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Abstract

The categorical reformulation of quantum mechanical principles by S. Abramsky and B.

Coecke in 2004 [5] proved to be a suitable framework for modelling quantum protocols ab-

stractly. It allows non-standard models for Quantum Informatics and provides a formally

rigorous high-level diagrammatic language making very recently discovered phenomena

such as quantum teleportation visually obvious.

We therefore aim to gain deeper insights into the underlying graphical calculus by

generalizing Selinger’s completeness theorem [1] stating that an equation in the graphical

language holds if and only if it is valid in the category of finite-dimensional Hilbert spaces

FHilb [1]. We will derive variations of this result for general free finite-dimensional R-

semimodules if N ⊂ R in the dagger and non-dagger case as well as equations between

trace expressions disproving completeness for various other semi-rings R.

Furthermore we will give a combinatorial criterion for the existence of non-trivial trace

equations between matrices with bounded dimensions and draw multiple conclusions. Ul-

timately we will deduce how usual completeness and completeness for interpretations with

bounded dimensions are related and obtain that in the latter case validity of many kinds

of completeness are equivalent and strongly linked to solvability of this combinatorial

problem.
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Notations

Throughout this work N denotes the set of natural numbers containing the 0 whereas

N∞ = N∪{∞} represents the natural numbers plus +∞ endowed with the intuitive order.

The letters i, j, k, l,m, n are reserved for natural numbers. We also use the Kronecker-delta

δij which is 1 if and only if i = j and 0 otherwise. We will denote a disjoint union with
.
∪. B

.
∪ B′ might also mean that we implicitly assume B and B′ to be disjoint. If f, f ′

are functions defined on disjoint domains B,B′, then we write f
.
∪ f ′ for the function on

B
.
∪ B′ mapping every b ∈ B to f(b) and every b′ ∈ B′ to f ′(b′).

For any given alphabet Σ we will refer to its set of words with Σ∗ =
⋃
n∈N Σn. We also

write strings s in an italic style indicating that we are working in the context of alphabets

and words. If the strings consist of natural numbers then we will usually use the variables

k , d . Besides |s | as well as #s denote the length of the string s while si indicates its i-th

character. The empty string is written as ε. Moreover we sometimes write ⊕ for the

addition modulo a natural number that has to be derived form the context.

In the category theoretical chapters we will use the letters C,D, E , . . . for categories,

A,B,C, . . . for objects, F,G, . . . for functors and φ, θ, χ, . . . for natural transformations.

We indicate the type of a natural transformation by a double lined arrow⇒, e.g. φ : F ⇒ G

denotes a natural transformation from F to G. Besides we will sometimes denote functors

in a more concise way by tensor expressions with place holders, so e.g. − ⊗ B describes

the functor acting as A 7→ A⊗B and f 7→ f ⊗ idB. Moreover id∗ might - depending on ∗ -

represent an identity morphism, an identity functor, or an identity transformation. Also,

the symbol ' refers to an equivalence between categories.

Furthermore for a given category C we denote its set/class of objects with Ob C and

its set/class of morphisms with Mor C. For two objects A,B ∈ Ob C we will use the

notations C(A,B) and HomC(A,B) interchangeably for the A,B-homset of C, i.e. for

the set/class of arrows from A to B. We presuppose familiarity with the categories Set

resp. Rel of sets and functions resp. relations between them, the categories VectK/Hilb

of vectorspaces over the field K/Hilbert spaces and linear maps between them, and the

categories FVectK/FHilb which are the restrictions of VectK/Hilb to finite-dimensional

vector-/Hilbert spaces. Besides we will use the term semimodule, refering to the obvious

generalization of usual modules to arbitrary semi-rings.

The notations for (symmetric/braided) monoidal, for traced (dagger) and (dagger)

compact closed categories are adopted from [7]. Also their diagrammatic language - in

particular the habit to draw and read diagrams from south to north as well as the usage

of wedged boxes - is motivated by [7]. Furthermore we will use the Bra-ket-notation of
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quantum mechanics in the more general setting of arbitrary R-semimodules..

Finally we make heavy use of multisets. The term multiset refers to a generalization of

the usual concept of a set, allowing to contain the same element multiple times. We will

use the brackets 〈 and 〉 to indicate a multiset. 〈0, 0, 0, 1, 1〉 e.g. represents the multiset

containing 0 three times and 1 twice. We also write 〈ai〉i∈I (where I is an arbitrary set of

indices) for the multiset containing a as often as there are i ∈ I with a = ai (which might

be infinite; in this case ’as often’ means equal cardinalities).
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Chapter 0

Introduction

0.1 Why categorifying Quantum Mechanics?

The study of Quantum Informatics revealed fundamental differences from the concepts

of classical computation. The usage of quantum bits which - contrary to classical bits

- do not only allow the states |0〉 and |1〉 but also any superposition α|0〉 + β|1〉, leads

to highly counterintuitive results. The no-cloning theorem [16] and no-deleting theorem

[29] for example make it impossible to copy qubits or to erase their informational content

(without performing measurements), while non-orthogonal states are not even reliably dis-

tinguishable (cf. [13] p.87). From a quantum computational perspective Shor’s algorithm

[21] allowing integer factorization in polynomial time as well as Grover’s algorithm [22]

speeding up database searches quadratically, are the most striking achievements. An es-

sential ingredience of these and further protocols are entangled states. Their entanglement

- causing correlations between their simultaneous measurement outcomes even when spa-

cially separated - and the hereby induced non-locality are unique for Quantum Physics (cf.

Bell’s Inequality [13] pp.111-117).

The mathematical formalism for quantum mechanics introduced by von Neumann [27]

in 1932 generally suffices to verify the mentioned results. It regards qubit states as nor-

malized elements in 2-dimensional Hilbert spaces and processes as applications of unitary

matrices. Transitions to composite systems and consecutive applications of operations

are modelled by the tensor product ⊗ resp. the composition ◦ of linear maps. However,

this low level description does not provide any intuition for their correctness, making it -

despite easy proofs - incredibly hard to develop new quantum protocols and algorithms.

In 2004 B. Coecke and S. Abramsky were able to reformulate the underlying quantum

mechanical axioms in category theortical terms [5] laying the cornerstone for what is now

called Categorical Quantum Mechanics. This more general setting does not only constitute

an abstraction from Hilbert spaces as it takes place in the context of dagger compact closed

categories with biproducts that matches non-standard models like the category of finite

sets and relations as well. It also admits formally rigorous graphical visualizations of

the involved algebraic structure making propositions obvious whose verifications require

extensive calculations in the Hilbert space formalism. In fact, while the discovery of

quantum teleportation [12] in 1993 took - as Shor’s and Grover’s algorithms - more than
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sixty years after having a mathematical foundation of quantum mechanics, the graphical

language makes its correctness intuitively trivial (cf. [6], p.16 or [28], p.43). Similarly

the entanglement swapping protocol [18] as well as the no-cloning/no-deleting theorems

are diagrammatically evident (cf. e.g. [6] p.17) resp. rely on deeper category theoretical

insights (cf. [17] pp.20-29). However, variations of compact closed categories turned out

to be a useful tool in pure mathematics like e.g. knot theory as well [11].

The calculus underpinning graphical reasoning allows us to deform diagrams when

keeping their topologoy invariant and therewith matches our intuition well, in contrast to

the underlying algebraic laws. This approach can also be considered as high-level since

the graphical language suppresses some hidden structure, like the tensor unit, associators,

unitors and inner brackets which - due highly non-trivial Coherence Theorems - behave

like it is necessary to make diagrammatic reasoning work. Hence the graphical calculus is

crucial for gaining a deeper understanding of the possibilities and constraints of Quantum

Mechanics and might represent the foundation of more advanced algorithms in Quantum

Computation.

0.2 The Idea of Completeness

Due to this importance we seek more profound insights into the diagrammatic language.

Hasegawa, Hofman and Plotkin dealt in [3] with the question whether it is possible to

retrace validity of equations in the graphical language of traced categories when working in

the specific category of finite-dimensional vectorspaces FVectK over fields with vanishing

characteristic K. In other words, does every equation holding in FVectK follow from the

graphical calculus already and is therefore valid in every traced category? In this case we

say FVectK is complete for traced categories. The relevance of completeness originates

on the one hand from its meaning that FVectK has - informally speaking - the maximal

”calculational expressiveness” provided by general traced categories.

However completeness of a category C can also be regarded as an indicator for whether

C is a suitable model for the dagger compact closed fragment of Quantum Mechanics. Since

a unified physical Theory of Everything could not be successfully developed yet, it might

be a promising approach to drop the Hilbert space formalism and to consider alternatives

instead. Thus completeness analyses might even lay the theoretical ground for discovering

mathematical foundations of a Quantum Gravitation theory.

One can distinguish between several strengths of completeness, depending on e.g.

whether a diagrammatic equation holds if it holds for all instantiations in FVectK or

if just one is already enough. Similarly completeness questions can be examined for other

quantum models, especially those arising from FVectK when replacing K by a general

semi-ring R. Moreover both categories with and without dagger operations motivate sep-

arate analyses. Completeness for dagger compact closed categories was firstly considered

by Selinger in [1]. Finally - as quantum computation operates with quantum bits, i.e.

their state space is restricted to dimension 2 - it is worth to figure out in which cases com-

pleteness holds when interpreting objects appearing in diagrams as spaces with bounded

dimensions. In this thesis we elaborate precise definitions of these different notions of
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completeness by formalizing diagrams and providing the category theoretical background

first, and explore afterwards in what cases which kind of completeness holds.

0.3 Outline and Contributions

We assume familiarity with the basic category theoretical notions, especially with cate-

gories, functors and natural transformations. The first chapter introduces various struc-

tures culminating in the concepts of dagger compact closed and traced dagger categories

as well as their graphical language. Compatibility with these structures also accounts

for the consideration of monoidal functors and monoidal transformations. With this back-

ground traced (dagger) diagrams and their instantiations in specific categories will become

subjects of mathematical inquiry themselves by formalizing them as networks and inter-

pretations (cf. [3]). Next, the Int-construction will serve as a link between traced and

compact closed categories, where we will extend the construction in [4] by a dagger compo-

nent and provide more detailed proofs (cf. Theorems 2.9 and 2.14). Throughout Chapters

1 and 2 we will discuss the motivation behind definitions since usually the main work in

Category Theory lies in the development of useful structure.

Chapters 3 and 4 will profit from a variety of - mainly non-categorical - mathematical

approaches. There we make several contributions to the issue of completeness.

• We give formal completeness definitions comprehensively accommodating the variety

of completeness types there are to consider and introduce a unified terminology for

the results of Selinger and Hasegawa, Hofmann, Plotkin. (cf. Section 3.1)

• We generalize Selinger’s result that any pair of diagrams can be separated in FVectK

by interpretations only depending on one of those diagrams if K provides transcen-

dentals, to discrete semi-rings for both the dagger and non-dagger case. (cf. Sections

3.4, 3.5)

• We observe that in the presence of transcendentals the dagger and non-dagger case

coincide. (cf. Section 3.5)

• We classify in how far the presence of trivial cycles affects completeness results. (cf.

Section 3.7)

• We relate completeness of interpretations with bounded dimensions to the unbounded

case and observe that for bounded dimensions the completeness questions essentially

collapse to one central problem. (cf. Section 3.4, 3.5, 3.6, 3.7)

• We translate the search for equations between trace expressions in n dimensions

into an equivalent combinatorial question. Consequences thereof will enable us to

disprove a vast amount of potential trace equations. In this context we also examine

in how far general diagrams can be reduced to diagrams consisting of traces. (cf.

Sections 4.1, 4.2, 4.3)

• We derive various trace equations holding in some (semi-)rings R not containing N
and therewith exemplify non-completeness for these R.
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Chapter 1

Category Theoretical Prerequisites

Before analyzing to what extent graphical reasoning can be imitated in particular cate-

gories we will introduce the graphical calculus as well as the underpinning category the-

oretical concepts and shortly sketch the motivation behind the defined structure and its

graphical visualization.

First we will deal with symmetric monoidal categories and present Mac Lane’s coher-

ence results. In the second section we extend them to traced and compact closed categories

and explain in what way a dagger functor has to interact with these structures. Through-

out these discussions we will illustrate why the involved axioms comply with the graphical

intuition and therewith how the graphical language essentially captures the algebraic cal-

culus of the category.

After that we discuss free finite-dimensional R-semimodules since they will serve as

the major example of a (dagger) compact closed category we will include in our com-

pleteness analyses. The last section finally specifies what kind of functors and natural

transformations preserve monoidal structures.

1.1 Symmetric monoidal categories and the graphical lan-

guage

1.1.1 Definition and Coherence

The usual vectorspace tensor ⊗ mapping every two vectorspaces V,W to the vectorspace

V ⊗W freely generated by the pairs of basis vectors of V,W is crucial for quantum mechan-

ics, as it describes how to pass from the state spaces of two quantum mechanical systems to

the state space of the composite system. In order to model this categorically we consider

categories whose classes of objects provide a monoidal structure (cf. [2] p.161ff, p.251ff).

Definition 1.1 A monoidal category M is a tuple M = (C,⊗, I, α, λ, ρ) consisting of

• a category C,

• a bifunctor −⊗− : C × C → C, called the tensor,

• a specified object I of C called the tensor unit,

4



• natural isomorphisms

α : (−⊗−)⊗− =⇒ −⊗ (−⊗−) called the associator,

λ : I ⊗− =⇒ − called the left unitor,

ρ : −⊗ I =⇒ − called the right unitor,

that make the pentagon

((A⊗B)⊗ C)⊗D (A⊗ (B ⊗ C))⊗D

(A⊗B)⊗ (C ⊗D) A⊗ ((B ⊗ C)⊗D)

A⊗ (B ⊗ (C ⊗D))

αA,B,C ⊗ idD

αA⊗B,C,D αA,B⊗C,D

αA,B,C⊗D idA ⊗ αB,C,D

(1.1)

and the triangle diagram

(A⊗ I)⊗B

A⊗ (I ⊗B)

A⊗BαA,I,B

ρA ⊗ idB

idA ⊗ λB

(1.2)

commute. M is called strict if all α, λ, ρ are the identity transformations. M together

with a natural isomorphism c called the swap and consisting of a bunch of maps cA,B :

A⊗B → B ⊗A is called braided, if the hexagons

(A⊗B)⊗ C (B ⊗A)⊗ C

A⊗ (B ⊗ C) B ⊗ (A⊗ C)

(B ⊗ C)⊗A B ⊗ (C ⊗A)

cA,B ⊗ idC

αA,B,C αB,A,C

cA,B⊗C idB ⊗ cA,CαB,C,A

(1.3)

(A⊗B)⊗ C C ⊗ (A⊗B)

A⊗ (B ⊗ C) (C ⊗A)⊗B

A⊗ (C ⊗B) (A⊗ C)⊗B

cA⊗B,C

αA,B,C α−1
C,A,B

idA ⊗ cB,C cA,C ⊗ idB
α−1
A,C,B

(1.4)

commute. (M, c) is called symmetric if c−1A,B = cB,A for all objects A,B.

Note that diagrams (1.3) and (1.4) are equivalent for symmetric monoidal categories when

replacing A,B,C by C,A,B. It is easy to verify that if a category C has finite products or

coproducts, the operations × resp. + constitute a tensor operation with a terminal/initial

object serving as tensor unit, making (C,×) resp. (C,+) to a symmetric monoidal cate-
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gory. As described above the most important of a symmetric monoidal category for us is

VectK with the vectorspace tensor which we will focus on throughout this work.

Unlike in proper monoids we in general do not equate e.g. (A⊗B)⊗C and A⊗(B⊗C)

but provide only a systematic way of transforming one into the other (via the associators

and unitors). This is due to the fact that requiring α, λ, ρ to be identites would make the

previous examples lose their monoidal structure in an irreducible way. Indeed a transition

to skeletal categories - these are categories arising from considering equivalence classes of

isomorphic objects - does not work, as Mac Lane has shown for the skeleton Sets of Set

(cf. [2] p.164).

However the diagrams (1.1) and (1.2) ensure that there is a unique way of using the

additional structure α, λ, ρ to create an isomorphism between every two objects, which

would coincide in a monoid. In the case of symmetric monoidal categories this even holds

for objects that would be equal in a commutative monoid (cf. [2] p.165-170, p.253ff).

Theorem 1.2 (Coherence Theorem, Mac Lane) Let M = (C,⊗, I, α, λ, ρ) be a (symmet-

ric) monoidal category. Every well-typed diagram containing only morphisms consisting

of id, ◦,⊗, α, λ, ρ (and c) commutes.

1.1.2 Graphical visualization

Mac Lane’s Coherence Theorem suggests a way of depicting maps of a (symmetric)

monoidal category graphically. We denote morphisms as boxes and their domain and

codomain as labelled wires entering und leaving the box from south to north. Composi-

tion and the tensor operation will be depicted as vertical and horizontal concatenation.

E.g. the left diagram visualizes the morphism

f

g

f ′

g′

A

B

C

A′

B’

C ′

(g ◦ f)⊗ (g′ ◦ f ′) = (g ⊗ g′) ◦ (f ⊗ f ′)

for given arrows f : A → B, g : B → C, f ′ : A′ → B′, g′ :

B′ → C ′. This example also shows how the diagrammatic

language naturally encapsulates the above interchange law.

The tensor unit I as well as the morphisms α−,−,−, λ−, ρ− will not be drawn at all. Likewise

we omit bracketing between tensor products of maps. Due to naturality of α, λ, ρ two

maps yielding the same diagram differ only by an isomorphism consisting of the α, λ, ρ.

According to Mac Lane’s Coherence Theorem this isomorphism is unique. We will say,

the morphisms are equal up to a unique isomorphism provided by the monoidal structure.

In the case of symmetric monoidal categories the isomorphisms cA,B are depicted as

A

A

B

B The version of Theorem 1.2 for symmetric monoidal categories

implies that two diagrams consisting only of swaps, describe the

same maps up to a unique isomorphism provided by the monoidal

structure if they are topologically equivalent.
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As naturality of the swap diagrammatically means

f g

A B

A′B′

=
g f

BA

B′ A′

for all f : A→ A′, g : B → B′ we see that all diagrams in the graphical language of sym-

metric monoidal categories that are topologically equivalent, represent the same arrow (up

to a unique isomorphism provided by the monoidal structure). The precise meaning of

topological equivalence will be formally captured by introducing the network terminology

(cf. Chapter 2) and describing how to associate a diagram to a network. However it suffices

for the intuition to regard yanking wires and pulling boxes along wires as these operations

which do not affect the topological structure. Also, no axiom of symmetric monoidal

categories states equality of morphisms with topologically different diagrams. Hence its

graphical calculus is sound, i.e. (topological) equality in the graphical calculus implies

equality (up to a unique homomorphism provided by the monoidal structure) of the de-

picted morphism, and complete, i.e. equal morphisms lead to topologically equal diagrams.

Theorem 1.3 Two morphisms in symmetric monoidal categories are equal up to an iso-

morphism provided by the monoidal structure, i.e. consisting only of id, ◦,⊗, α, λ, ρ if

and only if their diagrams in the graphical language of symmetric monoidal categories are

topologically equivalent. In this case the relating isomorphism is unique.

1.2 Traces, Duals and the Dagger

1.2.1 Traced Symmetric Monoidal Categories

Joyal, Street and Verity were the first who endowed monoidal categories with a partial

trace operation [4]. The resulting concept of traced monoidal categories can be seen as

motivated by being a category theoretical abstraction of the partial trace used in qunatum

computation to evaluate the state of a quantum system after measuring a subsystem (cf.

[13] p.105ff). But here its strong interconnection with compact closed categories raises our

interest. Unlike Joyal, Street and Verity who more generally defined a trace for balanced

monoidal categories1 we restrict ourselves to the symmetric case.

Definition 1.4 A traced symmetric monoidal category is a symmetric monoidal cate-

1This is a braided monoidal category together with a collection of twists θA : A→ A subject to certain
coherence conditions (cf. [14] p.16).
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gory C together with a collection of trace operators

TrXA,B : C(A⊗X,B ⊗X) → C(A,B)

f 7→ TrXA,B(f)
f

A X

B X

7→ f

A

X

B

satisfying

(i) naturality in A,B, i.e.

TrXA,B((b⊗ idX) ◦ f ◦ (a⊗ idX)) = b ◦ TrXA,B(f) ◦ a for all a : A′ → A, b : B → B′

(ii) yanking, i.e. TrXX,X(cX,X) = idX .

(iii) superposing, i.e. TrXC⊗A,C⊗B(idC ⊗ f) = idC ⊗ TrXA,B(f).

(iv) the exchange rule, i.e. TrXA,B(TrYA⊗X,B⊗X(f)) = TrX⊗YA,B (f).

The names of these axioms refer to their diagrammatical expressions. Naturality and

yanking mean

f

a

b

A′

A

B

B′

X = f

a

b

A′

A

B

B

X and

X

X

=

X

X

while superposing and the exchange law simply state that both ways of reading the dia-

grams

f

A

X

BC

C

and f

A

B

XY

yield the same morphisms. Hence diagrams in the language of traced symmetric monoidal

categories are well-defined (up to a unique isomorphism provided by the monoidal struc-

ture) and the trace axioms do not change their topology. Conversely it can be shown that

all operations keeping the topological structure invariant, follow from rules (i) - (iv). In

fact, the original definition in [4] stated every operation leaving the topology invariant,
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as an axiom (p.448-450) while Hasegawa - whose more concise axiomatization we followed

here - has illustrated their equivalence to (i) - (iv) in [10] (p.237ff). We therefore gain the

analagous result to Theorem 1.3.

Theorem 1.5 Two morphisms in traced symmetric monoidal categories are equal up to a

unique ismomorphism provided by the monoidal structure if and only if the corresponding

diagrams in the graphical language are topologically equivalent.

Instead of speaking of traced symmetric monoidal categories we will often use the more

concise term traced category in the following. Now we introduce the concept of compact

closed categories which will turn out to be special instances of traced symmetric monoidal

categories.

1.2.2 Compact Closed Categories

Definition 1.6 A symmetric monoidal category C is a compact closed category if for

every object A of C there is an object A∗ ∈ Ob C - called the dual of A - and morphisms

ηA : I → A∗ ⊗A, εA : A⊗A∗ → I

called the unit and counit of A, satisfying the snake equations

λA ◦ (εA ⊗ idA) ◦ α−1A,A∗,A ◦ (idA ⊗ ηA) ◦ ρ−1A = idA,

ρA∗ ◦ (idA∗ ⊗ εA) ◦ αA∗,A,A∗ ◦ (ηA ⊗ idA∗) ◦ λ−1A∗ = idA∗ .

When drawing ηA and εA as

A A
and

A A

the snake equations become

A

A

=

A

A

,

A

A

=

A

A

(1.5)

explaining their name. Note that we never label wires with a dual A∗ but indicate a ∗

by endowing the wire with a direction pointing downwards. The quantum mechanical

relevance of duals originates from the interpretation of units as preparing entangled qubits

and of counits as projective measurements.

In order to state an analogous result to Theorem 1.5 we need to assign a meaning to

upside-down boxes in order to let diagrams make sense where boxes were pulled around
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cups and caps. We therefore give a box belonging to f : A→ B an orientation by cutting

off the north east edge and define the upside-down box as the map f∗ : B∗ → A∗ given by

the diagrammatic equation

f

A

B

:= f

A

B

Obviously this definition is equivalent to the fact

that pulling boxes around cups and caps does

not change the represented morphism. Also, the

snake equations express equality of two topologi-

cally equivalent diagrams.

We observe that this definition turns ∗ into a contravariant functor from C to C, the so-

called duality functor. However the action of ∗ on objects as well as the units and counits

are not specified as compact closedness only states their existence. Hence we implicitly

presuppose a certain choice for the duality structure A∗, ηA, εA for all A ∈ Ob C when

drawing or speaking of f∗. Again the axioms of a compact closed category are - as in the

case of traced categories - sufficient to show that all topologically equal diagrams represent

equal morphisms (cf. [8], p.10).

Theorem 1.7 Two morphisms in compact closed categories (with chosen duality struc-

ture) are equal up to a unique ismomorphism provided by the monoidal structure if and

only if the corresponding diagrams in the graphical language are topologically equivalent.

1.2.3 Compact Closed Structure induces a unique Trace

The appearance of cups and caps in the graphical language of both traced and compact

closed categories is no coindicence. In fact, when thinking of

as

soundness and completeness of the graphical calculus make it evident that

TrXA,B(f) := (idB ⊗ εX) ◦ (f ⊗ idX∗) ◦ (idA ⊗ cX∗,X) ◦ (idA ⊗ ηX) =
f

A

B

X

where f : A ⊗ X → B ⊗ X, defines a trace operation in a compact closed category.

Interestingly the trace operations do not depend on the chosen duality structure since for
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two different X∗, ηX , εX and X?, η′X , ε
′
X the snake equations reveal (cf. [7] p.38f)

f

εX

ηX

B

A

X

X∗

X
= f

εX

ηX

ε′X

η′X

B

A

X?

X∗

=

f

ε′X

η′X

εX

ηX

B

A

X?

X∗

=
f

ε′X

η′X

B

A

X

X?

X

Hence compact closed categories are special instances of traced symmetric monoidal cat-

egories.

Proposition 1.8 Let C be a compact closed category. Then the compact closed struc-

ture induces unique trace operators turning C into a traced category.

1.2.4 The dagger functor

Finally we have to capture categorically the fact that quantum mechanics makes heavy

use of the scalar product of Hilbert spaces. Its existence can be encoded by means of

a contravariant functor since we have 〈u|v〉 = (|u〉)† · |v〉 in finite dimensional Hilbert

spaces, where here † denotes the self-inverse operation of conjugate transposing. Con-

versely we know from linear algebra that for every A of appropriate dimension we have

〈u|Av〉 = 〈A†u|v〉 and A† is unique with this property. The following definition specificies

how a generalized †-operation has to interact with the various structures we have defined

so far.

Definition 1.9

(i) A dagger category (C, †) is a category C together with a contravariant functor †
called the dagger functor, which acts as identity on the objects of C and which is

self-inverse, i.e. † ◦ † = idC .

(ii) A monoidal dagger category is a monoidal category M equipped with a dagger functor

† satisfying for all objects A,B,C and maps f, g

(f ⊗ g)† = f † ⊗ g†, α†A,B,C = α−1A,B,C , λ†A = λ−1A , ρ†A = ρ−1A .

(iii) A symmetric monoidal dagger category is both a symmetric monoidal and a monoidal

dagger category additionally satisfying

c†A,B = c−1A,B(= cB,A).
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(iv) A traced (symmetric monoidal) dagger category is both a traced symmetric monoidal

and a symmetric monoidal dagger category additionally satisfying

TrXA,B(f †) = TrXB,A(f)†.

(v) A dagger compact closed category is both a compact closed and a symmetric monoidal

dagger category providing a duality structure that additionally satisfies

η†A = εA ◦ cA∗,A, ε†A = cA∗,A ◦ ηA.

The motivation behind these requirements becomes clear when considering how to depict

the dagger graphically. As it swaps domain and codomain of morphisms the most obvious

way to do it is mirroring diagrams on the horizontal axis (but maintaining wire directions

as the dagger does not invert duality). But soundness of the graphical languages requires

that invisible maps α, λ, ρ stay invisible, explaining the axioms regarding the monoidal

structure. The other axioms in (ii) to (iv) ensure that the diagrams

f g

C

A

D

B

,

B

B

A

A

, f

B

X

A

cannot be interpreted in different ways while the axioms in (v) equate topologically equal

wires:
A A

=
A A

,

A A

=
A A

As before it can be proven that these axioms are sufficient to make the graphical languages

of the different types of categories equipped with a dagger sound and complete.

Theorem 1.10 Two morphisms in dagger compact closed/traced dagger/(symmetric)

monoidal dagger categories are equal up to a unique ismomorphism provided by the monoidal

structure if and only if the corresponding diagrams in the graphical language of dagger com-

pact closed/traced dagger/(symmetric) monoidal dagger categories are topologically equiv-

alent.

Observe that also Theorems 1.3, 1.5, 1.7 and 1.10 express coherence of the respective

structure, generalizing Mac Lane’s Coherence Theorem. In fact, due to the invisibility of

α, λ, φ in the graphical language, 1.3 can only hold if the monoidal structure provides at

most one isomorphism between any pair of objects. Likewise 1.5, 1.7 and 1.10 generalize

this statement for the additional invisible maps and operations cI,I ,TrIA,B, ηI , εI . Hence we
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will often refer to these theorems as coherence for e.g. (dagger) compact closed categories.

1.3 Examples for (dagger) compact closed categories

Rel will serve as our first example of a dagger compact closed category.

Example 1.11 Obviously Rel forms a symmetric monoidal category together with the

cartesian product as tensor operation ⊗, a singleton as tensor unit I = {∗} and cX,Y ⊂
(X × Y ) × (Y × X) with (x, y) ∼ (y′, x′) iff x = x′, y = y′ as the swap. When defining

X∗ = X and ηX , εX as the relations given by

∗ ∼ (x, x′) iff x = x′ and (x, x′) ∼ ∗ iff x = x′

we obtain a duality structure turning Rel into a compact closed category. Finally we can

endow Rel with a dagger by setting R† = {(y, x) ∈ Y ×X | (x, y) ∈ R} for all relations

R ⊂ X × Y . Apparently the same constructions work when only allowing finite sets X.

Hence FRel, i.e. the restriction of Rel to finite sets, forms a dagger compact closed struc-

ture as well.

Having a dagger compact closed structure is a quite strong requirement for a category.

Unlike Rel the category Set together with the cartesian product as tensor e.g. cannot be

equipped with cups and caps as otherwise the operations

Hom(A,B) → Hom(A⊗B∗, I) → Hom(A,B)

f

A

B

7→
f

A B∗

7→ f

A

B

would be self-inverse and therefore bijective in contradiction to Hom(A⊗B∗, I) = {∗} since

I is a singleton and hence terminal. The categories FVectK and FHilb allow a (dagger)

compact closed structure and are special instances of a more general class of categories.

Definition 1.12 Let (R,+, ·) be a commutative semi-ring, i.e. (R,+), (R, ·) are commu-

tative monoids with 1 6= 0 and multiplication distributes over addition. We define FModR

as the category whose objects are free finite-dimensional R-semimodules, i.e. semimodules

isomorphic to Rn for some n ∈ N, and whose morphisms are linear maps between them.

FModR can be endowed with a compact closed structure. Let A,B be R-semimodules with

bases (|ei〉)i and (|fj〉)j.

• Define - as in the case of vectorspaces - A ⊗ B as the R-semimodule generated by

(|ei〉 ⊗ |fj〉)ij, I ∼= R and f ⊗ g by |ei〉 ⊗ |fj〉 7→ f |ei〉 ⊗ g|fj〉 for linear maps f, g

defined on A,B.

• Define the swap as cA,B : A⊗B → B ⊗A, |ei〉 ⊗ |fj〉 7→ |fj〉 ⊗ |ei〉
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• Define A∗ = A and

ηA : I → A⊗A, 1 7→
∑
i

|ei〉 ⊗ |ei〉, εA : A⊗A→ I, |ei〉 ⊗ |ej〉 7→ δij

If R is a field we will use the notations FVectR and FModR interchangeably.

We know from linear algebra that FModR together with the above data forms a symmetric

monoidal category and it is straightforward to verify the snake equations for η, ε. We need

to require (R, ·) to be commutative, as (R, ·) can be categorically recovered by considering

the collection of maps (scalars) of type I → I. Together with the composition they form a

commutative monoid (cf. [7] p.17f) that coincides with (R, ·) in the case of FModR. This

is why we will just speak of semi-rings and implicitly include commutativity in the follow-

ing. The additional requirement of having an addition is motivated by quantum mechanics

having superpositions of states. However, FModR still comprises a large class of categories

as the existence of finite products or coproducts already induces finite biproducts and a

superposition rule (cf. [24]). The restriction to (free) finite-dimensional semimodules is

necessary since if a duality structure for an infinite dimensional R-semimodule A existed

- addressing meanings to cups and caps such that the snake equation

A

A

=

A

A

. (1.6)

holds - we would derive a contradiction. In fact, every linear function ε : R → A ∗ ⊗ A

maps only into a finite-dimensional subspace of A ∗⊗A . Hence so does the left hand side

of (1.6) and therefore must be unequal to idA . Finally when allowing R to be a semi-ring

the restriction to free R-semimodules is necessary for obtaining a compact closed category

(cf. [23] p.291).

We also observe that the trace Tr(f) = TrXI,I(λ
−1
X ◦f ◦λX) for maps f : X →

X induced by the compact closed structure of FModR matches the notion

of traces used in linear algebra, namely the sum of the diagonal entries of

a square matrix.

f
X

Furthermore there are different ways of endowing FModR with a †-functor. The scalar

product of a Hilbert space leads to transpose conjugation as †-operation since 〈u|A|v〉 =

〈Atu|v〉. When trying to generalize the complex conjugation to R we need to keep com-

patibility with + and · due to (g ◦ f)† = f † ◦ g† and we have to consider an involution of

R as † ◦ † = id. Conversely it is obvious that a †-functor transposing matrices over R and

conjugating its entries, will then satisfy the conditions (i) - (v) of Definition 1.8.

Definition 1.13 A conjugation : R → R of a semi-ring R is an involution satisfy-

ing x+ y = x+ y and xy = xy for all x, y ∈ R. The identity conjugation is called trivial
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conjugation, all other conjugations are called non-trivial. The †-functor associated to

is the transpose conjugation, i.e. A† = (aji)ij for all A = (aij)ij ∈ Rm×n. We write

FProdR
2 for the dagger compact closed category arising from FModR by endowing it

with the dagger functor induced by . In the case R = C we write FHilb instead of

FProdC.

Apparently the Boolean Algebra B0 = ({0, 1},∨,∧) is a semi-ring and a comparison of

Definition 1.12 with 1.11 reveals FRel = FProdB0 with respect to the trivial conjugation

of B0. However Rel cannot be interpreted as the category of all B0-semimodules since the

relation ηX : ∗ ∼ (x, x) for all x ∈ X cannot even be regarded as a linear map from B0 to

B
|X|
0 for infinite sets X as free semimodules do not contain infinite sums of basis elements.

Nevertheless Rel carries a dagger compact closed structure as B0 has the special property

that every infinite sum converges.

Remark 1.14 Let R ⊂ Q be a sub-semiring of Q.

(i) The only conjugation on R is the identity.

(ii) The only non-trivial conjugation of R[X] is given by x = x for all x ∈ R and

X = −X.

We will make use of this remark by speaking of the conjugation of R or R[X] without

describing it explicitly. The only non-trivial claim is the uniqueness of the non-trivial

conjugation of R[X] characterized by X = −X. But for a general conjugation there is

a polynomial p with X = p(X) implying X = p(X) = p(p(X)) and therewith p = ±X.

1.4 Monoidal functors and transformations

1.4.1 Monoidal functors

After having introduced various kinds of additional structures for categories we have to

discuss what kinds of functors preserve those structures. This will lead to the concept of

traced (symmetric monoidal) dagger functors and weaker notions preserving only parts of

the listed structures.

Definition 1.15 Let C and D be monoidal categories (in (i)-(iii)) with tensor units IC

and ID and tensor product ⊗, associator α and unitors λ, ρ3.

(i) A (strong) monoidal functor4 is a triple (F, φ, φ0) consisting of a functor F : C → D,

2This notations shall remind of the term Inner Product Space.
3Although the tensor products of C and D are different functors we denote them with the same symbol

⊗ for notational convenience. We will assume the same convention for α, λ, ρ and (when we work with
braidings, traces and daggers) also for c, Tr and †. It has to be derived from the surrounding objects what
tensor product (or associator, unitor, swap, trace or dagger) is meant.

4In this work we will usually not mention strongness explicitly. However this convention must not be
mixed up with the notion of a monoidal functor in other papers where the requirement on φ−,−, φ0 to be
isomorphisms is dropped.
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a natural isomorphism φ : F −⊗F− ⇒ F (−⊗−) and an isomorphism φ0 : ID →
FIC making the diagrams

(FA⊗ FB)⊗ FC

F (A⊗B)⊗ FC

F ((A⊗B)⊗ C)

FA⊗ (FB ⊗ FC)

FA⊗ F (B ⊗ C)

F (A⊗ (B ⊗ C))

φA,B ⊗ idFC

φA⊗B,C

αFA,FB,FC

idFA ⊗ φB,C

φA,B⊗C

FαA,B,C

(1.7)

as well as

ID ⊗ FA

FIC ⊗ FA

FA

F (IC ⊗A)

φ0 ⊗ idFA

λFA

φIC ,A

FλA

FA⊗ ID

FA⊗ FIC

FA

F (A⊗ IC)

idFA ⊗ φ0

ρFA

φA,IC

FρA (1.8)

commute for all objects A,B,C of C (cf. [2] p.255f).

(ii) If C,D are braided, then F is called a braided monoidal functor if F is a monoidal

functor and additionally the diagrams

FA⊗ FB

F (A⊗B)

FB ⊗ FA

F (B ⊗A)

φA,B

cFA,FB

FcA,B

φB,A (1.9)

commute for all objects A,B of C. If in this case C and D are symmetric F is called

a symmetric monoidal functor (cf. [14] p.15).

(iii) If C,D are traced symmetric monoidal categories, then F is a traced symmetric

monoidal functor if it is a symmetric monoidal functor and additionally satisfies

FTrXA,B(f) = TrFXFA,FB(φ−1B,X ◦ Ff ◦ φA,X) (1.10)

for all objects A,B,X and arrows f : A⊗X → B ⊗X of C. (cf. [4], p.452)

(iv) Now suppose that C,D are dagger categories. A dagger functor from C to D is

a functor F : C → D satisfying F (f †) = (Ff)† for all arrows f of C (cf. [14]

p.49). If C,D are (traced symmetric/symmetric/braided) monoidal dagger categories,

then a (traced symmetric/symmetric/braided) dagger functor is a (traced symmet-

ric/symmetric/braided) functor that is also a dagger functor additionally satisfying

φ†A,B = φ−1A,B

for all objects A,B of C.
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We notice that these axioms resemble those we would intuitively expect if we tried to

define a homomorphism (namely FA ⊗ FB = F (A ⊗ B), F IC = ID etc.) but instead of

identifying two objects with each other, we again only require a systematic reversible way

of converting the one into the other by means of φ and φ0.

1.4.2 Compatibility with compact closed structure

Another way of understanding the motivation behind these definitions is to observe that in

the presence of a functor F : C → D the category D holds two different structures arising

from the traced monoidal structure in D, i.e. α(D), λ(D), ρ(D), c(D),Tr(D), †(D), and aris-

ing from the image of the structure of C under F , i.e. Fα(C), Fλ(C), Fρ(C), F c(C), FTr(C),

F †(C). The previous axioms now ensure that both structures essentially coincide, i.e. after

equalizing involved types by means of φ, φ0, they yield the same morphisms. Thus when

applying F on a term M ∈ Mor C we may interchange F with the appearing structure

in M when inserting the φ−,−, φ0 to avoid type errors. If an equation can be derived by

using this fact we will say it follows from the compatibility of F with the (traced sym-

metric/symmetric/braided) monoidal (dagger) structure of C and D. As this will simplify

arguments in the next chapter a lot, we illustrate it for the following example, showing at

the same time why we did not define a compact closed functor.

Example 1.16 Let C be a compact closed category and A ∈ Ob C with unit η and counit

ε. Moreover let D be a symmetric monoidal category and (F, φ, φ0) : C → D a symmetric

monoidal functor. Then the equations

F


ε

η

A

A∗

A
 =

φ−1
0 F (ε)φ

φ−1F (η)φ0

FA

FA∗

FA

, F

 η

ε

A∗

A

A∗
 =

φ−1
0 F (ε)φ

φ−1F (η)φ0

FA∗

FA

FA∗

follow from compatibility of F with the monoidal structures of C, D. Due to F idA = idFA

these equations prove that FA has a dual object in D namely FA∗ witnessed by

φ−1A∗,A ◦ Fη ◦ φ0 : ID → FA∗ ⊗ FA as unit and

φ−10 ◦ Fε ◦ φA,A∗ : FA⊗ FA∗ → ID as counit.

Hence symmetric monoidal functors already preserve dualities, making the notion of a

compact closed functor redundant (cf. [20] p.86). Compatibility of F with the symmetric

monoidal structure of C,D also shows its compatibility with the trace operations induced

by the compact closed structures of C,D.

Finally an easy calculation shows that if (F, φ, φ0) : C → D and (G,φ′, φ′0) : D → E
are (traced symmetric/symmetric/braided) monoidal (dagger) functors then so is (G ◦
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F,Gφ−,− ◦ φ′F−,F−, Gφ0 ◦ φ′0). Hence the next definition makes sense.

Definition 1.17 Let TrSMCat / CompCCat / TrSMDCat / DCompCCat denote

the category whose objects are (small) traced / compact closed / traced dagger / dagger

compact closed categories and whose morphisms are traced / symmetric monoidal / traced

dagger / symmetric monoidal dagger functors between them. Due to Proposition 1.8 and

the last example there are forgetful functors

U : CompCCat→ TrSMCat and U : DCompCCat→ TrSMDCat

which we will both denote with the same symbol U .

1.4.3 Monoidal natural transformations and 2-categories

Later results will also require to have a notion for natural transformations preserving

monoidal structure.

Definition 1.18 A monoidal natural transformation is a natural transformation θ :

F ⇒ G between monoidal functors (F, φ, φ0) and (G,φ′, φ′0) of the same type (C,⊗, IC)→
(D,⊗, ID), making the diagrams

FA⊗ FB

F (A⊗B)

GA⊗GB

G(A⊗B)

φA,B

θA ⊗ θB

θA⊗B

φ′A,B

FIC GIC

ID

θIC

φ0

φ′0

(1.11)

commute for all objects A,B of C. An equivalence of categories that is witnessed by

monoidal natural transformations is called a monoidal equivalence. If there is a monoidal

natural isomorphism between (F, φ, φ0) and (G,φ′, φ′0), then we shortly write (F, φ, φ0) ∼=
(G,φ′, φ′0) or just F ∼= G.

The following example will be useful in the second chapter and demonstrates how our

various Coherence Theorems enable us to deal with structures without explicitly con-

structing them.

Example 1.19 Let (F, φ, φ0) : C → D be a traced (dagger) functor between the traced

(dagger) category C and the compact closed category D with chosen duality structure

(∗, η, ε). Consider the functor

F −⊗ID : C → D
C 7→ FC ⊗ ID

f : C → C ′ 7→ Ff ⊗ idID : FC ⊗ ID → FC ′ ⊗ ID
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The compact closed structure of D together with monoidality of F provides isomorphisms

φ′C,C′ : (FA⊗ ID)⊗ (FB ⊗ ID)→ F (A⊗B)⊗ ID andφ′0 : ID → FIC ⊗ ID

turning F −⊗ID into a traced (dagger) functor. They likewise provide isomorphisms

θC : FC → FC ⊗ ID

demonstrating F ∼= F − ⊗ID. We do not need to write down the explicit algebraic ex-

pressions as coherence for (dagger) compact closed categories (Theorem 1.10) as well as

compatibility of F with the traced (dagger) structure of C,D with the above type require-

ments induce unique isomorphisms of the above types consisting only of the structure F

and D provide. Coherence and compatibility make it also obvious that the diagrams (1.7),

(1.8), (1.9) and (1.11) commute. Ultimately naturality of φ and θ as well as (1.10) and

the requirements of Definition 1.14 (iv) are all trivial in the graphical language5. Likewise

we have

F ∼= F −⊗FIC , F ∼= ID ⊗ F−, F ∼= FIC ⊗ F − .

In the following we claim that a natural transformation is monoidal without further ex-

planation if it follows from an analogous application of coherence and compatibility.

We observe that for monoidal transformations θ : F ⇒ G, χ : G ⇒ H between

monoidal dagger functors F,G,H of type C ⇒ D the pointwise composition χ◦ θ : F ⇒ H

satisfies again (1.11). Hence together with {idFC | C ∈ Ob C} as identity transformation we

obtain a category with monoidal (dagger) functors of type C ⇒ D as objects and monoidal

transformations as morphisms between them. Moreover monoidal transformations can be

composed horizontally, i.e. in compliance with the composition of functors. For F,G :

C ⇒ D, F ′, G′ : D ⇒ E and θ : F ⇒ G, θ′ : F ′ ⇒ G′ the definition

(θ′ • θ)C := θ′GC ◦ F ′θC = G′θC ◦ θ′FC : F ′FC → G′GC

yields a new transformation θ′•θ : F ′◦F ⇒ G′◦G which can easily be seen to be monoidal

natural if so are its components. Thus (symmetric) monoidal/compact closed/traced (dag-

ger) categories together with (symmetric) monoidal/traced (dagger) functors and monoidal

transformations between them form a so-called 2-category which is essentially a category

with ”morphisms between morphisms”.

Definition 1.20 A 2-category C consists of 0-cells or objects A,B,C, . . . , 1-cells or

arrows f, g, h, . . . : A → B between objects and 2-cells θ, χ, . . . : f ⇒ g between arrows of

the same type such that

(i) objects and arrows form together a category C,

5cf. Corollary 2.10 and proof of Theorem 2.14 to see why diagrams do not have to be drawn explicitly
for this argument.
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(ii) for all objects A,B the hom-set C(A,B) together with the 2-cells between its elements

form a category and

(iii) for all objects A,B,C there is a strictly associative functor

• : C(B,C)× C(A,B)→ C(A,C)

acting as the usual composition on 1-cells that satisfies

– θ • ididA = ididB • θ for all 2-cells θ : f ⇒ g between 1-cells f, g : A→ B and

– the interchange law holds for ◦, •, i.e. for all suitably typed 2-cells θ, θ′, χ, χ′ we

have

(χ ◦ θ) • (χ′ ◦ θ′) = (χ • χ′) ◦ (θ • θ′).

2-categories are special instances of enriched categories. These are - slightly informally

speaking - categories whose homsets are not sets or classes containing arrows as elements

but objects of a monoidal category themselves, allowing us to endow categories with addi-

tional structure and e.g. define categories, that also contain 2-cells between their arrows.

A detailed treatment of Enriched Category Theory can be found in [15].

Example 1.21 As discussed above, the categories TrSMCat, CompCCat, TrSMDCat,

and DCompCCat are 2-categories with monoidal transformations serving as 2-cells.

Remark 1.22 If C is a 2-category then we gain a further category C−, consisting of

the objects of C and equivalence classes of arrows of C identifying two arrows if there is

an invertible 2-cell between them (w.r.t. vertical composition). Indeed for f ∼= g, f ′ ∼= g′

witnessed by θ, θ′ the horizontal composition θ • θ′ witnesses f ′ ◦ f ∼= g′ ◦ g (if types

match) due to the interchange law for ◦, • ensuring that (θ • θ′)−1 = θ−1 • θ′−1. Thus the

composition is well-defined for equivalence classes.
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Chapter 2

Traced Networks and the

Int-construction

As we have seen in the last chapter, calculations in certain kinds of categories can es-

sentially be done in a graphical language allowing deformations that do not affect its

topological structure. Therefore we formalize in the first section what a (traced dagger)

diagram resp. its topological structure is by endowing abstract diagrams (networks) which

in turn form new (traced dagger) categories Net S .

After that the transition from networks to diagrams of a specific category will lead to

the concept of interpretations which can be reduced to some key information, as we will see

in the second section. In the last two sections we describe how to extend a traced (dagger)

category C to a (dagger) compact closed category Int C. This construction will turn out

to be the inverse (in the sense of adjoints) to the forgetful functor U : (D)CompCCat→
TrSM(D)Cat and will therefore allow us to restrict ourselves to traced (dagger) daigrams.

Here the coherence theorems of the first chapter as well as compatibility of monoidal

functors will play a crucial role for verifying the required axioms.

2.1 The categories Net S

2.1.1 Signatures

First we have to specify what labels we allow for the boxes and wires appearing in dia-

grams. This leads to the notion of networks over a given signature1.

Definition 2.1 A signature is a tuple S = (S, F, dom, cod) where S is a set of sorts

or object labels, F is a set of function labels and functions

dom : F → S∗, cod : F → S∗

1The terminology and definitions we will give here will be a combination of those of Selinger (cf. [1]
p.6) and Hasegawa, Hofmann and Plotkin (cf. [3] p.5f) to achieve both highest generality and maximal
conciseness.
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assigning to every f ∈ F a domain or source dom(f) and a codomain or target cod(f).

A dagger signature is a signature S = (S, F, dom, cod) together with a fixpoint-free invo-

lution † : F → F , i.e. f † 6= f and f †† = f , satisfying dom(f †) = cod(f) and cod(f †) =

dom(f) for all f ∈ F . In this case we regard F as splitted into a set of non-dagger labels

f1, f2, . . . and dagger-labels f †1 , f
†
2 , . . . . In both cases we define F• = {•A|A ∈ S}.

Note that we will also write dom(f) and cod(f) for the domain and codomain of a map f

in a particular category. Clearly words A = A1 . . . Al ∈ S∗ correspnd to tensor products

A1 ⊗ · · · ⊗Al and •A matches trivial cycles labelled with A in usual diagrams.

We will particularly pay attention to the universal signature S∞ = (S∞, F∞,dom, cod)

consisting of countable sets S∞, F∞ of object and arrow labels and typing functions

dom, cod ensuring that for all A,B ∈ S∗∞ there are countably many f ∈ F∞ of type

A → B. The infinite amount of arrows of every type allows us to build any possible traced

network (up to a change of names) and is therefore universal for traced networks. En-

dowing S∞ with the dagger † yields the universal dagger signature if there are countably

many non-dagger and countably many dagger labels of type A → B for all A,B. We will

also write it as S∞ since the presence of a dagger can be derived from the context.

2.1.2 Networks

As the precise shape of wires in a diagram does not matter topologically and boxes can be

pulled along wires, the topological structure can be captured by just memorizing which

boxes appear and which output is connected to which input.

Definition 2.2 Let S = (S, F, dom, cod) be a signature. A (traced symmetric monoidal)

S -network N from A to B where A,B ∈ S∗ is a triple N = (B, `, π) consisting of a finite

set of boxes B, a function ` : B → F• labeling every box with a sort and a bijection π.

When denoting B ∪ {•N} with B• and defining

cod(`(•N )) = A, dom(`(•N )) = B 2

π shall be a bijection of type

π : OutN → InN

where

OutN = {(b, i) | b ∈ B•, 1 ≤ i ≤ |cod(`(b))|},
InN = {(j, b) | b ∈ B•, 1 ≤ j ≤ |dom(`(b))|},

satisfying the typing condition

π(b, i) = (j, b′) ⇒ cod(`(b))i = dom(`(b′))j

2Note that - contrary to what this definition suggests - `(•) itself is not defined.
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for all (b, i) ∈ OutN , (j, b′) ∈ InN . When misunderstandings are impossible we omit the

index of •N . We will also write N : A → B. If S is a dagger-signature, we will also

speak of (traced symmetric monoidal) dagger networks. N is called closed, if A = B = ε0,

it is called simple if `(B) ⊂ F , i.e. if no boxes of N are labelled with •A for any A. If

the network N0 arises from N by dropping all its trivial cycles, then we call N0 the kernel

of N . If we just speak of (dagger) networks without specifying S we implicitly refer to S∞.

The following example illustrates how (dagger) networks match our intuition of diagrams

and why they belong to the language of traced (dagger) categories.

Example 2.3 Consider the network N = (B, `, π) : A→ AB with

B = {b0, b1, b2, b3}, `(b0) = •D, `(b1) = f, `(b2) = g, `(b3) = g†

x (•, 1) (b1, 1) (b1, 2) (b2, 1) (b3, 1)

π(x) (1, b2) (1, b1) (1, b3) (2, •) (1, •)

over the dagger signature S = ({A,B,C,D}, {f, g, f †, g†}, dom, cod) assigning to f, g the

types f : C → CB and g : A→ B. Drawing this data leads to the diagram

f g

g†

C

B

A

A

B

D
or

f g g†

A B

A

The right version indicates already how a network can be interpreted as a diagram be-

longing to the graphical language of traced (dagger) categories. We will get back to the

framed part of the right diagram later.

Apparently a diagram can be expressed as the trace of a morphism if and only if ev-

ery output of a box is connected to an input and vice versa, which explains the definition

of the bijection π of a network. Clearly we can define (dagger) compact closed or sym-

metric monoidal (dagger) networks in a similar manner. For compact closed categories

e.g. we could work over a signature with an additional fixpoint-free involution ∗ : S → S

and define π as an involutive fixpoint-free permutation of OutN ∪ InN (memorizing the

ends of the appearing wires). Similarly we identify symmetric monoidal (dagger) net-

works as those simple traced (dagger) networks that can be endowed with a function
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ord : B → {1, 2, . . . , |B|} subject to the additional condition

π(b, i) = (j, b′) ⇒ ord(b) < ord(b′) ∀b, b′ ∈ B

to ensure that no wire is going back to previous (w.r.t. ord) wires (which cannot be done

without traces). However, we will focus on traced (dagger) networks in the following (and

call them just (dagger) networks) as they will turn out to be sufficient for a completeness

analysis of (dagger) compact closed categories (cf. Section 2.4.2).

Before we continue with the question of how to formalize the transition from a formal

network to a diagram in a certain category, we observe that the graphical intuition for

networks - as demonstrated in Example 2.3 - makes it evident that (dagger) networks form

a traced (dagger) category itself. Indeed when we represent a network abstractly as a box

with an input and output wire like morphisms in the graphical calculus, we can read off

the formal definitions of the composition, tensor products and traces of networks from the

graphical language for diagrams (cf. [3] p.8).

2.1.3 The category of traced (dagger) networks

Definition 2.4 Let S be a (dagger) signature.

(i) For any A = A1 . . . Al ∈ S∗ we define the identity network idA of A as

(∅, ∅, π) where π(•, i) = π(i, •) for all 1 ≤ i ≤ r. A

A

(ii) For networks N = (B, `, π) : A → B, N ′ = (B′, `′, π′) : B → C we define

their composition N ′ ◦ N as the network (B
.
∪ B′, `

.
∪ `′,Π) : A → C

where

Π(b, i) =


π′(b, i) if b ∈ B′

π′(•N ′ , j) if π(b, i) = (j, •N ) for some j ≤ |B|

π(b, i) otherwise

N

N ′

A

B

C

(iii) For networks N = (B, `, π) : A → C , N ′ = (B′, `′, π′) : B → D we

define their tensor network as

N ⊗N ′ = (B
.
∪ B′, `

.
∪ `′, π

.
∪ π′) : AB → CD

(where the input (•, 1), . . . , (•, |A|+|B|) is interpreted as (•N , 1),

. . . , (•N , |A|), (•N ′ , 1), . . . , (•N ′ , |B|) and analogously for (−, •).)

N N ′

A

C

B

D

(iv) For strings A,B ∈ S∗ we define its swap network as (∅, ∅, π) : AB → BA
with

π(•, i) =

(i+ |B|, •) if i ≤ |A|

(i− |A|, •) otherwise
A

A

B

B
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(v) For a network N = (B, `, π) : AX → BX we define its trace as

TrX
A,B(N) = (B, `,Π) : A → B where

Π(b, i) =


π(•, j′) if π(b, i) = (j, •) for some j > |A|

where j′ = j + |B| − |A|
π(b, i) otherwise

N

A

B

X

(vi) If S is a dagger-network we define for a network N = (B, `, π) : A → B
its dagger network as N † : (B, `†, π†) : B → A where

`†(b) = `(b)†, π†(b, i) = (j, b′) iff π(b′, j) = (i, b).

N †

B

A

As we figured out in the last chapter, all axioms of traced (dagger) categories do not

change the topological structure of their diagrams. Also the above constructions appar-

ently comply with the diagrammatic intuition. Thus we see immediately that networks

form a traced (dagger) category.

Theorem/Definition 2.5 Let S be a (dagger) signature. Traced (dagger) networks

over S form a strict traced symmetric monoidal (dagger) category with S∗ as the set of

objects, concatenation as the tensor product of objects, networks N : A → B as morphisms

from A and B and the identity and swap networks as well as the composition, tensor and

trace operation are given in Definition 2.4. In the following we denote the category of

traced (dagger) networks with Net S .

Clearly one could also verify the axioms formally without relying on their visualization.

2.1.4 Network homomorphisms

Finally we have to specify when two networks are isomorphic. This leads to the notion of

a network homomorphism and therewith to a 2-category structure of Net S .

Proposition/Definition 2.6 Let S be a (dagger) signature and N = (B, `, π), N ′ =

(B′, `′, π′) two S -networks of equal types. A network homomorphism ψ from N to N ′ is

a map ψ : B → B′ satisfying `′(ψ(b)) = `(b) for all b ∈ B and

π(b, i) = (j, b′) ⇒ π′(ψ(b), i) = (j, ψ(b′)) ∀(b, i) ∈ InN , (j, b′) ∈ OutN (2.1)

where we set ψ(•) = •. Net S together with network homomorphisms forms a 2-category.

Proof. The vertical composition is given by the usual composition of functions, while

the horizontal composition of two homomorphisms ψ,ψ′ is given by ψ
.
∪ ψ′. It is straight-

forward to verify that this structure indeed satisfies the axioms of a 2-category. 2
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In the following we will write N ∼= N ′ in order to indicate the existence of a network

isomorphism between N and N ′. Observe that a network homomorphism ψ is already a

network isomorphism when ψ is bijective.

2.2 Network Interpretations

2.2.1 Definitions

The transition from abstract networks to concrete morphisms (resp. diagrams) in a spe-

cific category must be done in a structure preserving way. The traced structure of Net S

enables us to realize this by means of functors.

Definition 2.7 Let S be a (dagger) signature and C a traced (dagger) category. A C-
interpretation for Net S or just C-C-interpretation or S - is a traced (dagger) functor

J K : Net S → C.

We denote the category of interpretations Net S → C and monoidal transformations

between them with Int(S , C). In the case S = S∞ we will usually just speak of C-

interpretations.

As we noted in section 1.4 Int(S , C) is indeed a category. Before considering some ex-

amples, we aim to classify Int(S , C), i.e. to understand in terms of what data a general

interpretation can be described. As it turns out an interpretation is essentially determined

by its actions on the object and arrow labels of S . In order to make this precise we in-

troduce the notion of a model of a signature (cf. [3] p.9).

Definition 2.8 Let S = (S, F, dom, cod) be a signature and C a monoidal category.

A C-model of S is a map

J K :
S → Ob C
F → Mor C

such that for all f ∈ F of type A1 . . . Am → B1 . . . Bn the map JfK is of type

JA1K⊗ · · · ⊗ JAmK→ JB1K⊗ · · · ⊗ JBnK.3

If S is a dagger signature and C a monoidal dagger category we additionally require

Jf †K = JfK† for all f ∈ F . A model homomorphism θ : J K0 ⇒ J K1 from the C-model

J K0 to the C-model J K1 is a bunch of maps

{θA : JAK0 → JAK1 | A ∈ S}

3We generally associate two most left tensor factors when brackets are omitted.
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such that all diagrams

JA1K0 ⊗ · · · ⊗ JAmK0 JB1K0 ⊗ · · · ⊗ JBnK0

JA1K1 ⊗ · · · ⊗ JAmK1 JB1K1 ⊗ · · · ⊗ JBnK1

JfK0

θA1 ⊗ · · · ⊗ θAm
JfK1

θB1 ⊗ · · · ⊗ θBn (2.2)

commute. Models together with model homomorphism form a category, which we will de-

note as Mod(S , C).

In fact, for model homomorphisms θ : J K0 ⇒ J K1, θ′ : J K1 ⇒ J K2 we can define

θ′ ◦ θ : J K0 ⇒ J K2 by (θ′ ◦ θ)A : θ′A ◦ θA. When writing θA for θA1 ⊗ · · · ⊗ θAm where

A = A1 . . . Am the interchange law yields (θ′ ◦ θ)A = θ′A ◦ θA ensuring that (2.2) also

commutes for θ′ ◦ θ.

2.2.2 Equivalence of models and interpretations

Theorem 2.9 There is an equivalence of categories establishing

Mod(S , C) ' Int(S , C).

Before proving this Theorem we should recognize its connection to Theorem 1.5. While

Proposition 2.5 - implicitly stating that all axioms of traced (dagger) categories hold in

the graphical calculus - expresses completeness of the graphical language, this Theorem is

a consequence of soundness of the graphical language. Indeed as networks capture only

the topological data of a diagram one might assume that a network can be interpreted

in multiple ways since there are (formally) different diagrams with the same topological

structure. But Theorem 2.9 shows that a given C-model has an essentially unique exten-

sion to a traced (dagger) functor, so that all diagrams with the same topological structure

must represent the same morphism (up to a unique isomorphism provided by the monoidal

structure).

Proof. We construct a fully faithful functor

F : Mod(S , C) → Int(S , C)
J K 7→ J KF

θ : J K0 ⇒ J K1 7→ Fθ : J KF0 ⇒ J KF1

that is essentially surjective, witnessing Mod(S , C) ' Int(S , C). Let J K ∈ Ob Mod(S , C)
be a C-model. For A = A1 . . . Am ∈ Ob Net S we set

JAKF = JA1K⊗ · · · ⊗ JAmK.
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Now for a S -network N = (B, `, π) : A → B we define

JNKF =Tr
⊗
b∈BJcod(`(b))K

JAKF ,JBKF

( (
idJBKF ⊗

⊗
b∈B

J`(b)K

)
◦ π̂

)
(2.3)

where

π̂ :
⊗
b∈B•

Jcod(`(b))K −→
⊗
b∈B•

Jdom(`(b))K resp.

JAKF ⊗
⊗
b∈B

Jcod(`(b))K −→ JBKF ⊗
⊗
b∈B

Jdom(`(b))K

denotes the isomorphism induced by π, i.e. the map whose diagrammatic expression in the

graphical language consists only of wires connecting the objects belonging to (b, i) ∈ OutN

and (j, b′) ∈ InN iff π(b, i) = (j, b′) (cf. [3], p.7). Unpacking this definition shows that

JNKF is a morphism in C which - represented as a diagram - indeed has the same topological

structure, i.e. for every b ∈ B it contains a box labelled with `(b) and the wires proceed

according to π. Example 2.3 can be consulted as an illustration for how the trace expression

(2.3) looks like in the graphical language and how an arbitrary (dagger) network can be

deformed into a diagram of shape (2.3). In 2.3 the framed part of the right diagram

visualizes π̂.

Soundness and completeness of the graphical calculus for traced (dagger) categories

(cf. Theorem 1.5) imply that J KF is a traced (dagger) functor when observing that

JidAKF = idJAKF and choosing

φA,B : JAKF ⊗ JBKF → JABKF 4

as the unique isomorphism provided by the monoidal structure of C.
Now let J K0, J K1 be two C-models and θ : J K0 → J K1 a model homomorphism

between them. Defining Fφ : J KF0 ⇒ J KF1 as the bunch of maps given by

(Fθ)A = θA = θA1 ⊗ · · · ⊗ θAm : JAKF0 → JBKF1

for all A = A1 . . . Am yields a monoidal natural transformation. Indeed

JAK0 JBK0

JAK1 JBK1

JNK0

(Fφ)A (Fφ)B

JNK1

(2.4)

commutes for all networks N representing a single morphism by definition of a model

homomorphism. It also commutes if JNK0, JNK1 can be expressed in terms of the traced

4An inductive definition like e.g. JABKF = JAKF ⊗ JBKF is not possible as strings do not contain inner
brackets. Therefore the isomorphisms φA,B witnessing monoidality of J KF will in general not be the
identity.
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(dagger) structure of C due to coherence for traced (dagger) categories (Thm. 1.5). Hence

the diagrams (1.11) (in our context) commute and also (2.4) commutes for general N since

J K0 and J K1 are compatible with the traced (dagger) structure of Net S and C. Thus

Fφ is a monoidal natural transformation. So we have seen that F in fact maps into

Int (S , C) and due to Fθ = θ we see that F is a functor.

In order to show that F is essentially surjective we consider an arbitrary interpretation

J K ∈ Ob Int(S , C) and define J K0 ∈ Ob Mod(S , C) as the model induced by J K. The

property of J K to be a traced (dagger) functor provides unique isomorphisms

ϕA : JAKF0 = JA1K⊗ · · · ⊗ JAmK→ JAK = JA1 . . . AmK

for all A = A1 . . . Am. Hence for all networks N : A → B the diagram

JAKF0 JBKF0

JAK JBK

JNKF
0

ϕA ϕB

JNK

(2.5)

commutes as it is another way of expressing compatibility of J K with the traced (dagger)

structure of Net S and C. Here we took soundness of the graphical calculus into account

ensuring that JNKF0 and JNK are equal up to the positions of appearing applications of

J K. Thus compatibility indeed applies. Likewise compatibility proves commutativity of

the diagrams (1.11). Therefore ϕ : J KF0 → J K is a monoidal natural isomorphism.

Finally F is faithful since it acts as the identity on the bunch of morphisms de-

scribing a model homomorphism and F is full because every monoidal transformation

θ : J KF0 ⇒ J KF1 between the images of C-models J K0, J K1 under F induces a model

homomorphism θ0 : J K0 → J K1 that gets mapped to θ under F . Indeed we have

(Fθ0)A = (θ0)A = θA where (θ0)A = θA follows from commutativity of the diagrams (1.11).

2

The next statement expresses the intuitive fact that morphisms are equal (up to a unique

isomorphism provided by the monoidal structure) if the wires of their diagrammatic ex-

pressions are pairwise differently labelled. We explicitly state it as it will simplify later

considerations about the Int-construction.

Corollary 2.10 Let f1, . . . , fn be arrows of a traced (dagger) category C and p, q two

equally typed arrows of C that can be algebraically expressed in terms of the traced sym-

metric monoidal (dagger) structure (i.e. ◦,⊗, id, α, λ, ρ, c, tr, †) by using f1, . . . , fn at most

once. Moreover assume every object of C appears at most once (as a tensor factor) among

dom(f1), . . . ,dom(fn), cod(p) = cod(q) and at most once among cod(f1), . . . , cod(fn), dom(p) =

dom(q). Then p = q.

Although it is formally a consequence of the previous Theorem (and therewith called
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a Corollary) we only state the key observation that the typing constraints require p, q

having the same diagrammatic expression up to topological equivalence as the given data

f1, . . . , fn considered as typed morphism labels of a signature only allows the expression

of a unique network. Thus p = q follows from soundness of the graphical calculus.

2.3 The Int-Construction

2.3.1 Overall Idea

We have seen how a compact closed structure on C induces trace operations making C to

a traced category. Joyal, Street and Verity elaborated in [4] that the opposite direction

can be gone by embedding C into a category Int C whose objects are pairs of objects of C.
Although this construction was orignially done for balanced monoidal categories we will

only discuss it for symmetric monoidal categories and observe that it equally works in the

presence of a dagger.

The Int-construction5 relies on the general thought that arrows whose domain or codomain

contain duals can reversibly transformed into arrows without duals in their types by swap-

ping duals to the right and applying cups and caps6 afterwards. Consider as an example

f : A∗ ⊗B ⊗ C∗ → D∗ ⊗ E −→ f0 : B ⊗D → E ⊗A⊗ C

f

D E

AB C

−→ f

C

B

A

D

E

(2.6)

In the following we will say f0 is induced by f . As we will see now, expressions in compact

closed categories containing those f can be imitated by means of the f0 using a traced

structure only. Indeed when having two maps f, g in compact closed categories as well as

their induced maps f0, g0

f

B B′

A A′

g

C C ′

B B′

, f0

B B′

A A′

= f

B

A B′

A′

g0

C C ′

B B′

= g

C

B C ′

B′

5Despite similar terminology the category Int C and the category of interpretations Int(S , C) are of
course entirely different objects.

6In order to keep diagrams as clear as possible we will also make use of counterclockwise directed caps.
If the corresponding category does not provide a dagger this shall be understood as an abbreviation for
εA ◦ cA∗,A.
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we can express the map induced by g ◦ f in terms of f0, g0 as the next diagram illustrates.

Likewise in the presence of another map f ′ : C⊗C ′∗ → D⊗D′∗ the induced map of f ⊗f ′

can be written in terms of f0, f
′
0.

f

g

C

A

A′

C ′

=
f0

g0

A C ′

A′C

, f g

B

A

D

C B′

A′C ′

D′

=
f0

g0

A B′

B A′

C D′

D C ′

(2.7)

Hence when starting with a traced category, we can consider its maps as induced maps f0

without duals in their types and try to recover the compact closed structure initiating the

transition (2.6). Then (2.7) describes how the composition and tensor operation have to

be defined for f0, g0 resp. f0, f
′
0 in order to match the corresponding notions for f, g resp.

f, f ′. In order to memorize which tensor factors of a morphisms domain and codomain are

duals the objects of the hidden compact closed structure must be of kind (A,A′) where

the right coordinate stores the dual part. Hence f0 : A⊗ B′ → B ⊗ A′ - representing f -

is of type (A,A′) → (B,B′) in the compact closed context. Likewise the right hand side

of the second equation in (2.7) is of type

(A⊗ C)⊗ (C ′ ⊗A′) → (B ⊗D)⊗ (D′ ⊗B′)

enforcing the definition (A,A′)⊗ (C,C ′) = (A⊗ C,C ′ ⊗A′). We are now in a position to

understand the next definitions.

2.3.2 Formal Construction

For a traced category C we define Int C in several steps:

• An object (A,A′) of Int C shall be a pair of objects in C: Ob Int C := Ob C ×Ob C.

• An arrow f : (A,A′)→ (B,B′) shall be a map f in C of type A⊗B′ → B ⊗A′:

HomInt C((A,A
′), (B,B′)) = HomC(A⊗B′, B ⊗A′)

We will often notationally distinguish between f and f in order to indicate whether we

work in Int C or C. This will be helpful since the composition and tensor product will

differ in Int C and C. Interestingly - due to Corollary 2.10 - the above definitions already

determine that the composition of

(A,A′)
f−→ (B,B′)

g−→ (C,C ′)
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must be defined like suggested by (2.7) to be of type (A,A′)→ (C,C ′), namely

g ◦ f :=

f

g

B

A

B’

C ′

A′C

(2.8)

Also id(A,A′) := idA⊗A′ is the only possible definition of a map from (A,A′) to (A,A′) that

can be defined by means of the traced structure of C. The category axioms

(h ◦ g) ◦ f = h ◦ (g ◦ f), f ◦ id(A,A′) = id(B,B′) ◦ f

could be verified by using the graphical calculus. We illustrate this for associativity of the

composition:

h ◦ (g ◦ f) =

f

g

h

B

C

A

B’

C’

A′

D′

D

=

f

g

h

B

C

A

B’

C’

A′

D′

D

= (h ◦ g) ◦ f (2.9)

But this equality is obvious due to Corollary 2.10 as no object X ∈ Ob C appears multi-

ple times among dom(f),dom(g), dom(h), cod((h ◦ g) ◦ f) and among cod(f), cod(g), cod(h),

dom((h ◦ g) ◦ f). Hence instead of drawing diagrams and observing that the labelling of

wires makes equality obvious, we will rely on Corollary 2.10 immediately for f ◦ id(A,A′) =

id(B,B′) ◦ f and later equations.
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For objects (A,A′), (B,B′) we define its tensor product

(A,A′)⊗ (B,B′) = (A⊗B,B′ ⊗A′)

as explained in the first subsection, and (I, I) as the tensor unit. Again Corollary 2.10

ensures that, having morphisms f : A ⊗ C ′ → C ⊗ A′ and g : B ⊗D′ → D ⊗ B′ there is

only one way to define a map of type (A⊗B)⊗ (D′⊗C ′)→ (C ⊗D)⊗ (B′⊗A′), namely

in the way (2.7) indicates:

f⊗ g =
f

g

A C ′

C A′

B D′

D B′

(2.10)

Also, associators, unitors, and swaps are determined already. An evaluation of their type

requirements reveals their types:

α(A,A′),(B,B′),(C,C′) :

((A,A′)⊗ (B,B′))⊗ (C,C ′) → (A,A′)⊗ ((B,B′)⊗ (C,C ′)) in Int C
((A⊗B)⊗ C)⊗ ((C ′ ⊗B′)⊗A′) → (A⊗ (B ⊗ C))⊗ (C ′ ⊗ (B′ ⊗A′)) in C

λ(A,A′) :
(I, I)⊗ (A,A′)

(I ⊗A)⊗A′
→
→

(A,A′)

A⊗ (A′ ⊗ I)

in Int C
in C

ρ(A,A′) :
(A,A′)⊗ (I, I)

(A⊗ I)⊗A′
→
→

(A,A′)

A⊗ (I ⊗A′)
in Int C
in C

c(A,A′),(B,B′) :
(A,A′)⊗ (B,B′)

(A⊗B)⊗ (A′ ⊗B′)
→
→

(B,B′)⊗ (A,A′)

(B ⊗A)⊗ (B′ ⊗A′)
in Int C
in C

Due to Mac Lane’s Coherence Theorem 1.2 there are unique isomorphisms provided by the

monoidal strcuture of C with the required types which serve as the definition for α, λ, ρ, c.

Corollary 2.10 shows that they are natural. We demonstrate this for naturality of c.

(A,A′)⊗ (B,B′) (B,B′)⊗ (A,A′)

(C,C ′)⊗ (D,D′) (D,D′)⊗ (C,C ′)

c(A,A′),(B,B′)

f⊗ g g⊗ f

c(C,C′),(D,D′)
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Apparently both composed morphisms are of the same type and the only boxes their dia-

grammatic expressions contain are labelled with f, g. But A,A′, B,B′, C, C ′, D,D′ appear

exactly once among dom(f),dom(g), cod(c(C,C′),(D,D′) ◦ (f⊗g)) and among cod(f), cod(g),

dom(c(C,C′),(D,D′) ◦ (f⊗ g)). Hence the above diagram commutes.

Also due to Mac Lane’s Coherence Theorem the triangle, pentagon and hexagon di-

agrams commute as well as c−1−1,−2
= c−2,−1 turning Int C into a symmetric monoidal

category. Unit and counit are also determined by the monoidal structure of C when defin-

ing

(A,A′)∗ = (A′, A).

Then η and ε have to be of the following types:

η(A,A′) :
(I, I)

I ⊗ (A′ ⊗A)

→
→

(A′, A)⊗ (A,A′)

(A′ ⊗A)⊗ I
in Int C
in C

ε(A,A′) :
(A,A′)⊗ (A′, A)

(A⊗A′)⊗ I
→
→

(I, I)

I ⊗ (A⊗A′)
in Int C
in C

Thus Mac Lane’s Coherence Theorem provides the definitions for η and ε and shows why

the snake equations are valid. Hence Int C holds a compact closed structure.

If C is a traced dagger category, we can convey the dagger structure to Int C. Indeed

for an arrow f : (A,A′)→ (B,B′) given by f : A⊗B′ → B ⊗A′ we gain a dagger functor

by defining f† : (B,B′) → (A,A′) as f † : B ⊗ A′ → A ⊗ B′. Compatibilty of † and ⊗
follows from Corollary 2.10 while all other axioms in (ii),(iii),(v) of Definition 1.9 hold due

to coherence for dagger compact closed categories (cf. Theorem 1.10). We summarize our

results.

Proposition 2.11 Let C be a traced (dagger) category. Then the category Int C as defined

above is a (dagger) compact closed category.

The following fact explains how C can be regarded as a subcategory of Int C.

Proposition 2.12 Let C be a traced (dagger) category. Then the map

A ∈ Ob C 7→ I(A) = (A, I) ∈ Ob Int C

induces a traced (dagger) functor I : C → Int C acting on functions as

f : A→ B 7→ I(f) : (A, I)→ (B, I) given by ρ−1B ◦ f ◦ ρA : A⊗ I → B ⊗ I

Proof. Obviously ρ−1B ◦ f ◦ ρA is the only way of defining a map of type (A, I) → (B, I)

for a given f : A → B. Clearly I(idA) = id(A,I) and compatibility with the composition

follows from (2.8) showing that the compositions in C and Int C coincide if the right wires

represent the tensor unit I. The unique way to define φ and φ0 by means of the monoidal
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structure of C is φ0 : II → (I, I) as the identity id(I,I) and

φA,B : IA⊗ IB → I(A⊗B)

as the unique isomorphism of type

(A⊗B)⊗ I → (A⊗B)⊗ (I ⊗ I)

The diagrams (1.7), (1.8) and (1.9) commute due to Mac Lane’s Coherence Theorem while

I(f †) = I(f)† is straightforward and compatibility with the trace operations (1.10) as well

as naturality of φ follow from Corollary 2.10. 2

2.4 Correspondence between traced and compact closed cat-

egories

2.4.1 U and Int are adjoints

The Int-construction can be considered as the map

Int : Ob TrSM(D)Cat→ Ob (D)CompCCat, C 7→ Int C

raising the question whether Int can be generalized to a functor. An analysis of appearing

typing requirements reveals that only one definition is possible.

Proposition/Definition 2.13 Let (F, φ, φ0) : C → D be a traced (dagger) functor. We

define F as the functor

F : Int C → IntD
(A,A′) 7→ (FA,FA′)

f : (A,A′)→ (B,B′) 7→ F f : (FA,FA′)→ (FB,FB′)

given by φ−1B,A′ ◦ Ff ◦ φA,B′ : FA⊗ FB′ → FB ⊗ FA′

Then Int defined as

Int : TrSM(D)Cat → (D)CompCCat

C 7→ Int C
F : C → D 7→ IntF := F : Int C → IntD

is a functor.

Proof. Type requirements force us to define

φ(A,A′),(B,B′) = φA,B ⊗ φ−1B′,A′ :

F (A,A′)⊗ F (B,B′)

(FA⊗ FB)⊗ F (B′ ⊗A′)
→
→

F ((A,A′)⊗ (B,B′))

F (A⊗B)⊗ (FB′ ⊗ FA′)
in IntD
in D
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φ0 = φ0 ⊗ φ−10 :
(ID, ID)

ID ⊗ FIC
→
→

F (IC , IC)

FIC ⊗ ID
in IntD
in D

Now (F , φ, φ0) is in fact a symmetric monoidal (dagger) functor, as all axioms (including

functoriality of F ) are special instances of compatibility of F with the traced (dagger)

structures of C and D. For traced (dagger) functors (F, φ, φ0) : C → D, (G,φ′, φ′0) : D → E
functoriality of Int follows from taking the definition of the composition for monoidal

functors into account. In fact the functors Int(G◦F ) and IntG◦IntF obviously coincide

on objects, map identities to identities and for every morphism f : (A,A′) → (B,B′) of

Int C we have

Int(G ◦ F )(f) = (GφB,A′ ◦ φ′B,A′)−1 ◦GFf ◦ (GφA,B′ ◦ φ′A,B′)

= φ
′−1
B,A′ ◦G

(
φ−1B,A′ ◦ Ff ◦ φA,B′

)
◦ φ′A,B′ = (IntG ◦ IntF )(f). 2

Theorem 2.14 The functors

Int : TrSM(D)Cat→ (D)CompCCat, U : (D)CompCCat→ TrSM(D)Cat

form an adjunction up to monoidal isomorphisms from TrSM(D)Cat to (D)CompCCat

with universal arrows

I : C → U Int C

for all traced (dagger) categories C.

Before proving this Theorem we remind that an adjunction from C to D is a pair of

functors F : C → D and G : D → C, called left and right adjoints together with natural

bijections θA,B : Hom(FA,B)
∼=−→ Hom(A,GB) for A ∈ Ob C, B ∈ ObD. This is equiva-

lent to having a bunch of universal arrows ηC : C → GDC that is natural in C ∈ Ob C
where universality means that for every D ∈ ObD and arrow f : C → GD in C there is a

unique arrow f̂ : DC → D in D such that f = Gf̂ ◦ ηC . Indeed in this case one can define

F as FC = DC and Ff as the unique arrow satisfying ηC′ ◦ f = GFf ◦ ηC for all maps

f : C → C ′ in C (cf. [2] pp.79-86).

The phrase up to monoidal isomorphisms in Theorem 2.14 means that we identify two

arrows if there is a monoidal isomorphism between them. Hence formally Int and U

consititute an adjunction between the categories TrSM(D)Cat− and (D)CompCCat−

whose arrows are equivalence classes of monoidally isomorphic maps (cf. Remark 1.22).

Here we make implicit use of the observation that the images of two monoidally isomor-

phic arrows under Int resp. U remain monoidally isomorphic. While this is trivial for U

in the case F ∼= G witnessed by θ we obtain F ∼= G by means of θ where θ(A,A′) = θA⊗θ−1A′ .

Proof. Let C be a traced (dagger) category, D a (dagger) compact closed category and

(F, φ, φ0) : C → U D = D a traced (dagger) functor between them. In the following

we refer to a preliminarily chosen duality structure (∗, η, ε) of D. We have to show that

up to a monoidal isomorphism there is a unique symmetric monoidal (dagger) functor
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F̂ : Int C → D satisfying I ◦ U F̂ = I ◦ F̂ ∼= F . We set F̂ (A,A′) := FA ⊗ (FA′)∗ for all

objects (A,A′) of Int C. For arrows f : (A,A′)→ (B,B′) we define f̂ = φ−1B,A′ ◦ Ff ◦ φA,B′
and

F̂ f := f̂

FA

FB FB′

FA′

. (2.11)

Functoriality of F̂ follows from

FA

FA

FA′

FA′

=

FA

FA

FA′

FA′

and

f̂

ĝ

FA

FB

FC

FB’

FA′

FC ′

=

f̂

ĝ

FA

FB

FC

FB’

FA′

FC ′

for all f : (A,A′) → (B,B′), g : (B,B′) → (C,C ′). Again instead of drawing diagrams

explicitly we can also argue that the given data permits only one topological structure

since all wires are differently labelled. Hence in the following we will make use of this

more concise argument7. We extend F̂ to a monoidal functor by defining

Φ(A,A′),(B,B′) :=
φA,B φ−1B′,A′

F (A⊗B) F (B′ ⊗A′)

FA FB′FBFA′

: F̂ (A,A′)⊗ F̂ (B,B′)→ F̂ (A⊗B,B′ ⊗A′)

7We do not formalize this way of reasoning unlike for the case of traced (dagger) networks (cf. Corollary
2.10) as a formal proof would require a statement analogous to Theorem 2.9 for (dagger) compact closed
categories which we do not formally elaborate in this work.
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for all objects (A,A′), (B,B′) of Int C and

Φ0 = (φ0 ⊗ (φ−10 )∗) ◦ cI∗D,ID ◦ ηID : ID → F̂ (IC , IC).

The diagrams (1.7), (1.8) and (1.9) commute since after plugging in all definitions these

diagrams only contain morphisms that can be expressed in terms of (F, φ, φ0) and the

(dagger) compact closed structure of D. Their commutativity follows then from coher-

ence for (dagger) compact closed categories as well as compatibility of F with the traced

(dagger) structures of C and D. Naturality of Φ is obvious since analyzing the types

of the appearing morphisms reveals that the wires in the corresponding diagrams are

pairwise differently labelled so that they must be topologically equivalent. Finally in

the presence of a dagger the same argument works for F̂ (f †) = (F̂ f)† when observing

(φ−1B,A′ ◦ Ff ◦ φA,B′)
† = φ−1A,B′ ◦ Ff

† ◦ φB,A′ for all f̂ ∈ Mor Int C and it is straightforward

to verify Φ† = Φ−1 as well as Φ†0 = Φ−10 when using φ† = φ−1, φ†0 = φ−10 . Hence F̂ is a

morphism in (D)CompCCat.

We clearly have

F̂IC = F̂ (C, IC) = FC ⊗ (FIC)
∗

for all C ∈ C, thus F ∼= F̂I is witnessed by

{θC : FC → FC ⊗ (FIC)
∗ | C ∈ Ob C}

where the θC denote the unique isomorphisms provided by the (dagger) compact closed

structure of D of the required type. We verified in Example 1.19 that θ and similar

expressions are in fact monoidal isomorphisms.

Now suppose there is another symmetric monoidal (dagger) functor G : Int C → D
with F ∼= G ◦ I. We consider the duality structure of D induced by G (cf. Example 1.16).

As F ∼= F̂ ◦ I we gain F̂ ◦ I ∼= G ◦ I which shall be witnessed by θ. Then

θ(C,C′) := θC ⊗ (θ−1C′ )
∗ : F̂ (C, IC)⊗ (F̂ (C ′, IC))

∗ −→ G(C, IC)⊗ (G(C ′, IC))
∗

is a monoidal isomorphism as analogous reasoning to 1.19 together with natural monoidal-

ity of θ show. We have

(F̂ (−, IC))∗ = (F −⊗(FIC)
∗)∗ ∼= FIC ⊗ (F−)∗ = F̂ (IC ,−)

and subsequently

F̂ (−, IC)⊗ (F̂ (−, IC))∗ ∼= F̂ ((−, IC)⊗ (IC ,−)) ∼= F̂ (−,−).

Moreover - since the duality structure of D is induced by G - we obtain

G(−, IC)⊗ (G(−, IC))∗ = G(−, IC)⊗G(IC ,−) ∼= G((−, IC)⊗ (IC ,−)) ∼= G(−,−).

Thus θ witnesses F̂ ∼= G. 2

38



The definition (2.11) of F̂ is motivated by the observation that it reverses the construction

(2.6) for any map f̂ : FA⊗ (FB′)∗ → FB ⊗ (FA′)∗.

2.4.2 Compact Closed Networks

If C is (dagger) compact closed already, this Theorem provides a monoidal equivalence

verifying C ' Int C. Indeed when considering F = idC : C → C universality of I reveals

îdC ◦I ∼= idC . On the other hand I◦ îdC ∼= idInt C is witnessed by the monoidal isomorphism{
θ(A,A′) = α−1A,A′∗,A′ ◦ idA ⊗ ηA′ : (A,A′)→ (A⊗A′∗, I)

∣∣ (A,A′) ∈ Ob Int C
}
.

Corollary 2.15 Let C be a (dagger) compact closed category. Then I : C → Int C and

îdC : Int C → C establish the monoidal equivalence C ' Int C.

An adjunction can be understood as the categorical manifestation of inverting a process.

Hence if a forgetful functor is involved an adjoint functor describes the optimal way of

recovering the concerned structure. Thus instead of defining (dagger) compact closed net-

works explicitly, we might proceed as in the next definition, which is stated as the notion

of (dagger) compact closed networks will be necessary in the next chapter to introduce

completeness.

Definition 2.16 Let S be a (dagger) signature. We define the category of (dagger)

compact closed networks by

CompCNet S := Int Net S .

Moreover for a given (dagger) compact closed category C we denote the category of compact

closed C-interpretations of CompCNet S with CompCInt(S , C), i.e. the category of

symmetric monoidal (dagger) functors CompCNet S → C and monoidal transformations

between them.
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Chapter 3

Completeness results for

interpretations with unbounded

dimensions

Using the formalization of diagrams and interpretations as networks and functors we are

now able to capture the conecept of completeness formally. It means the existence of

interpretations yielding unequal outcomes when applied on non-isomorphic diagrams. We

will distinguish between several degrees of completeness accommodating to what extent

interpretations depend on the diagrams they separate. We will treat both cases of com-

pact closed and dagger compact closed categories separately and deliberate on essential

completeness, i.e. completeness just for simple diagrams.

Theorems 2.9 and 2.14 will then simplify completeness analyses as they allow us to

focus on closed traced (dagger) networks and to characterize an interpretation by its

action on object and morphism labels. Bearing this in mind we discuss Selinger’s results

in [1], i.e. we derive completeness of FHilb-interpretations in the dagger case and of

FVect-interpretations over fields with transcendentals for compact closed categories. We

generalize this to free finite-dimensional semimodules over semi-rings containing N by

taking density of Q in R into account.

In the fifth section we will deal explicitly with dagger compact closed categories and

demonstrate that when working over a semi-ring with transcendentals the presence of a

dagger makes no difference. Hence it will suffice for all further considerations concerning

e.g. C to work just with compact closed categories. Moreover we proof completeness of

FProdR-interpretations also for several discrete (semi-)rings like Z[i] and Z[X].

The strongest form of completeness - the existence of a unique interpretation separating

all non-isomorphic diagrams from one another - will finally turn out to be equivalent to

weaker forms of completeness when demanding an upper limit for the dimensions of the

interpretations of object labels.
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3.1 The concept of Completeness

3.1.1 Different notions of completeness

Definition 3.1 Let S be a (dagger) signature and (C,Obj0) a pair consisting of a (dagger)

compact closed category C and a subset Obj0 ⊂ Ob C of the set of objects of C. We say

(i) (C,Obj0)-interpretations are relatively complete for CompCNet S if for all non-

isomorphic ((dagger) compact closed S -)networks M,N ∈ Ob CompCNet S there

is an interpretation J KM,N ∈ CompCInt(S , C) mapping every object label of S

into Obj0, with JMKM,N 6= JNKM,N .

(ii) (C,Obj0)-interpretations are semi-relatively complete for CompCNet S if for

every network M ∈ Ob CompCNet S there is an interpretation J KM ∈
CompCInt(S , C) mapping every object label of S into Obj0, such that for all

networks N ∈ Ob CompCNet S we have JMKM = JNKM if and only if M and N

are isomorphic.

(iii) (C,Obj0)-interpretations are fully complete for CompCNet S if there is an inter-

pretation J K ∈ CompCInt(S , C) mapping every object label of S into Obj0, such

that for all networks M,N ∈ Ob CompCNet S we have JMK = JNK if and only if

M and N are isomorphic.

If S is not stated explicitly, then we presume S = S∞. Also instead of mention-

ing CompCNet S∞ we will speak more generally of completeness for (dagger) com-

pact closed categories. If the above conditions only hold for simple networks M,N ∈
Ob CompCNet S we speak of essential completeness. Finally if no Obj0 is specified,

then Obj0 is supposed to be the set/class of all objects of C.

The introduced notions obey a couple of trivial implications:

(i) full completeness ⇒ semi-relative completeness ⇒ relative completeness

(ii) completeness ⇒ essential completeness

(iii) If Obj0 ⊂ Obj1 ⊂ Ob C then:

(C,Obj0)-interpretations are complete ⇒ (C,Obj1)-interpretations are complete

(iv) If C1 is a (dagger) compact closed category with C0 ⊂ C1 - i.e. there is a faithful

symmetric monoidal (dagger) functor Inc : C0 → C1 acting injectively on objects -

then:

(C0,Obj0)-interpretations are complete ⇒ (C1,Obj0)-interpretations are complete
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(v) If S ⊂ S ′ - i.e. S ′ contains all sorts and morphism labels of S , the latter have

the same type and if S is a dagger signature then so is S ′ - then:

completeness for CompCNet S ′ ⇒ completeness for CompCNet S

The distinction between full, semi-relative and relative completeness is motivated by

Selinger’s results (cf. [1] p.4) which require to distinguish between whether an inter-

pretation seperating two networks M,N does in general depend on both networks or only

one of them or does not depend on M,N at all. In order to restrict interpretations of

sorts to e.g. spaces of dimensions smaller than a certain upper bound, we specify a set

of objects Obj0 ⊂ Ob C, sorts are allowed to be mapped into. In this case of bounded

dimensions some kinds of completeness will not hold although their essential counterparts

do, giving rise for considering this weakened kind of completeness.

3.1.2 Reductions

Before considering examples we simplify the definition of completeness. We first ob-

serve that a network N : (A,A ′) → (B,B ′) in CompCNet S corresponds to a network

N : AB ′ → BA ′ of Net S . Therefore it is sufficient to consider only traced (dagger) net-

works M,N in Definition 3.1.

The work behind this definition was already done in Theorem 2.14 and Definition 2.16.

Assume we had defined compact closed networks in a more self-evident way like sug-

gested in the comments to Definition 2.2. Then the resulting category - let us call it

CompCDiag S - would contain networks with duals as well as cups and caps which are

not part of traces. However, supposing that a good definition of CompCDiag S makes it

to a smallest (dagger) compact closed category containing Net S (which we do not know

to be unique yet) we obtain a monoidal equivalence CompCDiag S ' CompCNet S

as Corollary 2.15 reveals

CompCDiag S ' Int CompCDiag S ⊃ Int Net S = CompCNet S .

Therefore Definition 2.16 adequately captures what we intuitively expect from the category

of compact closed networks (over a given signature). This monoidal equivalence acts on

N like

N

A B ′

B A ′

−→ N

A

B B ′

A ′

(3.1)

42



(cf. (2.11)) where we implicitly assume that the network on the right hand side is formal-

ized in CompCDiag S . Hence the transition (3.1) and its counter-construction (2.6) lie

at the heart of the trick allowing us to focus on Net S .

Furthermore, if the underlying signature S provides infinitely many arrow labels of type

ε → A and A → ε for every string of sorts A then it suffices to consider only closed net-

works M,N in Definition 3.1. In fact two traced (dagger) S -networks N,N ′ : A → B are

isomorphic if and only if so are f ◦N ◦ g , f ◦N ′ ◦ g , where f resp. g denote the

networks consisting of a single box labelled with function labelsf : B → ε resp. g : ε→ A
not appearing in N,N ′ (cf. [1], p.2).

Finally we only have to consider interpretations induced by a model, i.e. on interpre-

tations acting like (2.3) since Theorem 2.9 shows that every C-interpretation in Int(S , C)
is induced by a C-model up to a natural isomorphism. But for a natural isomorphism

θ : J K → J K′ between two interpretations J K, J K′ ∈ Ob Int(S , C) and S -networks

N,N ′ : A → B the diagrams

JAK JAK′

JBK JBK′

θA

θ−1
A

θB

θ−1
B

JNK JNK′ and

JAK JAK′

JBK JBK′

θA

θ−1
A

θB

θ−1
B

JN ′K JN ′K′

commute so that JNK = JN ′K if and only if JNK′ = JN ′K′. We summarize these simplifica-

tions for the case S = S∞.

Proposition 3.2 Let (C,Obj0) be a pair consisting of a (dagger) compact closed cate-

gory C and a subset Obj0 ⊂ Ob C of the set of objects of C.

(i) (C,Obj0)-interpretations are relatively complete for (dagger) compact closed cate-

gories if for all non-isomorphic closed networks M,N(∈ Ob Net S∞) there is a

C-interpretation J KM,N (∈ Int(S∞, C)) induced by a C-model that maps every object

label into Obj0, with JMKM,N 6= JNKM,N .

(ii) (C,Obj0)-interpretations are semi-relatively complete for (dagger) compact closed

categories if for every closed network M there is a C-interpretation J KM induced by

a C-model that maps every object label into Obj0, such that for all closed networks

N we have JMKM = JNKM if and only if M ∼= N .

(iii) (C,Obj0)-interpretations are fully complete for (dagger) compact closed categories

if there is a C-interpretation J K induced by a C-model that maps every object label

into Obj0, such that for all closed networks M,N we have JMK = JNK if and only if

M ∼= N .
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3.2 The Denotation

In order to obtain a clearer impression of how model induced interpretatons J K act we

evaluate JNK for general closed networks N in the case C = FProdR.

Example 3.3 Consider C = FProdR, a C-model J K0 with induced interpretation J K as

well as we a closed network N = (B, `, π). The following calculations require a couple of

abbreviating notations.

We write dA = dimJAK0 for all sorts A. We also presuppose an enumeration of the

wires w1, . . . , wn of N and identify them with the outputs in OutN of the boxes they

start from, i.e. we define OutN = {w1, . . . , wn}. We will write `(wi) for the object label

belonging to wi. We denote basis elements of A with |e(A)i 〉 for 1 ≤ i ≤ dA. Furthermore

for every b ∈ B we write d (b) ∈ N∗ for the string consisting of the indices of these wires

ending in the inputs of `(b). Analogously c(b) ∈ N∗ shall denote the indices of those wires

starting from the outputs of b. Hence

d (b) = i1 . . . i|dom `(b)| ⇔ wik = π−1(k, b) ∀1 ≤ k ≤ |dom `(b)|,
c(b) = j1 . . . j|cod `(b)| ⇔ wjl = (b, l) ∀1 ≤ l ≤ |cod `(b)|.

We set

Idx = {φ : {1, . . . , n} → N>0 | φ(i) ≤ d`(wi)}

and regard a φ ∈ Idx as a simultaneous picking of the basis vectors |e(`(wi))φ(i) 〉 of `(wi) for

all wires wi of N . For a string of indices i = i1 . . . il ∈ {1, . . . , n}∗ and a φ ∈ Idx we define

|eφ(i)〉 =
∣∣∣e(`(wi1 ))φ(i1)

〉
⊗ · · · ⊗

∣∣∣e(`(wil ))φ(il)

〉
as well as

J`(b)KN0(φ) =
〈
eφ(c(b))

∣∣∣ J`(b)KN0

∣∣∣eφ(d (b))

〉
.

In other words J`(b)KN0(φ) denotes the entry of J`(b)KN0 that is addressed by the choice of

basis vectors encoded by φ. The definition of Idx allows us to write down bases∣∣∣⊗
b∈B

eφ(c(b))

〉
, φ ∈ Idx of

⊗
b∈B

Jcod(`(b))K and

∣∣∣⊗
b∈B

eφ(d (b))

〉
, φ ∈ Idx of

⊗
b∈B

Jdom(`(b))K.

The isomorphism π̂ of (2.3) can now be characterized by

π̂
∣∣∣⊗
b∈B

eφ(c(b))

〉
=
∣∣∣⊗
b∈B

eφ(d (b))

〉
for all φ ∈ Idx.
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Subsequently (2.3) reveals

JNK = Tr
⊗
b∈BJcod(`(b))K

(⊗
b∈B

J`(b)K0 ◦ π̂

)

=
∑
φ∈Idx

〈⊗
b∈B

eφ(c(b))

∣∣∣∣∣
(⊗
b∈B

J`(b)K0 ◦ π̂

)∣∣∣∣∣⊗
b∈B

eφ(c(b))

〉

=
∑
φ∈Idx

〈⊗
b∈B

eφ(c(b))

∣∣∣∣∣⊗
b∈B

J`(b)K0

∣∣∣∣∣⊗
b∈B

eφ(d (b))

〉

=
∑
φ∈Idx

∏
b∈B

〈
eφ(c(b))

∣∣∣ J`(b)K0 ∣∣∣eφ(d (b))

〉
=
∑
φ∈Idx

∏
b∈B

J`(b)K0(φ)

(3.2)

We call this formula (3.2) the denotation and note that it is a homogeneous polynomial

in the entries J`(b)K0(φ) of the interpretations of the box labels `(b) appearing in N . Its

degree equals the number of boxes in N . Moreover it will be crucial for later considerations

that all of its coefficients are natural numbers. We also note that the denotation does not

depend on the choice of basis vectors |e(A)i 〉 as traces remain invariant under basis changes.

Ultimately (3.2) makes it obvious that isomorphic networks coincide after applying any

interpretation as a network isomorphism is just a permutation of B compatible with wire

labels.

3.3 The Selinger Interpretation

3.3.1 Construction

Using our different notions of completeness Selinger’s result states that FHilb-interpreta-

tions are (essentially) semi-relatively complete for dagger compact closed categories. As

the construction he has done will be helpful in different contexts we will introduce it here.

Definition 3.4 Let N = (B, `, π) be a closed (dagger) S∞-network. We adopt the nota-

tions d (b), c(b) as well as the explicit reference InN = {w1, . . . , wn} to the wires of N from

3.3. Moreover let R be a semiring with a conjugation : R→ R and set R[B] = R[(xb)b∈B]

resp. R[B,B] = R[(xb, xb)b∈B] We define the Selinger Interpretation

J KN : Net S∞ → FModR[B] resp. J KN : Net S∞ → FProdR[B,B]

in the dagger case, by defining its action on object and morphism labels. For all objects

A ∈ Ob C we set JAKN = R[B]dA resp. JAKN = R[B,B]dA where

dA = # of wires in N labelled with A = # {1 ≤ i ≤ n | `(wi) = A}.
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Now let |eij 〉 be the basis elements of A for 1 ≤ j ≤ dA where the ij are the indices

belonging to these wires that are labelled with A. For all b ∈ B we define the linear map1

mb : Jdom(`(b))K→ Jcod(`(b))K

by

〈 ⊗
1≤l≤|c(b)|

ejl

∣∣∣∣∣∣mb

∣∣∣∣∣∣
⊗

1≤k≤|d (b)|

eik

〉
=


xb if wik = π−1(k, b) ∀1 ≤ k ≤ |d (b)| and

wjl = (b, l) ∀1 ≤ l ≤ |c(b)|
0 otherwise

(3.3)

for all basis vectors |eik〉 ∈ J(dom `(b))kKN and |ejl〉 ∈ J(cod `(b))lKN . For every morphism

label f ∈ F∞ we set

JfKN =
∑
b∈B,
`(b)=f

mb resp. JfKN =
∑
b∈B,
`(b)=f

mb +
∑
b∈B,
`(b)=f†

m†b (3.4)

in the dagger case where m†b = mb
t. In particular, objects and morphism labels that are

not part of N get interpreted as the zero-object resp. the zero-morphism.

We note that due to (3.2) the Selinger Interpretation JMKN of any network M can be

regarded as a polynomial in N[X1, . . . , X|B|] ⊂ N[(Xi)i∈N] respectively in

N[X1, . . . , X|B|, X1, . . . , X |B|] ⊂ N[(Xi)i∈N].

3.3.2 Semi-relative Completeness in the presence of transcendentals

Selinger’s completeness theorem relies on the following fact he has proven (cf. [1] p.4, 8ff).

Proposition 3.5 Let N0 = (B0, `0, π0) be a simple closed (dagger) network. Then for

all simple closed (dagger) networks N = (B, `, π) we have JNKN0 = JN0KN0 if and only if

N and N0 are isomorphic. Moreover the coefficient of the monomial
∑

b′∈B0
xb′ of JNKN0

equals the number of network isomorphisms between N and N0.

An application of the following argument to an example network can be found in [1]

p.4f. Essentially Proposition 3.5 relies on the fact that due to (3.3) the Selinger Interpre-

tation J KN0 memorizes what labels are the inputs and outputs of `(b′) for every b′ ∈ B0.

More concretely, Selinger’s Interpretation chooses sufficiently large dimensions in order to

make φ reconstructable when having J`(b)K(φ) in (3.2). Subsequently the appearance of∏
b′∈B0

xb′ in JNKN0 allows us to extract enough information for verifying N ∼= N0.

Proof. Write OutN0 = {w0
1, . . . , w

0
n0
} and OutN = {w1, . . . , wn} for the wires of N0 and N .

1The definition of mb as well as (3.3) and (3.4) are taken from [1] p.8. We modified the notations.
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We adopt the notations of Definition 3.4 and particularly denote the basis vectors of JAKN0

with |ei1〉, . . . , |eidA 〉 if wi1 , . . . , widA are precisely these wires labelled with A. As the index-

ing of the basis vectors differs from how it was done in 3.3 we need to adjust the remaining

notations in order to keep (3.2) valid. For a string of indices i = i1 . . . il ∈ {1, . . . , n0}∗ we

define |ei 〉 = |ei1〉 ⊗ · · · ⊗ |eil〉. We set

Idx =
{
φ : {1, . . . , n} → {1, . . . , n0}

∣∣∣ `(wi) = `(w0
φ(i)) for all 1 ≤ i ≤ n

}
and φ(i) shall denote the string φ(i1) . . . φ(il) where φ ∈ Idx. For a b ∈ B we again define

J`(b)KN0(φ) =
〈
eφ(c(b))

∣∣∣ J`(b)KN0

∣∣∣eφ(d (b))

〉
.

Using the Kronecker-δ notation δ(i, j) = δij we can rewrite (3.3) as〈
eφ(c(b))

∣∣∣mb′

∣∣∣eφ(d (b))

〉
= xb′ · δ

(
φ(d (b)), d (b′)

)
· δ
(
φ(c(b)), c(b′)

)
(3.5)

for all b ∈ B, b′ ∈ B0. The condition `(wi) = `(w0
φ(i)) in the definition of Idx allows us to

regard an element of Idx as choosing for every wire in N a basis vector of the (interpretation

of the) object it is labelled with. Hence the formula (3.2) for the denotation remains valid

and shows2

JNKN0 =
∑
φ∈Idx

∏
b∈B

J`(b)KN0(φ)

=
∑
φ∈Idx

∏
b∈B

∑
b′∈B0,

`0(b′)=`(b)

〈
eφ(c(b))

∣∣∣mb′

∣∣∣eφ(d (b))

〉

=
∑
φ∈Idx

∏
b∈B

∑
b′∈B0

xb′ · δ
(
φ(d (b)), d (b′)

)
· δ
(
φ(c(b)), c(b′)

)
· δ
(
`0(b

′), `(b)
)

=
∑
φ∈Idx

∑
ψ:B→B0

∏
b∈B

xψ(b) · δ
(
φ(d (b)), d (ψ(b))

)
· δ
(
φ(c(b)), c(ψ(b))

)
· δ
(
`0(ψ(b)), `(b)

)
The second and third equation follow from (3.4) and (3.5) while the last one is a conse-

quence of distributivity. In the dagger case we similarly obtain

JNKN0 =
∑
φ∈Idx

∏
b∈B

 ∑
b′∈B0,

`0(b′)=`(b)

〈
eφ(c(b))

∣∣∣mb′

∣∣∣eφ(d (b))

〉
+

∑
b′∈B0,

`0(b′)=`(b)†

〈
eφ(c(b))

∣∣∣m†b′ ∣∣∣eφ(d (b))

〉
=
∑
φ∈Idx

∑
ψ:B→B0

(∏
b∈B

xψ(b) · δ
(
φ(d (b)), d (ψ(b))

)
· δ
(
φ(c(b)), c(ψ(b))

)
· δ
(
`0(ψ(b)), `(b)

)

+
∏
b∈B

xψ(b) · δ
(
φ(c(b)), d (ψ(b))

)
· δ
(
φ(d (b)), c(ψ(b))

)
· δ
(
`0(ψ(b)), `(b)

))

2This calculation can be found in [1] p.8f with different notations.
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Every φ ∈ Idx can be considered as a map from the wires of N to the wires of N0 when

defining φ(wi) = w0
φ(i). In both cases the (first) monomial belonging to (φ, ψ) equals∏

b′∈B0
xb′ if and only if (φ, ψ) is a network isomorphism establishing N ∼= N0. Here (φ, ψ)

is called a network isomorphism resp. homomorphism if so is ψ and φ associates wires of

N and N0 in this way that is enforced by ψ. Indeed∏
b∈B

xψ(b) · δ
(
φ(d (b)), d (ψ(b))

)
· δ
(
φ(c(b)), c(ψ(b))

)
· δ
(
`0(ψ(b)), `(b)

)
=
∏
b′∈B0

xb′ (3.6)

requires ψ to be bijective as otherwise some of the xb′ would appear several times or would

not appear at all on the right hand side. Also - as the left hand side is unequal to 0 - we

must have

φ(d (b)) = d (ψ(b)), φ(c(b)) = c(ψ(b)), `0(ψ(b)) = `(b)

for all b ∈ B, ensuring that (φ, ψ) is in fact a network homomorphism. Thus if JNKN0

and JN0KN0 contain the same monomials there is already an isomorphism between N and

N0 (as JN0KN0 trivially contains the right hand side of (3.6)) and the number of different

isomorphisms ψ : N
∼=−→ N0 matches the number of appearances of

∏
b′∈B0

xb′ . 2

In the following we will make use of the notation R̂ for the semi-ring of polynomials

R[(Xi)i∈N] with coefficients from a given semi-ring R. Note that the Xi ∈ R̂ form a count-

able algebraically independent set of transcendentals3 over R. As so do C and R these

cases are always included when speaking of a general R̂.

Corollary 3.6 Let R be a semi-ring containing N, i.e. there is an injective semi-ring

homomorphism φ : N → R. Then FMod
R̂

-interpretations are semi-relatively complete

for compact closed categories. If endowing R̂ with the dagger induced by a conjugation

: R̂→ R̂ that acts as the identity on R and as a fixpoint-free involution on (Xi)i∈N, e.g.

Xk = Xk+(−1)k , then FProd
R̂

-interpretations are semi-relatively complete for dagger com-

pact closed categories. In particular, FVectR-interpretations resp. FHilb-interpretations

are semi-relatively complete for compact closed resp. dagger compact closed categories.

Proof. Let M be a simple closed network. The interpretation that arises from J KM by sub-

stituting the xb, b ∈ B with an algebraically independent subset of R̂ - e.g. X0, . . . , X|B|−1 ∈
R̂ resp. X0, X2, X4, . . . , X2|B|−2 ∈ R̂ in the dagger case - witnesses essential relative com-

pleteness due to the last Proposition. By modifying Selinger’s Interpretation this approach

also works for general closed networks M . Let M0 be the kernel of M , i.e. M can be written

as

M = M0
A1 A2

. . .
An

3We implicitly generalize the notion of algebraic independence to semi-rings in the obvious way.
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where M0 is simple. Now consider the interpretation J K(M) arising from Selinger’s In-

terpretation J KM0 by defining dim JAK(M) as pairwise different prime numbers pA with

pA ≥ dim JAKM0 for all object labels A appearing in M . For all other object labels A we

set JAK(M) = JAKM0 = {0} and for any arrow label f the matrix JfK(M) is supposed to

arise from JfKM by filling up the additional entries with zeros, i.e. JfK(M) is also defined

by (3.3) when extending it to all suitable |ei∗〉, |ej∗〉. Now we have

JMK(M) = JM0KM0 ·
∏

1≤i≤n
pAi .

Likewise for any other traced network N we have JNK(M) = const. · JN0KM0 , so that the

proof of Proposition 3.5 shows

JNK(M) = JMK(M) ⇒ N0
∼= M0

since then JN0KM0 and JM0KM0 contain the same monomials. Uniqueness of prime factor-

ization then shows that in the case JNK(M) = JMK(M) must also contain the same trivial

cycles. Now the same replacement of the xb, b ∈ B appearing in J K(M) finishes the proof

when observing that in the dagger case (X2i, X2i)0≤i<|B| = (Xi)0≤i<2|B|−1 is still alge-

braically independent. 2

The interpretation J K(M) we have constructed here will play an important role in later

proofs. Hence in the following we will refer to it as the modified version of the Selinger

Interpretation J KM0 .

Corollary 3.7 Let R be a semi-ring containing N. Then FModR-interpretations are

relatively complete for compact closed categories.

Proof. For two closed networks M = (B, `, π) and N consider the polynomial pM,N =

JMK(M)− JNK(M) ∈ R[B] using the modified version J K(M) of the Selinger Interpretation.

If M � N then Proposition 3.5 shows that pM,N is not the zero-polynomial. As N ⊂ R

there is a non-root (ni)i ⊂ R of pM,N . 2

In so far as essential completeness is concerned, these consequences were already men-

tioned by Selinger (cf. [1] p.10f, although he stated the last corollary only for the case

of infinite fields). But we will see in the next section that Proposition 3 in fact allows

stronger conclusions by utilizing density of Q in R.

3.4 Semi-relative completeness for semi-rings containing N

The generalization of semi-relative completeness to general semi-rings R containing N as

well as to dagger compact closed categories will require a technical preparation.
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Lemma 3.8 Let t ∈ N be fixed and p0 ∈ N[X1, . . . , Xt] a homogeneous polynomial. More-

over let P ⊂ N[X1, . . . , Xt] be a subset of homogeneous polynomials with p0 /∈ P.

(i) There are rational numbers q1, . . . , qt ∈ Q with

p(q1, . . . , qn) 6= p0(q1, . . . , qt)

for all p ∈ P.

(ii) Suppose there are only finitely many p ∈ P with deg p < deg p0. Then there are

natural numbers n1, . . . , nt ∈ N with

p(n1, . . . , nt) 6= p0(n1, . . . , nt)

for all p ∈ P.

Proof. (i): For any homogeneous polynomial p ∈ N[X1, . . . , Xt] we denote the sum of the

coefficients of all monomials appearing in p with sp and we set dp = deg p. Assume w.l.o.g.

that p0 contains the variables X1, . . . , Xm. Then replacing the Xi by some ri ∈ R with 2 ≤
ri for all 1 ≤ i ≤ t and 2 ≤ ri ≤ 3 for 1 ≤ i ≤ m ensures that p0(r1, . . . , rt) ≤ sd0 ·3dp0 ≤ C
for some constant C ∈ R>0. We also obtain the estimation

p(r1, . . . , rt) ≥ sp · 2dp ⇒ p(r1, . . . , rt)− p0(r1, . . . , rt) ≥ sp · 2dp − C. (3.7)

for all homogeneous p ∈ N[X1, . . . , Xt]. Hence we see p(r1, . . . , rt) > 0 for all homogeneous

p with sp or dp sufficiently large. As p must have natural coefficients, there are only finitely

many different polynomials p left with sp · 2dp ≤ R and we may define

{p1, . . . , pk} = {p ∈ P | sp · 2dp ≤ R}.

Due to this finiteness there is a sufficiently small ε > 0 such that pj(q1, . . . qt) remains

unequal to p0(q1, . . . , qt) for all 1 ≤ j ≤ k and all qi who differ from ri by no more than

ε and such that for all those qi we have 2 ≤ qi for all 1 ≤ i ≤ t as well as 2 ≤ qi ≤ 3 for

all 1 ≤ i ≤ m. Then (3.7) remains true for these qi so that all p ∈ P differ from p0 at

(q1, . . . , qt). Density of Q ⊂ R allows us to choose the qi as rationals.

(ii): When choosing L ∈ N large enough, we may assume that the chosen rationals qi have

common denominator L (e.g. L = d1εe). Now consider

∆p(λ) = p(λ · Lq1, . . . , λ · Lqt)− p0(λ · Lq1, . . . , λ · Lqt)
= (λL)dp · p(q1, . . . , qt)− (λL)dp0 · p0(q1, . . . , qt)

for λ ∈ N and p ∈ P. If dp = dp0 then

∆p(λ) = (λL)dp0 · (p(q1, . . . , qt)− p0(q1, . . . , qt)) 6= 0
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for all λ ∈ N by choice of the qi. If dp > dp0 then

∆p(λ) > (λL)dp0+1 · 2dp0+1 − (λL)dp0 · sp03d0 > 0 (3.8)

when choosing λ sufficiently large. This can be done independently of p so that (3.8) holds

for some λ0 ∈ N and all p ∈ P with dp > dp0 . Finally in the case dp < dp0 we have ∆p(λ) 6= 0

for all λ ∈ N>0 apart from at most one exception since p(q1, . . . , qt) 6= p0(q1, . . . , qt). Hence

due to the presupposition that P contains only finitely many p with dp < dp0 we can choose

a λ1 ≥ λ0 with ∆p(λ1) 6= 0 for all those p. Thus

p(λ1 · Lq1, . . . , λ1 · Lqt) 6= p0(λ1 · Lq1, . . . , λ1 · Lqt)

for all p ∈ P and λ1 · Lqi ∈ N for all 1 ≤ i ≤ t. 2

Proposition 3.9 FVectQ-interpretations are semi-relatively complete for compact closed

categories.

Proof. Let N0 = (B0, `0, π0) be a closed network. Then define p0 := JN0K(N0) ∈ N[B0] and

set

P = {pN = JNK(N0) ∈ N[B0] | N closed network with N � N0}

where J K(N0) refers to the modified version of the Selinger Interpretation. The term (3.2)

for the denotation shows that p0 as well as all pN are homogeneous and due to Corollary

3.7 we must have p0 /∈ P. Hence Lemma 3.8 (i) provides an assignment q1, . . . , q|B0| for

the xb, b ∈ B0 that turns J K(N0) after replacement into a FVectQ-interpretation J Kq→x(N0)

witnessing semi-relative completeness as

N � N0 ⇒ JNKq→x(N0)
= pN (q1, . . . , qt) 6= p0(q1, . . . , qt) = JN0K

q→x
(N0)

2

Part (ii) of Lemma 3.8 will also enable us to prove semi-relative completeness, but it has

to be refined to make work it for diagrams containing trivial cycles.

Proposition 3.10 Let R be a semi-ring containing N. Then FModR-interpretations

are semi-relatively complete for compact closed categories.

Proof. Let N0 = (B0, `0, π) be a simple closed network and define p0 = JN0KN0 as well as

P = {pN = JNKN0 ∈ N[B0] | N simple closed network with N � N0}.

The formula for the denotation (3.2) shows that there are only finitely many pN ∈ P with

deg pN < deg p0 resp. deg pN ≤ deg p0. Indeed only those finitely many boxes labelled

with some f ∈ F∞ that appear in N0 are mapped under the Selinger Interpretation to

non-zero matrices. The number of appearing boxes in N equals deg pN and is therefore

limited when requiring deg pN ≤ deg p0. Finally when not allowing trivial cycles then
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there are only finitely many closed networks N containing a preliminary given collection

of boxes. Hence the requirements of Lemma 3.8 (ii) are satisfied and we obtain natural

numbers ni = λ1 · Lqi ∈ N yielding an interpretation witnessing essential semi-relative

completeness when replacing the xb, b ∈ B appearing in the definition of J KN0 with the

ni. Here we made use of the notations λ1, L and qi of the proof of Lemma 3.8 (ii). Now

we extend this result to all closed networks and start with an arbitrary closed network N0

whose kernel is N0 without loss of generality. Consider this modified version J K(N0)
of

the Selinger Interpretation J KN0 that interprets all object labels appearing in N0 with

pairwise different prime numbers s1, . . . , sm satisfying

si > C := max
p∈P∪{p0}

with deg p≤deg p0

(λ1L)deg p · p(q1, . . . , qt) (3.9)

for all 1 ≤ i ≤ m. C exists as due to the previous comments the maximum is taken over

a finite set of polynomials. Furthermore we define S ⊂ N>0 as the set of natural numbers

whose prime factors all appear among s1, . . . , sm. We now define p0 = JN0K(N0)
which

obviously equals c · p0 for some c ∈ S, as well as

P = {pN = JNK(N0)
∈ N[B0] | N closed network with N � N0}. (3.10)

As for every closed network N with kernel N ′ we have pN = c′ · pN ′ for some c′ ∈ S the

estimation

∆pN (λ) := pN (λ · Lq1, . . . , λ · Lqt)− p0(λ · Lq1, . . . , λ · Lqt)
≥ (λ · L)dp0+1 · c′ · pN ′(q1, . . . , qt)− (λ · L)dp0 · c · p0(q1, . . . , qt) > 0

(3.11)

still holds in the case deg pN > deg p0 when choosing λ = λ0 ∈ N sufficiently large (which

might be larger than λ1). The choice can again be taken independently of all these pN .

Here we wrote t for |B0|. If deg pN = deg p0 then we have

∆pN (λ) = pN (λ · Lq1, . . . , λ · Lqt)− p0(λ · Lq1, . . . , λ · Lqt)

=

(
λ

λ1

)dp0
·
(
c′ · pN ′(λ1Lq1, . . . , λ1Lqt)− c · p0(λ1Lq1, . . . , λ1Lqt)

)
6= 0.

(3.12)

In fact

c′ · pN ′(λ1Lq1, . . . , λ1Lqt) = c · p0(λ1Lq1, . . . , λ1Lqt) (3.13)

is impossible for c = c′ due to the construction of the λ1Lqi and for c 6= c′ (3.13) would

imply that some of the pN ′(λ1Lq1, . . . , λ1Lqt), p0(λ1Lq1, . . . , λ1Lqt) are divisible by some

of the si contradicting (3.9). Finally in the case deg pN < deg p0 we can argue like in the

proof of Lemma 3.8 and choose a sufficiently large λ1 ≥ λ0 which can be chosen such that

λ1/λ1 is a power of 2 with

p(λ1Lq1, . . . , λ1Lqt) 6= p0(λ1Lq1, . . . , λ1Lqt)
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for all p ∈ P with deg p < deg p0. But then

c′ · p(λ1 · Lq1, . . . , λ1 · Lqt) 6= c · p0(λ1 · Lq1, . . . , λ1 · Lqt)

⇔ c′ ·
(
λ1
λ1

)dp
· p(λ1 · Lq1, . . . , λ1 · Lqt) 6= c ·

(
λ1
λ1

)dp0
· p0(λ1 · Lq1, . . . , λ1 · Lqt)

(3.14)

is obvious for c = c′ and otherwise we deduce the same contradiction that some of the

pN ′(λ1Lq1, . . . , λ1Lqt), p0(λ1Lq1, . . . , λ1Lqt) are divisible by some of the si since 2 is the

only prime factor appearing in λ1/λ1. Therefore substituting the xb, b ∈ B of the modi-

fied Selinger-Interpretation J K(N0) with λ1Lqi yields an FModN-interpretation witnessing

semi-relative completeness. 2

3.5 Including the Dagger

Corollary 3.7 cannot be generalized to dagger compact closed categories, as the diagrams

f = f and f † = f

cannot be seperated by means of the trivial conjugation. Hence no kind of completeness

for dagger compact closed categories can hold for a sub-semiring R ⊂ Q. However, due to

the complex conjugation we do not have to distuinguish between completeness for compact

closed and dagger compact closed categories in the case R = C.

3.5.1 Equivalences between the dagger and non-dagger case

Proposition 3.11a Let H be a class of finite-dimensional Hilbert spaces. Then (H,FHilb)-

interpretations are (essentially) fully/semi-relatively/relatively complete for dagger com-

pact closed categories if and only if so are (H,FVectC)-interpretations for compact closed

categories.

The proof will suggest a new terminology we introduce here. Let J K be a FModR-

interpretation. The abstract interpretation induced by J K is this FMod
R̂

-interpretation

that equals J K on objects but maps arrow labels to matrices with parwise different inde-

terminate entries Xi, i.e. any Xi appears at most once among all abstract interpretations

of arrow labels. If J K is an FProdR-interpretation then its induced abstract interpreta-

tion shall only map non-dagger arrow labels to those matrices with indeterminate entries,

while the image of dagger labels is determined by dagger functoriality of the abstract in-

terpretation. We denote the abstract interpretation of a diagram M with pM (in order to

indicate that it is effectively a polynomial in the Xi) and we write pM ((ci)i) ∈ R for this

element of R that arises from pM when replacing the Xi with ci ∈ R.
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Proof. Let M,N be two (simple) closed dagger networks. Define M ′, N ′ as the networks

arising from M,N by bijectively replacing all dagger labels {f †1 , . . . , f
†
m} appearing in M,N

with new labels {g1, . . . , gm} of the same type. Clearly M and N are isomorphic if and

only if so are M ′, N ′ and in the other case we suppose there is an FVectC-interpretation

J K with JM ′K 6= JN ′K. Then pM
′
, pN

′ ∈ Ĉ are different polynomials as they disagree on

the assignment for the Xi that J K provides. Especially pM
′
((zi)i) 6= pN

′
((zi)i) for all

algebraically independent (zi)i ⊂ C. Now when choosing (zi)i ⊂ C such that e.g. real

and imaginary parts together form an algebraically independent subset of R, then it is

a property of the complex conjugation that also (zi, zi)i ⊂ C is algebraically indepen-

dent. Hence the (H,FHilb)-interpretation J K? arising from the abstract interpretation

when substituting all Xi appearing in the JfK where f ∈ F∞ by zi and (necessarily) in-

terpreting Jf †K = JfK
t

separates M and N . As J K? does not directly depend on M,N

but only on J K we have proven the non-trivial implication for all types of completeness. 2

The proof crucially depends on the possibility to choose (zi)i in a way ensuring that

(zi, zi)i is an algebraically independent set. Hence the same proof is valid when e.g. con-

sidering conjugations that interchange algebraically independent transcendentals.

Proposition 3.11b Let R be a semi-ring. Endow R̂ with a conjugation : R̂ → R̂ that

acts as the identity on R and as a fixpoint-free involution on (Xi)i∈N, e.g. Xk = Xk+(−1)k .

Then for every class M of free finite-dimensional R̂-semimodules (M,FProd
R̂

)-interpre-

tations are (essentially) fully/semi-relatively/relatively complete for dagger compact closed

categories if and only if so are (M,FMod
R̂

)-interpretations for compact closed categories.

By means of this Proposition we obtain semi-relative completeness for dagger compact

closed categories as it is stated in Corollary 3.6 a second time, when just using the non-

dagger case of this corollary. However in the third section we have treated both cases

simultaneously since the dagger version of Selinger’s Interpretation is simpler than the in-

terpretation J K? which is induced by the non-dagger version of Selinger’s Interpretation.

The next observation illustrates another application of abstract interpretations.

Proposition 3.12 Let R be a semi-ring containing N and n ∈ N∞. Then (BnR,FProdR)-

interpretations are relatively complete for compact closed categories if and only if so are

(BnN,FModN)-interpretations. Likewise if Z[i] ⊂ R then (BnR,FProdR)-interpretations

are relatively complete for compact closed categories if and only if so are (BnZ[i],FProdR)-

interpretations (where the underlying conjugation is the complex conjugation).

Proof. The if-part is trivial as N ⊂ R resp. Z[i] ⊂ R. For the only-if-part note that

for two given diagrams M,N and a seperating (BnR,FModR)-interpretation J KM,N we

may consider their abstract interpretations pM , pN ∈ N[(Xi)i∈N] induced by J KM,N . As

J KM,N provides an assignment for the Xi distinguishing pM from pN these polynomials

are different and therefore also have a common non-root in N. In the dagger case we

similarly consider pM , pN ∈ N[(Xi, Xi)i∈N] and choose a common non-root in Z[i]. 2
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3.5.2 Semi-relative completeness for several discrete semi-rings with

non-trivial conjugation

Proposition 3.13 FProdZ[i]-interpretations are semi-relatively complete for dagger com-

pact closed categories.

Before proving this proposition we observe that the proof of Lemma 3.8 equally works

in the case of finitely many homogeneous polynomials p
(1)
0 , . . . , p

(l)
0 /∈ P that shall be si-

multaneously separated by a rational resp. a natural assignment from all polynomials in

P. As we will now use the same arguments as the proof of Proposition 3.10 we adopt its

notations as far as possible.

Proof. Let N0 be an arbitrary closed dagger network with kernel N0 = (B0, `0, π0).

We denote the corresponding dagger version of the Selinger Interpretation with J KN0 .

Define for every simple closed dagger network N with N � N0 the polynomial pN =

JNKN0 ∈ N[(Xb, Xb)b∈B]. When defining Xb = Yb + iZb and subsequently Xb = Yb − iZb
we may write pN = p0N + ip1N with polynomials p0N , p

1
N ∈ N[(Yb, Zb)b∈B]. Likewise define

p0 = JN0KN0 = p00 + ip10 with p00, p
1
0 ∈ N[(Yb, Zb)b∈B]. We know that not both p0N − p00 and

p1N − p10 vanish as otherwise pN − p0 would vanish even for every input in C. But this is

impossible as the Selinger Interpretation witnesses semi-relative completeness for dagger

compact closed categories when underlying C (cf. 3.6) and therewith provides an assign-

ment for the Xb separating pN from p0. Let p′N be one of the polynomials piN (i = 1, 2)

with piN − pi0 6= 0. The idea is now to repeat the proof of Proposition 3.10 with regard to

the p′N . We define again

P = {p′N ∈ N[(Yb, Zb)b∈B] | N simple closed network with N � N0}

and apply the second part of Lemma 3.8 on P, {p00, p10} to obtain ni = λ1 ·Lqi ∈ N, 1 ≤ i ≤
t = 2|B| separating all p′N ∈ P from each p00 and p10 when replacing the Yb, Zb by the ni.

Hence this replacement of the Yb, Zb appearing in J KN0 yields an FProdZ[i]-interpretation

witnessing essential semi-relative completeness.

The extension to all closed dagger networks will be done analogously to the proof

of Theorem 3.10. We consider the modified version J K(N0) of the Selinger Interpreta-

tion sending object labels appearing in N0 to pairwise different prime numbers s1, . . . , sm

satisfying the equivalent of (3.9). We generalize our previous definitions by setting

pN = JNK(N0) ∈ N[(Xb, Xb)b∈B] for all closed dagger networks N and

pN = p0N + ip1N with p0N , p
1
N ∈ N[(Yb, Zb)b∈B].

and likewise p0 = JN0K(N0) = p0 + ip1. Define p′N again as one of the polynomials piN
with piN − pi0 6= 0. Note that this can be done in a way ensuring that for all closed dagger

networks N with kernel N ′ we have p′N = piN implies p′N ′ = piN ′ for the same i. Then we

obtain again pN = c′ ·pN ′ for some c ∈ N whose prime factors all appear among s1, . . . , sm.
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We set

P = {p′N ∈ N[(Yb, Zb)b∈B] | N closed dagger network with N � N0}

and define analogously to (3.11)

∆p′N
(λ) := pN (λ · Lq1, . . . , λ · Lqt)− pi0(λ · Lq1, . . . , λ · Lqt)

where in this case i ∈ {0, 1} is this bit depending on N with p′N = piN . Due to the fact that

the λ1 · Lqt separate all p′N from both p0 and p1 together with pN = c′ · pN ′ we can argue

exactly like in the proof of Proposition 3.10 and derive (3.11), (3.12) and (3.14) in the same

way for some sufficiently large λ1 ∈ N. Hence replacing the Yb and Zb by the λ1 · Lqi and

substituting the resulting values for the Xb into J K(N0) yields an FProdZ[i]-interpretation

witnessing semi-relative completeness for dagger compact closed categories. 2

Completeness of a lot of other semi-rings with a non-trivial conjugation containing N
is indeed weaker than completeness for Z[i] as the following corollary shows.

Corollary 3.14 Let R be a semi-ring containing N.

(i) If R ⊂ C and i ∈ R then FProdR-interpretations are semi-relatively complete for

dagger compact closed categories.

(ii) If Z ⊂ R then FProdR[X]-interpretations are semi-relatively complete for dagger

compact closed categories. This especially includes the cases Z[ζ] for any transcen-

dental ζ ∈ R

(iii) FProdR[X,X]-interpretations are semi-relatively complete for dagger compact closed

categories.

Proof. (i): The conditions on R enforce Z[i] ⊂ R.

(ii): Due to the last Proposition we have semi-relative completeness in the case Z[i] =

Z[X]/(X2 + 1) ⊂ R[X]/(X2 + 1). The existence of the modulo-homomorphism

ϕ : R[X]→ R[X]/(X2 + 1), p 7→ p mod X2 + 1

now ensures that a collection of FProdZ[i]-interpretations witnessing semi-relative com-

pleteness can be converted to a collection of FProdR[X]-interpretations witnessing semi-

relative completeness when replacing every appearance of i with X.

(iii): Argue analogously with

ϕ′ : R[X,X]→ R[X] = R[X,X]/(X+X), p 7→ p mod X+X 2

We note that this transition to Z[X], N[X,X] can analogously be done for Proposition

3.12.
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3.6 Interconnections between full completeness and com-

pleteness for bounded dimensions

After clarifying when we have (essential) relative and semi-relative completeness we might

ask whether full completeness holds for FModR-interpretations. This turns out to be

a harder problem. As we will see, (essential) full completeness of FHilb-interpreta-

tions is equivalent to essential full and (essential) relative completeness of (BnC,FHilb)-

interpretations for sufficiently large n ∈ N. Here for any semi-ring R we denote the class

of all free finite-dimensional R-semimodules with a dimension less than or equal to n with

BnR where n ∈ N. If n =∞ then B∞R shall denote the class of all free finite-dimensional

R-semimodules.

Before stating the next result we remind of the notation S∞ = (S∞, F∞, dom, cod)

and write S∞(A,B) for the set of all f ∈ F∞ of type A → B in the non-dagger case. In the

dagger case we presuppose a splitting into non-dagger labels S∞(A,B) and corresponding

dagger labels S †
∞(A,B) of type A → B.

Proposition 3.15 Let R be a semi-ring with a fixed conjugation and n ∈ N∞. If

FModR- resp. FProdR-interpretations are essentially fully complete for (dagger) com-

pact closed categories then (BnR,FModR)- resp. (BnR,FProdR)-interpretations are es-

sentially relatively complete for (dagger) compact closed categories, where

n ≥ min
J K interpretation witnessing
essential full completeness

min
A∈S∞

JAK.

Proof. Let essential full completeness be witnessed by J K and let M , N be simple closed

networks with M � N . Also let A ∈ S∞ be one of the sorts, minimizing dimJXK for

X ∈ S∞. Let Φ : Net S∞ → Net S∞ be a traced (dagger) functor that it characterized

by the following information. It maps all object labels to A and every non-dagger arrow

label f to a non-dagger arrow label Φf of type A|dom(f)| → A|cod(f)| in a way ensuring

that

{f ∈ F∞ | |dom(f)| = i, |cod(f)| = j} → {f ∈ F∞ | dom(f) = Ai, cod(f) = Aj}
f 7→ Φf

is injective for all i, j ∈ N. This can be realized as all S∞ and all S∞-homsets are

countable, the previous function is of type⋃
X=X1...Xi∈Si∞
Y =Y1...Yj∈Sj∞

S∞(X ,Y ) → S∞(Ai, Aj)

and countable unions as well as finite cartesian products of countable sets remain count-

able. In the dagger case we necessarily set Φ(f †) = (Φf)†. Due to this injectivity (and

the absence of trivial cycles) we obtain ΦM � ΦN and therefore JΦMK 6= JΦNK. Defining
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J KM,N = J K ◦ Φ yields a seperating interpretation as

JMKM,N = JΦMK 6= JΦNK = JNKM,N . 2

Proposition 3.16 Let R be a semi-ring and n ∈ N. (BnR̂,FMod
R̂

)-interpretations are

essentially fully complete if and only if they are essentially relatively complete for compact

closed categories.

Proof. Suppose (BnR̂,FMod
R̂

)-interpretations are essentially relatively complete for com-

pact closed categories. Then every pair M,N of non-isomorphic simple closed networks

can be separated by an interpretation J KM,N that maps all object labels to R̂n (extend

matrices with zero elements if necessary). Hence the abstract interpretations pM ∈ R̂[(Yi)i]

of diagrams M induced by J KM,N do not depend on M,N as we assume dimJAK = n for all

object labels A. The interpretations J KM,N provide assignments for the Yi demonstrating

that the pM are pairwise different when M ranges over all simple diagrams. Replacing the

Yi by a countable algebraically independent set of elements in R̂ whose elements w.l.o.g.

do not appear in the pM , yields an interpretation witnessing essential full completeness.

2

We stated Proposition 3.16 only for the non-dagger case as the analogous dagger statement

automatically follows from Proposition 3.11. Now we will see that Proposition 3.15 and

3.16 do not have to be restricted to essential completeness.

3.7 Classification of Essential Completeness

Proposition 3.17 Let R be a semi-ring containing N with a fixed conjugation and

n ∈ N∞.

(i) If (BnR,FModR)- resp. (BnR,FProdR)-interpretations are essentially relatively

complete for (dagger) compact closed categories, then they are relatively complete for

(dagger) compact closed categories.

(ii) If (BnR̂,FMod
R̂

)-interpretations are essentially fully complete for compact closed

categories, then FMod
R̂

-interpretations are fully complete for compact closed cate-

gories.

Proof. (i): Let M,N be two closed networks with kernels M0, N0. If M0
∼= N0, then

there is an object label X appearing unequally often in M and N . Setting JXKM,N = R2,

JAKM,N = R for all other objects A and defining JfKM,N for all arrows f as matrices with
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natural entries such that JM0KM,N = JN0KM,N > 0, yields

JMKM,N = 2# of trivial cycles in M labelled with X · JM0KM,N

6= 2# of trivial cycles of N labelled with X · JN0KM,N = JNKM,N .

If M0 � N0 then their abstract interpretations pM0 , pN0 induced by an interpretation

J KM0,N0 which separates M0 from N0, are not multiples of each other. Indeed, con-

sidering the denotation (3.2) shows that the Xi appearing in the monomials of pM0 , pN0

determine how often which box appears in M0, N0. This data in turn determines how

often wires with a certain label appear. Thus if pM0 , pN0 consist of the same monomials,

then they must have an equal number of summands, making c · pM0 = c′ · pN0 impossible

for c 6= c′. Therefore pM = const. · pM0 6= const. · pN0 = pN and we can choose a non-root

of pM − pN .

(ii): Let J K be a (BnR̂,FMod
R̂

)-interpretation witnessing essential full completeness.

Then we may assume w.l.o.g. that the dimJAK for A ∈ S∞ are pairwise different prime

numbers, otherwise increase the dimJAK appropriately and fill up the additional entries

of the matrices JfK, f ∈ F∞ with zeros. Due to uniqueness of prime factorization we

can recover what trivial cycles M contains when having pM ∈ R̂[(Yi)i]. Therefore all pM

are (pairwise) different and replacing the Yi by algebraically independent transcendentals

from R̂ yields an interpretation proving full completeness. 2

Again 3.11 makes it redundant to treat the dagger case of (ii) as well. The second im-

plication only speaks of full completeness for interpretations with unbounded dimensions.

This is in fact the best we can achieve as the following observation illustrates.

Proposition 3.18 Let R be a semi-ring and n ∈ N a natural number. Then (BnR,FModR)-

interpretations are not semi-relatively complete for compact closed categories.

Proof. Suppose there is an (BnR,FModR)-interpretation J KM for every closed network

M witnessing semi-relative completeness. Consider

M =
A0 A1

. . .
An+1

.

As dimJAiKM ≤ n for all 0 ≤ i ≤ n+ 1 the interpretations of some of the Ai - w.l.o.g. A0

and A1 - have the same dimension. But then we have JMKM = JM ′KM for the diagram M ′

consisting of n+ 2 trivial cycles labelled with A0, A0, A2, A3, . . . , An+1 although M �M ′.

 2

The various implications we have proven are visualized in the following diagram.
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full completeness

full completeness with

bounded dimensions

semi-relative completeness

with bounded dimensions

relative completeness with

bounded dimensions

essential full completeness

essential full completeness

with bounded dimensions

essential semi-relative complete-

ness with bounded dimensions

essential relative complete-

ness with bounded dimensions

(3.15)

Here completeness means both completeness of FModR- and FProdR-interpretations

with N ⊂ R for compact closed resp. dagger compact closed categories. The dashed arrows

only hold for FMod
R̂

-interpretations. We particularly observe that in this case all stated

kinds of completeness are equivalent. Also Proposition 3.18 explains why it is necessary

to differentiate between completeness and essential completeness. Furthermore we know

for N ⊂ R that FModR-interpretations are always semi-relatively complete. Hence in

this case also semi-relative and essential semi-relative completeness are equivalent. Hence

completeness for interpretations with bounded dimensions is the remaining open question

we have to deal with.
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Chapter 4

Non-trivial trace equations

As we have seen that for FModR̂-interpretations full completeness is equivalent to rela-

tive completeness for interpretations with bounded dimensions we will now focus on the

question when two non-isomorphic diagrams can be distinguished in the latter case. For

this it will be useful to focus first on networks representing the trace of a composition of

functions. Note that we do not need to consider dagger networks separately as Proposi-

tion 3.11 shows how any non-trivial equation between non-isomorphic diagrams including

daggers can be transformed into such an equation without daggers when underlying a

semi-ring R providing countably many transcendentals.

Selinger resp. Pare pointed out already that Hilbert spaces restricted to dimensions of

at most 2 are not essentially relatively complete for compact closed and therewith dagger

compact closed categories because the trace equation

tr(A2B2AB) = tr(B2A2BA) (4.1)

holds for all A,B ∈ C2×2 but not in the graphical calculus. We will now aim to find out

whether similar trace equations (over C) can be found for higher dimensional matrices.

This will require a lot of notational preparations we will deal with in the first section.

Then we will deduce that validity of non-trivial trace equations like (4.1) is equivalent to

a combinatorial problem allowing us to exclude existence of those equations in a lot of

special instances. In the third section we will discuss related questions, namely what trace

equations exist for two dimensional matrices, under what operations the collection of trace

equations is closed and how far non-existence of non-trivial trace equations would bring

us in terms of completeness for all closed networks.

Finally we finish our completeness analyses by dealing with FModR-interpretations

for semi-rings R with N * R. In this case we will derive several non-trivial trace equations

proving that then in many cases not even essential relative completeness can be achieved.

Our considerations will also turn out to be directly applicable to Rel-interpretations.
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4.1 Semantical Preparations

For notational convenience we will work in the context of words over alphabets and regard

a product P = M e1
i1
· . . . ·M en

in
consisting only of the matrices M1, . . . ,Ml, as the string

P = M e1
i1
. . .M en

in
over the alphabet {M1, . . . ,Ml}. The following preliminary remark eval-

uates tr(P ).

Lemma 4.1 Let M1, . . . ,Ml be n×n-matrices (over a general semi-ring R) and let mk(i, j)

denote the ij-th entry of Mk. Then the ij-th entry of
∏

1≤k≤lMk equals

n∑
d1,...,dl−1=1

m1(i, d1)m2(d1, d2)·. . .·ml−1(dl−2, dl−1)ml(dl−1, j) =
n∑

d1,...,dl−1=1

l∏
k=1

mk(dk−1, dk)

where d0 = i and dl = j.

Proof. The claim is easily verified by induction on l. The case l = 1 is trivial and if

the Lemma holds for M1, . . . ,Ml then the definition of matrix multiplication shows for an

additional Ml+1:(
l+1∏
k=1

Mk

)
ij

=
n∑

dl=1

 n∑
d1,...,dl−1=1

m1(i, d1)m2(d1, d2) · . . . ·ml(dl−1, dl)

 ·ml+1(dl, j)

=
n∑

d1,...,dl=1

m1(i, d1)m2(d1, d2) · . . . ·ml(dl−1, dl)ml+1(dl, j) 2

Corollary 4.2 Let A = (aij)ij be an n× n-matrix and l ≥ 1. Then

tr(Al) =

n∑
d1,...,dl=1

adld1ad1d2 · . . . · adl−1dl . (4.2)

We observe that (4.2) could also be derived from the formula (3.2) for the denotation. The

previous Corollary already suggests to introduce shorter notations in order to abbreviate

the appearing summands. The next definition provides all terminology we need to state

the results of this chapter in a concise manner.

Definition 4.3 Let Σ be an alphabet and d = d1 . . . dl ∈ Σ∗ a string over Σ.

(i) d ′ ∈ Σ∗ is called a cyclic permutation of d iff d ′ = di . . . dld1 . . . di−1 for some

1 ≤ i ≤ l. In this case we write d ∼c d ′. If Σ is a set of matrices and P , P ′ ∈ Σ∗

can be regarded as matrix products (i.e. the matrices have appropriate dimensions)

then we call the trace equation tr(P ) = tr(P ′) trivial iff P ∼c P ′, otherwise it is called

non-trivial.
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(ii) We define

〈d 〉 := 〈(di, di⊕1)〉i=1,...,n = 〈(d1, d2), . . . , (dn−1, dn), (dn, d1)〉

and for another d ′ ∈ Σ∗ we write d ∼2 d ′ iff 〈d 〉 = 〈d ′〉. If Σ is a set of indices we

abbreviate the product adld1ad1d2 · . . . · adl−1dl with ad .

(iii) d is called primitive, if there is no shorter string s ∈ Σ∗ with d = sk for some

k ∈ N>1.

Clearly ∼c and ∼2 are equivalence relations and d ∼c d ′ implies d ∼2 d ′. Furthermore we

write [d ]c resp. [d ]2 for the equivalence classes of d with respect to ∼c resp. ∼2. It is also

obvious that any trace equation

tr(P ) = tr(P ′) (4.3)

for P , P ′ ∈ Σ∗ holds in the graphical language if and only if P and P ′ are cyclic permuta-

tions of each other (and hence trivial trace equations are in fact valid). The definition of

〈d 〉 is motivated by the observation that the product ad does not completely depend on d
but only on 〈d 〉, while the notion of primitivity will be useful later to prove a non-trivial

trace equation for R = Z/plZ.

Now suppose some equation of kind (4.3) holds for all square matrices M0, . . . ,Ml of

the same dimension. Let A,B be new matrix variables. Then we can substitute Mi by

ABi for all 0 ≤ i ≤ l and get a new equation only including the matrix variables A and

B. Moreover the map

{M0, . . . ,Mk}∗
subs−−−→ {A,B}∗, Mi 7→ ABi (4.4)

(whose values for longer words are determined by its compatibility with concatenation) is

obviously bijective and compatible with ∼c, i.e. P ∼c P ′ if and only if subs(P ) ∼c subs(P ′).
Hence (4.3) is non-trivial if and only if so is tr(subs(P )) = tr(subs(P ′)). Therefore if there

is a non-trivial trace equation for matrices with restricted dimensions at all, then there is

also such an equation with words over the alphabet {A,B}. Because of this we focus on

the search for trace equations containing only two different types of maps. It will also be

convenient to use the abbreviation

P (k ) = ABk1ABk2 · . . . ·ABkl

where k ∈ N∗.
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4.2 Equivalence to a combinatorial problem

4.2.1 Reconstructability of combinatorial information

We are now able to deduce the main result stating that finding non-trivial trace equations

over C is equal to solving a combinatorial problem. Before stating the main result we

observe that the lengths |d |, |d ′| of two strings coincide if d ∼2 d ′.

Theorem 4.4 Let n ∈ N and A,B be two complex n×n-matrices. Then for all strings of

natural numbers k = k1, . . . kl, k ′ = k′1 . . . k
′
l′ ∈ N∗ we have: The trace equation

tr (P (k )) = tr
(

P (k ′)
)

(4.5)

holds if and only if l = l′ and for every equivalence class [d0]2 ∈ {1, . . . , n}∗/ ∼2 with

|d0| = l we have〈 ∑
j:dj=i

kj


i=1,...,n

〉
d =d1...dl∈[d0]2

=

〈 ∑
j:dj=i

k′j


i=1,...,n

〉
d =d1...dl∈[d0]2

(4.6)

Example 4.5 We illustrate the meaning of this Theorem by applying it on (4.1) which is

equivalent to tr(P (012)) = tr(P (210)). The multisets (4.6) are given in the following table

for different n and d0.

n d0 k = 012 k ′ = 210

2 111 〈(3, 0)〉 〈(3, 0)〉
2 112 〈(1, 2), (3, 0), (2, 1)〉 〈(3, 0), (1, 2), (2, 1)〉
2 122 〈(0, 3), (1, 2), (2, 1)〉 〈(2, 1), (1, 2), (0, 3)〉
2 222 〈(0, 3)〉 〈(0, 3)〉
3 123 〈(0, 1, 2), (1, 2, 0), (2, 0, 1)〉 〈(2, 1, 0), (1, 0, 2), (0, 2, 1)〉

As the multisets for n = 2 coincide (4.1) is valid for 2-dimensional matrices, but it does

not hold for 3× 3-matrices as (4.6) is not satisfied for d0 = 123.

Proof of Theorem 4.4. Suppose (4.5) holds for given words k , k ′ ∈ N∗. Then we may

choose B as a diagonal matrix

B =


λ1

. . .

λn


and the entries aij ∈ C, 1 ≤ i, j ≤ n of A such that the set {aij , λi | 1 ≤ i, j ≤ n} ⊂ C
is algebraically independent over Q. Define Mι = ABkι and Mκ = ABk′κ for all 1 ≤ ι ≤
l, 1 ≤ κ ≤ l′. Then clearly Mι = (λkιj aij)ij , M

′
κ = (λ

k′κ
j aij)ij . Therefore, using Lemma 1,
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we obtain

tr (P (k )) = tr(M1 . . .Ml) =

n∑
d1,...,dl=1

λk1d1adld1λ
k2
d2
ad1d2 · . . . · λ

kl
dl
adl−1dl

=
∑

d∈{1,...,n}∗,
|d |=l

λk1d1 · . . . · λ
kl
dl
ad =

∑
[d0]2∈{1,...,n}/∼2

 ∑
d∈[d0]2,

d =d1...dl

λk1d1 · . . . · λ
kl
dl

 ad0 .

(4.7)

When arguing analogously for the right hand side of (4.5) we reformulate this equation as

∑
[d0]2∈{1,...,n}/∼2

|d0|=l

 ∑
d∈[d0]2,

d =d1...dl

λk1d1 · . . . · λ
kl
dl

 ad0 =
∑

[d0]2∈{1,...,n}/∼2

|d0|=l′

 ∑
d∈[d0]2,

d =d1...dl′

λ
k′1
d1
· . . . · λk

′
l′
dl′

 ad0

(4.8)

As all factors aij , λi are algebraically independent, the coefficients of both sides of (4.8)

interpreted as polynomials in the aij , must be equal. Hence we must have l = l′ (otherwise

both sides contain different monomials) and it holds∑
d =d1...dl∈[d0]2

λk1d1 · . . . · λ
kl
dl

=
∑

d =d1...dl′∈[d0]2

λ
k′1
d1
· . . . · λk

′
l′
dl′

for all [d0]2 ∈ {1, . . . , n}/ ∼2. Due to the algbraic independence of the λi again, the n-tuple

of exponents of the λ1, . . . , λn, which are∑
j:dj=1

kj , . . . ,
∑
j:dj=n

kj resp.
∑
j:dj=1

k′j , . . . ,
∑
j:dj=n

k′j

must be the same. This proves (4.6).

Now conversely assume that (4.6) holds. The expression

tr(ABk1ABk2 · . . . ·ABkl)− tr(ABk′1ABk′2 · . . . ·ABk′
l′ )

can be considered as a polynomial in the 2n2 variables aij , bij , 1 ≤ i, j ≤ n. Let Z0 ⊂ C2n2

be the set of its zeros. As the trace is invariant under change of bases, we have

tr(ABk1ABk2 · . . . ·ABkl) = tr(A′B′k1A′B′k2 · . . . ·A′B′kl)

where A′ = T−1AT and B′ = T−1BT . Hence - together with the previous consderation -

we are able to deduce, that also (4.5) will hold if the eigenvalues of B together with the

(multi)set of entries of T−1AT (where T depends on B) are algebraically independent.

Thus it remains to show that in the case Z0 6= C2n2
the set Z ⊂ C2n2

of matrix pairs
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(A,B) getting mapped to an algebraically independent (multi)set

(A,B) 7→ 〈entries of T−1AT, eigenvalues of B〉 (4.9)

is strictly larger then Z0. Due to Z0 6= C2n2
it is the set of zeros of a non-zero polynomial.

Hence it has Lebesgue measure 0. But the image of (4.9) will be algebraically independent

in the generic case so that Z must have infinite Lebesgue measure. Therefore Z 6= Z0. 2

Informally this proposition tells us that the multisets (4.6) are exactly this information

about k one can deduce from having tr(ABk1 ·. . .·ABkl). The question whether non-trivial

trace formulas exist therefore equals the problem whether the information [k ]c can be de-

duced from the ”datasets” (4.6). In order to capture this mathematically, we introduce

the concept of n-reconstructability:

Definition 4.6 Let k = k1 . . . kl ∈ N∗ be a word and Pk = ABk1 · . . . · ABkl be the

corresponding matrix product. Let also req be a map1 defined on N∗ or - more generally -

on a subset of N∗. We call req n-reconstructable if for all k , k ′ ∈ N∗ satisfying the trace

equation tr(Pk ) = tr(Pk ′) for all n× n-matrices A,B, we have

req(k ) = req(k ′).

Using this terminology, Proposition 4.4 claims the n-reconstructability of

k 〈d0 , n〉 :=

〈 ∑
j:dj=i

kj


i=1,...,n

〉
d =d1...dl∈[d0]2

(4.10)

and the non-existence of non-trivial trace equations for n×n-matrices is equivalent to the

n-reconstructability of [k ]c. Obviously n-reconstructability implies N -reconstructability if

n ≤ N .

4.2.2 Consequences

Before stating the next result, note that whenever indices might be out of range they have

to be considered up to a multiple of the length l of the corresponding string k . Moreover

we regard the first and last digit of k as neighboured (i.e. we think modulo cyclic permu-

tations). Therefore k = 22122 contains e.g. the substring 2222. Furthermore we say that

k contains a ke-block, if either k = ke or k contains the substring ke that is bounded by

letters different from k. Therefore 22122 contains a 24-block but not a 22-block. Finally

we will focus on the issue of 3-reconstructability as 3 is the least dimension for which the

question about existence of non-trivial trace equations is open. However, most statements

have an immediate n-reconstructability analogue.

1We envisage req as a method of requesting information about k . Instead of mentioning req explicitly
we will usually refer to it by its value req(k ) for an indeterminate k = k1 . . . kl.
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Corollary 4.7 Let k = k1 . . . kl ∈ N∗ be a string of natural numbers.

(i) For every 1 ≤ i < l the multiset

k 〈i〉 :=

〈
κ+i−1∑
ι=κ

kι

〉
κ=1,...,l

is 2-reconstructable.

(ii) Set k = max(k1, . . . , kl). Then for every 1 ≤ i < l the number of subtrings of

the form ki in k is 2-reconstructable. Hence also the number of ki-blocks in k is

2-reconstructable.

(iii) The multiset of pairs of neighboured digits 〈(k1, k2), (k2, k3), . . . , (kl, k1)〉 is 3-recon-

structable.

(iv) For every 1 ≤ i < l the multiset 〈k1 +ki+1, k2 +ki+2, . . . , kl+ki〉 is 3-reconstructable.

(v) For all 1 ≤ i, j < l with i+ j < l the multiset of pairs〈(
κ+i−1∑
ι=κ

kι,

κ+i+j−1∑
ι=κ+i

kι

)〉
κ=1,...,l

is 3-reconstructable.

Proof. First of all we observe that ∼2 identifies two strings d , d ′ ∈ N∗ with each other only

if every d ∈ N appears in d and d ′ equally often and if the number of blocks containing d

is equal for d and d ′. Now we can verify (i) to (v) by using the reconstructability of (4.10)

for a specific d0:

(i) Choose d0 = 1i2l−i. Then the multiset of the first coordinates of the pairs in k 〈d0, 2〉
equals the multiset k 〈i〉 stated in (i) because [1i2l−i]2 = [1i2l−i]c due to the above

comments.

(ii) Due to (i) the maximum k is 2-reconstructable. Then choosing d0 = 1i2l−i returns

a multiset of pairs of exponents. If the first coordinate is k · i, then we know that

k’s were added up i times, as k is maximal. Hence the number of pairs with first

coordinate k · i equals the number of runs ki appearing in k . As the number ci of

ki-blocks and the number di of runs of the form ki are related by

di =

∞∑
j=i

(j − i+ 1)cj

the ci can be inductively reconstructed as di = 0 for i large enough.
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(iii) Choose d0 = 123l−2. Then the multiset of the first two coordinates of the elements

of k 〈d0, 3〉 equals the requested multiset and again [123l−2]2 = [123l−2]c due to the

previous explanations.

(iv) Choose d0 = 12i−113l−i−1 and argue analogously.

(v) Choose d0 = 1i2j3l−i−j and argue analogously. 2

At least the 3-reconstructable properties (i) - (iv) do in general not suffice to reconstruct

[k ]c since the strings

k = 110100 and k ′ = 110010

which are not equal up to cyclic permutations, agree on all multisets of (i) - (iv). In

fact, k is a cyclic permutation of the reverse of k ′ and the multisets of (i), (ii) and (iv)

obviously coincide for a string and its reverse. For (iii) it follows from k ∼2 k ′. How-

ever although they not constitute a non-trivial trace equation as substituting AB by B

in tr(P (k )) = tr(P (k ′)) yields (4.1) again. Now we will deal with two more sophisticated

applications of Proposition 3.

Corollary 4.8 Suppose for k = k1 . . . kl ∈ N∗ there is a 1 ≤ i < l such that the mul-

tiset k 〈i〉 contains a unique element. Then [k ]c is 3-reconstructable2. If k = k e0 for some

k 0 ∈ N∗ and some of the k 0〈i〉 contain a unique element then [k ]c is 3-reconstructable.

Proof. Assume K = kj + · · · + kj+i−1 is (one of) the unique element(s). Then consider

k 〈d0, 3〉 for d0 = 1i23l−i−1. The uniqueness of K implies that only one 3-tuple in k 〈d0, 3〉
has K as the first coordinate. Then the second coordinate must be kj+i. Now we argue

analogously for d0 = 1i223l−i−2 and obtain the sum kj+i + kj+i+1. Therefore we know

both kj+i, kj+i+1 and considering k 〈d0, 3〉 for all d0 = 1i2i
′
3l−i−i

′
yields the ordered tuple

(kj+i, kj+i+1, . . . , kj−1). Uniqueness of K implies that also
∑

m km−K = kj+i+ · · ·+kj−1

is unique in k 〈l− i〉. Hence we can apply the same procedure to identify (kj , . . . , kj+i−1).

Putting both together shows 3-reconstructability of [k ]c (and not k as j is unknown). If

k = k e0 and K is a unique element of some k 0〈i〉 then the proof is still valid when observing

that the sum K appears exactly e-times in k e0〈i〉. But due to the periodicity of k e0 the

second entries of the 3-tuples in k 〈d0, 3〉 belonging to d0 = 1i2i
′
3l−i−i

′
are always the same

if the first entry equals K. 2

By means of this Corollary we would have disproven the existence of non-trivial trace

equations for 3× 3 matrices if every primitive k obeyed the stated uniqueness condition.

But a computational analysis shows that there are counter-examples.

Example 4.9 The shortest primitive string k ∈ {0, 1}∗ containing only two characters

2Formally the function req : k → [k ]c, which is defined on the subset of N∗ of strings such that one of
the multisets k 〈i〉 contains a unique element, is 3-reconstructable.
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such that k 〈i〉 contains no unique element for all 1 ≤ i ≤ |k |, is

k = k1 . . . k14 = 10010101100110.

Indeed this holds for all of the strings 100(10)m1100110 with m ∈ N>1. Moreover it is easy

to see that the condition of Corollary 4.8 remains unsatisfied if we proceed to the string

of distances between appearing ones, i.e. k = 21m0201 for m ∈ N>1.

Corollary 4.10 For a given k = k1 . . . kl ∈ N∗ define k = max(k1, . . . , kl) and let e ∈ N be

the largest number such that some ke-blocks appear in k . Let K1, . . . ,Kr be the numbers

of digits between neighboured ke-blocks in k where Ki has to be the distance between the

i-th and the (i + 1)-th ke-block of k (and the first ke-block of k is arbitrarily chosen).

Define K = K1 . . .Kr. Then for any fixed s0 = s1 . . . sr ∈ {1, 2}∗ the map k → K 〈s0, 2〉 is

3-reconstructable.

Proof. For any s = s1 . . . sr ∈ {1, 2}∗ define

D(s , e) = 3ese11 3ese22 . . . 3eserr

where e = (e1, . . . , er) is an r-tuple of exponents with e1, . . . , er ≥ 1 and
∑

i ei = l − re,
as well as

D1 =

d = d1 . . . dl ∈ {1, 2, 3}∗
∣∣∣∣∣∣
∑
j:dj=3

kj = r · e · k, neither 12 nor 21 are substrings of d

and d contains r many 3e-blocks

 ,

D(s) =

d = d1 . . . dl ∈ [D(s ,K )]2

∣∣∣∣∣∣
∑
j:dj=3

kj = r · e · k


where s ∈ {1, 2}∗ is an arbitrary string of length r. Since ∼2-equivalence implies invariance

in the number of appearances of the letter 3 and the number of blocks containing 3 we

deduce from the maximality of k and e that the strings in D(s) contain exactly r-many

3e-blocks that match the ke-blocks of k . This proves

D1 =
⋃

s∈{1,2}∗,
|s|=r

D(s).

If d ∈ D(s) then obviously for every (i, j) ∈ 〈s〉 the set 〈d 〉 contains the pairs (i, 3), (3, j)

(in compliance with multiplicities) while every other pair in 〈d 〉 has equal coordinates.

Therefore knowledge of 〈d 〉 resp. [d ]2 allows us to reconstruct 〈s〉 and hence [s ]2. But we

are able to 3-reconstruct [D1]2 := {[d ]2 | d ∈ D1} by searching through all coefficients of

the polynomial (4.7), i.e.

tr (P (k )) =
∑

d∈{1,...,n}∗,|d |=l

λk1d1 · . . . · λ
kl
dl
ad
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and storing all [d ]2 for which the exponent of λ3 is maximal, i.e. it equals r · e · k, the

factors a12, a21 do not appear in ad and for which d contains r many 3e-blocks and no other

appearances of 3 (which can be deduced from [d ]2). Here we implicitly use that according

to Corollary 4.7 (i) and (ii) the numbers r, e and k are 2-reconstructable. Therefore for a

specific s0 ∈ {1, 2}∗ we are now able to 3-reconstruct

D =
⋃

s∼2s0

D(s) (4.11)

by filtering all [d ]2 ∈ [D1]2 with d ∈ D(s) for some s with s ∼2 s0. Lastly we can

3-reconstruct a final set D0 ⊂ D which shall be a system of representatives of the

∼2-equivalence classes of the elements in D by partitioning its elements into their ∼2-

equivalence classes. This means for every s ∈ [s0] there is exactly one d ∈ D0 with d ∈ D(s)

(although in general we cannot construct s out of a given d ).Then the observation

K 〈s0, 2〉 =
〈

(n1, n2)
∣∣∣ d ∈ D0, ni = # of i’s in d (for i = 1, 2)

〉
proves 3-reconstructability of K 〈s0, 2〉. 2

A consequence of this corollary is that - with the above notations - if K 7→ [K ]c is

2-reconstructible then k 7→ [K ]c will be 3-reconstructible. By means of the next corol-

lary we will see that the previous examples k = 100(10)m1100110 for m ∈ N>1 are 3-

reconstructable.

Corollary 4.11 Taking the notations from above, assume that r = 2 and K2 ≥ 2K1

where w.l.o.g. the Ki are chosen such that K2 ≥ K1. Then [k ]c is 3-reconstructable.

Proof. Assume

k ∼c keke+1 . . . ke+K2k
ek2e+K2+1 . . . kl

for notational convenience. The sums

S1 = ke+1 + · · ·+ ke+K2 and S2 = k2e+K2+1 + · · ·+ kl

can easily be 3-reconstructed by considering k 〈d , 3〉 for d = 3e1K13e2K2 and picking out

this 3-tuple with maximal third coordinate. Here we took advantage of 3-reconstructability

of 〈K1,K2〉 which follows from the previous corollary. Now consider k 〈d , 3〉 for all

d = 3e1K13e1j2l−2e−K1−j and d = 2l−2e−K1−j1j3e1K13e

with 1 ≤ j ≤ K2−K1. The condition on j guarantees [d ]3→max
2 = [d ]3→max

2 for both cases,

where we set

[d ]3→max
2 =

d ′ = d′1 . . . d
′
l ∈ [d ]2

∣∣∣∣∣∣
∑
j:d′j=3

kj = 2 · e · k
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and analogously for [d ]3→max
c . Hence when picking the 3-tuples of k 〈d , 3〉 with maximal

third coordinate the corresponding first coordinates are

S1 + ke+1 + · · ·+ ke+j and S1 + ke+K2 + · · ·+ ke+K2−j+1.

After evaluating suitable subtractions we obtain 3-reconstructability of

ke+1, ke+2, . . . , ke+K2−K1 and ke+K2 , ke+K2−1, . . . , ke+K1+1

as S1 is 3-reconstructable as well. Due to 2K2 ≥ K1 we have shown that ke+1 . . . ke+K2 is

3-reconstructable. Now consider k 〈d , 3〉 for all

d = 3e1K23e1j2l−2e−K2−j

with 1 ≤ j ≤ l − 2e−K2. Because of

[d ]3→max
2 = [d ]3→max

c ∪ [3e1K13e1j+K2−K12l−2e−K2−j ]3→max
c

k 〈d , 3〉 contains two 3-tupels with maximal third coordinate. The respective first coordi-

nates are

S2 + k2e+K2+1 + · · ·+ k2e+K2+j and S1 + ke+1 + · · ·+ ke+K2−K1+j .

But we can differentiate between these two cases as we can identify the sums on the right

side due to 3-reconstructability of S1 and ke+1 . . . ke+K2 . Hence the collection of sums

S2 + k2e+K2+1 + · · ·+ k2e+K2+j

and therewith k2e+K2+1 . . . kl is 3-reconstructable since so is S2. 2

In the case k = 100(10)m1100110 we clearly have r = 2 and K1 = 2,K2 = 4 + 2m.

As 4 + 2m ≥ 2 · 2 we have proven 3-reconstructability of [k ]c for all m ∈ N. We can argue

similarly for k = 121m020 if m ≥ 3. For k = 1211020 a computational analysis shows that

this string does not satisfy any non-trivial trace equation.

4.3 Further results

4.3.1 Properties of the class of non-trivial trace equations

Although the previous corollaries seem to be sufficient to exclude almost every given string

from being part of a 3-dimensional non-trivial trace equation it is not clear whether there

is a general scheme for reconstructing [k ]c from the multisets k 〈d , 3〉 in the general case.

Therefore we try to derive properties of the set of non-reconstructable strings.

Proposition 4.12 Suppose k = k1 . . . kl, k ′ = k′1 . . . k
′
l ∈ N∗ satisfy the trace equation

tr (P (k )) = tr (P (k ′)) for n-dimensional square matrices. Then for all s0, s1 ∈ N∗ the
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strings

K = s0sk11 s0sk21 . . . s0skl1 , K ′ = s0sk
′
1

1 s0sk
′
2

1 . . . s0sk
′
l

1

satisfy tr (P (K )) = tr (P (K ′)) for dimension n. Additionally, for every a, b ∈ N the linear

transformations

ak + b = (ak1 + b) . . . (akl + b), ak ′ + b = (ak′1 + b) . . . (ak′l + b)

satisfy tr (P (ak + b)) = tr (P (ak ′ + b)).

Proof. When replacing all A’s by P (s0) and all B’s by P (s1) then P (k ) resp. P (k ′) become

P (K ) resp. P (K ′). Similarly the case of a linear transformation follows from substituting

A and B in tr (P (k )) by ABb and Ba. 2

Also, Pare’s counterexample to completeness for 2 × 2-matrices raises the question, how

the class of non-trivial trace equations looks like in the 2×2 case. His equation (4.1) resp.

tr(P (210)) = tr(P (012)) has the following immediate generalization.

Corollary 4.13 For any k = k1 . . . kl ∈ N∗ let rev(k ) = kl . . . k1 ∈ N∗ be its reverse

string. Then

tr (P (k )) = tr
(

P (k ′)
)

for 2-dimensional matrices.

Proof. For every d ∈ {1, 2}∗ the multiset 〈d 〉 must contain (2, 1) as often as (1, 2) since

for every 1∗-block beginning there is exactly one 1∗-block end. Thus d ∼2 rev(d ) and

subsequently we obtain for all k ∈ N∗ and d ∈ {1, 2}∗ with |d | = |k |

rev(k )〈d , 2〉 = rev(k )〈rev(d ), 2〉 = k 〈d , 2〉.

Hence Theorem 4.4 finishes the proof. 2

According to Proposition 4.12 the class of k ∈ N∗ with tr(P (k )) = tr(P (k 0)) in 2 di-

mensions for some fixed k 0 ∈ N∗ is in general strictly larger than the one generated by

cyclic permutations and reversions. Indeed it yields e.g.

tr(P (s0sk11 . . . s0skl1 )) = tr(P (s0skl1 . . . s0sk11 ))

for all s0, s1, k1 . . . kl ∈ N∗ that cannot be obtained by cyclic permutations and reversions

alone as long as rev(s1) 6= s1 and rev(s0) 6= s0. However it is still an open question whether

TrEq2 = {(k , k ′) ∈ N∗ × N∗ | tr(P (k )) = tr(P (k ′)) in 2 dimensions}

is the smallest set generated by cyclic permutation, reversion and substitution, i.e. whether

it is the smallest set X satisfying
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• ∀k , k ′ ∈ N∗ : k ∼ k ′ ⇒ (k , k ′), (k , rev(k ′)) ∈ X

• ∀s0, s1 ∈ N∗ : (k1 . . . kl, k
′
1 . . . k

′
l) ∈ X ⇒ (s0sk11 . . . s0sk11 , s0sk

′
1

1 . . . s0sk
′
l

1 ) ∈ X

4.3.2 Products of traces

We finally observe that non-existence of non-trivial trace equations would even exclude

products of traces from being counterexamples to essential relative completeness. Hence

the considerations of this chapter go beyond the question whether just non-trivial trace

equations exist.

Proposition 4.14 Let n ∈ N>1 and A,B be the underlying matrices of the P -notation

where A = (aij)1≤i,j≤n is an n × n-matrix with indeterminate entries and B a diagonal

n×n-matrix with indeterminate diagonal entries λ1, . . . , λn. For any k = k1 . . . kl ∈ N∗ the

trace tr(P (k )) is prime considered as a polynomial in Z[(aij)1≤i,j≤n][(λi)1≤i≤n]. Hence if

there are no non-trivial trace equations for dimensions ≥ n, all non-isomorphic diagrams

consisting only of traces can be separated by interpretatons in dimensions ≥ n.

Proof. We have seen in (4.7) that

tr (P (k )) =
∑

d∈{1,...,n}∗,
|d |=l

λk1d1 · . . . · λ
kl
dl
ad ∈ N[(aij)1≤i,j≤n][(λi)1≤i≤n].

Suppose tr (P (k )) = g · h for some polynomials g, h ∈ Z[(aij)ij ][(λi)i]. As tr (P (k )) is both

homogeneous as a polynomial in the aij with coefficients in Z[(λi)i] and homogeneous as

a polynomial in the λi with coefficients in Z[(aij)ij ], so are g and h. We set K =
∑

i ki.

Choosing d0 = 1l and d0 = 2l shows that tr (P (k )) contains the monomials λK1 a
l
11 and

λK2 a
l
22. We laxly write

tr (P (k )) = λK1 a
l
11 + λK2 a

l
22 + . . .

Hence g, h must be of the following form

g = λe11 a
e2
11 + λe12 a

e2
22 + . . . , h = λK−e11 al−e211 + λK−e12 al−e222 + . . .

Thus the product g · h also contains λe11 λ
K−e1
2 ae211a

l−e2
22 , but ae211a

l−e2
22 is unequal to all ad0

unless l = 0 or l = e2. Assuming w.l.o.g. the latter, we deduce

g = λe11 a
l
11 + λe12 a

l
22 + . . . , h = λK−e11 + λK−e12 + . . .

so that g · h contains λe11 λ
K−e1
2 al11 which can only appear in (4.7) if e1 = K. Therefore

h must be constant. We even have h ≡ 1 since tr (P (k )) contains the monomial λK1 a
l
11

exactly once.

Now suppose M,N are simple closed networks consisting only of traces, i.e. every

appearing box has exactly one input and one output wire, with M � N . By considering a

seperating interpretation J KM,N mapping all appearing object labels to the n-dimensional
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space and interpreting all function labels according to the substitution

{f0, . . . , fk}∗
subs−−−→ {f, g}∗, fi 7→ fgi

(cf. (4.4)) we gain

JMKM,N =
m∏
i=1

tr (P (k i)) , JNKM,N =
m′∏
i=1

tr
(

P (k ′i)
)

for some m,m′ ∈ N and k 1, . . . , km, k ′1, . . . , k ′m′ ∈ N∗. But those products cannot be equal

unless they consist of the same factors, as all factors are prime and Z[(aij)ij ][(λi)i] is a

factorial ring(cf. Gauss’ Theorem [30] p.198f). But in the absence of non-trivial trace

equations for dimensions ≥ n equality of the factors implies the contradiction M ∼= N .

The case for not necessarily simple diagrams follows from Proposition 3.16(i). 2

Although this Proposition only deals with products of trace diagrams we can use it to

find seperating interpretations for a much larger class of networks. The next example

illustrates two of those applications.

Example 4.15 As we will only work with an arrow f of type A ⊗ A → A ⊗ A, we

omit labels of appearing wires. Suppose there are no non-trivial trace equations for n×n-

matrices where n ∈ N>2. Then there is a separating interpretation with n-dimensional

matrices separating the diagrams

M =

f

f

f

, N =

f

f

f

.

Indeed choosing f = f1 ⊗ f2 leads to the diagrams

M =

f1

f1

f1

f2

f2

f2

, N =

f1

f2

f1

f2

f1

f2

.

which are distinguishable by means of Proposition 4.14. This approach is obviously not
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working for

M =

f

f

f

, N =

f

f

f

.

Here the choice f = cA,A yields two distinguishable diagrams consisting only of trivial

cycles:

M = , N = .

4.4 Non-completeness for semi-rings which do not contain

N

4.4.1 Non-trivial equations for Z/plZ and rings with prime characteristic

We have seen in the last chapter that also semi-relative completeness holds for all semi-

rings containing N (in the non-dagger case). Similar completeness results do not hold for

other semi-rings. In many cases we will even derive counterexamples to essential relative

completeness. As the proofs will consist of verifying non-trivial trace equations and rely on

the terminology we introduced in the first section, the following results are stated here in-

stead of in the last chapter. We first analyse the case R = Z/plZ where m is a prime power:

Proposition 4.16 Define R = Z/plZ with l ∈ N>0 and let p be a prime number. Then

for every square matrix A ∈ Rn×n we have

tr
(
Ap

l
)

= tr
(
Ap

l−1
)
.

Before proving this identity, we remind that a word d ∈ Σ∗ is called primitive, if there is

no shorter s ∈ Σ∗ with d = sk for some k ∈ N>1. If e.g. d has prime length p, then d
is obviously primitive unless d = ap for some a ∈ Σ. The notion of primitivity is useful

because it is equivalent to #[d ]c = |d |, i.e. the cyclic permutations d0⊕k . . . d(n−1)⊕k of

d = d0 . . . dn−1 are mutually different for all 0 ≤ k < n. Also, if d = sk for some primitive

s , then #[d ]c = |s | and [d]c consists of all strings of the form s ′k, where s ′ ∈ [s ]c. If we

additionally have Σ = {1, . . . , n} and A = (aij)ij ∈ Rn×n, then ad = aks . Now we are

prepared for proving the proposition.
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Proof. When denoting the ij-th entry of A with aij Corollary 4.2 together with the

above comments reveal

tr
(
Ap

l
)

=
∑

d∈{1,...,n},
|d |=pl

ad =
l∑

k=0

∑
d∈{1,...,n},
|d |=pk,

d primitive

ad pl−k =
l∑

k=0

∑
d∈{1,...,n},
|d |=pk,

d primitive

ap
l−k

d .

Analogous reasoning for tr
(
Ap

l−1
)

yields

tr
(
Ap

l
)
− tr

(
Ap

l−1
)

=
∑

d∈{1,...,n},
|d |=pl,

d primitive

ad +
l−1∑
k=0

∑
d∈{1,...,n},
|d |=pk,

d primitive

(
ap

l−k

d − ap
l−1−k

d

)
.

Since ad does not change under cyclic permutation of d we may sum over {1, . . . , n}/ ∼c:

tr
(
Ap

l
)
− tr

(
Ap

l−1
)

=
∑

[d ]c∈{1,...,n}/∼c,
|d |=pl,

d primitive

plad +
∑

[d ]c∈{1,...,n}/∼c,
|d |=pk,

d primitive

pk
(
ap

l−k

d − ap
l−1−k

d

)
= 0

The last equation holds in Z/plZ because pl−k divides ap
l−k

d − ap
l−1−k

d . This is obvious in

the case p|ad (as l−k ≤ 2l−k−1), otherwise we may apply Euler’s Theorem (cf. [26], p.28),

which states

a
(p−1)pl−k−1

d ≡ aϕ(p
l−k)

d ≡ 1 mod pl−k.

Now a multiplication with ap
l−1−k

d completes the proof. 2

Clearly tr
(
Ap

l
)

= tr
(
Ap

l−1
)

does not hold in the language of compact closed categories,

therefore free finite-dimensional Z/plZ-modules are not essentially relatively complete for

compact closed categories.

Proposition 4.17 Let R be a ring with prime characteristic charR = p > 0. Then

tr (Ap) = tr (A)p (4.12)

for all square matrices A with entries in R.

Proof. For an n× n-matrix A = (aij)ij we obtain

tr (Ap) =
∑

d∈{1,...,n},
|d |=1

apd +
∑

d∈{1,...,n},
|d |=p,

d primitive

ad =

n∑
i=1

apii +
∑

[d ]c∈{1,...,n}/∼c,
|d |=p,

d primitive

pad =

n∑
i=1

apii
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as well as

tr (A)p =
∑

0≤k1,...,kn≤p,
k1+···+kn=p

p!

k1! · . . . · kn!
ak111 · . . . · a

kn
nn =

n∑
i=1

apii.

Indeed, all other summands are multiples of p as p is prime. 2

The proof of equation (4.12) utilizes p = 0 only for evaluating the coefficients of the

involved expressions, making it valid for all rings with prime characteristic. In particular,

it holds for all fields with non-vanishing characteristic. However, an easy calculation re-

veals that the binomial coefficient
(pl+1

pl

)
for all prime numbers p and l ∈ N is divisible by

p but not by p2. Therefore it seems unlikely that (4.12) has an immediate generalization

to rings R with charR = pl.

4.4.2 General semi-rings

In order to find equations for arbitrary semi-rings R we generalize the notion of the char-

acteristic to all semi-rings. The semi-ring homomorphism

φ : N→ R, n 7→ nR = n · 1R = 1R + · · ·+ 1R︸ ︷︷ ︸
n

(4.13)

is obviously either injective - in this case N ⊂ R - or there are minimal natural numbers

m, c ∈ N with c > 0 such that

mR + cR = mR.

In the former case we say R has characteristic charR = 0, otherwise we define charR = cR.

Note that mR does not have to be 0 as R is not required to provide additive inverses.

Proposition 4.18 Let R be a semi-ring with charR = pl for a prime number p and

some l ∈ N. Then FModR-interpretations are not relatively complete for compact closed

categories. Moreover if the semi-ring homomorphism (4.13) is surjective, i.e. if R is gen-

erated by 1R, then FModR-interpretations are not even essentially relatively complete for

compact closed categories.

Proof. Let m ∈ N be minimal with mR + (pl)R = mR. For k, n ∈ N we will write

k%n for the residue of k modulo n. When choosing A = a as a one-dimensional matrix in

Proposition 4.16 we obtain

ap
l+1 ≡ apl mod pl+1

for all a ∈ Z/pl+1Z. As for all k ≥ m we have kR = mR + (k%pl)R we can choose a c ∈ N
with 2c ≥ m and get

ac·p
l+1

R = ac·p
l

R (4.14)
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for all a ∈ N. Hence the equation

A
. . .

A︸ ︷︷ ︸
c·pl+1

=
A

c·pl+1

=
A

c·pl

=
A

. . .
A︸ ︷︷ ︸

c·pl

(4.15)

which is clearly not true in the graphical calculus, holds after applying an arbitrary in-

terpretation J K since J	K = tr idA = (dimA)R. Here we worked modulo pl+1 in order

to include the case l = 0. If φR is surjective then R = {0R, 1R, . . . ,mR + (pl − 1)R} and

subsequently (4.15) is equivalent to

f . . . f︸ ︷︷ ︸
c·pl+1

= f
c·pl+1

= f
c·pl

= f . . . f︸ ︷︷ ︸
c·pl

(4.16)

for all f : I → I. 2

As FRel = FProdB0 for the boolean algebra B0 = ({0, 1},∨,∧) we especially obtain

that FRel-interpretations are not essentially relatively complete since charB0 = 1 = 20.

But a special case of (4.16) namely

f f = f (4.17)

holds for more interpretations. In fact it holds in Rel as x2 = x holds in its set of scalars

HomRel(I, I) ∼= (F2, ·) = ({0, 1},∧). (4.17) also holds for distributive lattices R with 0

and 1 as in them we equally have x2 = x for all x. We remind that a lattice L is a

partially ordered set such that every pair of elements a, b ∈ L has an infimum/meet a ∧ b
and a supremum/join a ∨ b. 0 and 1 denote a global minum resp. global maximum while

distributivity means

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

It is obvious that in this case L forms a (commutative) semi-ring.

In the case of (semi-)rings whose non-vanishing characteristic is not equal to a prime

power we can at least exclude semi-relative completeness.

Proposition 4.19 Let R be a semi-ring with non-vanishing characteristic. Then FModR-

interpretations are not semi-relatively complete for compact closed categories. If R is finite

then they are not even essentially semi-relatively complete for compact closed categories.

Proof. We argue similarly to Proposition 3.18. Suppose charR = n and let m ∈ N

78



be minimal with mR + nR = mR. Consider

M =
A0 A1

. . .
Am+n

When φ denotes the homomorphism given by (4.13) then its image contains m+n elements.

Thus for any fixed interpretation J K at least two of the Ai - w.l.o.g. A0 and A1 - have

the same dimension under J K, i.e. w.l.o.g.

(dim JA0K)R = (dim JA1K)R .

Hence J K does not separate M from the diagram consisting of trivial cycles labelled with

A0, A0, A2, A3, . . . , Am+n. If #R = n <∞ then argue analogously with

M = f0 f1 . . . fn 2

4.4.3 Further observations and summary

We close with a trace equation holding in some categories without a superposition rule

and a summary of our results in this section.

Proposition 4.20 Let C be a compact closed category with invertible and only finitely

many (but more than one) scalars. Then C-interpretations are not even essentially rela-

tively complete for compact closed categories.

Proof. The set of scalars C(I, I) forms a finite abelian group and is - according to the

fundamental theorem of finitely generated abelian groups (cf. [26] p.39) - isomorphic to

r∏
i=1

ti∏
j=1

(
Z/peiji Z

)fij
for some eij , fij , ti, r ∈ N and primes pi. Here composition corresponds to addition. When

writing ei = max(ei1, . . . , eiti) and n = pe11 · . . . · perr , the diagrammatic equation

f . . . f︸ ︷︷ ︸
n

= f
n

=

where the empty diagram on the right hand side symbolizes the identity of the tensor

unit idI , does not hold in the graphical language but it holds after applying an arbitrary

interpretation J K since a · n = 0 for all a ∈ Z/peii Z, 1 ≤ i ≤ r. 2
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Proposition 4.21 Rel-interpretations and therewith FRel-interpretations are not es-

sentially relatively complete for compact closed categories. Now let R be a semi-ring

not containing the natural numbers. Then FModR-interpretations are not semi-relatively

complete for compact closed categories. Also:

• If R is finite then FModR-interpretations are not essentially semi-relatively complete

for compact closed categories.

• If charR is a prime power then FModR-interpretations are not relatively complete

for compact closed categories.

• If (a) R is a ring with prime characteristic or if (b) R = Z/plZ for a prime number

p or if (c) charR is a prime power and R is generated by 1R or if (d) R is a dis-

tributive lattice, then FModR-interpretations are not essentially relatively complete

for compact closed categories.
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Chapter 5

Summary and further work

5.1 Achieved Completeness Results

In this dissertation we have contributed to completeness studies for the graphical lan-

guage of (dagger) compact closed categories in several ways. First we introduced various

kinds of completeness regarding to (a) the dependence of interpretations on diagrams they

separate, (b) the presence of a dagger, (c) whether spaces with bounded dimensions are

sufficient and (d) whether only simple or general traced networks are considered. Orig-

inating from the formalization of diagrams and interpretations developed by Hasegawa,

Hofmann and Plotkin in [3] we gave a formally rigorous definition and therewith provided

a common fundament for speaking about the completeness results in [1] and [3]. Then we

considered the categories of free finite-dimensional R-semimodules for arbitrary semi-rings

R generalizing the considerations in [1, 3] for fields with transcendentals. Our results for

N ⊂ R are illustrated in the following tables.

for compact

closed categories

for dagger compact

closed categories

R̂ with

N ⊂ R
N ⊂ R R̂ with

N ⊂ R

Z[i] ⊂ R
R = Z[X]

R = N[X,X]

relative completeness YES YES YES YES

semi-relative completeness YES YES YES YES

full completeness ? ?

While semi-relative completeness for R̂ = R[(Xi)i∈N] and relative completeness for R with

N ⊂ R was implicitly shown by Selinger, semi-relative completeness for discrete (semi-

)rings was not known before. Furthermore we were able to prove equivalence of all fields

- also including the next table - marked with a ?. Especially we have proven that when

working with interpretations with bounded dimensions the completeness questions essen-

tially collapse to one open problem which is moreover equivalent to full completeness for

R̂ when allowing arbitrary interpretations.
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for compact

closed categories

for dagger compact

closed categories

with bounded dimensions

R̂ with

N ⊂ R
N ⊂ R R̂ with

N ⊂ R

Z[i] ⊂ R
R = Z[X]

R = N[X,X]

(essential) relative completeness ? ? ? ?

essential semi-relative completeness ? ?

semi-relative completeness NO NO NO NO

essential full completeness ? ?

full completeness NO NO NO NO

Besides we explored when completeness results require to restrict ourselves on diagrams

without trivial cycles and gained the characterization (3.15) of essential completeness,

explaining the distinction of cases in the left column. In particular completeness and

essential completeness are equivalent for N ⊂ R, with the potential exception of full com-

pleteness when R does not provide transcendentals. Also the derivation of non-trivial trace

equations, exemplifying the following non-completeness relations, are our achievements.

for (dagger)

compact closed

categories (with

bounded

dimensions)

charR 6= 0 #R <∞ charR

= pl

R ring & charR = p,

R = Z/plZ,
charR = pl and

R generated by 1R,

R distributive lattice,

Rel

relative

completeness

might de-

pend on R

might de-

pend on R
NO

NO, not even

essentially

semi-relative

completeness
NO

NO, not even

essentially
NO

NO, not even

essentially

full

completeness
NO

NO, not even

essentially
NO

NO, not even

essentially

The second part of our analyses dealt with the possibility of non-trivial trace equations

when the maximal dimension of involved matrices is limited. We obtained that those equa-

tions do not exist if and only if the class of cyclic permutations [k ]c is n-reconstructable,

i.e. if the multisets (4.10) contain enough information to reconstruct [k ]c. This equiv-

alence to a combinatorial problem allowed us to draw a variety of conclusion (cf. 4.7 -

4.11) sufficing to falsify equality of a large class - in fact any example we have considered

- of trace expressions. Ultimately we deduced properties of the collection of valid trace

equations and saw that non-existence would indeed imply separability of a much broader

class of diagrams with bounded dimensions (cf. 4.12 -4.15).

5.2 Open questions

However, a couple of unsolved problems as well as further research opportunities remain.

We discuss four of them.

• Is there any n ≥ 3 such that [k ]c is n-reconstructable for all k ∈ N∗? In particular, is

n = 3 already sufficient? Our Corollaries might indicate this, but none of them seems
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to be strong enough to apply for all k . Moreover, would the absence of non-trivial

trace equations already enable us to separate all diagrams by interpretations with

bounded dimensions? This is equally suggested by 4.14 and 4.15 as they likewise

demonstrate separability for a vast collection of diagrams. If both questions were

true, we would gain an (almost) complete picture of when what kind of completeness

holds for N ⊂ R as all cases marked with a ? would have a positive answer.

• Is it possible to strengthen the results for semi-rings R not containing N? Especially,

can we establish more non-trivial trace-equations, e.g. for (semi-)rings R whose

characteristic is the product of different primes? Up to now we only know for several

specific examples of (semi-)rings that even (essential) relative completeness does not

hold.

• Besides one could extend these completeness considerations to categories different

from FModR/FProdR and Rel. We hinted at this already with Proposition 4.20.

Due to [24] categories without products and coproducts should be considered, e.g.

categories of cobordisms (cf. [28], p.50-52).

• Ultimately further analyses could examine whether similar completeness results can

be achieved for other types of categories like e.g. braided/symmetric/balanced

monoidal (dagger) categories. A comprehensive survey of different categorical struc-

tures and their diagrammatic representations can be found in [14].
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