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Abstract

The primary aim of this work is to study the compositional characterization of multipar-

tite quantum states in an abstract setting of commutative Frobenius algebras expressed

internal to symmetric monoidal categories. This work is based on the compositional

structure of multipartite quantum entanglement established by Bob Coecke and Aleks

Kissinger in [11]. The two SLOCC classes of tripartite entanglement, viz. GHZ and

W states, were shown to correspond to the ‘special’ and ‘anti-special’ kinds of internal

commutative Frobenius algebras (CFAs), respectively. A SCFA morphism is known to

be just a spider, where as here we concretely lay down the nature of an ACFA morphism,

explicitly spelling out the scalar involved.

The central result of this work, however, is to illustrate a normal form for interacting

GHZ and W states. Based on the basic set of axioms of a GHZ/W pair, we study a class

of scalars formed out of cups, caps and symmetries and/or identities. We develop some

more relevant graphical identities, wherever required for the particular case of the SMC

FdHilb of Hilbert spaces and linear maps. This, in turn, would equip us with tools to

study the behaviour of a SCFA morphism or an ACFA morphism alongwith ticks, i.e. a

CFA morphism with ticks and only white dots or only black dots. This naturally allows

us to explore the values of the scalars expressed in this normal form for different cases.

We also study the behaviour of certain class of mixed morphisms, hoping that this would

assist in arriving at a normal form for any arbitrary morphism as part of future work.
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Chapter 1

Introduction

“Anyone not shocked by quantum mechanics has not understood it.” - Niels Bohr

Shocking it is. . . not only because one third of the world economy today involves products based

on quantum mechanics. . . but mainly because the implications of quantum theory would take any-

one into a world of wilderness, where our intuitive perception of the physical world around us is

unanswerably challenged. On the one hand, quantum theory tells us that an observation of one

object can instantaneously influence, through so-called spooky interactions (due to Einstein), the

behaviour of another greatly distant object even if no physical force connects the two. On the other,

it claims that observing an object to be someplace causes it to be there. If according to the theory,

a (Schrödinger’s) cat could be simultaneously dead and alive until our observation causes it to be

either dead or alive, anyone cannot accept it with equanimity. For example, Stephen Hawking once

remarked, “When I hear about Schrödinger’s cat, I reach for my gun”.

However, despite this wilderness and/or weirdness, quantum mechanics is the most accurate and,

unarguably, the most battle-tested theory in all of science. No prediction by the theory has ever been

proven wrong. Had the Bell’s inequality not been found to be violated as predicted, the history of

science could have been written differently. As pointed out by John Preskill, “Developing quantum

theory was the crowning intellectual achievement of the last century”.

Although quantum mechanics is around for over a hundred years now, we are still at Kinder-

Garten with quantum computation and information. The quantum mechanical formalism can be

considered ‘low-level’ in computer science terminology, since it does not support our intuition. It,

therefore, took 50 years since the birth of quantum mechanical formalism to discover the quantum

‘no-cloning’ theorem and similarly 60 years to discover the conceptually intriguing and yet easily
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derivable physical phenomenon of ‘quantum teleportation’. In [7], Bob Coecke thus introduced a

diagrammatic ‘high-level’ alternative for the Hilbert space formalism, one which appeals to our intu-

ition. This diagrammatic language built upon the mathematical foundation of monoidal categories

allows for intuitive reasoning about interacting quantum systems and trivialises many otherwise

tedious computations [6]. There has been considerable progress and ongoing extensive research in

this new paradigm, that sits at the core of our work presented in this thesis.

In this chapter, we would present our motivation and then outline our objective(s) of this work.

In chapter 2, we shall cover the background on categories, in particular certain types of monoidal

categories. In chapter 3, we shall cover the background on Frobenius algebras, in particular express-

ing them internal to monoidal categories. In chapter 4, we shall talk about quantum entanglement

in an abstract setting. In chapter 5, we would elucidate our main work and outline the core results.

Finally, in chapter 6, we would make concluding remarks, summarising the results and mentioning

future work in this context.

1.1 Motivation

What is a quantum computer? Why are we scratching our heads with quantum computing? What

does it have to do with computer science? How is a quantum computer different from a classical

computer? What is so exciting about Quantum Information Theory? What is entanglement and

what is its role in quantum information? We address these questions in this section to give the

reader a recipe of our motivation for our work in this thesis.

1.1.1 Quantum Computation

Quantum computers would exploit the strange rules of quantum mechanics to process information

in ways that are impossible on a classical computer. Quantum computers are heralded for their

potential to solve in minutes certain problems that would take a classical computer a billion years!

A quantum computer is proposed precisely based on the following three basic principles of quan-

tum mechanics [24]:

• Superposition principle: An n-qubit quantum register that has k = 2n classical states has a

quantum state that is a linear combination (superposition) of all classical states with complex

coefficients. Therefore, the quantum state of this register (system) can be represented by a

k-dimensional complex vector called the state vector, which is a unit vector in the system’s
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state space (Hilbert space) and is represented as:

|Ψ〉 =
i=k−1∑
i=0

αi|i〉

where αi is the complex amplitude corresponding to classical state |i〉 which is a vector with

only its ith row equal to one and the rest zero.

The simplest quantum mechanical system is the qubit that has a two-dimensional state space,

in which an arbitrary state vector is written as

|ψ〉 = a|0〉+ b|1〉

where |0〉 and |1〉 form an orthonormal (computational) basis for the state space.

• Measurement principle: The quantum state of a quantum register or system is hidden to us.

Upon measuring it in the computational basis, we will get classical state |i〉 with probability

|αi|2. The weird thing is that measurements following the first measurement will result in

the same outcome that was obtained after the first measurement, which essentially causes a

collapse of the system to one of the many states.

• Unitary Evolution: Every operation on the quantum state vector is a unitary transforma-

tion. That is, the state |ψ〉 of the system at time t1 is related to the state |ψ′〉 of the system

at time t2 by a unitary operator U which depends only on the times t1 and t2.

|ψ′〉 = U |ψ〉

Intuitively, a unitary operator is a rotation or reflection of the Hilbert space.

Remark 1.1.1. [16] In continuous time, the evolution of a (closed) quantum system is described

by the Schrödinger equation,

i~
d|ψ〉
dt

= H|ψ〉

where ~ is the Planck’s constant and H is the Hamiltonian of the system.

1.1.2 Quantum Gates

Just like a classical computer is built from an electrical circuit containing wires and logic gates, a

quantum computer is built from a quantum circuit containing wires and elementary quantum gates
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to carry around and manipulate the quantum information. Here, we mention some of the important

gates for quantum circuits.

Single qubit gates

The quantum NOT gate or the X gate in matrix form is given by:

X ≡

0 1

1 0


The above gate takes a state α|0〉+ β|1〉 to α|1〉+ β|0〉.

The Z gate given by:

Z ≡

1 0

0 −1


leaves |0〉 unchanged but flips the sign of |1〉 to give −|1〉.

The Y gate given by:

Y ≡

0 −i

i 0


takes |0〉 to i|1〉 and |1〉 to −i|0〉.

Another important quantum gate is the Hadamard gate given by:

H ≡ 1√
2

1 1

1 −1


which turns a |0〉 into (|0〉+|1〉)√

2
and turns a |1〉 into (|0〉−|1〉)√

2
. Note that H2 = I and, thus, applying

H twice to a state leaves it unchanged.

Multiple qubit gates

The prototypical multiple-qubit quantum gate is the controlled -NOT or CNOT gate. This gate

has two input qubits, known as the control qubit and the target qubit, respectively. The circuit

representation for the CNOT gate is:

|A〉

|B〉
⊕

|A〉

|B ⊕A〉
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The matrix form for the CNOT gate is given by:

UCN ≡



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


The action of the gate is given by |A,B〉 → |A,B ⊕A〉, where ⊕ is addition modulo 2. If the

control qubit is set to 0, then the target qubit is left alone. If the control qubit is set to 1, then the

target qubit is flipped. Thus,

|00〉 → |00〉; |01〉 → |01〉; |10〉 → |11〉; |11〉 → |10〉.

Remark 1.1.2. [16] An arbitrary quantum computation on any number of qubits can be generated

by a finite set of gates that is said to be universal for quantum computation. As an example, any

multiple qubit logic gate may be composed from CNOT and single qubit gates.

1.1.3 Quantum Parallelism

A small number of particles in superposition states can carry an enormous amount of information.

For example, a mere 1000 particles can be in a superposition that represents every number from 1

to 21000. Thus, there are 21000 possible outcomes (of measuring the particles), or about 10300 - more

than there are atoms in the visible universe! Thus, we can store 10300 numbers on our 1000 particles

simultaneously. Then, by performing various operations on the particles and on some auxiliary ones

- perhaps hitting them with a sequence of laser pulses or radio waves - we can carry out an algorithm

that transforms all 10300 numbers (each one a potential solution) at the same time. If after doing

that we could read out the particles’ final quantum state accurately, our computer would be able to

check 10300 possible solutions to a problem and at the end we could quickly discern the right one.

However, the rules of quantum mechanics dictate that the measurement will pick out just one

of the 10300 possibilities at random and that all the others will then disappear. So, to exploit

quantum parallelism, a good quantum computer algorithm would ensure that computational paths

leading to a wrong answer would cancel out when positive amplitudes combine with negative ones

(destructive interference). It would also ensure that the paths leading to a correct answer would all

have amplitudes with the same sign - which yields constructive interference and thereby boosts the
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probability of finding them when the particles are measured at the end [2].

1.1.4 P = NP?

A computational complexity class is a collection of computational problems, all of which share

some common feature with respect to the computational resources needed to solve those problems.

Problems in the class P are the ones that computers can solve efficiently in polynomial time. For

example, given a road map showing n towns, can one get from any town to every other town? For a

large value of n, the number of steps a computer needs to solve this problem increases in proportion

to n2, a polynomial. Because polynomials increase relatively slowly as n increases, computers can

solve even very large P problems within a reasonable length of time. Problems in the class NP,

on the other hand, are the ones whose solutions are easy to verify. For example, given an n-digit

number, you want to find the prime factors of the number. If you are given the factors, you can

verify that they are the answer in polynomial time by multiplying them. Every P problem is also

an NP problem, so the class NP contains the class P within it. The factoring problem is in NP

but conjectured to be outside of P, because no known algorithm for a standard computer can solve

it in only a polynomial number of steps. Instead the number of steps increases exponentially as n

gets bigger.

An NP-complete problem is one, for which an efficient solution would provide an efficient solution

to all NP problems. For example, given a map, can you color it using only three colors so that no

neighbouring countries are the same color? If you had an algorithm to solve this problem, you could

adapt the algorithm to solve any other NP problem in about the same number of steps. In that

sense, NP-complete problems are the hardest of the NP problems. No known algorithm can solve

an NP-complete problem efficiently. An efficient algorithm for an NP-complete problem would

mean that the class P would equal the class NP, i.e. P = NP. Does such an algorithm exist? This

is literally a million dollar question - it carries a $1, 000, 000 reward from the Clay Math Institute in

Cambridge, Massachusetts. This NP versus P question is one of the most fundamental questions

in theoretical computer science and mathematics. The interested reader can further refer to [1].

In 1994, Peter Shor found the first example of a quantum algorithm [21] that could dramatically

speed-up the solution of a practical problem, known to be in NP, but not in P. Shor showed how

a quantum computer could factor an n-digit number using a number of steps that increases only as

about n2, i.e. in polynomial time. The best algorithm known for classical computers uses a number

of steps that increases exponentially. Note that factoring is not known to be NP-complete, otherwise

6



we would already know how to efficiently solve all problems in NP using quantum computers. While

this is disappointing, this does not rule out that some deeper structure exists in the problems in

NP that will allow them all to be solved quickly using a quantum computer, thereby essentially

rendering P = NP [2].

The class of all computational problems which can be solved efficiently on a quantum computer

is denoted as BQP (Bounded error, Quantum, Polynomial time), where a bounded probability of

error is allowed. The class PSPACE consists of those problems which can be solved using resources

which are few in spatial size, but not necessarily in time. PSPACE is believed to be strictly larger

than both P and NP although this has never been proved. Exactly where BQP fits with respect to

P, NP and PSPACE is as yet unknown. What is known is that quantum computers can solve all

problems in P efficiently and some NP problems, such as factoring and discrete logarithm problem,

but that there are no problems outside of PSPACE which they can solve efficiently.

1.1.5 Quantum Information Theory

In quantum mechanics, quantum information is physical information that is held in the “state” of

a quantum system. The ability to manipulate quantum information enables us to perform tasks

that would be unachievable in a classical context, such as unconditionally secure transmission of

information. The theory of quantum information is a result of the effort to generalize classical

information theory to the quantum world.

Formally, the amount of classical information we gain, on average, when we learn the value of a

random variable is represented by a quantity called the Shannon entropy, measured in bits. Since

information is always embodied in the state of a physical system, we can also think of the Shannon

entropy as quantifying the physical resources required to store classical information. Suppose Alice

wishes to communicate some classical information to Bob over a classical communication channel.

A relevant question concerns the extent to which the message can be compressed without loss

of information, so that Bob can reconstruct the original message accurately from the compressed

version. According to Shannon’s source coding theorem or noiseless coding theorem, the minimal

physical resource required to represent the message is given by the Shannon entropy of the source

[5].

What happens if we use the quantum states of physical systems to store information, rather

than classical states? It turns out that quantum information is radically different from classical

information. For example, while classical information can be copied or cloned, the quantum ‘no
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cloning’ theorem asserts the impossibility of cloning an unknown quantum state. As we have seen,

an arbitrarily large amount of classical information can be encoded in a qubit. This information can

be processed and communicated but, because of the peculiarities of quantum measurement, at most

one bit can be accessed! The quantum analogue of the Shannon’s theorem is Schumacher’s channel

coding theorem, that quantifies the resources required to do quantum data compression, with the

restriction that it is possible to recover the source with fidelity close to 1. According to a theorem by

Holevo, the accessible information in a probability distribution over a set of alternative qubit states

is limited by the von Neumann entropy, which is equal to the Shannon entropy only when the states

are orthogonal in the space of quantum states, and is otherwise less than the Shannon entropy [5].

A challenge faced in quantum information theory is quantum distinguishability. Although clas-

sically it is possible to distinguish different items of information at least in principle, quantum me-

chanically it is not always possible to distinguish between arbitrary states. The indistinguishability

of non-orthogonal quantum states is at the heart of quantum computation and quantum informa-

tion. It is the essence of our assertion that a quantum state contains hidden information that is

not accessible to measurement, and thus, plays a key role in quantum algorithms and quantum

cryptography.

1.1.6 Entanglement as a resource

Entanglement is one of the properties of quantum mechanics that caused many physicists, includ-

ing Albert Einstein, to dislike this formulation of quantum mechanical theory. Baffled with such

spooky interactions between spatially separated physical systems (parts of a compound quantum

system), Einstein reckoned that the quantum theory is essentially incomplete and in 1935, along-

with Podolsky and Rosen, formulated the EPR paradox. It was Schrödinger who coined the term

‘entanglement’ to describe this peculiar connection between quantum systems. However, contrary to

his supposition of the spontaneous decay of entanglement as two entangled particles separate, Bell’s

investigation generated an ongoing debate involving confirmation that entanglement can persist over

long distances.

It was in the 1980s that physicists, computer scientists, and cryptographers began to regard the

non-local correlations of entangled quantum states as a new kind of non-classical resource that could

be exploited. Entanglement can be measured, transformed, and purified. A pair of quantum systems

in an entangled state can be used as a quantum information channel to perform computational and

cryptographic tasks that are impossible for classical systems.
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1.2 Objective

The objective of this thesis precisely is to study a compositional characterization of multipartite

quantum entangled states.

Multipartite quantum states constitute a key resource for quantum computations and protocols.

A recent novel approach for studying various quantum information protocols based on recasting the

axiomatic presentation of quantum mechanics, due to von Neumann, at a more abstract level was

laid down by Abramsky and Coecke in [3]. Entanglement plays a central role in the majority of

these quantum protocols, such as quantum teleportation [17], quantum key distribution [13], logic-

gate teleportation [14] and entanglement swapping [25]. However, obtaining a generic, structural

understanding of entanglement in arbitrary N -qubit systems is a long-standing open problem in

quantum computer science.

1.2.1 State of the Art: Compositional Structure of Entanglement

As a state of the art, it was shown in [11] that multipartite quantum entanglement admits a well-

behaved compositional structure and hence is subject to modern computer science methods. In

particular, a powerful GHZ-W graphical calculus was established, which is found to be expressive

enough to generate and reason about representatives of arbitrary N -qubit quantum states. This cal-

culus was also shown to have refined the graphical calculus of complementary observables [8], which

was already previously shown to have many applications and admit automation. This result also

induces a generalised graph-state paradigm for measurement-based quantum computing (MBQC)

[4][12].

1.2.2 Contributions

A GHZ-W pair was shown in [11] to satisfy certain graphical identities in the abstract setting of

Frobenius algebras expressed internal to monoidal categories. In this thesis, we further explore

graphical equations satisfied by a GHZ-W pair, especially spelling out concretely, where necessary,

in the particular case of the category of Hilbert spaces and linear maps. This provides us with a

toolkit to reason about interacting GHZ and W states, in particular lending us a way to express

a normal form for the same in the graphical paradigm. Based on this, we establish the behaviour

of certain whole classes of scalars expressed in the normal form. We also illustrate the pattern for

some non-trivial combinations of such graphs but arriving at a normal form for them is out of scope

of this thesis, but these results would hopefully pave the way for the same as part of future work.
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Chapter 2

Monoidal Categories

“I would like to make a confession which may seem immoral: I do not believe absolutely

in Hilbert space any more” - John von Neumann

After the creator himself denounced the Hilbert space formalism [18], which in many ways is the

most successful formalism physics has ever known, there have been attempts without much success

to arrive at alternative formalisms, such as ‘quantum logic’. In this chapter, we will delve into

category theory, with particular focus on monoidal categories and the graphical calculus exhibited

by them, that lends us with a ‘high-level’ abstract alternative to the counter-intuitive Hilbert space

formalism.

First, we present the basics of categories and then introduce symmetric and †-symmetric monoidal

categories and compact closed categories, also laying out the primitives of the diagrammatic calculus

admitted by these categories. We would explicitly treat the category of Hilbert spaces and linear

maps as one of prime interest to us and demonstrate its behaviour all along. The interested reader

can refer to [9] for more elaborate survey of category theory, in particular monoidal categories, and

[20] for a detailed account of the graphical languages for monoidal categories.

2.1 Categories

Categories were introduced and defined by Samuel Eilenberg and Saunders Mac Lane in 1945 as

a framework intended to unify a variety of mathematical constructions within different areas of

mathematics.

Definition 2.1.1. Category: A (concrete) category C consists of:
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(i) A family of objects |C|;

(ii) For any A,B ∈ |C|, a set C(A,B) of morphisms called the hom-set ;

(iii) For any A,B,C ∈ |C|, and any f ∈ C(A,B) : A→ B and g ∈ C(B,C) : B → C, a composite

g ◦ f ∈ C(A,C), i.e. for all A,B,C ∈ |C| there is a composition operation

− ◦ − : C(A,B)×C(B,C)→ C(A,C) :: (f, g) 7→ g ◦ f,

and this composition operation is associative and has units, i.e.

• for any f ∈ C(A,B), g ∈ C(B,C) and h ∈ C(C,D), we have

h ◦ (g ◦ f) = (h ◦ g) ◦ f ;

• for any A ∈ |C|, there exists a morphism 1A ∈ C(A,A), called the identity, which is such

that for any f ∈ C(A,B), we have

f = f ◦ 1A = 1B ◦ f

Example 2.1.2. Set is the concrete category with:

• all sets as objects

• all functions between sets as morphisms

• ordinary composition of functions, i.e. for f : X → Y and g : Y → Z, we have (g◦f) := g(f(x))

for g ◦ f : X → Z

• the obvious identities, i.e. 1X(x) := x.

Example 2.1.3. Grp is the concrete category with:

• all groups as objects

• all group homomorphisms between these groups as morphisms

• ordinary function composition (the composite of two group homomorphisms is again a group

homomorphism)

• identity functions, which are group homomorphisms.
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Example 2.1.4. FdVectK is the concrete category with:

• all finite dimensional vector spaces over K as objects

• all linear maps between these vector spaces as morphisms

• ordinary composition of the underlying functions (the composite of two linear maps is again a

linear map)

• identity functions, which are linear maps.

Example 2.1.5. Cat is the concrete category with:

• all categories as objects

• all functors between these categories as morphisms

• functor composition

• identity functors.

Remark 2.1.6. The category which would be of prime interest to us in this thesis is the cate-

gory FdHilb with finite dimensional Hilbert spaces as objects and with linear maps as morphisms.

FdHilb is a variant of the concrete category FdVectK discussed above, since a Hilbert space is a

vector space over C with an inner product

〈−,−〉 : H×H → C

Definition 2.1.7. Isomorphism: Two objects A,B ∈ |C| are isomorphic if there exist morphisms

f ∈ C(A,B) and g ∈ C(B,A), such that g ◦ f = 1A and f ◦ g = 1B . The morphism f is called an

isomorphism and f−1 := g is called the inverse to f .

Definition 2.1.8. Functor: Let C and D be two categories. A (covariant) functor F : C → D

consists of

• a mapping

F : |C| → |D| :: A 7→ F (A) = FA

• for any A,B ∈ |C|, a mapping

F : C(A,B)→ D(F (A), F (B)) :: f 7→ F (f) = Ff
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which preserves identities and composition, i.e.

– for any f ∈ C(A,B) and g ∈ C(B,C), we have

F (g ◦ f) = F (g) ◦ F (f) = Fg ◦ Ff

– for any A ∈ |C|, we have

F (1A) = 1F (A) = 1FA

Remark 2.1.9. A contravariant functor F : C→ D, on the other hand, consists of the same data as

a (covariant) functor, it also preserves identities, but ‘reverses’ composition, i.e.

F (g ◦ f) = Ff ◦ Fg

Definition 2.1.10. Opposite Category: The opposite category Cop of a category C is the

category with

• the same objects as C,

• in which morphisms are ‘reversed’, i.e.

f ∈ C(A,B)⇔ fop ∈ Cop(B,A)

• identities in Cop are those of C, and

• fop ◦ gop = (g ◦ f)op

Remark 2.1.11. Contravariant functors of type C→ D can now be defined as covariant functors of

type Cop → D.

2.2 Symmetric Monoidal Categories

Definition 2.2.1. A Symmetric Monoidal Category (SMC) consists of:

(i) a category C,

(ii) a unit object I ∈ |C|,

(iii) a bifunctor −⊗−, called the tensor, that is an operation both on

13



• objects

−⊗− : |C| × |C| → |C| :: (A,B) 7→ A⊗B

and

• morphisms

−⊗− : C(A,B)×C(C,D)→ C(A⊗ C,B ⊗D) :: (f, g) 7→ f ⊗ g

The bifunctor also satisfies

(g ◦ f)⊗ (k ◦ h) = (g ⊗ k) ◦ (f ⊗ h)

and

1A ⊗ 1B = 1A⊗B

for all A,B ∈ |C| and all morphisms f , g, h, k with appropriate matching types.

(iv) three natural isomorphisms:

• Associativity :

α = {A⊗ (B ⊗ C)
αA,B,C−→ (A⊗B)⊗ C | A,B,C ∈ |C|}

• Left Unit :

λ = {A λA−→ I⊗A | A ∈ |C|}

• Right Unit :

ρ = {A ρA−→ A⊗ I | A ∈ |C|}

such that λI = ρI and the following diagrams commute

A⊗ (B ⊗ C) (A⊗B)⊗ C

(A′ ⊗B′)⊗ C ′A′ ⊗ (B′ ⊗ C ′)

αA,B,C

(f ⊗ g)⊗ h

αA′,B′,C′

f ⊗ (g ⊗ h) (2.1)
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A I⊗A

I⊗BB

λA

1I ⊗ f

λB

f
(2.2)

A A⊗ I

B ⊗ IB

ρA

f ⊗ 1I

ρB

f
(2.3)

A⊗B A⊗ (I⊗B)

(A⊗ I)⊗B

1A ⊗ λB

αA,I,BρA ⊗ 1B (2.4)

(v) a fourth natural isomorphism called Symmetry :

σ = {A⊗B σA,B−→ B ⊗A | A,B ∈ |C|}

such that the following diagrams commute for all A,B ∈ |C|:

A⊗B B ⊗A

D ⊗ CC ⊗D

σA,B

g ⊗ f

σC,D

f ⊗ g (2.5)

A⊗B B ⊗A

A⊗B

σA,B

σB,A1A⊗B
(2.6)
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A I⊗A

A⊗ I

λA

σI,AρA
(2.7)

(vi) Special morphisms ψ : I → A called elements, φ : A → I called co-elements and s : I → I

called scalars.

Remark 2.2.2. A symmetric monoidal category is called strict if the three natural isomorphisms,

viz. associativity, left unit and right unit, are actually equalities.

2.3 †-Symmetric Monoidal Categories

Definition 2.3.1. A †-Symmetric Monoidal Category C is a symmetric monoidal category

which is equipped with an identity-on-objects contravariant involutive functor

† : Cop → C

such that the functor preserves the tensor, i.e.

(f ⊗ g)† = f† ⊗ g†

and all unit, associativity and symmetry natural isomorphisms are unitary.

We refer to f† : B → A as the adjoint to f : A → B. A morphism U : A → B in a †-monoidal

category C is unitary, if its inverse and its adjoint coincide, i.e. U† = U−1.

Remark 2.3.2. The category FdHilb admits two †-symmetric monoidal structures, respectively

given by the tensor product ⊗, and by the direct sum ⊕. In both cases, the dagger functor

† : FdHilbop → FdHilb

• is identity-on-object, i.e.

† : |FdHilbop| → |FdHilb| :: H 7→ H
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• assigns morphisms to their adjoints, i.e.

† : FdHilbop(H,K)→ FdHilb(K,H) :: f 7→ f†

• is contravariant, since for f ∈ FdHilb(H,K) and g ∈ FdHilb(K,L),

(g ◦ f)† = f† ◦ g†

• is involutive, since for all morphisms f ,

f†† = f

2.4 Graphical Calculus for SMCs

A remarkable feature of SMCs is the fact that they admit a purely diagrammatic calculus, which

would be a central focus of this thesis. The corresponding axioms discussed above for SMCs or any

other abstract categorical structure become very intuitive graphical manipulations. Thus, such a

graphical language, as we will see further substantially in the rest of this thesis, drastically trivialises

algebraic manipulations, which could, in general, be very complicated.

The graphical counterparts to the symmetric monoidal and the †-symmetric monoidal structures

are outlined below:

(i) The identity 1I is the ‘empty’ picture.

(ii) The identity 1A for an object A different from I is depicted as

A

(iii) A morphism f : A→ B is depicted as
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A

f

B

(iv) The adjoint f† : B → A is depicted as

B

f†

A

=

B

f

A

(v) The composition of morphisms f : A→ B and g : B → C is depicted as

A

f

g

C

B

(vi) The tensor of morphisms f : A→ B and g : C → D is depicted as

A

f

B

C

g

D

(vii) The symmetry σA,B : A⊗B → B ⊗A is depicted as

A B

B A

18



(viii) The elements ψ : I→ A, co-elements φ : A→ I and scalars s : I→ I are respectively depicted

as:

ψ

A φ

A

s

Remark 2.4.1. We can express the bifunctoriality of ⊗ as follows:

f

g

=

f

g

and the naturality of σ as follows:

f g

=

g f

Theorem 2.4.2. (Coherence for symmetric monoidal categories). A well-formed equation between

morphisms in the language of symmetric monoidal categories follows from the axioms of symmetric

monoidal categories if and only if it holds, up to isomorphism of diagrams, in the graphical language.

2.5 Compact Closed Categories

Definition 2.5.1. A compact closed category C is a symmetric monoidal category in which

every object A ∈ |C| comes with

(i) another object A∗, the dual of A,

(ii) a pair of morphisms

I dA−→ A∗ ⊗A and A⊗A∗ eA−→ I
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respectively called unit and counit, which are such that the following two diagrams commute:

A A⊗ I A⊗ (A∗ ⊗A)

(A⊗A∗)⊗AI ⊗AA

ρA 1A ⊗ dA

αA,A∗,A

eA ⊗ 1Aλ−1
A

1A (2.8)

A∗ I ⊗A∗ (A∗ ⊗A)⊗A∗

A∗ ⊗ (A⊗A∗)A∗ ⊗ IA∗

λA∗ dA ⊗ 1A∗

α−1
A∗,A,A∗

1A∗ ⊗ eAρ−1
A∗

1A∗ (2.9)

Diagrammatically, the unit dA and counit eA are respectively depicted as:

A

A

The commutation diagrams now boil down to:

counit

unit

=

unit

counit

=

Also, for a morphism f : A→ B,

A

f

B

the transpose f∗ : B∗ → A∗ is depicted as:

20



A∗

f∗

B∗

=

B

f

A

=

A∗

f

B∗

Remark 2.5.2. We can construct the transpose of the adjoint, or equivalently, the adjoint of the

transpose given by f∗ : B∗ → A∗, called the conjugate map, depicted as:

A∗

f∗

B∗

=

B

f

A

=

A∗

f

B∗

Theorem 2.5.3. (Coherence for compact closed categories). A well-formed equation between mor-

phisms in the language of compact closed categories follows from the axioms of compact closed cate-

gories if and only if it holds, up to isomorphism of diagrams, in the graphical language.

Definition 2.5.4. A †-compact closed category C is both a compact closed category and a

†-symmetric monoidal category, such that for all A ∈ |C|, eA = d†A ◦ σA,A∗ .

Remark 2.5.5. The category FdHilb is †-compact closed. Moreover, objects in FdHilb are self-dual.
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Chapter 3

Frobenius Algebras

“There is no royal road to mathematics.” - Ferdinand G. Frobenius

In this chapter, we introduce, with due credits to [10], a particularly well-behaved kind of finite

dimensional associative algebra called Frobenius algebra that began to be studied in the 1930s by

Richard Brauer and Cecil Nesbitt and was named after Ferdinand Frobenius.

Frobenius algebras possess a special kind of bilinear form that allows them to exhibit nice du-

ality properties. Frobenius algebras have been shown to have an abstract presentation internal

to monoidal categories, that makes our treatment and use of the same in this thesis particularly

interesting, owing to the rich graphical language admitted by symmetric monoidal categories.

3.1 Concrete Frobenius Algebras

Definition 3.1.1. For some field k, a unital associative k-algebra (A,µ, η) is a k-vector space A

with a map µ : A⊗A→ A called the multiplication and a map η : k → A called the unit, such that

µ ◦ (1A ⊗ µ) = µ ◦ (µ⊗ 1A) and µ ◦ (1A ⊗ η) = µ ◦ (η ⊗ 1A) = 1A.

Definition 3.1.2. For some field k, a counital coassociative k-coalgebra (B, δ, ε) is a k-vector space

B with a map δ : B → B ⊗ B called the comultiplication and a map ε : B → k called the counit,

such that (1B ⊗ δ) ◦ δ = (δ ⊗ 1B) ◦ δ and (ε⊗ 1B) ◦ δ = (1B ⊗ ε) ◦ δ = 1B .

Let σA,B be the swap map: σA,B : A⊗B → B ⊗A

Then, a k-algebra (resp. k-coalgebra) is commutative (resp. cocommutative) if and only if

µ = µ ◦ σA,A (resp. δ = σA,A ◦ δ).
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Definition 3.1.3. A Frobenius k-algebra (F, µ, η, δ, ε) is a vector space F such that

• (F, µ, η) is a unital associative k-algebra,

• (F, δ, ε) is a counital coassociative k-coalgebra, and

• (µ⊗ 1F ) ◦ (1F ⊗ δ) = (1F ⊗ µ) ◦ (δ ⊗ 1F ) = δ ◦ µ

Example 3.1.4. Let M be the vector space of n × n matrices. Take µ to be matrix multiplication,

which is associative and bilinear. Let η be the n×n identity matrix, and let ε : M → k be the trace

functional. This data induces a unique map δ such that (M,µ, η, δ, ε) is a Frobenius k-algebra.

Remark 3.1.5. A Frobenius k-algebra (F, µ, η, δ, ε) is called a commutative Frobenius algebra (CFA),

if moreover, (F, µ, η) is commutative and (F, δ, ε) is cocommutative.

3.2 Internal Frobenius Algebras

Frobenius algebras can also be formulated in a much more general setting where they are defined

internal to a category C.

Definition 3.2.1. Internal Monoid: A monoid internal to a monoidal category (C,⊗, I), is an

object A and a pair of maps µ : A⊗A→ A called multiplication and η : I→ A called the unit.

Multiplication is associative, so this diagram commutes:

(A⊗A)⊗A A⊗A

A

A⊗AA⊗ (A⊗A)

µ⊗ 1A

µ

µ
1A ⊗ µ

αA,A,A
(3.1)

Multiplication is left and right unital, so this diagram also commutes:

I ⊗A A A⊗ I

A⊗AA⊗A

λ ρ

1A ⊗ ηµµη ⊗ 1A
(3.2)
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Definition 3.2.2. Internal Comonoid: A comonoid internal to a monoidal category (C,⊗, I), is

an object A and a pair of maps δ : A → A ⊗ A called comultiplication and ε : A → I called the

counit.

Coassociativity:

A

A⊗A (A⊗A)⊗A

A⊗ (A⊗A)A⊗A

δ

δ ⊗ 1A

αA,A,A

1A ⊗ δδ

(3.3)

Counit:

I ⊗A A A⊗ I

A⊗AA⊗A

λ ρ

1A ⊗ ε
δδ

ε⊗ 1A
(3.4)

Graphically, by depicting µ and η as and , respectively, the axioms of a monoid (A, , ) can

be expressed as follows:

(i) = (ii) = = (3.5)

By depicting δ and ε as and , respectively, the axioms of a comonoid (A, , ) are just the

previous ones, upside-down:

(i) = (ii) = = (3.6)

Moreover, if the monoid is commutative, i.e. µ = µ ◦ σA,A, then graphically, we have:

=

Similarly, if the comonoid is cocommutative, i.e. δ = σA,A ◦ δ, then graphically, we have:

=
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Since the notion of internal monoid and comonoid gives us an abstract way to define k-algebras

and k-coalgebras, we also have an abstract way to define Frobenius algebras:

Definition 3.2.3. Internal Frobenius Algebra: A Frobenius algebra internal to a monoidal

category C is an object A and four maps µ, η, δ, ε, such that

• (A,µ, η) is an internal monoid,

• (A, δ, ε) is an internal comonoid, and

• (µ⊗ 1A) ◦ (1A ⊗ δ) = δ ◦ µ = (1A ⊗ µ) ◦ (δ ⊗ 1A)

Graphically, the third condition (Frobenius law) becomes:

= =

Remark 3.2.4. A Frobenius algebra internal to a symmetric monoidal category (SMC) C is moreover

a commutative Frobenius algebra (CFA), since the internal monoid (A,µ, η) is commutative and the

internal comonoid (A, δ, ε) is cocommutative. The Frobenius law then simplifies to:

=

3.3 Spider Notation

Definition 3.3.1. [11] For a CFA A = (A,µ, η, δ, ε), an A-graph is a morphism obtained from the

following maps: 1A, σA,A, αA,A,A, µ, η, δ, and ε, combined with composition and the tensor product.

An A-graph is said to be connected precisely when its graphical representation is connected.

Theorem 3.3.2. Any connected A-graph is uniquely and completely determined by its number of

inputs, number of outputs and number of loops.

This makes CFAs highly topological, in that A-graphs are invariant under deformations that

respect the number of loops. It follows easily from this fact that any A-graph has a normal form.

In the special case where there are 0 loops, the following notational simplification, called the

spider notation was made in [11]:

Snm =
...

...
:= ...
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Note that S0
m := S1

m ◦ and Sn0 := ◦ Sn1 .

Thus, it follows that any connected A-graph for a CFA A admits the normal form:

S1
n ◦ (µ ◦ δ) ◦ (µ ◦ δ) ◦ . . . ◦ (µ ◦ δ) ◦ Sm1

i.e. any connected CFA-morphism can be graphically written like this:

...

...

...

(3.7)

In particular, the following maps, called cap and cup, respectively, can be constructed:

S0
2 = = S2

0 = =

For caps and cups, the dots are usually omitted when there is no ambiguity:

:= := := ◦

For CFAs it is also assumed that circles admit an inverse 1, i.e. ◦ − = − ◦ = 1I .

Corollary 3.3.3. Any object admitting a commutative Frobenius algebra admits a self-dual com-

pact structure, i.e.

=

3.4 Special and anti-special CFAs

Let C be a symmetric monoidal category.

Definition 3.4.1. A special commutative Frobenius algebra (SCFA) on C is a CFA (A,µ, η, δ, ε),

such that µ ◦ δ = 1. Graphically,

= (3.8)

Definition 3.4.2. An anti-special commutative Frobenius algebra (ACFA) on C is a CFA (A,µ, η, δ, ε),

such that the following diagram commutes:

1In FdHilb, = D, the dimension of the underlying Hilbert space and so, − = 1
D

.
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A A

A⊗A

AIA

A⊗A

A ∼= I ⊗A

A⊗A (A⊗A)⊗ (A⊗A) A⊗A

A ∼= I ⊗A

δ

µ

ε η
δ

µ

η ⊗ 1A

δ ⊗ δ µ⊗ µ

ε⊗ 1A

We denote η̂ = µδη, ε̂ = εµδ

and refer to these respectively, as the anti-unit and anti-counit.

Graphically, these are:

:= :=

So, the commutativity boils down to the equation εµδη ⊗ µδ = η̂ε̂.

Graphically, this condition is:

= (3.9)

Remark 3.4.3. The difference between a SCFA and an ACFA is, thus, essentially topological, in

terms of ‘connected vs. disconnected’.

Lemma 3.4.4. [11] (Loop copy). For any ACFA, we have: =

We now state a theorem below about the nature of any CFA morphism for SCFAs and ACFAs,

the proof for which can be found in [11]. However, here we reproduce the proof again but spelling

out explicitly the scalar involved.

Theorem 3.4.5. Let C be any SMC. For a SCFA on C, any connected CFA-morphism is equal to

a spider, for an ACFA, any connected CFA-morphism is either equal to a spider or of the following

form:

...

...
scalar

Proof. (SCFA) Substituting Eq (3.8) in Eq (3.7) removes all loops, yielding a spider.
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(ACFA) If Eq (3.7) has no loops, then it is a spider. If it has two or more loops, it can be reduced

to a product of a graph with one loop and copies of . Suppose some graph G has L ≥ 2 loops.

Then, we can find an equivalent graph with one fewer loop.

G =
H

= − H

By induction, we can always rewrite a connected graph G to or another graph with at most

one loop.

If the graph has zero inputs and zero outputs, then the above result suffices to find a normal

form. Moreover, the scalar would be
N

(L−1) −
N

(L−1), where L is the number of loops.

Now, suppose the graph has zero inputs, at least one output, and exactly one loop. Then, it

must be of the form:

...

By Lemma (3.4.4), this can be written as:

− ... − ...

The number of copies of − above would be equal to O − 1, where O is the number of outputs.

The case of at least one input, zero outputs, and one loop is treated similarly:
...

= − ... − ...

and the number of copies of − would be equal to I − 1, where I is the number of inputs.

Thus, it follows that in the general case, where the ACFA-morphism has I inputs, O outputs

and L loops, it is of the form:

...

...
scalar

where the scalar is given by:

scalar =
N

(L−1) −
N

(L+I+O−3)

2
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Chapter 4

Quantum Entanglement

“God does not play dice.” - Albert Einstein

Entanglement is a key resource in quantum computation and is at the root of the most surprising

quantum phenomena. Spatially separated compound quantum systems exhibit correlations under

measurement, which cannot be explained by classical physics. For reasons which nobody fully un-

derstands, entanglement plays a crucial role in the usage of quantum systems to process information

in tasks such as cryptographic key distribution, quantum teleportation, quantum communication

and superdense coding.

For Hilbert spaces Hi, i = 1, ..., n, let |Ψ〉 ∈
⊗
Hi be a state. If there exist states |ψi〉 ∈ Hi such

that |Ψ〉 =
⊗
|ψi〉, |Ψ〉 is said to be separable. If no such states exist, |Ψ〉 is said to be entangled.

Consider the two qubit state

|Bell〉 = |00〉+ |11〉

Since there are no single qubit states |a〉 and |b〉 such that |Ψ〉 = |a〉 ⊗ |b〉, we say that |Ψ〉 is a

(bi-partite) entangled state. On the other hand, the states |00〉 and |11〉 individually are separable.

4.1 Degeneracy

Let us take the state |Ψ〉 ∈
⊗
Hi considered above. We say that |Ψ〉 is a degenerate n-partite

entangled state if there exist non-trivial states |Φ1〉, |Φ2〉 such that |Ψ〉 = |Φ1〉 ⊗ |Φ2〉. If there are

no such states, |Ψ〉 is said to be a genuine or non-degenerate n-partite entangled state.

In C2 ⊗ C2, two examples of genuine bipartite entangled states are the Bell state |Bell〉 =
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|00〉+ |11〉 and the EPR state |EPR〉 = |10〉+ |01〉. On the other hand, the tripartite state

|ψ〉 = |100〉+ |111〉

is degenerate, since |ψ〉 can be expressed as

|ψ〉 = |1〉 ⊗ (|00〉+ |11〉)

4.2 Example: Quantum Teleportation

In this section we discuss an example protocol (from [16]) where entanglement is used as a resource.

Quantum teleportation is the technique for sending a quantum state from one party to another

distant party even in the absence of a quantum communications channel between the sender and

the recipient.

The two distant parties, Alice and Bob, share a Bell state and each of them possesses one qubit

of the entangled state. Alice now needs to send an unknown qubit |ψ〉 to Bob and can only send

classical information to Bob. The laws of quantum mechanics prevent her from determining the

state when she only has a single copy of |ψ〉 in her possession. Even if she did know |ψ〉, it would

take forever for her to describe the state to Bob, since |ψ〉 takes values in a continuous space and

so describing it would precisely take an infinite amount of classical information. The quantum

teleportation protocol, however, allows Alice to utilize the entangled Bell state in order to send |ψ〉

to Bob, with only a small overhead of classical communication.

Let the state to be teleported be |ψ〉 = α|0〉 + β|1〉, where α and β are unknown amplitudes.

Alice interacts the qubit |ψ〉 with her half of the shared Bell state, thus obtaining

|ψ0〉 =
1√
2

[
α|0〉(|00〉+ |11〉) + β|1〉(|00〉+ |11〉)

]

Alice’s second qubit and Bob’s qubit start out in the Bell state.

Alice sends her qubits through a CNOT gate, obtaining

|ψ1〉 =
1√
2

[
α|0〉(|00〉+ |11〉) + β|1〉(|10〉+ |01〉)

]
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She then sends the first qubit through a Hadamard gate, obtaining

|ψ2〉 =
1
2

[
α(|0〉+ |1〉)(|00〉+ |11〉) + β(|0〉 − |1〉)(|00〉+ |11〉)

]

=
1
2

[
|00〉(α|0〉+ β|1〉) + |01〉(α|1〉+ β|0〉) + |10〉(α|0〉 − β|1〉) + |11〉(α|1〉 − β|0〉)

]
If Alice now performs a measurement, Bob’s qubit will end up in one of the following four possible

states, depending on Alice’s measurement outcome:

00 7→
[
α|0〉+ β|1〉

]
01 7→

[
α|1〉+ β|0〉

]
10 7→

[
α|0〉 − β|1〉

]
11 7→

[
α|1〉 − β|0〉

]
Alice then classically communicates her measurement outcome (2 bits) to Bob, who can recover

|ψ〉 by applying the appropriate quantum gate. If the measurement is 00, then Bob’s system will

be in the state |ψ〉 and he needs to do nothing. If the measurement is 01, then Bob can recover |ψ〉

by applying the X-gate to his qubit. If the measurement is 10, he can recover |ψ〉 by applying the

Z-gate to his qubit. If the measurement is 11, then he can recover |ψ〉 by applying first an X and

then a Z-gate to his qubit.

4.3 Equivalence Classes

It is of special interest in quantum information theory (QIT) to classify multipartite states into

equivalence classes, such that states in the same equivalence class are suited to implement the same

tasks. Such equivalent states are then said to have the same kind of entanglement. A multipartite

state is the entangled state of a composite system shared between multiple parties that are spatially

separated from each other. Here we discuss two types of equivalence relations defined in the set of

entangled states that have been of interest in quantum information theory.
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4.3.1 LOCC Equivalence

When the parties sharing an entangled state are allowed to only perform physical operations locally

to their subsystems and typically allowed to communicate only through a classical channel, it is

still possible for the parties to modify the entanglement properties of the composite system and, in

particular, to convert one entangled state into another.

Definition 4.3.1. If two states can be deterministically inter-converted with only local (one-qubit)

physical operations and classical communication, they are said to be LOCC-equivalent.

In other words, any two states are identified as LOCC-equivalent if they can be obtained from

each other with certainty by means of local operations and classical communication (LOCC). No

quantum communication between the parties is allowed. The parties can use two LOCC-equivalent

states indistinctively for exactly the same tasks of quantum information theory [23].

The following theorem holds when the classification concerns the entanglement properties of a

single copy of the state.

Theorem 4.3.2. Two states |ψ〉 and |φ〉 are LOCC-equivalent if and only if there exist local

unitary maps Ui such that |ψ〉 = (U1 ⊗ U2 ⊗ ...⊗ Un)|φ〉.

For example, |Bell〉 = |00〉 + |11〉 and |EPR〉 = |01〉 + |10〉 are LOCC-equivalent, but they are

not LOCC-equivalent to 1
3 |00〉+ 2

3 |11〉.

4.3.2 SLOCC Equivalence

As discussed earlier, for single copies, two pure states |ψ〉 and |φ〉 can be obtained from each other

by means of LOCC iff they are related by local unitaries. However, even in the simplest bipartite

systems, |ψ〉 and |φ〉 are typically not related by local unitaries, and continuous parameters are

needed to label all equivalence classes, i.e. one has to deal with infinitely many kinds of entanglement.

An alternative classification is possible if we just demand that the conversion of the states is

through stochastic local operations and classical communication (SLOCC), i.e. through LOCC but

without imposing that it has to be achieved with certainty.

Definition 4.3.3. If two states can be inter-converted with only local (one-qubit) physical oper-

ations and classical communication, but only with some non-zero probability, they are said to be

SLOCC-equivalent.

In other words, two states |ψ〉 and |φ〉 are SLOCC-equivalent if the parties have a non-vanishing

probability of success when trying to convert |ψ〉 into |φ〉 and also |φ〉 into |ψ〉. Both these states
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can also be used to implement the same tasks of quantum information theory, but this time the

probability of a successful performance of the task may differ from |φ〉 to |ψ〉 [23].

Theorem 4.3.4. [22] Two states |ψ〉 and |φ〉 are SLOCC-equivalent if and only if there exist

local invertible maps Li such that |ψ〉 = (L1 ⊗ L2 ⊗ ...⊗ Ln)|φ〉.

For example, although |Bell〉 and |EPR〉 are not LOCC-equivalent to 1
3 |00〉 + 2

3 |11〉, all three

are SLOCC-equivalent. Thus, for bipartite entanglement, there is exactly one SLOCC equivalence

class, viz. |Bell〉 = |00〉+ |11〉.

4.4 GHZ and W states

It was shown in [23] that for pure states of three qubits, there are exactly two SLOCC equivalence

classes of genuine tripartite entanglement. The first is witnessed by a 3-qubit generalisation of the

Bell state, called the Greenberger-Horne-Zeilinger (GHZ) state:

|GHZ〉 = |000〉+ |111〉

and the second is witnessed by the W state:

|W 〉 = |100〉+ |010〉+ |001〉

Both of these states are symmetric tripartite maximally entangled states. However, with the

|GHZ〉 state, when one of the qubits is traced out, then the remaining two are completely unentan-

gled. This means, in particular, that if one of the three parties sharing the system decides not to

co-operate with the other two, then they cannot use at all the entanglement resources of the state.

The same happens if for some reason the information about one of the qubits is lost. Thus, the

entanglement properties of the |GHZ〉 state are very fragile under particle losses [23].

On the other hand, the entanglement of the |W 〉 state is maximally robust under disposal of

any of the three qubits, i.e. the remaining reduced density matrices 1 ρAB , ρBC and ρAC retain

the greatest possible amount of entanglement, compared to any other state of three qubits, either

pure or mixed. This means, in particular, that if one of the three parties, say Alice, decides not to

co-operate with the other two, Bob and Claire, and Alice tries to destroy the entanglement between

Bob and Claire, this would not be possible, since any local action on qubit A (owned by Alice)

1The reduced density matrix ρAB of a pure tripartite state |ψ〉 is defined as ρAB ≡ trC(|ψ〉 〈ψ|)
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cannot prevent Bob and Claire from sharing, at least, the entanglement between qubits B and C

(owned by Bob and Claire respectively) contained in ρBC [23].

Thus, intuitively, all of the entanglement present in |W 〉 is due to pairwise correlations between

each of the three qubits, unlike in the case of |GHZ〉, for which the entanglement is solely due to a

true tripartite correlation.

4.4.1 GHZ and W states as Commutative Frobenius Algebras

Let us consider the below graph:

S0
3 = := (4.1)

Let (C2, , , , ) be a CFA in FdHilb, where FdHilb is the symmetric monoidal category of

finite-dimensional Hilbert spaces, linear maps, the tensor product and with C as the tensor unit.

Since is a map from C2 to C2 ⊗ C2 and is a map from the tensor unit C to C2, Eq. (4.1) is a

map Ψ : C → C2 ⊗ C2 ⊗ C2. We can interpret this map as a ket, simply taking Ψ(1) = |Ψ〉. The

point is every Frobenius algebra can be canonically associated with a state [10].

Special CFAs are GHZ states

Theorem 4.4.1. [11] Each SCFA G on C2 in FdHilb canonically induces a symmetric state in

C2 ⊗ C2 ⊗ C2 which is SLOCC-equivalent to |GHZ〉. Conversely, any symmetric state that is

SLOCC-equivalent to |GHZ〉 arises from a unique SCFA G on C2 in FdHilb.

Anti-special CFAs are W states

Theorem 4.4.2. [11] Each ACFA W on C2 in FdHilb canonically induces a symmetric state in

C2⊗C2⊗C2 which is SLOCC-equivalent to |W 〉. Conversely, any symmetric state that is SLOCC-

equivalent to |W 〉 arises from a unique ACFA W on C2 in FdHilb.

Induced CFAs in FdHilb for GHZ and W states

For the GHZ-state the induced SCFA is:

= |0〉 〈00|+ |1〉 〈11| = |+〉 :=
1√
2

(|0〉+ |1〉)

= |00〉 〈0|+ |11〉 〈1| = 〈+| := 1√
2

(〈0|+ 〈1|)
(4.2)
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and for the W-state the induced ACFA is:

= |1〉 〈11|+ |0〉 〈01|+ |0〉 〈10| = |1〉

= |00〉 〈0|+ |01〉 〈1|+ |10〉 〈1| = 〈0|
(4.3)

Remark 4.4.3. The cups and caps induced by each CFA in general do not coincide, e.g.

|10〉+ |01〉 = 6= = |00〉+ |11〉

Therefore explicit dots were introduced in order to distinguish them.

4.4.2 General multipartite states

The structure of either an SCFA or ACFA alone generates only the non-degenerate multipartite

states canonically analogous to GHZ and W states, respectively. However, combining these two

gives rise to a wealth of states as shown in [11]. For the specific cases of the GHZ-SCFA and the W-

ACFA as in Eqs (4.2) and (4.3), there are many equations which connect ( , , , ) and ( , , , ).

What is of interest to us here is a small subset of these that helped to show that representatives of

all known multipartite SLOCC-classes arise from the interaction of a SCFA with an ACFA.

Definition 4.4.4. [11] A GHZ/W-pair consists of a SCFA ( , , , ) and an ACFA ( , , , )

which satisfy the following four equations.

(i.) - := = (ii.)
-

= - -

(iii.) = (iv.) - =

In FdHilb these conditions have a clear interpretation. By compactness of cups and caps, the

first condition implies that a ‘tick’ on a wire is self-inverse which together with the second condition

implies that it is a permutation of the copiable points of the SCFA. The third condition asserts that

is a copiable point. The fourth condition implies that is also a (scaled) copiable point since it is

the result of applying a permutation to a scalar multiple of .

The following are two examples of arbitrary N -partite states clearly arising out of interaction of

SCFAs with ACFAs:
... ...- - -
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It was shown in [23] that there are essentially infinite SLOCC classes for 4 qubits or more. To

be able to finitely classify multipartite states for N ≥ 4, SLOCC super-classes were introduced

representing families of SLOCC classes parameterised by one or more continuous variables. The

heavy-handed inductive classification scheme established in [19] can be realised by the more intuitive

graphical language of GHZ/W-pairs. Below we state a result illustrated in [11] that would give the

reader an idea how all genuine new kinds of entanglement arise from the GHZ/W-calculus only.

Proposition 4.4.5. [11] Given a representative of a SLOCC-class we can reproduce the whole

SLOCC-class when we augment the GHZ/W-calculus with ‘variables’, i.e. single-qubit states. In

other words, if we adjoin variables to the graphical language of GHZ/W-pairs, then any N -qubit

entangled state can be written in this graphical language.

For example, the following graph

φ ψ

represents the parameterised SLOCC-superclass

|0〉((|00〉+ |1ψ〉)︸ ︷︷ ︸
SLOCC
' |Bell〉

|φ〉) + |1〉|0〉|Bell〉

Let us now witness here the construction of the following much simpler representative of a

SLOCC-superclass for 4 qubits.

We start by constructing the following graph

which can be easily verified to be

(|01〉|01〉+ |10〉|01〉+ |01〉|10〉+ |10〉|10〉+ |00〉|00〉) 〈0| 〈0|+ (|00〉|00〉) 〈1| 〈1|

where:

:= =

Next we include = |0〉|00〉+ |1〉|11〉 into the graph to obtain:
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which clearly is

|0〉(|01〉|01〉+ |10〉|01〉+ |01〉|10〉+ |10〉|10〉+ |00〉|00〉) + |1〉(|00〉|00〉)

Finally, upon plugging = |0〉 〈00| + |1〉 〈11| at the bottom of the graph, we obtain the desired

graph:

which clearly can now be computed to be the SLOCC-superclass:

|0〉 (|000〉+ |101〉+ |010〉)︸ ︷︷ ︸
SLOCC
' |W 〉

+|1〉|000〉

On the other hand, the following graph:

represents the SLOCC-superclass [11]:

|0〉 (|000〉+ |111〉)︸ ︷︷ ︸
SLOCC
' |GHZ〉

+|1〉|010〉

Thus, we saw how composing simpler graphical elements of GHZ/W pair can help build up

representatives of SLOCC-superclasses corresponding to arbitrary multipartite states.

Let us now consider the following graph:

One can easily construct and verify that this graph represents the state 2|0000〉, which is com-

pletely unentangled. Graphically, this is equivalent to:

- - - -

However, the axioms of GHZ/W pair appear to be fairly weak and by no means help us to reduce

the original graph to the above graphically. Thus, these conditions need to be extended with other

ones that will suffice to identify when two graphs represent the same state.
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Chapter 5

Normal Form Theorems

“The challenge is to discover the necessary additional pieces of structure that allow us to

predict genuine quantum phenomena.” - Bob Coecke

In this chapter we would first enlist here some preliminary results of relevance to us further in

this chapter. In particular, we introduce additional graphical lemmas that essentially follow from

the axioms satisfied by a GHZ/W pair as outlined in Def. 4.4.4 and help us to enrich the graphical

language of GHZ/W calculus, particularly for the case of FdHilb. We also introduce an alternative

normal form for a CFA morphism before laying down normal form for morphisms with ticks and

then more theorems and their proofs.

5.1 Preliminary Work

5.1.1 More graphical lemmas

For General SMCs

Lemma 5.1.1. [11] For a GHZ/W pair, we have:

(i) -- = -

(ii) = -

(iii)
-

= - -

(iv) =
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(v) - = - = = 1I

(vi) - =

For FdHilb in particular

Here we develop more graphical lemmas, that hold in the particular case of the symmetric monoidal

category FdHilb of Hilbert spaces and linear maps.

Lemma 5.1.2. [15] Bialgebra rules:

(i) =

(ii) - =
-

-

(iii) - - =
- -

Lemma 5.1.3. -- := 2

Proof. We denote the map -- in FdHilb as 2 , which is precisely

0 2

1 0

, since if we input |0〉

and |1〉 to the map, we get as follows:

|0〉 7→ |00〉 7→ |11〉 7→ |1〉 and |1〉 7→ (|01〉+ |10〉) 7→ (|10〉+ |01〉) 7→ 2|0〉

2

Corollary 5.1.4. In general, we denote

...- -- := t

where t is the number of ticks.
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Remark 5.1.5. It follows from the above that the tensor product of two such maps admits a straight-

forward representation as follows:

t1 ⊗ t2 = t1 + t2

However, when composing two such maps, we do not get well-behaved result, except in the

particular case where the number of ticks in the two maps are the same, in which case:

t ◦ t = t

Lemma 5.1.6. t =

Proof. This follows by applying lemma (5.1.1.(vi)) iteratively to one tick at a time. 2

Lemma 5.1.7. - := zero map

Proof. This is so because if we input |0〉 and |1〉 to the map, we get as follows:

|0〉 7→ |00〉 7→ |10〉 7→ 0 and |1〉 7→ |11〉 7→ |01〉 7→ 0

2

5.1.2 Alternative Representation of Normal Form

We have previously witnessed the graphical representation of the normal form for any connected

CFA morphism in Eq. (3.7). Here we extend the treatment of the normal form by laying down an

alternative graphical representation of the normal form that would assist us in our results discussed

in later sections.

Abiding by Theorem (3.3.2), we extend our previous argument by stating that any connected

morphism constructed from a commutative Frobenius algebra ( , , , ) admits the normal forms:
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...

...

...

=

...

...

... (5.1)

respecting the number of inputs, number of outputs and number of loops in both cases.

5.1.3 Normal Forms with ticks

Here we articulate a normal form for a CFA morphism formed out of either a SCFA ( , , , ) or

an ACFA ( , , , ), but also with ticks, i.e. for a CFA morphism with only white dots or only

black dots and with ticks.

Theorem 5.1.8. Let C be an SMC. Any general connected CFA morphism on C with ticks and

with only white dots or only black dots admits the normal form given by:

...

...

.. --

Proof. Let us denote a given CFA morphism with ticks and only white dots or black dots as H.

If H has no ticks, then it admits the normal form as given in section 5.1.2.

If it has one tick, the tick can be removed from the rest of the graph, which is then without any

ticks at all.

H = G -

The remaining graph G has, therefore, an additional input and an additional output but no ticks

anymore and, thus, admits a normal form as given in section 5.1.2. Note that the graph G could be

left disconnected upon removing the tick if there were no loops in H.

G =

...

...

...

additional input

additional output
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Now, including the tick back into the normalised graph G, we get the graph that is normalised and

equivalent to the original graph H. In case G was rendered disconnected upon removing the tick,

including the tick back into G leaves H unchanged since it is already in the desired normalised form.

...

...

.. -

By induction, we can always rewrite a connected CFA morphism with ticks to the normal form:

...

...

.. --

2

5.2 Theorems

5.2.1 Scalars in FdHilb

In this section we shall explore various scalars constructed from interacting GHZ and W states in

the symmetric monoidal category FdHilb.

Theorem 5.2.1. Any scalar formed out of a SCFA ( , , , ) and an ACFA ( , , , ) on C2 in

FdHilb, using only cups, caps and σ and/or identities as below is either equal to the dimension or

zero.

⊗ ⊗ . . .⊗

σ ...

⊗ ⊗ . . .⊗

where the box contains symmetries and/or identities.

Proof. We know that

= = and = = -

42



Let a be the number of black dots and s be the number of white dots. Note that (s+ a) should

always be even. Then, we can have the following two cases:

(i) When both s and a are even: Considering s > a, the a number of black dots and white dots

give rise to an even number of ticks, thereby cancelling out each other. The remaining (s− a)

number (even) of white dots just give rise to identities, unless s = a and, in either case, the

scalar boils down to a circle , i.e. dimension in FdHilb. Likewise for a > s.

(ii) When both s and a are odd: Considering s > a, the a number of black dots and white dots

give rise to an odd number of ticks that cancel out each other leaving only one tick. This

remaining tick inverts one white dot out of remaining (s − a) white dots into a black dot,

leaving (s−a− 1) white dots out of which (s−a− 2) white dots give rise to identities. So, the

scalar would boil down to which is zero. Likewise for a > s. When s = a, a− 1 number of

black dots and white dots give rise to an even number of ticks, thereby cancelling each other

and leaving one white dot and one black dot. The scalar then again boils down to which is

zero.

2

5.2.2 White dots with ticks

Theorem 5.2.2. Let C be an SMC. Every connected SCFA morphism with ticks on C is uniquely

determined by its number of inputs, number of outputs, number of loops (l) and/or the number of

ticks (t), such that

(i) When t = 0, then the morphism is just a spider.

(ii) When t = l + 1, then the morphism is a spider with all its input legs ticked:

...

...

..- -- - =
...

...

- -

(iii) When 0 < t < l + 1, then the morphism is just a zero map in FdHilb.

Proof. When t = 0, the result just follows from theorem (3.4.5).

When t = l + 1, the result is a direct consequence of lemma (5.1.1.(i)).
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Finally, when 0 < t < l + 1, the result follows from lemma (5.1.7). 2

Theorem 5.2.3. Any scalar formed out of a SCFA ( , , , ) and ticks in the normal form of

Theorem (5.1.8) is either equal to zero or the dimension in FdHilb according to the following rules,

where l is the number of loops and t is the number of ticks:

(i) When 0 < t ≤ l, it equals zero.

(ii) When t = 0 or t = l + 1, it equals dimension.

Proof. When t = 0, applying Eq. (3.8) iteratively, the scalar gets reduced to one with only one loop,

yielding , i.e. dimension in FdHilb.

When 0 < t ≤ l, applying Eq. (3.8) iteratively, the scalar gets reduced to the following form

(with t = l):

..- - -

which upon applying lemma (5.1.1.(i)) and Eq. (3.8) again reduces to zero as follows:

..- - - = ..- - - = ..

-

= - = = 0

Finally, when t = l + 1, the scalar reduces to , i.e. dimension in FdHilb as follows:

..- -- - = ..

-

- - - = ..

--

= .. = =

2

5.2.3 Black dots with ticks

Theorem 5.2.4. Let C be an SMC. Every connected ACFA morphism with ticks on C is uniquely

determined by its number of inputs, number of outputs and the number of loops (l) less the number

of ticks (t), with the following exception: When t = l + 1, then the morphism is of the form

...

...

..- -- - := t
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where t is the map

0 t

1 0

 in FdHilb.

Proof. When t = 0, then the morphism just admits the normal form as in section 5.1.2.

When t < l, we apply lemma (5.1.1.(vi)) iteratively to get rid of all the ticks and are left with

the same number of inputs, same number of outputs and l − t loops.

When t = l, we are, thus, left with l − t = 0 loops, yielding a spider.

Finally, when t = l + 1, then the result is a direct consequence of corollary (5.1.4). 2

Theorem 5.2.5. Any scalar formed out of an ACFA ( , , , ) and ticks in the normal form of

Theorem (5.1.8) is either equal to zero or the dimension or t in FdHilb, where t is the number of

ticks and l is the number of loops, according to the following rules:

(i) When t = 0, the scalar is zero except in the case l = 1, when it equals the dimension.

(ii) When t = l, the scalar equals zero.

(iii) When t = l − 1, the scalar equals the dimension.

(iv) When t = l + 1, the scalar is equal to t.

(v) When 0 < t < l − 1, the scalar equals zero.

Proof. When t = 0, the scalar is simply the dimension when l = 1, i.e. there is only one loop, but

is zero otherwise since the scalar would be a product of either or both of the primitives (which are

zeroes) and where

= = − = 0

= = − − = 0

For example, using anti-specialness and lemma (3.4.4),

= = − − = − − − − = 0

When t = l, the scalar equals zero since applying lemma (5.1.6), we get:
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..- - - = t = = 0

When t = l − 1, the scalar boils down to the dimension as follows:

..-- - = t =

When t = l + 1, the scalar reduces to t as follows:

..- -- - = t = t

Finally, when 0 < t < l − 1, the scalar equals zero, since l ≥ 3 and:

..-- = .. = 0

2

5.2.4 Mixed Cases

We now develop in this section some graphical lemmas for mixed cases and would then use them to

study the behaviour of certain class of mixed morphisms.

Lemma 5.2.6. =
-

and =
-

Proof. We shall only prove the first here, and the second naturally follows by dualising the first.

Applying lemma (5.1.2.(ii)), we get

= = - = - =
-

-
=

-

2
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Lemma 5.2.7. - =
-

and - =
-

Proof. We shall only prove the first here, and the second naturally follows by dualising the first.

Applying lemma (5.1.2.(iii)), we get

- = - = - - = - - =
- -

=
-

2

Lemma 5.2.8. -- = = --

Proof. The proof is simple as shown below:

-- =
-

=
--

= =
--

=
-

= --

2

Theorem 5.2.9. A (mixed) morphism of the following form:

...

...

..- -

reduces to simple disconnected graphs or zero morphisms in FdHilb according to the following rules

(where t is the number of ticks and l is the number of loops):

(i) When t = 0, then the morphism always equals the following irrespective of the number of loops:

...

...- -

(ii) When t = 1, t < l, then the morphism always equals the following irrespective of the number of

loops:

...

...

- -

- -
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(iii) When t = l + 1, then the morphism always equals the following irrespective of the number of

loops:

...

...

(iv) When t = l, l > 1, then the morphism always equals the following irrespective of the number of

loops:

...

...

- -

(v) When t = l = 1, then the morphism is just the following:

...

...

- -

(vi) When 1 < t < l, then the morphism always equals zero morphism irrespective of the number

of loops.

Proof. We prove the different cases one by one by induction below.

(i) For l = 1, it follows directly from lemma (5.2.6).

For l = L > 1, L = even, applying lemma (5.2.6) to L
2 loops the morphism reduces to

...

...

.. =

...

...

..

-

-

= - .. -

...

...
-

=
...

...- -

The number of copies of - above is equal to L
2 − 1 and they disappear upon applying lemma

(5.1.1.(v)). The last step uses the fact that a black dot is copied by a white dot.

Now, for l = L+ 1, l is odd, such that the morphism reduces as follows

...

...

.. =

...

...

..

- -

= - .. -

...

...- -
=

...

...- -

The number of copies of - above is equal to L
2 .

It can be easily verified that when L = odd the reduction is just vice-versa for l = L and

l = L+ 1 as compared to the case L = even.

(ii) For t = 1, t < l, the starting point for induction is l = 2.

For l = 2, applying lemma (5.2.7) we get
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...

...

- =

...

...

-

=

...

...

-

=

...

...

-

-

=
...

...

- -

- -

The last step uses lemma (5.1.1.(iii)) and the fact that a black dot is copied by a white dot.

For l = L > 2, L = even, applying lemma (5.2.7) to the leftmost loop and lemma (5.2.6) to

the next L
2 − 1 loops, the morphism reduces to

...

...

..- =

...

...

..

-

- -

=

...

...

..
-

- -

= - .. -

...

...

-

-

=

...

...

-

-

=
...

...

- -

- -

The number of copies of - above is equal to L
2 − 1.

Now, for l = L+ 1, l is odd, such that the morphism reduces as follows

...

...

..- =

...

...

..

-

- -

=

...

...

..- -

-

= - .. -

...

...

-

-

=
...

...

- -

- -

The number of copies of - above is equal to L
2 .

It can be easily verified that when L = odd the reduction is just vice-versa for l = L and

l = L+ 1 as compared to the case L = even.

(iii) For l = 1, it follows directly from lemma (5.2.8).

For l = L > 1, L = even applying lemma (5.2.8) to L
2 loops the morphism reduces to

...

...

..- -- - =

...

...

.. - = - .. -

...

...

=
...

...

The number of copies of - above is equal to L
2 − 1.

Now, for l = L+ 1, l is odd, such that the morphism reduces as follows

...

...

..- -- - =

...

...

.. = - .. -

...

...
=

...

...
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The number of copies of - above is equal to L
2 .

It can be easily verified that when L = odd the reduction is just vice-versa for l = L and

l = L+ 1 as compared to the case L = even.

(iv) For t = l, l > 1, the starting point for induction in this case is l = 2.

For l = 2, applying lemma (5.2.8) to the left loop we get

...

...

- - =

...

...

=

...

...

=

...

...

-

=
...

...

- -

For l = L > 2, L = even, applying lemma (5.2.8) to the leftmost L
2 loops, the morphism

reduces to

...

...

..- - - =

...

...

.. = - .. -

...

...

-

=
...

...

- -

The number of copies of - above is equal to L
2 − 1.

Now, for l = L+ 1, l is odd, applying lemma (5.2.8) to the left L
2 loops and lemma (5.2.7) to

the rightmost loop, the morphism reduces as follows

...

...

..- - - =

...

...

..

-

= - .. -

...

...

-

=
...

...

- -

The number of copies of - above is equal to L
2 .

It can be easily verified that when L = odd the reduction is just vice-versa for l = L and

l = L+ 1 as compared to the case L = even.

(v) This follows directly from lemma (5.2.7).

(vi) It can be easily verified that in this case, the morphism can always be reduced to an arbitrary

disconnected graph multiplied by copies of , which is zero in FdHilb, thereby reducing the

morphism to a zero morphism.

2
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Corollary 5.2.10. The reduced forms for various cases for a (mixed) morphism of the following

form:

...

...

..- -

are just upside-down of those in Theorem (5.2.9), since the morphism is obtained by just dualising

the one treated in the above theorem.

Remark 5.2.11. Note that although we treated the mixed morphism(s) above and observed the

nature of such a morphism, we do not claim that either of these forms is a normal form for any

arbitrary morphism of interacting GHZ and W states. To be precise, we do not know if any arbitrary

morphism of interacting GHZ and W states admit a normal form at all. However, the above result

definitely gives a good insight into particular kinds of mixed morphisms.

Theorem 5.2.12. Any (mixed) scalar of the form:

..- -

is either equal to zero, 1I or dimension in FdHilb according to the following rules (where t is the

number of ticks and l is the number of loops):

(i) When t = 0 or t = l + 1, the scalar equals zero.

(ii) When t = l = 1, the scalar equals dimension.

(iii) When l > 1 and either t = 1 or t = l, the scalar equals 1I .

(iv) When 1 < t < l, the scalar equals zero.

Proof. The proofs follow directly from Theorem (5.2.9) as follows:

(i) When t = 0, the scalar reduces to

.. =
-

= 0

When t = l + 1, the scalar reduces to

..- -- - = = 0
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(ii) When t = l = 1, the scalar reduces to

- =

(iii) When t = 1, l > 1, the scalar reduces to

..- =
-

-
= 1I

When t = l, l > 1, the scalar reduces to

..- - - =
-

= 1I

(iv) When 1 < t < l, it follows directly from the last condition of Theorem (5.2.9) that the scalar

always equals zero.

2

Corollary 5.2.13. It can be easily verified that any (mixed) scalar of the form:

..- -

is either equal to zero, 1I or dimension in FdHilb according to the same rules as Theorem (5.2.12).
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Chapter 6

Conclusion

“Nobody understands quantum mechanics.” - Richard Feynman

In this final chapter, we first summarize our results and then sketch possible future work in this

context.

6.1 Summary of Results

We know that there are exactly two SLOCC classes of genuine tripartite entangled states called

the GHZ and W states. It was also previously known that ‘special’ and ‘anti-special’ commutative

Frobenius algebras (CFAs) represent these GHZ and W states, respectively. We have seen the graph-

ical counterparts of these, when the CFAs are presented internal to symmetric monoidal categories.

Having noted the normal form admitted by a CFA morhpism, we already knew that any SCFA

morphism is just a spider whereas we spelled out concretely the nature of any ACFA morphism,

particularly stating explicitly the scalar involved.

We have as well witnessed the previously laid down basic axioms satisfied by a GHZ/W pair,

that help to generate and reason about arbitrary multipartite states. However, the behaviour of such

interacting GHZ and W states needed to be further studied to identify which graphical properties

lead to what states.

We developed more graphical identities satisfied by a GHZ/W pair, particularly in the SMC

FdHilb of Hilbert spaces and linear maps. We studied the well-behaved nature of a class of scalars,

formed out of cups, caps and symmetries and/or identities and identified when such a scalar equals

zero and when it equals dimension in FdHilb.
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Based on an alternative normal form for any CFA morphism, respecting the number of inputs,

number of outputs and the number of loops, we derived the normal form admitted by any CFA mor-

phism (either SCFA or ACFA morphism) alongwith ticks (self-inverses). In particular, we identified

the nature of a general SCFA morphism with ticks and a general ACFA morphism with ticks. We

also observed what scalars in this normal form having ticks and only white dots or black dots equal

to, in different cases.

Finally, we derived more graphical lemmas for the mixed cases based on bialgebra rules. Based

on this, we studied the nature of a general class of certain kinds of mixed morphisms and the values

of scalars expressed in this mixed form.

6.2 Future Work

In this work, we have mainly established a normal form for interacting GHZ and W states. However,

we have laid down such a normal form for only morphisms where the black dots and white dots

interact with each other to give rise to ticks, leaving only black or white dots in the remaining

graph. Note that wherever necessary we have considered the specific case of the SMC FdHilb

to arrive at the result(s). Arriving at a normal form for cases where we are left with both black

and white dots even after reducing all interacting contrasting dots into ticks appears to be highly

non-trivial and we have kept this out of the scope of this thesis.

We have, however, explored and further identified here the behaviour of certain non-trivial mixed

morphisms in the graphical language. Thus, what follows naturally as future work to this is to

possibly arrive at a normal form for morphisms with ticks and both black and white dots, that

would provide us with an exhaustive toolkit alongwith our results to completely qualify all known

multipartite states in our graphical language. Moreover, generalizing our results to general SMCs

from the specific case of FdHilb (wherever such assumption has been made) as future work would

further enrich the graphical language.
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