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Abstract

We present a review of the current state of affairs in the foundations of quantum meachanics. After

introducing the axioms of quantum theory, the first part of the report examines in detail the trials of

interpreting quantum mechanics in a realist way. The main focus of the second half of the review is the

attempt to describe quantum mechanics within a larger space of hypothetical theories. A particular

emphasis is given to the study of Categorical Quantum Mechanics. This leads to the derivation of a

new result: the complete set of quantum circuit equations for stabilizer quantum mechanics. We also

suggest a number of future directions for research.
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Chapter 1

Introduction

Our scientific theories aim to accurately describe every phenomenon that can possibly occur in the

world we live in. However, one can hope that a theory will not only explain all observable occurrences

and predict new results, but will also convey an understanding of the inner workings of nature; an

insight into why things are the way they are.

Of course, any theory or model put forward to explain natural phenomena will have a limited

domain of validity. Even within this restricted domain, the understanding provided by our imperfect

human constructions is flawed; we only obtain an approximate truth, based upon defective axioms

and unreliable reasoning. It is unclear whether there even is such a thing as objective truth. Indeed,

a timeless, unquestionable reality independent of perspective may be a fallacy. Even if such a thing is

possible in principle, then could a theory exhibiting the objective truth of some subclass of all objects

and ideas ever be fathomed by our human minds?

Our current progress in seeking out a relatively consistent theory which allows us to approximately

describe most observed physical phenomena has led us to the study of two complementary theories of

nature: General Relativity and Quantum Mechanics. One would expect that if we manage to produce

a set of consistent physical axioms from which we can derive both General Relativity and Quantum

Mechanics as approximate emerging descriptions of the world, then we would be a step closer towards

obtaining a theory exhibiting objective truth. Even an anti-realist or a subjectivist might praise this

achievement for elegance and consistency alone, independently of the belief in an underlying reality,

or ontological realm of objects and facts, that exists independently of the mind.

In order to attain this ambitious goal, a crucial first step is to work towards a more thorough

understanding of the foundations of Quantum Mechanics. In addition to the revolution in physics

this theory has already caused, an improved grasp of Quantum theory has the potential to lead to

another considerable shift in our perspective on how the world works. Of course, developments of

quantum mechanics go hand in hand with numerous technological advances, including lasers, transis-

tors, quantum information and computation. In the following thesis, however, we will only describe

technological developments insofar as they help us understand fundamental features of nature.

Quantum foundations has a number of distinct goals, aiming to further our understanding of

quantum theory or quantum-like theories of nature. One of these is the search for and analysis of

non-classical or quantum effects. These may reveal important quantum-like or classical-like features

which the world may or may not exhibit. Another important aim of quantum foundations is to provide

an adequate interpretation and a thorough analysis of the axioms of quantum theory. Combining these,

we can then determine fundamental principles from which the quantum formalism can be derived.

This should eventually lead to a thorough conceptual and mathematical underpinning of quantum
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theory without any inconsistencies.

An alternative approach to foundations is to examine a larger space of hypothetical theories

containing quantum theory. This allows us to formalize and clarify the different ways in which the

world could possibly work and where quantum mechanics fits with respect to these possibilities. Such

an analysis of mathematical theories of nature requires a high level of abstraction guided by deep and

novel physical intuition.

Analysis of the foundations of quantum mechanics may then bring out new ways to conceptu-

alize the theory, suggesting new possible experiments and theory that would have been difficult to

imagine without foundational insight. Such an inquiry should then pave the way towards alternative

approaches in cases where we are presently uncertain how to go about applying the current quantum

formalism. This methodology could even provide alternative theories which would supplant quantum

theory. Such theories would have to either predict correctly the result of an experiment for which

quantum mechanics is wrong or provide a modification of the standard theory which can lead to

accurate novel predictions not provided previously.

Let us now sketch the state of affairs in quantum foundations.
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Chapter 2

Quantum mechanics as it is

2.1 Orthodox postulates

A natural starting point for an analysis of the foundations of quantum theory would be the postulates

of quantum mechanics:

2.1.1 Axiom 1

The physical state |ψ〉 of the system corresponds to a normalized ray of a Hilbert space H, known as

the state space of the system.

2.1.2 Axiom 2

The evolution of a closed system is a unitary transformation: |ψ(t)〉 = U(t, t0)|ψ(t0)〉 (such that

U−1 = U †) depending only on the initial time t0 and the final time t.

2.1.3 Axiom 3

Associated with each observable property of a system is a Hermitian operator M (a Hermitian operator

satisfies M = M † and has real eigenvalues and orthogonal eigenvectors.). M =
∑

mmPm, where Pm is

the projector onto the eigenspace of M with eigenvalue m. The possible results of a measurement of M

on the state |ψ〉 are the eigenvalues m of M. The probability of getting outcome m is: p(m) = 〈ψ|Pm|ψ〉.

2.1.4 Axiom 4

Given that outcome m occurred, the state of the system changes discontinuously as: |ψ〉 → Pm|ψ〉
p(m) .

2.1.5 Axiom 5

If two systems |ψ1〉 and |ψ2〉 have state spaces H1 and H2 respectively then if we treat these two

systems as one single compound system |ψ1〉 ⊗ |ψ2〉, the state space of the compound system is the

tensor product H1 ⊗H2.

We can immediately notice several odd features of this set of postulates. This definition of physical

states as elements of an abstract Hilbert space and the use of the tensor product to form composite sys-

tems seem arbitrary. There is an immediate clash between the deterministic and continuous evolution
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of closed systems and the indeterministic discontinuous evolution due to measurement. One might

wonder how to interpret the quantum state, where the division lies between observer and observed or

where the measurer is to be found if the system in question is the whole universe.

For now, we will delay these questions and take a minimalist, operational approach to quantum

theory. Using this methodology, we find more general axioms for quantum theory.

2.2 Operational axioms

A useful way of interpreting a physical theory is to forget about all the inner workings specific to the

given theory. One can argue that all empirical evidence perceptible by human beings is restricted to

macroscopically distinguishable initializations and outcomes expressed in classical terms.

In this operational interpretation, the only role of a physical theory is to provide a minimal

explanation of experimental phenomena. This can generally be done by providing a description of

physical preparation (P), transformation (T) and measurement (M) procedures which yields correct

statistics for experiments that can be done. In such a setting, the axioms of quantum theory can be

reformulated as:

2.2.1 Axiom 1: Preparation

A preparation P is associated to a trace one positive operator ρ, known as the density operator, acting

on the Hilbert space H.

Note that:

(i) If a system preparation is associated with |ψi〉 with probability pi then the density operator

corresponding to the overall preparation is ρ =
∑

i pi|ψi〉〈ψi|.
(ii) A preparation ρ is called a ‘pure state’ if Tr(ρ2)=1. Otherwise Tr(ρ2) < 1 and ρ is called a

‘mixed state’.

(iii) Two preparations ρ1 and ρ2 can be combined as before into one single compound preparation

using the tensor product: ρ12 = ρ1 ⊗ ρ2.

(iv) Conversely, we can get one of the subspreparations by tracing out the other subpreparation:

ρ1 = Tr2(ρ12).

2.2.2 Axiom 2: Transformation

A transformation T is associated to a completely positive trace non-decreasing map E : ρ→ E(ρ),

Such that:

(i) 0 ≤ Tr(E(ρ)) ≤ 1 for any preparation ρ

(ii) For probabilities {pi}: E(
∑

i piρi) =
∑

i piE(ρi)

(iii) E(A) and (I ⊗ E)(A) are positive for any positive operator A (I is the identity operator).

Note that (i), (ii) and (iii) are formally equivalent to either of the following:

(KRAUS) E(ρ) =
∑

i(EiρE
†
i ) where

∑
i(E
†
iEi) ≤ 1 and Ei are the Kraus operators.

(ANCILLA) E(ρ) = TrE(PU(ρ⊗ ρ0)U †P ), where we couple the prepared system to the environ-

ment E (ancillary system ρ0), perform a general unitary evolution U then a projective measurement

P (that has some chance of failure) then trace out the environment.
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2.2.3 Axiom 3: Measurement

Measurements are now a special case of axiom 2 where every measurement M is associated with a

positive operator valued measure (POVM) {Mk} such that
∑

kMk = I. This is a CP map where the

Kraus operators are the {Mk}.
The probability of a measurement M yielding outcome k, given a preparation P (corresponding to

ρ) and transformation T (corresponding to E), is: p(k|P, T,M) = Tr(MkE(ρ)).

This set of axioms aims to get rid of any mention of underlying physical states or their evolution

and aspires to be as minimal as possible. The axioms of quantum theory formulated in this way

are very general and have numerous applications. They provide a clear target which alternative

interpretations of quantum theory, notably realist approaches, must reproduce.

A realist approach to quantum theory must aim to go further than just give an account of all the

results of experiments performed. Such an interpretation must also provide an accurate, verifiable

description of the underlying physical mechanisms leading to the results. We will describe how such

an attempt at a realist approach reveals several unexpected features of the world.
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Chapter 3

Non locality

3.1 EPR

In their 1935 paper [1], Einstein, Podolsky and Rosen raise a fundamental issue regarding quantum

theory. The authors define elements of physical reality in the following way: “If, without in any way

disturbing a system we can predict with certainty the value of a physical quantity, then there exists

an element of physical reality corresponding to this physical quantity”. They also make the point that

a physical theory should not just be correct but should also be complete, in the sense that: “every

element in the physical reality must have a counterpart in the physical theory”. EPR then make use

of a quantum state |ψ〉 of two particles which have been prepared such that their relative distance

x1 − x2 is arbitrarily close to L and their total momentum p1 + p2 is arbitrarily close to zero.

A measurement of x1 then allows one to predict with certainty the value of x2 without disturbing

particle 2. Indeed, the authors assume a notion of locality along the following lines: “since at the time

of measurement the two systems no longer interact, no real change can take place in the second system

in consequence of anything that may be done to the first system”. This means that x2 corresponds

to an element of physical reality as EPR defined.

In the same way, one can perform a measurement of p1 instead of x1 and determine p2 with cer-

tainty without disturbing particle 2 in any way. This means that x2 and p2, which don’t commute and

therefore cannot be simultaneously assigned precise values by quantum mechanics, both correspond

to elements of physical reality. This leads EPR to conclude that quantum mechanics, which cannot

describe every element of physical reality, is not a complete theory (based on local causality). The

question of whether there exists such a complete theory is left open.

3.2 Bohr response

Not long after the publication of the EPR paper, Bohr published a response [2] explaining his point

of view regarding the EPR result. Bohr analyses the actual approach one takes when performing a

quantum experiment. He describes the way in which an observer can use his free will to arbitrarily

choose his experiments. He explains that “we are not dealing with an incomplete description charac-

terized by the arbitrary picking out of different elements of physical reality at the cost of sacrificing

other such elements, but with a rational discrimination between essentially different experimental

arrangements and procedures”.

In this way, Bohr safeguards quantum theory by resorting to an operational description of an

experiment in which the entire phenomenon is regarded as a single and unanalyzable whole. The
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impossibility of controlling the reaction of the object due to the measuring device and the indivisibility

of the quantum of action leads Bohr to question the classical idea of causality and criticize the EPR

criterion of reality as ambiguous.

According to Bohr, the non-local nature of quantum theory means that the requirement of not

disturbing the system in any way in order to define an element of physical reality is flawed. Indeed,

he tells us that: “Of course there is [...] no question of a mechanical disturbance of the system under

investigation during the last critical stage of the measuring procedure. But even at this stage there

is essentially the question of an influence on the very conditions which define the possible types of

predictions regarding the future behavior of the system”.

Schrodinger [3] coined the term ‘entanglement’ to describe this peculiar connection between quan-

tum systems. Indeed, the parts of a quantum system such as the EPR state cannot be separated into

valid quantum states for localized subsystems (|ψ〉 6= |α〉 ⊗ |β〉 for any states |α〉 and |β〉). This leads

Schrodinger to study quantum steering, this influence of the measuring procedure of one subsystem

on the other subsystem, as described by Bohr.

In this way, Bohr introduced the principle of complementarity, namely that: “evidence obtained

under different experimental conditions cannot be comprehended within a single picture, but must be

regarded as complementary in the sense that only the totality of the phenomena exhaust the possible

information about the objects”. One could then interpret that all physical concepts correspond to

phenomena and reality is described by the whole set of phenomena.

3.3 Hidden variables and Von Neumann’s no go theorem

Bohr did not aim to construct an ontological interpretation of quantum theory nor did he decisively

question Einstein’s assertion [4] that: “On one supposition we should, in my opinion, absolutely hold

fast: the real factual situation of the system S2 is independent of what is done with the system S1

which is spatially separated from the former”. The question of whether the statistical, non determin-

istic element of quantum mechanics arises because quantum states are averages over better defined

‘dispersion free’ states, specified by ‘hidden variables’ as well as the quantum state, was left open.

Von Neumann gave an early analysis [5] of whether hidden variable theories can reproduce the

statistics of quantum mechanics. He proves that, under certain assumptions, quantum mechanics

cannot be reproduced by averaging over dispersion free states. One of Von Neumann’s assumptions

is that the linear combination of two (Hermitian operator) observables is an observable and that

the linear combination of expectation values is the expectation value of the combination, for both

the quantum mechanical states and dispersion-free states. He then shows that there must be an

observable such that < A >2 6=< A2 > so that the dispersion for the measurement of at least one

observable (for any state) must be greater than zero.

Bell showed that Von Neumann’s assumption, that the linear combination of expectation values is

the expectation value of the combination, is not valid for dispersion free states. This assumption breaks

down since for two non commuting operators A and B, distinct experimental setups are required to

measure A, B and A+B. Bell falsified this conjecture by explicitly constructing a deterministic model

[6], generating results identical on average to those of quantum theory, which does not obey this

assumption.

The model concerns a spin half particle and measurement of two operators A = m·σ and B = n·σ,

where m and n are arbitrary real three-vectors and σ has matrix components which are the Pauli
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matrices:

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
(3.1)

Quantum mechanical measurements of A and B always yield ±|m| and ±|n| respectively. The

hidden variable model consists of the quantum state |ψ〉 and also a hidden variable λ which takes

values between -1 and 1. For a given λ, the result of a measurement of A is deterministically:

−|m| if −1 < λ < −〈ψ|A|ψ〉/m, which occurs with probability (1−〈ψ|A|ψ〉/m)
2

+|m| if −〈ψ|A|ψ〉/m < λ < 1, which occurs with probability (1+〈ψ|A|ψ〉/m)
2 .

The average result is then:

< A >= 〈ψ|A|ψ〉 = (1+〈ψ|A|ψ〉/m)
2 − (1−〈ψ|A|ψ〉/m)

2 ,

which perfectly agrees with the quantum mechanical prediction (experiments yield a uniform

distribution of λ between -1 and 1). Measurement of B yields values ±|n| in the same way as mea-

surements of A and also reproduce quantum predictions. Measurements of A+B = (m+n) ·σ, always

gives results ±|m + n|, therefore, for this hidden variable model, < A + B >=< A > + < B > does

not hold.

Bell’s model does not in general have additive expectation values for operators and gives precise

predictions for the results of all measurements whilst exactly reproducing quantum mechanical pre-

dictions if we average over the hidden variable λ. This deterministic hidden variable model exhibits

a non-local character is the sense that: “an explicit causal mechanism exists whereby the disposition

of one piece of apparatus affects the results obtained with a distant piece”. This led Bell to explicitly

ask the question of whether it is possible to construct a local hidden variable model which reproduces

the predictions of quantum theory.

3.4 Bell’s theorem and the CHSH inequality

Bell derived a quantitative criterion for the existence of a realistic interpretation of any local theory

[7]. Consider as an example a system of two spin half particles (note that we could reformulate this

in terms of boxes with switches and lights flashing such that the inequality obtained is purely about

operational correlations). Suppose that both particles (if there is such a thing as particles) go towards

two measuring devices which measure spin along directions a and b. The results A(a, λ) and B(b, λ) of

the two measurements are always ±1 and can depend on the hidden variable λ along with the setting

of the corresponding measuring device a or b. Einstein locality, as we saw before, requires that A is

completely independent of the measurement setting b and B of a.

The question is then whether the mean value of the product AB averaged over the hidden variable

λ:

P (a, b) =
∫
dλρ(λ)Ā(a, λ)B̄(b, λ)

can reproduce the quantum statistics if we average also over instrument variables. We then have:

|Ā| ≤ 1 and |B̄| ≤ 1 and count A and B as zero whenever detectors fail. If c and d are alternative

instrument settings for measuring the first and second particle respectively then:

P (a, b)− P (a, d) =
∫
dλρ(λ)[Ā(a, λ)B̄(b, λ)− Ā(a, λ)B̄(d, λ)]

=
∫
dλρ(λ)Ā(a, λ)B̄(b, λ)[1± Ā(c, λ)B̄(d, λ)]−

∫
dλρ(λ)Ā(a, λ)B̄(c, λ)[1± Ā(c, λ)B̄(b, λ)].

Therefore, we get:

|P (a, b)− P (a, c)| ≤
∫
dλρ(λ)[1± Ā(c, λ)B̄(d, λ)] +

∫
dλρ(λ)[1± Ā(c, λ)B̄(b, λ)].

This then yields an inequality that cannot be violated by a local hidden variable theory first

derived by Clauser, Holt, Shimony and Horne [8] (CHSH inequality):

10



|C| = |P (a, b)− P (a, d)|+ |P (c, d) + P (c, b)| ≤ 2.

The original form of the result, given in Bell’s original paper [7] can be derived using c=d and

P (d, d) = −1 such that the CHSH inequality becomes:

|P (a, b)− P (a, d)| ≤ 1 + P (d, b).

This inequality can be violated using quantum mechanics. Let the joint state of the system be

the singlet state for spin half: |ψ〉 = 1√
2
(|01〉 − |10〉), where |0〉 = (1, 0)† and |1〉 = (0, 1)† might, for

example, correspond to the vertical and horizontal polarization of a photon. Let the apparatus for

the first particle measure either A = σz or C = σx, corresponding to settings a and c respectively.

Similarly, let the apparatus for the second particle measure either B = −σz−σx√
2

or C = σz−σx√
2

,

corresponding to settings b and d respectively. In this way, we get that the averages are: P (a, b) =

P (c, b) = P (c, d) = 1√
2

and P (a, d) = − 1√
2
. This means that quantum mechanics allows us to attain

C = 2
√

2.

Aspect performed an elaborate experiment [9] verifying this violation of the CHSH inequality

using pairs of photons. Several loopholes [10] also have to be verified (in a single experiment) to

make sure that the CHSH inequality is indeed violated in nature. The two measurement apparatus

must be spacelike separated so that there cannot be any communication of results and update. If the

detection efficiency is low [11], we must also assume that the data collected is a fair sample. Another

loophole which could allow for local hidden variables is free will. If hidden variables guide which

settings the measurement apparatus will use and when measurements will be performed, then the

CHSH inequality may be violated. If one believes in superdeterminism then the CHSH inequality

does not say much, since there can then be local hidden variables which dictate everything that will

ever happen (at least if you believe everything was once in the same light cone).

3.5 Cirelson bound

Cirelson asked whether quantum theory enforces an upper limit on non-local correlations [12], cor-

responding to a maximal violation of the CHSH inequality. Consider four operators A, B, C and D

satisfying A2 = B2 = C2 = D2 = I and: [A,B] = [B,C] = [C,D] = [D,A] = 0.

Consider the CHSH correlation operator: C=AB+BC+CD-DA such that: C2 = 4 + [A,C][B,D].

We know that for any two bounded operators S and T, we have:

||S + T || ≤ ||S||+ ||T || and ||ST || ≤ ||S||||T ||
and so: ||[A,C]|| ≤ 2||A||||C|| ≤ 2 and ||[B,D]|| ≤ 2||B||||D|| ≤ 2.

Therefore, ||C2|| ≤ 8 and ||C|| ≤ 2
√

2.

This is the Cirelson inequality. This shows that quantum theory cannot violate the CHSH inequal-

ity any more than the violation already achieved in the Aspect experiment. A natural question to ask

next is whether it is physically possible to achieve the maximal violation of the CHSH inequality.

3.6 Popescu Rohrlich boxes

In a 1994 paper, Popescu and Rohrlich asked the question of whether non-locality can be used as an

axiom for quantum theory [13]. They then proceed to note that relativistic causality, or the principle

of non-signaling between space-like separated observers, does not restrict the violation of the CHSH

inequality to |C| ≤ 2
√

2 but allows for maximal violations of |C| = 4.

The non-local device which allows for such a maximal violation, which was previously introduced

by the same authors [14], is called a PR box.
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This is an operational device which has input settings x = {0, 1} and y = {0, 1} and outputs

X = {0, 1} and Y = {0, 1} . The PR box can be defined as satisfying:

(i)
∑

y=0,1 P (X,Y |x, y) = p(X|x) and
∑

x=0,1 P (X,Y |x, y) = p(Y |y), which correspond to the

no-signaling condition.

(ii)p(X|x) = p(Y |y) = 1
2 so that the marginals are completely random distributions.

(iii) The PR box acts on both inputs as: X + Y = xy to give the outputs.

If we have access to a PR box, then we can get averages P (a, b) = P (c, b) = P (c, d) = 1 and

P (a, d) = −1, where we take inputs x = {0, 1} to correspond to a or c, and inputs y = {0, 1} to

correspond to b or d. Therefore, the PR box allows us to reach maximum violations of the CHSH

inequality: |C| = |P (a, b)− P (a, d)|+ |P (c, d) + P (c, b)| = 4.

Aharanov had conjectured (in his unpublished lecture notes) that relativistic causality together

with non-locality could be used to derive quantum theory. The authors showed that this is not enough

to define quantum mechanics

It then makes sense to ask why this violation is not attained by quantum theory and whether we

expect nature to satisfy Cirelson’s bound. It has been shown that the correlations of the singlet can

be simulated by supplementing hidden variables with a single use of the PR-box [15].

Simulation of entangled states would be a bit too easy and communication complexity would

become trivial if PR boxes existed in nature [16]. Indeed, maximally strong no-signaling correlations

would allow one observer to have access to any m bit subset of the whole data set by just accessing

one bit of that data set. If nature behaved in this way, it would violate the principle of information

causality (see [17] for more details). Such extra features we expect the world to satisfy are valuable

potential physical axioms for quantum theory, or even theories going beyond quantum mechanics.

3.7 Generalized CHSH inequality

We will not prove it here but for any bipartite entangled state, it is possible to find pairs of observables

whose correlations violate the CHSH inequality [18].

The CHSH inequality can also be easily generalized [19] by allowing more measurement settings for

each of the two observers to whom we send half of a spin half singlet state. Let the first and second

observers measure the spin component along one of: a1, a3, ..., a2n−1 and b2, b4, ..., b2n respectively.

The results of the measurements are Ar and Bs and have values ±1.

Averaging over many particle pairs gives a generalized CHSH inequality:

| < A1B2 > + < B2A3 > +...+ < A2n−1B2n > − < B2nA1 > | ≤ 2n− 2

In quantum theory, letting the 2n observation directions a1, b2, a3, ..., a2n−1, b2n be chosen such that

there is an angle π
2n between them, then the left hand side of the inequality can be made arbitrarily

close to 2n as n→∞ .

It is possible to generalize the CHSH inequality in a number of ways [20] [21], with more ob-

servers, more measuring settings, more measurement results, etc. Some of these generalized Bell-type

inequalities may be undiscovered and have novel features and applications (although unnecessary ab-

straction will most likely lead to complication for no benefit). In the next section, we will describe a

generalization to three observers which is particularly elegant and interesting.

12



3.8 Mermin non-locality

Based on an argument of Greenberger, Horne and Zeilinger, Mermin described a new test of non-

locality [22] which doesn’t depend on an inequality based upon the statistics of the data accumulated

in many runs but depends on the outcome of a single run.

Let a source emit a trio of particles which goes to three far-away detectors. These detectors have

two switch settings 1 and 2 and emit either a red or green light (like in the operational description of

the CHSH experiment). We observe that if one detector is set to 1 and the others to 2 then an odd

number of red lights always flash, and if all three detectors are set to 1 then an odd number of red

lights never flash.

Einstein locality would then lead us to conclude that all the information on which colour the

detector will flash given settings 1 or 2 must be carried by the particle (this information may be

encoded in hidden variables). The colour flashing cannot depend on the setting of the other two

switches. We denote the information carried by all three particles, which determines the sets of

colours flashing at each detector depending on the setting, as:

(detector1 setting1,detector2 setting1,detector3 setting1;detector1 setting2,detector2 setting2,detector3 set-

ting2).

We can then enumerate all the allowed sets of flashing colours which correspond to an odd number

of red lights flashing if one detector is set to 1 and the others to 2:

(R,R,R;R,R,R), (R,G,G;R,G,G), (G,R,G;G,R,G), (G,G,R;G,G,R),

(R,G,G;G,R,R), (R,R,R;G,G,G), (G,G,R;R,R,G) and (G,R,G;R,G,R).

However, every one of these sets of instructions results in an odd number of red flashes if all three

switches are set to 1. In this way, a single run of 111, where an even number of red lights flash, is

enough to show that local realism does not hold here.

This can be achieved using quantum mechanics. Indeed, let one prepare a three particles GHZ

state: |GHZ〉 = 1√
2
(|000〉 − |111〉), where |0〉 and |1〉 are spin up and spin down states along the z

axis. Let us then measure σx or σy on each particle depending on whether the switch is respectively

on setting 1 or 2. But we know that σx⊗σy⊗σy, σy⊗σx⊗σy and σy⊗σy⊗σx all commute and have

eigenstate |GHZ〉 with eigenvalue one. Therefore, if we set outcomes +1 and −1 of the measurements

as Red and Green flashes then there is always an odd number of red flashes if one detector is set to 1

and the others to 2.

What about the case when all three detectors are set to one?

In that case, we measure:

σx ⊗ σx ⊗ σx = −(σx ⊗ σy ⊗ σy)(σy ⊗ σx ⊗ σy)(σy ⊗ σy ⊗ σx),

which has eigenstate |GHZ〉 with eigenvalue -1. This means that there must always be an even

number of red flashes when all three detectors are set to 1. Therefore, quantum theory can be shown

to violate local causality in a single run.

There is an implicit assumption we made at first, linked to Einstein locality, which is that one can

associate values for the outcomes of measurements regardless of what occurs in spacelike separated

regions. The measurement of σx for the first observer and the assignment of a value to its result

requires mutually exclusive experiments if the other observers both measure σx or both measure σy.

One must be careful with counterfactual assumptions concerning independence of the context in which

a measurement is performed. We will now proceed to study this new notion of contextuality.
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Chapter 4

Contextuality

4.1 The over-protective seer

In order to illustrate his early thoughts on the limitations of non-contextuality, Specker introduced

a mathematical parable [23]. The story is that of an overprotective seer who does not wish for his

daughter to marry any of her suitors. As a challenge they must overcome to earn his daughter’s hand,

he faced each suitor with the following task. They were given three boxes, which each may or may

not contain a gem, and told to pick out either two as empty or two as full. After each suitor had made

his prediction, he was ordered by the father to open any two boxes which he had predicted to be both

empty or any two boxes which he had predicted to be both full. It always turned out, however, that

one of these boxes was empty and the other was full. Eventually, the daughter cheated and married

the suitor she fancied most (they divorced three years later, but that is another parable).

It is impossible to come up with a configuration of empty and full ‘properties’ to boxes such that

opening any two of them reveals one full box and one empty one. The correlations described in the

parable are a simple example of contextuality. Indeed, if one wishes to explain the measurements

(opening a box) as revealing a pre-existing property, then one must imagine that the outcome of a

measurement depends on the context of the measurement. Whether a gem is seen or not in the first

box depends on whether that box was opened together with the second or together with the third.

In this way, the suitors can never achieve their goal since they are asked to assign the outcomes of

measurements in a non-contextual way for a system whose statistics are contextual. In fact, such a

correlation is also impossible using quantum theory since in quantum theory one can implement a set

of Hermitian measurement operators jointly if and only if one can implement every pair of this set

jointly (when they commute).

4.2 Gleason’s theorem

Gleason [24] was interested in reformulating quantum theory using a weaker set of axioms than Von

Neumann’s [5]. In doing so, he decided to tackle Mackay’s problem of determining all measures on the

closed subspaces of a Hilbert space. A measure µ on the closed subspaces is function which associates

to each closed subspace a non-negative real number such that for any countable collection of mutually

orthogonal subspaces Ai having closed linear span B, we get: µ(B) =
∑

i µ(Ai).

His main result, known as Gleason’s theorem, is that for a Hilbert space of dimension 3 or greater,

the only possible measure of the probability of the state associated with a particular linear subspace ‘a’

of the Hilbert space will have the form Tr(P (a)ρ), the trace of the operator product of the projection
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operator P(a) and the density matrix ρ for the system. This shows that if one uses Hilbert space then

it is very hard to get rid of the Born rule for measurement.

In his attempt at axiomatization, Gleason treats quantum events, notably measurement outcomes,

as logical propositions (yes-no questions called elementary tests), and studies the relationships and

structures formed by these events. His fundamental axioms are then:

(i) Elementary tests are represented by projectors P(u) on Hilbert space vectors u.

(ii) Compatible elementary tests, which can be answered together, correspond to commuting

projectors.

(iii) If P(u) and P(v) are orthogonal projector, then their sum P(uv)=P(u)+P(v), which is also a

projection operator, has expectation value: < P (uv) >=< P (u) > + < P (v) >.

The proof of Gleason’s theorem is not directly relevant to contextuality so we will only briefly

mention some details. Gleason defines a frame function of weight W as a real valued function f

defined on the surface of a Hilbert space H such that if {ei} is an orthonormal basis of H then:∑
i f(ei) = W . A frame function f is regular iff there exists a Hermitian operator T on H such that:

f(x)=(Tx,x) for all unit vectors x. By finding these frame functions (using properties of spherical

harmonics), Gleason shows that every non-negative frame function in three or more dimensions is

regular. Gleason’s theorem then follows (relatively) easily.

Although it is not directly addressed to hidden variables, Gleason’s work was an important source

of inspiration for the no-go theorems of Bell and Kochen-Specker.

4.3 Bell corollary of Gleason’s theorem

In a paper written before his famous non-locality article, Bell derived an important corollary [6] of

Gleason’s work in the form of a no-go theorem against non-contextual hidden variable theories.

To do this, Bell reformulates (relevant consequences of) the Gleason axioms (i), (ii) and (iii) as:

(A) If with some vector u, < P (u) >= 1 for a given state, then for that state < P (v) >= 0 for

any vector v orthogonal to u.

(B) If for a given state < P (u) >=< P (v) >= 0 for some pair of orthogonal vectors, then

< P (αu+ βv) >= 0 for all α and β.

Now, let u be a normalized vector such that, for a given state, < P (u) >= 1 and let v be a vector

such that < P (v) >= 0. We can write v = u+ εu′, where u’ is normalized and orthogonal to u, and

ε ∈ R.

Let the vector space be at least three dimensional and let u” be a normalized vector orthogonal

to both u and u’ so that (A) gives: < P (u′) >=< P (u′′) >= 0.

Therefore (B) gives: < P (v + εu′′

γ ) >=< P (−εu′ + γεu′′) >= 0 ,where γ ∈ R.

So (B) gives: < P (u+ u′′ε(γ + 1
γ )) >= 0.

But if ε ≤ 1
2 then there exist real γ st: ε(γ + 1

γ ) = ±1. This then implies, using (B) again, that:

< P (u) >=< P (u + u′′) > + < P (u − u′′) >= 0, which is a contradiction. Therefore, we have

ε > 1
2 .

This implies that |v−u| > 1
2 |u| and so u and v cannot be arbitrarily close if < P (u) >6=< P (v) >.

But, if we consider dispersion free states (which can include hidden variables), then for each one of

these states each projector must have a value 0 or 1 associated with it. But both values must occur

(for at least one projector) and there must at times be arbitrarily close pairs of projection directions u

and v which give different expectation values. Therefore, if we accept assumptions (A) and (B) then

there cannot be dispersion free states.

15



If we wish to construct a realist interpretation of quantum theory using hidden variables, we can

reject assumption (B). Indeed, operator P (αu+βv) commutes with P(u) and P(v) only if either α = 0

or β = 0. This means that a measurement of P (αu + βv) generally requires a distinct experimental

arrangement, meaning that (B) relates results of incompatible experiments which cannot be performed

simultaneously. This criticism is similar to that Bohr made of Einstein’s criterion of reality when he

introduced the notion of complementarity [2].

Bell explains nicely that the danger lies in the implicit assumption that hidden variable models

must be non-contextual: “It was tacitly assumed that measurement of an observable must yield the

same value independently of what other measurements may be made simultaneously”.

Kochen and Specker devised an algebraic proof (not involving a continuum) that any ontological

description of quantum theory must not just account for non-locality but must be contextual. We

will look at this next.

4.4 Kochen Specker theorem

The Kochen Specker theorem [25] asserts that any ontological deterministic theory that would at-

tribute definite results to each quantum measurement and still reproduce the statistical properties

of quantum theory must be contextual. This means that for three operators A,B and C such that

[A,B]=[A,C]=0 and [B,C] 6= 0 , the result of measuring A depends on whether A is measured alone,

together with B or together with C (it depends on the context of the measurement).

A more precise statement of the Kochen-Specker theorem is that in a Hilbert space of dimension

superior or equal to 3, it is impossible to associate definite numerical values v(Pm) ( equal to 0 or

1), with every projection operator Pm, such that if a commuting set {Pm} satisfies
∑

m Pm = I, then∑
m v(Pm) = 1.

The theorem can be proven by taking a (well chosen) complete set of orthonormal vectors v1, ..., vN

such that the N matrices Pm = vmv
†
m are projectors in directions vm. These projectors commute and

satisfy
∑

m Pm = I. In order to satisfy
∑

m v(Pm) = 1, one must associate 1 with one of the um and

zero with all the N-1 others (there are N ways to do this). Considering several distinct orthogonal

bases which share some vectors leads us to conclude that it is not always possible to associate the

value 1 or 0 to a vector which is part of more than one basis, irrespective of the choice of other basis

vectors.

Kochen and Specker’s original proof [25] used a set of 117 vectors in real three dimensional space

but a number of proofs involve many less vectors (Conway and Kochen wound one using 31 vectors

[19]). Peres came up with two particularly elegant proofs [26] using 33 rays in R3 and 20 rays in R4.

In higher dimensions, the theorem can usually be proven using less vectors [27] (particularly if we

restrict the analysis to a known state [28]). We will not prove the Kochen Specker theorem in detail

here.

Similarly to the Bell theorem, the Kochen Specker theorem does not just apply to quantum theory.

It is a geometrical statement which affects the interpretation of quantum measurements. This result

has the advantage that, unlike the non locality no-go theorem, it does not involve statistical correlation

over large ensembles but compares results that can be found on a single system.

In fact, the Kochen Specker result can even be recast in logical terms as a result about partial

Boolean algebras within a category-theoretic framework [29]. A recent analysis which also seems

worthy of brief mention here is due to Abramsky and Hardy [30]. They also use a logic approach to

consider contextuality and non-locality and introduce logical Bell inequalities.
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4.5 Mermin magic square

We will now conclude this chapter on contextuality by presenting an elegant result by Mermin [31].

The following square of 9 observables has the property that each row and column is a set of

commuting observables that multiply to give I, except the last row which gives -I:

I ⊗ σz σz ⊗ I σz ⊗ σz
σx ⊗ I I ⊗ σx σx ⊗ σx
σx ⊗ σz σz ⊗ σx σy ⊗ σy

(4.1)

An attempt to associate predetermined values ±1, independently of the context in which the

observable may be measured, leads to a contradiction. We expect the product of all the values

corresponding to the 9 operators taken twice to be +1, since each value is ±1. To agree with quantum

predictions, however, the product of all the operators taken twice should be -1 (each row and column

of the square must multiply to one except the last row, which is -1). This contradiction leads us to

conclude that observables do not have pre-determined noncontextual values in quantum mechanics.

Note that we could use a similar proof to reveal the contextuality exhibited in the Mermin non-

locality argument we saw above [22] (using a five-pointed star instead of a square).

Contextuality is an important topic in the foundations of quantum theory and will be a recurring

theme in the following.

17



Chapter 5

Ontological models of quantum

mechanics

Thus far, we have seen how a naive attempt at interpreting quantum theory as a realist theory of

the world runs into trouble. Indeed, if one believes that quantum theory can be interpreted as a

statistical theory arising as an average over an underlying ontological theory, then we have seen that

such a theory must satisfy certain constraints. Indeed, such a realist attempt reveals that the world

exhibits surprising features: non locality and contextuality.

5.1 Defining ontological models

If one wishes to make this quest for a realist interpretation of quantum theory more formal then one

can introduce ontological models [32] [33]. These are realist models which reproduce the predictions

of quantum mechanics and have the following features:

(i) All the physical properties of a system are determined by the ontic state λ, which is an element

of the ontic space Λ.

(ii) The quantum state (preparation P) is an incomplete description of the underlying reality,

which corresponds to some (probability-like) distribution over Λ: |ψ〉 ∈ H(d) ↔ (µP,|ψ〉(λ)). This

explains the probabilistic nature of quantum mechanics (and allows some people to sleep at night).

(iii) Measurements (M) correspond to splittings of the ontic state into distributions {ξM,k(λ)} over

Λ such that:

0 ≤ ξM,k(λ) ≤ 1 and
∑

k ξM,k(λ) = 1, for all λ.

For deterministic ontological models, these are characteristic functions which are just equal to 1

(or 0) for values of λ which do (or don’t) give the corresponding outcome.

(iv) The probability of getting outcome k for a measurement M given preparation P is then given

by ‘averaging ’ over the whole ontic space:

p(k|P,M) =< ξM,k(λ)µP,|ψ〉(λ) >Λ:=
∫
dλξM,k(λ)µP,|ψ〉(λ)

This allows us to compare the predictions of the ontological model with the operational framework

we wish to consider. We can, for example, compare the results in the model with the quantum

prediction: p(k|P,M) = Tr(Mkρ), where Mk is a POVM element for measurement M and ρ is the

density matrix corresponding to the preparation P.

(v) We also need to account for a transformation of Λ over ‘time’, which can even potentially be

stochastic (although a unitary-like deterministic evolution would be nicer). Also, measurements can

potentially disturb the space Λ and the model must account for this.
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A realist would expect it to be possible to reproduce the predictions of any accurate operational

theory using such an ontological model (or perhaps a less naive ontological ‘super-model’ based on an

improvement of the definition above).

If we perform the preparation P with setting SP then the system will be prepared in a particular

ontic state λ ∈ Λ. If one believes that the quantum states are a complete description of reality then

they correspond directly to the ontic states themselves and the ontic space is just the projective

Hilbert space of the system Λ = H. We call this a ψ-ontic interpretation of quantum theory.

Alternatively, the quantum state can correspond to a state of knowledge about reality. In such a ψ-

epistemic interpretation of quantum theory, the preparation procedure corresponding to the quantum

state corresponds to a probability distribution: µ(λ|SP ), satisfying
∫
dλµ(λ|SP ) = 1, which encodes

the epistemological uncertainty about the ontic state we prepared. This situation is compatible with

the case where the quantum state is an incomplete description of reality which must be supplemented

by hidden variables such that: H ⊂ Λ.

Another option would be that the quantum state does not play a realistic role at all such that:

H 6⊂ Λ. We can call this a ψ-calculational interpretation of quantum theory.

Note that the ontic space Λ need not be restricted to a set and can a priori be any mathemat-

ical object. One must be careful not to discard potential realist interpretations of physics because

of mathematically naive restrictions. It may be useful to illustrate the ontic space Λ as a simple

generalization of the Bloch sphere, or as a real line, where we integrate over λ to reproduce statistical

predictions. If are seeking out a mathematical object underlying all physical states of reality, however,

we have to be careful not to restrict too stringently our analysis of potential ontic spaces.

We will now describe some of the work done on ontological models.

5.2 Examples of ontological models

As an illustration, we will now look at several examples of simple ontological models [34] [32].

(A) The first of these is the Beltrametti-Bugajski model [35]. This is an ontological model corre-

sponding to the orthodox interpretation of quantum mechanics, with a ψ-ontic interpretation of the

quantum state. The ontic space is the projective Hilbert space Λ = H so a system prepared in a

quantum state |ψ〉 is associated with a sharp probability distribution: µ(λ|ψ) = δ(λ − λψ) over Λ,

where λψ is the unique ontic state associated with |ψ〉.
Measurements correspond to the distributions:

ξ(k|λ,M) = Tr(|λ〉〈λ|Mk),

where |λ〉 is the unique quantum state associated with λ ∈ Λ and Mk is the POVM quantum

theory associates with measurement M.

This model trivially reproduces the quantum mechanical operational predictions since:

pr(k|M,ψ) =

∫
dλξ(k|λ,M)µ(λ|ψ) = Tr(|ψ〉〈ψ|Mk) (5.1)

(B) The next model, which is for two dimensional Hilbert spaces, is due to Kochen and Specker

[25]. The ontic states are vectors λ on the unit sphere Λ and the quantum state ψ is associated with

the probability distribution:

µ(λ|ψ) = 1
πΘ(ψ · λ)ψ · λ,

where Θ is the Heaviside function ( Θ(x) = 1 or 0, for x ≥ 0 or x < 0 respectively) and ψ is

the vector corresponding to the quantum state. This assigns the value cos(θ) to all the points in the

hemisphere centered on ψ and zero to the points in the other hemisphere.
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A measurement associated with a projector onto vector φ is associated with the distribution:

ξ(φ|λ) = Θ(φ · λ), such that a positive outcome occurs if the ontic state λ is in the hemisphere

centered on φ.

This model is deterministic and reproduces two-dimensional pure state quantum theory since:

p(φ|ψ) =
∫
dλξ(φ|λ)µ(λ|ψ) = 1

2(1 + ψ · φ) = | < ψ|φ > |2.

Note that Bell’s hidden variable model [6], which we previously described as a counter-example

for Von Neumann’s no go theorem, can also be expressed as an ontological model for two dimensional

Hilbert space.

(C) A third example of an ontological model is that of a qutrit, or three dimensional quantum

system [34]. The ontic state in this case consists of all the rank one projectors in GL(3,C), which the

general linear group of degree 3, i.e. the set of all 3x3 invertible complex matrices.

A quantum state |ψ〉 is then represented by the probability distribution:

µ(λ|ψ) = N(Tr(λλψ)−∆) if Tr(λλψ)−∆ ≥ 0

or µ(λ|ψ) = 0 otherwise.

∆ is a parameter that can be played with to vary the support of µ(λ|ψ).

Measurements are deterministic and can be described by the characteristic functions:

ξ0(λ) = Θ(Tr(λλ0)− Tr(λλ1))Θ(Tr(λλ0)− Tr(λλ2))

ξ1(λ) = Θ(Tr(λλ1)− Tr(λλ0)Θ(Tr(λλ1)− Tr(λλ2))

ξ2(λ) = Θ(Tr(λλ2)− Tr(λλ0))Θ(Tr(λλ2)− Tr(λλ1))

so that a state λ gives the outcome corresponding to which central element λ0, λ1 or λ2 it is closest

to.

Sadly this model does not reproduce the predictions of quantum mechanics but it comes really

really close.

We can see that this last model, as expected if we want it to reproduce quantum theory, exhibits a

form of contextuality. Indeed, there may exist some ontic states λ (called unfaithful points) which are

closer to central element λ0 then λ1 or λ2 but which are closer to other central elements λ′1 or λ′2 than

to λ0. This is a form of measurement contextuality for the ontological model, where the outcome of a

measurement depends on knowledge of all three measurements which are simultaneously performed.

In model (B), we can see that the Born rule is artificially built into the model. If we wish to

gain real insight into how the statistical character of quantum mechanics arises from an underlying

deterministic realist theory, however, we would like to come up with a principle which accounts for

this. In the next section we will see how many of the interesting features of quantum theory can be

derived from a simple ontological model together with an epistemic restriction.

5.3 Spekkens toy theory

In defense of ψ-epistemic interpretations of quantum theory, Spekkens introduced a toy theory [36]

which reproduces many features of quantum mechanics. The theory is based on the following knowl-

edge balance principle: “If one has maximal knowledge, then for every system, at every time, the

amount of knowledge one possesses about the ontic state of the system at that time must equal the

amount that one lacks”.

The ontic space in this theory is simply the set IV := {1, 2, 3, 4} (ontic states are 1, 2, 3 and 4)

for each elementary consistuent and IV n for a compound system with n elementary consistuents. We

define a canonical question set as: “a set of yes-no questions about the ontic state of a system, which

has the minimum number of elements such that the answers uniquely identify the ontic state”. The
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measure of knowledge for which the knowledge balance principle can be applied. is then the number

of questions in a canonical question set to which we know the answer.

The analogue of the quantum state in our system is then the state of our knowledge about the

system, or the epistemic state. For a single system (with ontic space IV), the epistemic states are:

1∨ 2, 1∨ 3, 1∨ 4, 2∨ 3, 2∨ 4 and 3∨ 4. The canonical set being unanswered corresponds to the state

of maximum uncertainty: 1 ∨ 2 ∨ 3 ∨ 4.

Any two states whose ontic bases have an empty intersection are called disjoint (for example:1∨ 2

and 3 ∨ 4). This is the analogue of orthogonal quantum states. We can also easily define formal

analogues of quantum fidelity and superpositions if we make the associations:

1∨ 2↔ |0〉, 1∨ 3↔ |+〉, 1∨ 4↔ |−i〉, 2∨ 3↔ |+i〉, 2∨ 4↔ |−〉, 3∨ 4↔ |1〉 and 1∨ 2∨ 3∨ 4↔ I
2 ,

where |±〉 = 1√
2
(|0〉+ |1〉) and |ψ〉 = 1√

2
(|0〉+ i|1〉).

Transformations on the ontic states IV → IV are defined as transformations on the epistemic

states which are allowed by the knowledge balance principle. Therefore the allowed transformations

are the permutations of the four ontic states ,which correspond to elements of the symmetric group

S4 of 24 such permutations under composition.

Measurement in the toy theory corresponds to asking as many questions from a canonical set as the

knowledge balance principle will allow you to answer. For a single system, the allowed measurement

questions are:

1 ∨ 2 or 3 ∨ 4?, 1 ∨ 3 or 2 ∨ 4? and 1 ∨ 4 or 2 ∨ 3?

Note that measurement would be deterministic if the ontic state was known, but the restriction

on our knowledge of the state of the system leads to an apparent indeterminism. Also, the knowledge

balance principle implies that measurement inevitably induces a disturbance on the ontic state such

that the epistemic state of the system corresponds exactly to the answers of the measurement questions

asked. So, if we performed the measurement a∨ b or c∨ d? (a,b,c,d ∈ IV) and obtained the outcome

corresponding to a ∨ b, then the epistemic state of the system must be a ∨ b after the measurement.

This means that, in order to satisfy the knowledge balance principle, the ontic system undergoes

one of the following disturbances: either nothing happens or the ontic states a and b swap, but we

don’t know which one of these occurs. The toy theory also reproduces analogues of non-commutative

measurements and quantum interference.

The ontic state of a pair of systems is IVxIV, which corresponds to sixteen ontic states: 11, 12,

13, ..., 44. In this case a canonical question set contains four questions, which means that epistemic

states of maximal knowledge correspond to one of four possibilities. Two extra constraints must

be added: epistemic states must be defined such that the knowledge balance principle should apply

to each constituent subsystem as well as to the overall composite system and applying any allowed

operation to a state must yield an epistemic state which satisfied the knowledge balance principle.

This means that there are essentially two basic types of states which are allowed.

The first of these is of the form: (a ∨ b)(c ∨ d), with a 6= b and c 6= d (for example: 13 ∨ 14 ∨ 23 ∨
24), where we have maximal knowledge about the individual systems, but we know nothing about

the relationship between them. These are analogous to separable quantum states. The second of

these is of the form: ae ∨ bf ∨ cg ∨ dh, with a 6= b 6= c 6= d and e 6= f 6= g 6= h (for example:

11 ∨ 22 ∨ 33 ∨ 44). These are analogous to maximally entangled quantum states. Further states can

be introduced which are the analogues to mixed states in quantum theory, like the completely mixed

state I
2 := (1 ∨ 2 ∨ 3 ∨ 4)(1 ∨ 2 ∨ 3 ∨ 4).

Measurements and transformations can be defined in an analogous way as before (with several

complications) and the toy theory can similarly be generalized to more elementary systems. The
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toy theory also allows for the description of a number of features which seemed specific to quantum

mechanics. These include entanglement, remote steering, no cloning, no broadcasting, superdense

coding, teleportation and the monogamy of entanglement.

There are a number of quantum phenomena that are not reproduced by Spekken’s toy theory.

The main quantum properties that are absent from the theory are: the continuum of quantum states,

the possible exponential speed up relative to classical computation and most notably non-locality and

contextuality. Indeed, the toy theory is by construction a local, noncontextual hidden variable theory.

This demonstrates the importance of these concepts as key ingredients of the quantum formalism.

Before moving on to describe contextuality for ontological models, let us briefly mention two

generalizations of Spekkens toy theory. Larsson has introduced a contextual extension of Spekkens

toy theory with a memory requirement [37]. Recently, Spekkens and Schreiber have been working

on generalizing the theory to higher dimensional systems [38]. They have shown that an epistemic

restriction based on a discrete version of the uncertainty principle (instead of the knowledge balance

principle) allows us to extend the toy model to three dimensions, with a 9-state discrete phase space.

It is possible to use this statistical theory to reconstruct a subset of three dimensional quantum

mechanics: the stabilizer formalism for trits.

5.4 Contextuality for ontological models

Spekkens has introduced an operational definition of contextuality which applies to ontological models

and to arbitrary operational theories [39]. This generalized notion of non-contextuality is defined by

Spekkens as: “A non-contextual ontological model of an operational theory is one wherein if two

experimental procedures are operationally equivalent, then they have equivalent representations in

the ontological model”.

This means that we can define three types of noncontextuality, corresponding to the three types

of experimental procedures: preparations, transformations and measurements.

Preparation noncontextuality is the feature that the probability distribution µP (λ) over ontic

states is the same for all preparation procedures in an operational equivalence class. This means

that, for any pair of preparation procedures P and P’ such that the probability of outcome k (given

that measurement procedure M is performed) is the same for all outcomes k (and for all measure-

ment procedures M) that are allowed in the operational model, the distribution associated with the

preparations P and P’ in the ontological model are the same.

Therefore: p(k|P,M) = p(k|P ′,M) (for all M and k) =⇒ µP (λ) = µP ′(λ)

An example from quantum theory of two preparation procedures in the same equivalence class

would be the preparation of a maximally mixed state of a spin half system using two different bases,

for example:
I
2 = 1

2(|0〉〈0|+ |1〉〈1|) = 1
2(|+〉〈+|+ |−〉〈−|), where |±〉 = 1√

2
(|0〉 ± |1〉).

Similarly,transformation (or measurement) noncontextuality is the features that transformations

(or measurements) are represented in exactly the same way in the ontological model, for all transfor-

mation (or measurement) procedures in an operational equivalence class.

Measurement noncontextuality can then be defined as the assumption that:

p(k|P,M) = p(k|P,M ′) (for all P and k) =⇒ ξM,k(λ) = ξM ′,k(λ).

An interesting feature of these generalized notions of contextuality is that, unlike the traditional

notion of contextuality, it has been shown that for both preparation contextuality and unsharp mea-

surement contextuality (using POVMs), proofs of contextuality can be found for two dimensions
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(instead of three). It is also possible to retrieve the traditional notion of contextuality along with

the corresponding no-go theorems that we studied above from this generalized notion of contextuality

[39]. This requires us to assume the perfect discrimination of orthogonal states, which we know is a

feature of quantum theory. Therefore, ontological models must be preparation contextual in addition

to measurement contextual.

An operational notion of noncontextuality is a very desirable result since it can lead us to meth-

ods of experimentally differentiating noncontextual and contextual theories. We can look for non-

contextual inequalities [40] [41] [42], similar to Bell inequalities, which give an observable bound

on experimental achievements of noncontextual theories. Such inequalities could be the first step

towards clarifying potential applications of contextuality (for quantum computing for example) or

understanding exactly what role contextuality might play in an axiomatization of quantum theory.

5.5 PBR theorem

So far, we have seen that ontological models must satisfy a number of properties. Indeed, they must

exhibit both non-locality and contextuality. In addition, Lucien Hardy has presented an ontological

excess baggage theorem [43], showing that the ontic space, even for a qubit, must have infinite

cardinality. Montina has also proven that the manifold dimension of the ontic state space is necessarily

exponential [44], assuming that the dynamics of the ontic states is Markovian.

Pusey, Barrett and Rudolph, in an attempt to clarify what a quantum state represents, introduced

another no-go theorem for ontological models [45]. This theorem has a slightly different flavor to those

of Bell and Kochen-Specker. It states that:

“Any model in which a quantum state represents mere information about an underlying physical

state of the system must make predictions which contradict those of quantum theory”.

This theorem attempts to rule out ψ-epistemic ontological models, where quantum states are

epistemic and there is some underlying ontic state so that quantum mechanics is the statistical theory

of these ontic states.

The PBR argument rests on the following assumptions: the physical system has a real physical

state (independent of the observer) and systems that are prepared independently have independent

physical states. Also, the ontic space has to be a measure space and both states and measurements

need to be mathematically nice (i.e. probability distributions). Coarse graining over ontic states λ is

performed by averaging, using an integration over ontic states. The proof is then the following:

Let the ontic space Λ be a measure space and preparation of each of the quantum states |ψi〉 give

an ontic state λ from a probability distribution µi(λ) over Λ.

Assume that n systems can be prepared independently in quantum states: |ψx1〉, ..., |ψxn〉 corre-

sponding to ontic states λ1, ..., λn sampled from the product distribution: µx1(λ1)...µxn(λn).

Assume also that the probability p(k|λ1, ..., λn) for outcome k of a measurement is fixed by the

ontic states λ1, ..., λn. Then the operational probabilities are:∫
...
∫
p(k|λ1, ..., λn)µx1(λ1)...µxn(λn)dλ1...dλn.

To reproduce quantum mechanics, the probability for each measurement outcome should be within

some small ε > 0 of the predicted quantum probability (using the Born rule). PBR have shown that

(even in the presence of noise) if this is the case for a model, then for distinct quantum states |ψ0〉
and |ψ1〉 corresponding to distributions: µ0(λ) and µ1(λ) respectively, we have (see the paper [45] for

details): D(µ0(λ), µ1(λ)) = 1
2

∫
|µ0(λ)− µ1(λ)|dλ ≥ 1− 2ε

1
n (for some n).

This means that for small ε, D(µ0(λ), µ1(λ)) (which is a measure of distance of two probability
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distributions) is close to 1 so that an ontic state λ is closely associated with only one of the two

quantum states. This shows that for distinct quantum states |ψ0〉 and |ψ1〉, if the corresponding two

distributions: µ0(λ) and µ1(λ) overlap then there is a contradiction with the predictions of quantum

theory (modulo the assumptions we stated before).

Note that Lewis, Jennings, Barrett and Rudolph recently constructed ψ-epistemic models [46],

such that the probability distributions corresponding to distinct quantum states overlap, that recover

the Born rule. Their paper does not contradict the PBR result since the models violate one of

its assumptions: they do not have the property that product quantum states are associated with

independent underlying physical states.

We could alternatively take the approach of quantum Bayesianism [47] and interpret the quantum

state as representing information about possible measurement outcomes and not about the objective

physical state of the system, which would violate another assumption of the PBR theorem.

We will end here with the description of ontological models and shall now proceed with a descrip-

tion of other explicit attempts to construct an ontological interpretation of quantum theory.
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Chapter 6

Explicit attempts to construct an

ontological interpretation of quantum

theory

Several attempts have been made to actually construct realist theories which account for all the

phenomena described by quantum mechanics. A number of these aim to go beyond quantum theory

and several attempt a consistent description of quantum gravity. Any such approach should try to get

rid of the arbitrary division of the world into observing objects and observed objects which arises in

orthodox quantum mechanics. The fundamental role of measurement and necessity of always referring

to an outside observer means that the universe as a whole is, as Bell puts it, an embarrassing concept

(does the universe require the presence of a universal God-like observer which can observe itself to

even exist?).

Here, we will briefly describe two of the most prominent ontological interpretations of quantum

mechanics: de-Broglie Bohm theory and the many-worlds interpretation.

6.1 Bohmian mechanics

The ontic state in Bohmian mechanics [48] [49] is the quantum mechanical wavefunction ψ(r, t) to-

gether with particle position ξ. This means that de-Broglie Bohm theory for a single particle is a

hidden variable model with an ontic space Λ=H x R3.

The evolution equations for the ontic state are the Schrodinger equation:

i~∂ψ∂t = − ~2
2m∇

2ψ + V (r)ψ,

where ψ(r, t) = R(r, t)exp( iS(r,t)
~ ) (and we choose a spacetime frame [x,t], note that this is not a

fundamentally Lorentz invariant theory),

along with the guidance equation:
dξ(t)
dt = 1

m [∇S(r, t)]r=ξ(t) ( note that this is a first order equation).

The Hamilton-Jacobi equation (real part of the Schrodinger equation):
∂S
∂t + (∇S)2

2m + V +Q = 0

now has an extra term: Q = − ~2
2m
∇2R
R , which we call the quantum potential. An ensemble

of particles satisfying this quantum Hamilton-Jacobi equation has the following equation for the

conservation of probability (corresponding to the imaginary part of the Schrodinger equation):
∂R2

∂t +∇ · (R2∇S
m ) = 0.

25



The particle therefore has a well defined position ξ(t) which is causally determined and varies

continuously in time. The field ψ is a pilot wave which guides the particle position independently of

its amplitude and there is no backlash on this wave(it is not affected by ξ). This field provides active

information to the particle: very little energy directs a much greater energy. The particle satisfies

Newton’s equation:

md2ξ(t)
dt2

= −∇ · [V +Q]

with the potential V+Q instead of just V (although the work done by Q is not mechanical and is

also independent on magnitude of ψ; it is perhaps linked to some form of informational energy).

We can recover the quantum mechanical probability that the particle is within dξ of ξ at time t,

namely: ρ(ξ, t) = |ψ(ξ, t)|2 (taking as an assumption that this relation holds at some point in time).

This is true since the probability current is:

j = ρv = 1
m(ρ∇S)

but by the continuity equation and the imaginary part of the Schrodinger equation, if ρ = R2 at

the start, then:
∂ρ
∂t = −∇ · j = −∇ · ( 1

m(ρ∇S)) = −∇ · ( 1
m(R2∇S)) = ∂R2

∂t .

This explains how interference arises even though particle positions are well defined.

If we split a wavefunction ψ =
∑

j cjψj into orthogonal (usually spatially disjoint) component

waves ψj (this is the jth wave), then the jth wave is called occupied if: ξ ∈ spatial support of ψj (and

unoccupied otherwise).

If only one of these component waves is occupied, then the guidance equation depends only on

that wave. This means that the dynamics depends only on occupied waves, where particles have well

defined positions guided by the occupied waves. This allows us to fully calculate the dynamics for

any of the usual physical situations studied in quantum theory.

Bohmian mechanics can easily be extended for many particles, where the ontic space is the wave-

function on configuration space ψ(r1, ..., rn) together with all the particle positions ξ1, ..., ξn. The

evolution equations are then:

i~
∂ψ(r1, ..., rn, t)

∂t
=
∑
i

(− ~2

2mi
∇2

iψ(r1, ..., rn, t)) + V (r1, ..., rn)ψ(r1, ..., rn, t)

where: ψ(r1, ..., rn, t) = R(r1, ..., rn, t)exp(
iS(r1,...,rn,t)

~ ).

and:
dξj(t)
dt = 1

mj
[∇jS(r1, ..., rn, t)]ri=ξi(t), for j=1, 2, ..., n.

We can then define separable states:

ψ(r1, r2, t) = R1(r1, t)exp(
iS1(r1,t)

~ )R2(r2, t)exp(
iS2(r2,t)

~ ),

which trivially obey:

S(r1, r2, t) = S1(r1, t) + S2(r2, t).

This means that the two separable particles evolve completely independently.

We can also define an entangled state as:

ψ(r1, r2, t) =
∑

j cjR
1
j (r1, t)exp(

iS1
j (r1,t)

~ )R2
j (r2, t)exp(

iS2
j (r2,t)

~ ).

The jth wave is occupied if:

(ξ1, ξ2) ∈ supp(R1
j (r1, t)exp(

iS1
j (r1,t)

~ )R2
j (r2, t)exp(

iS2
j (r2,t)

~ ))

and is empty otherwise. If only one wave is occupied then, as before, the two particles evolve

completely independently. Otherwise, the particles do not evolve independently, even if they are

spacelike separated. In this way, we can see that Bohmian mechanics is a non-local hidden variable

theory. Indeed the active information of the pilot wave propagates in a nonlocal way but, as in

quantum theory, it is not a mechanical disturbance of the system.
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Note also that in Bohmian mechanics, the results of quantum mechanical observations is deter-

mined by hidden variables of the combined apparatus and system. As Kochen and Specker noted

[25], this means that this is also a contextual hidden model variable, which embodies Bohr’s notion

of indivisibility of the combined system of observing apparatus and observed object.

Importantly, this theory reproduces the operational predictions of quantum mechanics. Consider a

measurement of a Hermitian operator A, with eigenvectors φk(r). This system couples to a measuring

apparatus χ(r′) and the environment µ(r1, ..., rn). After a measurement, we have:∑
k ckφk(r)χ(r′)µ(r1, ..., rn)→

∑
k ckφk(r)χk(r

′)µk(r1, ..., rn),

where the apparatus and environment come into states depending on the state of the system.

The probability of the jth wave being occupied is then |cj |2 = |cjφj(ξ)χj(ξ′)|2. We expect distinct

states of the environment to correspond to disjoint regions in configuration space (µkµj = 0 for j 6= k).

So, if the jth wave becomes occupied, we postulate an effective collapse of the guiding wave (like an

update of information):
∑

k ckφk(r)→ ψj(r).

In this way, we recover the quantum collapse, since only the jth term is relevant for dynamics after

the measurement (decoherence is important here).

Note that Bohmian mechanics can also be extended to relativistic quantum theory and can provide

an ontological interpretation for bosonic and fermionic fields. We shall not delve further into the

details of this theory but note that they are well described in Bohm and Hiley’s book [50]. We will

not go through objections of de-Broglie Bohm theory here, but will instead move on to a description

of many-worlds theory.

6.2 Many-worlds theory

The many-worlds interpretation is an attempt to maintain the representational completeness of the

quantum wavefunction, whilst getting rid of measurements completely so that the only possible evo-

lution is the deterministic unitary one. There are a number of different versions of this theory, but

we will mostly focus on the accounts given by Everett [51] and DeWitt [52].

Everett allows the universe as a whole to exist objectively and correspond to a vector in Hilbert

space. He attempts to attribute subjective states to observers within the universe, which are in direct

correspondence with aspects of the physical universe. These observers posses physical memories in

direct correspondence with their past experience, from which deductions can be made about the

subjective experience of the observer.

In this relative state formulation, the observer is considered as an automatic machine, whose

future actions are determined by the memory together with its present sensory data. Let us illustrate

Everett’s approach by examining the measurement of spin for a particle in the state: |ψ〉 = a|0〉+b|1〉.
We can see that the measurement acts on the joint state of the system, the measurement apparatus

M and the observer O itself as:

(a|0〉+ b|1〉)|Mready〉|Oready〉 → a|0〉|get0〉|observe0〉+ b|1〉|get1〉|observe1〉.
In this way, the memory of the observer has been entangled with the system such that the observer

does not have a definite memory of the outcome in quantum theory. Therefore, in order to avoid

collapse of this wavefunction, Everett assumes that each part of the observer wavefunction corresponds

to a definite state of awareness of the content of the observer’s memory. In this way, there is a single

total awareness where each of the two partial awarenesses are unaware of the other or of the whole.

This causes many possible branches to arise along with a sequence of possible partial awarenesses

(unaware of each other), where the experience of a particular person is restricted to one branch.
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The theory therefore relates the universe as a whole to all the various points of view of the observers

contained within it, which each establish a relation between a state of awareness and some part of the

universe containing the observed object. This sort of relationship is defined by Everett as the relative

state of the system corresponding to a particular state of the awareness of the observer. This means

that there are ‘reference frames’ corresponding to the memories of the various observers and that any

part of the total state only makes sense relative to these frames of reference.

One of the problems we are faced with in the relative states approach, is to understand why we

interpret the subjective experiences in any given basis rather than any other [53]. This could lead to

subjective experiences of the form 1√
2
(|observe0〉+ |observe1〉) or 1√

2
(|observe0〉 − |observe1〉), which

are not obvious to interpret. This led Kent [54] to make the following criticism: “no preferred basis

can arise, from the dynamics or from anything else, unless some basis selection rule is given”.

Let us now move to DeWitt’s version of the theory, which is closer to the usual account of the

many-worlds interpretation. One of his main goals is to introduce a minimal number of concepts

into the theory. DeWitt assumes that the whole conceptual basis for quantum theory is provided by

Hilbert space and the fact that ”the world must be sufficiently complicated that it can be decomposed

into systems and apparatuses”. He then asserts that the universe is a vector in Hilbert space which

is split into an astronomical number of branches, not only due to measurement but also due to many

other natural processes. Unlike Everett’s relative state (many minds) formulation, this interpretation

doesn’t just aim to explain our perceptions of the universe, since the universe is itself split into many

parts (many worlds). It is not clear when the split is meant to occur and how this precisely depends

on complexity.

The key issue for many-worlds theory is then to account for how probability can arise in a de-

terministic theory, where all possible outcomes occur and the universe is a vector in Hilbert space.

The resolution of this issue is not obvious but one option is to use a modified version of many-worlds,

described by Deutsch [55], which can deal with probabilities. He assumes that there is a random

distribution of an infinite and constant number of universes, with probabilities corresponding to the

quantum probabilities. This construction allows us to recover the quantum mechanical probabilities

for events (with some caveats [56]).

Let us conclude this section with a quick comparison between many-worlds theory and the de-

Broglie Bohm interpretation. First of all, the Bohmian pilot wave also has a multiplicity of realities,

and therefore many-worlds is preferred by Occam’s razor. In fact the additional structure of particle

positions means that unlike Everett’s formulation, de-Broglie Bohm’s theory does not obey Lorentz

covariance. It does not, however, have any issues with probabilities and we can easily interpret macro-

scopic phenomena in Bohmian mechanics as depending on the configuration of Bohmian particles.

Let us now proceed to an analysis of collapse models.

6.3 Collapse models

Several theories have attempted to resolve the clash between discontinuous statistical behavior of

measurement and the linear unitary evolution of closed systems by including the measurement jump

as part of dynamics. This has lead to an attempt at forming non-linear extensions of Schrodinger’s

equation. These would be expected to have a high degree of non linearity when observers are con-

cerned, whilst still being linear in known instances and giving rise to (relativistic) classical dynamics

for macroscopic objects.

It would be very interesting to either find such an equation for generalized quantum dynamics or
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some reason (for example, a no-go theorem for certain types of partial differential equation evolutions

based on physical assumptions) why such an equation could not be constructed. In this way, one could

hope to have a relatively simple ontology which possibly goes beyond quantum mechanics, where all

the complications arise in the evolution equations.

Let us now briefly look at an example of a dynamic collapse model due to Ghirardi, Rimini and

Weber [57]. The wave function for N particles is assumed to evolve according to the Schrodinger

equation: i~ ∂
∂t |ψ(t)〉 = H|ψ(t)〉 at most times, but at every time interval τ

N on average there is a

reduction in the spread of the wavefunction (spontaneous collapse):

|ψ(t+ dt)〉 = 1√
p(qk)

√
E(k)(qk)|ψ(t)〉,

where E(k)(qk) =
∫
drkKexp(

−(rk−qk)2)
σ2 )|rk〉〈rk| is a positive operator which has expectation val-

ues: pk = 〈ψ(t)|E(k)(qk)|ψ(t)〉 and K is a normalization constant. Also, k is chosen at random and

qk is chosen by sampling from p(qk). This introduces two new universal constants, which are the

mean time between collapses for one particle τ ' 1016s, and the localization width of each particle

σ ' 10−7m. This process is like a POVM with a continuous outcome space occurring on average

every τ
N , which is like a noisy position measurement (this type of evolution is a CP map). This model

exhibits non-locality and we can define entangled states of several particles similarly to quantum

theory.

The GRW model also reproduces the operational quantum results for measurement without the

need for any observer. Indeed, the overall wavefunction, after interaction between the observed system

and the apparatus is in the superposition:

ψ =
∑

nCnψn(x)φn(y1, ..., yR, Y ) where x is the coordinate of the observed system, y1, ..., yR are

the internal coordinates of the apparatus and Y is the macroscopic pointer setting of the apparatus.

The spontaneous collapse process of a single particle will affect directly the spread of the pointer

coordinate Y and will leave the single result φm(y1, ..., yR, Y ) with a well defined pointer reading

(collapses occur very rapidly).

A consideration of an ensemble of such experiments will leave a randomly distributed selection of

results where the probability of the mth result is |Cm|2, in agreement with quantum mechanics. With

the choice of τ and σ given, this theory is experimentally plausible to date.

Pearle has devised similar models with continuous spontaneous localization instead of the discrete

collapses in the GRW model [58].

It would be interesting to present a number of other interpretations of quantum theory at this

point, including perhaps the consistent histories approach [59], the transactional interpretation [60]

and work on quantum measure theory [61]/ causal sets [62]. One could then proceed to introduce the

current formalism of quantum gravity and the various problems that ensue with combining relativity

with the interpretations we presented. Maybe next time...
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Chapter 7

Quantum logic and quantum

Bayesianism

Another way in which one can interpret quantum theory is as a fundamental modification of classical

logic or classical probability theory.

7.1 Quantum logic

Three years after the publication of his book [5], where he introduced the current mathematical

formalism of quantum mechanics using Hilbert spaces, Von Neumann wrote to Birkhoff [63]:

“I would like to make a confession which may seem immoral: I do not believe absolutely in Hilbert

space no more”.

The natural framework to apply, in order to devise axioms for a theory, is that of mathematical

logic. Indeed, a year later, Birkhoff and Von Neumann published a paper which launched the study

of quantum logic.

7.1.1 Birkhoff-Von Neumann quantum logic

In that paper [64], BvN investigate the notion of a physical property and the structure imposed on

these properties by the nature of quantum observations. The authors suggest that: “in any physical

theory involving a phase space, the experimental propositions concerning a system S correspond to a

family of subsets of its phase-space P, in such a way that x implies y (written x ⊂ y) means that the

subset of P corresponding to [experimental proposition] x is contained set-theoretically in the subset

corresponding to [experimental proposition] y ”. Therefore, the first postulate for the propositional

calculi of physical systems is that: “the physical qualities attributable to any physical system form a

partially ordered system”.

The next postulate states that calculi of propositions are a certain type of partially ordered

system, called a lattice, which allows one to define the logical properties ‘and’ (∩) and ‘or’ (∪) from

the relation ‘⊂’. Several further postulates (see the paper [64] for the details) show that the calculus

of propositions for quantum theory is just like the usual (classical logic) calculus of propositions with

respect to adequately defined ‘and’, ‘or’ and ‘not’ operations, except with the usual distributive law:

a ∪ (b ∩ c) = (a ∪ b) ∩ (a ∪ c), a ∩ (b ∪ c) = (a ∩ b) ∪ (a ∩ c)
replaced by a weaker orthomodular law:

If a ⊂ c then a ∪ (b ∩ c) = (a ∪ b) ∩ c.
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This representation of states using a lattice of properties means that quantum superposition can

be defined as the strongest property which is true for two distinct states being also true for other

states than the two given ones.

One of the main criticisms of this approach is that it fails to elegantly capture the composition

of quantum systems. Ideally, it would be more desirable to explain quantum theory in terms of the

manner in which quantum systems compose, including superpositions. One might hope that this

would allow for notions of entanglement, non-locality and complementarity to arise in quantum logic.

7.1.2 Linear logic

Since the publication of the Birkhoff-Von Neumann paper, there have been numerous important

advances in logic which may be very relevant to a successful interpretation of quantum theory as

a fundamental modification of classical logic. In this section, we will briefly introduce one of these

advances: Girard’s linear logic extension of usual logic [65].

Classical logic deals with stable truths since:

if A and A⇒ B then B, but A still holds.

In physics, however, a causal implication leads to a modification of the premises (conditions),

meaning that real implications cannot be repeated. We write such a causal implication (called a

linear implication) ( and define the exponential ! to express iterability of an action so that:

A ⇒ B = (!A) ( B (A is implied by B exactly when B is caused by some iteration of A). In

linear logic, there are two connectives ⊗ (times) and & (with) for ‘and’. These correspond to the

availability of two actions, where either both are done (for ⊗) or one action is chosen (for &) such

that !(A&B) is equivalent to: (!A ⊗ !B).

Linear logic also has a linear negation (·)⊥, which is analogous to the transpose in linear algebra

(involutive duality) such that:

action of type A=reaction of type A⊥

In addition, there are two disjunctions ⊕ (plus) and &̄ (par) for ‘or’ which are the duals of & and

⊗ respectively.

Girard gives the example of an application to chemistry, in order to illustrate the power of linear

logic in describing the physical state of a system and physical processes (with no reference to time).

Classical logic fails, for example, to describe physical state updating in a process like: 2H2 + O2 →
2H2O. In linear logic, however, this can easily be written as:

H2 ⊗H2 ⊗O2 ( H2O ⊗H2O.

Note that the classical logic principles of weakening (A ∧ B ⇒ A) and contraction (A ⇒ A ∧ A)

no longer hold. Also, classical logic cannot make the distinction between stable facts (like axioms)

and the description of the current state (we do not wish to update the axioms when we update the

current state).

This means that we should no longer write physical theories of states and processes using only

classical logic but should have:

Theory=linear logic+ axioms (written using exponentials)+ current state

Writing down all the syntax and semantics rules of linear logic here would take up far too much

space (see Girard’s article [65] for a description of what linear logic actually is).

The main point I wish to make is that linear logic has been applied very successfully to com-

putation, proof theory and in other aspects of mathematics but it is, almost by construction, an

appropriate logical foundation for theories of physics. Such a foundational logical approach based on

processes is at the heart of the categorical approach of the next section.
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7.1.3 Categorical quantum logic

We will only very quickly sketch the categorical approach to quantum logic proposed by Coecke [66].

We will return to a more detailed analysis of categorical quantum mechanics towards the end of the

report.

The basic idea is that, instead of immediately worrying about physical properties and the structure

imposed on these properties as was done by Birkhoff and Von Neumann, we should take as a primitive

the composition of quantum systems (and processes) in order to retrieve the quantum structure. This

leads us to ask what remains of the quantum formalism if we only look at how systems compose and

don’t worry about underlying features. The answer is that if we focus only on the structure imposed by

the composition of systems, physical processes form mathematical objects called symmetric monoidal

categories.

Next, one may ask what kind of structure is needed in addition to composition, in order to de-

duce experimentally observed phenomena, and notably operational quantum mechanics. Answering

this question leads to the development of categorical quantum mechanics, where we can give addi-

tional categorical structure to these symmetric monoidal categories by defining abstract equivalents

to scalars, superposition, adjoints, etc. This can then be described by a rich diagrammatic calculus

with defined by a constructed syntax and semantics (similarly to linear logic). This process allows us

to identify the minimal process logic of symmetric monoidal categories as a structure which we hope

will arise elsewhere in our ‘classical reality’.

We will conclude here this brief glimpse into quantum logic and move on to quantum Bayesianism.

7.2 Quantum Bayesianism

An important avenue of research in quantum foundations has been the attempt to formally describe

quantum theory as a generalization of classical probability theory. We will now describe some of the

progress made in this direction.

7.2.1 Quantum Bayesian probabilities

In the subjective Bayesian approach to probability theory [67], probability quantifies a degree of belief

for a single trial. In this interpretation of probability, different individuals having the same evidence

can still have different degrees of belief in a hypothesis. The probability of an event E is then a measure

of the rate at which an individual is prepared to bet on E. By the Ramsey-De Finetti theorem, the

standard Kolmogorov axioms of probability [68] then follow from certain coherence conditions which

make sure that the various degrees of belief fit together.

The subjective Bayesian approach is usually formalized in the following way. In order to measure

the degree of belief of Bob in some event E, Alice makes Bob chose a betting quotient q (which is a

measure of his degree of belief in E) and choses a stake S (which can be positive or negative but is

small compared to Bob’s wealth). Bob then pays Alice qS in exchange for S.

If Bob has to bet on many events E1, ..., En, then his betting quotients are said to be coherent if

and only if Alice cannot chose stakes S1, ..., Sn such that she wins whatever happens (this is called

making a Dutch book against Bob). The Ramsey-De Finetti theorem [67] then states that a set of

betting quotients is coherent if and only if they satisfy the Kolmogorov axioms of probability.

Caves, Fuchs and Schack [69] have argued that a ψ-epistemic interpretation of quantum theory

(whether or not there is an underlying ontology), where quantum states are states of knowledge,
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would require that all probabilities derived from a quantum state are subjective probabilities. They

point out that the distinction between classical and quantum probabilities lies in the nature of the

information they encode, since the maximal information in the quantum world is not complete and

cannot be completed.

The authors derive a similar result to Gleason’s theorem, showing that any subjective probability

assignment must fundamentally obey the Born rule for quantum mechanics if one requires Dutch-book

consistency for probability assignments which are faithful to the Hilbert-space structure of elementary

tests. This is an elegant result, which indicates that it may be possible to formulate quantum theory

as a theory of Bayesian inference [47]. In the next section, we will describe how one might attempt

this.

7.2.2 Quantum theory as a causally neutral theory of Bayesian inference

We shall now introduce the work of Leifer and Spekkens [70] on the formalism of quantum conditional

states. They aim to write quantum theory as a causally neutral theory of Bayesian inference, which

unifies the description of experiments involving two systems at a single time and of a single system at

two times. We will first describe the case of acausally related regions (A and B), where neither one

has a causal influence on the other.

The quantum state ρA, acting on a Hilbert space HA, is the analogue of a probability distribution

P(R) assigned to a random variable R. The density operator ρAB of the composite region AB, acting

on the Hilbert space HAB = HA ⊗HB, is analogous to the joint distribution P(R,S). The quantum

analogue of marginalization P (R) =
∑

S P (R,S) is the partial trace: ρB = TrA(ρAB). An acausal

conditional state for B given A is then a positive operator on HAB satisfying:

TrB(ρB|A) = IA.

This is the quantum analogue of the conditional probability distribution P (S|R), which satisfies:∑
S P (S|R) = 1.

The analogue of the multiplication law in classical probability: P (R,S) = P (S|R)P (R) has to

provide a method of constructing a joint state on HAB from a conditional state on HAB and a reduced

state on HA.

This is provided by the following rule:

ρAB = ρB|A ? ρA := (ρ
1
2
A ⊗ IB)ρB|A(ρ

1
2
A ⊗ IB).

Note that classical probability is a trivial special case with:

ρRS =
∑

r,s P (R = r, S = s)|r〉〈r| ⊗ |s〉〈s|
ρR =

∑
r P (R = r)|r〉〈r| = TrS(ρRS)

ρS|R =
∑

r,s P (S = s|R = r)|r〉〈r| ⊗ |s〉〈s|.
The next step is to find an analogue of the classical law of total probability P (S) =

∑
R P (S|R)P (R)

for quantum belief propagation from region A to region B. This acausal quantum belief propagation

is just:

ρB = EB|A(ρA) := TrA(ρB|AρA),

since: ρB = TrA(ρAB), ρAB = ρB|A ? ρA and the trace is cyclic. The CP map EB|A corresponds

exactly to the map associated to ρB|A : L(HA)→ L(HB) via the Jamiolkowski Isomorphism.

Let us now turn our attention to causally connected regions, where one region (say A) can have

a causal influence on the other (say B). The aim is for causally related regions to be described in

the same framework as the acausally related regions we saw before, since probability and correlation

should be independent of causation.

We define the causal conditional state of B given A as the following operator on HAB:
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σB|A = ρTAB|A,

where (·)TA is the partial transpose in some basis on HA.

The causal quantum belief propagation rule can be written using the CP map

ρB|A : L(HA)→ L(HB) , as:

ρB = EB|A(ρA) := TrA(σB|AρA).

We can also define the causal joint state of causally related regions A and B as the operator:

σAB = σB|A ? ρA.

Measurement using the Born rule (in region A) can be derived as a special case of quantum belief

propagation, since measurement of a POVM {EAY }: P (Y = y) = Tr(EAY ρA) can just be expressed as:

ρY = TrA(σY |AρA), where ρY =
∑

Y P (Y = y)|y〉〈y|.
In this way, the authors showed that dynamics, preparation of states, measurements, state update,

the Heisenberg picture and even classical-quantum hybrid models can all be described in a unified

manner using the quantum belief propagation rule (which is essentially the same in the causal and

acausal cases).

Leifer and Spekkens then proceed to introduce a quantum version of Bayes theorem:

P (R|S) = P (S|R)P (R)
P (S) , which relates the conditional states of B given A and of A given B.

The quantum Bayes theorem for acausal and causal conditional states are then:

ρA|B = ρB|A ? (ρAρ
−1
B ) = ρB|A ? (ρA(TrA(ρB|AρA)−1))

and: σA|B = σB|A ? (ρAρ
−1
B ) = σB|A ? (ρA(TrA(σB|AρA)−1))

respectively.

These can both be generalized as a quantum channel of the form:

FA|B(·) = ρ
1
2
A(E†A|B(ρ

− 1
2

B )(·)ρ−
1
2

B )ρ
1
2
A.

One can then find a very similar Bayes theorem for classical-quantum hybrid models. This new

acausal quantum Bayes rule allows the authors to study retrodiction, time symmetry and remote

steering in an elegant manner.

It is then interesting to generalize Bayesian conditioning to the quantum case and see how quantum

behavior may arise from simply updating information. There are still many issues to be resolved since

this work is in progress (see the paper [70] for more details).

A related article by Leifer and Poulin [71] describes in more detail the mathematical structures

that may underly quantum belief propagation. They study in detail belief propagation algorithms

acting on graphical models.

Another interesting advance is an article by Coecke and Spekkens [72] introducing a graphical

framework for Bayesian inference, based on ideas from categorical quantum mechanics. Developing

such a formalism further could yield new insights and help the progress of a formulation of quantum

mechanics as a theory of Bayesian inference.

We will now turn our attention to another operational interpretation of quantum mechanics in

which probability theory plays a major role, namely generalized probabilistic theories.
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Chapter 8

Generalized probabilistic theories

For any theory, whether it applies to nature or not, we can consider a number of important features

of the theory. This allows us to understand traits of nature in a more general context than just

quantum mechanics. Indeed, the study of a broad range of theories within an operational framework

can yield considerable insight. This can, for example, help differentiate between different theories

within the framework, simplify calculations within any of these theories or reveal novel fundamental

features of the world. In the rest of this report, we will present two distinct analyses of larger spaces

of hypothetical theories containing quantum theory, namely generalized probabilistic theories and

generalized process theories.

8.1 Hardy’s operational framework

We will start by describing a framework for convex operational theories, introduced by Hardy [73],

in which quantum theory is derived from a set of five axioms. Like in most operational approaches,

he considers preparation devices which prepare a system in a given state, transformation devices,

and measurement devices whose distinct outcomes correspond to macroscopic events. Central to his

axioms are the two integers:

K, which is the number of degrees of freedom, defined as the minimum number of probability

measurements needed to determine the state.

N, which is the dimension, defined as the maximum number of states that can be reliably distin-

guished from one another in a single shot measurement.

Quantum theory can then be derived from the following axioms:

Axiom 1: Relative frequencies tend to the same value (called probability) for any case when a

given measurement is performed on an ensemble of n systems, given some preparation, as n goes to

infinity.

Axiom 2: K is a function of N which takes the minimal value allowed by the axioms, for each N.

Axiom 3: A subsystem with has support on only M states of a set of N distinguishable states,

behaves like a system of dimension M.

Axiom 4: A composite system containing subsystems A and B has: N = NANB and K = KAKB.

Axiom 5: There exists a continuous reversible transformation on a system between any two pure

states of that system.

Note that if we do not include the word ‘continuous’ in axiom 5 then we obtain classical probability

theory (with K=N) instead of quantum theory (with K = N2).
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Let us now sketch how quantum theory can be derived from these axioms and introduce Hardy’s

operational framework for convex operational theories in the process.

The first axiom simply defines probability. This uses a frequentist approach but the framework is

compatible with any of the standard interpretations of probability. It is then possible to define the

state of a system as: “any mathematical object which can be used to determine the probability for

any measurement that could possibly be performed on the system”. In order not to over-specify the

state, it is also useful to introduce a set of fiducial measurements as: “a certain minimum number K of

appropriately chosen measurements which are both necessary and sufficient to determine the state”.

This means that the (operational) state is fully specified by a vector of probabilities p = (p1, ..., pK)T

of getting a given outcome in each of the fiducial measurements.

Any probability pm that can be measured, is assumed to be determined by a function f of the state

p: pm = f(p). The first postulate, together with the possibility of probabilistically preparing states,

means that f is linear and therefore: pm = r · p, where r is a vector associated with measurement.

Note that the fiducial measurement vectors are the Cartesian basis vectors ri = ei = (0, ..., 1, ..., 0)T .

Transformations of the system correspond to real KxK matrices Z such that: p→ Zp. The set of

allowed states, measurements and transformations are all convex sets.

One can then define pure states as non zero extremal states of the convex state space S, i.e.

non-zero vectors in S which cannot be written as a convex sum of other vectors in S. The identity

measurements and normalization of states can be similarly defined. We also expect there to be sets

of states pn (at most N of them), called basis states, which are distinguishable from one another in a

single-shot measurement, by measurement vectors rm (which cover all outcomes) such that:

rm · pn = δmn.

In this way, we can see that physical systems are characterized by their dimension N (number of

basis states) and the number of degrees of freedom K (number of fiducial measurements).

Although we will not go through the proof here, Hardy showed that, in general, the axioms imply:

K = N r, where r=1,2,... . The second axiom then tells us that we must take the smallest value of r

which is consistent with the other axioms.

The third and fourth axioms dictate how subsystems combine to form larger systems, but we will

not insist on how these work since we shall return later to the description of how separate systems

combine in generalized probabilistic theories.

As we mentioned before, the fifth axiom provides the distinction between quantum theory and

classical probability theory. It implies that there exists an allowable reverse transformation Z−1 for

any input state and that the set of reversible transformations forms a compact Lie group. This means,

for example, that a pure states can always be transformed to any other pure state along a continuous

trajectory through pure states.

Such a thing is not possible for classical states, since the space of classical pure states corresponds

to vertices of a simplex. One can then show that, in accordance with axiom 2, quantum theory

and classical probability theory are both special cases of these convex operational theories satisfying:

K = N2 and K=N respectively.

8.2 Information theoretic constraints for quantum theory

Two years after Hardy’s paper, Clifton, Bub and Halvorson [74] attempted to derive quantum theory

from information theoretic axioms only. They adopt the following axioms:
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Axiom 1: It is impossible to transfer superluminal information between two physical systems by

performing measurements on one of them.

Axiom 2:It is impossible to perfectly broadcast the information contained in an unknown physical

state.

Axiom 3: It is impossible to unconditionally perform secure bit commitment.

The authors work in a C?-algebraic framework which encompasses both classical and quantum

statistical theories. They argue that quantum theory can be picked out from this general C? framework

by the satisfaction of certain physical constraints: kinematic independence, non commutativity, and

nonlocality. They then formulate their three axioms (which are known to hold in quantum theory)

in C? algebraic terms and show that they imply kinematic independence, non commutativity, and

nonlocality.

This is an interesting result but it can be criticized since it assumes a framework which is not

much more general than quantum theory to begin with and since it fails to establish the full structure

of quantum theory. This work, however, showed that progress can be made in understanding the

connection between information processing and physical principles in general by studying information

processing in a wide range of theories. Such an insight was an important motivation for the study of

information processing in generalized probabilistic theories, which we shall describe in the following

section.

8.3 Information processing in generalized probabilistic theories

Barrett introduced a framework [75] for generalized probabilistic theories which is based on Hardy’s

formalism. The five Hardy axioms are now replaced by the following assumptions:

Assumption 1: The state of a single system is completely specified by the vector of probabilities

for the outcomes of all fiducial measurements:

~P = (P (a = 1|X = 1), P (a = 2|X = 1), ...;P (a = 1|X = 2), P (a = 2|X = 2), ...; ...)T

where P (a = i|X = j) is the probability of getting outcome i when fiducial measurement j is

performed on the system.

Assumption 2: The set of allowed normalized states (satisfying |~P | =
∑

i P (a = i|X = j) = 1,∀j)
is closed and convex. The complete set of states S is is the convex hull of allowed normalized states

and ~0.

Assumption 3: An element of the set of allowed operations {Mi} ∈ O must satisfy:

0 ≤ |Mi·~P |
|~P |

≤ 1, ∀i, ~P ∈ S∑
i
|Mi·~P |
|~P |

= 1,∀~P ∈ S

Mi · ~P ∈ S, ∀i, ~P ∈ S
A set of transformations {Mi} is an element of O if and only if Mi is a element of the set of allowed

transformations T (for all i) and
∑

i
|Mi·~P |
|~P |

= 1, ∀~P ∈ S. We assume that such a set T exists and by

definition it is convex.

Assumption 4: The final state of a joint system does not depend on the order in which operations

are independently performed on on each of its subsystems.

Assumption 5: The global state of a system can be completely determined by specifying joint

probabilities of outcomes for fiducial measurements performed on each subsystem. Also, if the joint

state ~PAB is in the set of allowed states SAB for the joint system AB, then the reduced state ~PA for

system A (with outcome probabilities P (a = i|X = j) =
∑

i′ P (a = i, b = i′|X = j, Y = j′)) is in the

set of allowed states SA for system A.
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Assumption 6: If ~PA ∈ SA and ~PB ∈ SB then ~PA ⊗ ~PB ∈ SAB.

Assumption 7: A theory first specifies a set of allowed states, then all transformations MA
i that

are well defined, in the sense that (MA
i ⊗ I)~PAB ∈ SAB whenever ~PAB ∈ SAB, are allowed transfor-

mations.

The first three assumptions lead to convex operational theories very similar to those derived

by Hardy’s axioms [73]. Although, the Barrett assumptions takes the degrees of freedom of the

state as internal degrees of freedom (requires a closer analysis of the role of spacetime) and treats

transformations and measurements in a unified way. The other assumptions deal with how systems

combine to make other systems. These allow us to derive (as a theorem) that systems combine

according to a tensor product rule, which leads to a natural definition of entanglement in these

theories. Note that the no-signaling principle is a corollary of assumption 4.

Several features, which at first seem specifically quantum, arise in all these generalized probabilistic

theories, except the classical one. These include the disturbance of a system on measurement [76], the

multiple decompositions of a mixed state into pure states and the no-cloning theorem [77] (no-deleting

theorem[78]?). The paper also describes in detail classical and quantum theory in the framework, along

with GNS (general non-signaling theory), containing states giving rise to PR-box correlations [14],

and GLT (generally local theory), where all states are local. Barrett asks what further assumptions

would uniquely identify quantum theory, and proposes that quantum theory might be optimal for

computation. A number of open questions are being addressed with regard to entropy [79], time and

causal structure [80] in these generalized probabilistic theories.

For the remainder of this review, we will analyze another set of hypothetical physical theories

containing quantum theory: generalized process theories.
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Chapter 9

Categorical quantum mechanics

9.1 Categories and quantum mechanics

A category C consists of a class of objects |C| and for each pair of objects R,S ∈ |C|, a collection

(hom-set) C(R,S) of arrows. It also has a composition map −◦− : C(R,S) x C(S,T)→ C(R, T ) for any

triple of objects R,S, T ∈ |C|, which is associative, i.e: h ◦(g ◦f) = (h◦g)◦f , for all f, g, h in C(R,S),

C(S,T), C(R,T) respectively, and for each object R there exists an identity arrow idR : R → R such

that: f ◦ idR = idS ◦ f .

Category theory was first introduced by Eilenberg and Mac Lane [81] and increasingly thorough

introductions to the theory can be found in [82, 83, 84]. Due to the lack of space, we will skip to the

most relevant concepts and refer the reader to the references above in order to fill in the gaps.

A symmetric monoidal category (SMC) consists of a category C, a bifunctor −⊗-:CxC → C, a

unit object I and natural isomorphisms:

λA : A ∼= I ⊗A, ρA : A ∼= A⊗ I, αA,B,C : A⊗ (B ⊗ C) ∼= (A⊗B)⊗ C and σA,B : A⊗B ∼= B ⊗A
along with coherence conditions (see [84] for details).

Monoidal categories are ideal for describing very general compositional theories of systems and

processes, since they contain two interacting modes ⊗ and ◦ of composing systems and processes.

These lead to a very simple diagrammatic calculus [85] where arrows are represented by boxes and

the objects are vertical inputs/outputs. The ⊗ and ◦ operations are respectively represented as boxes

juxtaposed next to each other and attached in vertical sequence.

There is a theorem by Joyal and Street [86] which states that an equation in the symbolic language

of SMCs holds if and only if it holds up to an isomorphism of diagrams in the graphical language.

This allows us to use diagrammatic reasoning by isomorphism of diagram and substitution to undergo

complex calculations. In the hope of recovering the structure of quantum theory, we must add extra

algebraic structure to our SMCs.

A dagger compact symmetric monoidal category (†-CSMC) C is a SMC with an identity-on-objects

involutive contravariant endofunctor † : C → C such that:

(f ◦ g)† = g† ◦ f †, (f ⊗ g)† = f † ⊗ g†, id†A = idA and (f †)† = f (†-SMC),

which is also compact, meaning that each object A ∈ |C| has a dual object A∗ ∈ |C| and arrows:

ηA : I → A∗ ⊗A and εA : A⊗A∗ → I such that:

(εA ⊗ idA) ◦ (idA ⊗ ηA) = idA and (idA∗ ⊗ εA) ◦ (ηA ⊗ idA∗) = idA∗

(Note that we will usually use A = A∗).

We define a state of a system A as an arrow: ψ : I → A, an effect as: π : A → I and scalars as

s : I → I. The inner product between states is then the scalar: ψ† ◦ φ : I → I.
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If we add to the previous graphical calculus an involutive asymmetry in the boxes representing

arrows and the rule that taking the adjoint reflects the boxes vertically and the fact that f ◦ f † =

idA = f † ◦f then we get the following key theorem which allows us to use graphical reasoning as with

SMCs:

Theorem [87, 88]: An equational statement between formal expressions in the language of †-CSMC

holds if and only if it holds up to isotopy in the graphical calculus.

Important examples of †-CSMCs are the category of finite dimensional Hilbert spaces and linear

maps/tensor products FHilb, the category of finite sets with relations/Cartesian products FRel and

the category of open quantum systems and CP maps/tensor products CP(FHilb). Therefore, we can

use the graphical calculus to derive results for any of these categories.

9.2 Important Categorical Background

In order to fully describe quantum theory using the graphical calculus, it is necessary to add a

few more concepts, including measurement, observables and classical channels. Such a graphical

description requires a novel approach to defining bases and observables which holds in the general

context of †-CSMC and reduces naturally to the familiar concepts in the standard Hilbert space

formalism. The key insight in doing so is that the contrapositive of the no cloning and no deleting

theorems [77, 78, 89] states that orthonormal basis states are the only ones which can be copied and

erased.

A mathematical formalization of this idea [90, 91] leads to the following algebraic definition of

observable structures:

An observable structure is a †-special commutative Frobenius algebra on a †-CSMC C. This is a

triple

{ A ∈ |C|, δ : A→ A⊗A (copying map), ε : A→ I (erasing map) } satisfying the following:

(i) {A, δ, ε} is a cocommutative comonoid, i.e: (δ ⊗ idA) ◦ δ = (idA ⊗ δ) ◦ δ; λ−1
A ◦ (ε ⊗ idA) ◦ δ =

ρ−1
A ◦ (idA ⊗ ε) ◦ δ = idA and σA,A ◦ δ = δ.

(ii)It satisfies the Frobenius law: (δ† ⊗ idA) ◦ (idA ⊗ δ) = δ ◦ δ†

(iii) It is special: δ† ◦ δ = idA

We know that [91] in FHilb, orthonormal bases are in a one to one correspondence with †-special

commutative Frobenius algebras. This structure captures the essential information encoded by non-

degenerate observables and allows us to depict classical states and measurement in a pictorial manner.

This definition for observable structures has been shown [92] to be equivalent to the spider laws

described in the next section.

Let {A, δ, ε} be an observable structure. If for each state ψα : I → A we define: ψ−α := (ψ∗α)†

(* is complex conjugation in the basis of the observable) and we restrict the states to those which

respect: δ† ◦ (ψα ⊗ ψ−α) = ε†, then we get an abelian group with the multiplication δ† which we call

the phase group. This allows us to define spiders diagrams with phases which are a generalization of

phase gates in quantum computing (S rules below).

Two observable structures {A, δZ , εZ} and {A, δX , εX} are complementary if the so-called eigen-

states of one are unbiased for the other. In our language these observables are complementary if and

only if: δ†Z ◦ δX = εZ ◦ ε†X .

In the rules of ZX calculus, we require strong complementarity between pairs of observables. Strong

complementarity implies complementarity but the converse is untrue [93]. Strongly complementary
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Figure 9.1: Diagrammatic rules for ZX calculus

observables form what is called a scaled Hopf algebra [94] (B rules below).

In the next section, we will describe the ZX calculus, which utilizes the notions introduced in

the previous sections. The use of two complementary observables results in a two-colored pictorial

calculus. In the present review, we have only had the space to present some of the most important

concepts which lead up to the ZX calculus but for a more thorough derivation of the calculus itself,

the reader is invited to read [93].

9.3 ZX Calculus

The rules of the ZX calculus, which uses as complementary observables the Pauli Z and Pauli X

operators, are summarized in Figure 9.1. The (T) rule means that after identifying the inputs and

outputs, any topological deformation of the internal structure does not matter.

This allows diagrammatic reasoning by isomorphism of diagram and substitution to be applied as

before: diagrams are built out of tensor products and compositions of generators.

Quantum circuits can be constructed from the diagrams of ZX calculus as shown in Figure 9.2.

We know that if two diagrams are equal according to the rules of ZX calculus then their cor-

responding quantum circuits are equivalent. Note that the converse is not true. This provides a

convenient way of doing calculations for qubits using the graphical reasoning. Since single qubit uni-

taries and C-Not gates are universal for quantum computing [95], the ZX calculus is also universal

for quantum computing if we allow arbitrary phases. It is interesting to study the property of the

calculus for different phase groups.

Also, measurement based quantum computing [96] can easily be described using the ZX calculus.

The diagrammatic reasoning could even provide an efficient way of translating between the cluster

state and circuit models of quantum computation.

The ZX calculus simplifies numerous quantum calculations. It allows us to study a number of

fundamental aspects of quantum theory from a high-level mathematical point of view.

9.4 Recent work

We will now briefly mention some recent work which is relevant. First of all, a useful practical advance

is the development of an automated reasoning software tool called “quantomatic” which is based on
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Figure 9.2: Quantum circuit interpretation of the ZX Calculus

the work done in [97]. When finished, this tool will allow us to move very efficiently between diagrams

in the ZX calculus.

Another important development which deserves more mention is the diagrammatic representation

of completely positive maps, described in [88]. This allows for a more general pictorial description

of quantum phenomena using a generalized version of Kraus operators. To see how this construction

fits in with the ZX calculus, see section 12 of [93].

Much of the recent work done in categorical quantum mechanics is dedicated to the investigation of

the structure of multipartite entanglement [98]. The pictorial calculus has even been used to analyze

topological quantum computing [99].

Another fruitful application of the categorical formalism has been in the study of non-locality.

A novel paper [100] shows that a key difference between qubit stabilizer theory [101] (which cannot

be modeled by a local hidden variable theory) and Spekkens toy theory [36] (which can be modeled

by a local hidden variable theory) is their phase group. For stabilizer theory the phase group is Z4,

whereas for Spekkens toy theory it is Z2xZ2.

Building further on [100], it was shown [102] that there is a close connection between GHZ-Mermin

type non-locality [22] and strong complementarity.

9.5 Stabilizer quantum theory

A very useful subclass of quantum mechanical operations is stabilizer quantum mechanics. Stabilizer

states are eigenstates with eigenvalue 1 of each operator in a subgroup of the Pauli group:

Pn := {αg1 ⊗ ...⊗ gn : α ∈ {±1,±i} ∧ gk ∈ {I, σx, σy, σz},∀k}.
The Clifford group is the group of unitary operations:
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Cn := {U : UgU † ∈ Pn, ∀g ∈ Pn}.
It is generated by the phase, Hadamard and C-NOT gates. The local Clifford group lCn consists

of the n-fold tensor products of single qubit Clifford operators.

Stabilizer quantum mechanics [101] includes preparations of qubits in the |0〉 state, Clifford uni-

taries and measurements in the computational basis. This subclass of quantum mechanics is particu-

larly useful for quantum error correction and can be simulated using a classical computer.

An interesting piece of work, which is closely related to Edward’s result on the phase group of the

ZX Calculus [100], is Pusey’s stabilizer notation for Spekkens toy theory [103].

Note that the stabilizer formalism can be generalized beyond two dimensional qubit systems [104].

We can generalize the Pauli group Pn to higher dimensions by generating it from tensor products of

(ωa times products of) dth order Xd and Zd (instead of X and Z), where:

Xd|j〉 = |j + 1〉 and Zd|j〉 = ωj |j〉, where ω is a primitive dth root of unity

and XdZd = ω−1ZdXd.

Stabilizer states are then eigenstates with eigenvalue 1 of each operator in a subgroup of Pn.

The Clifford group Cn (at least for prime dimensions d) is then the set of operators that leave Pn
invariant under conjugation. This is generated by the following d-dimensional gates:

(1) Discrete Fourier transform: |j〉 →
∑d

s=0 ω
js|s〉

(2) SUM gate (generalized CNOT): |i〉|j〉 → |i〉|i⊕ j[d]〉
(3) Phase gate: |j〉 → ωj(j−1)/2|j〉
(4) Exponent gate: |j〉 → |aj〉.
Stabilizer quantum mechanics in d dimensions then corresponds to preparations of stabilizer states,

operators in Cn and measurements of operators in Pn.

9.6 Completeness of ZX Calculus for stabilizer quantum mechanics

Recently, Backens [105] has shown that the ZX calculus is complete for stabilizer quantum mechanics.

This means that any equation between two ZX calculus diagrams (put into matrix mechanics) which

can be shown to be true using stabilizer quantum mechanics is derivable using the rules of the ZX

calculus. In this section, we shall outline her proof of this result.

A graph is an object G = {V,E}, where V is a set of vertices and E is a collection of (ordered or

unordered) pairs of vertices called edges.

The adjacency matrix θ of a graph has θij=1 if there is an edge connecting vertices i and j, and

θij=0 otherwise. Given a graph G (with n vertices), we can define a graph state |G〉 as the state

formed by preparing a |+〉 state at each vertex and the applying a controlled-Z gate at each edge.

|G〉 is the unique qubit state whose stabilizer subgroup is generated by:

Xa ⊗
⊗

b∈V Z
θab
b , ∀a ∈ V .

It is a known result [106] that two graph states are equivalent under local Clifford operations iff

they can be transformed into each other by local complementations. Note that, in order for it to

satisfy this ‘Van den Nest theorem’, an extra axiom corresponding to the Euler decomposition of the

Hadamard gate has to be added to the ZX calculus [107] (this paper introduces local complementation

in the ZX calculus).

It was also shown in [106] that any stabilizer state is equivalent to some graph state, under local

Clifford operations.

Backens proved that a direct analogue of these theorems holds within the ZX calculus. She

demonstrated (using a similar approach as [108]) that the stabilizer states represented by two ZX
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calculus diagrams are equal, then these diagrams can always be shown to be equal within the calculus

by converting them into a certain ‘GS-LC’ form (corresponding to graph states in the calculus with

a single Clifford operator applied to each output). In this form, they can always be converted to one

another by local complementations in the calculus. The proof is generalized for operators by using

the Choi-Jamiolkowski isomorphism. In this way, Backens showed that the ZX Calculus is complete

for stabilizer quantum mechanics.

A modified version of this proof could potentially be applied to show that other restricted sub-

classes of quantum theory (maybe more physical subclasses; restrictions of quantum optics, for exam-

ple) which can express graph states, are complete for stabilizer quantum mechanics.

9.7 A complete set of circuit equations for stabilizer quantum me-

chanics

We shall now describe a novel result, presented here for the first time. In fact, thanks to Backen’s

proof [105] that the ZX Calculus is complete for stabilizer quantum mechanics, this result yields two

new insights.

Figure 9.3: Complete set of circuit equations for stabilizer quantum mechanics.

First of all, we have found a complete set of circuit equations for stabilizer quantum mechanics,

presented in 9.3.

These are a set of circuit equations which have the property that any circuit equation which can

be shown to be true using stabilizer theory (which means that both quantum circuits in the equation

correspond to equivalent processes in stabilizer quantum mechanics) can be derived from this set by

diagrammatic reasoning, using isomorphisms of diagrams and substitution. This teaches us something

about the logical aspect of the stabilizer formalism.

Note that the circuits in 9.3 have some degree of degeneracy. Many of these equations are just

special instances of C-NOT gates with various input states and post-selected measurements.
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Figure 9.4: Circuit equations for each ZX Calculus axiom.

The second insight that can be obtained from this result is the following theorem:

Theorem:: There is an equivalence of categories between the symmetric monoidal categories of

quantum circuits FSMC(Circ) and of the ZX calculus FSMC(ZX) (quotient to their axioms):

FSMC(Circ)/ ≡Circ↔ FSMC(ZX)/ ≡ZX .

An equivalence of categories means that there exists a full, faithful, essentially surjective functor.

The constructive proof of the existence of this functor required us to find an equivalent set of ZX

circuits to the axioms of the ZX Calculus, which are in a form that can be directly related to quantum

circuits using 9.2.

FSMC(Circ) is a symmetric monoidal category over the monoidal signature [109] (these are the

consistuent ‘gates’ of the symmetric monoidal category):

S := {C −NOT ;SWAP ; prepare|0〉; prepare|+〉; postselect|0〉, postselect|+〉, Rx(α);Rz(β)}.
The axioms of the ZX Calculus (FSMC(ZX) ) and the corresponding axioms for the category

FSMC(Circ) (which are like the circuit version of the ZX-Calculus axioms) are given in 9.4. This

gives us a new insight into the structure of the ZX Calculus, namely an understanding of what the

axioms of the calculus signify, in terms of familiar quantum circuits.

The fact that the ZX calculus is complete for stabilizer quantum mechanics means that any

equation between two ZX calculus diagrams (put into matrix mechanics) which can be shown to be

true using stabilizer quantum mechanics is derivable using the rules of the ZX calculus. Therefore,

the theorem above proves that any circuit equation which can be shown to be true using stabilizer
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theory can be derived using the set of quantum circuit equations 9.3 presented earlier.

9.8 Future directions

We will now succinctly describe some of the ideas for further research which follow from the previous

work we described. A natural question which ensues from [102] is whether there may be a family

of different notions of complementarity which can be connected to particular computational tasks.

This might allow to generalize other schemes in an analogous manner to the way in which Mermin’s

non-locality is generalized in [102] (quantum secret sharing [110] could be an example).

Another interesting avenue of research could be to study general process theories, which could

give insights about key concepts of quantum theory (maybe in a more general setting) and could

even lead to some new ideas for alternative axioms for quantum mechanics. Combining the general

process theories and the complementary approach of generalized probabilistic theories [111] could also

potentially lead to some interesting results.

Also, categorical quantum mechanics could be utilized to study further the structure of multi-

partite entanglement and could allow a fruitful analysis of the problem of MREGS [112] and LOCC

reversibility from a new perspective. Maybe we could find some generalized measures of entanglement,

a definition of entropy in †-CSMCs, new multipartite entanglement algebraic structures providing clues

on MREGS or other hints at a general theory of multipartite entanglement.

In addition, since it has been shown to be complete for stabilizer quantum mechanics, we could use

the pictorial calculus to describe error-correction protocols and fault tolerance in a general way (this

is in progress...). Perhaps this could lead to an improved understanding of quantum error correction

and even useful new codes. Variations of this idea could help develop error correction for particular

quantum computing implementations.

An important step in determining how useful the ZX calculus would be for calculation could be

the determination of the computational resources needed to compute results using the calculus. For

example, what is the complexity class associated with converting from a circuit computation to a

cluster state computation using the ZX calculus?

A great deal of work has gone into generalizing the uncertainty relations to a more general entropic

setting [113]. These entropic uncertainty relations, which can perhaps be seen as an alternative

(better?) way of looking at complementarity, have recently been shown to be closely related to

non-locality [114]. Perhaps this important work could be understood in a categorical setting and

extended.

The ZX Calculus may also be an ideal arena to study contextuality. This could perhaps yield

insight into how contextuality arises, the role it plays in quantum-like theories and how it could be

used as a resource for computation.

Next, it would be good to generalize the ZX calculus to some elegant ZXY calculus with more

than just two complementary observables.

It should be valuable to extend the formalism beyond qubits. Indeed, a higher dimensional ver-

sion of the calculus could exhibit numerous quantum features and hopefully incorporate both higher

dimensional Spekkens toy model [38] and stabilizer theory [104] (maybe we could find a generalization

in higher dimensions of the relation described in [100] [103]).

Finally, the generality of monoidal categories (both FHilb and nCob are dagger compact categories,

for example) and some previous work [115, 116] shows that this framework could be very useful in

the quest for a theory of quantum gravity.
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Chapter 10

Conclusion

Although considerable progress has been made regarding our understanding of the foundations of

quantum theory, the sheer number of conflicting interpretations demonstrates the extent of the task

left ahead. Can we find an interpretation, perhaps transcending quantum theory, which may lead

us to a scientific consensus? Or do our philosophical preconceptions always make such concordance

unattainable?

We often seem hindered by our naive intuitions and by the ineptitude to detach ourselves from

any object under analysis. Will such limitations forever cause the percipience of an underlying reality

to slip through our fingers?

Take this kiss upon the brow!
And, in parting from you now,
Thus much let me avow–
You are not wrong, who deem
That my days have been a dream;
Yet if hope has flown away
In a night, or in a day,
In a vision, or in none,
Is it therefore the less gone?
All that we see or seem
Is but a dream within a dream.

I stand amid the roar
Of a surf-tormented shore,
And I hold within my hand
Grains of the golden sand–
How few! yet how they creep
Through my fingers to the deep,
While I weep–while I weep!
O God! can I not grasp
Them with a tighter clasp?
O God! can I not save
One from the pitiless wave?
Is all that we see or seem
But a dream within a dream?
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