ∗
]→ [ρ,L, x̂ build(V ∗

)]

We enforce the call-by-value reduction scheme by first reducing the argument

to a value. We then reduce the function to a point where we can perform the

application.

[ρ,L,N]→ [ρ′, L′,N ′
]

[ρ,L,MN]→ [ρ′, L′,MN ′
]

[ρ,L,M]→ [ρ′, L′,M ′
]

[ρ,L,MV ]→ [ρ′, L′,M ′V ]

Tensor Products

The two forms a tensor product value can take are descriptive pairs ⟨V,W ⟩ and

register variables. Given a descriptive pair ⟨V,W ⟩, we immediately have a decom-

position into V and W . A tensor product in a register corresponds to a pair of

distinct systems, so we can decompose products by splitting them into two regis-

ters.

[ρ,L, let ⟨x, y⟩ = ⟨V,W ⟩ in N]→ [ρ,L,N[V /x,W /y]]

[ρ, [. . . , ẑ ∶ Â⊗ B̂], let ⟨x, y⟩ = ẑ in N]→ [ρ, [. . . , x̂ ∶ Â, ŷ ∶ B̂],N[x̂/x, ŷ/y]]
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A tensor product system must be reduced to a value before it can be decomposed

and used. In order to give a unique order of reduction, we require that the second

term in a pair is reduced as much as possible before we start operating on the first

term.

[ρ,L,M]→ [ρ′, L′,M ′
]

[ρ,L, let ⟨x, y⟩ =M in N]→ [ρ′, L′, let ⟨x, y⟩ =M ′ in N]

[ρ,L,N]→ [ρ′, L′,N ′
]

[ρ,L, ⟨M,N⟩]→ [ρ′, L′, ⟨M,N ′
⟩]

[ρ,L,M]→ [ρ′, L′,M ′
]

[ρ,L, ⟨M,V ⟩]→ [ρ′, L′, ⟨M ′, V ⟩]

Direct Sums

We always decompose a direct sum in the form of a test followed by a choice of

programs. When we have a descriptive value inj−⊕B(V ) or injA⊕−(V ), only one

outcome of the test is possible.

When we measure a system in a register, either outcome could be possible.

This introduces non-determinism into the reduction. Since the Choi-Jamio lkovski

operator in the closure is for the tensor product of all objects in the quantum array,

we can use distributivity (Â⊕ B̂)⊗ Ĉ ≅ (Â⊗ Ĉ)⊕ (B̂⊗ Ĉ) to show that it is always

some block matrix of the form:

(
ρl ρoff1

ρoff2 ρr
)

Upon measurement, we project onto either the left or the right side. This will

always lose any information in the off-diagonal space.

[ρ,L,match inj−⊕B(V ) with (x↦M ∣ y ↦ N)]→ [ρ,L,M[V /x]]

[ρ,L,match injA⊕−(V ) with (x↦M ∣ y ↦ N)]→ [ρ,L,N[V /y]]

[ρl ⊕ 0 + 0⊕ ρr + ρoff , [. . . , ẑ ∶ Â⊕ B̂],

match ẑ with (x↦M ∣ y ↦ N)]→ [ρl, [. . . , x̂ ∶ Â],M[x̂/x]]

[ρl ⊕ 0 + 0⊕ ρr + ρoff , [. . . , ẑ ∶ Â⊕ B̂],

match ẑ with (x↦M ∣ y ↦ N)]→ [ρr, [. . . , ŷ ∶ B̂],N[ŷ/y]]

We cannot know which branch of a match P with (x ↦M ∣ y ↦ N) statement

we will take until we have determined the test P , so we prioritise reducing the test

over either of the branches.

[ρ,L,P ]→ [ρ′, L′, P ′
]

[ρ,L,match P with (x↦M ∣ y ↦ N)]→ [ρ′, L′,match P ′ with (x↦M ∣ y ↦ N)]

[ρ,L,M]→ [ρ′, L′,M ′
]

[ρ,L, inj−⊕B(M)]→ [ρ′, L′, inj−⊕B(M ′
)]

[ρ,L,M]→ [ρ′, L′,M ′
]

[ρ,L, injA⊕−(M)]→ [ρ′, L′, injA⊕−(M ′
)]
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Recursion

Recursion follows a classical procedure of copying the definition to every call lo-

cation, as opposed to schemes where the fixpoint is determined in a single step of

computation.

[ρ,L, let rec fx ∶ A =M in N]→ [ρ,L,N[promote(λx ∶ A.let rec fx ∶ A =M in M)/f]]

Choi-Jamio lkovski Operators

When building a circuit with a non-trivial input, we always maintain the handle to

the input of the circuit and apply the function on the output handle. We want to

be able to consider the final result as a black-box that is completely contained in a

single register, so we must build any descriptive value we reach. Once the circuit is

built (the output is reduced to a register variable), it is simply relabelled as a single

unit.

[ρ, [. . . , x̂ ∶ B̂, ŷ ∶ Â],Choi ŷ into x̂]→ [ρ, [. . . , x̂ ∶ Â⊸ B̂], x̂]

[ρ,L,Choi x̂ into V ∗
]→ [ρ,L,Choi x̂ into build(V ∗

)]

[ρ,L,M]→ [ρ′, L′,M ′
]

[ρ,L,Choi x̂ into M]→ [ρ′, L′,Choi x̂ into M ′
]

!-Suspensions

We use derelict to resume the suspended computation M captured in promote(M).

[ρ,L,derelict(promote(M))]→ [ρ,L,M]

[ρ,L,M]→ [ρ′, L′,M ′
]

[ρ,L,derelict(M)]→ [ρ′, L′,derelict(M ′
)]

Building Circuits

Let C(U) be the Choi-Jamio lkovski operator for the unitary process referred to by

U . As with previous cases where we were reducing a program to a circuit, if we

ever reach a descriptive value, we must recursively build it. In particular, we build

a trivial system by placing a fixed process into a quantum register. If we reach a

register variable, this is already built so there is nothing more to do. We use the

Choi x̂ into M construct to help us break down the procedure of building λx.M into

simpler steps, starting with the Choi-Jamio lkovski operator of the identity process

(∣IHÂ
⟩ ⟨IHÂ

∣).
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[ρ, [. . .], build(U)]→ [ρ⊗ C[U], [. . . , x̂ ∶ AU ], x̂]

[ρ, [. . .], build(∗)]→ [ρ, [. . . , x̂ ∶ ⊺], x̂]

[ρ,L, build(x̂)]→ [ρ,L, x̂]

[ρ, [. . .], build(λx ∶ Â.M)]→ [ρ⊗ ∣IHÂ
⟩ ⟨IHÂ

∣ , [. . . , x̂ ∶ Â, ŷ ∶ Â],

Choi ŷ into M[x̂/x]]

[ρ,L, build(⟨V,W ∗
⟩)]→ [ρ,L, build(⟨V, build(W ∗

)⟩)]

[ρ,L, build(⟨V ∗, x̂⟩)]→ [ρ,L, build(⟨build(V ∗
), x̂⟩)]

[ρ, [. . . , x̂ ∶ Â, ŷ ∶ B̂], build(⟨x̂, ŷ⟩)]→ [ρ, [. . . , ẑ ∶ Â⊗ B̂], ẑ]

[ρ,L, build(inj−⊕B(V ∗
))]→ [ρ,L, build(inj−⊕B(build(V ∗

)))]

[ρ,L, build(injA⊕−(V ∗
))]→ [ρ,L, build(injA⊕−(build(V ∗

)))]

[ρ, [. . . , x̂ ∶ Â], build(inj−⊕B̂(x̂))]→ [ρ⊕ 0, [. . . , x̂ ∶ Â⊕ B̂], x̂]

[ρ, [. . . , x̂ ∶ B̂], build(injÂ⊕−(x̂))]→ [0⊕ ρ, [. . . , x̂ ∶ Â⊕ B̂], x̂]

[ρ,L,M]→ [ρ′, L′,M ′
]

[ρ,L, build(M)]→ [ρ′, L′, build(M ′
)]

Quantum Switch

switch x̂ and ŷ by ẑ uses a quantum switch to connect the processes in registers x̂

and ŷ in a superposition of orders in accordance with Equation 5.1. We provide

the process in ẑ as the control system. Let ρswitch be the Choi-Jamio lkovski oper-

ator that results. We assume that the quantum switches are provided as physical

resources, so they can only be applied to physical inputs. Therefore, we must build

any descriptive value we reach along the way.

[ρ, [. . . , x̂ ∶ Â⊸ Â, ŷ ∶ Â⊸ Â, ẑ ∶ B̂ ⊕ Ĉ],

switch x̂ and ŷ by ẑ]→ [ρswitch, [. . . , x̂ ∶ (Â⊸ Â)` (B̂ ⊕ Ĉ)], x̂]

[ρ,L, switch M and N by V ∗
]→ [ρ,L, switch M and N by build(V ∗

)]

[ρ,L, switch M and V ∗ by ẑ]→ [ρ,L, switch M and build(V ∗
) by ẑ]

[ρ,L, switch V ∗ and ŷ by ẑ]→ [ρ,L, switch build(V ∗
) and ŷ by ẑ]

[ρ,L,P ]→ [ρ′, L′, P ′
]

[ρ,L, switch M and N by P ]→ [ρ′, L′, switch M and N by P ′
]

[ρ,L,N]→ [ρ′, L′,N ′
]

[ρ,L, switch M and N by ẑ]→ [ρ′, L′, switch M and N ′ by ẑ]

[ρ,L,M]→ [ρ′, L′,M ′
]

[ρ,L, switch M and ŷ by ẑ]→ [ρ′, L′, switch M ′ and ŷ by ẑ]
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` Operations

Separation is only defined for Ã`B̃ with first-order Ã and B̃. We note that the only

form that any value of the type Ã`B̃ must be a register variable, so we do not need

to handle descriptive values. Since Ã`B̃ and Ã⊗B̃ are considered equivalent types,

there is no need to perform any real computation on separation, just modifying the

interface to allow operations over the joint system. Mixing works similarly.

For local application, we take a quantum register and split it in two. We then

apply functions locally on each side before combining them back into a single register

representing the connected system.

[ρ, [. . . , x̂ ∶ Ã` B̃, . . .], separate(x̂)]→ [ρ, [. . . , x̂ ∶ Ã⊗ B̃, . . .], x̂]

[ρ, [. . . , x̂ ∶ Â⊗ B̂],mix(x̂)]→ [ρ, [. . . , x̂ ∶ Â` B̂], x̂]

[ρ,L,mix(⟨V,W ⟩)]→ [ρ,L,mix(build(⟨V,W ⟩))]

[ρ, [. . . , ẑ ∶ Â` B̂],

local ẑ in (x↦M ∣ y ↦ N)]→ [ρ, [. . . , x̂ ∶ Â, ŷ ∶ B̂],

mix(⟨M[x̂/x],N[ŷ/y]⟩)]

[ρ,L,M]→ [ρ′, L′,M ′
]

[ρ,L, separate(M)]→ [ρ′, L′, separate(M ′
)]

[ρ,L,M]→ [ρ′, L′,M ′
]

[ρ,L,mix(M)]→ [ρ′, L′,mix(M ′
)]

[ρ,L,P ]→ [ρ′, L′, P ′
]

[ρ,L, local P in (x↦M ∣ y ↦ N)]→ [ρ′, L′, local P ′ in (x↦M ∣ y ↦ N)]

5.6 Probability

When reducing build(λx.M), we simulate running M on an unspecified input value.

If M contains a measurement, the physical interpretation would be to connect a

measurement device which triggers one of the two optional processes to be run.

However, our semantics define the effect of the measurement process as opposed

to a physical measurement device. Consequently, we can get multiple reduction

sequences during the building procedure, resulting in several Choi-Jamio lkovski

operators. Each operator will correspond to a specific sequence of measurement

outcomes. We may not know the probability of any of these outcomes until the

circuit is provided with all inputs, preventing us from knowing the probability of

a reduction sequence at all points. This is why we defined our reduction relation

to be non-deterministic as opposed to the probabilistic relations of other languages

such as the quantum lambda calculus of [45].

The call-by-value reduction scheme ensures that, once we start reducing a par-

ticular subterm, we only reduce it completely to a value before reducing any other

part of the term. A special case of this is that, once we start building a circuit,

the context of this circuit in the overall program will not change until the circuit

is built. As a result, all branches from measurement during the building procedure
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will eventually reduce to a register variable in the same context (assuming each

branch terminates). At this point, the only difference between the possible quan-

tum closures will be the Choi-Jamio lkovski operator. Taking the sum/probabilistic

mixture of these operators corresponds to eliminating any classical knowledge of

the measurement outcomes and results in the true Choi-Jamio lkovski operator of

the circuit.

The Born rule (Equation 2.5) tells us that, given the state obtained from the

result of a non-deterministic process, the probability of that result occurring is

given by the trace. Using this fact, we can determine the probability of a reduction

sequence whenever the quantum array in the final closure consists only of first-order

systems.

5.7 Examples

Here we will consider a couple of example programs and their reduction sequences

to examine how this calculus uses the Choi-Jamio lkovski isomorphism. Recall the

shorthand types qbit ∶= ⊺ ⊕ ⊺ and chan ∶= qbit ⊸ qbit . We can define a discarding

map for a qubit by measuring the qubit and forgetting the measurement result:

discard ∶= λz ∶ qbit .match z with (x↦ x ∣ y ↦ y) ∶ qbit ⊸ ⊺ (5.3)

The reduction sequence of building this in a quantum register is given below.

The type is omitted since it remains the same throughout, and →i refer to the

possible non-deterministic branches. We start with an empty quantum array.

[1, [] , build(discard)]

The first operation is to construct the Choi-Jamio lkovski of the identity process,

i.e. the maximally entangled state. We use ẑ to refer to the output handle, to which

we apply the discarding process, and we set aside the input handle ẑ′.

→

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎛

⎜
⎜
⎜
⎜

⎝

1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

⎞

⎟
⎟
⎟
⎟

⎠

, [ẑ ∶ qbit , ẑ′ ∶ qbit] ,Choi ẑ′ into match z with (x↦ x ∣ y ↦ y)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The measurement causes non-deterministic branching in the reduction.

→
1
[(

1 0

0 0
) , [x̂ ∶ ⊺, ẑ′ ∶ qbit] ,Choi ẑ′ into x̂] →

2
[(

0 0

0 1
) , [ŷ ∶ ⊺, ẑ′ ∶ qbit] ,Choi ẑ′ into x̂]

Each of these now corresponds to a completed circuit, so we can package them

up into a single register.

→
1
[(

1 0

0 0
) , [f̂ ∶ qbit ⊸ ⊺] , f̂] →

2
[(

0 0

0 1
) , [f̂ ∶ qbit ⊸ ⊺] , f̂]

These two irreducible closures have an identical form, and we find that the sum

of the matrices gives the identity matrix, which is exactly the Choi-Jamio lkovski
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operator of the trace/discarding process [16]. In the following, we will assume that

discard operates deterministically as a discarding map for clarity.

We can use a discarding map to construct the completely depolarising qubit

channel. For this, we assume that our set of elementary circuits contains/permits

the construction of a controlled-not gate ▷CNOT ∶ qbit ⊗ qbit ⊸ qbit ⊗ qbit , a

Hadamard gate ▷H ∶ chan, and a left unitor ▷LUnit ∶ ⊺ ⊗ qbit ⊸ qbit . The

construction CNOT ⟨Hinj−⊕⊺(∗), inj−⊕⊺(∗)⟩ builds a (normalised) maximally en-

tangled state, so discarding one side of this results in the maximally mixed state.

depolarise ∶=λx ∶ qbit .LUnit ⟨discard x,LUnit(

let ⟨y, z⟩ = CNOT ⟨Hinj−⊕⊺(∗), inj−⊕⊺(∗)⟩

in ⟨discard y, z⟩)⟩ ∶ chan

(5.4)

In the following, we adopt the notation →∗ to refer to the reflexive and transitive

closure of the reduction relation, i.e. where → represents a single step of reduction,

→
∗ means reduction in zero or more steps.
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[1, [] , build(depolarise)]

→

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎛

⎜
⎜
⎜
⎜

⎝

1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

⎞

⎟
⎟
⎟
⎟

⎠

, [x̂ ∶ qbit , x̂′ ∶ qbit] ,

Choi x̂′ into LUnit ⟨discard x̂,LUnit(

let ⟨y, z⟩ = CNOT ⟨Hinj−⊕⊺(∗), inj−⊕⊺(∗)⟩

in ⟨discard y, z⟩)⟩

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

→
∗

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎛

⎜
⎜
⎜
⎜

⎝

1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

⎞

⎟
⎟
⎟
⎟

⎠

⊗

1

2

⎛

⎜
⎜
⎜
⎜

⎝

1 0 1 0

0 0 0 0

1 0 1 0

0 0 0 0

⎞

⎟
⎟
⎟
⎟

⎠

, [x̂ ∶ qbit , x̂′ ∶ qbit , ŵ ∶ qbit ⊗ qbit] ,

Choi x̂′ into LUnit ⟨discard x̂,LUnit(

let ⟨y, z⟩ = CNOTŵ in ⟨discard y, z⟩)⟩

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

→
∗

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎛

⎜
⎜
⎜
⎜

⎝

1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

⎞

⎟
⎟
⎟
⎟

⎠

⊗

1

2

⎛

⎜
⎜
⎜
⎜

⎝

1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

⎞

⎟
⎟
⎟
⎟

⎠

, [x̂ ∶ qbit , x̂′ ∶ qbit , ŷ ∶ qbit , ẑ ∶ qbit] ,

Choi x̂′ into LUnit ⟨discard x̂,LUnit⟨discard ŷ, ẑ⟩⟩

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

→
∗

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎛

⎜
⎜
⎜
⎜

⎝

1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

⎞

⎟
⎟
⎟
⎟

⎠

⊗

1

2
(

1 0

0 1
) , [x̂ ∶ qbit , x̂′ ∶ qbit , ẑ ∶ qbit] ,Choi x̂′ into LUnit ⟨discard x̂, ẑ⟩

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

→
∗
[(

1 0

0 1
)⊗

1

2
(

1 0

0 1
) , [x̂ ∶ ⊺, x̂′ ∶ qbit , ẑ ∶ qbit] ,Choi x̂′ into LUnit⟨x̂, ẑ⟩]

→
∗

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

2

⎛

⎜
⎜
⎜
⎜

⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞

⎟
⎟
⎟
⎟

⎠

, [f̂ ∶ chan] , f̂

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The final example describes the construction from [22] which enables the “Causal

Activation” of depolarising channels, producing a channel with non-zero capacity.

activated ∶= switch depolarise and depolarise by Hinj−⊕⊺(∗) ∶ chan ` qbit

(5.5)
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[1, [] ,activated]

→
∗
[

1

2
(

1 1

1 1
) , [x̂ ∶ qbit] , switch depolarise and depolarise by x̂]

→
∗

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

2

⎛

⎜
⎜
⎜
⎜

⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞

⎟
⎟
⎟
⎟

⎠

⊗

1

2

⎛

⎜
⎜
⎜
⎜

⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞

⎟
⎟
⎟
⎟

⎠

⊗

1

2
(

1 1

1 1
) ,

[f̂ ∶ chan, ĝ ∶ chan, x̂ ∶ qbit] , switch f̂ and ĝ by x̂

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

After some calculation on the matrices, we find that this reduces to the following

final result, where σ is the permutation matrix reversing the order of three qubits

(meaning the main qubit in focus in the matrix shown is the control qubit).

→

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

8
σ

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

2 0 0 0 1 0 0 1

0 2 0 0 0 0 0 0

0 0 2 0 0 0 0 0

0 0 0 2 1 0 0 1

1 0 0 1 2 0 0 0

0 0 0 0 0 2 0 0

0 0 0 0 0 0 2 0

1 0 0 1 0 0 0 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

σ†, [ŷ ∶ chan ` qbit] , ŷ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Decomposing the output based on the control qubit gives the identity matrix

(the Choi-Jamio lkovski operator of the completely depolarising channel) up to some

number on its diagonal elements, but on the off-diagonals we find the maximally

entangled vector (corresponding to the identity channel). It is clear that by util-

ising these off-diagonal elements, we can use the channel to successfully transmit

information which is not possible when combining completely depolarising chan-

nels in either classical order. To convert the type from (qbit ⊸ qbit)` qbit to the

more typical channel form, qbit ⊸ (qbit ⊗ qbit), we can apply the transformation

λc.λz.separate(local c in (x↦ xz ∣ y ↦ y)).
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Chapter 6

Evaluation of the Language

The previous chapter presented the programming language with some informal rea-

soning behind the design choices. Here, we will formally justify that our grammar of

first-order types actually correspond to first-order systems, the choice for the type

given to the quantum switch. We also prove the main functional properties of the

language.

6.1 First-Order Types

In this section, we provide a categorical interpretation for the types of the program-

ming language and show the equivalence of the notions of first-order types.

We would like to discuss direct sums of processes in the context of Caus[CP(FHilb)],

the category of causal, completely positive maps between finite-dimensional Hilbert

spaces. Whilst direct sums ⊕ are coproducts for FHilb, they are not coproducts

for CP(FHilb). This is because the fail to satisfy the universal coproduct property

that a map out from the direct sum can be completely defined by its compositions

with the injectors. For example, the identity operator on qubits and the Pauli Z

gate both agree on the inputs ∣0⟩ ⟨0∣ and ⟨1∣ ⟨1∣ (the states corresponding to the

injectors from the trivial system) but disagree on other states.

Nonetheless, we can lift the structure of ⊕ into Caus[CP(FHilb)].

A⊕B ∶= (A⊕B,{π∗A ⊕ π
∗
B ∣πA ∈ c∗A, πB ∈ c∗B}

∗
)
1 (6.1)

We note that the discarding maps in CP(FHilb) satisfy the following property

for all A,B:

A⊕B = A ⊕ B (6.2)

In Section 5.2, we defined first-order types in the programming language by the

grammar Ã, B̃ ∶∶= ⊺ ∣ Ã⊗B̃ ∣ Ã⊕B̃. We can now show that the objects in Caus[C] to

which these correspond are actually first-order systems in terms of Definition 3.4.6.

1One could imagine an alternative definition of the causal set via injections as ({ιA ○ ρA∣ρA ∈

cA} ∪ {ιB ○ ρB ∣ρB ∈ cB})
∗∗. If ⊕ were a true categorical coproduct, then these two definitions

are equal. However, for CP(FHilb), the definition from injections only contains the probabilistic

mixtures of states from A and B, whereas the definition above from the sum of effects captures

coherent superpositions of states.
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Definition 6.1.1 (Categorical Interpretation). The interpretation ⟦Â⟧ of a quan-

tum type Â is the object in Caus[CP(FHilb)] defined recursively as:

⟦⊺⟧ ∶= I

⟦Â⊗ B̂⟧ ∶= ⟦Â⟧⊗ ⟦B̂⟧

⟦Â⊕ B̂⟧ ∶= ⟦Â⟧⊕ ⟦B̂⟧

⟦Â` B̂⟧ ∶= ⟦Â⟧` ⟦B̂⟧

⟦Â⊸ B̂⟧ ∶= ⟦Â⟧⊸ ⟦B̂⟧

Theorem 6.1.2. For any first-order type Ã, its interpretation ⟦Ã⟧ is a first-order

system in Caus[CP(FHilb)].

Proof. By structural induction over the grammar of first-order types. For ⊺, ⟦⊺⟧ = I

and c∗I = cI = {1} = { I}, so it is first-order. The case for Ã ⊗ B̃ follows from

Proposition 5.3 in [29] which shows that the collection of first-order systems is

closed under tensor product.

For Ã⊕B̃, we assume by the induction hypothesis that c∗⟦Ã⟧ = { ⟦Ã⟧} and c∗⟦B̃⟧ =

{ ⟦B̃⟧}. It immediately follows that c∗⟦Ã⊕B̃⟧ = {π∗A ⊕ π∗B ∣πA ∈ c∗⟦Ã⟧, πB ∈ c∗⟦B̃⟧}
∗∗

=

{ ⟦Ã⟧ ⊕ ⟦B̃⟧}
∗∗. Using Equation 6.2, this is equal to { ⟦Ã⟧⊕⟦B̃⟧}

∗∗
= { ⟦Ã⊕B̃⟧}

∗∗.

From the definition of causality (Equation 3.1), { ⟦Ã⊕B̃⟧}
∗ is exactly the set of

causal states for ⟦Ã ⊕ B̃⟧, so it follows that any effect in c∗⟦Ã⊕B̃⟧ = { ⟦Ã⊕B̃⟧}
∗∗ is

equal to ⟦Ã⊕B̃⟧ by enough causal states. We can now conclude that ⟦Ã⊕ B̃⟧ is a

first-order system.

The combination of this and Lemma 3.4.7 means that there is an isomorphism

between the interpretations of processes of type Ã` B̃ and Ã⊗ B̃. One direction of

this isomorphism is given by mix . The inclusion of the separate construct and its

rule in the type system allows us to realise the other direction from Ã` B̃ to Ã⊗ B̃.

6.2 Induced Signalling and the Quantum Switch

From the definition of the quantum switch, the control system affects the order of the

switched channels, and consequently the final channel produced. We also know that

the channels can feed back into the control system as achieved in the construction

in [12] for discrimination between a pair of commuting or anticommuting channels.

In Section 4.3, we discussed how controlled-unitaries and the quantum switch

can be expressed as instances of quantum alternation. Furthermore, alternation

itself was a special case of the quantum control flow offered by structures such

as QML’s case○ statement [3]. If we adopt a higher-order version of the case○

statement, the signalling between the control and affected systems is not obvious.

Let us consider the simpler example of a controlled-not gate. We can describe

this the following program:

cnot c = case○ c of

{inl x⇒ (inl x, id)

∣ inr y⇒ (inr y,not)}

(6.3)
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This specifies the action of the CNOT gate on the computational basis states:

CNOT

0

= 0 CNOT

1

= 1 NOT

(6.4)

In each case, there is no signalling occurring between the channel on the right

and the state on the left, but we know that the actual CNOT gate can permit

signalling:

CNOT

+

= CNOT

−

= Z (6.5)

The implications of this are that operations possible on the individual programs

combined by the alternation may not be valid on the combination. For example, in

each of the results in Equation 6.4 we are able to connect the control system output

to the input of the channel and produce ∣0⟩ ⟨0∣.

CNOT

0

= 0 = 0 (6.6)

CNOT

1

= 1 NOT = 0 (6.7)

However, the result of performing the same connection on the CNOT gate itself

does not satisfy causality:

CNOT = 2 + 0 (6.8)

In definitions of the quantum switch, this signalling constraint has been enforced

by requiring the control system to be completely external to the affected system (i.e.

a system cannot control itself). We find similar constraints for quantum alternation

across the literature [9, 53, 52].

Each of the branches of the CNOT program (6.3) could reasonably be typed as

qbit ⊗ (qbit ⊸ qbit). However, naively typing the CNOT construction as qbit ⊸

qbit ⊗ (qbit ⊸ qbit) would permit this invalid operation. We must alter the type to

account for the signalling induced by the quantum alternation. This is done by the

following theorem.
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Theorem 6.2.1. Let A and B be some first-order systems in Caus[CP(FHilb)].

Given two pure processes ψ̂0, ψ̂1 ∈ cC, the map AltA⊕B[ψ̂0, ψ̂1] defined by the alter-

nation of ψ̂0 and ψ̂1 with A ⊕ B control (∣φA⟩ ⊕ 0 ↦ (∣φA⟩ ⊕ 0) ⊗ ψ0,0 ⊕ ∣φB⟩ ↦

(0⊕ ∣φB⟩)⊗ ψ1) is in c(A⊕B)⊸((A⊕B)`C).

Proof. It is sufficient to show that applying any effect in the dual set yields 1. We

note the existence of the following isomorphism:

((A⊕B)⊸ ((A⊕B)`C))
∗
≅ ((A⊕B)

∗ ` ((A⊕B)`C))
∗

≅ (A⊕B)⊗ ((A⊕B)`C)
∗

≅ (A⊕B)⊗ (A⊕B)
∗
⊗C∗

This means it is enough to consider an arbitrary state ρ ∈ cA⊕B and arbitrary

effects π ∈ cC∗ and π′ ∈ c(A⊕B)∗ . Since A and B are first-order, so is A⊕B, hence

π′ = A⊕B .

Consider the case where ρ is a pure state∑
1
i,j=0 αiαj ∣φi⟩ ⟨φj ∣ where ∣φ0⟩ = ∣ξA⟩⊕0,

∣φ1⟩ = 0 ⊕ ∣ξB⟩ (for some ∣ξA⟩ ⟨ξA∣ ∈ cA, ∣ξB⟩ ⟨ξB ∣ ∈ cB) and ∣α0∣
2
+ ∣α1∣

2
= 1. In the

following, we use the fact that ∣φ0⟩ and ∣φ1⟩ are orthogonal ( A⊕B(∣φ0⟩ ⟨φ1∣) =

A⊕B(∣φ1⟩ ⟨φ0∣) = 0) and π is a causal effect (π ○ ∣ψ̂i⟩ ⟨ψ̂i∣ = 1).

( A⊕B ⊗ π) ○AltA⊕B[ψ̂0, ψ̂1] ○ ρ =
1

∑

i,j=0
αiαj A⊕B (∣φi⟩ ⟨φj ∣)⊗ (π ○ ∣ψ̂i⟩ ⟨ψ̂j ∣)

=

1

∑

i=0
∣αi∣

2
A⊕B (∣φi⟩ ⟨φi∣)⊗ (π ○ ∣ψ̂i⟩ ⟨ψ̂i∣)

=

1

∑

i=0
∣αi∣

2

= 1

Since this is the case for all pure ρ, it must hold for all mixed states by linearity.

The importance of this result is in the preservation of the C subsystem; quantum

alternation can only introduce signalling between the control and affected systems

and not within the affected system itself. For example, if we alternate over a pair

of non-signalling channels, they still remain locally non-signalling in the sense that,

whilst they can both signal with the control system, it is not possible to signal from

one to the other.

We can also see that (A⊕B)⊸ ((A⊕B)`C) is, in general, the most specific

type which can be given. We can recover each of the C processes, so we cannot

refine C to a more specific causal set. Furthermore, the CNOT example shows that

the result may not live in (A⊕B)⊸ ((A⊕B)⊗C).

Corollary 6.2.2. In Caus[CP(FHilb)], the quantum switch on channels over C

with a A ⊕B control system (where A and B are first-order systems) is a process

in (A⊕B)⊸ (A⊕B)` ((C⊸C)⊗ (C⊸C)⊸ (C⊸C)).

Proof. Recall that the quantum switch can be defined as the alternation of the

programs λx.λy.λz.x(yz) and λx.λy.λz.y(xz). These are the programs taking two

channels and combining them in the two possible definite orders. Both correspond to
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processes in (C⊸C)⊸ (C⊸C)⊸ (C⊸C) ≅ (C⊸C)⊗(C⊸C)⊸ (C⊸C).

The result then follows directly from Theorem 6.2.1.

In Section 3.5, we claimed that the type of the quantum switch with a qubit

control system is C2
⊸ C2 ` ((A⊸A)⊗ (A⊸A)⊸ (A⊸A)), which follows as

a special case of Corollary 6.2.2.

The type rule for the quantum switch in our programming language is as follows:

!∆,Γ0 ▷M ∶ Â⊸ Â !∆,Γ1 ▷N ∶ Â⊸ Â !∆,Γ2 ▷ P ∶ B̃ ⊕ C̃
(switch)

!∆,Γ1,Γ2 ▷ switch M and N by P ∶ (Â⊸ Â)` (B̃ ⊕ C̃)

The processes M and N being switched are required to be transformations over

a quantum type. Using Definition 6.1.1, we can associate these types to objects

in Caus[CP(FHilb)]. Moreover, the control system P is of a first-order type, so

by Theorem 6.1.2 it is associated with a first-order system in Caus[CP(FHilb)].

Using these associations, the type of the quantum switch according to Corollary

6.2.2 is associated to B̃ ⊕ C̃ ⊸ ((Â⊸ Â)⊗ (Â⊸ Â))⊸ (Â⊸ Â)` (B̃ ⊕ C̃). If we

apply this to the inputs M , N , and P , the result will have type (Â⊸ Â)`(B̃⊕ C̃),

which is exactly the type assigned to switch M and N by P . In this sense, the

typing rule for the quantum switch in our programming language is consistent with

its interpretation in Caus[CP(FHilb)].

6.3 Properties of the Language

A well-designed functional programming language should be sound in the sense that

well-typed programs do not reach error states - in this case, a quantum closure is not

well formed when the term is not a value but it also cannot be reduced. This is the

principle behind the property of type safety. We can build up to a proof of this by

breaking it down into a handful of lemmas. A number of the lemmas are properties

that are intuitively natural for quantum systems, but we must nonetheless show

that the language we defined satisfies them.

In this section, we assume that a variables x range over both term variables and

register variables.

Lemma 6.3.1. If x ∉ FV(M), then ∆, x ∶!A▷M ∶ B iff ∆▷M ∶ B.

Proof. By structural induction on the derivation of the typing judgement.

This first lemma shows that making the weakening rule of ! implicit does not

affect how a term can be typed. In essence, having extra classical data at the start

of the program on top of what we need will not affect the ability to execute the

program.

Lemma 6.3.2. If ∆▷M ∶ B, then ∀x ∈ ∣∆∣ ∖ FV(M).∃A.∆(x) =!A.

Proof. By structural induction on the derivation of the typing judgement.

The consequence of this lemma is that the only resources we are able to discard

implicitly are classical. Every quantum system mentioned in the typing context

must be mentioned in M . In order to discard a quantum system, we must do so

explicitly, specifying the exact discarding operation to be applied.
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Lemma 6.3.3. For any value V , if ∆▷ V ∶!A then ∀x ∈ ∣∆∣.∃B.∆(x) =!B.

Proof. The only cases in the grammar of values that can be given a !-type are

variables or !-suspensions. In either case, the typing rule given for these requires

the typing context to be of the form !∆.

The only point at which a term can be copied is on the applying a λ-abstraction

to something of !-type, and since we have a call-by-value reduction scheme only

values can be copied. This lemma shows that there is no hidden quantum system

within values of !-type which could be copied by this procedure, in line with the

no-cloning theorem.

We can now prove the properties required for type safety.

Lemma 6.3.4 (Substitution). If !∆,Γ1, x ∶ A▷M ∶ B and !∆,Γ2 ▷ V ∶ A, then

!∆,Γ1,Γ2 ▷M[V /x] ∶ B

Proof. By structural induction on the derivation of !∆,Γ1, x ∶ A ▷M ∶ B, using

Lemmas 6.3.1 and 6.3.3 as appropriate. The (⊕.E) case demonstrates how the

non-trivial cases can be handled:

Suppose that the instance of the (⊕.E) rule in the derivation is:

!∆,Γ1 ▷ P ∶ A⊕B !∆,Γ2, x ∶ A▷M ∶ C !∆,Γ2, y ∶ B▷N ∶ C

!∆,Γ1,Γ2 ▷match P with (x↦M ∣ y ↦ N) ∶ C

We are aiming to substitute !∆′,Γ0 ▷ V ∶ D for z ∶ D ∈!∆,Γ1,Γ2. As we are

working up to α-equivalence, we can assume that x, y ∉ FV(V ), in accordance with

notions of capture-avoiding substitution.

If z ∶ D ∈!∆, then D =!D′ for some type D′. By Lemma 6.3.3, Γ0 is of the form

!Γ0. By Lemma 6.3.1, we have that !(∆∖ z ∶D), !Σ▷V ∶D where !∆′, !Γ0 ⊆!(∆∖ z ∶

D), !Σ. Using the induction hypothesis, we have that !(∆∖ z ∶D), !Σ,Γ1▷P [V /z] ∶

A⊕B, and similar for M[V /z] and N[V /z]. From here, we can use the (⊕.E) rule:

!(∆ ∖ z ∶D), !Σ,Γ1 ▷ P [V /z] ∶ A⊕B

!(∆ ∖ z ∶D), !Σ,Γ2, x ∶ A▷M[V /z] ∶ C

!(∆ ∖ z ∶D), !Σ,Γ2, y ∶ B▷N[V /z] ∶ C

!(∆ ∖ z ∶D), !Σ,Γ1,Γ2 ▷ (match P with (x↦M ∣ y ↦ N))[V /z] ∶ C

If z ∶ D is instead in Γ1 or Γ2, the proof follows similarly by applying the

induction hypothesis on the relevant subterm(s).

Lemma 6.3.5 (Type Preservation). For any well-formed quantum closure [ρ,L,M] ∶

A, if [ρ,L,M]→ [ρ′, L′,M ′
] then [ρ′, L′,M ′

] ∶ B is well-formed with A = B.

Proof. By structural induction on the derivation of the reduction, using the Sub-

stitution Lemma (6.3.4) for the cases involving substitution of values.

Lemma 6.3.6 (Progress). For any well-formed quantum closure [ρ,L,M] ∶ A, ei-

ther M is a value or there exists some [ρ′, L′,M ′
] such that [ρ,L,M]→ [ρ′, L′,M ′

].

Proof. By structural induction over the type derivation in [ρ,L,M].

Corollary 6.3.7 (Type Safety). Any reduction sequence starting from a well-

formed quantum closure is either infinite or terminates with a value after a finite

number of reduction steps.
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Proof. This follows straightforwardly from Type Preservation (6.3.5) and Progress

(6.3.6).

The reduction of a program is determined entirely by the term, thanks to embed-

ded concrete type information which fixes the dimensions of the Choi-Jamio lkovski

operator (e.g. in λx ∶ A.M or injA⊕−(M)). Type Preservation prevents this syntax-

bound type information from becoming invalid after a successful check. As a result,

it is sufficient to check the type once and for all before we execute a program and,

furthermore, we do not need to carry around any additional type information during

reduction.
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Chapter 7

Extensions

This chapter provides a discussion of future extensions for this programming lan-

guage

7.1 Quantum Alternation

As discussed in Section 4.3, the quantum switch is an instance of higher-order

quantum alternation. Providing a mechanism for alternation (or the more general

coherent control, such as in QML’s case○ statements [3]) could break the switch

primitive down into finer elements. The ability to describe processes such as the

CNOT gate with the explicit constructs of the programming language could also

reduce the dependence on the provision of the elementary operations U , making the

language more concrete and architecture-independent.

Quantum alternation is only valid when it combines pure, white-box processes.

For our programming language, we made the design choice to permit mixed states

and processes by allowing measurements. A prerequisite to adding alternation would

be the tracking of purity of programs. QML achieves this via a separate “strict”

type system: any constant is given a strict type; we can freely remove the strictness;

measurement uses non-strict types and coherent operations use strict types. From

these rules, any program with a strict type corresponds to a pure process. A similar

technique could be applied here.

7.2 Infinite Data Types

Quantum algorithms are generally defined to be independent of the size of the input

system - for instance, Shor’s algorithm for integer factorisation works for any input

consisting of a finite number of qubits. In the field of quantum complexity theory, a

quantum algorithm is defined to be an infinite family of circuits, with one for each

possible input size [19]. The most conventional method of describing such families

using a single program is by using a recursively defined data type representing a

list of identically-typed objects, list(A) ∶= ⊺ ⊕ (A ⊗ list(A)), as achieved in [45].

Unravelling this recursive definition, we find that it is equivalent to ⊺ ⊕ A ⊕ (A ⊗

A)⊕⋯⊕A⊗n
⊕⋯. As the type itself is recursively defined, they are naturally handled

by recursive functions.
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Given a finite collection of systems, each of which living in H, the state of the

overall collection lies in the Fock space ⊕∞
i=0H

⊗i (see [52] for a good explanation of

Fock spaces and some of their uses). The elementary operations on lists correspond

to simple operations in a Fock space:

• Generating an empty list takes an empty system and applies the injection

H
⊗0
→⊕

∞
i=0H

⊗i.

• Adding an element to the head of the list can be achieved by combining the

new element and the existing list to a state in H⊗⊕∞
i=0H

⊗i. By distributivity,

this space is equal to ⊕∞
i=1H

⊗i. We then apply the injection ⊕∞
i=1H

⊗i
→

⊕
∞
i=0H

⊗i to obtain another list.

• Distinguishing between an empty and non-empty list corresponds to the pro-

jective measurement from ⊕
∞
i=0H

⊗i
= H

⊗0
⊕ ⊕

∞
i=1H

⊗i into either H⊗0 or

⊕
∞
i=1H

⊗i. Once we have determined that a list is non-empty, we can apply

distributivity to separate the head of the list from the rest.

If we adopted the use of Fock spaces to represent lists, simulating the execution of

programs would require us to represent the Choi-Jamio lkovski operator symbolically

as we may no longer describe it by a finite matrix.

7.3 Inclusion of Full Linear Logic

With the introduction of the ` operator in this programming language, we now

have representations of most of the operators of classical linear logic available as

types of quantum systems. This begs the question of whether or not it would be

useful to develop theories behind quantum interpretations of the missing operators

to allow more expressiveness or flexibility of programs. In particular, we are yet to

see uses of additive conjunction &, exponential disjunction ?, and the quantifiers ∀

and ∃ in the literature.

7.3.1 Additive Conjunction &

The interpretation of a unit of A&B in linear logic is a single resource unit that can

be used as either a unit of A or a unit of B, and we have the freedom to choose which

of these we want at the point of using the resource. In Categorical interpretations,

this corresponds to the categorical product of objects, with the freedom of choice

given by the presence of the projection morphisms. It is also the De Morgan Dual

of ⊕ as A&B ≅ (A∗
⊕B∗

)
∗.

If we assume that we can make the choice of projector coherently with some state

from a ⊕-system, the links between this and quantum alternation are very clear.

We recall from Section 4.3 that we can define alternation via the matrix direct sum

of Kraus operators. We can use the matrix direct sum of the Choi-Jamio lkovski

operators to embed processes of type Â&B̂ in the space HÂ⊕B̂ . However, rather

than alternation, this corresponds to the Choi-Jamio lkovski operator of a decoherent

choice (a control system is measured, and the outcome is used to select either the

Â or the B̂ process).
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7.3.2 Exponential Disjunction ?

The resource-theoretic interpretation of the ? exponential is to indicate collections

of resources of a given type. Such a collection can be empty, finite, or infinite.

The elementary operations from the rules in linear logic available are construction

of an empty collection (W?), construction of a singleton collection from a unit of

the resource (R?), mapping some transformation over every element of a collection

(L?), and merging two collections (C?).

One can note close similarities between this and the list data type, but they are

fundamentally different constructions. Given a ?A collection, one can only perform

operations locally on each A element - there is no way to accumulate information

from separate units within the collection - whereas list(A) permits processing the

units in any order or combination. In this sense, we can view list(A) as a collection

of completely separate resources (⊕∞
i=0A

⊗n) and ?A as a collection of connected

resources, possibly via signalling (⊕∞
i=0A

`n). We can obtain the definition of list(A)

from ⊕∞
i=0A

⊗n by applying distributivity, but this method fails for ?A since the

distributivity is only one-sided for ` - (A ` C) ⊕ (B ` C) ⊢ (A ⊕ B) ` C but

(A⊕B)`C /⊢ (A`C)⊕(B`C). As a result, one can prove the sequent 0⊕(A`?A) ⊢

?A in linear logic, though the converse does not hold.

7.3.3 Polymorphism and Quantifiers

Polymorphism is the ability for one program to be applied to systems of many

different types. Several forms of polymorphism exist in the study of programming

languages:

• Parametric polymorphism is where a program only assumes some basic struc-

ture over its inputs but does not require a concrete type, hence can be applied

to any input whose type fits some pattern. For example, given any process of

type A ⊗B, we can always mix this to give A`B regardless of what A and

B actually are.

In classical programming, we can model this by adding type variables and

the universal quantifier ∀ to the syntax of types. One could imagine a similar

method could be applied to quantum programming languages, allowing the

generic mixing example above to be typed as ∀α.∀β.(α⊗ β)⊸ (α` β).

The De Morgan dual of ∀ is the existential quantifier ∃ which is use-

ful in classical programming for encapsulation and information hiding. In a

quantum context, we could type a pair of devices for encoding and decoding

information as ∃α.(A ⊸ α) ⊗ (α ⊸ B). The ability to hide the type of the

encoded data via α can be useful in preventing a programmer from tampering

with the encoded information.

• Ad hoc polymorphism is where multiple instances of a program are defined,

each with a different type. On application, the appropriate definition is se-

lected (if one exists) and is executed.

Since this corresponds to a choice over a finite collection of predefined

processes, we could encode this using &, where application projects out the

appropriate version for the given input.
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• Subtype polymorphism defines a relation between types to say where one is

sufficient to be used for the other. If A is a subtype of B (A <∶ B), then an

object of type A can be used as an input to any function B ⊸ C. A <∶ B

means that A is at least as specific as B. Programs are typically defined with

generic inputs and specific outputs in order to be more flexible in where it

can be used. This is most typically found in object oriented programming

situations.

This has already been seen in quantum programming languages includ-

ing Selinger and Valiron’s quantum lambda calculus [45] where it was used to

remove the need for explicit dereliction of !. As the mix and separate com-

mands perform no actual manipulation of data, one could argue that they

serve no place in quantum programs, so making them implicit in a similar

fashion would benefit programmers through making programs more concise

and clear.
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Chapter 8

Conclusion

Indefinite causal orders provide useful computational advantages to programmers,

yet they cannot be constructed in programming languages limited to classical con-

trol flow. The higher-order programming language we have presented addresses

this by extending existing models with the quantum switch as a new primitive con-

struction. The new computational model builds in higher-order structure from the

ground up with each register in the quantum array capable of storing a higher-

order process over finite-dimensional Hilbert spaces, modelling such processes by

their Choi-Jamio lkovski operator. This is complemented in our switch primitive

by generalising the definition of the quantum switch itself to allow higher-order

processes to be combined in a superposition of orders.

The other novel feature of this programming language is the addition of a new

type operator ` for compound systems with potential for internal signalling. This

idea originated in linear logic as the De Morgan dual of the tensor product ⊗,

with the signalling interpretation given by Kissinger and Uijlen [29]. This not only

improves the safety of the language by preventing backwards-in-time signalling, but

allows higher-order processes to be combined in new ways through local applications.

Whilst full categorical semantics for the programming language are beyond the

scope of this thesis, we made a case for a correspondence between programs of

the language and processes in Caus[CP(FHilb)]. With this in mind, we lifted

the direct sum ⊕ operator from CP(FHilb) into Caus[CP(FHilb)]. The main

result following this showed that quantum alternation induces signalling between

the control system and the affected system but not within the affected system itself.

By describing the quantum switch as an instance of quantum alternation, we showed

that it exists in Caus[CP(FHilb)], exhibiting a concrete type for it and justifying

the rule for the switch in our type system.

Our language is the first higher-order programming language to permit indefinite

causal orders over black-box processes. Furthermore, whilst many other languages

assume the use of qubit computers, our model can be used with implementations

based on any discrete quantum system.

Future directions for this programming language could see it extended to allow

for quantum alternation, infinite data types, or automated handling of the ` oper-

ator via subtyping. These features are already available in existing programming

languages [3, 45] and similar techniques could be used to introduce them here.

Providing access to indefinite causal structures makes this language incredibly

expressive and flexible. A programming language like the one presented here would
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be useful to demonstrate the correctness of programs and aid the discovery and

expression of new algorithms using indefinite causal structures.
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[42] Amr Sabry, Benôıt Valiron, and Juliana Kaizer Vizzotto. “From Symmet-

ric Pattern-Matching to Quantum Control”. In: International Conference on

Foundations of Software Science and Computation Structures. Springer. 2018,

pp. 348–364.

[43] Peter Selinger. “Dagger compact closed categories and completely positive

maps”. In: Electronic Notes in Theoretical computer science 170 (2007), pp. 139–

163.

[44] Peter Selinger. “Towards a quantum programming language”. In: Mathemat-

ical Structures in Computer Science 14.4 (2004), pp. 527–586.

[45] Peter Selinger, Benoıt Valiron, et al. “Quantum lambda calculus”. In: Seman-

tic Techniques in Quantum Computation (2009), pp. 135–172.

[46] Mehdi Soleimanifar and Vahid Karimipour. “No-go theorem for iterations of

unknown quantum gates”. In: Physical Review A 93.1 (2016), p. 012344.

[47] Jean-Pierre Talpin and Pierre Jouvelot. “The type and effect discipline”. In:

Information and computation 111.2 (1994), pp. 245–296.

[48] Naoyuki Tamura. “Users guide of a linear logic theorem prover (llprover)”. In:

Department of Computer and Systems Engineering, Faculty of Engineering,

Kobe University, Japan (1998).
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Appendix A

Lambda Calculus

The lambda calculus is a popular model of classical computing which, using an

incredibly minimal set of rules, is as computationally powerful as Turing Machines

or, in fact, any other known classical model. It consists of a grammar for terms

(representing both programs and state) and some equivalence relations defining

identical programs (i.e. those which will yield the same result). This equivalence is

defined based on β-reduction, which specifies how the term changes as a result of a

single elementary computation step, akin to operational semantics of a programming

language. Some celebrated results from the study of lambda calculus include a

response to the Halting problem and the introduction of lambda expressions into

programming languages.

Many interesting variants of lambda calculus exist for capturing specific be-

haviours of interest or allowing certain forms of logical reasoning. The simply-typed

lambda calculus has long been known to have correspondence with a simple pred-

icate logic and cartesian-closed categories [32]. Polymorphic lambda calculus [39]

allows for quantification over type variables, extending the correspondence to first-

order logic. A linear lambda calculus [1] exists as a model of intuitionistic linear

logic. Additionally, the effect calculus [47] provides a flexible way of keeping track of

the possible side-effects of computation, such as IO interaction or non-determinism.

A.1 Terms and Reduction

The grammar of terms of the lambda calculus is given as:

M ∶∶= x ∣ λx.M ∣ MN (A.1)

At some level, every term in the lambda calculus is defined to be (or refer

to) a function. Here, we let x range over some set of variable names. Lambda

abstractions λx.M resemble functions where x is a name given to the input and M

is the computation executed on applying the function. The compound term MN

states that the function M is applied to input N . Variables x are placeholders

for objects such as inputs or elements of the environment. The simplest examples

include the identity function λx.x and an encapsulation of application λx.λy.xy.

A variable x is bounded if it is within some λx.M , otherwise it is free. Since

bound variables are just placeholder names for something as-so-far undefined, the

name of the variable should not make any difference to the interpretation of the
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lambda term - for example, λx.xz and λy.yz perform the same operation on any

input. We formalise this to give a simple notion of equivalent terms:

Definition A.1.1 (α-Equivalence). Two terms are α-equivalent (M ≡α N) when

we can transform M into N only by renaming all instances of some bound variables.

Given that the only constructs we have in this language correspond to functions

and applications, the only computational actions we can take are performing said

applications. β-reduction formally captures this to define a single step of computa-

tion as the substitution of an input in place of all occurrences of a bound variable

(possibly applying some α-equivalence as needed).

Definition A.1.2 (β-Reduction). The relation →β between lambda terms is defined

inductively by the following rules:

(λx.M)N →β M[N/x]
N ≡α M M →β M

′ M ′
≡α N

′

N →β N
′

M →β M
′

λx.M →β λx.M
′

M →β M
′

MN →β M
′N

N →β N
′

MN →β MN ′

This is the extension of the relation between β-redexes (λx.M)N and their β-

reducts M[N/x] (up to α-equivalence) to a congruence relation.

In most cases, when discussing reduction, we refer to the reflexive, transitive

closure →∗ of β-reduction, with β-equivalence ≡β referring to the symmetric closure

of the reduction relation.

This reduction is clearly non-deterministic since any term of the form MN could

potentially reduce in either the M or N branches of the syntax tree. In general,

we make the assumption that we can freely choose which reduction to take when

multiple options are available. This claim is backed up by the confluence property:

if M →
∗ M0 and M →

∗ M1, then there is some M ′ such that both M0 →
∗ M ′ and

M1 →
∗ M ′. So with respect to long-term reachability it does not matter which path

we take.

Reduction schemes specify a fixed method for choosing which subterm to reduce.

The most significant of these are “call-by-name” (left-most), prioritising reducing M

up to a λ-abstraction in MN , or “call-by-value” (right-most), prioritising reducing

N in MN .

Values in the lambda calculus are represented by terms in β-normal form.

Definition A.1.3 (β-Normal Form). A term is in β-normal form (β-NF) if it

contains no subterms of the form (λx.M)N .

From this condition, we can see that any term in β-NF cannot be reduced. If a

term has a β-NF term (i.e. it can reduce to some term in β-NF), then this β-NF

term is unique up to α-equivalence.

However, not every term has a β-normal form, with such examples corresponding

to non-terminating computation. For example, Ω ∶= (λx.xx)(λx.xx) only has one

β-redex, and reducing it produces Ω again (up to α-equivalence). The normal-order

scheme reduces the leftmost of the β-redexes which are not contained within any

other β-redex. For the term MN , if M = λx.M ′ then we reduce it to M ′
[N/x]; if M

is in some other β-normal form, it will reduce within N ; otherwise it will prioritise
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reducing M . It is possible to show that normal-order reduction will always reach a

β-normal form if the original term possesses one. The set of β-normal forms can be

described by a regular language.

Despite the incredibly minimal syntax, it is possible to encode a number of

more significant structures within lambda calculus. Church numerals represent

natural numbers by the terms n ∶= λf.λx.fnx (where f0x = x and fn+1x = f(fnx)),
from which we can define the successor function, addition, and other arithmetic

operations. Other notable constructions include pairs of terms, Boolean values,

conditional expressions, and primitive recursion, which can all be found in any text

book on the topic.

A.2 Type Systems

The grammar of lambda terms is incredibly flexible and expressive, but we often

find a lot of terms will have no sensible interpretation as a physical process. Type

systems provide a way to restrict the set of valid terms to those with a “nice”

interpretation by specifying the interface of a program and enforcing that only

terms with complementary interfaces can be composed. At the level of program-

ming languages, types can provide a sanity check that the program matches the

programmer’s intentions and help to build clear documentation by describing the

structure of the system.

A typing judgement is a logical statement that a term is sound under some set

of typing rules and assumptions about the environment. We should read Γ ⊢M ∶ A

as stating that a proof exists in our type system to show that the term M has type

A in a context Γ (a map from free variables to their types).

The simply-typed lambda calculus uses the same grammar of terms as the un-

typed lambda calculus of the previous section but introduces the type system defined

by the following rules:

Γ, x ∶ A ⊢ x ∶ A

Γ, x ∶ A ⊢M ∶ B

Γ ⊢ λx.M ∶ A→ B

Γ ⊢M ∶ A→ B Γ ⊢ N ∶ A
Γ ⊢MN ∶ B

The restrictions put in place by this type system grant the Strong Normalisation

property: every well-typed term will reduce to β-normal form in a finite number

of steps of β-reduction, regardless of which path is taken. This clearly limits the

language to a strict subset of the computable functions, which may seem like a

disadvantage, but it guarantees the elimination of poorly-constructed or nonsensical

lambda terms which, in most applications, is more preferred than completeness.

The “simply-typed lambda calculus” also refers to another form with explicit

syntax and types for handling operations on pairs of objects. In literature, the

Curry-Howard-Lambek correspondence refers to the link between the rules of the

type system for this form with explicit pairs, the inference rules of a natural de-

duction system for propositional logic with conjunction and implication, and the

constructions available in cartesian-closed categories [32]. By altering the type sys-

tem, we can build calculi that correspond with other forms of logic or classes of

categories.
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Appendix B

Linear Logic

B.1 Introduction to Liner Logic

The propositional logic which corresponds to the simply-typed lambda calculus is

concerned with mathematical proofs, where assumptions and any lemmas we prove

can be used arbitrarily many times in the proof of the goal. Linear logic, on the

other hand, models the management and transformation of resources, allowing the

expression of a finite number of available resources or transformers and enforcing

that every resource is tracked (i.e. if some resource from the environment is not

actively used, then it persists and is carried on through to the output). This has

been particularly significant in modelling quantum systems as this “resource-aware”

paradigm can be used to enforce compliance with the no-cloning theorem, as well

as ensuring any quantum process defined is linear in its inputs.

The operators in linear logic can be divided into categories:

• Multiplicatives capture the idea of a pair of objects. A ⊗ B means we have

one unit of resource A and one of B, both of which can be used freely. A`B

is also a pair of A and B, but restricted to only allow transformations to be

applied locally. The units of these are 1 and 0 which represent systems we

can freely created or destroyed.

• Additives allow the representation of a single unit adopting behaviour from

multiple different resource types. The difference between the two operators

is whether or not we are able to choose which resource type we interpret the

unit as - A&B allows us to choose between a unit of A or one of B, whereas

the choice for A⊕B is either predetermined or determined by something out

of our control. The units ⊺ and � represent impossible systems. A unit of

� can never be created, so if the environment provides it to us, we have no

restriction on how we can use it (similar to assuming logical false in predicate

logic).

• Implications represent resource transformations; combining a transformer with

its corresponding input resource gives the output resource. Linear implica-

tion A⊸ B is exactly this, where one unit is consumed and one is produced.

The dual A∗ of a resource type A is some process which eliminates a unit

of A. Each of these can be used to define the other as A ⊸ B ≅ A∗ ` B
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(Ax)
A⇒ A

Γ⇒ A,∆ Γ′,A⇒∆′
(Cut)

Γ,Γ′ ⇒∆,∆′

Γ,A,B ⇒∆
(L⊗)

Γ,A⊗B ⇒∆

Γ⇒ A,∆ Γ′ ⇒ B,∆′
(R⊗)

Γ,Γ′ ⇒ A⊗B,∆,∆′

Γ,A⇒∆ Γ′,B ⇒∆′
(L`)

Γ,Γ′,A`B ⇒∆,∆′
Γ⇒ A,B,∆

(R`)
Γ⇒ A`B,∆

Γ⇒∆
(L1)

Γ,1⇒∆
(R1)

⇒ 1

(L0)
0⇒

Γ⇒∆
(R0)

Γ⇒ 0,∆

Γ,A⇒∆
(L&1)

Γ,A&B ⇒∆

Γ,B ⇒∆
(L&2)

Γ,A&B ⇒∆

Γ⇒ A,∆ Γ⇒ B,∆
(R&)

Γ⇒ A&B,∆

Γ,A⇒∆ Γ,B ⇒∆
(L⊕)

Γ,A⊕B ⇒∆

Γ⇒ A,∆
(R⊕1)

Γ⇒ A⊕B,∆

Γ⇒ B,∆
(R⊕2)

Γ⇒ A⊕B,∆

(L�)
Γ,�⇒∆

(R⊺)
Γ⇒ ⊺,∆

Γ⇒ A,∆
(L ∗)

Γ,A∗
⇒∆

Γ,A⇒∆
(R ∗)

Γ⇒ A∗,∆

Γ⇒ A,∆ Γ′,B ⇒∆′
(L⊸)

Γ,Γ′,A⊸ B ⇒∆,∆′
Γ,A⇒ B,∆

(R⊸)
Γ⇒ A⊸ B,∆

Γ,A[x/t]⇒∆
(L∀)

Γ,∀x.A⇒∆

Γ⇒ A[x/y],∆
(R∀)

Γ⇒ ∀x.A,∆

Γ,A[x/y]⇒∆
(L∃)

Γ,∃x.A⇒∆

Γ⇒ A[x/t],∆
(R∃)

Γ⇒ ∃x.A,∆

Γ⇒∆
(W!)

Γ, !A⇒∆
Γ, !A, !A⇒∆

(C!)
Γ, !A⇒∆

Γ,A⇒∆
(L!)

Γ, !A⇒∆

!Γ⇒ A, ?∆
(R!)

!Γ⇒!A, ?∆

Γ⇒∆
(W?)

Γ⇒?A,∆
Γ⇒?A, ?A,∆

(C?)
Γ⇒?A,∆

!Γ,A⇒?∆
(L?)

!Γ, ?A⇒?∆

Γ⇒ A,∆
(R?)

Γ⇒?A,∆

Figure B.1: Rules of linear logic. !Γ and ?Γ refer to contexts where every formula

is of the form !A or ?A respectively. For the quantifier rules, we assume y is not

free in Γ or ∆.
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Γ⇒∆ Γ′ ⇒∆′

Γ,Γ′ ⇒∆,∆′ 1⇒ 0

Figure B.2: Mix rules for linear logic.

and A∗
≅ A⊸ 0. We also find De Morgan duals between associated pairs of

operators, such as (A⊗B)
∗
≅ A∗ `B∗.

• Quantifiers introduce a notion of polymorphism where some parameter of the

resource type is not provided, and either we can choose (∀) or it is otherwise

determined (∃).

• Exponentials act similarly to quantifiers, except rather than the form of the

resource being unspecified, it is the quantity that is not given. A !A resource

refers to any number of units of A. Interpretations of this include the idea

that we have a unit of A which is freely copyable and destructible, or that we

have access to a factory which can build units of A at the point of needing

them. The other case, ?A, is where there exists some (possibly zero) units of

A.

At first glance, one may imagine that, due to the tight restrictions imposed by

the rules for each operator, linear logic admits a strict subset of the proofs available

in non-linear logic. However, it is possible to encode proofs from classical logic in

linear logic using the ! modality, mapping the sequent Γ ⊢ A→ B to !Γ ⊢!A⊸?B.

The rule specification of linear logic permits substantial automation of theorem

proving, with tools such as llprover [48] readily available.

B.2 Links to the Caus Construction

Rather than cartesian-closed categories, models of linear logic are found in ∗-

autonomous categories.

Definition B.2.1 (∗-Autonomous Category). A ∗-autonomous category is a sym-

metric monoidal category C equipped with a full and faithful “dual” functor (−)
∗
∶

C
op
→ C which yields a natural isomorphism C(A⊗B,C) ≅ C(A, (B ⊗C∗

)
∗
).

In terms of ⊸, this natural isomorphism is C(A⊗B,C) ≅ C(A,B ⊸ C). This is

very similar to the currying natural isomorphism in cartesian-closed categories C(A×

B,C) ≅ C(A,CB) but using the monoidal product and linear implication as opposed

to the categorical product and exponential objects. The monoidal product and dual

functor of a ∗-autonomous category correspond to multiplicative conjunction (⊗)

and dual in linear logic. The additives can be used when the category has products

(&) and coproducts (⊗). The quantifiers and exponentials are often viewed as

infinitary cases of the additives and multiplicatives respectively, and are typically

represented categorically as such.

The Caus construction on precausal categories, as defined in [29], yields a ∗-

autonomous category, giving a correspondence with the multiplicative fragment of

linear logic. In fact, we gain additional structure from the existence of a coherent

isomorphism I ≅ I∗ (such categories are called isomix categories in the literature).

This corresponds to an extension of linear logic which adds in the mix rules in
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Figure B.2. These mix rules are what allow the inclusion map from A ⊗ B into

A`B in Caus[C].
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