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Abstract

We review current research in the field of categorical quantum mechanics.
We place the category of relations within the same categorical framework and
point out the similarities with the category of Hilbert spaces. Subsequently,
we provide a categorical model for investigating the spectral theorem (as
provided in [22]), within the context of an internally diagonalisable element
and apply these ideas to both categories mentioned. We find out that while all
normal operators can be internally diagonalisable in the category of Hilbert
spaces – this is not the case for the category of Relations. We conclude
by providing insights on how we can separate the internally diagonalisable
elements within the set of normal operators .
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Chapter 1

Introduction

The birth of quantum mechanics was undoubtedly a cornerstone in the
history of physics. Having being crafted by the great minds of the 20th cen-
tury, quantum theory underwent intensive studying and testing after being
established as one, if not the most, fundamental theory in physics.

With theoretical predictions agreeing to experimental data with up to
10−12 accuracy, it is no wonder that quantum electrodynamics, itself a child
of quantum theory, is probably the most accurate theory physicists ever came
up with. Indeed, even today, physicist all around the world use the mathe-
matical formalism presented by Paul Dirac [11] and John Von Neumann [23]
in seemingly diverse areas of physics: particle physics, solid state physics,
nuclear physics etc - with great success. Because of its success even skep-
tics who criticized quantum theory over time now realize its importance.
However, there are still questions about the simplicity of quantum theory.
Consider the no-cloning theorem [24] and the quantum teleportation proto-
col [2]. Even though they now seem simple and trivial to prove, they were
discovered considerably late, in 1982 and in 1993 respectively.

The new research trend of quantum informatics, partly initialized by the
two theorems mentioned, put at the centre of attention what quantum theory
can do, in the world of classical computation. It was not long after quantum
information revealed some its enormous power: Shor’s factoring algorithm
[20] and Grover’s searching algorithm [13] provide exponential speed-ups
compared with their traditional classical counterparts. With all the experi-
mentalists agreeing that a viable quantum computer could be made reality
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Chapter 1. Introduction

within the next decades, it is perhaps the right time to step back and re-visit
the fundamentals of quantum theory, in order to establish a conceptually
clear model.

Category theory provides an abstract mathematical environment in which
mathematical structures can be expressed – with the concepts of composi-
tionality and type having a central role. The benefit of having a single math-
ematical framework in which we can express theories on a more abstract level
will prove to be very beneficial. Of course, this is not the only advantage that
categories have. One of the most distinct features of monoidal categories is
that they admit graphical calculations, in the sense that all mathematical
expressions can be reduced to pictures.

Through their seminal paper [1], Abramsky and Coecke provided the cat-
egorical formulation for quantum mechanics, through the notion of a dagger
compact closed category. In the category of Hilbert spaces - the category
which admits the formulation of quantum mechanics – phenomena like the
teleportation protocol, the no-cloning theorem can be formally axiomatized.
The graphical counterparts of the mathematical expressions can be inter-
preted as the unveiling of ‘quantum information flow’.

Quantum measurements play a significant role in quantum mechanics. In
the classical world, when one measures something, then the measurement
outcomes represents a true indication of the state of the system. However, in
the quantum world, measurable quantities, i.e. observables, are represented
by a self-adjoint operator – which admits spectral decomposition; that is, it
can be decomposed into a sum of orthonormal projectors. These projectors
exactly correspond to the change of state that takes place during the measure-
ment while their coefficients represent the measurement outcome [7]. When
measuring something in the quantum world, the equation that describes the
quantum system, called the wavefunction, collapses and the new state of the
system is affiliated with what you are measuring against.

In [1], quantum measurements where accounted by switching between
the tensor and biproduct structure of Hilbert spaces. However, this kind of
formulation does not provide us with a physical interpretation nor does it
allow graphical calculations. To tackle this problem, Coecke and Pavlovic
introduced in [9] the concept of a classical structure which is based on the
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Chapter 1. Introduction

so-called Frobenius algebras. This piece of structure exactly represents the
possible outcomes of a quantum measurement.

Of course, category theory is not all about quantum mechanics. One can
also define other categories; for example axiomatize relations over sets as a
category. This categorical model of relations is of course purely classical,
in the sense that we don’t expect the ‘weird’ phenomena of quantum me-
chanics to be replicated. Surprisingly, as pointed out in [8], the category of
relations turns out to be more quantum-like than classical, in the sense that
we can replicate phenomena which are understood to be quantum. It should
be evident that by studying quantum-like theories we can understand the
fundamentals of quantum mechanics better by comparing the quantum-like
theory with quantum mechanics.

The aim of this dissertation is to provide insights regarding the spectral
theorem of quantum mechanics, but as applied to relations. By providing
a categorical description of diagonalisation, we can ‘move’ to the abstract
level of category theory in order to investigate diagonalisation in relations.
In other words, we are going to study quantum mechanics, but within the
context of relations. More explicitly, we are going to investigate relations
(c.f. quantum operators) on the two and three element set; and examine
whether or not they can be diagonalised.

The outline of this dissertation is:

– In Chapter 2 we present all the necessary category-theoretic background
that we will be using throughout this dissertation, with the notion of
a dagger compact category being the key definition.

– In Chapter 3 we axiomatize the category of Hilbert spaces and relations
as a dagger compact category. We also present structural similarities
between the two categories.

– In Chapter 4 we define quantum and classical structures, with the defini-
tion of a dagger Frobenius monoid being a critical element in exploring
diagonalisation.

– In Chapter 5 we present the conventional spectral theorem along with its
abstract categorical axiomatization.
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Chapter 1. Introduction

– In Chapter 6 we investigate the diagonalisable elements and normal oper-
ators on the two and three element set.

– In Chapter 7 we conclude with a summary and provide directions for future
work.
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Chapter 2

Category Theory: Essentials

In this chapter we introduce the essential categorical framework that will
be heavily used throughout this thesis. Category theory was proposed by
Samuel Eilenberg and Saunders Mac Lane in 1945 as an attempt to study
mathematical construction in their own right. Since then, category theory
has developed to a modern language of mathematical structures.

Within this framework it is that we examine different categorical models
– for example the category of Hilbert spaces or the category of relations. It is
in this context that we see the true beauty of category theory. Even though
it is traditionally considered an abstract language, the first thought would be
to argue that it cannot teach us anything new. But it is exactly the opposite!
Taking a step back and going slightly more abstract actually gives us more.

As we will see in Chapter 3 of this dissertation, category theory unifies all
structures in the same language and it is there that we can examine how and
why they are either different or similar. The two aforementioned categories,
even though they express very different mathematical theories will turn out
to be remarkably similar. The principal definition in this chapter is the notion
of a dagger compact (closed) category – the category that has been proven
to axiomatize a substantial portion of traditional quantum mechanics.
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Chapter 2. Category Theory: Essentials

2.1 Categories and monoidal structure

Definition 2.1.1. A category C consists of:

1. A collection of objects A,B,C..., denoted by |C|.

2. A collection of morphisms (or maps or arrows) between objects. These
assign to each pair of objects A,B ∈ |C|, a set of morphisms denoted
by

C(A,B),

the so-called hom-set. Any morphism f ∈ C(A,B), has domain A and
codomain B and we write down the morphism as

f : A −→ B.

3. A composition operation − ◦ − such that for morphisms f ∈ C(A,B)
and g ∈ C(B,C) we have that g ◦ f ∈ C(A,C) and moreover, for
h : C → D satisfies the associativity law:

h ◦ (g ◦ f) = (h ◦ g) ◦ f

4. For all objects A,B ∈ |C| there exist identities idA : A → A and
idB : B → B satisfying the identity law :

idB ◦ f = f and f ◦ idA = f

The mathematical language that we will be using for categories are the
so-called commutative diagrams. These are very handy since we can planely
see the type of the objects when applying morphisms. As a simple example,
consider having three objects A,B,C in some category C and two morphisms
between them given by

f : A→ B, g : B → C

To begin with, we have an object which has type A, and we apply the mor-
phism f , turn in into type B – then apply apply g finally become type C.
But this is the same as applying g ◦ f : A → C to our initial object A. To
transform this to a commutative diagram, we have to ‘split’ the three differ-
ent processes that we apply within our category. We say that “applying first
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f to A and turning in into type B and secondly applying g to finally turn it
into type C is the same as simultaneously applying g ◦ f to the system we
started with”. This is exactly the information that is neatly and explicitly
stored in the following triangle:

A
f

- B

C

g

?

g ◦
f

-

Example A typical example of a category is Set, the category with sets as
objects and total functions between sets as morphisms. Restating the above
definition to match the category-theoretic structure of the Set category we
have:

1. Objects in Set are sets.

2. A morphism f : A → B in Set is a total function from the set A to
another set B.

3. The composition of a total function f : A → B with another total
function g : B → C is given by the total function g ◦ f : A→ C, such
that each element a ∈ A is mapped to g (f (a)) ∈ C. Composition
of total functions is associative and hence for h : C → D we have
h ◦ (g ◦ f) = (h ◦ g) ◦ f .

4. For each set in Set, there exist an identity function which has the
same domain and codomain. Hence, for sets A and B, we have that
idA : A→ A and idB : B → B which satisfy the identity law idB◦f = f
and similarly f ◦ idA = f .

Two other examples that we will be heavily working with in later parts of
this dissertation are the FdHilb category, the category of finite dimensional
Hilbert spaces with all Hilbert spaces as objects and linear maps as objects –
and the Rel category, with finite sets as objects and relations as morphisms
but we postpone this discussion until Chapter 3.

A ‘special’ kind of morphism is an isomorphism and we now introduce its
definition.
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Chapter 2. Category Theory: Essentials

Definition 2.1.2. A morphism f : A → B is an isomorphism if there exist
a inverse morphism f−1 : B → A, such that f−1 ◦f = idA and f ◦f−1 = idB.

We say that objects A and B are isomorphic, or identical up to isomor-
phism, if there exist an isomorphism between them.

Another important notion, is that of a monoid.

Definition 2.1.3. A monoid (M, ·, 1) is a set M equipped with a binary
operation which takes pairs of elements of M into M , that is

− · − : M ×M →M.

Moreover, we have that for elements x, y, z ∈M ,

(x · y) · z = x · (y · z),

i.e. − · − is associative and there exists a distinguished element 1 such that

1 · x = x · 1 = x.

In category-theoretic terms, a monoid (M, ·, 1) can be represented as a
category with a single object. The elements of M are represented as mor-
phisms from the object to itself, the identity element 1 is the identity mor-
phism and the −·− operation represents morphism composition. Therefore,
the hom-set C(A,A) defines a monoid.

We can also consider the category Mon, which has monoids as objects and
the so-called monoid homomorphisms1 as morphisms.

Definition 2.1.4. Let C and D be categories. A functor between these
categories is a map

F : C → D,
such that:

• Objects A ∈ |C| are mapped onto D as

F : |C| → |D| :: A 7−→ F (A)

1A monoid homomorphism from (M, ·, 1) to (M ′, ·′, 1′) is a function f : M →M ′ such
that f(1) = 1′ and f(x · y) = f(x) ·′ f(y).
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• For any objects A,B ∈ |C|, a morphism f ∈ C(A,B) is mapped as

F : C(A,B)→ D (F (A), F (B)) :: f 7−→ F (f)

A functor is said to be a ‘structure-preserving map’. That is, it firstly pre-
serves composition – so that for morphisms f ∈ C(A,B) and g ∈ C(B,C) we
have

F (g ◦ f) = F (g) ◦ F (f).

and secondly preserves identities, such that for A ∈ |C|,

F (idA) = idF (A).

Example Consider the Set category. We can define an endo-functor

P : Set −→ Set

which maps a set (object) A to its usual powerset P (A) and maps f : A→ B
to the function P (f) : P (A) → P (B) which takes S ⊂ A and returns its
image f(S) ⊂ B. We can trivially check that this defined a functor since we
have P (1A) = 1PA and P (g ◦ f) = P (g) ◦ P (f).

Definition 2.1.5. Let F,G : C → D be two functors between categories C
and D. A natural transformation

ξ : F ⇒ G

between functors F and G is a family of morphisms

{ξA ∈ D(FA,GA)|A ∈ |C|}A
such that, for A,B ∈ |C| and f ∈ C(A,B), we have the commutation of

F (A)
ξA - GA

FB

Ff

?

ξB
- GB

Gf

?

If moreover each component ξA of ξ is also an isomorphism in D then we call
ξ a natural isomorphism.
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Example If we consider an identity natural transformation idF : F → F ,
where F : C → D is a functor, then for all objects A ∈ |C|,

idF (A) = idA : F (A)→ F (A).

In fact, since idF (A) is an isomorphism in D, it is a natural isomorphism.

Definition 2.1.6. A category C is said to be monoidal if it is a structured
triple (C,⊗, I) such that

1. − ⊗ − : C × C → C is a bifunctor 2 called the monoidal product or
monoidal tensor or simply tensor 3. For objects A,B,C,D ∈ |C| the
tensor behaves as

−⊗− : |C| × |C| → |C| :: (A,B) 7−→ A⊗B

and for morphisms f ∈ C(A,B), g ∈ C(C,D),

−⊗− : C(A,B)× C(C,D)→ C(A⊗ C,B ⊗D) :: (f, g) 7−→ f ⊗ g.

2. I is a special object called the unit or identity object.

3. There exist a left unit, a right unit and associativity natural isomor-
phisms, which are respectively given by

λ : I ⊗ A→ A, ρ : A⊗ I → A, α : (A⊗B)⊗ C → A⊗ (B ⊗ C).

For any map f : A→ B, the left and right unit obey the squares

A
f

- B A
f

- B

I ⊗ A

λ−1
A

?

idI ⊗ f
- I ⊗B

λ−1
B

?
A⊗ I

ρ−1
A

?

f ⊗ idI
- B ⊗ I

ρ−1
B

?

2A bifunctor admits two arguments and maps pairs of objects of a category – which
we denote by C × C onto the category.

3This should not be confused with the Kronecker tensor product – as we will see later
it the tensor can also be the Cartesian product or the direct sum, depending in which
category we are working.
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For objects A,B,C,D ∈ |C|, the associativity natural isomorphism
obeys the so-called ‘pentagon axiom’,

((A⊗B)⊗ C)⊗D
αA⊗B,C,D- (A⊗B)⊗ (C ⊗D)

αA,B,C⊗idD- A⊗ (B ⊗ (C ⊗D))

(A⊗ (B ⊗ C))⊗D

αA,B,C ⊗ idD
? αA,B⊗C,D - A⊗ ((B ⊗ C)⊗D)

idA ⊗ αB,C,D

6

and also the ‘triangle axiom’,

(A⊗ I)⊗B
αA,I,B- A⊗ (I ⊗B)

A⊗B

� id
A
⊗
λ B

ρ
A ⊗

id
B -

4. Importantly, in a monoidal category we have bifunctoriality. That is,
for linear maps f, g, h, k of correct type, the equations

(g ◦ f)⊗ (k ◦ h) = (g ⊗ k) ◦ (f ⊗ h) (2.1)

idA ⊗ idB = idA⊗B

both hold.

Additionally, the tensor is associative and has idI as its unit, i.e.

f ⊗ (g ⊗ h) = (f ⊗ g)⊗ h and f ⊗ idI = idI ⊗ f = f.

In any category, monoidal or not, if we consider the associativity mor-
phism then following diagram

A⊗ (B ⊗ C)
αA,B,C- (A⊗B)⊗ C

A′ ⊗ (B′ ⊗ C ′)

f ⊗ (g ⊗ h)

?

αA′,B′,C′
- (A′ ⊗B′)⊗ C ′

(f ⊗ g)⊗ h

?

commutes. This condition is the so-called naturality condition.
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Consider a functor F : C → D acting upon monoidal categories. We say
that the functor is strong if the natural transformations are isomorphisms
and strict if they are identities.

In a monoidal category we also have that the left and right unit of the
identity object are equal. That is,

λI = ρI

which makes the following triangles both commute.

(A⊗B)⊗ I
αA,B,I- A⊗ (B ⊗ I) (I ⊗ A)⊗B

αI,A,B- I ⊗ (A⊗B)

A⊗B

� id
A
⊗
ρ Bρ

A⊗
B

-

A⊗B

�

λ A
⊗B

λ
A ⊗

id
B -

Natural isomorphisms are very powerful tools, due to the following ‘co-
herence theorem’ by Mac Lane.

Theorem 2.1.7. All diagrams that are built up only with natural isomor-
phisms must commute.

Example The category Set comes is equipped with monoidal structure
(Set,×, ∗), with the Cartesian product × as the tensor and the singleton
set {∗} as the monoidal unit object. Consider total functions

f : X → Y, f ′ : X ′ → Y ′,

then the composition operation is the usual functional composition and the
tensor is given by

f × f ′ : X ×X → Y × Y ′ :: (x, x′) 7−→ (f(x), f ′(x′))

Natural isomorphisms are given by

αX,Y,Z : X × (Y × Z)→ (X × Y )× Z :: (x, (y, z)) 7−→ ((x, y), z)
λX : {∗} ×X → X :: (∗, x) 7→ x ρX : X × {∗} → X :: (x, ∗) 7→ x

–12–
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2.2 Strictness and symmetry

Definition 2.2.1. A strict monoidal category is one for which the natural
isomorphisms α, λ, ρ are all identities.
Importantly, in any strict monoidal category the following diagram commutes

A⊗B
idA ⊗ g- A⊗D

C ⊗B

f ⊗ idB

?

idC ⊗ g
- C ⊗D

f ⊗ idD

?

Reading from the upper-and-right side of the diagram we have:

(f ⊗ idD) ◦ (idA ⊗ g)
bifunct.

= (f ◦ idA)⊗ (idD ◦ g)

id.law
= f ⊗ g id.law

= (idC ◦ f)⊗ (g ◦ idB)
bifunct.

= (idC ⊗ g) ◦ (f ⊗ idB) (2.2)

which is the left-and-down side of the diagram4.

It is now that we can understand what bifunctoriality gets. Conceptually
we can understand this as having a space and time composition for the −⊗−
and − ◦ − bifunctors respectively. Objects and morphisms ‘separated’ by
the tensor can in no way affect two different systems, a feature that can
be interpreted as expressing a sense of locality. Composed morphisms are
applied one after the other, hence express a notion ‘time flow’.

Strictness makes life much easier, due to the following theorem by Mac
Lane.

Theorem 2.2.2. Every monoidal category is C ‘equivalent’ to strict monoidal
category C ′.

This essentially means that no matter what is the category that we are
working in, we can assume that there exist an equivalent one in which all
natural isomorphisms are identities. Of course, this would have big simpli-
fications when we will start dealing with more complicated morphisms and
commutative diagrams.

4The pictorial proof of this is trivial as we will see in in the next section.
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Definition 2.2.3. A braided monoidal category is a monoidal category equipped
with a natural isomorphism σA,B : A ⊗ B → B ⊗ A such that the following
two diagrams commute.

A⊗ (B ⊗ C)
σA,B⊗C- (B ⊗ C)⊗ A

(A⊗B)⊗ C

α A
,B
,C

-

B ⊗ (C ⊗ A)

α
B
,C
,A

-

(B ⊗ A)⊗ C
αB,A,C

-
σ
A
,B ⊗

id
C

-

B ⊗ (A⊗ C)
id
B
⊗
σ A
,C

-

(A⊗B)⊗ C
σA⊗B,C- C ⊗ (A⊗B)

A⊗ (B ⊗ C)

α
−

1
A
,B
,C

-

(C ⊗ A)⊗B

α −
1C
,A
,B

-

A⊗ (C ⊗B)
α−1
A,C,B

-

id
A ⊗

σ
B
,C

-

(A⊗ C)⊗B

σ A
,C
⊗
id
B

-
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As an extension of braiding, we now proceed to introduce symmetric monoidal
categories.

Definition 2.2.4. A symmetric monoidal category is a braided one, which
moreover satisfies σA,B◦σB,A = idA⊗B or equivalently σA,B = σ−1

B,A. Therefore
the diagrams

A⊗B
σA,B- B ⊗ A A

λ−1
A- I ⊗ A

A⊗B

σB,A

?

id
A⊗
B

-

A⊗ I

σI,A

?

ρ −
1A

-

and finally of

A⊗ (B ⊗ C)
α−1
A,B,C- (A⊗B)⊗ C

σC,A⊗B- C ⊗ (A⊗B)

A⊗ (C ⊗B)

idA ⊗ σB,C
?

α−1
A,C,B

- (A⊗ C)⊗B
σA,C ⊗ idB

- (C ⊗ A)⊗B

α−1
C,A,B

?

all commute.

Remark All the commutative diagrams introduced so far constitute the so-
called coherence conditions.

If we consider a strict symmetric monoidal category we have that the diagram

A⊗B
σA,B- B ⊗ A

C ⊗D

f ⊗ g

? σC,D- D ⊗ C

g ⊗ f

?

commutes.
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2.3 Dagger structure and compact closure

Definition 2.3.1. A compact closed category, introduced in [15], is a monoidal
category which treats dual objects. In this category, every object has a dual5

isomorphic object. Consider a pair of morphisms;
the unit

η : I → B ⊗ A

and counit
ε : A⊗B → I.

We say that B is dual to A and denote it by A∗ when we have

λA ◦ (εA ⊗ idA) ◦ α−1
A,A∗,A ◦ (idA ⊗ ηA) ◦ ρ−1

A = idA (2.3)

ρ∗A ◦ (id∗A ⊗ εA) ◦ αA,A∗,A ◦ (ηA ⊗ id∗A) ◦ λ−1
A∗ = id∗A (2.4)

These translate in a commutative diagram as follows:

A
ρ−1
A- A⊗ I

idA ⊗ ηA- A⊗ (A∗ ⊗ A)

A

idA

?
�

λA
I ⊗ A �

εA ⊗ idA
(A⊗ A∗)⊗ A

α−1
A,A∗,A

?

A∗
λ−1
A∗- I ⊗ A∗

ηA ⊗ idA∗- (A∗ ⊗ A)⊗ A∗

A∗

idA∗

?
�

ρA∗
A∗ ⊗ I �

idA∗ ⊗ εA
A∗ ⊗ (A⊗ A∗)

αA∗,A,A∗

?

5In fact it has two duals, a left and a right one – but in a braided or symmetric category
these are the same. Since we will be dealing primarily with symmetric categories there is
no need to differentiate between the two.
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Assuming strictness due Mac Lane’s equivalence theorem, then the above
two equations boil down to

(εA ⊗ idA) ◦ (idA ⊗ ηA) = idA and (idA∗ ⊗ εA) ◦ (ηA ⊗ idA∗) = idA∗

Diagrammatically, that is:

A A∗

A⊗ A∗ ⊗ A

idA ⊗ ηA

?

εA ⊗ idA
- A

id
A

-

A∗ ⊗ A⊗ A∗

ηA ⊗ idA∗

?

idA∗ ⊗ εA
- A∗

id
A ∗

-

We call a compact structure on an object A a quadruple (A,A∗, η, ε).

Moreover, if every object A ∈ C in the compact closed category has a
chosen dual A∗, one can define a contravariant functor6

(−)∗ : Cop → C

such that objects are mapped as

A 7−→ A∗

and morphisms as
f : A→ B 7−→ f ∗ : B∗ → A∗.

We call the morphism f ∗ the transpose of f . Diagrammatically, the (−)∗

functor is defined by the commutation of

B∗
λ−1
B∗- I ⊗B∗

ηA ⊗ idB∗- A∗ ⊗ A⊗B∗

A∗

f ∗

?
�

ρA∗
A∗ ⊗ I �

idA∗ ⊗ εB
A∗ ⊗B ⊗B∗

id∗A ⊗ f ⊗ idB∗

?

6A contravariant functor F : C → D reverses the direction of composition, i.e. F (g◦f) =
Ff ◦ Fg. We can also represent a contravariant functor as functors of type F : Cop → D,
where Cop is the opposite category of C in which for f ∈ C(A,B) we have fop ∈ C(B,A)
and (g ◦ f)op = fop ◦ gop. Otherwise the opposite category is the same as the normal one.
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Equivalently, in equational form is given by

f ∗ = (idA∗ ⊗ εB) ◦ (idA∗ ⊗ f ⊗ idB∗) ◦ (ηA ⊗ idB∗),

where we have again assumed strictness and hence all natural isomorphisms
are neglected.

We will now proceed to define a dagger category. Through the dagger
structure we will consider a dagger compact category, initially called ‘strongly
compact closed category’ in [1] – the category which provides us with all the
necessary tools to express quantum mechanics.

Definition 2.3.2. A †-monoidal category is one which is equipped with an
involution on the morphisms, identity on objects, contravariant endofunctor

(−)† : Cop → C.

This means that all morphisms, e.g. f : A → B and g : B → C, have their
corresponding adjoint such that:

(g ◦ f)† = f † ◦ g† :: C → A

f †† = f :: A→ B

The dagger functor is identity-on-objects, i.e. we have the commutation of

A† ⊗B†

(A⊗B)†

id

?

id
- A⊗B

id

-

and also preserves the identities, that is,

id†A = idA.

Finally, all natural natural isomorphisms of the monoidal structure, namely
α, λ, ρ are all unitary7. In a †-symmetric monoidal category we also require
the swapping map to be unitary.

7We say that a morphism χ is unitary when its adjoint and inverse coincide, that is,
when χ† = χ−1
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As a result of unitarity, if we consider a compact closed category equipped
with the dagger functor, that is, a dagger compact (closed) category, we have
that the unit and counit isomorphisms

ηA : I → A∗ ⊗ A and εA : A⊗ A∗ → I,

have corresponding adjoints given by

η†A : A∗ ⊗ A→ I and ε†A : I→ A⊗ A∗.

Therefore, writing down ηA∗ : I → A⊗ A∗ we observe that

ηA∗ = ε†A and η†A∗ = εA

Moreover, writing down ε†A∗ : A∗ ⊗ A→ I we observe that

ηA = ε†A∗ and εA∗ = η†A

In a †-symmetric compact closed monoidal category, we also have that

ηA∗ = ε†A = σA∗,A ◦ ηA and ηA = ε†A∗ = σA,A∗ ◦ ε†A (2.5)

In a commutative diagram, this is understood by the commutation of

I
ε†A- A⊗ A∗

A∗ ⊗ A

σA,A∗

?

η
A

-

We can present the above commutative diagram as the definition of the
dagger symmetric compact closed category.

Similarly to the definition of the transpose of a morphism f , we can now
define – using the dagger – a similar covariant functor.

Definition 2.3.3. In a †-symmetric compact closed category, we define a
covariant functor

(−)∗ : C → C
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which maps objects A to A∗ and morphisms f : A → B to their conjugate
f∗ : A∗ → B∗, such that we have the commutation of

A∗
λ−1
A∗- I ⊗B∗

ηB ⊗ idA∗- B∗ ⊗B ⊗ A∗

B∗

f ∗

?
�

ρB∗
B∗ ⊗ I �

idB∗ ⊗ εA
B∗ ⊗ A⊗ A∗

id∗B ⊗ f † ⊗ idA∗

?

That is, we have that

f∗ = (idB∗ ⊗ εA) ◦ (idB∗ ⊗ f † ⊗ idA∗) ◦ (ηB ⊗ idA∗).

It can also be shown that each of the three functors (−)∗, (−)∗, (−)† can be
expressed using the other two, namely

f∗ = (f †)∗ = (f ∗)† f ∗ = (f †)∗ = (f∗)
† f † = (f ∗)∗ = (f∗)

∗

2.4 Scalars and traces

Definition 2.4.1. In a monoidal category C, a scalar is an endomorphism
in the set C(I, I).

Since scalars are presented as morphisms s : I → I, we can induce a
scalar monoid by the composite

I
ψ

- A
π

- I

Interestingly, we have the following remarkable result for scalars.

Theorem 2.4.2. The scalars C(I, I) form a monoid which is always com-
mutative. For s, t ∈ C(I, I), we have that

I ∼= I ⊗ I
s⊗ t
- I ⊗ I ∼= I

is equal to s ◦ t = t ◦ s.
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Proof. We have the commutation of

I �
ρ

I ⊗ I
ρ

- I

I

t

? ρ−1
- I ⊗ I

id I
⊗
t
-

I ⊗ I �
ρ−1

s⊗
id
I

-

I

s

?

I

s

?
�

ρ
I ⊗ I

s⊗ t

?

ρ
-

t⊗
id I

-id
I ⊗
s

-

I

t

?

We can now generalise this by introducing scalar multiplication.

Definition 2.4.3. Given a scalar s : I → I and a morphism f : A→ B, the
scalar multiplication − • −, is defined as

A
ρ−1
A- A⊗ I

f ⊗ s
- B ⊗ I

ρB - B.

such that the diagram

A⊗ I - B ⊗ I

A

ρ
−1
A

-

B

ρ
B

-

I ⊗ A

u

?
-

λ −
1A

-

I ⊗B

u

?

λB

-

commutes8.

8u := λ−1 ◦ ρ is a natural isomorphism.
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It can also be proven [6] that for s, t ∈ C(I, I) and f : A→ B, g : B → C

(s•f)◦ (t•g) = (s◦ t)• (f ◦g) and (s• f)⊗ (t•g) = (s◦ t)• (f⊗g). (2.6)

So we proved that scalars do not respect the order of composition or tensor.
In the same spirit but in slightly different context if we consider the composite

A
ρ−1
A- I ⊗ A

ψ ⊗ π
- B ⊗ I

λA - B (2.7)

we see that ψ ◦ π = (ψ ⊗ π).

Another important operation in quantum mechanics is the trace. Formal
treatment was been given by Joyal, Street and Verity in [14].

Definition 2.4.4. In a compact closed monoidal category C, given a mor-
phism f : A⊗ C → B ⊗ C a trace is defined as

trCA,B := ρ−1
B ◦ (idB ⊗ εC) ◦ (f ⊗ idC∗) ◦ (idA ⊗ ε†C) ◦ ρA

Diagrammatically this is understood by the commutation of

A
ρA- A⊗ I

idA ⊗ ε†C- A⊗ C ⊗ C∗

B

trCA,B

?
�

ρ−1
B B ⊗ I �

idB ⊗ εC
B ⊗ C ⊗ C∗

f ⊗ idC∗

?

2.5 Graphical calculi for monoidal categories

The most powerful feature for monoidal categories is that there exist a di-
rect translation of the commutative diagrams involved, to pictures. For a
complete description of graphical calculus for all different kinds of monoidal
categories one may consult [19] by Selinger.
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2.5.1 Morphisms, composition and tensor in pictures

We represent a morphism as a box, which has one input and one output
line. The type of the morphism is shown in the input and output ‘wire’.
Composition of morphisms is performed by connecting the output wire of a
morphism with the input one of another morphism, provided that the types
match. The convention that is been used is having composition moving
upwards – hence we read diagrams from bottom to top. The tensor depicts
as having boxes side-by-side. For morphisms f : A → B and g : B → C we
have:

f

A

B

f ≡ g

B

C

g ≡ g f ≡

g
C

A
f

f g⊗ ≡ f

A

B

g

B

C

However, there are some other ‘special’ kind of morphisms, those that
involve the domain or codomain of the morphism being the monoidal identity
object I. Morphisms of the form

ψ : I → A

are called states – these have no input and only one output and are repre-
sented by a triangle. Morphisms of the form

π : A→ I

are called co-states or preparation states and have a single input, no output
and are represented by an upside down triangle. Finally, morphisms of the
form s : I → I are the so-called scalars ; these have no input or output wires
and are represented by diamonds. These are pictorially represented as

ψ

A π

A

s
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It is remarkable that this simple pictorial notation directly translated to
maths. Consider the bifunctoriality equation 2.1;

(g ◦ f)⊗ (k ◦ h) = (g ⊗ k) ◦ (f ⊗ h).

It is trivial to see that both the left and right hand side of this equation
yield the same pictorial result. For f : A → B, g : B → C, k : D → E and
h : E → F the graphical equation is

bifunctoriality ≡
g

f

k

h

g

f

k

h
≡

We see that already the graphical calculus implicitly carries non-trivial
graphical rules. As a second example, consider the ‘strictness’ equation 2.2.1
in which we already hinted at its simplicity. What we basically wrote down
is:

f g

Aid

=f

g

A

B

C

D

Bid

f
A

B

Cid

f
C

D
Did

=

That is, morphisms can freely ‘slide’ along lines.

2.5.2 Associator, symmetry and compact closure in
graphical notation

Consider now the associativity morphism

α : (A⊗B)⊗ C → A⊗ (B ⊗ C),

applied to three morphisms f : A → B, g : C → D, and h : E → F. We
depict the equivalence of

αD,E,F ◦ (f ⊗ (g ⊗ h)) = ((f ⊗ g)⊗ h) ◦ αA,B,C
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as

f

A

B
g

C

D

h

E

F =

F

f

A

B
g

C

D

h

E

F

Now, since we will be mostly dealing with † compact symmetric cate-
gories, we moreover have symmetry. Recall that symmetry means we have a
swap map;

σA,B : A⊗B → B ⊗ A

which is involutive. Hence, if we consider σB,A ◦ σA,B(A ⊗ B) = idA ⊗ idB;
i.e. in pictures we have:

≡
,A Bσ

,B Aσ

A B A B

A B A B

The compact closure structure can be depicted by means of cups and
caps. The maps η : I → A∗ ⊗ A and ε : A⊗ A∗ → I respectively depict as

Aε ≡ Aη ≡

We can see from these morphisms that the downward direction of arrows
at the edges correspond to the ‘dual part’ of the morphism . In fact, iden-
tities idA∗ : A∗ → A∗ in the dual space depict as lines with arrows pointing
downwards, and where we have morphisms that involve duals, for example
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g

*A

*B

*Aid

g : B∗ → A∗ we draw them with arrows pointing downwards. For example,
(idA∗ ⊗ g) will depict as shown above.

To unveil some power of the graphical calculus, consider now the conditions
for strict compact closed structure. Recall that these were given by

(εA ⊗ idA) ◦ (idA ⊗ ηA) = idA and (idA∗ ⊗ εA) ◦ (ηA ⊗ idA∗) = idA∗ .

Rather surprisingly, these conditions translate to pictures as follows.

=

As we can see, the compact closed criterion basically boils down to the graph-
ical rule of being able to straighten a bended line.

2.5.3 Adjoint, transpose and conjugate

In a similar sense we proceed to introduce graphical notations for the adjoint,
the transpose and the conjugate. In † categories, we have the obvious (−)†

functor, such that for a morphism f : A→ B, f † : B → A. In the graphical
calculus we can account for this by introducing an assymetry in the square
boxes that represent morphisms. A morphism f will henceforth have a nega-
tive gradient line on the right-hand-side, and its adjoint will be its reflection
on a vertical axis, but keeping the arrows pointing in their original direction.
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f

A

BA

B
†f

†fB A⎯⎯→fA B⎯⎯→

When f : A→ B is unitary, we have that f † ◦ f = idA and f ◦ f † = idB. So
in pictures will correspond to the rule saying that when a unitary map meets
its dagger counterpart, they will ‘annihilate’ and yield identity.

f

B

A

B

†f f

A

A

B

†f

= =Bid Aid

Moreover, we can take advantage of this assymetry to depict the already
introduced transposed and conjugate functors. Recall the transpose:

f ∗ = (idA∗ ⊗ εB) ◦ (idA∗ ⊗ f ⊗ idB∗) ◦ (ηA ⊗ idB∗)

Therefore this will now depict as:

*f

*A

*B

A

B

f =( )* *A B
id f id⊗ ⊗

( )*A B
idη ⊗

( )* BA
id ε⊗

Notice that if we take the left picture and ‘pull’ the line so the bend in the
middle straightens, we get the orientation of the box depicted on the right.
Similarly for the conjugate functor,

f∗ = (idB∗ ⊗ εA) ◦ (idB∗ ⊗ f † ⊗ idA∗) ◦ (ηB ⊗ idA∗)
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we have that the translation in picture is given by

*f

A

B

A

B

†f =

Of course, the definition of the transpose and conjugate morphisms is
not random. It is due to the following equivalences that we can establish the
above equalities. Indeed, for f : A→ B consider the following four equations
[12]:

(idA∗ ⊗ f) ◦ ηA = (f ∗ ⊗ idB)⊗ ηB
(idB∗ ⊗ f †)⊗ ηB = (f∗ ⊗ idA) ◦ ηA
εB ◦ (f ⊗ idB∗) = εA ◦ (idA ⊗ f ∗)
εA ◦ (f † ⊗ idA∗) = εB ◦ (idB ⊗ f∗)

In graphical calculus, these respectively correspond to the following pictorial
equations.

f *f=

*f=†f

*f

*f†f

f
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That is, morphisms can ‘slide’ along the unit and counit morphisms as
well – and in the process, due to the assymetry, we can directly see how the
morphisms evolve by the orientation of the box.

Hence, what we did above was slide the box through the counit morphism,
and due to the compact structure the middle of the pictures below becomes
identity.

*f

A

B

A

B

†f =
A

B

*f =

2.5.4 Scalars and trace pictorially

Recall Theorem 2.4.2, that scalars the scalar monoid is always commutative.
This translate in the graphical calculus as:

s t
s

t s

t

= =

This means that the scalars can freely move around the picture – which can
be seen as a consequence of not having any input or output lines.

Traces as in Definition 2.4.4 depict as

f
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While all these graphical calculi may seem trivial and not very formal,
Selinger proved otherwise, as demonstrated in [19] and expressed the follow-
ing theorem:

Theorem 2.5.1. A well-typed equational statement in the language of dag-
ger compact categories holds if and only if it is derivable in the graphical
calculus.

So it turns out that what we get is the exact opposite! The graphical
calculus and the equational statements in monoidal categories are exactly
equivalent and so we can choose whichever one we like depending on one’s
taste. If you are a pure mathematician and enjoy long and hard equations,
then you can choose the equational way of expressing category theory; if you
like things to be as simple and plain as they get then the pictorial calculus
is a clear choice.

–30–



Chapter 3

Category of Hilbert spaces and
Relations

In this dissertation we will be mainly working within two categories. The
first one is category of finite dimensional Hilbert spaces with Hilbert spaces as
objects and morphisms as linear maps between them. The second one is the
category of relations; with finite sets as objects and relations as morphisms.
We begin our investigations with the former.

3.1 Hilbert space formalism

3.1.1 ..as in quantum mechanics

At the very core of quantum mechanics lies the Hilbert space formalism,
developed in the 1930s by John Von Neumann and Paul Dirac, with con-
tributions from other great minds of the era. We will be firstly defining
the notion of a Hilbert space, then stating the four postulates of quantum
mechanics and subsequently discussing some of its important features.

Definition 3.1.1. A Hilbert space H is a vector space over the complex
number plane C, which is equipped with an inner product mapping pairs of
elements of the ‘state space’ onto the complex number plane, i.e.

〈−,−〉 : H×H → C

This satisfies the usual inner-product axioms [11].
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Postulate 3.1.1. (Superposition principle) Each physical system is repre-
sented by a finite dimensional Hilbert space – its state space – in which
quantum states are vectors.

A typical example of a quantum state is the qubit, which ‘lives’ in a com-
plex two-dimensional Hilbert space. Using Dirac notation we write vectors
as a linear combination of a base vectors

|ψ〉 = α|0〉+ β|1〉.

It is a fundamental property of quantum mechanics that we allow superpo-
sition of states – a feature that is believed to be the source of the speed-up
of quantum algorithms with reference their classical counterparts.

Postulate 3.1.2. (Born rule) To each physically measurable quantum there
exist a corresponding operator O. This operator is self-adjoint and its eigen-
vectors form a complete orthonormal basis. The expectation value of O is
given by tr(ρO) where ρ is an operator representing the state of the system.

For example the momentum operator is given by p = −i~ ∂
∂x

.

Postulate 3.1.3. (Projection postulate) Mixed systems are represented by
the statistical operator ρ. After we perform the measurement P , the statis-
tical operator is given by

ρ′ =
PkρPk
tr(ρPk)

Postulate 3.1.4. (Compound systems) Physical systems composed by more
than one subsystems are described by the Hilbert space constructed by the
tensor product ⊗ of their respective subsystem Hilbert spaces.

It is the tensor product that provides all the ‘quantumness’ in the Hilbert
space formalism. States of the form

|ΨBell〉 = |00〉+ |11〉,
are called entangled, since they cannot be decomposed to their constituent
quantum systems and must be perceived as single system. While we can use
Dirac notation to denote quantum states, we can also use the ‘underlying’
field K and denote states as matrices. For example, the above Bell state can
be written as (

0
1

)
⊗
(

0
1

)
+

(
1
0

)
⊗
(

1
0

)
where the ⊗ is the usual Kronecker tensor product.
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Another important feature of quantum theory is the so-called no-cloning
theorem.

Theorem 3.1.2. There is no unitary operator that can copy an unknown
quantum state.

Proof. Let ∆ be a unitary copying operator, |ψ〉 and |φ〉 some unknown
quantum states that we wish to copy. The operation that we would perform
are

∆|0〉 ⊗ |ψ〉 = |ψ〉 ⊗ |ψ〉

∆|0〉 ⊗ |φ〉 = |φ〉 ⊗ |φ〉

where 0〉 is a quantum state to be replaced by the unknown quantum state.
Now, since we know that unitary operators preserve the inner product, we
have that

〈φ|ψ〉 = 〈0φ|0ψ〉 = 〈0φ|∆†∆|0ψ〉 = 〈φφ|ψψ〉 = 〈φ|ψ〉〈φ|ψ〉 = 〈φ|ψ〉2

So we have showed that 〈φ|ψ〉 = 〈φ|ψ〉2. This can only be true when 〈φ|ψ〉 is
either zero or one – and both of these cases describing elements of a known
orthonormal basis.

As an extension of the no-cloning theorem, we also have the following
theorem.

Theorem 3.1.3. There is no unitary operator that can uniformly delete a
quantum state. That is, there is no Γ : |ψ〉 7→ 1

Proof. See [16].

These two features of quantum theory are in total contrast with the clas-
sical world of information, where copying and deleting data is of course per-
formed with a mouse click. This provides as with a distinct and explicit way
to differentiate the quantum world from the classical world.

Another fundamental feature quantum computation and hence of quan-
tum theory is the quantum teleportation protocol. It makes use of the non-
local correlations of entanglement to teleport a single quantum state with
the aid of entangled Bell-states, for example,

|ΨBell〉 = |00〉+ |11〉.
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ψ

BellM

00 11BellΨ = +

Alice Bob

1
iU −

{ }1,2,3,4i∈
ψ

To protocol is as follows. Alice has the input state |ψ〉 = α|0〉 + β|1〉
that she wants to teleport to Bob. Both Alice and Bob have 1 qubit of the
entangled Bell-state. Initially, the state of the whole quantum system is given
by

(α|0〉+ β|1〉)⊗ (|00〉+ |11〉)

Subsequently Alice performs a Bell-base measurement on the unknown quan-
tum state ψ and on the single qubit of the Bell-state that she possesses. That
is, we perform

(|Ψi〉〈Ψi| ⊗ id)⊗ (|ψ〉 ⊗ |00〉+ |11〉)

The measurement outcome has four possible outcomes; since the measure-
ment |Ψi〉〈Ψi| has four possible values. Depending on what is observed we
sent by means of classical communication two classical bits to Bob, in order
to apply the inverse of that measurement outcome, thus recovering the initial
state |φ〉.

As already mentioned, since quantum theory does not allow copying, or
broadcasting, teleportation is the only viable solution to send information.
Today, quantum teleportation has been experimentally demonstrated [5] and
is expected to be at the very core of the quantum computer; if one is to be
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ever built.

3.1.2 ..as a category

As already mentioned in the introduction of this dissertation, when we trans-
fer from traditional Hilbert space formalism to category-theoretic quantum
mechanics we come to the world of dagger categories and so we present the
following theorem.

Theorem 3.1.4. The category of finite dimensional Hilbert spaces, FdHilb,
with Hilbert spaces as objects and linear maps1 as morphisms is dagger
symmetric compact closed.

Proof. [12] Strictness, symmetry and monoidal structure is trivial to show.
The monoidal tensor is the usual tensor product of Hilbert spaces and the
monoidal unit I is the ‘underlying’ structure of the Hilbert space, which is
the complex plane C.

Now consider the adjoint of a linear map f : A→ B. Let ψ : I → A and
φ : I → B be states, hence we have

〈f ◦ ψ|φ〉 = 〈ψ|f † ◦ φ〉.

since 〈f ◦ ψ|φ〉 = (f ◦ ψ)† ◦ φ = ψ† ◦ f † ◦ φ = 〈ψ|f † ◦ φ〉.
To prove that (−)† is a strict monoidal functor, consider a pair of mor-

phisms f and g such that

A
f

- B
g
- C.

Hence, for some states a and c we have

〈(gf)† c|a〉 = 〈c|gfa〉 ⇒ (fg)† = g†f †

and also
〈a|1Aa〉 = 〈1Aa|a〉 ⇒ 1†A = 1A† = 1A.

Since we assume strictness, linear maps α, ρ, λ are all identities and hence
all self-inverse

α−1 = α† ρ−1 = ρ† λ−1 = λ†.

1A linear operator between Hilbert spacesH1 andH2 is defined as the map f : H1 → H2

such that f(c1 ·ψ1+c2 ·ψ2) = c1 ·f(ψ1)+c2 ·f(ψ2), where c1, c2 ∈ C and ψ1 ∈ H1, ψ2 ∈ H2.
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To show that the swapping map satisfies σ−1
A,B = σ†A,B is suffices to note that

〈b⊗ a|σA,B (a⊗ b)〉 = 〈σ−1
A,B (b⊗ a) |a⊗ b〉.

Now consider

〈(f ⊗ g)† (b⊗ c) |a⊗ b′〉 = 〈b⊗ c|(f ⊗ g)(a⊗ b′)〉
= 〈b⊗ c|(fa⊗ gb′)〉
= 〈b|fa〉〈c|gb′〉
= 〈f †b|a〉〈g†c|b′〉
= 〈(f † ⊗ g†)(b⊗ c)|a⊗ b′〉

and hence (−)† ⊗ (−)† = (−⊗−)†, which completes the proof of the dagger
being a strict monoidal functor.

Compact closure is guaranteed by defining the unit ηH : I → H∗ ⊗H as

ηH : 1 7→
∑
i

|ai〉 ⊗ |ai〉

where {ai}i forms a basis. For εH : H⊗H∗ → I , suppose ψ, φ ∈ H; then

〈φ⊗ φ|ηA〉 = 〈ψ ⊗ φ|
∑
i

ai ⊗ ai〉

=
∑
i

〈ψ|ai〉〈φ|ai〉

= 〈φ|ψ〉
and therefore the counit is the linear map given by

εH : ψ ⊗ φ 7→ 〈ψ|φ〉.
that is,

εH :
∑
i

〈ai| ⊗ 〈ai| 7→ 1

Hence, we have the commutation of

ψ
idA ⊗ ηA- ψ ⊗

(∑
i

ai ⊗ ai

)
=
∑
i

ψ ⊗ ai ⊗ ai

∑
i

〈ψ|ai〉ai = ψ

εA ⊗ idA
?

id
A

-

which suffices for compact closed structure.
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3.2 Category of Relations

Consider now the category of relations, with relations as morphisms and
finite sets as objects. But to begin with, let us first provide the definition of
a relation.

Definition 3.2.1. Let X and Y be finite sets. A relation R from X to Y is
a collection of ordered pairs of elements of their cartesian product X×Y . In
this sense, we say that a relation is just a subset of their cartesian product,
i.e.

R ⊆ X × Y.

Formally, we write a relation by its graph

R := {(x, y)|x ∈ X, y ∈ Y }

and we say that x is related to y and write that xRy to express exactly that.

However, instead of dealing with the graphs, we can see the relations
as matrices, where the entries coincide with elements drawn from the two
element Boolean semiring B = ({0, 1} ,∧,∨). This is the formal way of
saying that having a relation R : X → Y where X has j elements and Y has
i elements, then this relation would be written as a matrix with i rows and
j columns. If some x ∈ X is related to y ∈ Y then their corresponding entry
in matrix would equal 1 and if not, would be equal to 0. Multiplication and
addition of entries is in accord with Boolean ∨ and ∧ respectively.

Example Since we will primarily dealing with endo-relations, i.e. relations
over the same set, consider the following relation for X := {a, b, c}

a - a

b - b
-

c c

This relation is just R = {(a, a), (a, b), (b, a)} ⊆ X ×X. In matrix form, we
can present this as

R =

 1 1 0
0 1 0
0 0 0

 .
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Chapter 3. Category of Hilbert spaces and Relations

The rows of the matrix express the domain and the columns the codomain
of the relation.

We now proceed to introduce the category-theoretic axiomatization of
relations.

Definition 3.2.2. The category of relations comes with a monoidal structure
(Rel,×, {∗}) in which:

1. Objects A,B,C.. in Rel are sets.

2. Morpshisms in Rel are relations, R : A→ B.

3. A composition operation − ◦ −, so that for R : A → B ⊆ A × B and
R′ : B → C ⊆ B × C the composite R′ ◦R ⊆ A× C is given by

R′ ◦R = {(a, c)|∃b ∈ B s.t aRb and bR′c}

If we use matrices, then the relational composition boils down to mul-
tiplying the corresponding matrices that express the relations involved.
The identity relation is

idA = {(a, a)|a ∈ A}

4. The monoidal unit is the singleton set {∗} .

5. The monoidal tensor is simply the Cartesian product. Hence, for ob-
jects A,B ∈ |Rel| their tensor would be pairs of elements from each
system,

A×B = {(a, b)|a ∈ A, b ∈ B}
and for morphisms R1 : A1 → B1 and R2 : A2 → B2,

R1×R2 = {((a, a′), (b, b′))|aR1b and a′R2b
′} ⊆ (A1×A2)→ (B1 → B2)

6. The left and right unit natural isomorphisms are given b y

λA = {(a, (a, ∗))|a ∈ A} , ρA = {(a, (∗, a))|a ∈ A}

and also the associativity natural isomorphism

αA,B,C = {((a, (b, c)), ((a, b), c))|a ∈ A, b ∈ B, c ∈ C}

which make all the necessary coherence conditions hold.
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Similarly to the structure of the category of Hilbert spaces, Rel is itself a
dagger symmetric compact category. Firstly, to enable symmetry it suffices
to define a swapping natural isomorphism

σA,B := {((a, b), (b, a))|x ∈ X andy ∈ Y } .

Secondly, Rel also comes with compact closed structure, and the relations

ηA = {(∗, (a, a))|a ∈ A}

and
εA = {((a, a), ∗)|x ∈ X}

provide the unit and counit morphisms respectively. Objects A ∈ |Rel| are
self-dual.

Finally, Rel is equipped with a dagger functor. If we consider a relation
R : A→ B then its relational converse is the relation RU : B → A given by

{(b, a)|aRb}

To verify the dagger structure, we have that

(R×R′)† = {((b, b′), (a, a′))|aRb and a′R′b′} = R† ×R′†,

as required.
Unitarity of all natural isomorphisms follows trivially as the inverse of all

these morphisms is the relational converse which establishes

a−1 = a†, ρ−1 = ρ†, λ−1 = λ†, σ−1 = σ†.

3.3 Similarities of FdHilb and Rel
While the two categories express different theories, we encounter many sim-
ilarities between them. Firstly, the obvious one is that they both admit
matrix calculations; in FdHilb over the field K and in Rel over a Boolean
semiring. Both categories have isomorphisms over their respective underlying
structure, namely

H⊗ C ∼= H A× {∗} ∼= A.

Within the pictorial categorical framework this trivially follows from the fact
that the identity object I is represented by nothing.
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Moreover, both theories admit a ‘map-state duality’. In FdHilb states,
a state |ψ〉 can be also understood as the linear map

f|ψ〉 = C→ H :: 1 7→ |ψ〉

and similarly in Rel we can express a state as the relation

R : {∗} → A

but since relations are multi-valued [6, 7] , what we actually get is the subsets
B ⊆ A. Hence if we set

Bi := A if i ∈ B and Bi := { } if i /∈ B

then one can see that a relation can be decomposed as

B =
⋃
i∈A

Bi ∩ {i}

i.e. we can have state decomposition over some bases, in the same way we
decompose a quantum state over the set of orthonormal bases:

|ψ〉 =
∑
i∈A

ψi|ai〉

Now, let us consider the ability to copy data in both FdHilb and Rel.
But first, what do we mean by copying in a category-theoretic sense? The
notion of a natural diagonal in category theory provides us with a formal way
to express copying. We define a copying operation as the family of natural
transformation given by

{∆ : A −→ A⊗ A}A

which has to satisfy the obvious square

A
f

- B

A⊗ A

∆A

?

f ⊗ f
- B ⊗B

∆B

?
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That is, copying and then performing an action f on the copies is the same as
first applying the action and subsequently performing the copying operation.

In Hilbert space formalism, we would be tempted to define

∆|ψ〉 : H → H⊗H :: |ψ〉 → |ψ〉 ⊗ |ψ〉

However, note that

∆|ψ〉
∑
i

ci|ai〉 =

(∑
i

ci|ai〉

)
⊗

(∑
i

ci|ai〉

)
=
∑
ij

cicj|aiaj〉 6=
∑
i

ci∆|ψ〉ai

In other words, the map ∆|ψ〉 is not linear. However, we can define a map
that copies the base vectors, i.e.

∆i : H → H⊗H :: |ai〉 → |ai〉 ⊗ |ai〉

but this map is base-dependent and as a counterexample the diagram

C
1 7→ |0〉+ |1〉

- C⊕ C

C⊗ C

1 7→ 1⊗ 1

?

1⊗ 1 7→ (|0〉+ |1〉)⊗ (|0〉+ |1〉)
- (C⊕ C)⊗ (C⊕ C)

|0〉 7→ |0〉 ⊗ |0〉
|1〉 7→ |1〉 ⊗ |1〉
?

fails to commute. We can think of this as the abstract counterpart of the
no-cloning theorem.

Interestingly, we observe the same phenomenon inRel. Here, the diagonal
function is the relation

{(x, (x, x))| x ∈ X}
which establishes X → X ×X :: x 7−→ (x, x). However, again, the square

{∗}
{(∗, 0), (∗, 1)}

- {0, 1}

{(∗, ∗)} = {∗} × {∗}

{(∗, (∗, ∗)}

?

{(∗, 0), (∗, 1)} × {(∗, 0), (∗, 1)}
- {0, 1} × {0, 1}

{(0, (0, 0)), (1, (1, 1))}

?

fails to commute.
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Quantum and classical
structuralism in categories

In this chapter we will be strictly dealing with †-SMC since it is the cate-
gory which ‘hosts’ finite dimensional Hilbert spaces as well as proving to be
the structure of the category of Relations. Since this category is also compact
closed we have the usual morphisms

η : I → A∗ ⊗ A and ε : A⊗ A∗ → I

which we will now exploit to first define quantum structures and prove that
these naturally arise within the context of classical structures.

Perhaps the most distinct characteristic of quantum theory is that it does
not allow for states to be copied. This is in full contrast with the classical
theory of information and it is the this distinct difference that we will exploit
to define quantum and classical structures.

We begin by introducing the definitions of of a quantum structure, sub-
sequently introducing Frobenius algebras, showing their categorical axioma-
tization and finally providing the definition of a classical structure.
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4.1 Quantum structures

A quantum structure [4] in a category C to be a pair (X, η : I → X ⊗X)
Hence, the compact structure for this pair will just be (X,X, η, η†), with X
being self-dual.

4.2 Classical structures

4.2.1 Preliminaries: Frobenius algebras

An abstract representation of Frobenius algebras in a monoidal category
(C, ⊗, I) –which we call a frobenius object – is a quintible (A,m, e, δ, ε)
where A is an object in C and

mA : A⊗ A→ A, eA : I → A, δA : A→ A⊗ A, εA : A→ I.

called the multiplication, multiplicative unit, comultiplication and comulti-
plicative unit respectively. A frobenius algebra satisfies:

1. Identity law:

mA ◦ (eA ⊗ idA) = mA ◦ (idA ⊗ eA) = idA

(εA ⊗ idA) ◦ δA = (idA ⊗ εA) ◦ δA = idA

2. Associativity and coassociativity law:

mA ◦ (mA ⊗ idA) = mA ◦ (idA ⊗mA)

(δA ⊗ idA) ◦ δA = (idA ⊗ δA) ◦ δA

3. Commutativity and cocommutativity law:

mA ◦ σA = m

σA ◦ δA = δA

4. Frobenius law:

(mA ◦ idA) ◦ (idA ⊗ δA) = (idA ⊗mA) ◦ (δA ⊗ idA) = δA ◦mA
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5. If it is special(or isometric), it satisfies

m ◦ δA = idA

Formally, in category-theoretic terms, the triples (A,m, e) and (A, δ, ε)
express the notions of an internal commutative monoid and internal co-
commutative co-monoid.

Definition 4.2.1. The triple (A,mA, eA) defines a internal commutative
monoid, such that the diagrams

A �
mA

A⊗ A A

A⊗ A

mA

6

�
mA ⊗ idA

A⊗ A⊗ A

idA ⊗mA

6

I ⊗ A
eA ⊗ idA

-
�

λ
−1
A

A⊗ A

mA

6

�
idA ⊗ eA

A⊗ I

ρ −
1A

-

both commute.

Dually, we define the internal co-commutative co-monoid.

Definition 4.2.2. The triple (A, δ, ε) forms an internal co-commutative comonoid
such that the following diagrams commute.

A
δA - A⊗ A A

A⊗ A

δA

?

δA ⊗ idA
- A⊗ A⊗ A

idA ⊗ δA

?
I ⊗ A �

εA ⊗ idA

λA

-

A⊗ A

δA

?

idA ⊗ εA
- A⊗ I

�

ρ
A

We can see that through the above definition, we establish the commu-
tation of

A⊗ A
A⊗ δA - A⊗ A⊗ A

A

m
A

-

A⊗ A⊗ A

δA ⊗ A

?

A⊗mA

- A⊗ A

mA ⊗ A

?

δA
-
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which is nothing else than the frobenius equation. We also observe that
within the context of a classical structure we can induce a quantum structure
by defining

ηA = δA ◦ eA.

4.2.2 Graphical language for Frobenius algebras

What is more about the Frobenius algebras, is that their counterparts in
monoidal categories also have translations in pictures. We depict the four
morphisms that define a frobenius object as follows.

m ≡

A

A

I

A

A

e ≡ δ ≡

A

A

I

A

A

ε ≡

Since we are ‘living’ in †-symmetric compact closed monoidal categories1 we
have the (−)† involution, and hence we can see that these four morphism can
be express in just two. Hence we can directly write down that:

δ = m† ε = e†

or equivalently,
δ† = m ε† = e

Consider now the laws that a frobenius algebra must satisfy. These di-
rectly translate to pictures as follows.

=

identity laws

= = =

1Frobenius algebras can be defined in any monoidal category.
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=

associativity coassociativity

=

commutativity cocommutativity

= =

Frobenius law

=

special

4.2.3 Definition of a classical structure

A classical structure in a †-SMC is defined as a triple (A, δ, ε) – an object A
along with two morphisms2;

ε : A→ I

and
δ : A→ A⊗ A.

This piece of structure exactly corresponds to a commutative dagger Frobe-
nius algebra.

2Equivalently we can define the classical structure by the monoid structure of the
Frobenius algebra, i.e. as a structured triple of (A,m, e)
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In the category of finite dimensional Hilbert spaces, these correspond
to the linear maps which copy and delete ‘data’. In quantum mechanical
formulation, these are:

δ : H → H⊗H :: |i〉 7→ |ii〉 ε : H → C :: |i〉 7→ 1

But what does exactly these maps copy and delete?

Theorem 4.2.3. In a †-commutative Frobenius monoid, in the category of
FdHilb, the only vectors that can be copied by the comultiplication mor-
phism δ : H → H⊗H are the basis vectors.

Proof. We have that |ψ〉 =
∑
N

ci|i〉. The map δ : H → H ⊗H applied to ψ

yields

δ|ψ〉 =
∑
N

ciδ|i〉 =
N∑
i

ci|ii〉

Assume δ clones the states, that is,

δclone|ψ〉 = |ψ〉 ⊗ |ψ〉 =
N∑
i,j

cicj|ij〉

Hence equating we have

N∑
i

ci|ii〉 =
N∑
i,j

cicj|ij〉

Multiplying both sides by 〈kh| where k and h are some indices yields

N∑
i

ci〈kh|ii〉 =
N∑
i,j

cicj〈kh|ij〉

When we have h = k we get that

c2k = ck

so ck is 0 or 1. When h 6= k we have that

ckch = 0

and hence ck or ch is zero.
Then for every ci we require it to be pairwise zero i.e. cicj = 0 and hence

only one ci can be non-zero. As a result of this, the set of elements of |ψ〉
must be a singleton and hence |ψ〉 is a base vector.
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This is unsurprising since we already know that quantum states cannot
be copied due to the no-cloning theorem. In fact, given the comultiplication
morphism δ : H → H⊗H, we can see that solving

δ(|ψ〉) = |ψ〉 ⊗ |ψ〉

yields the orthonormal basis set. Therefore we can say that the triple the
triple (H, δ, ε) faithfully encodes the orthonormal basis set {i}i.

In fact, it turns out that we have the following theorem due to Coecke,
Pavlovic and Vicary [10].

Theorem 4.2.4. In FdHilb there is a one-to-one correspondence between
dagger special commutative Frobenius monoids and orthonormal bases.

So what we get is a new way to describe orthonormal bases, in a category-
theoretic sense. We will be exploiting this theorem in the following chapter.
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The spectral theorem

In this chapter we examine the spectral theorem which is at the core of
quantum measurements. We introduce the conventional definition through
the concept a diagonalisable operator and subsequently provide the frame-
work that captures diagonalisation in a categorical sense.

5.1 Conventional algebraic definition

A normal endo-operator N : H → H acting on a Hilbert space H is one such
that it commutes with its adjoint, that is,

N ◦N † = N † ◦N.

The ‘conventional’ spectral theorem for normal operators in Hilbert spaces
is traditionally expressed as follows.

Theorem 5.1.1. Every normal operator in a complex Hilbert space H ad-
mits a diagonal matrix form. More functionally put, there exists a basis such
that the matrix corresponding to the normal operator N diagonalizes.

Example Let N =

(
i 0
0 2

)
. Since N is diagonal according to the above

theorem it must commute with its adjoint. We have that, N † =

(
−i 0
0 2

)
and indeed we verify that N ◦N † = N † ◦N =

(
1 0
0 4

)
.

49
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Now suggest we have a non-diagonal matrix.

Example Let Q =

(
0 1
1 0

)
(in the computational base). We have that

Q ◦ Q† = Q† ◦ Q; hence Q is a normal operator and can be diagonalized in
some other basis. First we need to compute its eigenvalues which are found

to be λ1 = 1 and λ2 = 2. The corresponding eigenvectors are

(
1
1

)
and(

1
−1

)
. Now, writing down the matrix P which has as columns the two

eigenvectors, we have P =

(
1 1
1 −1

)
. The diagonal form of the matrix

Q can now be found by computing PQP−1 which yields

(
1 0
0 −1

)
in the

basis expressed by the eigenvectors.

5.2 Category-theoretic axiomatization

In the category of finite-dimensional Hilbert spaces FdHilb as we saw in
theorem 4.2.4, we know that there exist a bijective correspondence of or-
thonormal basis and commutative special dagger Frobenius monoids.

Suggest we choose an orthonormal basis for X, defined by a multiplication
and a unit of a Frobenius monoid, shown below.

XX

XX

Let an arbitrary element of Hilbert space H, ψ = (ψ1 ψ2 ... ψN)T ex-

pressed in the basis of X defined by – and where N is the dimension of
H. Now consider the left action of this element,

XΨ

X
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Let the chosen basis of X be |1〉, |2〉, ... |N〉, where |i〉 has ith horizontal
element equal to 1, then the elements of the matrix given by the above
picture simplifies to

nΨ

m

where |n〉 : C → X and 〈m| : X → C. Since we know that our chosen basis
corresponds to a classical structure then we can show that the above picture
corresponds to

ψmδnm

i.e. we have the pictorial equivalence of

nψ

m

nψ

m m

= = m nmψ δ

since ψ〈m| = ψm and 〈m|n〉 is just the inner product. In matrix form, this
corresponds to

nψ

m
1

2

0 0 0
0 0 0
0 0 0
0 0 0 N

ψ
ψ

ψ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

=

This matrix is in a diagonal form and therefore due to the spectral theorem
a normal operator, which gives rise to the following proposition.

Proposition 5.2.1. In a †-SMC of Hilbert spaces, a left action of an element
ψ ∈ H acting upon a specific choice of basis defining by fixing a dagger
Frobenius algebra m : H⊗H → H defines a normal operator i.e. in a picture
we have that:
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=

But all we have proved, is that structures like the above are normal opera-
tors – but only in the FdHilb category. What about in an arbitrary monoidal
†-category? Is the above structure always normal in an arbitrary †-category?
The answer is yes, and the proof follows. First we have to introduce some
category-theoretic way to describe diagonalisation. Vicary in [22] introduced
the notions of a compatible monoid and an internally diagonalisable element
to abstractly express the spectral theorem.

Definition 5.2.2. In a monoidal category, an endomorphism f : A → A is
compatible with a monoid (A,m, u) if the following following equations hold:

f f

f

=

( )m f A⊗ f m( )m A f⊗=

=

=

Definition 5.2.3. In a braided monoidal †-category, an endomorphism f :
A → A is internally diagonalisable if it can be written as an action of
an element of a commutative †-Frobenius algebra on A. That is, where

( )fm Aφ ⊗

f

f

=
fφ

m : A⊗ A→ A is the usual multiplication of a commutative †-Frobenius
algebra and φf : I → A is a state of A.
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Theorem 5.2.4. An endomorphism f : A→ A is internally diagonalisable
if and only if it is compatible with a commutative †-Frobenius monoid.

Proof. Substituting pictorially the definition of an internally diagonalisable
endomorphism we have that:

=

fφ

fφ

fφ

=

But these pictures also correspond to the associativity and commutativity
laws in a †-Frobenius monoid – and therefore explicitly express compati-
bility as well. Conversely, assuming f is compatible with a commutative
†-Frobenius monoid (A,m, u) and defining φf = f ◦ u we have

m ◦ (φ⊗ idA) = m ◦ ((f ◦ u)⊗ idA) = f ◦m ◦ (u⊗ idA)

so f is internally diagonalisable. The above equations depict as,

f

f

=
fφ

= = f

Proposition 5.2.5. If an endomorphism f : A→ A is internally diagonalis-
able, then it is normal.

Proof. For a morphism f : A→ A to be internally diagonalisable we said
that is suffices to show that it can be written as the left action of a state a,
i.e. f = m ◦ (φf ⊗ idA). Since we are ‘living’ in a commutative †-Frobenius
monoid, this is the same as a right action – which in turn is equal to

Rα = m ◦ (idA ⊗ α) :: A→ A
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where α ∈ A. It can be proven [22] that Rα is involutive on the † functor
and that R† corresponds to a right action of some other element α′. Hence,
we have that:

f ◦ f † = Rα ◦R†α = Rα ◦Rα′
commut.

= Rα′ ◦Rα = f † ◦ f

as required.

So we have proved that morphism f which is internally diagonalisable
–i.e. can be written as a left or right action of a classical structure – must
be diagonal and hence normal. But is the opposite true? Is every normal
endomorphism internally diagonalisable? The answer is yes, and we have the
following theorem.

Theorem 5.2.6. In FdHilb every normal endomorphism f : A → A is
internally diagonalisable.

Proof. Suggest we choose an orthonormal basis set

ai : C→ A

such that each vector each vector ai is an eigenvector for f . Then the or-
thonormal property can be written as a†i ◦ aj = δijid. This basis is unique
if and only if f is a non-degenerate operator. We can use the morphisms
defined by the orthonormal basis ai to construct an internal commutative
monoid (A,m, e) defining

m =
∑
i

ai ◦ (a†i ⊗ a
†
i )

u =
∑
i

ai

But what about the category of relations Rel? Do we have equivalent
theorems that establish correlations between internally diagonalisable ele-
ments and normal operators? We will be examining this question in the next
chapter.
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Spectral theorem in Rel

First of all, why should we care about the normal operators in Rel? Why
should we care about categories other than the principal category for quan-
tum mechanics, FdHilb? The ability to ‘simulate’ some quantum features
in categories other than FdHilb provides us with many insights. As we al-
ready pointed out in Chapter 3, the category of relations and the category
of of Hilbert spaces surprisingly have a lot in common. As proved in [8],
the Rel category is rich enough to simulate the quantum teleportation and
dense coding protocols, as well as a variation of classical communication and
decoherence due to measurement.

Interestingly, if we consider the category Spek as a sub-category of Rel
we are closer than ever in describing quantum mechanics with a seemingly
classical world. The Spek category provides a categorical framework for
Spekkens’ toy theory [21] – a category that reproduces inter alia a no-cloning
theorem, a dense coding protocol, the non commutativity of measurements
and mutually unbiased states.

The core difference of Spekkens’ toy theory with traditional quantum
mechanics is that the former is a completely local theory. However, this
can be thought as an advantage is this case. We can formally express both
theories in the same language and reveil their difference from a category-
theoretic perspective – for example by finding the structural source non-
locality [3], entanglement and other non-trivial phenomena.

In this chapter we will be investigating the normal operators and inter-
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nally diagonalisable elements on the two and three element set.

6.1 The II-element set

6.1.1 Classical structures on the II-element set

We can define a two element set, by consulting the two element groupoid
structure. If we consider the Z2 set, we obviously have a two element set
defined by the set

Z2 := {1, a}

where we have
1.a = a.1 = a and a.a = 1.

However, we can also define a two element set as a cyclic group of two single
element sets as

Z1 + Z1 := {1}+ {1′}

where we would have

1.1 = 1 and 1′.1′ = 1′.

Using this group-to-set correlation we would be able to define two classical
structures, one for each two element group, in accordance with Pavlovic’s
theorem in [17].

Theorem 6.1.1. Every abelian group in the Set category induces a classical
structure in Rel and every classical structure is induced by an abelian group.

Let us first consider the Z2 group {1, a}. Taking the cartesian product
with itself yields

II × II = {(1, 1), (1, a), (a, 1), (a, a)} .

We define the multiplication

mZ2 : II × II → II

and the multiplicative unit
eZ2 : I → II
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operations of the classical structure, as

(1, 1) (1, a) (a, 1) (a, a)

mZ2

? (1,
�

-

a)

�

-

{∗}

6

eZ2

6

In matrix form this is written as

mZ2 =

(
1 0 0 1
0 1 1 0

)
and eZ2 =

(
1
0

)
.

In a slightly more compact notation, we write

mZ2 : II × II → II ::

{
{(1, 1), (a, a)} 7→ 1
{(1, a), (a, 1)} 7→ a

, eZ2 : I → II :: {{∗} 7→ 1

Now consider the II-element set obtained by the cyclic group Z1 + Z1.
Consider the cartesian product (Z1 + Z1) × (Z1 + Z1). Analytically this
would be given by

II × II = {(x, x), (x, y), (y, x), (y, y)}

where x and y are the single elements from the first group and second group
respectively. We define the multiplication and unit operations as

(x, x) (x, y) (y, x) (y, y)

mZ1+Z1

? (x ,

-

y)
�

{∗}

6 -

eZ2

6
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In matrix form this is given by

mZ1+Z1 =

(
1 0 0 0
0 0 0 1

)
and eZ2 =

(
1
1

)
.

or equivalently,

mZ1+Z1 : II × II → II ::

{
(1, 1) 7→ 1
(a, a) 7→ a

eZ1+Z1 : I → II ::

{
1 7→ {∗}
a 7→ {∗}

6.1.2 Diagonalisable and normal operators on II-element
set

An endo-operator N : II → II is said to be normal when it commutes with
its adjoint, that is

N ◦N † = N † ◦N (6.1)

In the II-element set, there is a total of 24 = 16 operators which can be
constructed as a two-by-two matrix. We can verify that only nine of these
are normal, namely(

0 0
0 1

)
,

(
1 0
0 0

)
,

(
1 0
0 1

)
,

(
0 1
1 0

)
(

1 1
1 1

)
,

(
0 1
1 1

)
,

(
1 1
1 0

)
,

(
1 0
1 1

)
,

(
1 1
0 1

)
.

All of these are self-adjoint, except the last two which are each others adjoint.

Recall that we proved that an internally diagonalisable operator f : N → N
can be written as the left action of a commutative dagger Frobenius monoid,
as shown below

( )fm Aφ ⊗

f

f

=
fφ
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In the II-element case, φf can be any of the following four morphisms which
have type φf : I → II:(

0
0

)
,

(
0
1

)
,

(
1
0

)
,

(
1
1

)
Since it is never interesting to be working only with zeros, we will be disre-
garding the zero matrix. The above picture can seen in a somewhat more
mathematical term if we explicitly write what the ‘legs’ of the pictures rep-
resent; i.e.

fφ

m

⊗

That is, in mathematical terms

m ◦ (φf ⊗ idII).

Hence in order to find the internally diagonalisable elements on the II-
element set it suffices to compute the above expression. The results are
tabulated below.

φf m1 ◦ (φf ⊗ idII) m2 ◦ (φf ⊗ idII)(
0
1

) (
0 1
1 0

) (
0 0
0 1

)
(

1
0

) (
1 0
0 1

) (
1 0
0 0

)
(

1
1

) (
1 1
1 1

) (
1 0
0 1

)

We observe that 5 normal operators, out of possible 9 operators are in-
ternally diagonalisable. Indeed, the four ones that are missing are(

1 1
0 1

)
,

(
0 1
1 1

)
,

(
1 1
1 0

)
,

(
1 0
1 1

)
.
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Interestingly, all the normal operators which quite ‘dense’, i.e those which
have exactly three non-zero entries, are not included in the internally diag-
onalisable elements set. Therefore, we seek a condition to establish when a
normal operator is internally diagonalisable and when it is not.

In order to explore this, we need to find more operators that cannot be
diagonalised – and hence proceed to investigate the three element set.

6.2 The III-element set

6.2.1 Classical structures on the III-element set

Similarly to the II-element set case above where we considered groups Z2

and Z1 + Z1, we can construct a three element set with many ways. The
straight-forward case would be to define it as the three-element group Z3

consisting of elements {1, a, a2} with the group multiplication being the usual
multiplication but satisfying

a3 = 1 and a · 1 = 1 · a = 1

and similarly for a2.
We can also define a three element cyclic group by ‘adding’ a two and

the single element group, for example Z2 + Z1 and the final way would be by
constructing a three single element set, by adding three Z1 groups.

However, we must also consider permutations of the internally diagonal-
isable elements. If we consider that

X X

X X

defines a classical structure, then so does

X X

X X

R

1R−

R
1R−
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where R is each of the five unitary permutation matrices1. It is trivial to
show that this also satisfies all the frobenius laws. For example, consider the
specialness axiom. Exploiting unitarity we have that R† = R−1 and hence
when the the R box ‘meets’ its dagger counterpart they will annihilate.

=
R R

†R †R
=

Now let us spell out the classical structures obtain by the III-element
set. We would write explicitly the correlations for the first one and only write
down the matrix form for the others. Permutations will not be explicitly
considered.

1. III-element set as a Z3 group.
We have that III = (1, a, a2), with a3 = 1 and 1 being the unit element.
If we consider the cartesian product of

(1, a, a2)× (1, a, a2)

then we define the multiplication operation m : III × III → III and
the deleting operation as

(1, 1) (1, a) (1, a2) (a, 1) (a, a) (a, a2) (a2, 1) (a2, a) (a2, a2)

mZ3

? (1,
��

-

a,
�

--

a2)
?

-
-

{∗}

�

eZ3

6

1 Excluding the identity matrix these are: 1 0 0
0 0 1
0 1 0

 ,

 0 1 0
0 0 1
1 0 0

 ,

 0 1 0
1 0 0
0 0 1

 ,

 0 0 1
1 0 0
0 1 0

 and

 0 0 1
0 1 0
1 0 0

 .
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Writing these correlations matrix-wise, we have

mZ3 =

 1 0 0 0 0 1 0 1 0
0 1 0 1 0 0 0 0 1
0 0 1 0 1 0 1 0 0

 and eZ3 =

 1
0
0


2. III-element set as a Z2 + Z1 group.

mZ2+Z1 =

 1 0 0 0 1 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1

 and eZ2+Z1 =

 1
0
1


3. III-element set as a Z1 + Z1 + Z1 group.

mZ1+Z1+Z1 =

 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1

 and eZ1+Z1+Z1 =

 1
1
1


To compute the internally diagonalisable elements that arise from the

permutation of these classical structures, it suffices to compute

R−1 ◦ (m ◦ ((R ◦ φf )⊗R))

for each of the six permutation matrices, each of the three multiplication
matrices and each of the seven states on the three element set.

6.2.2 Diagonalisable and normal operators on the III-
element set

In the three element case there are a total of 29 = 512 operators. Using
Mathematica we were able to find all the operators that commute with their
adjoint – 158. Exluding the internally diagonalisable elements that we will
compute shortly, these are:

1. Three entries:(
0 0 0
0 0 1
0 1 1

)
,

(
0 0 0
0 1 0
0 1 1

)
,

(
0 0 0
0 1 1
0 0 1

)
,

(
0 0 0
0 1 1
0 1 0

)
,

(
0 0 1
0 0 0
1 0 1

)
(

0 1 0
1 1 0
0 0 0

)
,

(
1 0 0
0 0 0
1 0 1

)
,

(
1 0 0
1 1 0
0 0 0

)
,

(
1 0 1
0 0 0
0 0 1

)
,

(
1 0 1
0 0 0
1 0 0

)
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2. Four entries:(
0 0 1
0 0 1
1 1 0

)
,

(
0 0 1
0 1 0
1 0 1

)
,

(
0 1 0
1 0 1
0 1 0

)
,

(
0 1 0
1 1 0
0 0 1

)
,

(
0 1 1
1 0 0
1 0 0

)
(

1 0 0
0 0 1
0 1 1

)
,

(
1 0 0
0 1 0
0 1 1

)
,

(
1 0 0
0 1 0
1 0 1

)
,

(
1 0 0
0 1 1
0 0 1

)
,

(
1 0 0
0 1 1
0 1 0

)
(

1 0 0
1 1 0
0 0 1

)
,

(
1 0 1
0 1 0
0 0 1

)
,

(
1 0 1
0 1 0
1 0 0

)
,

(
1 1 0
0 1 0
0 0 1

)
,

(
1 1 0
1 0 0
0 0 1

)
3. Five entries:(

0 0 1
0 0 1
1 1 1

)
,

(
0 0 1
0 1 1
1 1 0

)
,

(
0 0 1
1 1 1
0 0 1

)
,

(
0 1 0
0 1 0
1 1 1

)
,

(
0 1 0
1 0 1
0 1 1

)
(

0 1 0
1 1 1
0 1 0

)
,

(
0 1 1
1 0 0
1 0 1

)
,

(
0 1 1
1 1 0
1 0 0

)
,

(
1 0 0
0 1 1
1 0 1

)
,

(
1 0 0
1 0 0
1 1 1

)
(

1 0 0
1 1 0
0 1 1

)
,

(
1 0 0
1 1 1
1 0 0

)
,

(
1 0 1
0 0 1
1 1 0

)
,

(
1 0 1
0 1 0
0 1 1

)
,

(
1 0 1
1 1 0
0 0 1

)
(

1 1 0
0 1 0
1 0 1

)
,

(
1 1 0
0 1 1
0 0 1

)
,

(
1 1 0
1 0 1
0 1 0

)
,

(
1 1 1
0 0 1
0 0 1

)
,

(
1 1 1
0 1 0
0 1 0

)
,(

1 1 1
1 0 0
1 0 0

)
4. Six entries:(

0 0 1
0 1 1
1 1 1

)
,

(
0 0 1
1 0 1
1 1 1

)
,

(
0 0 1
1 1 1
0 1 1

)
,

(
0 0 1
1 1 1
1 0 1

)
,

(
0 1 0
0 1 1
1 1 1

)
(

0 1 0
1 1 0
1 1 1

)
,

(
0 1 0
1 1 1
0 1 1

)
,

(
0 1 0
1 1 1
1 1 0

)
,

(
0 1 1
0 0 1
1 1 1

)
,

(
0 1 1
0 1 0
1 1 1

)
(

0 1 1
1 1 0
1 0 1

)
,

(
0 1 1
1 1 1
0 0 1

)
,

(
0 1 1
1 1 1
0 1 0

)
,

(
1 0 0
1 0 1
1 1 1

)
,

(
1 0 0
1 1 0
1 1 1

)
(

1 0 0
1 1 1
1 0 1

)
,

(
1 0 0
1 1 1
1 1 0

)
,

(
1 0 1
0 0 1
1 1 1

)
,

(
1 0 1
0 1 1
1 1 0

)
,

(
1 0 1
1 0 0
1 1 1

)
(

1 0 1
1 1 1
0 0 1

)
,

(
1 0 1
1 1 1
1 0 0

)
,

(
1 1 0
0 1 0
1 1 1

)
,

(
1 1 0
1 0 0
1 1 1

)
,

(
1 1 0
1 0 1
0 1 1

)
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(
1 1 0
1 1 1
0 1 0

)
,

(
1 1 0
1 1 1
1 0 0

)
,

(
1 1 1
0 0 1
0 1 1

)
,

(
1 1 1
0 0 1
1 0 1

)
,

(
1 1 1
0 1 0
0 1 1

)
(

1 1 1
0 1 0
1 1 0

)
,

(
1 1 1
0 1 1
0 0 1

)
,

(
1 1 1
0 1 1
0 1 0

)
,

(
1 1 1
1 0 0
1 0 1

)
,

(
1 1 1
1 0 0
1 1 0

)
(

1 1 1
1 0 1
0 0 1

)
,

(
1 1 1
1 0 1
1 0 0

)
,

(
1 1 1
1 1 0
0 1 0

)
,

(
1 1 1
1 1 0
1 0 0

)
Subsequently, using the multiplication matrices and the permutation ma-

trices we were able to find all the internally diagonalisable elements. While
we await 7 ·6 ·3 = 126 three-by-three internally diagonalisable matrices, only
26 are unique. These are:

1. (
0 0 0
0 0 0
0 0 1

)
,

(
0 0 0
0 1 0
0 0 0

)
,

(
1 0 0
0 0 0
0 0 0

)
.

2. (
0 0 0
0 0 1
0 1 0

)
,

(
0 0 0
0 1 0
0 0 1

)
,

(
0 0 1
0 0 0
1 0 0

)
,(

0 1 0
1 0 0
0 0 0

)
,

(
1 0 0
0 0 0
0 0 1

)
,

(
1 0 0
0 1 0
0 0 0

)
.

3. (
0 0 1
0 1 0
1 0 0

)
,

(
0 0 1
1 0 0
0 1 0

)
,

(
0 1 0
0 0 1
1 0 0

)
,(

0 1 0
1 0 0
0 0 1

)
,

(
1 0 0
0 0 1
0 1 0

)
,

(
1 0 0
0 1 0
0 0 1

)
.

4. (
0 0 0
0 1 1
0 1 1

)
,

(
1 0 1
0 0 0
1 0 1

)
,

(
1 1 0
1 1 0
0 0 0

)
.

5. (
1 0 0
0 1 1
0 1 1

)
,

(
1 0 1
0 1 0
1 0 1

)
,

(
1 1 0
1 1 0
0 0 1

)
.

6. (
0 1 1
1 0 1
1 1 0

)
,

(
1 0 1
1 1 0
0 1 1

)
,

(
1 1 0
0 1 1
1 0 1

)
.

7. (
0 0 0
0 0 0
0 0 0

)
,

(
1 1 1
1 1 1
1 1 1

)
.
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6.3 Normal operators vs internally diagonal-

isable elements

In this section we will try to explore how we can separate the internally
diagonalisable elements within the normal operator set.

From the internally diagonalisable elements on the three element set we
can directly observe that:

i All normal operators that have a single or two entries are internally di-
agonalisable

ii The size2 of the relation of all internally diagonalisable elements does not
exceed six if we exclude the total matrix

iii The matrices with size equal to three are the permutation matrices and

iv The matrices with five entries resemble the three rotation matrices.

Interestingly, we can see that internally diagonalisable relations on the
III-element satisfy some more properties. For instance:

→ the matrices with size equal to six can be constructed by combining two
permutation matrices such that resulting relation is either reflexive or
irreflexive3 (Similarly we can subtract from the total matrix one of the
permutations that yield reflexive or irreflexive relations).

→ the four-entries matrices can be constructed by subtracting the single-
entry matrices from the five-entry matrices such that the resulting re-
lations is transitive.

2We call the size of a relation the number of ones in its matrix representation.
3A relation is reflexive if for all x ∈ X we have that xRx (i.e. the diagonal of the

matrix is all ones). On the other hand a relation is irreflexive if for all x ∈ X then x is not
relation to x(the diagonal of the matrix is zeros). In a transitive relation we have that if
xRy and yRz then xRz(A relation with matrix R is transitive if R ◦R = R.)
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On the II-element set we observe a similar phenomenon; all normal op-
erators which have a single entry are internally diagonalisable. The two per-
mutation matrices are also internally diagonalisable and there is no relation
with size bigger than two.

Therefore we can present the following conjecture:

Conjecture 6.3.1. Consider the relations (operators) which are normal on
the two and three element set. A relation can be diagonalised if: (i) It is
the zero or total matrix. (ii) It has a single or two entries. (iii) Represents
a permutation or a rotation matrix. (iv) Can be constructed by adding two
two-entry matrices and the resulting matrix is transitive (v) and finally can
by constructed by adding two three-entry matrices and the results matrix if
either reflexive or irreflexive. The size of the relation must not exceed n− 1,
where n is the dimension of the set.
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Discussion

7.1 Summary

We reviewed most categorical concepts that enable quantum mechanics
to be expressed in a category-theoretic sense. Quantum measurements are
accounted for through the definition of a classical structure which is in turn
defined through a Frobenius algebra. Categorically, measurement outcomes
– as exposed through the spectral theorem – exactly correspond to classical
structures.

Subsequently, we axiomatized relations over sets in the same categorical
framework and pointed out similarities with the category of Hilbert spaces.
We investigated the concept of diagonalisation in both categories.

Finally, we concluded by providing insights on how to separate the nor-
mal operators and the internally diagonalisable elements in the category of
relations. It turns out that there is a key difference between the normal
operators in the category of Hilbert spaces and the ones in the category of
relations. We show that in the category of relations, the number of inter-
nally diagonalisable elements does not equal the number of normal operators.
This is in contrast to the category of Hilbert spaces, where all the normal
operators can be diagonalised and visa versa. We then proceed by providing
insights on how the we can distinguish the internally diagonalisabe elements
within the set of normal operators of the two and three element case.
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7.2 Future directions of work

An obvious extension of this work would be to investigate the four elements
set and examine if the same conditions hold in the internally diagonalisable
elements. It would also be very interesting to compare the four element set
fromRel with the four element set of Spekkens’ category Spek and investigate
how the spectral theorem applies in that category. By doing do, we will
also have more evidence on why some normal operators can be internally
diagonalisable whilst other cannot.

Another direction would be to ‘trace back’ the piece of structure of the
category relations that makes Rel behave differently than FdHilb. By do-
ing so we would provide answers on exactly why the two categories behave
differently.
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