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Abstract

Abstraction is an important driving force in theoretical physics. New insights often
accompany the creation of physical frameworks which are both comprehensive and parsi-
monious. In particular, the analysis of alternative sets of theories which exhibit similar
structural features as quantum theory has yielded important new results and physical
understanding. An important task is to undertake a thorough analysis and classification of
quantum-like theories. In this thesis, we take a step in this direction, moving towards a
synthetic description of alternative theories in quantum foundations.

After a brief philosophical introduction, we give a presentation of the mathematical
concepts underpinning the foundations of physics, followed by an introduction to the found-
ations of quantum mechanics. The core of the thesis consists of three results chapters based
on the articles in the author’s publications page. Chapter 4 analyses the logic of stabilizer
quantum mechanics and provides a complete set of circuit equations for this sub-theory of
quantum mechanics. Chapter 5 describes how quantum-like theories can be classified in a
periodic table of theories. A pictorial calculus for alternative physical theories, called the
ZX calculus for qudits, is then introduced and used as a tool to depict particular examples
of quantum-like theories, including qudit stabilizer quantum mechanics and the Spekkens-
Schreiber toy theory. Chapter 6 presents an alternative set of quantum-like theories, called
quantum collapse models. A novel quantum collapse model, where the rate of collapse
depends on the Quantum Integrated Information of a physical system, is introduced and
discussed in some detail. We then conclude with a brief summary of the main results.
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Chapter 1
Introduction

“To those who look at the rich material provided by history, and who are not intent

on impoverishing it in order to please their lower instincts, their craving for intellectual

security in the form of clarity, precision, ‘objectivity’, ‘truth’, it will become clear that

there is only one principle that can be defended under all circumstances and in all stages

of human development. It is the principle: anything goes.”

Paul Feyerabend

W
hat is the purpose of scientific research – does the knowledge obtained through

scientific investigation play a singular role in human understanding? Is it possible

to draw a line of demarcation, thereby allowing us to distinguish between scientific inquiry

and other, non-scientific activities?

Since antiquity, it has been recognized [240,17] that the acquisition of knowledge can be

achieved through three types of critical reasoning: deduction, induction and abduction.

Deductive reasoning is the process of using unambiguous rules to reach a logically certain

conclusion from one or more initial premises. Given a theory of evidence [270] and some ini-

tial premises based upon empirical observation, inductive reasoning indicates some degree

of support for a new claim. Abductive reasoning is the process of using empirical evidence

to construct a theory – which strives to be minimal in terms of theoretical simplicity – ac-

counting for the observed evidence by providing a sufficient (but not necessary) explanation

1
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of the observations.

Despite the countless potential interpretations of any observed physical phenomenon,

scientific progress relies upon the use of abduction to obtain a single economical explan-

ation, a tangible theoretical narrative for the physical process under examination. If one

is skeptical about dubious claims concerning demonstrable ‘truths’ about reality, then

what distinguishes a scientific account of our experience from other alternative descriptions?

(A) For Karl Popper, the key feature of scientific theories is the possibility of empirical

falsification. Scientific theories are abstract constructions which can never be proven and

that can only be tested indirectly, by reference to their implications [244]:

“[T]here can be no statements in science which can not be tested, and therefore none which

cannot in principle be refuted, by falsifying some of the conclusions which can be deduced

from them.”

(B) Thomas Kuhn built on Popper’s claim that scientific observations and evaluations

are theory-laden, in the sense that they cannot be separated from their interpretation

within a particular logically consistent theoretical paradigm [194]. Moreover, he argued that

it is not possible to evaluate two competing paradigms independently from each other, as

neither one provides a standard by which the other can be judged. Hence, Kuhn introduced

a division between normal science, which takes place within a paradigm, and extraordinary

science which leads to a paradigm shift. The key differentiating feature of science is then

due to social and subjective factors, related to the structure of the scientific community [194]:

“A paradigm is what the members of a community of scientists share, and, conversely, a

scientific community consists of men who share a paradigm.”

(C) Paul Thagard provided another clear demarcation criterion, which describes a

theory as non-scientific if and only if [283]:

“(i) it has been less progressive than alternative theories over a long period of time, and

faces many unsolved problems; but

(ii) the community of practitioners makes little attempt to develop the theory towards

solutions of the problems, shows no concern for attempts to evaluate the theory in relation

to others, and is selective in considering confirmations and disconfirmations.”
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(D) More recently, David Deutsch [109] presented another test to distinguish science and

non-science, namely whether the explanatory narrative provided by a theoretical framework

can be easily varied. He argues that: “easy variability is the sign of a bad explanation,

because, without a functional reason to prefer one of countless variants, advocating one of

them, in preference to the others, is irrational.”

(E) Building upon Pierre Duhem’s earlier work [116], Willard Quine introduced epistem-

ological holism, which is the view that individual statements cannot be confirmed or discon-

firmed by empirical tests, but only coherent sets of statements can be verified together [249]:

“our statements about the external world face the tribunal of sense experience not individu-

ally but only as a corporate body.”

Scientific knowledge then corresponds to a bundle of hypotheses – including all background

assumptions – which can be tested against the empirical world and undergoes falsification if

it fails the observational test. The Duhem-Quine thesis states that it is impossible to isolate

any single hypothesis in the bundle.

(F) Inspired by Popper, Kuhn and Quine, Imre Lakatos introduced the concept of

research programs. Satisfactorily developed methods and theories form the ‘hard core’ of the

research program, and scientists can add auxiliary hypothesis to a ‘protective belt’ which

defends the core of the program from falsification [196]. Arbitrary theoretical amendments

in the protective belt can cause a research program to be progressive – if they enhance the

program’s explanatory or predictive power – or degenerative – if they have been made out

of necessity, in the face of new and troublesome evidence. In this respect:

“The positive heuristic of the programme saves the scientist from becoming confused by

the ocean of anomalies.”

Whether or not research programs are scientific depends on their success at predicting

novel facts.

(G) Larry Laudan’s pessimistic induction [199] strongly questions the role of induction

and the possibility of convergent realism in scientific theories:

“the history of science furnishes vast evidence of empirically successful theories that were

later rejected; from subsequent perspectives, their unobservable terms were judged not to
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refer and thus, they cannot be regarded as true or even approximately true.”

This leads to the idea that if science distinguishes itself from other activities at all, it

is only due to pragmatic efficiency [198]: “the aim of science is to secure theories with a

high problem-solving effectiveness”. In this respect, scientific progress will often proceed

counter-inductively:

“Indeed, on this model, it is possible that a change from an empirically well-supported

theory to a less well-supported one could be progressive, provided that the latter resolved

significant conceptual difficulties confronting the former.”

(H) Another possible interpretation of science is as a specific language or collection of

languages, either mathematical or discursive. We could then apply Ferdinand de Saussure’s

semiotic methodology [259] and interpret science as a collection of signs, comprising of:

(i) signifiers (signifiant), which are symbols or sounds allowing for the identification of a

sign

(ii) signified (signifié), corresponding to the meaning of the sign acquired through the dif-

ferences between signifiers.

Scientific signs can be particularly opaque since each word is at the summit of a pyramid

of concepts and ideas. In this interpretation we should abandon any attempt to relate the

scientific language to ‘truth’ or ‘real objects’ but think of scientific theories as self-enclosed

systems in which any semantic content consists of internal interrelations between signifiers.

In this light, it seems difficult to circumvent Jacques Derrida’s objection that language

leads to an endless process where meaning is sought but never found [105]. We can introduce

the concept of différance scientifique. Scientific concepts and constructions consisting of

abstract signs and words only have meaning because of the contrast (différence) between

these signs and possible alternatives. Moreover, meaning is never present but rather is

acquired at a later stage, deferred (différé) to other signs. For Derrida: ’Il n’y a pas de

hors-texte’; indeed language leads to a perpetual movement of differences in which there

is no stable equilibrium and one can no longer appeal to reality as a refuge independent

of language. Scientists should therefore be wary of our desire for immediate access to

meaning; we must ensure that there is a process of deconstructing the ‘metaphysics of

presence’ [105], a constant effort to avoid privileging presence over absence.
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(I) A strong critique of scientific progress is laid out in Paul Feyerabend’s ‘Against

Method’ [136]. Through the use of many examples from the history of science, he argues:

(i) for the inevitable use of counter-inductive reasoning in science:

“Hypotheses contradicting well-confirmed theories give us evidence that cannot be obtained

in any other way.”

(ii) against the requirement that scientific theories must always be consistent:

“[T]here is not a single interesting theory that agrees with all the known facts in its domain”

(iii) for the inevitability of dissociating scientific theories and facts from their process of

genesis:

“[T]he material which a scientist actually has at his disposal, his laws, his experimental

results, his mathematical techniques, his epistemological prejudices, his attitude towards

the absurd consequences of the theories which he accepts, is indeterminate in many ways,

ambiguous, and never fully separated from the historical background.”

This analysis leads Feyerabend to epistemological anarchism or the conclusion that

there are no useful, fixed methodological rules governing the growth of knowledge or the

progress of science. This means that:

“Knowledge so conceived is not a series of self-consistent theories that converges towards

an ideal view; it is not a gradual approach to the truth. It is rather an ever increasing

ocean of mutually incompatible alternatives, each single theory, each fairy-tale, each

myth that is part of the collection forcing the others into greater articulation and all of

them contributing, via this process of competition, to the development of our consciousness.”

The twentieth century has initiated the process of exorcising the illusion that scientific

research is revealing a profound, objective and undeniable truth. It seems that Hélène

Cixous was right in saying that: “We are living in an age where the conceptual foundation

of an ancient culture is in the process of being undermined by millions of moles of a species

which has yet to be identified.” Scientists have a perpetual duty to question the conceited

and complex story they create, to live up to the motto: ‘nullius in verba’. Despite our

technological advances and apparent progress in understanding, one must be reluctant to

assume that the elaborate myth created by interpreting scientific knowledge is superior to
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other human legends.

How should our understanding of the nature of science affect and shape the work of

the practicing scientist? It is essential to take on board the lessons from the philosophy of

science when working in the foundations of physics. First of all, we must always ensure that

there is the utmost clarity in any use of scientific language – mathematical or otherwise

– and its relation to theory-laden observations. Any theoretical lack of consistency and

possible gap in scientific reasoning should never be swept under the carpet but must be

dealt with directly and without hypocrisy.

Moreover, the theory-laden nature of empirical observation, the importance of paradigm

shifts, différance scientifique and epistemological anarchism all point to the crucial import-

ance of studying alternative scientific theories. In this respect, we both have the free-

dom and the duty to analyze the “increasing ocean of mutually incompatible alternatives”

and to show tolerance towards the diverse range of possible methodologies and theoretical

constructs.

As Freud reminds us :

“Only in the study of the abnormal can we learn the true nature of the normal.”

The first two chapters of this thesis will introduce the necessary background material

for a thorough understanding of the foundations of quantum mechanics.

The initial chapter presents a brief exploration of the concepts and language of math-

ematics. The focus is to provide a succinct construction of the tower of theoretical concepts

underlying a rigorous analysis of the foundations of physics. In this respect, there are many

definitions and numerous omissions (notably proofs).

The second background chapter proceeds by discussing essential physics background,

with a special emphasis on quantum theory. This chapter gives a concise summary of

important work in the foundations of quantum mechanics.

The following three chapters present the main research results of the thesis and loosely
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follow the three articles in the author’s publications list.

The first results chapter analyses the logic of Stabilizer quantum theory and provides a

complete set of circuit equations for this sub-theory of quantum mechanics.

The second results chapter describes how quantum-like theories can be classified in a

periodic table of theories. A pictorial calculus for alternative physical theories, called the

ZX calculus for qudits, is then introduced and used as a tool to depict particular examples

of quantum-like theories, including qudit stabilizer quantum mechanics and the Spekkens-

Schreiber toy theory.

The final results chapter presents an alternative set of quantum-like theories, called

quantum collapse models. A novel quantum collapse model, where the rate of collapse

depends on the Quantum Integrated Information of a physical system, is introduced and

discussed in some detail.

We then conclude the thesis with a short summary.



Chapter 2
Background I: Mathematical tools

M
athematical abstraction is at the heart of the progress in describing physical processes.

New developments in Physics often go hand in hand with novel insights about the

mathematical language used to narrate our evolving story about ‘physical reality’.

We will now aim to introduce some mathematical tools, a language which will be the

foundation of our description of physical theories. Given the elusive nature of an independ-

ent physical reality existing independently from observation, we shall stress the importance

of presenting physical theories from an operational point of view. In this light, it is desirable

to have a general mathematical formalism providing an abstract and broad representation

of physical processes corresponding to physical preperations, transformations and measure-

ments. We will start by introducing standard mathematical objects used as theoretical tools

in Physics and shall then present Category Theory, which is a powerful device for creating

a general formalism of physical theories.

Given our task of analyzing foundational physical theories, it is an essential responsibility

for us to spend some time exploring the landscape of concepts and objects which form the

basis of our theoretical analysis of physical phenomena. Aside from the occasional contact

with experimental physics and empirical verification, theoretical physicists are restricted to

the use of this mathematical language. In the foundations of physics, it is not sufficient

to contain our analysis within a single mathematical theory of physics. Therefore, a broad

knowledge and precise understanding of the mathematical objects used to define physical

concepts and processes is essential.

8
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For example, when we discuss physical ideas we give names to mathematical objects

such as: elements of Hilbert spaces, completely positive trace preserving maps and Lorent-

zian Manifolds, calling them quantum states, quantum processes, space-time. What exactly

makes us choose these abstract mathematical objects rather than others? When we develop

physical theories and make discoveries about these theories (and their components), are we

discovering something beyond the features of the mathematical language we are using as an

arena for progress? Could our story be told without these complex and abstract protagon-

ists or is physics restricted to defining arbitrary objects and proving mathematical theorems

about these? We are reminded of Shakespeare’s crocodile in Antony and Cleopatra [271]:

LEPIDUS: What manner o’ thing is your crocodile?

ANTONY: It is shaped, sir, like itself, and it is as broad as it hath breadth. It is just

so high as it is, and moves with it own organs. It lives by that which nourisheth it, and the

elements once out of it, it transmigrates.

LEPIDUS: What colour is it of?

ANTONY: Of its own colour, too.

In any case, we will spend some time introducing mathematics, aiming to ensure that

there is sufficient clarity in our discourse of Physics.

2.1 Set theory

2.1.1 Axiomatic set theory

We will present the Zermelo-Fraenkel axioms [302,293] which define a collection of objects

called a set. We introduce a membership property (∈) such that X ∈ Y means that X is

an element of Y.

Axiom 1: (Existence) There exists a set which has no elements.

Axiom 2: (Extensionality) If every element of X is an element of Y and every element

of Y is an element of X, then X=Y.

Lemma 1.1: There is a unique set ∅ with no elements, called the empty set.

Proof: Suppose that there exist two sets X and Y which both have no elements. If a ∈ X

then a ∈ Y and if b ∈ Y then b ∈ X therefore, by Axiom 2, X=Y.
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Axiom 3: (Comprehension) Let P(x) be a property of set x. For any A, there exists

B such that x ∈ B if and only if x ∈ A and P(x) holds.

Axiom 4: (Pairing) For any sets A and B, there exists a set C such that x ∈ C if and

only x=A and x=B.

Definition 1.1: The set having exactly A and B as its elements is written {A,B} and is

called the unordered pair of A and B.

Axiom 5: (Union) For any set A, there exists a set U such that x ∈ U if and only if

x ∈ X for some X ∈ A.

Definition 1.2: The union of A and B, written A
⋃
B is the set of all elements in either

A, B or both. The existence of A
⋃
B follows from applying Axiom 5 to the pairing {A,B}

obtained from Axiom 4.

Definition 1.3: The intersection of A and B, written A
⋂
B is the set of all elements in

both A and B. The existence of A
⋂
B = {x ∈ A|x ∈ B} follows from applying Axiom 3 to

the set A and the property {P (x) : x ∈ B}.
Definition 1.4: A is called a subset of B, written as A ⊆ B, if every element of A is an

element of B.

Axiom 6: (Power set) For any set A, there exists a set P such that X ∈ P if and only

if X ⊆ A. P is called the power set of A.

Axiom 7: (Schema of Replacement) Let P(x,y) be a property such that for every x

there is a unique y for which P(x,y) holds. For every set A there exists a set B such that

for every x ∈ A there is y ∈ B for which P(x,y) holds.

Axiom 8: (Infinity) There is an inductive set I, defined such that the empty set is in

I and if x ∈ I, then the set formed by taking the union x
⋃{x} is in I, where {x} is the

singleton set, with exactly one element (x).

These eight Zermelo-Fraenkel axioms can be strengthened by adding the Axiom of

Choice, which we state below.

Axiom 9: (Choice) Let A be a set whose members are all non-empty. Then there

exists a function f from A to the union of the members of A (see below for the definition of

a function), called a choice function, such that for all B ∈ A, one has f(B) ∈ B.
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2.1.2 Relations and functions

We can then introduce maps between sets.

Definition 1.5: An ordered pair (x,y) is defined to be {{x}, {x, y}}.
Definition 1.6: The Cartesian product of sets X and Y is defined as:

X × Y = {(x, y)|x ∈ X; y ∈ Y }.

Definition 1.7: A set R is called a relation if all elements of R are ordered pairs.

We denote (x,y) ∈ R as xRy.

Definition 1.8: Let R be a relation on a set X.

(i) R is reflexive if xRx, for all x ∈ X.

(ii) R is symmetric if xRy implies yRx, for all x, y ∈ X.

(iii) R is antisymmetric if xRy and yRx imply x=y, for all x, y ∈ X.

(iv)R is transitive if xRy and yRz imply xRz for all x, y, z ∈ X.

(v) R is an equivalence relation (on X) if it is reflexive, symmetric and transitive.

(vi) R is an ordering of X if it is reflexive, antisymmetric and transitive.

Definition 1.9: Given an equivalence relation R on a set X we can define the equivalence

class [a] of an element a ∈ X as: [a] = {x ∈ X|aRx}. The set of all equivalence classes in

X with respect to an equivalence relation R is denoted as X/R and is called the quotient

set of X by R.

Definition 1.10: A relation F is called a function if xFy1 = xFy2 implies that y1 = y2,

for all x, y1, y2. We write this unique y1 = y2 as F(x).

Definition 1.11: Let f: X → Y be a function.

(i) f is injective if for all x1, x2 ∈ X, f(x1) = f(x2) if and only if x1 = x2.

(ii) f is surjective if for every y ∈ Y , there is an x ∈ X such that f(x)=y.

(iii) f is bijective if it is both injective and surjective.

Definition 1.12: A binary operation on a non-empty set X is a mapping b:X × X → X

which is defined for every pair of elements in X and which uniquely assigns an element of X

to each pair of elements in X.
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2.1.3 Numbers

We can construct the set of natural numbers N by using Peano’s axioms [293]:

(i) There exists a distinguished element 0 ∈ N.

(ii) There exists an equivalence relation = on N (called equality) such that N is closed under

equality (if a ∈ N and a=b then b ∈ N).

(iii) There exists an injective successor function S: N→ N.

(iv) There does not exist n ∈ N such that S(n)=0 (so S is not surjective).

(v) Let K be a subset of N such that: 0 ∈ K and if k ∈ K then S(k) ∈ K, ∀k ∈ N. Then

K = N (principle of induction).

We can then recursively define addition + and multiplication · operations:

a + 0 = a ; a + S(b) = S(a+b) (add)

a · 0 = 0 ; a · S(b) = a + (a · b) (mult)

N admits an ordering relation: ≤ defined as ∀x, y ∈ N, x ≤ y if and only if there ∃c ∈ N

such that x + c = y.

We can construct integers as equivalence classes of ordered pairs of natural numbers.

Definition 1.13: For ordered pairs of natural numbers (a, b), (c,d) ∈ N× N, we define a

relation ≡Z :

(a, b) ≡Z (c, d) iff a+ d = b+ c (2.1)

Note that ≡Z is an equivalence relation.

Definition 1.14: We define the set of integers as the quotient set: Z := N× N/ ≡Z .

Proposition 1.1: Every equivalence class [(x,y)] (with x, y ∈ N) can be written as either

[(0,n)] or [(n,0)] for some n ∈ N.

Proof: Let x, y ∈ N. Recall that if x ≤ y then ∃n ∈ N such that x+n = y+0 and

[(x,y)]=[(0,n)]. If y < x then ∃n ∈ N such that y+n = x+0 and [(x,y)]=[(n,0)]. Therefore,

every equivalence class [(x,y)] contains an ordered pair with at least one zero coordinate.

For each natural number n ∈ N, we write the integer [(0,n)] as -n and the integer [(n,0)]

as n.

We can define the addition + and multiplication · operations in Z as:

[(a, b)] + [(c, d)] := [(a+ c, b+ d)]
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[(a, b)] · [(c, d)] := [(a · c+ b · d, b · c+ a · d)]

where the operations within brackets are natural number addition and multiplication as

defined earlier. We can also define subtraction by adding the additive inverse, meaning that

the difference between integers a, b ∈ Z is defined as: a− b := a+ (−b).
Note that addition and multiplication are commutative both in N and in Z.

We can similarly construct rational numbers as equivalence classes of ordered pairs of

integers.

Definition 1.15: For ordered pairs of integers (a, b), (c,d) ∈ Z × Z, we define a relation

≡Q:

(a, b) ≡Q (c, d) iff a · d− c · b = 0 (2.2)

Note that ≡Q is an equivalence relation.

Definition 1.16:: We define the set of rational numbers as the quotient set:

Q := (Z× (Z− {0}))/ ≡Q (2.3)

Once again, we can define addition + an multiplication · operations:

[(a, b)] + [(c, d)] := [(a · d+ b · c, b · d)]

[(a, b)] · [(c, d)] := [(a · c, b · d)]

We can interpret rational numbers as quotients of two integers and [(x,y)] can be chosen

so that y is positive and gcd(x,y) = 1, meaning that x and y share no common factors.

The construction of real numbers is more delicate. We will present the Dedekind cut

method, where real numbers are subsets of Q called cuts.

Definition 1.17: A non empty subset C ⊆ Q is called a cut if:

(i) C 6= Q

(ii) If x ∈ C, y ∈ Q and y < x then y ∈ C.

(iii) If x ∈ C, then x < r for some r ∈ C.

Definition 1.18: The set of real numbers R is the collection of all cuts of Q.

If a, b ∈ R then we can define addition and multiplication as the cuts:

a+ b := {x+ y|x ∈ a, y ∈ b}
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ab := [(q ∈ Q|q < xy for some x ∈ a, y ∈ b, x > 0, y > 0)]

We can also define the cuts:

0 := {p ∈ Q|p < 0}
1 := {q ∈ Q|q < 1}

such that they play the role of the additive and multiplicative identity respectively.

There is an ordering relation on the real numbers such that a ≤ b iff a ⊆ b. Note that the

rational numbers can be embedded in the real numbers.

The set of complex numbers C can then be defined as the set of ordered pairs of real

numbers a+ bi := (a, b). Addition and multiplication are defined as the operations:

(a, b) + (c, d) := (a+ c, b+ d)

(a, b) · (c, d) := (ac− bd, bc+ ad)

Note that all the sets of numbers we have constructed are fields (in the algebraic sense

defined below) with respect to the addition and multiplication operations we introduced.

One can also define hypercomplex numbers [231], which have interesting algebraic properties

and no longer admit a field structure.

2.2 Group Theory

Definition 2.1: A group is a set G together with a binary operation ◦ on G. The group

operation is associative, meaning that we have:

∀x, y, z ∈ G, (x ◦ y) ◦ z = x ◦ (y ◦ z) (2.4)

There exists an identity element e ∈ G such that:

∀x ∈ G, x ◦ e = e = e ◦ x (2.5)

∀x ∈ G, ∃x−1 ∈ G, x ◦ x−1 = e = x−1 ◦ x (2.6)
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A simple proof by contradiction shows that the identity element e is unique and that for

each x ∈ G there is a unique inverse x−1 ∈ G satisfying x ◦ x−1 = e = x−1 ◦ x. A group is

called Abelian if the operation is commutative, meaning that:

∀x, y ∈ G, x ◦ y = y ◦ x (2.7)

Definition 2.2: A subgroup H of a group G is a subset H ⊆ G which is closed under

the group operation ◦ in G and which forms a group with respect to ◦. We write H ≤ G.

Definition 2.3: let H be a subgroup of a group G then the sets:

Hg := {h ◦ g : h ∈ H} (2.8)

gH := {g ◦ h : h ∈ H} (2.9)

where g ∈ G are respectively the right and left coset of H (determined by g).

Lagrange’s Theorem: Let H ≤ G. Then |G| = |H||G : H|, where |G| is the order of

the group G (number of elements in its set) and |G : H| is the index of H in G (number of

distinct left cosets of H in G).

Definition 2.4: A normal subgroup N ≤ G is a subgroup which is invariant under con-

jugation by members of G. This means that N is a normal subgroup of G if and only if

gN = Ng ∀g ∈ G. We write N / G.

Definition 2.5: Let H /G then we can define the quotient group G/H by taking the set

of all left cosets of H in G. The associative group operation consists of taking the product

of aH ∈ G/H and bH ∈ G/H to be (aH)(bH) = (a ◦ b)H ∈ G/H (since H is a normal

subgroup). The group identity element is eH=H and the inverse element of aH is a−1H

∀aH ∈ G/H.

Definition 2.6: Given a subset X ⊆ G, we define the subgroup 〈X〉 generated by X as

the smallest subgroup of G containing X. This means that: X ⊆ 〈X〉 and if X ⊆ H, where

H ≤ G, then 〈X〉 ⊆ H.

A group is finitely generated if it is generated by a finite number of its elements.

Definition 2.7: A group is cyclic if it is generated by one of its elements, meaning that
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∃g ∈ G such that 〈g〉 = G.

Example 2.1: Group Zn = Z/nZ of integers with addition modulo n. This is an Abelian

cyclic group of order n with identity element 0.

Taking Z4 = {0, 1, 2, 3} and the (normal) subgroup H = {0, 2} then the cosets of H are

{0, 2} and {1, 3} and we can form the quotient group Z4/H which is isomorphic to Z2.

Note that Zp × Zq is isomorphic to Zpq iff gcd(p,q)=1.

Definition 2.8: A group homomorphism is a map θ : G→ H from group G to group H

such that: θ(g1 ◦ g2) = θ(g1) ? θ(g2), ∀g1, g2 ∈ G where ◦ and ? are the group operations of

G and H respectively. If θ is also a bijective map, then we say that it is an isomorphism

and that G and H are isomorphic.

Example 2.2: General linear group GLn(K) of non-singular n×n matrices over a field F,

with matrix multiplication. The determinant, which satisfies det(M1) ∈ K\{0} (due to non-

singularity) and det(M1M2) = det(M1)det(M2), ∀M1,M2 ∈ GLn(K), is a homomorphism

from GLn(K) to the group corresponding to K \ {0} with respect to multiplication.

The isomorphism theorems make explicit the relationship between quotients, homo-

morphisms, and sub-objects in a general algebraic sense [173,122]. We will only state the first

Isomorphism theorem for groups without proof.

First Isomorphism Theorem: Let θ : G→ H be a group homomorphism then:

(i) The kernel of θ: ker(θ) := {g ∈ G : θ(g) = e} is a normal subgroup of G.

(ii) The image of θ: im(θ) := {h ∈ H : h = θ(g), g ∈ G } is a subgroup of H.

(iii) im(θ) is isomorphic to G/ ker(θ).

Lemma 2.1: Every subgroup of a cyclic group is cyclic.

Proof: Let H ≤ G and G be a cyclic group. We assume that H 6= {e} (otherwise the

result is trivial) so that ∃k ∈ Z such that ak ∈ H. By the Euclid division algorithm [73] we

can find q, r ∈ Z with 0 ≤ r < m such that k = mq + r, where m is the smallest positive

integer with am ∈ H. This gives us: ar = (am)−qak which must be in H by group closure.

But m is the smallest positive integer with am ∈ H and 0 ≤ r < m so we must have r=0

and k=qm. Therefore H is generated by am.

Corollary 2.1: The only cyclic groups (up to isomorphism) are the groups Z and Zn :=

Z/nZ with respect to (modular) addition.

Proof: Let G = 〈g〉 be cyclic and consider the map θ : Z → G, θ(n) = gn. θ is a
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homomorphism since θ(n+m) = gngm. Therefore, by the First Isomorphism theorem, G is

isomorphic to Z/ker(θ) where ker(θ) / Z. The result then follows from the previous lemma

showing that the subgroup of a cyclic group is cyclic.

Definition 2.9: A group G is called the direct sum of a finite set of subgroups {Hi}, where

i= 1, ..., n, if:

(i) Each Hi is a normal subgroup of G.

(ii) Each Hi has a trivial intersection with 〈Hj |j 6= i〉, ∀ i= 1, ..., n.

(iii) G is generated by the subgroups {Hi}.
We write: G = H1 ⊕ ...⊕Hn.

Classification theorem of finitely generated abelian groups: Every finitely generated

Abelian group G is isomorphic to a direct sum of primary cyclic groups (whose order is

a power of a prime) and infinite cyclic groups, such that:

G = Zn ⊕ Zp1 ⊕ ...⊕ Zpn (2.10)

where Z is the group of integers and p1, ..., pn are powers of prime numbers.

We will now discuss mechanisms for analyzing groups by mapping them back to other

mathematical objects, studying the action on a set or the representation in terms of matrices

and linear maps.

Definition 2.10: Let G be a group and Ω a non-empty set. Let there be a unique element

ω · g ∈ Ω for each ω ∈ Ω and g ∈ G. We say that G acts on Ω if:

(i) ω · e = ω, ∀ω ∈ Ω, where e is the identity of G

(ii) (ω · g) · h = ω · (g ◦ h), ∀ω ∈ Ω, ∀g, h ∈ G

Definition 2.11: The subgroup Gω := {g ∈ G : ω · g = ω} of G is called the stabilizer of

ω in G.

Definition 2.12: A representation of group G on a vector space V over a field F (see

the next section) is a group homomorphism ρ : G → GL(V ), from G to the general linear

group GL(V) (of automorphisms of V). V is called the representation space.

This means that we can reduce group theoretic problems to linear algebra by repres-

enting group elements as matrices (choosing a basis) and the group operation by matrix



18

multiplication. The essential information about a group representation can be expressed in

a more condensed form by studying its character.

Definition 2.13: Let ρ : G → GL(V ) be group representation of a group G on a vector

space V (over a field F). The character of ρ is a map χρ : G→ F , such that

χρ(g) = Tr(ρ(G)), where Tr(ρ(G)) is the trace of the linear transformation representing G.

Definition 2.14: A permutation on a set Ω is a bijective function fΩ : Ω→ Ω. The set of

permutations of a set can be shown to form a group under function composition, which we

call the symmetric group on Ω, written Sym(Ω). A permutation group is a subgroup of

Sym(Ω) for some set Ω. The set of even permutations in Sym(Ω) forms a normal subgroup

Alt(Ω) which we call the alternating group on Ω.

Cayley’s theorem: Every group is isomorphic to a permutation group.

Proof: Take a group G and a homomorphism θ from G to the group of permutations

of the underlying set G (a permutation representation). Since G= G/{e}, g · e is a group

action on G. Now let k ∈ ker(θ), then k = k · e = θ(k) · e = e so ker(θ) is trivial and θ is

injective. The result then follows from the First Isomorphism Theorem.

Definition 2.15: A group G is solvable if there is a finite collection of normal subgroups

G1, ..., Gn such that: 1 = G1 ⊆ G2 ⊆ ... ⊆ Gn = G and Gj+1/Gj is abelian for 1 ≤ j < n.

Feit-Thompson Theorem: Every finite group of odd order is solvable.

Definition 2.16: A group is simple if its only normal subgroups are the trivial group and

itself.

Definition 2.17: A composition series of a group G is a finite sequence of normal

subgroups:

1 = H0 / H1 / ... / Hn = G (2.11)

where each Hj is a maximal strict normal subgroup of Hj+1. The quotient groups Hj+1/Hj

are called the composition factors and are simple groups. The length n of the series is called

the composition length.

Jordan Hölder Theorem: Up to permutation and isomorphism, any two composition

series of a given group are equivalent, meaning that they have the same composition length

and the same composition factors.

This theorem shows that finite simple groups are the basic building blocks of all finite
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groups. We will conclude this section by briefly stating an impressive result: the classifica-

tion theorem for finite simple groups [98,153].

Finite simple group theorem: Every finite simple group is isomorphic to one of the

following groups:

(i) Cyclic groups of finite order.

(ii) Alternating groups of order more than 5.

(iii) A simple group of Lie type [70].

(iv) One of 26 sporadic simple groups [153].

2.3 Algebraic structures

Having introduced group theory, we will now proceed by studying other algebraic structures.

2.3.1 Rings, Fields and Galois theory

Adding another binary operation to a group leads to the definition of a ring.

Definition 3.1: Let R be a set with two operations denoted by + and juxtaposition, then

R is a ring (with unit) if:

(i) R is an abelian group with respect to +.

(ii) Juxtaposition is associative: (xy)z = x(yz), ∀x, y, z ∈ R.

(iii) Juxtaposition is distributive over +: x(y + z) = xy + xz and (y + x)z = yz + xz ,

∀x, y, z ∈ R.

(iv) ∃1 ∈ R such that 1r = r = r1, ∀r ∈ R.

Definition 3.2: A map θ : R → S is a ring homomorphism if: θ(r1 + r2) = θ(r1) + θ(r2)

and θ(r1r2) = θ(r1)θ(r2), ∀r1, r2 ∈ R.

Definition 3.5: Let R be a ring (with unit) as defined above. R is called a field if it also

satisfies:

(i) 1 6= 0.

(ii) ∀a ∈ R, a 6= 0,∃b ∈ R such that: ab=ba=1.

(iii) Juxtaposition is commutative.
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A ring R which satisfies (i) and (ii) is called a division ring.

Example 3.1: Examples of fields include the natural, rational, real and complex numbers

that we introduced previously (with respect to addition and multiplication).

We have that every field is a division ring, but there are division rings that are not fields

(e.g. the quaternions); every division ring is a ring with unity, but there are rings with unity

that are not division rings (e.g. the integers if you want commutativity, or the n×n matrices

with coefficients in R and n>1 if you want non-commutativity); every ring with unity is a

ring, but there are rings that are not rings with unity (e.g. strictly upper triangular 3×3

matrices with coefficients in R).

Note also that a domain, meaning a ring satisfying ab = 0 implies a = 0 or b = 0, is

another object between a ring and a field.

Definition 3.6: Given a field F, the smallest integer k for which adding the multiplicative

identity k times gives the additive identity, meaning that 1 + 1 + ... + 1 = 0, is called the

characteristic of F.

Definition 3.7: A field F is algebraically closed if every non-constant polynomial ring

F[X]:= {f ∈ F |f =
∑m

j=0 fjX
j} (where fj ∈ F , ∀j = 1, ...,m) has a root in F, meaning

that ∃a ∈ F , such that: F[a]=0.

There is an important theorem stating that the field of complex numbers C is al-

gebraically closed. Note that no finite field is algebraically closed (consider F [X] =

(X − f1)(X − f2)(X − fn) + 1, where F := {f1, ..., fn}) and that the field of real num-

bers is not algebraically closed as the polynomial x2 + 1 = 0 has no solution in R.

Contrary to group theory, where the main objects of study are subgroups of a given

group, field theory is mainly concerned with the analysis of field extensions containing a

given field.

Definition 3.8: A field K is a field extension of a field F (written K/F) if F is a subfield of

K, meaning that F is a subset of K which satisfies the field axioms with the same operations

as in K. The dimension of K as a vector space over F is the field extension degree of K/F

and is written |K : F |.
Definition 3.9: Let F be a field and f(X) ∈ F [X] be a polynomial of degree n > 0. A
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field extension K of F is called a splitting field for f(X) over F if the polynomial f(X)

decomposes into linear factors: f(X) = aΠn
i=1(X − αi), where a, αi ∈ K. A field extension

K/F is said to be normal if K is the splitting field of a family of polynomials in F[X].

Definition 3.10: Let F be a field and f(X) ∈ F [X] be a polynomial of degree n > 0. A

field extension K of F is called separable over F when it is algebraic over F – in the sense

that every element of K is a root of some non-zero polynomial with coefficients in F – and

its minimal polynomial in F[X] has distinct roots in a splitting field over F, such that each

root has multiplicity one.

Definition 3.11: Let K/F be a field extension of finite degree, then it is called a Galois

extension iff it is both a normal field extension and a separable field extension.

Galois theory allows us to study field extensions by associating a group to each finite

field extension. One can then study study polynomials over fields and important problems

in field theory by using tools from Group theory.

Definition 3.12: An automorphism of the finite degree field extension K/F is an iso-

morphism θ from K to K such that θ(f) = f , ∀f ∈ F . The set of all automorphisms of K/F

forms a group with the operation of function composition which is called the Galois group

(written Gal(K/F)) of K/F.

Consider a polynomial f(X) ∈ F [X], with coefficients chosen from the field F, and

the field K obtained by adjoining the roots of the polynomial f(X) to the field F. Any

permutation of the roots – such that any algebraic equation satisfied by the roots is still

satisfied after the roots have been permuted – gives rise to an automorphism of K/F, and

vice versa. Therefore, we can use the Galois group as a tool to analyze the solutions of

polynomials. We can make this precise [208] by noting that subgroups of the Galois group

Gal(K/F) exactly correspond with the subfields of K containing F.

Fundamental theorem of Galois theory: Let E be a Galois extension over a field F and

G=Gal(E/F) be the Galois group of E/F. Let us denote the collection of intermediate fields

K and subgroups of G as: F := {K|F ⊆ K ⊆ E} and G := {H|H ≤ G} respectively.

Consider the map φ: G → F such that φ(·) = Gal(E/·). The map φ is a bijection which

reverses containments. If φ(K)=H then: |E : K| = |H| and |K : F | = |G : H| and H is a

normal subgroup of G iff K is a Galois extension of F, in which case Gal(K/F) is isomorphic

to G/H.



22

Example 3.2: We will briefly illustrate [97] how Galois theory works through a simple

example. Consider the field extension Q(
√

2,
√

3)/Q of degree 4. We then have F=Q and

K=Q(
√

2,
√

3), whose elements can be written as:

(q1 + q2

√
2) + (q3 + q4

√
2)
√

3 (2.12)

where qi ∈ Q, for i=1,2,3,4.

The Galois group G = Gal(Q(
√

2,
√

3)/Q) can be determined by examining the automorph-

isms of K which must send
√

2 to either
√

2 or -
√

2, and must send
√

3 to either
√

3 or

-
√

3, since the permutations in a Galois group can only permute the roots of an irreducible

polynomial. Therefore, we can determine that the Galois group G is isomorphic to the

Klein-four group G ∼= 〈α, β|α2 = β2 = (αβ)2 = 1〉, where α exchanges
√

2 and −
√

2, β

exchanges
√

3 and −
√

3, and these are automorphisms of K .

The mapping in the fundamental theorem of Galois theory gives rise to the following

correspondences:

The trivial subgroup 1 ∈ G maps to K=Q(
√

2,
√

3).

The subgroup {1, α} maps to the subfield Q(
√

3).

The subgroup {1, β} maps to the subfield Q(
√

2).

The subgroup {1, αβ} maps to the subfield Q(
√

6).

The entire group G maps to F= Q.

An important application of the fundamental theorem is to show that the general quintic

equation is not solvable in Q (the Abel-Ruffini theorem [1]). This can be done by finding the

Galois groups of radical extensions, using the fundamental theorem to show that solvable

extensions correspond to solvable groups and then using the result that the symmetric group

S5 is not solvable [208]. We will conclude our discussion of Galois theory with the following

theorem.

Kronecker-Weber theorem: Every finite Abelian extension of the rational numbers Q

(which has an Abelian Galois group) is a subfield of a cyclotomic field, meaning a number

field obtained by adjoining a complex primitive root of unity to Q.



23

Definition 3.13: Let F be a field and let V be a set with two operations + and ·. Then

V is a vector space over the field F if:

(i) v1 + v2 = v2 + v1 (commutativity)

(ii) v1 + (v2 + v3) = (v1 + v2) + v3 (associativity)

(iii) ∃0 ∈ V such that: 0 + v1 = v1 = v1 + 0 (identity element)

(iv) ∃(−v1) ∈ V such that: v1 + (−v1) = (−v1) + v1 = 0 (inverse element)

(v) f1 · (v1 + v2) = f1 · v1 + f1 · v2

(vi) (f1 + f2) · v1 = f1 · v1 + f2 · v1

(vii) (f1 · (f2 · v1)) = (f1f2) · v1

(viii) v1 + v2 ∈ V and f1 · v1 ∈ V
∀v1, v2, v3 ∈ V,∀f1, f2 ∈ F .

Note that we will usually write the scalar multiplication as juxtaposition, omitting ‘·’.
Definition 3.14: An algebra over a field F is a ring A which is a vector space over F.

Definition 3.15: Let A and B be algebras over F then θ : A → B is an algebra homo-

morphism if:

(i) θ(1A) = 1B

(ii) θ(a1a2) = θ(a1)θ(a2)

(iii) θ(fa1 + a2) = fθ(a1) + θ(a2)

∀f ∈ F , ∀a1, a2 ∈ A.

We will now define two important examples of algebras.

Definition 3.16: A Lie Algebra is a vector space g over a field F together with a map

[·, ·] : g× g→ g such that:

(i) [a1, a2] = −[a2, a1]

(ii) [a1, [a2, a3]] + [a2, [a3, a1]] + [a3, [a1, a2]] = 0

∀a1, a2, a3 ∈ g.

Definition 3.17: A Boolean Algebra consists of a set B together with two binary op-

erations ∧ (AND) and ∨ (OR) and a complementation operation (·)c : B → B such that:

(i) b1 ∧ b1 = b1 ∨ b1 = b1 and b1 ∨ (b1 ∧ b2) = b1 ∧ (b1 ∨ b2) = b1

(ii) b1 ∧ b2 = b2 ∧ b1 and b1 ∨ b2 = b2 ∨ b1
(iii) b1 ∨ (b2 ∨ b3) = (b1 ∨ b2) ∨ b3 and b1 ∧ (b2 ∧ b3) = (b1 ∧ b2) ∧ b3
(iv) b1 ∨ (b2 ∧ b3) = (b1 ∨ b2) ∧ (b1 ∨ b3) and b1 ∧ (b2 ∨ b3) = (b1 ∧ b2) ∨ (b1 ∧ b3)
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(v) b1 ∧ (b1)c = ∅ and b1 ∨ (b1)c = (∅)c

(vi) ∅ ∨ b1 = b1, ∅ ∧ b1 = ∅, (∅)c ∨ b1 = (∅)c and (∅)c ∧ b1 = b1

for all b1, b2, b3 ∈ B and where ∅ is the empty set.

We conclude this section by noting that the Stone representation theorem [280] shows

that every Boolean algebra is isomorphic to a pair { X, F }, where X is a set and F is a

non-empty subset of the power set of X, closed under the intersection and union of pairs of

sets and under complements of individual sets.

2.3.2 Linear Algebra and Graph theory

Given the direct relevance for quantum theory, we will introduce Linear Algebra in some

detail.

Definition 3.22: Let V be a vector space over a field F. A subset L ⊂ V is called linearly

independent if, whenever f1, ..., fn ∈ F and l1, ..., ln ∈ L, we have:

f1l1 + ...+ fnln = 0 implies f1 = f2 = ... = fn = 0.

Definition 3.23: A subset S ⊂ V is said to span V if ∀v ∈ V , ∃f1, ..., fn ∈ F and

∃s1, ..., sn ∈ S such that: v = f1s1 + ...+ fnsn.

Definition 3.24: A subset B ⊂ V is called a basis of V if it spans V and is linearly

independent. The size of B is the dimension of V, written as dim(V).

Definition 3.25: Let V and W be vector spaces over a field F. A map T: V → W is a

linear transformation if: T (f1v1 + f2v2) = f1T (v1) + f2T (v2), ∀f1, f2 ∈ F , ∀v1, v2 ∈ V .

Theorem 3.1: Let V and W be vector spaces over a field F such that dim(V)=m and

dim(W)=n. The set Hom(V,W) of linear transformations from V to W is isomorphic to the

space of n ×m matrices over F.

Proof: Let BV = {e1, ..., em} and BW = {e′1, ..., e′n} be bases for V and W respectively. Let

[T ]BV ,BW be an n×m matrix with i, j entry tij such that: T (ej) =
∑n

k=1 tkje
′
k. It is easy to

check that the assignment T 7→ [T ]BV ,BW , which maps composition of linear transformations

to multiplication of matrices, is an isomorphism of vector spaces from Hom(V,W) to the

space of n ×m matrices over F.

Note that there are isomorphism theorems for vector spaces, which are directly analogous

to those for groups and rings [122]. The following is a corollary of the first isomorphism

theorem for vector spaces:
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Rank-Nullity theorem: Let T: V → W be a linear transformation and dim(V) be finite

then:

dim(V ) = dim(ker(T )) + dim(im(T )) (2.13)

Note that dim(ker(T)) and dim(im(T)) are respectively called the nullity and the rank of

the matrix corresponding to T.

Definition 3.26: The determinant of a square matrix M with entries mkl is defined as:

det(M) :=

n∑

i1,...,in=1

εi1,...,inm1i1 ...mnin (2.14)

εi1,...,in is the Levi-Civita symbol, which is equal to 1 if (i1, ..., in) is an even permutation

of (1, 2, ..., n), equal to -1 if (i1, ..., in) is an odd permutation of (1, 2, ..., n) and equal to 0

otherwise.

Note that the determinant maps matrices to scalars and that:

det(A−1) = det(A)−1 and det(AB) = det(A)det(B)

Definition 3.27: The characteristic polynomial of a square matrix M is:

χM (λ) := det(M − λI) (2.15)

where I is the identity matrix. Eigenvalues of a matrix M are defined as the roots λ of the

characteristic polynomial. Therefore, λ is an eigenvalue of M iff ∃ v ∈ Fn such that:

Mv = λv (2.16)

Vectors v ∈ Fn satisfying equation (2.16) are called eigenvectors of V (corresponding to

eigenvalue λ).

Definition 3.28: Given a vector space V over a field F, its dual space V ? is a vector

space of linear transformations from V to F. The elements of V ? are called linear functionals.

Note that if B = {e1, ..., en} is a basis for V then B? = {e?1, ..., e?n}, where e?i (ej) = δij (where

δij is the Kronecker delta).



26

Definition 3.29: Given a vector space V over a field F, a bilinear form on V is a function

b : V × V → F satisfying:

(i) b(fv1, v2) = b(v1, fv2) = fb(v1, v2)

(ii) b(v1 + v2, v3) = b(v1, v3) + b(v2, v3)

(iii) b(v1, v2 + v3) = b(v1, v2) + b(v1, v3)

∀v1, v2, v3 ∈ V , ∀f ∈ F . A map b : V × V → F , where F = C is sesquilinear form on V if

(i) above is replaced by:

(i’) b(f̄v1, v2) = b(v1, fv2) = fb(v1, v2)

where f̄ is the complex conjugate of f.

Definition 3.30: An inner product space is a vector space V over the field C, equipped

with an inner product 〈., .〉 : V × V → F , which is a sesquilinear form that satisfies:

(i) 〈v1, v2〉 = 〈v2, v1〉, ∀v1, v2 ∈ V (conjugate symmetric).

(ii) 〈v, v〉 is positive ∀v 6= 0 in V (positive definite).

When we have an inner product space V over C, we can define a dual space consisting

of linear functionals:

〈v, .〉 : V → C, such that w 7→ 〈v, w〉 (2.17)

Definition 3.31: Let B = {e1, ..., en} be the basis for an inner product space V. B is called

orthonormal if 〈ei, ej〉 = δij ,∀i, j = 1, ..., n. Note that one can always find an orthonormal

basis for an inner product space by using the Gram-Schmidt process [16].

Definition 3.32: The general linear group GL(V) of a vector space V over a field F is

defined as the group of all automorphisms of V, meaning the set of all bijective linear

transformations V → V, together with composition as the group operation.

Definition 3.33: Given an inner product space V and a linear transformation T : V → V ,

we can define the following linear transformations:

(i) The inverse transformation T−1 : V → V satisfying T−1(T (v)) = T (T−1(v)) = v,∀v ∈ V .

(ii) The adjoint transformation T ? : V → V satisfying: 〈v1, T (v2)〉 = 〈T ?(v1), v2〉.
(iii) The transpose transformation T t : V → V defined as the complex conjugate of the

adjoint: T t := T̄ ?.

Given a choice of basis for V, the matrix equivalents of these concepts yield the familiar
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notions of matrix inverse, adjoint and transpose.

Definition 3.34: A linear transformation T : V → V is called:

(i) Unitary if T ? = T−1

(ii) Orthogonal if T t = T−1

(iii) Normal if TT ? = T ?T .

The sets of all unitary/ orthogonal square n × n matrices over R/C form a group called

the orthogonal/unitary group On/Un. The restriction of these groups to matrices with

determinant 1 gives the special orthogonal group SOn and the special unitary group SUn.

The normal matrices correspond exactly to unitarily diagonalizable matrices, in the sense

that N is normal iff there exists a unitary matrix U such that D := UNU−1 is diagonal [225].

We will state without proof the following theorem which plays an important role in

quantum theory.

Simultaneous diagonalization theorem: Let S, T: V → V be normal linear transforma-

tions over a finite dimensional inner product space which are commuting, in the sense that:

[S, T]:= ST - TS = 0. Then, there exists a basis B whose elements are simultaneously the

eigenvectors of S and of T.

We will now introduce a few concepts from elementary Graph Theory, which are closely

related to Linear Algebra and will be useful later in the thesis.

Definition 3.35: A graph is an ordered pair G=(V,E) consisting of a set V of vertices

and a set E of edges, which are two element subsets of V. A graph is simple if it has no

self-loops (edges connecting a vertex to itself) and one edge at most connecting any two

vertices and it is undirected if its edges are unordered pair of vertices. A graph is finite if V

and E are finite and the number of vertices and edges are then respectively called the order

and the size of the graph.

Definition 3.36: A simple undirected graph of order n can be described by a symmetric

n × n matrix A with Aij = 1 if there is an edge connecting vertices i and j and Aij = 0

otherwise.

Definition 3.37: A subgraph of a graph G=(V,E) is a graph whose vertices and edges

are subsets of V and E.

Definition 3.38: The local complementation of a graph G=(V,E) about the vertex
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v ∈ V sends G to:

G ? v := (V,E∆{x, y} : {x, v}, {y, v} ∈ E ∧ x 6= y) (2.18)

where X∆Y := (X − Y ) ∪ (Y −X) is the symmetric set difference of sets X and Y.

Definition 3.39: An isomorphism of graphs G and H is a bijective map f between the set

of vertices of G and H such that any two vertices v1 and v2 of G are adjacent in G iff f(v1)

and f(v2) are adjacent in H.

We will conclude our brief presentation of graph theory by mentioning that determin-

ing whether two finite graphs are isomorphic is an interesting problem in computational

complexity theory [261].

2.4 Topology and Hilbert spaces

Following our introduction of algebraic concepts, we will now proceed by introducing math-

ematical ideas from a more analytic and geometric perspective. We shall first present some

fundamental ideas from topology.

2.4.1 Topology

Definition 4.1: Let X be a set and τ be a family of subsets of X. τ is called a topology on

X if:

(i) The empty set and X are both elements of τ .

(ii) Any union of elements of τ is an element of τ .

(iii) Any finite intersection of elements of τ is an element of τ .

{X, τ} is called a topological space. The members of τ are called (τ) open sets in X

and subsets of X whose set complement is in τ are called closed sets in X (relative to τ).

Two simple examples of topologies are the trivial topology, which only includes the

empty set and the entire space X, and the discrete topology, which includes all the subsets

of X. Every topology is contained in the discrete topology and contains the trivial topology.

If there are two topologies τ1 and τ2 on X such that τ1 ⊂ τ2, then each τ1 open set is a τ2
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open set and we say that τ1 is coarser than τ2 (and τ2 is finer than τ1).

Definition 4.2: Let (X, τ) be a topological space and p be a point in X. A neighborhood

of p is a subset V of X that includes an open set U containing p.

Definition 4.3: A point p of a subset A of a topological space (X, τ) is called an interior

point iff A is a neighborhood of p. The set of all interior points of A is the interior of A,

written A0. The boundary of a subset A is the set of all point which are interior to neither

A nor the complement of A in X.

Theorem 4.1: A set is open iff it contains a neighborhood of all its points.

Proof: If A is open then it trivially contains a neighborhood (A itself) of all its points.

Let the set A contain a neighborhood of each of its points. The union U of all open subsets

of A is an subset of A. Each member p of A belongs to an open subset of A so each p is in

U and therefore A=U and A is open.

An alternative way of defining a topological structure on a set is to use the the

Kuratowski closure axioms. Let X be a set, P(X) be its power set (the set of all

subsets) and define the map clo: P(X)→ P(X) by the following axioms:

(i) clo(∅)=∅
(ii) For each A, A ⊂clo(A)

(iii) For each A, clo(clo(A)) = clo(A)

(iv) For each A and B, clo(A ∪ B)= clo(A) ∪ clo(B)

We can then say that a set A is closed iff clo(A)=A.

One can show that [180] the closure operation we introduced corresponds to the closure

of a subset A of a topological space (X, τ), defined as the intersection of all the members of

the family of closed sets containing A (i.e. the smallest closed set containing A).

Definition 4.4: A basis B for a topology (X, τ) is a subfamily B of τ so that for each

point p of the space X and each neighborhood U of p, there is a member V of B such that

p ∈ V ⊂ U . A basis is a collection of open sets such that every open set can be written as

a union of its elements.

Example 4.1: The set of real numbers can be given a standard topology such that

the open sets are the subsets A of the real numbers which are open intervals, meaning that



30

a ∈ A iff ∃x, y ∈ R such that x < a < y. The collection of all open intervals in the real line

forms a base for the standard topology on the real line because the intersection of any two

open intervals is itself an open interval or empty. The closed sets in the standard topology

are the closed intervals B, such that b ∈ B iff ∃x, y ∈ R such that x ≤ b ≤ y. In the standard

topology, a set V ⊂ R is a neighborhood of a point p ∈ R if, for some δ > 0, the open interval

from x − δ to x + δ is contained in V. The boundary of an interval is the set whose only

members are the endpoints of the interval.

Definition 4.5: A connected space is a topological space that cannot be represented as

the union of two or more disjoint non-empty open subsets.

Definition 4.6: A compact space is a topological space where each open cover – defined

as an arbitrary collection of open subsets of X: {Uj}j∈J satisfying X =
⋃
j∈J Uj – has a

finite subcover, meaning that there is a finite subset K ⊆ J such that X =
⋃
k∈K Uk.

Similarly, a space is Lindelöf if every open cover has a countable subcover (where K is a

countable subset of J).

The topological property of separation provides a hierarchy of topological spaces, clas-

sified in accordance with the ability to distinguish disjoint sets and distinct points through

topological methods.

Definition 4.7: The Trennungsaxiom Hierarchy

(0) A space is T0 (Kolmogorov) if for every pair of distinct points p1 and p2 in the space,

there is at least either an open set containing p1 but not p2, or an open set containing p2

but not p1.

(1) A space is T1 (Fréchet) if for every pair of distinct points p1 and p2 in the space, there

is an open set containing p1 but not p2.

(2) A space is T2 (Hausdorff) if every two distinct points have disjoint neighborhoods.

(3) A space is T2 1
2

(Urysohn) if every two distinct points have disjoint closed neighborhoods.

(4) A space is T3 (Regular Hausdorff) if it is T0 and regular, in the sense that if V is a

closed set and p is a point not in V, then V and p have disjoint neighborhoods.

(5) A space is T3 1
2

(Tychonoff) if it is T0 and completely regular, in the sense that given any

closed set V and any point p that not in V, then there is a continuous map f (as defined

below) from X to R such that f(p) is 0 and f(v) is 1, ∀v ∈ V .

(6) A space is T4 (Normal Hausdorff) if it is T1 and normal, in the sense that any two
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disjoint closed sets are separated by neighborhoods.

(7) A space is T5 (Completely Normal Hausdorff) if it is T1 and completely normal, in

the sense that any two separated sets (disjoint from each other’s closure) have disjoint

neighborhoods.

Each Tj space is also a Ti space for i ≤ j.

Definition 4.8: A map f: X → Y between two topological spaces (X, τX) and (Y, τY ) is

called a homeomorphism if it obeys the following:

(i) It is a bijection.

(ii) It is continuous (with respect to τX and τY ), meaning that for each open set U ∈ τY ,

the inverse f−1(U) ∈ τX is an open set.

(iii) The inverse function f−1 is continuous.

We then say that X and Y are homeomorphic. Two homeomorphic spaces share the

same topological properties: if one of them is connected, compact or a Ti space (for some i)

then the other is as well.

Definition 4.9: Let (Xi, τi)i∈I be topological spaces, X :=
∏
i∈I Xi be a Cartesian product

and πi : X→ Xi be projection maps. The product topology on X is the coarsest topology

for which all the projections πi are continuous maps.

Definition 4.10: Let f and g be continuous functions from a topological space (X, τX) to

a topological space (Y, τY ). A homotopy between f and g is a continuous function H : X

× [0,1] → Y from the product of the space X with the unit interval [0,1] to Y such that,

if x ∈ X then H(x,0) = f(x) and H(x,1) = g(x). We then say that f and g are homotopic.

Moreover two topological spaces (X, τX) and (Y, τY ) are of the same homotopy type if there

exist continuous maps f : X → Y and g : Y → X such that g ◦ f and f ◦ g are homotopic

to the identity maps idX and idY respectively.

An interesting recent project is the development of Homotopy Type Theory as an al-

ternative foundation for Mathematics [246].

Definition 4.11: Let (X, τ) be a topological space and ≡ be an equivalence relation on
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X. The quotient space Q:= X/≡ is the set of equivalence classes of points in X:

Q = {[x]|x ∈ X} (2.19)

together with the topology:

τQ = {U ⊆ Q|
⋃

[a]∈U

[a] ∈ τ} (2.20)

given to subsets of X/≡.

Definition 4.12: A metric space is an ordered pair (M,d), where M is a set and d is a

function from the Cartesian product M ×M to the non-negative reals which satisfies:

(i) d(m1,m2) = d(m2,m1)

(i) d(m1,m2) = 0 iff m1 = m2

(i) d(m1,m2) + d(m2,m3) ≥ d(m1,m3)

∀m1,m2,m3 ∈M .

There are many interesting examples of topological spaces where the topology is derived

from a notion of distance [191].

Definition 4.13: A metrizable space is a topological space that is homeomorphic to a

metric space.

Urysohn metrization theorem: Every regular T1 space which has a countable basis is

metrizable [180].

The Nagata-Smirnov-Bing metrization theorem [53,297] characterizes exactly when a topolo-

gical space is metrizable, namely when it is T3 and has a countably locally finite basis.

2.4.2 Topological vector spaces

We will now present how Hilbert spaces, and therefore standard quantum theory, arise from

a fusion of algebraic concepts and topological structure.

Definition 4.14: A topological ring is a ring R that is also a topological space (R, τR),

such that the addition and multiplication maps (x,y) 7→ x+y and (x,y) 7→ xy from

R × R→ R are continuous functions (where R × R has the product topology). A topological

field is a field that is also a topological ring where the inversion map is a continuous function.
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Definition 4.15: A topological vector space (X, τ) is a vector space over a topological

field K, where vector addition X × X → X and scalar multiplication K × X → X are

continuous functions whose domains are endowed with product topologies [63].

Two important examples of topological vector spaces are Banach and Hilbert spaces.

Definition 4.16: Let (X, d) be a metric space. A Cauchy sequence in X is a sequence

(xn)n∈N of elements of X such that:

∀ε > 0, ∃N ∈ N such that d(xn, xm) < ε,∀n,m > N (2.21)

Note that every convergent sequence (xn)n∈N – which has a limit x ∈ X such that:

∀ε > 0,∃N ∈ N such that d(xn, x) < ε for n > N – is a Cauchy sequence, due to the triangle

inequality d(x1, x2)+d(x2, x3) ≥ d(x1, x3), ∀x1, x2, x3 ∈ X. Conversely, a metric space (X,d)

where all the Cauchy sequences converge (have a limit in X) is called complete.

Definition 4.16: Let V be a vector space over a field F. A map N : V → R+ is called a

norm on V if:

(i) N(v1 + v2) ≤ N(v1) +N(v2)

(ii) N(f · v1) = |f |N(v1)

(iii) N(v1) = 0 iff v1 = 0

∀v1, v2 ∈ V,∀f ∈ F and |f | ∈ R+.

A vector space endowed with a norm N (often denoted || · ||) is called a normed vector

space.

The notion of a Cauchy sequence makes sense in the context of a topological vector

space with a norm N, if we consider that for any open subset U there exists N(U) such that

xn − xm ∈ U,∀n,m > N(U).

Definition 4.17: A Banach space is vector space B with a norm || · || such that the

metric space (B, d) – where the metric d is defined by taking: d(b1, b2) = ||b1 − b2|| for

b1, b2 ∈ B – is a complete metric space.

Definition 4.18: A Hilbert space is vector space H with an inner product 〈·, ·〉 such

that the norm || · || :=
√
〈h1, h2〉 makes H into a Banach (complete metric) space.
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Example 4.2: A Hilbert space is always a Banach space but the converse is not true, as

the following counter-example demonstrates.

Consider the space C[0, 1] of continuous functions f: [0, 1] → R together with the su-

premum norm || · || := supx∈[0,1] |f(x)|, where the supremum is the smallest positive real

which is never exceeded by |f(x)| ∈ R+. Note that a Banach space (X,|| · ||) which is also a

Hilbert space satisfies the parallelogram law:

||x1 + x2||2 + ||x1 − x2||2 = 2(||x1||2 + ||x2||2) (2.22)

∀x1, x2 ∈ X. But consider f1, f2 ∈ C[0, 1] such that f1(x) = 1 and f2(x) = x, then we get:

5 = ||f1 + f2||2 + ||f1 − f2||2 6= 2(||f1||2 + ||f2||2) = 4 (2.23)

Therefore (C[0, 1], || · ||) is a Banach space which is not a Hilbert space.

In order to illustrate Banach and Hilbert spaces, we will briefly introduce some basic

concepts from Analysis [209].

Definition 4.19: A measure space (X,Σ, µ) consists of a set X together with a

sigma-algebra Σ over X, which is a collection of subsets of X which satisfy:

(i) If A ∈ Σ then the set complement X −A ∈ Σ

(ii) Let {A1, A2...} be a countable family of sets in Σ then:
⋃∞
j=1Aj ∈ Σ

(iii) X ∈ Σ

and a measure µ : Σ→ R+ which satisfies:

(a) µ(∅) = 0

(b) µ(
⋃∞
j=1Aj) =

∑∞
j=1 µ(Aj) for a countably infinite sequence of disjoint sets in Σ.

A measure on a set provides a general method for associating a number to subsets of

that set and defining integration from an abstract perspective. Measure spaces play an

underlying role in the mathematical theory of probability [20].

Definition 4.20: Given two measure spaces (X,Σ1, µ1) and (Y,Σ2, µ2), a function f :

X → Y is called measurable if: {x ∈ X|f(x) ∈ t} ∈ Σ1,∀t ∈ Σ2.

Definition 4.21: Let (X,Σ, µ) be a measure space. An LP space LP (X,µ) is a set of

functions f : X → C, together with the norm |f |P := (
∫
X(|f |)P )

1
P , where all functions
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f ∈ LP (X,µ) are measurable and satisfy |f |P < ∞. The fact that LP (X,µ) is a vector

space then follows from the inequality:

(|α+ β|P )P ≤ 2P−1(|α|P )P + (|β|P )P (2.24)

Definition 4.22: An lp space consists of the set of sequences x := (xn)n∈N (with xn ∈ C)

such that:
∑

n |xn|P <∞, together with the norm ||x||P := (
∑

n |xn|P )
1
P .

Note that LP spaces and lp spaces are Banach spaces for all p > 0 and are Hilbert spaces

iff p=2. An interesting result is that every Hilbert space is isomorphic to a set of the form

l2(E) for some set E [195].

Definition 4.23: A linear functional φ on a complex Hilbert space H is a map from H

to C. A linear functional φ is said to be bounded if ∃M ∈ C such that: |φ(h)| ≤ |M |||x||,
∀x ∈ H.

The following theorem establishes the important connection between a Hilbert space

and its dual space, which justifies the correspondence between bras and kets in quantum

mechanics [160].

Riesz representation theorem: If φ is a bounded linear functional on a Hilbert space H,

then there is a unique y ∈ H such that:

φ(x) = 〈y, x〉, ∀x ∈ H (2.25)

A corollary of this theorem is the existence of a unique adjoint of a bounded operator

on a Hilbert space. The adjoint A? of a bounded operator A is defined by:

〈x,Ay〉 = 〈A?x, y〉, ∀x, y ∈ H (2.26)

We can construct a larger Hilbert space by taking the tensor product of two Hilbert

spaces.

Definition 4.24: Let H1 and H2 be Hilbert spaces with inner products 〈·, ·〉1 and 〈·, ·〉2
respectively. The tensor product H1 ⊗H2 of H1 and H2 is a Hilbert space with a bilinear

(linear in both arguments) map ⊗ : H1 ×H2 → H1 ⊗H2 such that:

(i) The closed linear span of all vectors v ⊗ w, where v ∈ H1 and w ∈ H2, is equal to
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H1 ⊗H2.

(ii) H1 ⊗ H2 has the inner product 〈v1 ⊗ w1, v2 ⊗ w2〉 = 〈v1, v2〉1〈w1, w2〉2,∀v1, v2 ∈
H1,∀w1, w2 ∈ H2.

One can show that the tensor product construction is unique up to unique isomorph-

ism [177].

Many notions from linear algebra naturally generalize to the theory of Hilbert spaces

and form the basic building blocs of quantum theory.

2.5 Category theory

2.5.1 Categories and functors

Category theory was first introduced by Eilenberg and Mac Lane [125] and increasingly thor-

ough introductions to the theory can be found in the literature [81,5,22,213].

Definition 5.1: A category C consists of a class OBJ(C) of objects, and a class HOM(C)
of arrows such that each arrow f ∈ HOM(C) is associated to two objects dom(f) and cod(f),

called the domain and codomain of f. This is written: f : dom(f)→ cod(f).

Given arrows f : A → B and g : B → C, there is an arrow g ◦ f : A → C called the

composite of f and g.

For each object A, there is an arrow 1A : A → A called the identity arrow of A. For

every arrow f : A→ B, we have:

f ◦ 1A = f = 1B ◦ f (2.27)

For all arrows f : A→ B, g : B → C, h : C → D, we have:

h ◦ (g ◦ f) = (h ◦ g) ◦ f (2.28)

Definition 5.2: A (covariant) functor F : C → D between categories C and D maps

OBJ(C) to OBJ(D) and HOM(C) to HOM(D), such that:

F (f : A→ B) = F (f) : F (A)→ F (B) (2.29)
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F (1A) = 1F (A) (2.30)

F (g ◦ f) = F (g) ◦ F (f) (2.31)

A contravariant functor F is defined as above except replacing equation (2.31) by:

F (g ◦ f) = F (f) ◦ F (g) (2.32)

Definition 5.3: The dual category Cop of a category C has the same objects as C but each

arrow f : C → D in Cop is an arrow f : D → C in C.
Definition 5.4: In a category C, the object:

(i) 0 is initial if for every object C ∈ OBJ(C) there is a unique arrow 0 → C.

(ii) 1 is final if for every object C ∈ OBJ(C) there is a unique arrow C → 1.

Definition 5.5: In a category C, an arrow f : A→ B is called:

(i) A monomorphism, if given any arrows g,h: C → A, f ◦ g = f ◦ h implies g=h.

(ii) An epimorphism if given any arrows i,j: B → D, i ◦ f = j ◦ f implies i=j.

These are the generalizations of the notions of injective and surjective functions (beyond

the category of sets and functions).

Definition 5.6: In a category C, an arrow f : A → B is called an isomorphism if it

admits a two-sided inverse, meaning that there is another arrow g : Y → X in that category

such that g ◦ f = 1A and f ◦ g = 1Y .

2.5.2 Limits

Definition 5.7: Let G: C → D be a functor and D ∈ OBJ(D). A universal problem requires

one to find the ‘best approximation’ of D in C. To be precise, one needs to find a universal

solution, which is a pair {C, v} consisting of an object C ∈ C and an arrow v: D → G(C)

such that, for every object C ′ ∈ C and every morphism f: D → G(C’), there is a unique

arrow u: C → C’ such that: G(u) ◦ v = f.

Definition 5.8: A limit is a universal (left) solution. Limits are unique up to isomorph-

ism. Note that one can also define a colimit which is the dual notion of a limit [213].
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We will now present equalizers, products and pullbacks, which are examples of limits.

Definition 5.9: Let C be a category containing a pair of arrows f,g : A→ B.

An equalizer of f and g is a pair {E, e}, where E ∈ OBJ(C) and an e ∈ HOM(C), with

e: E → A such that f ◦ e = g ◦ e and e is universal, in the sense that given any z : Z → A

with f ◦ z = g ◦ z, there is a unique u: Z → E with e ◦ u = z.

Definition 5.10: The product of two categories C and D is a new category C × D with

objects of the form (C,D), where C ∈ OBJ(C) and D ∈ OBJ(D), and arrows of the form

(f, g) : (C,D) → (C ′, D′), where f : C → C ′ ∈ C and f : D → D′ ∈ D. Composition and

units are defined component-wise.

We can define two projection functors πi with i = 1, 2 such that:

π1(C,D) = C; π1(f, g) = f ; π2(C,D) = D; π2(f, g) = g (2.33)

Definition 5.11: Let C be a category containing a pair of arrows f: A→ C and g: B → C.

The pullback of f and g consists of a pair of arrows p1 : P → A and p2 : P → B such

that f ◦ p1 = g ◦ p2 and which are universal in the sense that: given any z1 : Z → A and

z2 : Z → B with f ◦ z1 = g ◦ z2, there exists a unique arrow u: Z → P with z1 = p1 ◦ u and

z2 = p2 ◦ u.

Theorem 5.1: A category C has limits iff it has products and equalizers [22].

2.5.3 Examples of categories

We will now illustrate the definitions we have introduced by presenting examples of

categories.

(A) A category with a single object is a monoid.

(B) A category with a single object in which all the arrows (group elements) are isomorph-

isms is a group.

(C) A category in which all the arrows are isomorphisms is a groupoid.

(D) Set is the category with sets as objects and functions as arrows.

In Set, monomorphisms are the injective functions, epimorphisms are the surjective

functions and isomorphisms are the bijective functions. The empty set serves as the initial

object and every singleton set is a terminal object. The product in Set is given by the
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Cartesian product of sets and the coproduct is given by the disjoint union. An equalizer of

two functions is the set of elements of the common domain where the functions are equal.

The pullback of two functions f: A → C and g: B → C consists of subsets (a,b) ∈ A × B

of the Cartesian product such that the equation f(a)=g(b) holds.

(E) Rel is the category with sets as objects and relations as arrows.

(F) Grp is the category with groups as objects and group homomorphisms as arrows.

(G) Ring is the category with rings as objects and ring homomorphisms as arrows.

(H) ModR is the category with modules over a ring R as objects, and module homomorph-

isms as arrows. Lawvere theory [200] allows a synthetic study of the categories Grp, Ring

and ModR.

(I) V ectk is the category with vector spaces over the field k as objects and linear maps as

arrows. This is a special case of ModR when R is a field.

(J) Hilb is the category with Hilbert spaces as objects and linear maps (of norm at most 1)

as arrows. Hilb and FHilb, the category with finite-dimensional Hilbert spaces as objects

and linear maps as arrows, play an important role in Categorical Quantum Mechanics.

(K) Top is the category with topological spaces as objects and continuous functions as

arrows.

Isomorphisms in Top are the homeomorphisms. The empty set considered as a topological

space is the initial object and any singleton topological space is a terminal object. The

product is given by the product topology on the Cartesian product and the coproduct is

given by the disjoint union of topological spaces. Equalizers and pullbacks also resemble

the equivalent notions in Set.

(L) Diff is the category with smooth manifolds as objects and smooth maps as arrows.

(M) Cat is the category with (small) categories as objects and functors as arrows.

In Cat the initial object and final object are the empty category 0 (with no objects and

arrows) and the trivial category 1 (with a single object and arrow) respectively.

2.5.4 Natural Transformations and adjoints

Natural transformations provide a method of transforming one functor into another.

Definition 5.12: Let F and G be functors between categories C and D. A natural
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transformation η : F → G is a family of arrows ηC : FC → GC (where C ∈ C) in D
such that for every arrow f : C → C ′ in C, we have:

ηC′ ◦ F (f) = G(f) ◦ ηC (2.34)

The arrow ηC : FC → GC (in HOM(D)) is called the component of η at C.

A natural isomorphism is a natural transformation which has a two-sided inverse, mean-

ing that each of its components ηC : FC → GC (∀C ∈ OBJ(C) is an isomorphism in

D.

Definition 5.13: An equivalence of categories between two categories C and D consists

of a pair of functors: F : C → D and G : D → C together with a pair of natural isomorphisms:

ε1 : (F ◦G)→ idD and ε2 : (G ◦ F )→ idC (2.35)

The categories C and D are then said to be equivalent.

One can show [213] that two categories are equivalent iff there is a functor F : C → D
which is:

(i) Full, meaning that ∀x, y ∈ OBJ(C) the map HOM(C)(x, y)→ Hom(D)(Fx, Fy) which

is induced by F (between arrows from x to y and arrows from Fx to Fy) is surjective.

(ii) Faithful, meaning that ∀x, y ∈ OBJ(C) the map HOM(C)(x, y) → Hom(D)(Fx, Fy)

which is induced by F (between arrows from x to y and arrows from Fx to Fy) is injective.

(iii) Essentially surjective, meaning that ∀y ∈ OBJ(D), ∃x ∈ OBJ(C) such that y is

isomorphic to F(x)in D.

Definition 5.14: A pair of functors F : C → D and G : D → C are said to be adjoint (or

form an adjunction) if there exist a pair of natural transformations:

ε : (F ◦G)→ idD (counit) and η : idC → (G ◦ F ) (unit) (2.36)

such that:

(ε ◦ idF ) ◦ (idF ◦ η) : F → F and (idG ◦ ε) ◦ (η ◦ idG) : G→ G (2.37)
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are both the identity natural transformation. We then write F a G and say that F is the

left adjoint of G and that G is the right adjoint of F. The left or right adjoint of any functor,

if it exists, is unique up to unique isomorphism.

Definition 5.15: Given a category C and an object c ∈ OBJ(C), there is a functor

Hom( · , c): Cop → Set, called a hom-functor. Therefore, we can define the Yoneda functor

Y: C → Fun(Cop, Set), where the category of functors Fun(Cop, Set) is called the category

of presheaves of C.
The following result is an important representation theorem, similar in spirit to the

Cayley, Stone and Riesz representation theorems which we have introduced previously.

Yoneda lemma: Let x be an object in a category C and F be a presheaf in Fun(Cop, Set).

The canonical restriction map:

HomFun(Cop,Set)(Y (x), F )→ F (x) (2.38)

is an isomorphism.

Proof: We construct the inverse map F (x) → HomFun(Cop,Set)(Y (x), F ). Given f ∈ F(x),

construct a natural transformation η : Y (x)→ F with components ηy : Hom(y, x)→ F (y),

which map an arrow h ∈ Hom(y, x) to F(h)(f). Since F preserves composition of arrows, we

can see that η is indeed a natural transformation.

One can check that F(x) → Hom(Y(x), F) → F(x) is the identity. Moreover, the natur-

ality condition on the natural transformation η ensures that η is completely determined by

the value ηx(idx) ∈ F (x) of its component on the identity morphism.

Definition 5.16: Given a functor F: Cop → Set (a presheaf on C), a representation of F

is a natural isomorphism θ : HomC( · , c) → F. By the Yoneda lemma, a representation is

uniquely determined by an element of F(c), called the universal element for F.

We will conclude this section by mentioning that Category theory can be generalized to

the higher order study of n-categories [28,76].

2.5.5 Categorical quantum mechanics

Definition 5.17: A symmetric monoidal category (SMC) consists of:

(i) a category C
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(ii) a functor −⊗-: C × C → C
(iii) a unit object I

(iv) natural isomorphisms (with coherence conditions [213]):

λA : A ∼= I⊗A, ρA : A ∼= A⊗I, αA,B,C : A⊗ (B⊗C) ∼= (A⊗B)⊗C, σA,B : A⊗B ∼= B⊗A

Monoidal categories are ideal for describing very general compositional theories of sys-

tems and processes [3], since they contain two interacting modes ⊗ and ◦ of composition.

These lead to a very simple diagrammatic calculus [267] where arrows are represented by

boxes and the objects are vertical inputs/outputs. The ⊗ and ◦ operations are respectively

represented as boxes juxtaposed next to each other and attached in vertical sequence.

Definition 5.18: A dagger compact symmetric monoidal category (†-CSMC) C is a SMC

with an identity-on-objects contravariant dagger functor † : C → C such that:

(f ◦ g)† = g† ◦ f †, (f ⊗ g)† = f † ⊗ g†, id†A = idA, (f †)† = f

which is also compact, meaning that each object A ∈ OBJ(C) has a dual object

Ā ∈ OBJ(C) (usually A = Ā) and arrows: ηA : I → Ā⊗A and εA : A⊗ Ā→ I such that:

(εA ⊗ idA) ◦ (idA ⊗ ηA) = idA and (idĀ ⊗ εA) ◦ (ηA ⊗ Ā) = idĀ

We define a state of a system A as an arrow: ψ : I → A, an effect as: π : A → I and

scalars as s : I → I. The inner product between states is then the scalar: ψ† ◦ φ : I → I.

The dimension of an object A is defined as: dim(A) := η†A ◦ ηA.

If we add to the previous graphical calculus a vertical involutive asymmetry in the

boxes representing arrows and the rule that taking the adjoint reflects the boxes vertically,

then we get the following key theorem which allows us to use graphical reasoning:

Theorem 5.2: An equational statement between formal expressions in the language of

†-CSMC holds if and only if it holds up to isotopy in the graphical calculus. [181,266]

Example 5.1: Important examples of †-CSMCs are:
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(i) FHilb, the category of finite dimensional Hilbert spaces and bounded linear maps with

the usual tensor product.

(ii) FRel, the category of finite sets and relations with the Cartesian product of sets as the

tensor product.

Definition 5.19: In a †-CSMC, an object A has a dual system A? if there exist arrows:

dA : A⊗A? → I= (called cups) and

eA : I → A? ⊗A= (called caps), such that:

(dA ⊗ idA) ◦ (idA ⊗ eA) = idA; (idA? ⊗ dA) ◦ (eA ⊗ idA?) = idA? (2.39)

We can then compose cups and caps to define the dual f? : B? → A? as:

f? = f

Definition 5.20: A monoid in a †-CSMC C is a triple:

{ A ∈ OBJ(C), δ† : A⊗A→ A (multipication), ε† : I → A } (unit)

which satisfy: = ; = =

Definition 5.21: A comonoid in a †-CSMC C is a triple:

{ A ∈ OBJ(C), δ : A→ A⊗A (copying map), ε : A→ I (erasing map) }

which satisfy: = ; = =

We can use differently coloured dots to represent different monoids (or comonoids) on

the same object.

Definition 5.22: A comonoid homomorphism is a map f: (A, , ) → (A, , ) such

that:
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f f
f; ==

f

Definition 5.23: A comonoid homomorphism f: (A, , )→ (B, , ) is self conjugate

if:

f †=f

Deinition 5.24: A dagger-Frobenius algebra in a †-CSMC is a pair of a monoid and a

comonoid which satisfy the following equation:

=

If the multipication map of the monoid is commutative then the dagger-Frobenius algebra

is commutative.

We can describe bases and observables in the general context of †-CSMC by noting

that the contrapositive of the no cloning [301] and no deleting theorems [229] states that

orthonormal basis states are the only ones which can be copied and erased.

Definition 5.25: An observable structure is a †-special commutative Frobenius algebra

on a †-CSMC C [88]. This is a triple:

{ A ∈ OBJ(C), δ : A→ A⊗A (copying map), ε : A→ I (erasing map) }

satisfying:

(δ ⊗ idA) ◦ δ = (idA ⊗ δ) ◦ δ; λ−1
A ◦ (ε⊗ idA) ◦ δ = ρ−1

A ◦ (idA ⊗ ε) ◦ δ = idA; σA,A ◦ δ = δ;

(δ† ⊗ idA) ◦ (idA ⊗ δ) = δ ◦ δ†; δ† ◦ δ = idA
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Theorem 5.3 (Spider Theorem): Given a classical structure on A, then any process

A⊗n → A⊗m built from the maps {δ, δ†, ε, ε†} which has a connected graph is equal to

the spider with n inputs and m outputs [185,83]:

...

...

1 2 n

1 2 m

Note that each classical structure on A can be used to make A dual to itself [185] by using

the caps and cups .

In FHilb, orthonormal bases are in a one to one correspondence with †-special commut-

ative Frobenius algebras [86]. This definition for observable structures has been shown [85] to

be equivalent to the spider laws depicted below.

...

...

...

=

...

... ...

...

; =

We can then illustrate spiders with n inputs and m outputs by describing them, in terms

of a given orthonormal basis {|0〉 , |1〉}, as:

...

...

α

1 2 n

1 2 m

=





|00...0〉 7−→ |00...0〉

|11...1〉 7−→ eiα |11...1〉

others 7−→ 0

(2.40)

We define a classical point for an observable structure (A, δ, ε) as a self conjugate

morphism k: I → A
k

obeying:

=
kk

k

and =
k
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This means that classical points are those which get copied by the copying map and

deleted by the deleting map. In FHilb, for example, they are the basis states corresponding

to the observable structure.

Symmetric monoidal categories and observable structures will play a key role in our

analysis of operational physical theories.



Chapter 3
Background II: Quantum theory

3.1 Operational theories

O
ur scientific theories aim to accurately describe every phenomenon that can possibly

occur in the world we live in. Moreover, one can hope that a theory will not only

explain all observable occurrences and predict new results, but will also convey an under-

standing of the inner workings of nature, an insight into why things are the way they are.

Of course, any theory or model put forward to explain natural phenomena will have a

limited domain of validity. Even within this restricted domain, the understanding provided

by any theoretical construction is flawed. Nevertheless, in order to make predictions about

physical events, it is necessary to provide a mathematical formalism, a common language

used to describe physical systems and processes.

A useful way of interpreting a physical theory is to forget about all the inner workings

specific to the given theory. One can argue that all empirical evidence perceptible by human

beings is restricted to macroscopically distinguishable initializations and outcomes expressed

in classical terms.

In this operational interpretation, the only role of a physical theory is to provide a min-

imal explanation of experimental phenomena. We take the following processes as primitive

concepts for any operational physical theory: preparations, transformations and measure-

ments. First of all, the preparation of a physical system consists of a repeatable procedure

which outputs a valid state (Figure 3.1).

47
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Figure 3.1: A preparation process.

Next, transformations are processes which convert valid physical systems of the theory

into other valid systems (Figure 3.2).

Figure 3.2: A transformation process.

Finally, measurements are repeatable procedures that receive a physical system and then

produce a macroscopically distinguishable outcome from a set of possible outcomes (Figure

3.3).
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Figure 3.3: A measurement process.

Each operational physical theory associates these three physical processes with math-

ematical objects. This provides an unambiguous description of an operational physical

theory.

3.2 Quantum mechanics introduced

3.2.1 Orthodox postulates

A natural starting point for an analysis of the foundations of quantum theory is to present

the postulates of quantum mechanics:

Axiom 1

The physical state |ψ〉 of the system corresponds to a normalized element (ray) of a Hilbert

space H, known as the state space of the system.
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Axiom 2

The evolution of a closed system is a unitary transformation:

|ψ(t)〉 = U(t, t0) |ψ(t0)〉 (3.1)

(such that U−1 = U †) depending only on the initial time t0 and the final time t.

Axiom 3

Associated with each observable property of a system is a Hermitian operator M, which

therefore satisfies M = M †, has real eigenvalues and has orthogonal eigenvectors.

Hence, M =
∑

mmPm, where Pm is the projector onto the eigenspace of M with eigenvalue

m. The possible results of a measurement of M on the state |ψ〉 are the eigenvalues m of M.

The probability of getting outcome m is:

p(m) = 〈ψ|Pm |ψ〉 (3.2)

Axiom 4

Given that outcome m occurred, the state of the system changes discontinuously as:

|ψ〉 → Pm |ψ〉
p(m)

(3.3)

Axiom 5

If two systems |ψ1〉 and |ψ2〉 have state spaces H1 and H2 respectively and if we treat

these two systems as one single compound system |ψ1〉 ⊗ |ψ2〉, then the state space of the

compound system is the tensor product H1 ⊗H2.

We can immediately notice several odd features of this set of postulates. The definition of

physical states as elements of an abstract Hilbert space and the use of the tensor product

to form composite systems seem arbitrary. There is an immediate clash between the de-

terministic and continuous evolution of closed systems and the indeterministic discontinuous
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evolution due to measurement. One might wonder how to interpret the quantum state and

where the division lies between observer and observed.

For now, we will delay these questions and take a minimalist, operational approach to

quantum theory. Using this methodology, we find more general axioms for quantum theory.

3.2.2 Operational axioms

Quantum theory is well suited for an operational presentation providing a minimal explan-

ation of observable phenomena. This can be achieved by giving a description of physical

preparation (P), transformation (T) and measurement (M) procedures which yields correct

statistics for experiments that can be performed. In such a setting, the axioms of quantum

theory can be reformulated as:

Axiom 1: Preparation

A preparation P is associated to a trace one positive operator ρ, known as the density

operator, acting on a Hilbert space H.

Note that:

(i) If a system preparation is associated with |ψi〉 with probability pi then the density

operator corresponding to the overall preparation is ρ =
∑

i pi |ψi〉 〈ψi|.
(ii) A preparation ρ is called a ‘pure state’ if Tr(ρ2)=1. Otherwise Tr(ρ2) < 1 and ρ is

called a ‘mixed state’.

(iii) Two preparations ρ1 and ρ2 can be combined as before into a single compound

preparation corresponding to the tensor product: ρ12 = ρ1 ⊗ ρ2.

(iv) Conversely, we can get one of the subspreparations by tracing out the other subpre-

paration with a partial trace: ρ1 = Tr2(ρ12).

Axiom 2: Transformation

A transformation T is associated to a completely positive trace non-decreasing map:

E : ρ→ E(ρ) (3.4)

Such that:
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(i) 0 ≤ Tr(E(ρ)) ≤ 1 for any preparation ρ.

(ii) For probabilities {pi}: E(
∑

i piρi) =
∑

i piE(ρi).

(iii) E(A) and (I ⊗ E)(A) are positive for any positive operator A (I is the identity).

Note that (i), (ii) and (iii) are formally equivalent to either of the following [225]:

(KRAUS) E(ρ) =
∑

i(EiρE
†
i ) where

∑
i(E
†
iEi) ≤ 1 and Ei are the Kraus operators.

(ANCILLA) E(ρ) = TrE(PU(ρ⊗ ρ0)U †P ), where we couple the prepared system to the

environment E (ancillary system ρ0), perform a general unitary evolution U followed by a

projective measurement P (that has some chance of failure) then trace out the environment.

Axiom 3: Measurement

Measurements are now a special case of Axiom 2 where each measurement M is associated

with a positive operator valued measure (POVM) {Mk} such that
∑

kMk = I. This is a

CP map where the Kraus operators are the {Mk}.
The probability of a measurement M yielding outcome k, given a preparation P (corres-

ponding to ρ) and transformation T (corresponding to E), is: p(k|P, T,M) = Tr(MkE(ρ)).

This set of axioms aims to get rid of any mention of underlying physical states or

their evolution and aspires to be as minimal as possible. The axioms of quantum theory

formulated in this way are very general and mathematically unambiguous. They provide a

clear target which alternative interpretations of quantum theory must reproduce.

3.3 Quantum computation

A recent approach to studying quantum theory has been to present physical processes from

the viewpoint of computer science. In the last few decades, this outlook has provided an

insightful new perspective. Given their direct relevance for the rest of this thesis, we will

now introduce some basic ideas from Quantum Computation.

3.3.1 Quantum circuits

The quantum circuit model is a fundamental model of quantum computation, where finite

dimensional quantum processes can be described through their linear algebraic representa-
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tion. In this way, we can introduce quantum gates in order to depict the unitary matrices

representing quantum transformations. In quantum computation, the basic concept of a clas-

sical bit, which can be in state 0 or 1, is extended to the notion of a qubit |ψ〉 = α |0〉+β |1〉,
where α, β ∈ C and {|0〉 , |1〉} is the computational basis, an orthonormal basis for the state.

This allows for the superposition of quantum states, which can be linearly combined to form

new states. Single qubit states can then be visualized on the surface of the Bloch sphere [55].

Figure 3.4: The Bloch sphere representation of a qubit.

State preparations in the circuit model consist of tensor products of qubits and quantum

gates act on multiple qubit states. We introduce several examples of gates in Figure 3.5.

Measurements are represented as projection operators in the computational basis. Using

the Neumark extension theorem [234,142], it is then possible to perform an arbitrary quantum

(POVM) measurement by adding ancillary states to enlarge the system Hilbert space, and

then performing a projective quantum measurement in the enlarged space.

We now will introduce some useful notation. The qubit Pauli operators, which are

examples of single qubit gates, are defined as:

I :=


 1 0

0 1


 ; Z :=


 0 1

1 0


 (3.5)

X :=


 1 0

0 −1


 ; Y := iZX =


 0 −i

i 0


 (3.6)
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:=

(
1 0
0 1

)

RX(α) :=

(
cos α2 −i sin α

2
−i sin α

2 cos α2

)

RZ(α) :=

(
exp−iα2 0

0 exp iα2

)

• :=




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




×
×

:=




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




Figure 3.5: Examples of basic quantum gates.

From top to bottom: a simple wire, X and Z rotation gates, the CNOT gate and the SWAP gate.

Note that the four Pauli matrices form an orthogonal basis for the complex Hilbert space

of 2× 2 matrices. We denote the eigenvectors of the Pauli matrices as:

|0〉 :=


 1

0


 ; |1〉 :=


 0

1


 (3.7)

|±〉 :=
1√
2


 1

±1


 ; |±i〉 :=

1√
2


 1

±i


 (3.8)

Other interesting single qubit gates include the Hadamard gate H, the phase gate S and

the π
8 gate T:

H :=
1√
2


 1 1

1 −1


 ; S :=


 1 0

0 i


 ; T :=


 1 0

0 ei
π
4


 (3.9)

We can also define the controlled-NOT gate CNOT and the controlled phase gate CZ
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as:

CNOT |i〉 |j〉 := |i〉 |i+ j〉 ; CZ |i〉 |j〉 := (−1)ij |i〉 |j〉 (3.10)

where addition and multiplication are modulo 2.

An important question which arises is whether one can find a finite set of quantum gates

which are universal for quantum computation, in the sense that any unitary operation can

be approximated to arbitrary accuracy by a quantum circuit using only these gates. It

has been shown [225,103] that the set of quantum gates: {CNOT, S, T, H} is universal for

quantum computation.

There are a handful of quantum algorithms which currently outperform the best

known classical algorithms, including Grover’s algorithm for searching an unstructured data-

base [159], Shor’s factoring algorithm [272] and algorithms for solving the hidden subgroup

problem [131].

3.3.2 Other quantum computation models

An alternative framework to the quantum circuit model is measurement based quantum

computation [252,65]. In this formalism, quantum computation is performed by starting

with a fixed entangled state and then performing computation by applying a sequence of

measurements, in designated bases, to this initial state. Earlier measurement outcomes may

affect the basis chosen for later measurements and the final result of the computation can be

determined from the classical data of all the measurement outcomes. Measurement based

quantum computation is universal for quantum computation, meaning that any quantum

unitary transformation can be reproduced within this model.

To illustrate the idea, we will describe an example of cluster state quantum computation.

A cluster state is prepared by forming a two-dimensional rectangular grid of |+〉 states and

then applying a CZ gate to each nearest neighbor pair. Computation then proceeds by

performing single qubit measurements, either in the computational basis {|0〉 , |1〉} or in a

basis: M(θ) = {|0〉±eiθ |1〉}. The computation is one-way since the initial entangled cluster

state is irreversibly degraded as the computation proceeds through layers of measurements.

Given a cluster state of sufficient size, this process allows the implementation of any quantum
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gate array [65,176].

Topological quantum computation is a framework where quantum computation

is implemented by using the fusion and braiding properties of anyons (quasi-particles in

topological systems) [228]. Anyonic computation can be illustrated through the Kitaev toric

code [187] (in Figure 3.6) and the Kitaev honeycomb lattice model [188]. When measurement

based quantum computation is implemented on a periodic three-dimensional lattice cluster

state, then it can be used to implement topological quantum error correction [253].

Plaquette p

Vertex v

Figure 3.6: Plaquette and vertex operators on a section of the toric code.

Another quantum computational model is adiabatic quantum computation [133]. In

this paradigm, we take a Hamiltonian (quantum operator corresponding to the total energy

of a quantum system) acting on a set of particles (encoding qubits), with a non-degenerate

ground state and finite energy gap above the ground state at all times. Adiabaticity (when

energy is transfered only as work) ensures that the kinetic energy corresponding to the

speed at which the Hamiltonian parameters change over time is considerably smaller than

the energy gap above the ground state. This means that transitions away from the ground

state are suppressed. Therefore, quantum algorithms are implemented by an adiabatic

process where the initial ground state is easily prepared and the final ground state is the

solution of the quantum computation.

The following is an example of adiabatic quantum computation. Take the Hamiltonian:

H(ε) = (1− ε)(Z ⊗ I − I ⊗ Z) + ε(Z ⊗ Z −X ⊗X) (3.11)

acting on a two-qubit system. As we adiabatically change ε from 0 to 1, there is always a

non-zero energy gap between the ground state and the first excited state. This adiabatic
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computation takes the initial ground state: |00〉 to the final ground state: 1√
2
(|00〉+ |11〉).

It has been shown [11] that adiabatic quantum computation is equivalent to the circuit

model. Topological quantum computation closely resembles a constant energy gap adiabatic

quantum computation [228].

3.4 Non locality and Contextuality

3.4.1 Realism and quantum theory

Practicing physicists usually take the philosophical view that there is a conjectured state

of things as they actually exist and that our theoretical models are only the approximation

of this underlying reality. Scientific progress can then be understood as an ongoing effort

to improve our mind’s correspondence to this reality, and every new observation brings us

closer to understanding an aspect of this underlying reality. This physical reality includes

everything that is and has been, whether or not it is observable or comprehensible by human

beings, and is ontologically independent of our beliefs, language or theoretical constructions.

This philosophical realism has shaped our current physical theories and defined the aim

of Physics as a discipline of human thought. In particular, a realist approach to quantum

theory must aim to go further than just giving an account of all the results of physical

experiments performed. Such an interpretation must also provide an accurate, verifiable

description of the underlying physical mechanisms leading to the results. We will describe

how such an attempt at a realist approach leads to unexpected consequences.

3.4.2 EPR

In their 1935 paper [128], Einstein, Podolsky and Rosen raise a fundamental issue regarding

quantum theory. The authors define elements of physical reality in the following way: “If,

without in any way disturbing a system we can predict with certainty the value of a physical

quantity, then there exists an element of physical reality corresponding to this physical

quantity”. They also make the point that a physical theory should not just be correct but

should also be complete, in the sense that: “every element in the physical reality must have

a counterpart in the physical theory”. EPR then make use of a quantum state |ψ〉 of two
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particles which have been prepared such that their relative distance x1 − x2 is arbitrarily

close to L and their total momentum p1 + p2 is arbitrarily close to zero.

A measurement of x1 then allows one to predict with certainty the value of x2 without

disturbing particle 2. Indeed, the authors assume a notion of locality along the following

lines: “since at the time of measurement the two systems no longer interact, no real change

can take place in the second system in consequence of anything that may be done to the

first system”. This means that x2 corresponds to an element of physical reality as EPR

defined.

In the same way, one can perform a measurement of p1 instead of x1 and determine p2

with certainty without disturbing particle 2 in any way. This means that x2 and p2, which

don’t commute and therefore cannot be simultaneously assigned precise values by quantum

mechanics, both correspond to elements of physical reality. This leads EPR to conclude

that quantum mechanics, which cannot describe every element of physical reality, is not a

complete theory (based on local causality). The question of whether there exists such a

complete theory is left open.

3.4.3 Bohr response

Not long after the publication of the EPR paper, Bohr published a response [61] explaining

his point of view regarding the EPR result. Bohr analyses the actual approach one takes

when performing a quantum experiment. He describes the way in which an observer can

use his free will to arbitrarily choose his experiments. He explains that “we are not dealing

with an incomplete description characterized by the arbitrary picking out of different ele-

ments of physical reality at the cost of sacrificing other such elements, but with a rational

discrimination between essentially different experimental arrangements and procedures”.

In this way, Bohr safeguards quantum theory by resorting to an operational description

of an experiment in which the entire phenomenon is regarded as a single and unanalyzable

whole. The impossibility of controlling the reaction of the object due to the measuring

device and the indivisibility of the quantum of action leads Bohr to question the classical

idea of causality and criticize the EPR criterion of reality as ambiguous.

According to Bohr, the non-local nature of quantum theory means that the requirement

of not disturbing the system in any way in order to define an element of physical reality
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is flawed. Indeed, he tells us that: “Of course there is [...] no question of a mechanical

disturbance of the system under investigation during the last critical stage of the measuring

procedure. But even at this stage there is essentially the question of an influence on the

very conditions which define the possible types of predictions regarding the future behavior

of the system”.

Schrödinger [263] coined the term ‘entanglement’ to describe this peculiar connection

between quantum systems. Indeed, the parts of a quantum system such as the EPR

state cannot be separated into valid quantum states for localized subsystems, meaning that

|ψ〉 6= |α〉⊗|β〉 for any states |α〉 and |β〉. This leads Schrödinger to study quantum steering,

or the influence of the measuring procedure of one subsystem on the other subsystem, as

described by Bohr.

Bohr also introduced the principle of complementarity, namely that: “evidence obtained

under different experimental conditions cannot be comprehended within a single picture, but

must be regarded as complementary in the sense that only the totality of the phenomena

exhaust the possible information about the objects”. One could then interpret that all

physical concepts correspond to phenomena and reality is described by the whole set of

phenomena.

3.4.4 Hidden variables and Von Neumann’s no go theorem

Bohr did not aim to construct an ontological interpretation of quantum theory nor did he

decisively question Einstein’s assertion [127] that: “On one supposition we should, in my

opinion, absolutely hold fast: the real factual situation of the system S2 is independent of

what is done with the system S1 which is spatially separated from the former”. The question

of whether the statistical, non deterministic element of quantum mechanics arises because

quantum states are averages over better defined ‘dispersion free’ states, specified by ‘hidden

variables’ as well as the quantum state, was left open.

Von Neumann gave an early analysis [294] of whether hidden variable theories can re-

produce the statistics of quantum mechanics. He proves that, under certain assumptions,

quantum mechanics cannot be reproduced by averaging over dispersion free states. One

of Von Neumann’s assumptions is that the linear combination of two (Hermitian operator)

observables is an observable and that the linear combination of expectation values is the ex-
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pectation value of the combination, for both the quantum mechanical states and dispersion-

free states. He then shows that there must be an observable such that 〈A〉2 6= 〈A2〉 so that

the dispersion for the measurement of at least one observable (for any state) must be greater

than zero.

Bell showed that Von Neumann’s assumption, that the linear combination of expectation

values is the expectation value of the combination, is not valid for dispersion free states.

This assumption breaks down since for two non commuting operators A and B, distinct

experimental setups are required to measure A, B and A+B. Bell falsified this conjecture

by explicitly constructing a deterministic model [47], generating results identical on average

to those of quantum theory, which does not obey this assumption.

The model concerns a spin half particle and measurement of two operators A = m · σ
and B = n ·σ, where m and n are arbitrary real three-vectors and σ has matrix components

which are the Pauli matrices:

σx =


 0 1

1 0


 , σy =


 0 −i

i 0


 , σz =


 1 0

0 −1


 (3.12)

Quantum mechanical measurements of A and B always yield ±|m| and ±|n| respectively.

The hidden variable model consists of the quantum state |ψ〉 and also a hidden variable λ

which takes values between -1 and 1. For a given λ, the result of a measurement of A is

deterministically:

−|m| if −1 < λ < −〈ψ|A |ψ〉 /m, which simulates the quantum mechanical probability

(1−〈ψ|A|ψ〉/m)
2

+|m| if −〈ψ|A |ψ〉 /m < λ < 1, which simulates the quantum mechanical probability

(1+〈ψ|A|ψ〉/m)
2 .

The average result is then:

〈A〉 = 〈ψ|A |ψ〉 =
m(1 + 〈ψ|A |ψ〉 /m)

2
− m(1− 〈ψ|A |ψ〉 /m)

2
(3.13)

which perfectly agrees with the quantum mechanical prediction since experiments yield

a uniform distribution of λ between -1 and 1. Measurement of B gives values ±|n| in the
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same way as measurements of A and also reproduce quantum predictions. Measurements

of A + B = (m + n) · σ, always gives results ±|m + n|, therefore, for this hidden variable

model, 〈A+B〉 = 〈A〉+ 〈B〉 does not hold.

Bell’s model does not, in general, have additive expectation values for operators and gives

precise predictions for the results of all measurements, whilst exactly reproducing quantum

mechanical predictions if we average over the hidden variable λ. This deterministic hidden

variable model exhibits a non-local character is the sense that: “an explicit causal mechanism

exists whereby the disposition of one piece of apparatus affects the results obtained with

a distant piece”. This led Bell to explicitly ask the question of whether it is possible

to construct a local hidden variable model which reproduces the predictions of quantum

theory.

3.4.5 Bell’s theorem and the CHSH inequality

Bell derived a quantitative criterion for the existence of a realistic interpretation of any local

theory [46]. Consider as an example a system of two spin half particles. Note that we could

reformulate this example in terms of boxes with switches and lights flashing such that the

inequality obtained is purely about operational correlations. Suppose that both ‘particles’

go towards two measuring devices which measure spin along directions a and b. The results

A(a, λ) and B(b, λ) of the two measurements are always ±1 and can depend on the hidden

variable λ along with the setting of the corresponding measuring device a or b. Einstein

locality, as we saw before, requires that A is completely independent of the measurement

setting b and B of a.

The question is then whether the mean value of the product AB averaged over the hidden

variable λ:

P (a, b) =

∫
dλρ(λ)Ā(a, λ)B̄(b, λ) (3.14)

can reproduce the quantum statistics if we average also over instrument variables. We

then have: |Ā| ≤ 1 and |B̄| ≤ 1 and count A and B as zero whenever detectors fail. If c and

d are alternative instrument settings for measuring the first and second particle respectively

then:
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P (a, b)− P (a, d) =
∫
dλρ(λ)[Ā(a, λ)B̄(b, λ)− Ā(a, λ)B̄(d, λ)]

=
∫
dλρ(λ)Ā(a, λ)B̄(b, λ)[1±Ā(c, λ)B̄(d, λ)]−

∫
dλρ(λ)Ā(a, λ)B̄(c, λ)[1±Ā(c, λ)B̄(b, λ)].

Therefore, we get:

|P (a, b)− P (a, c)| ≤
∫
dλρ(λ)[1± Ā(c, λ)B̄(d, λ)] +

∫
dλρ(λ)[1± Ā(c, λ)B̄(b, λ)] (3.15)

This then yields an inequality that cannot be violated by a local hidden variable theory

first derived by Clauser, Holt, Shimony and Horne [79] (CHSH inequality):

|C| = |P (a, b)− P (a, d)|+ |P (c, d) + P (c, b)| ≤ 2 (3.16)

The original form of the result, given in Bell’s original paper [46], can be derived using

c=d and P (d, d) = −1 such that the CHSH inequality becomes:

|P (a, b)− P (a, d)| ≤ 1 + P (d, b) (3.17)

This inequality can be violated using quantum mechanics. Let the joint state of the

system be the singlet state for spin half: |ψ〉 = 1√
2
(|01〉 − |10〉), where |0〉 = (1, 0)† and

|1〉 = (0, 1)† might, for example, correspond to the vertical and horizontal polarization of

a photon. Let the apparatus for the first particle measure either A = σz or C = σx,

corresponding to settings a and c respectively. Similarly, let the apparatus for the second

particle measure either B = −σz−σx√
2

or C = σz−σx√
2

, corresponding to settings b and d

respectively. In this way, we get that the averages are: P (a, b) = P (c, b) = P (c, d) = 1√
2

and P (a, d) = − 1√
2
. This means that quantum mechanics allows us to attain C = 2

√
2.

Aspect performed an elaborate experiment [21] verifying this violation of the CHSH in-

equality using pairs of photons. Several loopholes [48] also have to be verified (in a single

experiment) to make sure that the CHSH inequality is indeed violated in nature. The two

measurement apparatus must be spacelike separated so that there cannot be any commu-

nication of results and update. If the detection efficiency is low [140], we must also assume

that the data collected is a fair sample. Another loophole which could allow for local hidden

variables is free will. If hidden variables guide which settings the measurement apparatus

will use and when measurements will be performed, then the CHSH inequality may be vi-
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olated. If one believes in superdeterminism then the CHSH inequality does not say much,

since there can then be local hidden variables which dictate everything that will ever happen

(at least if you believe that everything was once in the same light cone).

3.4.6 Cirelson bound

Cirelson asked whether quantum theory enforces an upper limit on non-local correlations [78],

corresponding to a maximal violation of the CHSH inequality. Consider four operators A,

B, C and D satisfying A2 = B2 = C2 = D2 = I and: [A,B] = [B,C] = [C,D] = [D,A] = 0.

Consider the CHSH correlation operator: C=AB+BC+CD-DA such that: C2 = 4 +

[A,C][B,D]. We know that for any two bounded operators S and T, we have:

||S + T || ≤ ||S||+ ||T || and ||ST || ≤ ||S||||T ||
and so: ||[A,C]|| ≤ 2||A||||C|| ≤ 2 and ||[B,D]|| ≤ 2||B||||D|| ≤ 2.

Therefore, ||C2|| ≤ 8 and ||C|| ≤ 2
√

2.

This is the Cirelson bound. This shows that quantum theory cannot violate the CHSH

inequality any more than the violation already achieved in the Aspect experiment. A natural

question to ask next is whether it is physically possible to achieve the maximal violation of

the CHSH inequality.

3.4.7 Popescu Rohrlich boxes

In a 1994 article, Popescu and Rohrlich asked the question of whether non-locality can

be used as an axiom for quantum theory [243]. They then proceed to note that relativistic

causality, or the principle of non-signaling between space-like separated observers, does not

restrict the violation of the CHSH inequality to |C| ≤ 2
√

2 but allows for maximal violations

of |C| = 4.

The non-local device which allows for such a maximal violation, which was previously

introduced by the same authors [242], is called a PR box.

This is an operational device which has input settings x = {0, 1} and y = {0, 1} and

outputs X = {0, 1} and Y = {0, 1} . The PR box can be defined as satisfying:

(i)
∑

y=0,1 P (X,Y |x, y) = p(X|x) and
∑

x=0,1 P (X,Y |x, y) = p(Y |y), which corresponds

to the no-signaling condition.
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(ii) p(X|x) = p(Y |y) = 1
2 , so that the marginals are completely random distributions.

(iii) The PR box acts on both inputs as: X + Y = xy to give the outputs.

If we have access to a PR box, then we can get averages P (a, b) = P (c, b) = P (c, d) = 1

and P (a, d) = −1, where we take inputs x = {0, 1} to correspond to a or c, and inputs

y = {0, 1} to correspond to b or d. Therefore, the PR box allows us to reach maximum

violations of the CHSH inequality:

|C| = |P (a, b)− P (a, d)|+ |P (c, d) + P (c, b)| = 4 (3.18)

Aharanov had conjectured (in his unpublished lecture notes) that relativistic causality

together with non-locality could be used to derive quantum theory. The authors showed

that this is not enough to define quantum mechanics

It then makes sense to ask why this violation is not attained by quantum theory and

whether we expect nature to satisfy Cirelson’s bound. It has been shown that the correla-

tions of the singlet can be simulated by supplementing hidden variables with a single use of

the PR-box [286].

Simulation of entangled states would be a bit too easy and communication complexity

would become trivial if PR boxes existed in nature [289]. Indeed, maximally strong no-

signaling correlations would allow one observer to have access to any m bit subset of the

whole data set by just accessing one bit of that data set. If nature behaved in this way,

it would violate the principle of information causality [260]. Studying extra features that we

expect the world to satisfy can yield valuable potential physical axioms for quantum theory,

or even theories going beyond quantum mechanics.

3.4.8 Generalized CHSH inequality

We will not prove it here but for any bipartite entangled state, it is possible to find pairs of

observables whose correlations violate the CHSH inequality [149].

The CHSH inequality can also be easily generalized [236] by allowing more measurement

settings for each of the two observers to whom we send half of a spin half singlet state.

Let the first and second observers measure the spin component along one of the directions:

a1, a3, ..., a2n−1 and b2, b4, ..., b2n respectively. The results of the measurements are Ar and
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Bs and have values ±1.

Averaging over many particle pairs gives a generalized CHSH inequality:

|〈A1B2〉+ 〈B2A3〉+ ...+ 〈A2n−1B2n〉 − 〈B2nA1〉| ≤ 2n− 2 (3.19)

In quantum theory, letting the 2n observation directions a1, b2, a3, ..., a2n−1, b2n be chosen

such that there is an angle π
2n between them, then the left hand side of the inequality can

be made arbitrarily close to 2n as n→∞ .

It is possible to generalize the CHSH inequality in a number of ways [161,237], with more

observers, measuring settings and measurement results. Some of these generalized Bell-type

inequalities may be undiscovered and have novel features and applications. Brunner et al. [67]

wrote an excellent review of recent developments in the study of non-locality. In the next

section, we will describe a generalization to three observers which is particularly elegant and

interesting.

3.4.9 Mermin non-locality

Based on an argument by Greenberger, Horne and Zeilinger, Mermin described a new test

of non-locality [218] which does not depend on an inequality based upon the statistics of data

accumulated in many runs, but relies instead on the outcome of a single experimental run.

Let a source emit a trio of particles which go to three far-away detectors. These detectors

have two switch settings 1 and 2 and emit either a red or green light, as in the operational

description of the CHSH experiment.

Einstein locality would then lead us to conclude that all the information concerning

which colour the detector will flash, given settings 1 or 2, must be carried by the particle.

This information may be encoded in hidden variables. The colour flashing cannot depend

on the setting of the other two switches. We denote the information carried by all three

particles, which determines the sets of colours flashing at each detector depending on the

setting, as:

(detector1 setting1, detector2 setting1, detector3 setting1; detector1 setting2, detector2 setting2,

detector3 setting2).
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We can then enumerate all the allowed sets of flashing colours which correspond to an

odd number of red lights flashing if one detector is set to 1 and the others to 2:

(R,R,R;R,R,R), (R,G,G;R,G,G), (G,R,G;G,R,G), (G,G,R;G,G,R),

(R,G,G;G,R,R), (R,R,R;G,G,G), (G,G,R;R,R,G) and (G,R,G;R,G,R).

Every one of these sets of instructions also results in an odd number of red flashes if all

three switches are set to 1. In this way, a single run of 111, where an even number of red

lights flash, is enough to show that local realism does not hold here.

However, we can create a set-up where we observe that if one detector is set to 1 and

the others to 2 then an odd number of red lights always flash, and if all three detectors are

set to 1 then an odd number of red lights never flash.

This can be achieved using quantum mechanics. Indeed, let one prepare a three particle

GHZ state:

|GHZ〉 =
1√
2

(|000〉 − |111〉) (3.20)

where |0〉 and |1〉 are spin up and spin down states along the z axis. Let us then measure σx

or σy on each particle depending on whether the switch is respectively on setting 1 or 2. But

we know that σx⊗ σy ⊗ σy, σy ⊗ σx⊗ σy and σy ⊗ σy ⊗ σx all commute and have eigenstate

|GHZ〉 with eigenvalue one. Therefore, if we set outcomes +1 and −1 of the measurements

as Red and Green flashes then there is always an odd number of red flashes if one detector

is set to 1 and the others to 2.

What about the case when all three detectors are set to one? In that case, we measure:

σx ⊗ σx ⊗ σx = −(σx ⊗ σy ⊗ σy)(σy ⊗ σx ⊗ σy)(σy ⊗ σy ⊗ σx) (3.21)

which has eigenstate |GHZ〉 with eigenvalue -1. This means that there must always be

an even number of red flashes when all three detectors are set to 1. Therefore, quantum

theory can be shown to violate local causality in a single run.

There is an implicit assumption we made at first, linked to Einstein locality, which is

that one can associate values for the outcomes of measurements regardless of what occurs in

space-like separated regions. The measurement of σx for the first observer and the assign-

ment of a value to its result requires mutually exclusive experiments if the other observers
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both measure σx or both measure σy. One must be careful with counterfactual assumptions

concerning independence of the context in which a measurement is performed. We will now

proceed to study this new notion of contextuality.

3.4.10 The over-protective seer

In order to illustrate his early thoughts on the limitations of non-contextuality, Specker

introduced a mathematical parable [274]. The story is that of an overprotective seer who

does not wish for his daughter to marry any of her suitors. If they hope to claim the hand

of the seer’s daughter, then the suitors had to overcome the following trial.

They were each given three boxes, which may or may not contain a gem, and told to

pick any two boxes and state whether they expect both boxes to be empty or both boxes to

be full. After each suitor had made his prediction, he was ordered by the father to open the

two boxes which he had predicted to be both empty/full. It always turned out, however,

that one of these boxes was empty and the other was full. Eventually, the daughter cheated

and married the suitor she fancied most (they divorced three years later, but that is another

parable).

It is impossible to come up with a configuration of empty and full ‘properties’ associated

to the boxes such that opening any two of them reveals one full box and one empty one. The

correlations described in the parable are a simple example of contextuality. Indeed, if one

wishes to explain the measurements (opening a box) as revealing a pre-existing property,

then one must imagine that the outcome of a measurement depends on the context of the

measurement.

Whether a gem is observed (or not) in the first box depends on whether that box was

opened together with the second or together with the third. In this way, the suitors can

never achieve their goal since they are asked to assign the outcomes of measurements in a

non-contextual way for a system whose statistics are contextual. In fact, such a correlation

is also impossible using quantum theory since in quantum theory one can implement a set

of Hermitian measurement operators jointly if and only if one can implement every pair of

this set jointly (when they commute).
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3.4.11 Gleason’s theorem

Gleason [151] was interested in reformulating quantum theory using a weaker set of axioms

than Von Neumann’s [294]. In doing so, he decided to tackle Mackay’s problem of determining

all measures on the closed subspaces of a Hilbert space. A measure µ on the closed subspaces

is a function which associates a non-negative real number to each closed subspace, such that

for any countable collection of mutually orthogonal subspaces Ai having closed linear span

B, we get:

µ(B) =
∑

i

µ(Ai) (3.22)

His main result, known as Gleason’s theorem, is that for a Hilbert space of dimension

3 or greater, the only possible measure of the probability of the state associated with a

particular linear subspace ‘a’ of the Hilbert space will have the form Tr(P (a)ρ), the trace

of the operator product of the projection operator P(a) and the density matrix ρ for the

system. This shows that if one uses Hilbert space then it is very hard to get rid of the Born

rule for measurement.

In his attempt at axiomatization, Gleason treats quantum events, notably measurement

outcomes, as logical propositions (yes-no questions called elementary tests), and studies the

relationships and structures formed by these events. His fundamental axioms are then:

(i) Elementary tests are represented by projectors P(u) on Hilbert space vectors u.

(ii) Compatible elementary tests, which can be answered together, correspond to com-

muting projectors.

(iii) If P(u) and P(v) are orthogonal projector, then their sum P(uv)=P(u)+P(v), which

is also a projection operator, has expectation value: 〈P (uv)〉 = 〈P (u)〉+ 〈P (v)〉.
The proof of Gleason’s theorem is not directly relevant to contextuality so we will only

briefly mention some details. Gleason defines a frame function of weight W as a real valued

function f defined on the surface of a Hilbert space H such that if {ei} is an orthonormal basis

of H then:
∑

i f(ei) = W . A frame function f is regular iff there exists a Hermitian operator

T on H such that: f(x)=(Tx,x) for all unit vectors x. By finding these frame functions (using

properties of spherical harmonics), Gleason shows that every non-negative frame function

in three or more dimensions is regular. Gleason’s theorem then follows (relatively) easily.

Although it is not directly addressing hidden variables, Gleason’s work was an important
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source of inspiration for the no-go theorems of Bell and Kochen-Specker.

3.4.12 Bell corollary of Gleason’s theorem

In a paper written before his famous non-locality article, Bell derived an important corol-

lary [47] of Gleason’s work in the form of a no-go theorem against non-contextual hidden

variable theories.

To do this, Bell reformulates directly relevant consequences of the Gleason axioms (i),

(ii) and (iii) as:

(A) If with some vector u, 〈P (u)〉 = 1 for a given state, then for that state 〈P (v)〉 = 0

for any vector v orthogonal to u.

(B) If for a given state 〈P (u)〉 = 〈P (v)〉 = 0 for some pair of orthogonal vectors, then

〈P (αu+ βv)〉 = 0 for all real α and β.

Now, let u be a normalized vector such that, for a given state, 〈P (u)〉 = 1 and let v

be a vector such that 〈P (v)〉 = 0. We can write v = u + εu′, where u’ is normalized and

orthogonal to u, and ε ∈ R.

Let the vector space be at least three dimensional and let u” be a normalized vector

orthogonal to both u and u’ so that (A) gives: 〈P (u′)〉 = 〈P (u′′)〉 = 0.

Therefore (B) gives: 〈P (v + εu′′

γ )〉 = 〈P (−εu′ + γεu′′)〉 = 0, where γ ∈ R.

So (B) gives: 〈P (u+ u′′ε(γ + 1
γ ))〉 = 0.

But if ε ≤ 1
2 then there exists a real γ such that: ε(γ + 1

γ ) = ±1. This then implies,

using (B) again, that:

〈P (u)〉 = 〈P (u + u′′)〉 + 〈P (u − u′′)〉 = 0, which is a contradiction. Therefore, we have

ε > 1
2 .

This implies that |v − u| > 1
2 |u| and so u and v cannot be arbitrarily close if 〈P (u)〉 6=

〈P (v)〉. If we consider dispersion free states (which can include hidden variables) then for

each one of these states, each projector must have a value 0 or 1 associated with it. But

both values must occur for at least one projector and there must at times be arbitrarily close

pairs of projection directions u and v which give different expectation values. Therefore, if

we accept assumptions (A) and (B) then there cannot be dispersion free states.

If we wish to construct a realist interpretation of quantum theory using hidden variables,

then we can reject assumption (B). Indeed, operator P (αu+ βv) commutes with P(u) and
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P(v) only if either α = 0 or β = 0. This means that a measurement of P (αu + βv)

generally requires a distinct experimental arrangement, meaning that (B) relates results

of incompatible experiments which cannot be performed simultaneously. This criticism is

similar to the one Bohr made against Einstein’s criterion of reality when he introduced the

notion of complementarity [61].

Bell elegantly explains that the danger lies in the implicit assumption that hidden vari-

able models must be non-contextual: “It was tacitly assumed that measurement of an

observable must yield the same value independently of what other measurements may be

made simultaneously”.

Kochen and Specker devised an algebraic proof (not involving a continuum) that any

ontological description of quantum theory must not just account for non-locality but must

be contextual. We will look at this next.

3.4.13 Kochen Specker theorem

The Kochen Specker theorem [190] asserts that any ontological deterministic theory that

would attribute definite results to each quantum measurement and still reproduce the stat-

istical properties of quantum theory must be contextual. This means that for three operators

A, B and C such that [A,B]=[A,C]=0 and [B,C] 6= 0 , the result of measuring A depends

on whether A is measured alone, together with B or together with C. This means that the

result of a measurement depends on the context of the measurement.

A more precise statement of the Kochen-Specker theorem is that in a Hilbert space of

dimension N superior or equal to 3, it is impossible to associate definite numerical values

v(Pm) (equal to 0 or 1), with every projection operator Pm, such that if a commuting set

{Pm} satisfies
∑

m Pm = I, then
∑

m v(Pm) = 1.

The theorem can be proven by taking a carefully chosen complete set of orthonormal

vectors v1, ..., vN such that the N matrices Pm = vmv
†
m are projectors in directions vm.

These projectors commute and satisfy
∑

m Pm = I. In order to satisfy
∑

m v(Pm) = 1, one

must associate 1 with one of the um and zero with all the N-1 others (there are N ways to

do this). Considering several distinct orthogonal bases which share some vectors leads us

to conclude that it is not always possible to associate the value 1 or 0 to a vector which is

part of more than one basis, irrespective of the choice of other basis vectors.
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Kochen and Specker’s original proof [190] used a set of 117 vectors in real three dimensional

space but a number of proofs involve fewer vectors. Conway and Kochen found a proof using

31 vectors [236] and Peres came up with two particularly elegant proofs [235] using 33 rays in

R3 and 20 rays in R4. In higher dimensions, the theorem can usually be proven using fewer

vectors [238], particularly if we restrict the analysis to a known state [184].

Similarly to the Bell theorem, the Kochen Specker theorem does not only apply to

quantum theory. It is a geometrical statement which affects the interpretation of quantum

measurements. This result has the advantage that, unlike the non locality no-go theorem,

it does not involve statistical correlation over large ensembles but compares results that can

be found on a single system measurement.

A recent analysis which is worthy of mentioning here is the Cabello Severini Winter

graph-theoretic approach to contextuality [69]. The Kochen Specker result can also be re-

cast in logical terms as a result about partial Boolean algebras within a category-theoretic

framework [45] and Abramsky and Hardy introduced logical Bell inequalities [4] based on

logical non-contextual consistency conditions. In general, Abramsky, Brandenburger and

co-workers have used sheaf theory to give a unified treatment of non-locality and contextu-

ality [2,6].

3.4.14 Mermin magic square

We will now conclude our discussion of contextuality by presenting an elegant result by

Mermin [217].

The following square of 9 observables has the property that each row and column is a

set of commuting observables that multiply to give I, except the last row which gives -I:

I ⊗ σz σz ⊗ I σz ⊗ σz
σx ⊗ I I ⊗ σx σx ⊗ σx
σx ⊗ σz σz ⊗ σx σy ⊗ σy

(3.23)

An attempt to associate predetermined values ±1, independently of the context in which

the observable may be measured, leads to a contradiction. We expect the product of all

the values corresponding to the 9 operators taken twice to be +1, since each value is ±1.
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To agree with quantum predictions, however, the product of all the operators taken twice

should be -1, since each row and column of the square must multiply to one except the last

row, which gives -1. This contradiction leads us to conclude that observables cannot have

pre-determined noncontextual values in quantum mechanics.

Note that we could use a similar proof to reveal the contextuality exhibited in the Mermin

non-locality argument we saw above [218], using a five-pointed star instead of a square.

Contextuality is a central and recurring topic in the foundations of quantum theory.

3.4.15 Leggett-Garg inequality

Having opened this section with the discussion of the EPR article, it is fitting to conclude

by introducing the Leggett-Garg inequality. It has been shown that the predictions of

quantum mechanics are incompatible with the following postulates [203]:

(i) Macroscopic realism: “A macroscopic object, which has available to it two or more

macroscopically distinct states, is at any given time in a definite one of those states.”

(ii) Noninvasive measurability: “It is possible in principle to determine which of these states

the system is in without any effect on the state itself, or on the subsequent system dynamics.”

Indeed, by assuming (i) and (ii), we can define a physical quantity Q which can take

on two distinct values Q = ± 1, as well as the correlation functions Kij := 〈Q(ti)Q(tj)〉
(where i < j) for three times t1 < t2 < t3. The assumptions (i) and (ii) then impose the

inequality [203]:

K12 +K23 −K13 ≤ 1 (3.24)

Quantum mechanics, on the other hand, violates this inequality with a maximal value of

K12+K23−K13 = 3
2 . As with the Bell inequalities, there are a range of different Leggett-Garg

inequalities, whose violation has been demonstrated in a wide array of physical systems [130].

In essence, these are the analogue of Bell inequalities but with space-like separation of

observers replaced by separation in time.
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3.5 Ontological models for quantum mechanics

Thus far, we have seen how a naive attempt at interpreting quantum theory as a realist

theory of the world runs into trouble. If one believes that quantum theory can be interpreted

as a statistical theory, arising as an average over an underlying ontological theory, then we

have seen that such a theory must satisfy certain constraints. Indeed, such a realist attempt

reveals that the world exhibits surprising features: non locality and contextuality.

One can make this quest for a realist interpretation of quantum theory more formal

by introducing ontological models [165,167]. These are realist models which reproduce the

predictions of quantum mechanics and have the following features:

(i) All the physical properties of a system are determined by the ontic state λ, which is

an element of the ontic space Λ.

(ii) The quantum state (preparation P) is an incomplete description of the underlying

reality, which corresponds to some distribution over Λ:

|ψ〉 ∈ H(d) ↔ (µP,|ψ〉(λ)) (3.25)

This explains the probabilistic nature of quantum mechanics (and allows some people to

sleep at night).

(iii) Measurements (M) correspond to splittings of the ontic state into distributions

{ξM,k(λ)} over Λ such that:

0 ≤ ξM,k(λ) ≤ 1 and
∑

k ξM,k(λ) = 1, for all λ.

For deterministic ontological models, these are characteristic functions which are just

equal to 1 (or 0) for values of λ which do (or don’t) give the corresponding outcome.

(iv) The probability of getting outcome k for a measurement M given preparation P is

then given by ‘averaging’ over the whole ontic space:

p(k|P,M) = 〈ξM,k(λ)µP,|ψ〉(λ)〉Λ :=

∫
dλξM,k(λ)µP,|ψ〉(λ) (3.26)

This allows us to compare the predictions of the ontological model with the operational

framework we wish to consider. We can, for example, compare the results in the model
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with the quantum prediction: p(k|P,M) = Tr(Mkρ), where Mk is a POVM element for

measurement M and ρ is the density matrix corresponding to the preparation P.

(v) We also need to account for a transformation of Λ over ‘time’, which can even

potentially be stochastic. Also, measurements can disturb the space Λ and the model must

account for this.

A realist would expect it to be possible to reproduce the predictions of any accurate op-

erational theory using such an ontological model (or perhaps a more subtle meta-ontological

model as we discuss in Chapter 5).

If we perform the preparation P with setting SP then the system will be prepared in

a particular ontic state λ ∈ Λ. If one believes that the quantum states are a complete

description of reality then they correspond directly to the ontic states themselves and the

ontic space is just the projective Hilbert space of the system Λ = H. We call this a ψ-ontic

interpretation of quantum theory.

Alternatively, the quantum state can correspond to a state of knowledge about reality.

In such a ψ-epistemic interpretation of quantum theory, the preparation procedure corres-

ponding to the quantum state corresponds to a probability distribution: µ(λ|SP ), satisfying
∫
dλµ(λ|SP ) = 1, which encodes the epistemological uncertainty about the ontic state we

prepared. This situation is compatible with the case where the quantum state is an in-

complete description of reality which must be supplemented by hidden variables such that:

H ⊂ Λ.

Another option would be that the quantum state does not play a realistic role at all such

that: H 6⊂ Λ. We can call this a ψ-calculational interpretation of quantum theory.

Note that the ontic space Λ need not be restricted to a set and can a priori be any

mathematical object. One must be careful not to discard potential realist interpretations

of physics because of mathematically naive restrictions. We will discuss possible alternative

mathematical formulations of the ontic space Λ in Chapter 5.

We will now describe some of the work done on ontological models.

3.5.1 Examples of ontological models

As an illustration, we shall now study several examples of simple ontological models [257,165].

(A) The first of these is the Beltrametti-Bugajski model [49]. This is an ontological
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model corresponding to the orthodox interpretation of quantum mechanics, with a ψ-ontic

interpretation of the quantum state. The ontic space is the projective Hilbert space Λ = H so

a system prepared in a quantum state |ψ〉 is associated with a sharp probability distribution:

µ(λ|ψ) = δ(λ− λψ) over Λ, where λψ is the unique ontic state associated with |ψ〉.
Measurements correspond to the distributions:

ξ(k|λ,M) = Tr(|λ〉 〈λ|Mk) (3.27)

where |λ〉 is the unique quantum state associated with λ ∈ Λ and Mk is the POVM

quantum theory associates with measurement M.

This model trivially reproduces the quantum mechanical operational predictions since:

pr(k|M,ψ) =

∫
dλξ(k|λ,M)µ(λ|ψ) = Tr(|ψ〉 〈ψ|Mk) (3.28)

(B) The next model, which is for two dimensional Hilbert spaces, is due to Kochen and

Specker [190]. The ontic states are vectors λ on the unit sphere Λ and the quantum state ψ

is associated with the probability distribution:

µ(λ|ψ) =
1

π
Θ(ψ · λ)ψ · λ (3.29)

where Θ is the Heaviside function, defined by Θ(x) = 1 or 0, for x ≥ 0 or x < 0

respectively, and ψ is the vector corresponding to the quantum state. This assigns the value

cos θ to all the points in the hemisphere centered on ψ and zero to the points in the other

hemisphere.

A measurement associated with a projector onto vector φ is associated with the distri-

bution: ξ(φ|λ) = Θ(φ · λ), such that a positive outcome occurs if the ontic state λ is in the

hemisphere centered on φ.

This model is deterministic and reproduces two-dimensional pure state quantum theory

since:

p(φ|ψ) =

∫
dλξ(φ|λ)µ(λ|ψ) =

1

2
(1 + ψ · φ) = |〈ψ|φ〉|2 (3.30)

Note that Bell’s hidden variable model [47], which we previously described as a counter-
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example of Von Neumann’s no go theorem, can also be expressed as an ontological model

for two dimensional Hilbert space.

(C) A third example of an ontological model is that of a qutrit, or three dimensional

quantum system [257]. The ontic state in this case consists of all the rank one projectors in

GL(3,C), which is the general linear group of degree 3, or the set of all 3 × 3 invertible

complex matrices.

A quantum state |ψ〉 is then represented by the probability distribution:

µ(λ|ψ) = N(Tr(λλψ)−∆) if Tr(λλψ)−∆ ≥ 0

or µ(λ|ψ) = 0 otherwise.

∆ is a parameter that can be played with to vary the support of µ(λ|ψ) and N is a

normalization factor.

Measurements are deterministic and can be described by the characteristic functions:

ξ0(λ) = Θ(Tr(λλ0)− Tr(λλ1))Θ(Tr(λλ0)− Tr(λλ2))

ξ1(λ) = Θ(Tr(λλ1)− Tr(λλ0)Θ(Tr(λλ1)− Tr(λλ2))

ξ2(λ) = Θ(Tr(λλ2)− Tr(λλ0))Θ(Tr(λλ2)− Tr(λλ1))

so that a state λ gives the outcome corresponding to which central element λ0, λ1 or λ2

it is closest to.

Sadly this model does not reproduce the predictions of quantum mechanics but it comes

extremely close.

We can see that this last model, as expected if we want it to reproduce quantum the-

ory, exhibits a form of contextuality. Indeed, there may exist some ontic states λ (called

unfaithful points) which are closer to central element λ0 then λ1 or λ2 but which are closer

to other central elements λ′1 or λ′2 than to λ0. This is a form of measurement contextuality

for the ontological model, where the outcome of a measurement depends on knowledge of

all three measurements which are simultaneously performed.

In model (B), we can see that the Born rule is artificially built into the model. If we

wish to gain real insight into how the statistical character of quantum mechanics arises

from an underlying deterministic realist theory, however, we would like to come up with a

principle which accounts for this. In the next section we will see how many of the interesting
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features of quantum theory can be derived from a simple ontological model together with

an epistemic restriction.

3.5.2 Spekkens toy theory

In defense of ψ-epistemic interpretations of quantum theory, Spekkens introduced a toy

theory [276] which reproduces many features of quantum mechanics. The theory is based on

the following knowledge balance principle: “If one has maximal knowledge, then for every

system, at every time, the amount of knowledge one possesses about the ontic state of the

system at that time must equal the amount that one lacks”.

The ontic space in this theory is simply the set IV := {1, 2, 3, 4} (ontic states are 1, 2, 3

and 4) for each elementary consistuent and IV n for a compound system with n elementary

consistuents. We define a canonical question set as: “a set of yes-no questions about the

ontic state of a system, which has the minimum number of elements such that the answers

uniquely identify the ontic state”. The measure of knowledge for which the knowledge

balance principle can be applied is then the number of questions in a canonical question set

to which we know the answer.

The analogue of the quantum state in our system is then the state of our knowledge

about the system, or the epistemic state. For a single system (with ontic space IV), the

epistemic states are: 1 ∨ 2, 1 ∨ 3, 1 ∨ 4, 2 ∨ 3, 2 ∨ 4 and 3 ∨ 4. The canonical set being

unanswered corresponds to the state of maximum uncertainty: 1 ∨ 2 ∨ 3 ∨ 4.

Any two states whose ontic bases have an empty intersection are called disjoint (for

example: 1 ∨ 2 and 3 ∨ 4). This is the analogue of orthogonal quantum states. We can

also easily define formal analogues of quantum fidelity and superpositions if we make the

associations:

1 ∨ 2↔ |0〉, 1 ∨ 3↔ |+〉, 1 ∨ 4↔ |−i〉, 2 ∨ 3↔ |+i〉,
2 ∨ 4↔ |−〉, 3 ∨ 4↔ |1〉 and 1 ∨ 2 ∨ 3 ∨ 4↔ I

2

where |±〉 = 1√
2
(|0〉+ |1〉) and |±i〉 = 1√

2
(|0〉+ i |1〉).

Transformations on the ontic states IV → IV are defined as transformations on the

epistemic states which are allowed by the knowledge balance principle. Therefore the allowed
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transformations are the permutations of the four ontic states, which correspond the 24

permutation elements of the symmetric group S4 under composition.

Measurement in the toy theory corresponds to asking as many questions from a canonical

set as the knowledge balance principle will allow you to answer. For a single system, the

allowed measurement questions are:

1 ∨ 2 or 3 ∨ 4 ? ; 1 ∨ 3 or 2 ∨ 4 ? ; 1 ∨ 4 or 2 ∨ 3 ?

Note that measurement would be deterministic if the ontic state were known, but the

restriction on our knowledge of the state of the system leads to an apparent indeterminism.

Also, the knowledge balance principle implies that measurement inevitably induces a dis-

turbance on the ontic state such that the epistemic state of the system corresponds exactly

to the answers of the measurement questions which were asked. So, if we performed the

measurement a ∨ b or c ∨ d? (a,b,c,d ∈ IV) and obtained the outcome corresponding to

a ∨ b, then the epistemic state of the system must be a ∨ b after the measurement. This

means that, in order to satisfy the knowledge balance principle, the ontic system undergoes

one of the following disturbances: either nothing happens or the ontic states a and b swap,

but we don’t know which one of these occurs. The toy theory also reproduces analogues of

non-commutative measurements and quantum interference.

The ontic state of a pair of systems is IVxIV, which corresponds to sixteen ontic states:

11, 12, 13, ..., 44. In this case, a canonical question set contains four questions, which

means that epistemic states of maximal knowledge correspond to one of four possibilities.

Two extra constraints must be added:

(i) Epistemic states must be defined such that the knowledge balance principle should

apply to each constituent subsystem as well as to the overall composite system.

(ii) Applying any allowed operation to a state must yield an epistemic state which satisfies

the knowledge balance principle.

This means that there are essentially two basic types of states which are allowed.

The first of these is of the form: (a ∨ b)(c ∨ d), with a 6= b and c 6= d (for example:

13 ∨ 14 ∨ 23 ∨ 24), where we have maximal knowledge about the individual systems, but

we know nothing about the relationship between them. These are analogous to separable
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quantum states.

The second of these is of the form: ae∨bf∨cg∨dh, with a 6= b 6= c 6= d and e 6= f 6= g 6= h

(for example: 11∨22∨33∨44). These are analogous to maximally entangled quantum states.

Further states can be introduced which are the analogues to mixed states in quantum theory,

like the completely mixed state I
2 := (1 ∨ 2 ∨ 3 ∨ 4)(1 ∨ 2 ∨ 3 ∨ 4).

Measurements and transformations can be defined in an analogous way as before (with

several complications) and the toy theory can similarly be generalized to more elementary

systems. The toy theory also allows for the description of a number of features which seemed

specific to quantum mechanics. These include entanglement, remote steering, no cloning,

no broadcasting, superdense coding, teleportation and the monogamy of entanglement.

There are a number of quantum phenomena that are not reproduced by Spekken’s toy

theory. The main quantum properties that are absent from the theory are: the continuum

of quantum states, the possible exponential speed up relative to classical computation and

most notably non-locality and contextuality. Indeed, the toy theory is by construction a

local, noncontextual hidden variable theory. This demonstrates the importance of these

concepts as key ingredients of the quantum formalism.

Before moving on to describe contextuality for ontological models, let us briefly mention

two generalizations of Spekkens toy theory. Larsson has introduced a contextual extension

of Spekkens toy theory with a memory requirement [197]. Recently, Spekkens and Schreiber

have been working on generalizing the theory to higher dimensional systems [262]. They have

shown that an epistemic restriction based on a discrete version of the uncertainty principle

allows us to extend the toy model to higher dimensions. This will be discussed in more

detail in Chapter 5.

3.5.3 Contextuality for ontological models

Spekkens has introduced an operational definition of contextuality which applies to onto-

logical models and to arbitrary operational theories [275]. This generalized notion of non-

contextuality is defined by Spekkens as: “A non-contextual ontological model of an oper-

ational theory is one wherein if two experimental procedures are operationally equivalent,

then they have equivalent representations in the ontological model”.

This means that we can define three types of noncontextuality, corresponding to the
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three types of experimental procedures: preparations, transformations and measurements.

Preparation noncontextuality is the feature that the probability distribution µP (λ) over

ontic states is the same for all preparation procedures in an operational equivalence class.

This means that, for any pair of preparation procedures P and P’ such that the probability of

outcome k (given that measurement procedure M is performed) is the same for all outcomes

k (and for all measurement procedures M) that are allowed in the operational model, the

distribution associated with the preparations P and P’ in the ontological model are the

same.

Therefore: p(k|P,M) = p(k|P ′,M) (for all M and k) =⇒ µP (λ) = µP ′(λ)

An example from quantum theory of two preparation procedures in the same equivalence

class would be the preparation of a maximally mixed state of a spin half system using two

different bases, for example:

I
2 = 1

2(|0〉 〈0|+ |1〉 〈1|) = 1
2(|+〉 〈+|+ |−〉 〈−|), where |±〉 = 1√

2
(|0〉 ± |1〉).

Similarly, transformation (or measurement) noncontextuality is the feature that trans-

formations (or measurements) are represented in exactly the same way in the ontological

model, for all transformation (or measurement) procedures in an operational equivalence

class.

Measurement noncontextuality can then be defined as the assumption that:

p(k|P,M) = p(k|P,M ′)(forallP, k) =⇒ ξM,k(λ) = ξM ′,k(λ) (3.31)

An interesting feature of these generalized notions of contextuality is that, unlike the

traditional notion of contextuality, it has been shown that for both preparation contextu-

ality and unsharp measurement contextuality (using POVMs), proofs of contextuality can

be found for two dimensions (instead of three). It is also possible to retrieve the traditional

notion of contextuality along with the corresponding no-go theorems that we studied above

from this generalized notion of contextuality [275]. This requires us to assume the perfect dis-

crimination of orthogonal states, which we know is a feature of quantum theory. Therefore,

ontological models must be preparation contextual in addition to measurement contextual.

An operational notion of noncontextuality is a very desirable result since it can lead
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us to methods of experimentally differentiating noncontextual and contextual theories. We

can look for noncontextual inequalities [277] [69] [207], similar to Bell inequalities, which give an

observable bound on experimental achievements of noncontextual theories. Such inequalities

could be the first step towards clarifying potential applications of contextuality (for quantum

computing for example) or understanding exactly what role contextuality might play in an

axiomatization of quantum theory.

3.5.4 PBR theorem

So far, we have seen that ontological models for quantum mechanics must satisfy a number

of properties. Indeed, they must exhibit both non-locality and contextuality. In addition,

Lucien Hardy has presented an ontological excess baggage theorem [163], showing that the

ontic space, even for a qubit, must have infinite cardinality. Montina has also proven that

the manifold dimension of the ontic state space is necessarily exponential [221], assuming

that the dynamics of the ontic states is Markovian. Moreover, Colbeck and Renner [94,95]

have demonstrated that an extensive class of hidden-variable extensions of quantum theory

cannot give any more predictive information about the outcomes of future measurements

than quantum theory itself.

Pusey, Barrett and Rudolph, in an attempt to clarify what a quantum state represents,

introduced another no-go theorem for ontological models [248]. This theorem has a slightly

different flavor to those of Bell and Kochen-Specker. It states that:

“Any model in which a quantum state represents mere information about an underlying

physical state of the system must make predictions which contradict those of quantum

theory”.

This theorem attempts to rule out ψ-epistemic ontological models, where quantum states

are epistemic and there is some underlying ontic state so that quantum mechanics is the

statistical theory of these ontic states.

The PBR argument rests on the following assumptions: the physical system has a real

physical state (independent of the observer) and systems that are prepared independently

have independent physical states. Also, the ontic space has to be a measure space and both

states and measurements need to be mathematically nice (i.e. probability distributions).

Coarse graining over ontic states λ is performed by averaging, using an integration over
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ontic states. The proof is then the following:

Let the ontic space Λ be a measure space and preparation of each of the quantum states

|ψi〉 give an ontic state λ from a probability distribution µi(λ) over Λ.

Assume that n systems can be prepared independently in quantum states:

|ψx1〉 , ..., |ψxn〉 corresponding to ontic states λ1, ..., λn sampled from the product distri-

bution: µx1(λ1)...µxn(λn).

Assume also that the probability p(k|λ1, ..., λn) for outcome k of a measurement is fixed

by the ontic states λ1, ..., λn. Then the operational probabilities are:

∫
...

∫
p(k|λ1, ..., λn)µx1(λ1)...µxn(λn)dλ1...dλn (3.32)

To reproduce quantum mechanics, the probability for each measurement outcome should

be within some small ε > 0 of the predicted quantum probability (using the Born rule). PBR

have shown that (even in the presence of noise) if this is the case for a model, then for distinct

quantum states |ψ0〉 and |ψ1〉 corresponding to distributions: µ0(λ) and µ1(λ) respectively,

we have (see the paper [248] for details): D(µ0(λ), µ1(λ)) = 1
2

∫
|µ0(λ)− µ1(λ)|dλ ≥ 1− 2ε

1
n

(for some n).

This means that for small ε, D(µ0(λ), µ1(λ)) – which is a measure of distance between

two probability distributions – is close to 1 so that an ontic state λ is closely associated

with only one of the two quantum states. This shows that for distinct quantum states |ψ0〉
and |ψ1〉, if the corresponding two distributions: µ0(λ) and µ1(λ) overlap then there is a

contradiction with the predictions of quantum theory (modulo the assumptions we stated

before).

Note that Lewis, Jennings, Barrett and Rudolph recently constructed ψ-epistemic mod-

els [206], such that the probability distributions corresponding to distinct quantum states

overlap, that recover the Born rule. Their paper does not contradict the PBR result since

the models violate one of its assumptions: they do not have the property that product

quantum states are associated with independent underlying physical states.

Another interesting no-go result similar to PBR [36] provides an upper bound on the

extent to which the probability distributions in ψ-epistemic models can overlap if they are

to be consistently reproduce quantum predictions.
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We could alternatively take the approach of quantum Bayesianism [71,72,139] and argue

for a ψ-epistemic interpretation of quantum theory, where the quantum state represents

information about possible measurement outcomes (regardless of any underlying ontology),

which would violate another assumption of the PBR theorem.

We will end here with the description of ontological models and shall now proceed with a

description of other explicit attempts to construct an ontological interpretation of quantum

theory.

3.6 Ontological interpretations of quantum theory

Several attempts have been made to actually construct realist theories which account for

all the phenomena described by quantum mechanics. A number of these aim to go beyond

quantum theory and several attempt a consistent description of quantum gravity. Any such

approach should try to get rid of the arbitrary division of the world into observing objects

and observed objects which arises in orthodox quantum mechanics. The fundamental role

of measurement and necessity of always referring to an outside observer means that the

universe as a whole is, as Bell puts it, an embarrassing concept (does the universe require

the presence of a universal God-like observer which can observe itself to even exist?).

Here, we will briefly describe two of the most prominent ontological interpretations of

quantum mechanics: de-Broglie Bohm theory and the many-worlds interpretation.

3.6.1 Bohmian mechanics

The ontic state in Bohmian mechanics [58] [59] is the quantum mechanical wavefunction ψ(r, t)

together with particle position ξ. This means that de-Broglie Bohm theory for a single

particle is a hidden variable model with an ontic space Λ=H x R3.

The evolution equations for the ontic state are the Schrödinger equation:

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + V (r)ψ (3.33)

where ψ(r, t) = R(r, t) exp iS(r,t)
~ , along with the guidance equation:

dξ(t)

dt
=

1

m
[∇S(r, t)]r=ξ(t) (3.34)
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which is a first order equation. Note that we choose a spacetime frame [x,t] and that this is

not a fundamentally Lorentz invariant theory.

The Hamilton-Jacobi equation (real part of the Schrödinger equation):

∂S

∂t
+

(∇S)2

2m
+ V +Q = 0 (3.35)

now has an extra term: Q = − ~2

2m
∇2R
R , which we call the quantum potential. An

ensemble of particles satisfying this quantum Hamilton-Jacobi equation has the following

equation for the conservation of probability (corresponding to the imaginary part of the

Schrödinger equation):

∂R2

∂t
+∇ · (R2∇S

m
) = 0 (3.36)

The particle therefore has a well defined position ξ(t) which is causally determined and

varies continuously in time. The field ψ is a pilot wave which guides the particle position

independently of its amplitude and there is no backlash on this wave, meaning that it is

not affected by ξ. This field provides active information to the particle: very little energy

directs a much greater energy.

Note also that in Bohmian mechanics, the results of quantum mechanical observations

is determined by hidden variables of the combined apparatus and system. As Kochen and

Specker noted [190], this means that this is also a contextual hidden model variable, which

embodies Bohr’s notion of indivisibility of the combined system of observing apparatus and

observed object.

Importantly, this theory reproduces the operational predictions of quantum mechanics.

We shall not delve further into the details of this theory but note that they are well described

in Bohm and Hiley’s book [60]. We will not go through objections of de-Broglie Bohm theory

here, but will instead move on to a description of many-worlds theory.

3.6.2 Many-worlds theory

The many-worlds interpretation is an attempt to maintain the representational completeness

of the quantum wavefunction, whilst getting rid of measurements completely so that the only

possible evolution is the deterministic unitary one. There are a number of different versions
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of this theory, but we will mostly focus on the accounts given by Everett [132] and DeWitt [111].

Everett allows the universe as a whole to exist objectively and correspond to a vector in

Hilbert space. He attempts to attribute subjective states to observers within the universe,

which are in direct correspondence with aspects of the physical universe. These observers

posses physical memories in direct correspondence with their past experience, from which

deductions can be made about the subjective experience of the observer.

In this relative state formulation, the observer is considered as an automatic machine,

whose future actions are determined by the memory together with its present sensory data.

Let us illustrate Everett’s approach by examining the measurement of spin for a particle in

the state: |ψ〉 = a |0〉 + b |1〉. We can see that the measurement acts on the joint state of

the system, the measurement apparatus M and the observer O itself as:

(a |0〉+ b |1〉) |Mready〉 |Oready〉 → a |0〉 |get0〉 |observe0〉+ b |1〉 |get1〉 |observe1〉
In this way, the memory of the observer has been entangled with the system such that

the observer does not have a definite memory of the outcome in quantum theory. There-

fore, in order to avoid collapse of this wavefunction, Everett assumes that each part of the

observer wavefunction corresponds to a definite state of awareness of the content of the ob-

server’s memory. In this way, there is a single total awareness where each of the two partial

awarenesses are unaware of the other or of the whole. This causes many possible branches

to arise along with a sequence of possible partial awarenesses (unaware of each other), where

the experience of a particular person is restricted to one branch.

The theory therefore relates the universe as a whole to all the various points of view of the

observers contained within it, which each establish a relation between a state of awareness

and some part of the universe containing the observed object. This sort of relationship is

defined by Everett as the relative state of the system corresponding to a particular state of

the awareness of the observer. This means that there are ‘reference frames’ corresponding

to the memories of the various observers and that any part of the total state only makes

sense relative to these frames of reference.

One of the problems we are faced with in the relative states approach, is to under-

stand why we interpret the subjective experiences in any given basis rather than any

other [278]. This could lead to subjective experiences of the form 1√
2
(|observe0〉+ |observe1〉)

or 1√
2
(|observe0〉 − |observe1〉), which are not obvious to interpret. This led Kent [182] to
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make the following criticism: “no preferred basis can arise, from the dynamics or from

anything else, unless some basis selection rule is given”.

Let us now move to DeWitt’s version of the theory, which is closer to the usual account

of the many-worlds interpretation. One of his main goals is to introduce a minimal number

of concepts into the theory. DeWitt assumes that the whole conceptual basis for quantum

theory is provided by Hilbert space and the fact that “the world must be sufficiently com-

plicated that it can be decomposed into systems and apparatuses”. He then asserts that the

universe is a vector in Hilbert space which is split into an astronomical number of branches,

not only due to measurement but also due to many other natural processes. Unlike Everett’s

relative state (many minds) formulation, this interpretation doesn’t just aim to explain our

perceptions of the universe, since the universe is itself split into many parts (many worlds).

It is not clear when the split is meant to occur and how this precisely depends on complexity.

The key issue for many-worlds theory is then to account for how probability can arise

in a deterministic theory, where all possible outcomes occur and the universe is a vector in

Hilbert space. The resolution of this issue is not obvious but one option is to use a modified

version of many-worlds, described by Deutsch [108], which can deal with probabilities. He

assumes that there is a random distribution of an infinite and constant number of universes,

with probabilities corresponding to the quantum probabilities. This construction allows us

to recover the quantum mechanical probabilities for events (with some caveats [295]).

Let us conclude this section with a quick comparison between many-worlds theory and

the de-Broglie Bohm interpretation. First of all, the Bohmian pilot wave also has a mul-

tiplicity of realities, and therefore many-worlds is preferred by Occam’s razor. In fact the

additional structure of particle positions means that unlike Everett’s formulation, de-Broglie

Bohm’s theory does not obey Lorentz covariance. It does not, however, have any issues with

probabilities and we can easily interpret macroscopic phenomena in Bohmian mechanics as

depending on the configuration of Bohmian particles.

Let us now proceed to an analysis of collapse models.

3.6.3 Collapse models

Several theories have attempted to resolve the clash between discontinuous statistical be-

havior of measurement and the linear unitary evolution of closed systems by including the
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measurement jump as part of dynamics. This has lead to an attempt at forming non-linear

extensions of Schrödinger’s equation. These would be expected to have a high degree of

non linearity when observers are concerned, whilst still being linear in known instances and

giving rise to (relativistic) classical dynamics for macroscopic objects.

These collapse models will play a role in the final chapter of the thesis where a novel

collapse model is introduced, providing an interesting quantum-like theory that will be

discussed at some length. In that chapter, we will present collapse models in some detail so

we will keep this section brief and only give a feeling for spontaneous quantum collapse.

Let us now briefly look at an example of a dynamic collapse model due to Ghirardi,

Rimini and Weber [145]. The wave function for N particles is assumed to evolve according to

the Schrödinger equation: i~ ∂
∂t |ψ(t)〉 = H |ψ(t)〉 at most times, but at every time interval

τ
N on average there is a reduction in the spread of the wavefunction (spontaneous collapse):

|ψ(t+ dt)〉 =
1√
p(qk)

√
E(k)(qk) |ψ(t)〉 (3.37)

where

E(k)(qk) =

∫
drkK exp

−(rk − qk)2

σ2
|rk〉 〈rk| (3.38)

is a positive operator which has expectation values:

pk = 〈ψ(t)|E(k)(qk) |ψ(t)〉 (3.39)

and K is a normalization constant. Also, k is chosen at random and qk is chosen by sampling

from p(qk). This introduces two new universal constants, which are the mean time between

collapses for one particle τ ' 1016s, and the localization width of each particle σ ' 10−7m.

This process is like a POVM with a continuous outcome space occurring on average every

τ
N , which is like a noisy position measurement. This model exhibits non-locality and we can

define entangled states of several particles similarly to quantum theory.

The GRW model also reproduces the operational quantum results for measurement

without the need for any observer. Indeed, the overall wavefunction, after interaction
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between the observed system and the apparatus is in the superposition:

ψ =
∑

n

Cnψn(x)φn(y1, ..., yR, Y ) (3.40)

where x is the coordinate of the observed system, y1, ..., yR are the internal coordinates of

the apparatus and Y is the macroscopic pointer setting of the apparatus. The spontaneous

collapse process of a single particle will affect directly the spread of the pointer coordinate

Y and will very rapidly leave the single result φm(y1, ..., yR, Y ) with a well defined pointer

reading.

A consideration of an ensemble of such experiments will leave a randomly distributed

selection of results where the probability of the mth result is |Cm|2, in agreement with

quantum mechanics. With the choice of τ and σ given, this theory is experimentally plausible

to date.

We will return to a more detailed survey of quantum collapse models in Chapter 6.

To conclude this section, we note that there are many other interpretations of quantum

theory, such as the two-state vector formalism [12], the consistent histories approach [114],

quantum measure theory [273], quantum causal sets [115], the transactional interpretation [100],

modal interpretations [292], and quantum logic [54].

3.7 Generalized probabilistic theories

Whether a physical theory is aiming to reproduce natural phenomena or not, we can consider

a number of important features of the theory. This allows us to understand traits of nature in

a more general context than just through the eyes of quantum mechanics. Indeed, the study

of a broad range of theories within an operational framework can yield considerable insight.

This can, for example, help differentiate between different theories within the framework,

simplify calculations within any of these theories or reveal novel fundamental features of

the world. We will now present a larger space of hypothetical theories, containing quantum

theory, namely generalized probabilistic theories.
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3.7.1 Hardy’s operational framework

Based on previous work by Ludwig [212] and collaborators, Hardy [162] introduced a simple

framework for convex operational theories, where quantum theory is derived from a set of

five axioms. Like in most operational approaches, he considers preparation devices which

prepare a system in a given state, transformation devices, and measurement devices whose

distinct outcomes correspond to macroscopic events. Central to his axioms are the two

integers:

K, which is the number of degrees of freedom, defined as the minimum number of

probability measurements needed to determine the state.

N, which is the dimension, defined as the maximum number of states that can be

reliably distinguished from one another in a single shot measurement.

Quantum theory can then be derived from the following axioms:

Axiom 1: Relative frequencies tend to the same value (called probability) for any

case when a given measurement is performed on an ensemble of n systems, given some

preparation, as n goes to infinity.

Axiom 2: K is a function of N which takes the minimal value allowed by the axioms,

for each N.

Axiom 3: A subsystem which has support on only M states of a set of N distinguishable

states, behaves like a system of dimension M.

Axiom 4: A composite system containing subsystems A and B has: N = NANB and

K = KAKB.

Axiom 5: There exists a continuous reversible transformation on a system between

any two pure states of that system.

Note that if we do not include the word ‘continuous’ in axiom 5 then we obtain clas-

sical probability theory (with K=N) instead of quantum theory (with K = N2). Let us

now sketch how quantum theory can be derived from these axioms and introduce Hardy’s

operational framework for convex operational theories in the process.
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The first axiom simply defines probability. This uses a frequentist approach but the

framework is compatible with any of the standard interpretations of probability. It is then

possible to define the state of a system as: “any mathematical object which can be used

to determine the probability for any measurement that could possibly be performed on the

system”. In order not to over-specify the state, it is also useful to introduce a set of fiducial

measurements as: “a certain minimum number K of appropriately chosen measurements

which are both necessary and sufficient to determine the state”. This means that the

(operational) state is fully specified by a vector of probabilities p = (p1, ..., pK)T of getting

a given outcome in each of the fiducial measurements.

Any probability pm that can be measured, is assumed to be determined by a function f of

the state p: pm = f(p). The first postulate, together with the possibility of probabilistically

preparing states, means that f is linear and therefore: pm = r · p, where r is a vector

associated with measurement. Note that the fiducial measurement vectors are the Cartesian

basis vectors ri = ei = (0, ..., 1, ..., 0)T .

Transformations of the system correspond to real K×K matrices Z such that: p → Zp.

The set of allowed states, measurements and transformations are all convex sets.

One can then define pure states as non zero extremal states of the convex state space

S, i.e. non-zero vectors in S which cannot be written as a convex sum of other vectors in

S. The identity measurements and normalization of states can be similarly defined. We

also expect there to be sets of states pn (at most N of them), called basis states, which are

distinguishable from one another in a single-shot measurement, by measurement vectors rm

(which cover all outcomes) such that:

rm · pn = δmn (3.41)

In this way, we can see that physical systems are characterized by their dimension

N (number of basis states) and the number of degrees of freedom K (number of fiducial

measurements).

Although we will not go through the proof here, Hardy showed that [162], in general, the

axioms imply: K = N r, where r=1,2,... . The second axiom then tells us that we must take

the smallest value of r which is consistent with the other axioms.
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The third and fourth axioms dictate how subsystems combine to form larger systems,

but we will not insist on how these work since we shall return later to the description of

how separate systems combine in generalized probabilistic theories.

As we mentioned before, the fifth axiom provides the distinction between quantum theory

and classical probability theory. It implies that there exists an allowable reverse transform-

ation Z−1 for any input state and that the set of reversible transformations forms a compact

Lie group. This means, for example, that a pure states can always be transformed to any

other pure state along a continuous trajectory through pure states.

Such a thing is not possible for classical states, since the space of classical pure states

corresponds to vertices of a simplex. One can then show that, in accordance with axiom

2, quantum theory and classical probability theory are both special cases of these convex

operational theories satisfying: K = N2 and K = N respectively.

3.7.2 Information theoretic constraints for quantum theory

Two years after Hardy’s paper, Clifton, Bub and Halvorson [80] attempted to derive quantum

theory from information theoretic axioms only. They adopt the following axioms:

Axiom 1: It is impossible to transfer superluminal information between two physical

systems by performing measurements on one of them.

Axiom 2: It is impossible to perfectly broadcast the information contained in an un-

known physical state.

Axiom 3: It is impossible to unconditionally perform secure bit commitment.

The authors work in a C?-algebraic framework which encompasses both classical and

quantum statistical theories. They argue that quantum theory can be picked out from

this general C? framework by the satisfaction of certain physical constraints: kinematic

independence, non commutativity, and nonlocality. They then formulate their three axioms

(which are known to hold in quantum theory) in C? algebraic terms and show that they

imply kinematic independence, non commutativity, and nonlocality.

This is an interesting result but it can be criticized since it assumes a framework which is

not much more general than quantum theory to begin with and since it fails to establish the

full structure of quantum theory. This work, however, showed that progress can be made

in understanding the connection between information processing and physical principles in
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general by studying information processing in a wide range of theories. Such an insight was

an important motivation for the study of information processing in generalized probabilistic

theories, which we shall describe in the following section.

3.7.3 Information processing in generalized probabilistic theories

Barrett introduced a framework [35] for generalized probabilistic theories which is based on

Hardy’s formalism. The five Hardy axioms are now replaced by the following assumptions:

Assumption 1: The state of a single system is completely specified by the vector of

probabilities for the outcomes of all fiducial measurements:

~P = (P (a = 1|X = 1), P (a = 2|X = 1), ...;P (a = 1|X = 2), P (a = 2|X = 2), ...; ...)T

where P (a = i|X = j) is the probability of getting outcome i when fiducial measurement

j is performed on the system.

Assumption 2: The set of allowed normalized states (satisfying |~P | = ∑i P (a = i|X =

j) = 1,∀j) is closed and convex. The complete set of states S is is the convex hull of allowed

normalized states and ~0.

Assumption 3: An element of the set of allowed operations {Mi} ∈ O must satisfy:

0 ≤ |Mi·~P |
|~P |

≤ 1, ∀i, ~P ∈ S
∑

i
|Mi·~P |
|~P |

= 1,∀~P ∈ S
Mi · ~P ∈ S, ∀i, ~P ∈ S

A set of transformations {Mi} is an element of O if and only if Mi is a element of the

set of allowed transformations T (for all i) and
∑

i
|Mi·~P |
|~P |

= 1,∀~P ∈ S. We assume that such

a set T exists and by definition it is convex.

Assumption 4: The final state of a joint system does not depend on the order in which

operations are independently performed on on each of its subsystems.

Assumption 5: The global state of a system can be completely determined by specifying

joint probabilities of outcomes for fiducial measurements performed on each subsystem.

Also, if the joint state ~PAB is in the set of allowed states SAB for the joint system AB,

then the reduced state ~PA for system A (with outcome probabilities P (a = i|X = j) =
∑

i′ P (a = i, b = i′|X = j, Y = j′)) is in the set of allowed states SA for system A.

Assumption 6: If ~PA ∈ SA and ~PB ∈ SB then ~PA ⊗ ~PB ∈ SAB.
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Assumption 7: A theory first specifies a set of allowed states, then all transformations

MA
i that are well defined, in the sense that (MA

i ⊗ I)~PAB ∈ SAB whenever ~PAB ∈ SAB,

are allowed transformations.

The first three assumptions lead to convex operational theories very similar to those

derived by Hardy’s axioms [162]. The Barrett assumptions, however, take the degrees of

freedom of the state as internal degrees of freedom, which requires a closer analysis of the

role of spacetime and treats transformations and measurements in a unified way. The latter

assumptions deal with how systems combine to make other systems. These allow us to

derive a theorem that systems combine according to a specific tensor product rule, which

leads to a natural definition of entanglement in these theories. Note that the no-signaling

principle is a corollary of Assumption 4.

Several features, which at first seem specifically quantum, arise in all these generalized

probabilistic theories, except the classical one. These include the disturbance of a system

on measurement [138], the multiple decompositions of a mixed state into pure states, the

no-deleting theorem [229] and the no-cloning theorem [301]. The paper also describes in detail

how classical and quantum theory fit into the framework and introduces a general non-

signaling theory (box-world), containing states giving rise to PR-box correlations [242], as

well as a generally local theory (GLT), where all states are local. Barrett asks what further

assumptions would uniquely identify quantum theory, and proposes that quantum theory

might be optimal for computation. A number of open questions are being addressed with

regard to entropy [34], time and causal structure [164,13], phase [141] and computation [201,202]

in these generalized probabilistic theories.



Chapter 4
The logic of Stabilizer Quantum Mechanics

T
here is often a consensus among scientists that disciplines such as Physics, Chemistry

and Biology are concerned with empirical knowledge. This would mean that our

knowledge of physics can only be acquired through the experience acquired from our sense

data, in conjunction with a process of induction, abstraction and synthesis. Logic, on

the other hand, is concerned only with a priori knowledge, which need not be justified by

experience. But what is the nature of this a priori knowledge; should it be interpreted as a

special insight into physical reality, a profound understanding of our own minds or a simply

a disambiguation of language?

How can one make any statements about the universality of a physical law based upon

an inductive generalization coming from observation? Indeed, from our empirical experience

we can only ever make a finite number of imperfect observations, so can we then assumingly

proceed to attribute philosophical truth to physical theories? Moreover, it is not only

impossible to deny the possibility of exceptions to physical laws but a closer examination

shows that we can never expect to exactly verify any law. Yet, the fact that a physical

measurement of the hypotenuse of a right triangle with sides of length one will never yield
√

2 does not lead us to question the validity of any mathematical axioms in physics.

Mathematical theories define objects and use a language that are detached from our

sensory experience. The efficiency of Euclidean geometry as a tool for building bridges does

not mean that we can give any physical meaning to concepts like a point which has no part or

an infinitely extended straight line. Are physical experiments just self-fulfilling prophecies,

94
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where we are defining abstract objects and processes that trivially obey the rules we set out

because they are defined in that way? Should our physical theories be understood as a priori

knowledge that cannot be strengthened at all by observing additional evidence towards our

claim?

In addition, what can we make of the existence of numerous conflicting axiomatic systems

which may all be logically consistent? Can arguments of parsimony and elegance such as

Ockham’s razor really give us a reason to prefer some theoretical constructs rather than

others? The danger in the mathematical foundations of physics is that we may be inclined

to feel that certain axioms and theorems are true and therefore our attention might be

taken away from the logical interrelations between them. It is often tempting to believe

that apparently obvious theorems follow from premises which do not rigorously entail them

through a deductive system of reasoning. Conversely, belief that certain results are absurdly

false or not in line with “physical intuition” may lead one to discard consistent physical

theories.

Therefore, formal logical systems must play a prevalent role in Physics. In particular,

studying whether logical systems describing physical processes obey properties such as uni-

versality, soundness or completeness can yield important information concerning physical

theories. In the logical foundations of Physics, we can define an abstract process lan-

guage whose primitive terms are physical processes. Equivalence of physical processes then

provides a high-level axiomatic system and theorems follow from this system by pure de-

ductive logic. Physical meaning no longer plays a fundamental role, and physical objects

have no more meaning than that defined by the mathematical rules of the formal system.

Given the numerous foundational accounts of Quantum Theory, it is essential to provide a

coherent narrative, where physical theories follow deductively from consistent sets of axioms.

One must start with a careful examination of the mathematical terms in a physical theory:

the context and interpretation of the abstract terms are essential. We can then follow

Tarski [281] is requiring that truth can only be understood relative to a given language L and

can only be expressible in a meta-languageM, which contains L and can be used to analyze

the syntax of L. Truth can be defined via a physical meta-language M, which provides a

framework to study a variety of alternative theories. Can we define such a meta-language

of physics?



96

4.1 Introduction

Studying quantum theory from a computational and information-theoretic point of view

has provided important no-go theorems [46,190,301,33,248], a description of new physical phe-

nomena [52,50,51,303] and a better understanding of the importance of quantum resources, like

entanglement [169]. The development of quantum computation as a sub-discipline of com-

puter science in its own right, moreover, leads us to ask important new questions that would

not normally occur to physicists.

There are several natural logical properties that are important with regard to quantum

computation. The first one of these is universality. It has been shown [110,32] that a universal

set of gates for any quantum computation consists of single qubit gates and the controlled-

not gate. This means that any valid quantum circuit can be built up using composition and

tensor products of gates in this universal set.

Two other essential properties for logical systems are soundness and completeness. Pre-

vious work has focused on whether abstract diagrammatical systems are sound or complete

for quantum mechanics [268,82,24]. Here, we wish to present soundness and completeness in a

more concrete setting by describing them in terms of familiar quantum circuits. This should

clarify the importance of these logical properties from the viewpoint of quantum computa-

tion, in analogy with the work done on the role of universality in quantum computation.

Assume that we are given a set of equations between quantum circuits. New circuit

equations can be obtained by locally substituting parts of circuits by equal quantum circuits.

Soundness guarantees that any equation between quantum circuits that can be deduced

from an original set of equations is in agreement with quantum theory. A set of circuit

equations is sound if each quantum circuit equation in the original set of equations agrees

with quantum mechanics and if any equation built from this original set is also in agreement

with quantum theory.

Completeness ensures that any equation between quantum circuits that is true in

quantum theory can be deduced from the original set of equations. A complete set of

circuit equations for quantum mechanics is one from which the equality of any two quantum

circuits corresponding to the same physical process can be deduced. Although constructing

a set of circuit equations that is sound for quantum theory is simple, finding a complete set
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of circuit equations is far from trivial. Such a set, if it exists, would provide a logical set

of axioms from which one could formally derive whether or not any two quantum processes

are equivalent.

In this chapter, based on joint work with Bob Coecke [251], we restrict the search for

a complete set of circuit equations to a subclass of quantum mechanics, namely stabilizer

quantum theory. A stabilizer quantum mechanics process consists of tensor products and

compositions of computational basis state preparations, Clifford unitaries and measurements

of observables in the Pauli group (or at least one of these three). Two such physical processes

are equivalent if they can be described by exactly the same quantum circuit.

This naturally leads us to ask the following question:

Can one find a sound and complete set of quantum circuit equations from which one

can deduce the equivalence of any two stabilizer processes?

We answer this question in the affirmative. The crux of the proof draws from converting

an abstract graphical calculus into quantum circuits.

In the following, we construct a logical circuit calculus whose elements correspond to

physical stabilizer processes. We show that this calculus is equivalent to an abstract graph-

ical calculus called the ZX network [82].

This demonstrates that familiar quantum circuits can always be used instead of the

algebraic calculus to study stabilizer theory. However, since the ZX network diagrams are

not restricted to the structure of circuits, the ZX network is a more flexible and convenient

tool for calculation. The abstract calculus relies on reasoning with diagram elements which

have no explicit physical interpretation.

The elements of the circuit calculus, on the other hand, correspond directly to physical

systems and processes. Therefore, we can use this graphical language to study the physical

theory of stabilizer quantum mechanics from a logical point of view. This allows us to expli-

citly present a complete set of quantum circuit equations for stabilizer quantum

mechanics.

This is an important result towards understanding the logic of stabilizer quantum mech-

anics: this complete set of circuit equations is a set of axioms from which any two stabilizer
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quantum circuits which are identical can be proven to be the same. Note that the existence

of such a definable complete set of circuit equations cannot be deduced from only studying

the abstract ZX network.

4.2 Stabilizer quantum theory

A very useful subclass of quantum mechanical operations is stabilizer quantum mechanics.

Stabilizer states are eigenstates with eigenvalue 1 of each operator in a subgroup of the Pauli

group:

Pn := {αg1 ⊗ ...⊗ gn : α ∈ {±1,±i}, with: gk ∈ {I, σx, σy, σz}, ∀k ∈ {1, ..., n}} (4.1)

The Clifford group is the group of unitary operations:

Cn := {U : UgU † ∈ Pn,∀g ∈ Pn} (4.2)

It is generated by the phase, Hadamard and C-NOT gates.

Stabilizer quantum mechanics [155] includes state preparations in the computational basis,

Clifford unitaries and measurements of observables in the Pauli group. This non-universal

subclass of quantum mechanics is particularly important for a large number of quantum

protocols, including quantum teleportation [50], super-dense coding [52] and quantum key

distribution [150]. It also underlies the current theory of quantum error correction.

By the Gottesman-Knill theorem [154], stabilizer quantum mechanics can be efficiently

simulated by a classical computer. It has been shown [91] [247] that there is a close relationship

between the stabilizer formalism and Spekkens’ toy theory [276].

Independently from work presented here, a recent result by Selinger [269] presents a re-

write system by which any Clifford operator can be reduced to a unique normal form. This

is similar in spirit to the logical analysis of stabilizer quantum mechanics we consider here.
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4.3 ZX network

We will now describe the ZX network [82,83], which is a two-colored pictorial calculus aiming

to reproduce certain aspects of quantum theory. This calculus directly allowed us to find

the complete set of circuit equations for stabilizer quantum mechanics presented below.

General network diagrams are built out of parallel (tensor product) and downward com-

positions of generating diagrams from Figure 4.1. 1

H α

...

...

...

...

β; ; ;;

FIG. 1. Generating diagrams for the ZX network.

Figure 4.1: Generating diagrams for the ZX network.

The axioms of the ZX network are summarized in Figure 4.2. The (T) rule means

that after identifying the inputs and outputs of any part of a ZX network, any topological

deformation of the internal structure does not matter. The (H) rule was introduced in [118].

Two network diagrams can be shown to be equal by locally replacing some part of a

diagram with a diagram equal to it.
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1

= (B2)

(K1)

(H)
π/2
π/2=H
π/2

(K2)
π
α

=
π
−α

...

(S2)

...

=... (S1)

... ...

=

...
α

...

= (B1)

π
π

= π

H

H

...

...

...
H

α (C)

H

HHH

H

=α

...

α+ β

β

Only the topology matters. (T)

FIG. 1. (Color online) Diagrammatic rules for the ZX net-
work.

Figure 4.2: Diagrammatic rules for the ZX network.
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1

= |0〉 :=
√
2

(
1
0

)

π
= |1〉 :=

√
2

(
0
1

)

= |+〉 :=

(
1
1

)

π
= |−〉 :=

(
1
−1

)

= Z get : 0 :=
( √

2 0
)

π
= Z get : 1 :=

(
0

√
2
)

= X get : + :=
(
1 1

)

π
= X get : − :=

(
1 −1

)

= :=

(
1 0
0 1

)

α = RX(α) :=

(
cos α

2 −i sin α
2

−i sin α
2 cos α

2

)

α = RZ(α) :=

(
exp−iα2 0

0 exp iα2

)

H = H :=

(
1 1
1 −1

)

= • :=




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




= ×
×

:=




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




FIG. 1. (Color online) Quantum circuit interpretation of the
ZX network elements.

Figure 4.3: Quantum circuit interpretation of the ZX network elements.
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ZX network diagrams are logical elements which have no explicit physical meaning and

can be modeled in many different ways. Indeed, there are structures that appear in ZX

networks but don’t have a circuit interpretation. A particular interpretation in terms of

quantum circuits can be constructed from the diagrams of the ZX network as shown in

Figure 4.3. The ZX network is universal for quantum computation since any quantum

circuit can be built in this way.

We know that the ZX network is sound for quantum mechanics: if two diagrams are

equal according to the rules of the ZX network then their corresponding quantum circuits

are equivalent [82]. Note that the converse is not true: it can be impossible, from the axioms,

to show the equality of two ZX network diagrams whose corresponding quantum circuits

are equivalent. The ZX network simplifies numerous quantum calculations. It allows us to

study a number of fundamental aspects of quantum theory from a high-level mathematical

point of view [119,170,87].

4.4 Completeness of the ZX calculus

Theorem (Backens) [24]: The ZX network is complete for stabilizer quantum mechanics.

This means that any equation between two ZX network diagrams (put into matrix mech-

anics) which can be shown to be true using stabilizer quantum mechanics is derivable using

the rules of the ZX network. Note that this completeness result only requires the axioms in

Figure 4.2 to hold with phases α and β in the set {−π/2, 0, π/2, π}.
We will present an outline of the proof [24], which uses results on quantum graph states

and local Clifford operations [290,129] to bring diagrams into a normal form.

Recall that a graph state |G〉, where G=(E,V) is a graph of order n with adjacency

matrix A, is defined as the eigenstate of all the operators Xv ⊗
⊗

u∈V Z
Auv
u (∀v ∈ V ). In

ZX network diagrams [82,118], this graph state can be represented by a green node with one

output for each vertex v ∈ V and a Hadamard node connected to the green nodes for vertices

u,v for each edge {u, v} ∈ E.

Definition: A GS-LC (graph state- local Clifford) diagram consists of a ZX network graph

state representation with arbitrary single-qubit Clifford operators (called vertex operators)
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applied to each output:

G

U1 Un...

Lemma: Any stabilizer state diagram is equal to some GS-LC diagram within the ZX

network.

The proof of this lemma is inspired from a paper [14] showing that stabilizer quantum

mechanics can be simulated efficiently on classical computers using a GS-LC representation.

It uses the fact that any stabilizer ZX network diagram can be written as a combination

of the four green spider diagrams with: (i) a single input, (ii) a single output, (iii) two

inputs and an output, (iv) one input and two outputs, as well as the 24 single-qubit Clifford

unitaries (depicted using their Euler decompositions). The proof proceeds by induction [24],

demonstrating that applying each of the basic components to a GS-LC diagram yields

another GS-LC diagram.

In fact, one can strengthen this lemma and show that [24]:

Lemma: Any stabilizer state diagram is equal to some reduced GS-LC diagram

within the ZX network, where a reduced GS-LC diagram is a GS-LC diagram where:

(i) Two adjacent vertices cannot both have vertex operators containing red nodes.

(ii) All vertex operators belong to the set:

{
π
2 π −π

2
π
2

π
2

π
2 −π

2
; ; ; ; ;

}

This proves that there is a non-unique normal form for stabilizer state ZX network

diagrams consisting of a graph state diagram and local Clifford operators.

Even though this reduced GS-LC normal form is not unique, there is a straightforward

algorithm for testing equality of diagrams given in this form, based on a result for graph

states [129].

Definition: A pair of reduced GS-LC diagrams is simplified if there are no pairs (p,q) of

qubits, adjacent in at least one of the diagrams, such that p has a red node in its vertex
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operator in the first diagram but not the second and q has a red node in the second diagram

but not the first.

Lemma: Two diagrams making up a simplified pair of reduced GS-LC diagrams corres-

pond to the same quantum state if and only if they are identical. Moreover, any pair of

reduced GS-LC diagrams can be simplified.

Since the Choi-Jamiolkowski isomorphism preserves equalities, this result extends to

diagrams which represent operators and not states. Indeed, we can always use map-state

duality to turn pairs of operators into states and then transform these states into simplified

pairs of reduced GS-LC diagrams and then apply map-state duality to transform these states

back into operators.

This shows that the ZX network is complete for stabilizer quantum mechanics. Note

that any unitary single-qubit operator can be approximated to arbitrary accuracy using

only Clifford operators and the T =


 1 0

0 ei
π
4


 operator and that the ZX network for

single qubits remains complete upon adding the operator T to the single-qubit stabilizer

operations [25].

4.5 Quantum circuits for the ZX network axioms

This section and the next present the formal proof of the result stated in the introduction.

In light of Backens’ theorem, the quantum circuit equations corresponding to the axioms

of the ZX network will be complete for stabilizer quantum mechanics. First of all, note that

directly using Figure 4.3 to convert the ZX network axioms into equations between linear

operators does not yield a complete set of equations between quantum circuits since some

of the resulting equations between linear operators cannot be expressed as quantum circuit

equalities.

Therefore, in order to obtain the desired set of sound and complete circuit equations for

stabilizer theory, we need to clarify the relationship between the ZX network and quantum

stabilizer circuits. In order to do this formally, we introduce a symmetric monoidal category

of stabilizer quantum circuits and show that it is equivalent to the symmetric monoidal

category of the ZX network:
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Equivalence lemma: There is an equivalence of categories between the free symmetric

monoidal categories of quantum circuits FSMC(Circ) and of the ZX network FSMC(ZX)

(quotient to their axioms):

FSMC(Circ)/ ≡Circ↔ FSMC(ZX)/ ≡ZX .

FSMC(Circ) is a free symmetric monoidal category over the monoidal signature [186]:

S := {CNOT ;SWAP ; prepare |0〉 ; prepare |+〉 ; postselect |0〉 , postselect |+〉 , Rx(α);Rz(β)}
(4.3)

These are the consistuent ‘gates’ of the symmetric monoidal category, which can be

combined using composition and the tensor product.

The axioms for the category FSMC(Circ), which are quantum circuit equations corres-

ponding directly to the axioms of the ZX network (FSMC(ZX)), are given in Figure 4.5.

This gives us a new insight into the structure of the ZX network, namely an understanding

of what the axioms of the network mean, in terms of familiar quantum circuits.

This equivalence of categories means that there exists a full, faithful, essentially

surjective functor [[·]] : FSMC(ZX)/ ≡ZX→ FSMC(Circ)/ ≡Circ. For the constructive

proof of the existence of this functor, we use the functor [[·]] in Figure 4.3 and check that

it is full, faithful and essentially surjective.

In practice, this requires us to find a set of ZX network equations which are equivalent

to the axioms of the ZX network (≡ZX) and are in a form that can be directly related to

quantum circuits using Figure 4.3. Such a set of ZX network circuit-like equations is shown

in Figure 4.4, in the following section. If we use the quantum circuit equations obtained

by applying the functor in Figure 4.3 to the network equations in Figure 4.4 as the axioms

≡Circ for the category FSMC(Circ), then [[·]] : FSMC(ZX)/ ≡ZX→ FSMC(Circ)/ ≡Circ is

full, faithful and essentially surjective by construction.

The next section proves that the set of equations in Figure 4.4 are equivalent to the ZX
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network axioms. These ZX network equations can be directly related to the axioms ≡Circ
for the category FSMC(Circ) in Figure 4.5, using the functor in Figure 4.3. Note that the

equivalence in this lemma holds for arbitrary phases α and β in the ZX network axioms.

4.6 Proof of the Equivalence Lemma

We will now prove that the set of ZX network equations given in Figure 4.4, which are in

a form that can be directly related to quantum circuits using Figure 4.3, are equivalent

to the axioms of the ZX network. Note that normalization is not relevant for the proof of

completeness so we ignore scalar factors.

Note first of all that the rule (T) of the ZX network states that after enumerating the

inputs and outputs of a diagram, any topological deformation of the internal structure will

give an equal diagram. A version of the (T) rule can be used as part of the new set of

ZX axioms in the form resembling circuit equations. The topological rigidity of quantum

circuits, however, means that the complete set of quantum circuit equations will contain

several equations for each ZX network rule, one for each possible choice of assignments of

inputs and outputs.
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1

= (S1’) = (S2’)

= = (S4’)= (S3’)

= (S5’)
α
β

= (S6’)α+ β

=

(B2’)(B1’)

=

π
π= π (K1’)

...

...

... H
...

......

H

αα

H...H

...H H

H

...

H

...

...

= (C’)

...

(H’)
π/2
π/2=H
π/2

(K2’)
π
α

=
π πα

π
=

−α−α

N

...

N

...

...
= (S’)

...

...

=
π

π π

=

FIG. 1. (Color online) Alternative ZX axioms in a form
resembling quantum circuit equations.

Figure 4.4: Alternative ZX axioms in a form resembling quantum circuit equations.
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Lemma A1: The ZX network rules (S1’), (S2’), (S3’), (S4’), (S5’), (S6’) and (S’) taken

together are equivalent to the (S) rules of the ZX network:

α

β

...

...

...

=

...

... ...

...

(S1)

⇔

= = (S2)

α+ β

= (S1’) = (S2’)

= = (S4’)= (S3’)

= (S5’)
α

β
= (S6’)α+ β

......

=

...

N N

...

(S’)

...
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This equivalence assumes that the (T) rule holds and that the (C) rule holds in one

direction.

Proof: By theorems 6.11 and 6.12 of [82], we know that (S1) and (S2) are equivalent to:

= (S1o’) = (S2o’)

= = (S4o’)= (S3o’)

= (S5o’)
α

β
= (S6o’)α+ β

In particular, these equations, together with (T) and (C), imply:

== (So’)

therefore we can assume that (So’) holds in one direction of the proof. We now add a

rule (S’) to the new set of circuit equations which is trivially equivalent to (So’):

N

...

...

=

...

N

...

(S’)

...

where the N box is an arbitrary ZX network. Adding (So’) to the new set of network
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equations means that we can now assume that (So’) holds in both directions of the proof.

Note that we only assume that (C) holds in the proof that:{(S1), (S2)} ⇒ {(S1’), (S2’),

(S3’), (S4’), (S5’), (S6’) } and not in the other direction.

The equation (S6o’) is the same as the equation (S6’). If we assume that (So’) and (T)

hold, then each of the individual equations (S1o’), (S2o’), (S3o’) and (S5o’), is equivalent

to (S1’), (S2’), (S3’), (S4’) and (S5’) respectively. For example:

=

(S1o’)

=

= =

(T)

(So’)

(T)

(So’)

shows that (S1o’) is equivalent to (S1’). The other four equivalences follow in the same

way, by repeatedly using (So’).

The proof of Lemma A1 is the most delicate stage in proving the Equivalence Lemma

as it is not trivial to express the diagrammatic spider laws in terms of the rigid structure

of quantum circuits. The other three lemmas are more straightforward to prove once the

circuit equivalent of the (S) laws are in place.
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Lemma A2: The ZX network equations (B1’) and (B2’) are equivalent to the (B) rules

of the ZX network:

= iff(B1’) (B1)=

=(B2’) iff= (B2)

Proof: Note that we assume that the rules (T) and (S) hold, which is not a problem

since our goal is to prove the equivalence of the whole set of ZX network equations given in

Figure 4.4 with the ZX axioms from Figure 4.2. The proof consists of four steps:

(i) (B1’) ⇒ (B1):

=

⇒

(B1’)

(B1)==

(T)

(So’)

(B1’)

(ii) (B1’) ⇐ (B1):

=

⇒

(B1’)

(B1)

==

(T) (S)

(B1)
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(iii) (B2’) ⇒ (B2):

=

(B2)

⇒

=

(B2’)

=

(T)
(B2’)

(T)

=

(T)

=
(T)

(iv) (B2’) ⇐ (B2):

= (B2)

⇒

= (B2’)=

(T)

(B2)

(T)
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Lemma A3: The ZX network equations (K1’) and (K2’) are equivalent to the (K)

rules of the ZX network:

π

= π iff(K1’) (K1)

π

= π ππ

and (K2’) is the same as (K2).

Proof: Once again, we assume that the (S) and (T) rules hold. We show the equivalence

in two steps:

(i) (K1’) (⇒) (K1):

π

= π

⇒

(K1’)

(K1)

π

= π π=

π

(T)

(So’)

(K1’)

π

(S)

(ii) (K1’)(⇐) (K1):

π

=

π

⇒

(K1’)

(K1)

π

=

π π

= π

(T) (S)

(K1)

π π
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Lemma A4: The ZX network equation (C’) is equivalent to the (C) rule of the ZX

network:

α

...

...

= α

H H H H

H H H H

...

...

iff

α

...

...

......

... ...

H H H H

H H H H

α

...

...

... ...

......

(C)

(C’)=

Proof: Again, we assume that the (S) and (T) rules hold. This is not a problem since

the proof that {(S1’), (S2’), (S3’), (S4’), (S5’), (S6’) } ⇒ {(S1), (S2)} in Lemma A1 does

not assume that (C) holds. The proof of equivalence goes as follows:

α

...

...

= α

...

...

......

... ...

α

...

...

...

...

=
(S)

(T)

(S’)

(T)
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and similarly:

=

H H H H

H H H H

α

...

...

... ...

......

α

H H

H

H

H

H

HH

=
(S)

(T)

(S’)

(T)

=

...

HH

α

H

...
H

H

α

H

...
H

...
H

Therefore, the left and right hand sides of equation (C) are the same as the left and

right hand sides respectively of equation (C’), which shows that (C) and (C’) are equivalent.

Note that both (C) and (C’) rules include the case where there are no inputs or no outputs.

Note that (H’) is the same as (H). Lemmas A1-A4 taken together show that the set of ZX

network equations given in Figure 4.4, are equivalent to the axioms of the ZX network.

Note that the transition from the alternative ZX network equations we presented here to

the circuit equations from the next section can be understood by fixing a grid-like structure

for the quantum circuits, enumerating each circuit input and output and considering all the

circuit equations that arise from each ZX network equation (including when the colours are

reversed).

We expect that the relationship between each ZX network equation from Figure 4.4 and

its corresponding set of quantum circuit equations in Figure 4.5 is clear, except for the case

of the (S’) rule, which we will now explain further. By fixing equation (S’) in a grid-like

‘circuit’ structure and enumerating all of the inputs and outputs, we can see that the (S’)

rule, when interpreted in the circuit calculus is equivalent to the following rule:

• X get : +

• X get : +

• X get : +
... ... ... ...

RX(α)
... ... ... ...

|+〉 •
|+〉 •
|+〉 •

=

H Z get : 0

H • Z get : 0

H • Z get : 0
... ... ... ...

• RZ(α) •
... ... ... ...

|0〉 • H

|0〉 • H

|0〉 H

(Ccirc)

Note that this rule also holds if both sides of the (Ccirc) equation above only contain the top/bottom half of the
quantum circuit (corresponding to the (C) rule with no inputs/outputs respectively).

H = RZ(
π
2 ) RX(π2 ) RZ(

π
2 )

(Hcirc)

Let us associate a number to each input and output of a quantum circuit Q. If we can obtain a valid quantum
circuit Q’, whose inputs and outputs (which do not include truncated CNOT lines) are numbered in the same way
as Q, by replacing a finite number of times the following quantum circuit fragments:

|+〉 •
· · · ; · · ·

|0〉
; • X get : +

· · ·
;

· · ·
Z get : 0

by wires with the same number as the corresponding input or output (regardless of topological structure), then the
circuits Q and Q’ are equivalent. The CNOT vertex attached to one of these circuit elements in circuit Q is included
in circuit Q’. (Scirc)
For example, the following circuit equation follows from the application of the (Scirc) rule:
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By considering all the cases when this rule can arise, we can enumerate all the instances

when the quantum circuit fragments in circuits Q being replaced by wires in circuits Q’ leads

to a valid quantum circuit equation. This leads to the quantum circuit equations which are

presented in the (Scirc) rule in Figure 4.5. Note that due to composition and repitition with

the other circuit equations, a small number of circuit equations are sufficient.

4.7 A complete set of circuit equations for stabilizer

quantum mechanics

The Equivalence Lemma from section 4.5 shows that any quantum circuit equation which,

when written in the ZX network, can be shown to be true using the ZX axioms from Figure

4.2, can be shown to be true using the equivalent circuit equations in Figure 4.5.

Backens’ theorem states that any quantum circuit equation which can be shown to be

true using stabilizer quantum mechanics is derivable using the ZX axioms when written as

an equation between two ZX network diagrams.

Combining the Equivalence Lemma with the fact that the ZX network is sound for

stabilizer quantum mechanics shows that any equation between quantum circuits which can

be derived from the circuit equations in Figure 4.5 is in agreement with stabilizer quantum

mechanics.

Synthesizing these results yields the main result of this chapter:
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Theorem: The set of quantum circuit equations in Figure 4.5 with phases α and β in

the set {−π/2, 0, π/2, π} is both sound and complete for stabilizer quantum mechanics.

We now present this sound and complete set of quantum circuit equations:

|0〉
|0〉 •

•
=

•
|0〉 •
|0〉

|+〉 •
|+〉 • = |+〉 •

|+〉 •
(S1circ)

X get : +

• X get : +

•

=
•

• X get : +

X get : +

• Z get : 0

• Z get : 0 = • Z get : 0

• Z get : 0

Z get : 0

|0〉 •
•

=
Z get : 0

• •
|0〉

• X get : +

|+〉 • =
• X get : +

|+〉 •

(S2circ)

|+〉
• X get : +

•
=
|+〉

• •
X get : +

|0〉 •
• Z get : 0 =

|0〉 •

• Z get : 0

|0〉
•

= |0〉 ×
• ×

|+〉 • = |+〉 • ×
×

(S3circ)

Z get : 0

•
= × Z get : 0

× •
• X get : +

= × • X get : +

×

|0〉 •
X get : +

= • X get : +

|0〉
=

|0〉
• X get : +

= X get : +

|0〉 •
=

(S4circ)

|+〉 •
Z get : 0

= • Z get : 0

|+〉
=

|+〉
• Z get : 0

= Z get : 0

|+〉 •
=

|0〉
|0〉 •

•
=

•
|0〉 •
|0〉

|+〉 •
|+〉 • = |+〉 •

|+〉 •
(S1circ)

X get : +

• X get : +

•

=
•

• X get : +

X get : +

• Z get : 0

• Z get : 0 = • Z get : 0

• Z get : 0

Z get : 0

|0〉 •
•

=
Z get : 0

• •
|0〉

• X get : +

|+〉 • =
• X get : +

|+〉 •

(S2circ)

|+〉
• X get : +

•
=
|+〉

• •
X get : +

|0〉 •
• Z get : 0 =

|0〉 •

• Z get : 0

|0〉
•

= |0〉 ×
• ×

|+〉 • = |+〉 • ×
×

(S3circ)

Z get : 0

•
= × Z get : 0

× •
• X get : +

= × • X get : +

×

|0〉 •
X get : +

= • X get : +

|0〉
=

|0〉
• X get : +

= X get : +

|0〉 •
=

(S4circ)

|+〉 •
Z get : 0

= • Z get : 0

|+〉
=

|+〉
• Z get : 0

= Z get : 0

|+〉 •
=
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|0〉 Z get : 0

• •
= |+〉 • • X get : +

=

(S5circ)

RZ(α) RZ(β) = RZ(α+ β)

(S6circ)

RX(α) RX(β) = RX(α+ β)

|0〉 • = |0〉 •
|+〉 = |+〉

(B1circ)

• Z get : 0
= Z get : 0 •

X get : +
=

X get : +

•
•

= ×
• ×

= × •
×

(B2circ)

|1〉 • = |1〉
X

•
|−〉 = Z

|−〉

(K1circ)

• Z get : 1
=

Z get : 1

X

•
X get : − =

Z

X get : −

Z RX(α) = RX(−α) Z X RZ(α) = RZ(−α) X

(K2circ)

|0〉 Z get : 0

• •
= |+〉 • • X get : +

=

(S5circ)

RZ(α) RZ(β) = RZ(α+ β)

(S6circ)

RX(α) RX(β) = RX(α+ β)

|0〉 • = |0〉 •
|+〉 = |+〉

(B1circ)

• Z get : 0
= Z get : 0 •

X get : +
=

X get : +

•
•

= ×
• ×

= × •
×

(B2circ)

|1〉 • = |1〉
X

•
|−〉 = Z

|−〉

(K1circ)

• Z get : 1
=

Z get : 1

X

•
X get : − =

Z

X get : −

Z RX(α) = RX(−α) Z X RZ(α) = RZ(−α) X

(K2circ)
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• X get : +

• X get : +

• X get : +
... ... ... ...

RX(α)
... ... ... ...

|+〉 •
|+〉 •
|+〉 •

=

H Z get : 0

H • Z get : 0

H • Z get : 0
... ... ... ...

• RZ(α) •
... ... ... ...

|0〉 • H

|0〉 • H

|0〉 H

(Ccirc)

Note that this rule also holds if both sides of the (Ccirc) equation above only contain the top/bottom half of the
quantum circuit (corresponding to the (C) rule with no inputs/outputs respectively).

H = RZ(
π
2 ) RX(π2 ) RZ(

π
2 )

(Hcirc)

Let us associate a number to each input and output of a quantum circuit Q. If we can obtain a valid quantum
circuit Q’, whose inputs and outputs (which do not include truncated CNOT lines) are numbered in the same way
as Q, by replacing a finite number of times the following quantum circuit fragments:

|+〉 •
· · · ; · · ·

|0〉
; • X get : +

· · ·
;

· · ·
Z get : 0

by wires with the same number as the corresponding input or output (regardless of topological structure), then the
circuits Q and Q’ are equivalent. The CNOT vertex attached to one of these circuit elements in circuit Q is included
in circuit Q’. (Scirc)
For example, the following circuit equation follows from the application of the (Scirc) rule:

1 Z get : 0

2 • 3
|+〉 • 4

=
|0〉 3

1 • 4

2 • X get : +

= 1 • 3
2 4

(Scirc)

Figure 4.5: Sound and complete set of circuit equations for stabilizer quantum mechanics.

Therefore, we have found a complete set of quantum circuit equations for

stabilizer quantum mechanics. Any circuit equation which can be shown to be true

using stabilizer theory—in the sense that both quantum circuits in the equation correspond

to equivalent processes in stabilizer quantum mechanics—can be derived from this set.
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This provides a novel insight into the logical foundation of the stabilizer formalism.

4.8 Derivation of an equation between stabilizer quantum

circuits from the complete set

The proof of the result relies heavily upon categorical quantum mechanics. It would have

been difficult to find this set of circuits without the flexibility of the ZX network and the

theorem may have been difficult to prove without appealing to category theory.

The theorem itself, however, is purely a result about quantum circuits and stabilizer

quantum mechanics, which can readily be understood without any knowledge of category

theory or formal logic.

In order to make this clear and provide an illustration of the general result, we now give

an example of using the complete set of circuit equations to formally derive a well known

equation between stabilizer quantum circuits.

The first quantum circuit of the equation below corresponds to the standard quantum

teleportation protocol [50], where a Bell state |00〉+ |11〉 is prepared on the second and third

qubits and the Bell basis is measured on the first two qubits (the result corresponding to

|00〉 + |11〉 is post-selected). We use the complete set of circuit equations from Figure 4.5

to show that this is the same quantum process as taking the first qubit to the third qubit:

• X get : +

|+〉 • Z get : 0

|0〉
=

(S2circ)

• X get : +

|0〉 Z get : 0

|+〉 •
=

(Ccirc)
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H Z get : 0

|0〉 H • • H Z get : 0

|0〉 H

=

(Ccirc)

H Z get : 0

|+〉 • • X get : +

|0〉 H

=

(S4circ)

H • X get : +

|0〉 H

=

(S4circ)

H H

=

(Hcirc)

RZ(π2 ) RX(π2 ) RZ(π2 ) RZ(π2 ) RX(π2 ) RZ(π2 )

=

(S6circ)

RZ(π2 ) RX(π2 ) RZ(π) RX(π2 ) RZ(π2 )

=

(K2circ)

RZ(π2 ) RX(π2 ) RX(−π2 ) RZ(π) RZ(π2 )

=

(S6circ),(K2circ)
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This is a proof of the validity of quantum teleportation from a set of axioms for quantum

stabilizer theory. The dotted boxes indicate a circuit substitution using a circuit equation

from Figure 4.5. Any equivalence between two quantum circuits corresponding to the same

stabilizer process can be formally shown from the complete set of circuit equations by using

this reasoning by substitution.

4.9 Reasoning with the ZX network is easier than using the

quantum circuit calculus

A quick comparison of the ZX network axioms from Figure 4.2 with the set of quantum

circuit axioms from Figure 4.5 makes it clear that demonstrating the equivalence of quantum

processes with the quantum circuit calculus will be far more cumbersome than using the ZX

network. For instance, in the previous section, the circuit calculus takes more than 10 steps

to prove the validity of the post-selected teleportation protocol, whereas the ZX network

can verify validity in a single step.

Now, let us briefly present another example of a derivation which is less trivial using

the ZX network. This demonstrates how the flexibility of the spider law allows the ZX

network to show validity of a quantum circuit equation far more intuitively and efficiently

than the quantum circuit calculus. Both the ZX network and the quantum circuit calculus

can prove that the following measurement based quantum computing program computes a

CNOT gate:

× X get : +
• × •

|+〉 • H H H H X get : +

|+〉 H H

= •

This only requires a straightforward repeated application of the (S) law and 2 applic-

ations of the (C) law using the ZX network [82]. The circuit calculus, however, requires

applications of the (Hcirc), (S6circ), (K2circ), (Ccirc), (S2circ), (S3circ) and (Scirc) rules to
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demonstrate the validity of the previous equation. Therefore, using the circuit calculus to

check correctness not only requires a larger total number of axioms to be used but also uses

more distinct axioms, whose application is far less intuitive than in the ZX network case.

The examples presented above are circuit equations whose validity can be shown in a

small number of steps. For larger circuit equations, we expect the use of the circuit calculus

to be unviable. The skeptical reader is challenged to verify the correctness of the 7 qubit

Steane code [117] using the circuit calculus instead of the ZX network.

We conclude this section by stressing once again that the elements of the ZX network

have no explicit physical meaning. Indeed, the network elements are not restricted to the

circuit structure of quantum processes. This mathematical flexibility is at the core of the

calculational power of the network calculus relative to the circuit calculus. For example,

a primitive circuit element like the CNOT gate is broken down into two abstract elements

in the ZX network, corresponding to red and green nodes. These elements obey algebraic

rules, some of which have no evident physical interpretation, but which appear to play

a fundamental logical role. In contrast, every rule in the circuit calculus has an explicit

physical interpretation.

Note that we could find similar completeness results for other process theories by using a

similar method to the one presented here. Using a recent completeness result for Spekkens’

toy theory [26], for example, we could give a complete set of toy theory process equations, by

finding the equations corresponding to the ZX network axioms.

4.10 Conclusion

Studying quantum theory from a logical, computer science perspective has provided an

insight into the foundations of stabilizer quantum mechanics. The axiomatic approach

presented here yields a representation of the systems and processes of an operational physical

theory, together with all the equational laws they obey.

Describing physical processes directly using a logical language may dispense with the

need of a more elaborate mathematical description which would require a more refined

language and further axioms. Some of this extra structure may be unnecessary and un-

desirable to fully model an operational physical theory. The introduction of a formal logical
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system describing physical processes provides a framework which is both perspicuous and

parsimonious.

Furthermore, such a formalization of the foundations of physics allows one to rigorously

ask certain questions about consistency, soundness and completeness of physical theories.

Is it possible to find a consistent, sound and complete set of quantum circuit equations

which can prove the validity of any true quantum circuit equation? Are there fundamental

incompleteness theorems for the foundations of physics?

In any case, the study of the logical foundation of physical theories is an essential method

of testing their validity, especially in realms of nature in which experiments are very difficult

or impossible to perform. Logic seems to be the most suited tool to rigorously study the

foundations of mathematical theories of nature from a human perspective.



Chapter 5
A periodic table of quantum-like theories

T
he analysis of physical processes hinges on the use of a synthetic and elegant concep-

tual framework. The extent to which an abstract theory is considered parsimonious

and powerful often relies upon symmetry. As Hermann Weyl said:

“Symmetry denotes that sort of concordance of several parts by which they integrate into a

whole. Beauty is bound up with symmetry”. Symmetry is ubiquitous, both in nature and in

human activities such as art, music and architecture [99]. Given our desire to find patterns,

it is natural that symmetrical considerations also play a key role in our scientific frameworks.

Figure 5.1: Examples of symmetry in nature: the snowflake, honeycomb lattice and aloe polyphylla.

Even in Ancient Greece, fundamental physical theories were strongly influenced by a

desire to emphasize symmetry. Following the discovery that there exist exactly five convex

regular polyhedra, later called Platonic Solids, the theory was put forward [239] that these

symmetrical shapes can be associated to the classical natural elements (air, water, fire,

earth) which combine to form all physical matter. Euclid [168] placed a strong emphasis on

125
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constructing the five Platonic Solids, shown in Figure 5.2 and deriving their properties from

his geometric axioms.

Figure 5.2: The five Platonic Solids.

Symmetry was also a central concern for Kepler when he introduced his laws of planet-

ary motion [183], which were the product of imposing notions of symmetry to the motion of

planets around the sun. From these symmetry relations, Newton derived equations of mo-

tion [224] which moreover embodied the additional principle of equivalence of inertial frames.

The work of Einstein [126] and Noether [227] in the foundations of physics, most notably the

derivation of conservation laws and dynamical equations from symmetry principles, further

brought symmetry at the forefront. Fundamental symmetries have become the center-piece

of modern theoretical physics. The standard model of particle physics, for example, arises

from the requirement that physical laws are reference-frame and gauge invariant, meaning

that they satisfy global Poincaré symmetry, and local internal SU(3) × SU(2)× U(1) gauge

symmetry [284].

Furthermore, the language of symmetry provides an excellent tool for efficient classific-

ation. The search for regularity often leads to a thorough analysis of all possible patterns.

For instance, the observation that one can find a number of distinct tessellations, or periodic

tiling of a plane using geometric shapes, played an important role in Islamic art. The Al-

hambra palace in Granada, shown in Figure 5.3, serves as a testimony to the human desire

to discover new patterns and contains 17 distinct types of tessellation.



127

Figure 5.3: Hall of the Abencerrajes in the Alhambra palace.

Formal analysis of the plane symmetry (wallpaper) groups later revealed that these

17 tessellations, depicted in Figure 5.4, fully exhaust all possible periodic tilings of the

plane [134,241].

Figure 5.4: Polya’s representation of the 17 plane symmetry groups.
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A remarkable example of classification arising from the analysis of symmetry is the

classification theorem for finite simple groups [98,153], which we presented in Chapter 2.

Indeed, this impressive result provides a tangible decomposition of the abstract notion of

symmetry, through a classification of the different types of group.

In the foundations of physics, we should embrace our desire for elegant theoretical parsi-

mony and ensure that the central role of symmetry is made explicit. In this regard, it

is essential to analyze the interplay between group theory and physics, particularly in the

study of alternative physical theories. We will now focus on this fascinating relationship

and study how symmetry can be utilized to extract a classification of physical theories.

5.1 Introduction

An interesting approach to understanding the foundations of quantum mechanics is to study

sets of alternative theories which exhibit similar structural or physical features as quantum

theory. Several mathematical formalisms for operational physical theories have been pro-

posed [3,35,77] which encompass quantum mechanics as one possible theory within a space

of different potential theories. These provide a setting in which we can determine which

features are truly particular to quantum theory and which ones are more generic. This

approach can pave the way towards novel axiomatizations of quantum mechanics and could

yield precious clues about future physical theories which may supersede quantum theory,

such as a theory of quantum gravity. As Lewis Carroll aptly put it: “If you don’t know

where you are going, any road will get you there”.

In the previous chapter, we saw that symmetric monoidal categories (SMCs) provide a

general framework for physical theories, since they contain two interacting modes, ⊗ and

◦, of composing systems and processes. Previous work has investigated which additional

structure must be imposed on a SMC in order to recover the structure of quantum theory [3].

This approach has yielded the ZX calculus, an intuitive graphical language which we intro-

duced in the previous chapter [83]. As we described, the calculus is sound and universal for

quantum mechanics and is complete for stabilizer quantum mechanics, given a certain choice

of phases [24]. The ZX calculus has proven useful in the study of quantum foundations [92],
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quantum computation [119] and quantum error-correction [170].

In this chapter, we will sketch a theoretical formalism for analyzing and classifying

physical theories that resemble quantum theory. At the core of this framework lies a concern

to understand the role of symmetry in physics and to use group theory as a tool for

classification. We shall build on the description of operational theories through symmetric

monoidal categories and isolate a key ingredient, called the phase group [83,91]. This allows

for the introduction of a Periodic Table of quantum-like theories.

The methodology we propose follows five main stages, which will each be presented in

some detail. Note that each one of the five levels of analysis of quantum-like theories can

be studied independently and that certain physical theories may not admit a description

within a given level.

(A) The first stage of analysis provides an explicit presentation of a model for an opera-

tional theory. This requires a mathematical representation of preparations, transformations

and measurements, as we discussed in Chapter 3. In addition to quantum theory, we also ex-

plicitly define two important groups of quantum-like operational theories, stabilizer quantum

theory for qudits [156] and Spekkens-Schreiber’s toy theory for dits [262]. This initial level of

description is the most familiar to physicists.

(B) The second stage involves a category theoretic description of operational physical

theories. This requires us to define symmetric monoidal categories, which furnish an abstract

and unified definition of preparations, transformations and measurements. For this purpose,

we generalize the ZX calculus to qudit systems and show that the resulting calculus is

universal for quantum mechanics. We utilize this calculus as a pictorial tool to depict

quantum-like theories and we define the notion of a mutually unbiased qudit theory

(MUQT), which can be represented by a symmetric monoidal category whose observable

structures are all mutually unbiased.

(C) The third stage of analysis involves classifying MUQTs in terms of a particular

Abelian group, called the phase group. This approach aims to give symmetry a central

role in the study of physical theories. Previous work has shown that in the case of qubits [91],

there are essentially two MUQTs: stabilizer quantum mechanics [155], which has phase group

Z4, and Spekken’s toy theory for bits [276], which has phase group Z2×Z2. Furthermore, the

phase groups of these theories determine whether or not they admit a local hidden variable
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model. We aim to generalize this work to higher dimensional systems. In particular, we

focus on two interesting families of MUQTs, corresponding to stabilizer quantum theory for

qudits [156] and Spekkens-Schreiber’s toy theory for dits [262] and provide a novel proof that

these theories are operationally equivalent in three dimensions. This is a first step towards

a Periodic Table of quantum-like theories, where physical theories can be classified

according to their phase groups.

(D) The final stage of analysis briefly outlines a way to generalize the ontological models

of quantum mechanics, which were described in Chapter 3, to ontological models for opera-

tional theories. We allow ontic spaces which are no longer restricted to measure spaces but

can be more intricate mathematical objects. We discuss the idea of topological ontic models

and categorical ontic models.

5.2 Explicit models of theories

The standard operational presentation of a physical theory involves associating separate

mathematical objects to preparation, transformation and measurement procedures and de-

scribing how these mathematical objects relate to each other. The typical example of such

an explicit model is the operational presentation of quantum theory. As we discussed in

Chapter 3, quantum preparation, transformation and measurement processes are associated

with trace one positive density operators acting on Hilbert spaces, completely positive trace

non-decreasing maps and positive operator valued measures respectively. The axioms of

quantum mechanics then aim to make the relationship between these three mathematical

objects explicit.

Note that it is not necessarily possible to always describe operational physical theories

in terms of mathematical models which are as concrete and clear-cut as this presentation of

quantum theory. Other examples of explicit models of physical theories consist of Spekkens’

toy theory, presented in Chapter 3, and stabilizer quantum mechanics, described in Chapter

4. We will now introduce explicit models for two families of quantum-like theories.
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5.2.1 Qudit stabilizer quantum mechanics

We describe the generalization of qubit stabilizer quantum mechanics [155] to quantum sys-

tems of dimension D, where D can be higher than 2 [156]. Stabilizer states are eigenstates

with eigenvalue 1 of each operator in a subgroup of the generalized Pauli group of operators

acting on the Hilbert space of n qudits:

PD,n := {√ηλg1 ⊗ ...⊗ gn : η = e
2πi
D ∧ λ ∈ Z2D} (5.1)

with: gk = XxkZzk and xk, zk ∈ ZD;∀k ∈ {1, ..., n}. Note that sums and multiplication are

all modulo D and ZD are integers modulo D.

The single qudit Z and X operators are:

Z =
D−1∑

j=0

ηj |j〉 〈j| and X =
D−1∑

j=0

|j〉 〈j + 1| (5.2)

One can easily see that: XZ = ηZX and ZD = XD = I.

The generalized Clifford group on n qudits consists of the unitary operations that leave

Pauli operators invariant under conjugation:

Cn := {U : UgU † ∈ PD,n,∀g ∈ PD,n} (5.3)

The following gates are generalizations of standard qubit gates to higher dimensions [144].

The generalization of the Hadamard gate is the Fourier gate: F := 1√
D

∑D−1
j,k=0 η

jk |j〉 〈k|.
Another important set of qudit gates are the multiplicative gates: Sq :=

∑D−1
j=0 |j〉 〈jq|, where

q ∈ ZD such that ∃q̄ ∈ ZD with qq̄ = 1.

We define the qudit controlled NOT and controlled phase gates between control qudit a

and target qudit b as:

CNOTa,b :=

D−1∑

j,k=0

|k〉 〈j|a ⊗ |k〉 〈k + j|b and CPa,b :=

D−1∑

j,k=0

ηjk |j〉 〈j|a ⊗ |k〉 〈k|b (5.4)
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The swap gate is: SWAPa,b :=
∑D−1

j,k=0 |k〉 〈j|a ⊗ |j〉 〈k|b. Note that the SWAP gate can be

decomposed as:

SWAPa,b = CNOTa,bCNOT
†
b,aCNOTa,b(F

2
a ⊗ Ib) (5.5)

Similarly to the qubit case, the controlled phase gate can be decomposed as:

CPa,b = (Ia ⊗ Fb)†CNOTa,b(Ia ⊗ Fb) (5.6)

The generalized Clifford group is generated [144,171] by the set of three gates:

{F, Sq, CNOTa,b}.
Stabilizer quantum mechanics for qudits [156] includes state preparations in the computa-

tional basis {|0〉 , |1〉 , |2〉 , ...}, generalized Clifford unitaries and measurements of observables

in the generalized Pauli group. In addition to its foundational importance, the theory of

qudit stabilizer quantum mechanics plays a key role in quantum information theory, in

quantum key distribution and in quantum error correction.

Extending the Gottesman-Knill theorem shows that qudit stabilizer quantum mechanics

can be efficiently simulated by a classical computer. Indeed, a group of order K has at most

log(K) generators therefore the qudit stabilizer group can be compactly described using the

group generators. One can show that if D is prime then any n-dimensional stabilizer group

can be described using at most n generators [156]. In composite dimensions one can have

more than n generators but no more than 2n [144].

5.2.2 Spekkens toy theory in higher dimensions

Previous work in quantum foundations [276,37,262] has shown that considering a classical stat-

istical theory together with a fundamental restriction on the allowed statistical distributions

over phase space allows one to reproduce a large part of operational quantum mechanics.

We will now introduce some of this work for physical systems with discrete degrees of free-

dom [262]. We call the theory described here Spekkens-Schreiber toy theory for dits.

Let phase space Ω = (Zd)2n consist of a set of points (ontic states):

m ≡ (x1, p1, ..., xn, pn) ∈ Ω (5.7)
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We can then define functionals on phase space F : Ω → Zd and a Poisson bracket of

functionals:

{F,G}(m) :=

n∑

j=1

(F [m+exj ]−F [m])(G[m+epj ]−G[m])−(F [m+epj ]−F [m])(G[m+exj ]−G[m])

(5.8)

where exj and epj have a 1 in position xj and pj respectively and zeros everywhere else.

We define canonical variables as the linear functionals:

F =a1X1 + b1P1 + ...+ anXn + bnPn

G =c1X1 + d1P1 + ...+ cnXn + dnPn

(5.9)

where Xk(m) = xk, Pk(m) = pk and aj , bj , cj , dj ∈ Zd, ∀j ∈ {1, ..., n}.
These form the dual space Ω? ≡ (Zd)2n such that: F = (a1, b1, ..., an, bn), G =

(c1, d1, ..., cn, dn) ∈ Ω?. We can then write the Poisson bracket of canonical variables as

a symplectic inner product of vectors:

{F,G}(m) =
n∑

j=1

(ajdj − bjcj) = F TJG (5.10)

where:

J =

n⊕

k=1


 0 −1

1 0


 (5.11)

We then define the principle of classical complementarity in the following way: an

observer can only have knowledge of the values of a commuting set of canonical variables

(whose Poisson brackets all vanish) and is maximally ignorant otherwise.

The Spekkens-Schreiber toy theory for dits can then be described in the following way:

(a) Valid epistemic states are specified by isotropic subspaces V ⊆ Ω?, such that

{F,G} = 0; ∀F,G ∈ V , together with a valuation vector v : V → Zd (v ∈ V ?) such

that: v(F ) = F T v; ∀F ∈ V . Therefore, V specifies which set of canonical variables are

known and v describes what is known about them. Note the analogy with the commuting

set of eigen-operators of the quantum state, together with their eigenvalues.

Epistemic states can also be characterized by a probability distribution over phase space
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Ω. We can define the orthogonal complement of V as:

V ⊥ := {m ∈ Ω|PVm = 0} (5.12)

where PV is the projector onto V. Note that the phase space points m ∈ Ω which are

consistent with an epistemic state associated to the isotropic subspace V and valuation

vector v are those which satisfy:

F Tm = F T v, ∀F ∈ V (5.13)

Therefore, the probability distribution for the epistemic state associated to the isotropic

subspace V and valuation vector v is: pV,v : Ω→ [0, 1] such that:

pV,v(m) =
1

|V ⊥|δV ⊥+v(m) (5.14)

where |V ⊥| is the cardinality of V ⊥ and δV ⊥+v(m) is 1 if m ∈ V ⊥ + v and zero otherwise.

(b) Valid reversible transformations correspond to all the symplectic, affine transform-

ations (analogues of the Clifford operations). These are the phase space maps C : Ω → Ω

such that: C(m) = Sm+ a where a ∈ Ω and {Su, Sv} = {u, v}, ∀u, v ∈ (Zd)2n.

(c) Valid measurements are described by sets of indicator functions ξk : Ω→ [0, 1] such

that
∑

k ξk = u (where u is a function mapping every point of phase space to 1) which

correspond to some choice of a set of non-conjugate variables. The outcome probability can

then be obtained by:

pk =
∑

λ

v(λ)ξk(λ) (5.15)

where v(λ) is the epistemic state.

The Spekkens-Schreiber theory, for any number of dits of any dimension, can be represen-

ted using matrices to describe the valid epistemic states, transformations and measurements.

This corresponds to the subcategory of FRel which we will describe below.

Note that Spekkens toy model for bits [276] is a special instance of Spekkens-Schreiber

theory for dimension 2 and that the ‘knowledge balance principle’ is superseded by the

principle of classical complementarity described above.
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5.3 Depicting qudit quantum mechanics and toy models

The development of categorical quantum mechanics has introduced the idea of describing

operational theories by symmetrical monoidal categories representing preparation, trans-

formation and measurement processes. As we saw in Chapter 2, we can use a dagger

compact symmetric monoidal category C to define:

(i) Processes as arrows ψ : I → A, where A, I ∈ OBJ(C) and I is an initial object

(ii) Transformations as arrows T : A→ B where A,B ∈ OBJ(C)
(iii) Measurements using observable structures which generalize linear algebraic measure-

ment bases.

This abstract categorical characterization and the corresponding diagrammatic repres-

entation is at the heart of the ZX calculus [82,24,251], that we described in the previous chapter

and provides a second level of analysis of quantum-like theories. We will now present a gen-

eralization of the ZX calculus to higher dimensional systems.

5.3.1 Derivation of the qudit ZX calculus

Chapter 2 introduced dagger compact symmetric monoidal categories and how these can be

depicted using a formal graphical calculus [181].

Recall that observable structures, which are †-special commutative Frobenius algeb-

ras, can be defined through the spider laws [85] depicted below.

...

...

...

=

...

... ...

...

; =

In FHilb, the category of finite dimensional Hilbert spaces, orthonormal bases are in a

one to one correspondence with observable structures [86].

Let (A, δ, ε) be an observable structure. We can define a classical point as a self-

conjugate morphism k: I → A
k

obeying:

=
kk

k

and =
k
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This means that classical points are those which get copied by the copying map and

deleted by the deleting map. In FHilb, for example, they are the basis states corresponding

to the observable structure.

We will now introduce a notion of phase relative to a given basis [82] which allows us to

study unbiasedness and the interplay between several bases.

Let (A, δ, ε) be an observable structure. For any two points α, β: I → A, we define a

multiplication operation:

α� β = δ† ◦ (α⊗ β) ◦ λI (5.16)

Note that this multiplication on points is commutative, associative and ε† � α = α for

any point α.

A point α : I → A is called unbiased relative to an observable structure (A, δ, ε) if there

exists a scalar s: I → I such that: s.α � α? = ε†. This is a generalization of the usual

definition of an unbiased vector with respect to a basis.

For each state and observable structure (A, δ, ε), we introduce a phase map Λ which

takes each point α: I → A, to the morphism:

Λ(α) = δ† ◦ (α⊗ 1A) : A→ A (5.17)

The phase map satisfies several properties:

(i) Λ(α � β) = Λ(α) ◦ Λ(β) (ii) Λ(ε†) = 1A (iii) Λ(α?) = Λ(α)† (iv) Phase maps commute

freely with the observable structure since: Λ(α) ◦ δ† = δ† ◦ (1A ⊗ Λ(α)) = δ† ◦ (Λ(α)⊗ 1A).

We can extend the spider laws to account for phases relative to an observable structure.

Theorem 3.1: Any morphism A⊗n → A⊗m generated from an observable structure (A,

δ, ε), together with one occurrence of each unbiased point αi : I → A can be written in the

form [82]:

...

...

:=

...

...

⊙
i αi

⊙
i αi where:

⊙
i αi is the phase map Λ(

⊙
i αi).
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These spider maps compose according to the generalized spider law:

...

...

...

=

...

... ...

...

α� β
β

α

.

This theorem follows from the spider laws together with the fact that the phase maps

commute freely with the observable structure (property (iv) given above).

Let α: I → A be a point satisfying α† ◦ α = dim(A). Then α is unbiased iff Λ(α) is

unitary.

Note that the choice of α†◦α = dim(A) is taken for unbiased points from this point onwards.

All the points which are unbiased with respect to the basis corresponding to the

observable structure (A, δ, ε) form an Abelian group U with respect to the multiplication

�. This is clear since � is closed for unbiased points, commutative, associative, admits the

unique identity point ε† and each point has a unique inverse, its conjugate.

The phase maps, restricted to act on unbiased points relative to the observable

structure, form an abelian group with map composition as the group operation, which is

isomorphic to U . We call this the phase group Π.

Note that, for each unbiased point α we can define a new observable structure (A, δα,

εα) where:

δα= α := (Λ(α)⊗ Λ(α)) ◦ δ ◦ Λ(α)† and εα=
α

:= ε ◦ Λ(α)†.

We use the phase group for observable structures as a tool to study physical theories

from an abstract algebraic perspective.

We now proceed to study how two complementary observable structures interact [82]. In

general, we cannot assume that the dagger compact structures of two distinct observable

structures coincide [89].
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Therefore, we define the dualizer of observable structures (A, δZ , εZ) and (A, δX , εX) as:

:=S

By the spider laws for red and green, we can see that the dualizer is unitary. This

shows that the dimension of a dagger symmetric monoidal category does not depend on

the choice of observable structure [82] since:

dim(A):= == =S†

S

In a Hilbert space of D dimensions, two orthonormal bases {u1, u2, ..., uD} and

{v1, v2, ..., vD} are called unbiased if:

D |〈vi, uj〉|2 = 1, ∀i, j ∈ {1, 2, ..., D} (5.18)

If a quantum system is prepared in a state corresponding to a vector in one of these bases,

then all the outcomes of a measurement, with respect to the other mutually unbiased basis,

will occur with equal probabilities. No information can be retrieved by performing such a

measurement. In this sense, two mutually unbiased bases corresponding to eigenstates of

two non-degenerate quantum observables describe mutually exclusive physical measurement

procedures.

This provides a mathematical expression for Bohr’s principle of complementarity that:

“evidence obtained under different experimental conditions cannot be comprehended within

a single picture, but must be regarded as complementary in the sense that only the totality

of the phenomena exhausts the possible information about the objects”.

Two observable structures (A, δZ , εZ) and (A, δX , εX) are called complementary if:

(i) whenever a point z: I → A
z

is classical for (δZ , εZ), it is unbiased for (δX , εX)).

(ii) whenever a point x: I → A
x

is classical for (δX , εX), it is unbiased for (δZ , εZ)).

This definition of complementarity could easily be generalized to more than two observ-

able structures by requiring that whenever a point is classical for one observable structure,
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it must be unbiased for all the other observable structures. One can show the following

theorem [82], assuming that at least one of the observable structures describes a basis:

Theorem 3.2: Two observable structures are complementary iff they obey:

S =

Two observable structures (A, δZ , εZ) and (A, δX , εX) are called coherent if the erasing

point for each observable structure is a classical point for the other observable structure.

This can be pictured as:

= and =

In line with qudit quantum theory, states and erasing points are defined such that:

=

The classical points KZ of an observable structure {A, δZ , εZ} are called closed for an

observable structure {A, δX , εX} if, for all k, k′ ∈ KZ , we have k�X k′ = δX ◦ (k⊗k′) ∈ KZ .

One can easily show [82] that for every Hilbert space we can find a pair of coherent, closed,

complementary observable structures. In fact, the observable structures corresponding to

the Z and X qudit operators are closed, coherent and complementary.

Two observables structures {A, δZ , εZ} and {A, δX , εX} are said to be strongly com-

plementary if:

=

This condition is called strong complementarity since [82]:

Theorem 3.3: A pair of coherent, strongly complementary observable structures are comple-

mentary.
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One can show that [82]:

Theorem 3.4: If {A, δZ , εZ} and {A, δX , εX} are coherent strongly complementary observable

structures and the set KX of classical points for {A, δX , εX} is finite, then KX is a subgroup

of the group (UZ ,�Z) of unbiased points for {A, δZ , εZ}.
The ZX calculus for qubits is restricted to two dimensions. However, since this algebraic

characterization of bases applies to arbitrary dimensions, we can generalize the pictorial

calculus to higher dimensional quantum systems.

As with the qubit ZX calculus, the use of graphical notation is justified since FHilb is a

†-CSMC. We let all the edges be implicitly labeled by CD and focus on a pair of observable

structures corresponding to the Z and X observables from qudit quantum mechanics.

The green observable structure, corresponding to the qudit observable Z =
∑D−1

j=0 ηj |j〉 〈j|, is defined via the copying and deleting maps:

δZ =
(
e1| e2| ... |eD

)
and εZ = 1

D (1, 1, ..., 1).

Where δZ is a D2×D matrix with D columns ei which have one 1 in row D× (i− 1) + i

and zeros in all the other rows.

Unbiased points for the green observable structure are in the form:

|{α1, α2, ..., αD−1}Z〉 = |0〉 +
∑D−1

j=1 eiαj |j〉 and therefore, the phase group consists of

matrices of the form:

ΛZ(α1, α2, ..., αD−1) =




1 0 0 ... 0

0 eiα1 0 ... 0

0 0 eiα1 ... ...

... ... ... ... 0

0 0 ... 0 eiαD−1




(5.19)

Therefore the phase group for the green observable ΠZ and the group of unbiased points

(UZ ,�Z) are both the D-torus group, corresponding to the direct product of D circle

groups S1 × ...× S1.

The green part of the ZX calculus for qudits follows from the generalized green spider

law.

The red observable structure, corresponding to the qudit observable X =
∑D−1

j=0 |j〉 〈j + 1|, is defined via the copying and deleting maps:
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δX =




ID×D

P1(ID×D)

...

PD−1(ID×D)




and εZ = 1√
D

(1, 0, ..., 0).

Where δX is a D2×D matrix composed of D matrix blocks ID×D and Pj(ID×D) (j=1,2,

... D-1), which are D ×D matrices corresponding to the identity matrix ID×D, with all its

rows permuted to the right by j.

Unbiased points for the red observable structure are in the form: |{α1, α2, ..., αD−1}X〉 =

|+0〉+
∑D−1

k=1 e
iαk |+k〉 = 1√

D
(c0 |0〉+

∑D−1
j=1 cj |j〉), where |+k〉 are the D eigenvectors of the

X matrix (and the cj are the computation basis decomposition coefficients). Therefore, the

phase group consists of matrices of the form:

ΛX(α1, α2, ..., αD−1) =
1

D




c0 cD−1 cD−2 ... c2 c1

c1 c0 cD−1 ... c3 c2

c2 c1 c0 ... c4 c3

... ... ... ... ... ...

cD−1 cD−2 cD−3 ... c1 c0




(5.20)

Which can be shown to be unitary and which satisfy:

ΛX(β1, β2, ..., βD−1) ◦ΛX(α1, α2, ..., αD−1) = ΛX(α1 + β1, α2 + β2, ..., αD−1 + βD−1) (5.21)

Therefore the phase group for the red observable ΠX and the group of unbiased points

(UX ,�X) are both the D-torus group, corresponding to the direct product of D circle

groups S1 × ...× S1.

The red part of the ZX calculus for qudits follows from the generalized red spider law.

Note that the red and green observable structures do not induce the same compact

structure since:

ηZ = δZ ◦ ε†Z 6= δX ◦ ε†X = ηX (5.22)

The classical points of the green Z observable are
k
, where k corresponds to phase val-

ues {α1, ..., αD−1}, {β1, ..., βD−1}, ... such that the red unbiased points |{α1, ..., αD−1}X〉 ,

|{β1, ..., βD−1}X}〉 , ... are the classical points (eigenvectors) |0〉 , |1〉 , ..., |D − 1〉 of the green



142

observable Z. By theorem 3.4, these D points form an abelian subgroup of the D-torus group

(UX ,�X), where |0〉 is the identity.

Similarly, the classical points of the red X observable are
k
, where k corresponds

to phase values {α1, ..., αD−1}, {β1, ..., βD−1}, ... such that the green unbiased points

|{α1, ..., αD−1}Z〉 ,|{β1, ..., βD−1}Z〉 , ... correspond to the classical points (eigenvectors)

|+0〉 , |+1〉 , ..., |+D−1〉 of the red observable X. By theorem 3.4, these D points form an

abelian subgroup of the D-torus group (UZ ,�Z), where |+0〉 is the identity.

Therefore, the red and green observable structures are a closed pair of coherent observ-

able structures. The (D), (B1) and (B2) rules (presented in the next section) then follow as

before. The (K1) rule becomes:

= =;
k

k k k

k
(K1)

There are 2D − 2 equations in (K1), one equation for each of the D classical points of

each colour (except the (0,0,..., 0), phaseless points of each colour). Note that if you add to

(K1) the case where k corresponds to the (0,0,..., 0), phaseless points of each colour then

the rule (B1) follow as a special case of (K1).

We obtain the (K2) rule, by calculating the action of the red (or green) phase maps of

either colour, corresponding to classical points in KZ (or KX), on the unbiased green (or

red) points in UZ (or UX). One can then see that the (K2) rule is:

=

α1, α2, ..., αD−1

k

k

=

α1, α2, ..., αD−1

αk+1 − αk, αk+2 − αk, ..., αD−1 − αk,k

k

(K2)

−αk, α1 − αk, ..., αk−1 − αk

−αk, α1 − αk, ..., αk−1 − αk
αk+1 − αk, αk+2 − αk, ..., αD−1 − αk,

There are 2D-2 equations in (K2) corresponding to the the D phase maps k associated
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to the D classical points for Z and the D phase maps k associated to the D classical points

for X (except the (0,0,..., 0) phaseless maps for each colour).

For clarity, we illustrate this rule for the case of qudits of dimension four. This requires

us to calculate the action of KZ on UZ :

ΛX(

∣∣∣∣{π2 , π, 3π

2
}X
〉

)(|{α1, α2, α3}Z〉) =


0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0




1

eiα1

eiα2

eiα3



= eiα1


1

ei(α2−α1)

ei(α3−α1)

ei(−α1)

 = (|{α2 − α1, α3 − α1,−α1}Z〉)

(5.23)

ΛX(|{π, 0, π}X〉)(|{α1, α2, α3}Z〉) =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0




1

eiα1

eiα2

eiα3



= eiα2


1

ei(α3−α2)

ei(−α2)

ei(α1−α2)

 = (|{α3 − α2,−α2, α1 − α2}Z〉)

(5.24)

ΛX(

∣∣∣∣{3π

2
, π,

π

2
}X
〉

)(|{α1, α2, α3}Z〉) =


0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0




1

eiα1

eiα2

eiα3



= eiα3


1

ei(−α3)

ei(α1−α3)

ei(α2−α3)

 = (|{−α3, α1 − α3, α2 − α3}Z〉)

(5.25)

The action of KX on UX is exactly dual to this.

The last rule will correspond to the definition of the Fourier gate

F = 1√
D

∑D−1
j,k=0 η

jk |j〉 〈k| in the calculus. In general, one can show that:

(F ⊗ F ) ◦ δZ ◦ F † = δX (5.26)



144

and:

F (|{α1, α2, ...}Z〉) = |{α1, α2, ...}X〉 (5.27)

where F is the unitary Fourier matrix. This holds for all dimensions and allows us to

introduce the Fourier gate in the qudit ZX calculus in much the same way as the Hadamard

matrix was introduced in the qubit ZX calculus [82], except that the Fourier gate corresponds

to box with a vertical (involutive) asymmetry. This gives us the (F) rules of the qudit ZX

calculus:

...

...

(F1)

(F2)=

α1, α2, ..., αD−1

F †

F F †

F
=

F † F † F † F †

F F F F

...

...

α1, α2, ..., αD−1=

Therefore, we have justified all the rules of the qudit ZX calculus from the algebraic prop-

erties of the Z and X observables and of the Fourier map. This construction, together with

Theorem 5.2 in Chapter 2, shows that qudit ZX calculus is sound for quantum mechanics.

5.3.2 The ZX calculus for qudit quantum mechanics:

We now present the ZX calculus for qudit quantum mechanics [250]. This is a generalization

of the standard qubit ZX calculus [82]. Recall that an observable structure, which is a

generalization of the Hilbert space concept of an orthonormal basis, consists of a copying

map δ : and a deleting map ε : satisfying certain algebraic conditions. A state (or

point) ψ is classical (or an eigenstate) for an observable structure if it is copied by the

copying map and deleted by the deleting map. ψ is unbiased with respect to an observable

structure if: s(δ† ◦ (ψ ⊗ ψ?)) = ε† for some scalar s.

Given an observable structure, each state ψ has a corresponding phase map: Λ(ψ) :=

δ† ◦ (ψ ⊗ I). The set of all phase maps corresponding to unbiased states for an observable
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structure, together with map composition, form a group called the phase group. We will

now present the rules of the calculus and its relationship to quantum theory.

General network diagrams are built out of parallel (tensor product) and downward com-

positions of generating diagrams from Figure 5.5.

F

...

...

...

...

; ; ;; ;F † α1, ..., αD−1 β1, ..., βD−1;

s ∈ C

scalar terms

Figure 5.5: Generating diagrams for the qudit ZX calculus.

The rules of the qudit ZX calculus are the (S), (D), (B), (K), and (F) rules below

(and their reversed colour counterparts), together with a (T) rule which states that after

identifying the inputs and outputs of any part of a ZX network, any topological deformation

of the internal structure does not matter.
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= (B2)

(K1)

...

(S2)

...

=... (S1)

... ...

=

...

...

= (B1)

k

k
=

k

α1 + β1, α2 + β2, ..., αD−1 + βD−1

α1, α2, ..., αD−1

β1, β2, ..., βD−1

:=

F

F

F †

...

F

F †

...

α1, α2, ..., αD−1

F †

...

F † F †

=

=

F
(F2)

...
F

=

(F1)α1, α2, ..., αD−1

F

F †

(K2)
Negk(α1, ..., αD−1)

kα1, α2, ..., αD−1

k

=

0, ..., 0 = (D)
√
D= =and

where Negk(α1, ..., αD−1) := αk+1−αk, αk+2−αk, ..., αD−1−αk,−αk, α1−αk, ..., αk−1−αk,
and where there are D-1 different red k vertices which have phases α1, ..., αD−1 such that

k are the phase maps corresponding to the D-1 classical points for Z whose phases are

not all zero. In higher dimensions, the (K) rules give rise to more intricate interference

phenomena, since the D classical points of an observable structure each permute the phase

group elements.

Diagrammatic reasoning in the qudit calculus is identical to reasoning in the qubit
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= ID×D :=
∑D−1

k=0 |k〉 〈k| ; = SWAPa,b :=
∑D−1

j,k=0 |k〉 〈j|a ⊗ |j〉 〈k|b

F = Fourier := 1√
D

∑D−1
j,k=0 η

jk |j〉 〈k| ; F † =Fourier†.

= |0〉 :=
√
D




1
0
...
0


 ; = |+〉 :=




1
1
...
1


 ; = εX := 〈0| ; =

εZ := 〈+|

= δX :=




ID×D
P1(ID×D)

...
PD−1(ID×D)


 ; = δZ :=

(
e1| e2| ... |eD

)

α1, ..., αD−1 = ΛX(α1, α2, ..., αD−1) := 1
D




c0 cD−1 cD−2 ... c2 c1

c1 c0 cD−1 ... c3 c2

c2 c1 c0 ... c4 c3

... ... ... ... ... ...
cD−1 cD−2 cD−3 ... c1 c0




α1, ..., αD−1 = ΛZ(α1, α2, ..., αD−1) :=




1 0 0 ... 0
0 eiα1 0 ... 0
0 0 eiα2 ... ...
... ... ... ... 0
0 0 ... 0 eiαD−1




= CNOTa,b :=
∑D−1

j,k=0 |k〉 〈j|a ⊗ |k〉 〈k + j|b

=




ID×D 0 0 ... 0
0 P1(ID×D) 0 ... 0
0 0 P2(ID×D) ... ...
... ... ... ... 0
0 0 ... 0 PD−1(ID×D)




Figure 5.6: Hilbert space interpretation of the qudit ZX calculus elements.

calculus. As before, two network diagrams can be shown to be equal by locally replacing

some part of a diagram with a diagram equal to it.

Note that the restricted case of the ZX calculus for qutrits has been studied independ-

ently by Quanlong Wang and co-workers [296].

As with the qubit case, we can model the calculus in Hilbert space. We interpret all

diagram edges by CD and elements of the qudit calculus correspond to the following Hilbert

space elements:

where Pj(ID×D) (j=1,2, ... D-1) are D×D matrices corresponding to the identity matrix
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ID×D, with all its rows permuted to the right by j and where ei are the vectors which have

one 1 in row D × (i− 1) + i and D-1 zeros in all the other rows.

The cj elements of the ΛX matrix are defined by: |+〉 +
∑D−1

k=1 e
iαk |+k〉 = 1√

D
(c0 |0〉 +

∑D−1
j=1 cj |j〉) where |+k〉 are the D eigenvectors of the X =

∑D−1
j=0 |j〉 〈j + 1| matrix.

We now proceed to show the universality of the qudit ZX calculus for quantum mechanics.

Muthukrishnan and Stroud [222] have shown that the families of gates Zj and Xj , which

we define below, are are sufficient to simulate all single qudit transformations. Moreover,

Brylinski [68] has proven that the collection of all one-qudit gates together with a single

imprimitive two-qudit gate (as defined below) produces all n-qudit gates up to arbitrary

precision.

We combine these two important results into a theorem:

Theorem 3.5: The following set of qudit quantum gates are universal for quantum computing:

(a) The two following families of D-dimensional transforms (which are universal for single

qudit quantum mechanics) [222]:

Zj(b0, b1..., bD−1) : b0 |0〉+ b1 |1〉+ ...+ bD−1 |D − 1〉 7→ |j〉 (5.28)

for j ∈ {0, 1, ..., D−1}, where the bj are complex coefficients normalized to unity. Note that

this equation does not determine the map Zj uniquely.

Xj(φ) : b0 |0〉+ b1 |1〉+ ...+ bD−1 |D − 1〉 7→ b0 |0〉+ ...+ eiφbj |j〉+ bD−1 |D − 1〉 (5.29)

for j ∈ {0, 1, ..., D − 1}.
(b) Any imprimitive 2 qudit gate [68], where a 2 qudit gate is called imprimitive if there

exist no single qudit gates S and T such that: V = S ⊗ T or V = (S ⊗ T )SWAP where

SWAP |xy〉 = |yx〉.

Theorem 3.6: The qudit ZX calculus is universal for quantum mechanics.

Proof. (a) Single qudit universality:

We can show that all 2D maps Z0, Z1, ..., ZD−1, X0(φ0), X1(φ1), ..., and XD−1(φD−1)
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are included in the qudit ZX calculus.

One can easily check that (up to global phase): X0(φ0) = ΛZ(−φ0, ...,−φ0), Xj(φj) =

ΛZ(0, ..., 0, αj = φj , 0, ..., 0) for j 6= 0.

Next, we show that the d maps Zj(b0, b1, ..., bD−1) can be written (up to global phase)

as ΛX(α1, α2, ..., αD−1) for some set {α1, α2, ..., αD}.
First of all, note that ΛZ(α1, α2, ..., αD−1) has determinant one and that, since

ΛX(α1, α2, ..., αD−1) is unitary and is obtained by applying the Fourier gate and its trans-

pose to ΛZ(α1, α2, ..., αD−1), we have that:

det(ΛX(α1, α2, ..., αD−1)) = 1 6= 0 (5.30)

for any values of {α1, α2, ..., αD−1}.
This means that there exists a unique solution set {b0, b1, ..., bD−1} to the equation:

ΛX(α1, α2, ..., αD−1).(b0, b1, ..., bD−1)T = ej (5.31)

for each vector ej = (0, ..., 0, 1, 0, ..., 0)T with a single 1 in the jth column.

Using the definition of ΛX , this means that there exists a unique set of {b0, b1, ..., bD−1}
such that:

cjb0 + cj−1b1 + ...+ c0bj + cD−1bj+1 + ...+ cj+1bD−1 = D (5.32)

ckb0 + ck−1b1 + ...+ c0bk + cD−1bk+1 + ...+ ck+1bD−1 = 0;∀k 6= j (5.33)

Recall that the ck are defined as: ck = 1+
∑D−1

l=1 ηrk(l)eiαl where rk permutes the entries

l (there is one rk for each k). We know that:
∑D−1

k=0 η
k = 0, where η = e

2πi
D , and that all

the bk (k = 0, 1, ..., D− 1) are complex numbers of unit norm so that:
∑D−1

k=0 b
?
kbk = 1. This

means that there exists a solution to this set of equations. Therefore, up to global phase, it

is always possible to find values for {α1, ..., αD−1} such that (5.32,5.33) is satisfied.

But and this means that each map ZD(b0, ..., bD−1) (each one corresponding to a value

of j in (5.31)) can be written in the form ΛX(α1, α2, ..., αD−1) for some set {α1, α2, ..., αD}.
Using theorem 3.5, this shows that the qudit ZX calculus contains all single qudit

unitary transformations.
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(b) The qudit CNOT gate is an imprimitive 2 qudit gate which is contained within the

qudit calculus.

Note also that any map from n qudits to m qudits can be constructed by using dia-

grammatic map-state duality [3]. Therefore, any qudit quantum state and (post-selected)

measurement and any quantum gate can be written in the qudit ZX calculus and therefore

it is universal for quantum mechanics.

To illustrate the proof for single qudit universality, note that in the qutrit case, we can

explicitly find an assignment of the α values such that (up to global phase):

Z0(b0, b1, b2) = ΛX(−i log

(
(b0 + b1 + b2)(b0η − b1(η + 1) + b2)

η (b20(−η)(η + 1)− b0(b1 + b2) + b21 + b1b2η(η + 1) + b22)

)
,

−i log

(
(b0 + b1 + b2)(b0η + b1 − b2(η + 1))

η (b20(−η)(η + 1)− b0(b1 + b2) + b21 + b1b2η(η + 1) + b22)

)
) (5.34)

Z1(b0, b1, b2) = ΛX(−i log

(
(b0 + b1 + b2)(b0 + b1η − b2(η + 1))

η (b20 + b0(b2η(η + 1)− b1)− (b1η + b1 − b2)(b1η + b2))

)
,

−i log

(
− (b0 + b1 + b2)(b0η + b0 − b1η − b2)

η (b20 + b0(b2η(η + 1)− b1)− (b1η + b1 − b2)(b1η + b2))

)
) (5.35)

Z2(b0, b1, b2) = ΛX(−i log

(
− (b0 + b1 + b2)(b0η + b0 − b1 − b2η)

η (b20 + b0(b1η(η + 1)− b2) + (b1 + b2η)(b1 − b2(η + 1)))

)
,

−i log

(
(b0 + b1 + b2)(b0 − b1(η + 1) + b2η)

η (b20 + b0(b1η(η + 1)− b2) + (b1 + b2η)(b1 − b2(η + 1)))

)
) (5.36)

where η = e
2πi
3 .

By construction, any equation which can be shown to be true using the qudit ZX calculus

is true in quantum mechanics so the qudit ZX calculus is sound for quantum mechanics.

Moreover, extending the qudit ZX calculus to account for mixed states and general quantum

evolution described by completely positive maps can be achieved by using the same standard

constructions [266,87,119] as in the qubit case.

We know that [24] the qubit ZX calculus is complete for qubit stabilizer quantum
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theory, in the sense that any two equivalent qubit stabilizer processes can be shown to

be equal by using the qubit ZX calculus. Backens’ proof of this result [24], however, relies

on results for qubit graph states and it is unclear whether it can be generalized to show

completeness of the qudit ZX calculus for qudit stabilizer theory. Therefore, we leave this

as an open question:

Is the qudit ZX calculus, with additional rules analogous to the Euler decomposition of the

Hadamard vertex, complete for qudit stabilizer quantum mechanics? If it is not, then which

other rules need to be added for completeness?

Another important question is how the qudit and qubit ZX calculi are related. More

generally, it would be interesting to understand exactly how the ZX calculus for qudits of

dimension m is related to the ZX calculus of dimension n > m. Perhaps, we could introduce

maps which “create” and “annihilate” dimensions. This could lead to an interesting struc-

ture and provide insight into the relationship between qubit and qudit quantum mechanics.

We anticipate that the new calculus will provide a practical tool to study quantum in-

formation and computation from a high-level point of view. For example, the qudit calculus

for dimensions higher than two should be well suited to understanding structural properties

of quantum algorithms, quantum key distribution and quantum error-correction. Moreover,

as the complexity of the quantum systems we study will grow, computer software such

as Quantomatic [185], which allows automated reasoning within the calculus, may play an

important role in the design of future quantum networks.

The framework presented thus far is limited to pure states and measurements as post-

selected projections. We now briefly describe three possible ways to extend the qudit ZX

calculus to account for mixed states, measurements, decoherence and general quantum evol-

ution described by completely positive maps.

The first method of augmenting the graphical language is to use the Selinger CPM

construction [266] which, for each dagger compact category C of pure states and maps

produces a new dagger compact category CPM(C) of mixed states and completely positive

maps. This new category is constructed in the following way:

The objects of CPM(C) are the same as the objects of C. The morphisms of CPM(C) are

the morphisms of C that can be written in the form E= (1⊗η†⊗1)◦(f?⊗f): A?⊗A→ B?⊗B
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(completely positive maps), where f : A→ D⊗B is a morphism in C (Kraus morphism)

and D is an object in C (ancillary system). Identities and tensor products are inherited from

C and composition is as in C. If E : A? ⊗A→ B? ⊗B then the adjoint in CPM(C) is given

by: E : B? ⊗B → A? ⊗A. The construction preserves the dagger compact structure of C.

One can then study probability distributions, quantum measurements, decoherence, etc.

in the resulting category [90]. Quantum operations are then encoded using two wires and

classical information can be described using a single wire.

The second formalism which allows one to go from a pure state qudit ZX calculus

to a general theory with mixed states and completely positive maps is to introduce an

environment structure [87,84].

An environment structure for a dagger symmetric monoidal category is defined as a

dagger symmetric monoidal “supercategory” Ĉ with the same objects as C but where each

object A has a morphism >A: A→ I which satisfies the following axioms:

(i) >I = 1I and for all objects A and B: >A ⊗>B = >A⊗B in Ĉ.

(ii) For all f, g ∈ C(A,C ⊗B) we have: f † ◦ f = g† ◦ g in C iff >C ◦ f = >C ◦ g in Ĉ.

(iii) For each f̂ ∈ Ĉ(A,B), there is f ∈ C(A,C ⊗B) st: f̂ = >C ◦ f in Ĉ (purification).

If C consist of pure states then the category Ĉ consists of mixed states and the > is

an environment map. This approach can in fact be related to the CPM construction [87,84].

Adding the environment to the ZX calculus allows one to account for decoherence and

measurement in a general way.

The third possible generalization of the graphical calculus is to introduce a set of variables

that encode the outcome of measurements. This allows one to study determinism and

information flow using conditional diagrams [119].

We define a set of variables V and valuation functions V → {0, 1}. A conditional

diagram is a ZX calculus diagram D where each Z or X vertex v has an associated variable

subset Uv ⊆ V . From each conditional diagram and valuation function pair {D, f}, we

can obtain an evaluated diagram Df by modifying the phase at each vertex (according to

the product of the valuation functions f(u) for all u ∈ Uv) then forgetting Uv. In this

way, valuations correspond to possible sets of measurement outcomes for measurements

corresponding to variables. The evaluated diagram Df depicts the measurement process

when a particular outcome corresponding to f is observed.
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We can then construct a CP map: E : ρ 7→∑
f DfρD

†
f by taking the Kraus linear maps

associated with the evaluated diagrams Df and summing over all possible valuations.

Therefore, we have seen that the ZX calculus for qudits can be extended to describe

mixed states, completely positive maps and measurement theory.

5.3.3 Mutually unbiased qudit theories

One of the main goals of this chapter is to use the abstract structures we introduced to study

the foundation of quantum theory. In this respect, we aim to define a class of theories which

exhibit many key features of quantum mechanics, within a single mathematical framework.

Therefore, we will generalize the previous approach of studying mutually unbiased qubit

theories using dagger compact symmetric monoidal categories [91,123] to the case of qudits.

Definition: A mutually unbiased qudit theory is a dagger symmetric monoidal cat-

egory with observable structures such that:

(i) The objects of the category are the unit and finite tensor products of qudit-like

systems Q.

(ii) The observables on a given object are all mutually unbiased, have the same number

of eigenstates and have the same phase groups.

(iii) All states of Q are eigenstates of some observable.

We will study mutually unbiased qudit theories for dimensions higher than two. In the

following two sections, we analyze in detail two key examples of mutually unbiased qudit

theories: qudit stabilizer quantum mechanics and Spekkens-Screiber theory for dits. Note

that we are interested in the diagrams from the ZX calculus which can be directly related

to physical processes and thereby we use the calculus to depict MUQTs.

5.3.4 Picturing stabilizer quantum mechanics

We define the process category DStab as the †-compact symmetric monoidal subcategory

of FHilb corresponding to qudit stabilizer quantum mechanics, which is generated by the

unit, n-fold tensor products of CD, single qudit Clifford operations and the quantum copying

and deleting maps. DStab can be depicted using the qudit ZX diagrams, where the allowed

phases are restricted according to the phase group.
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In the case of the standard qubit stabilizer quantum mechanics, the phase group is

the cyclic group Z4, which is a finite subgroup of the quantum qubit phase group S1 (the

circle group). Since the unbiased circles for the Z and X observables coincide on the points

corresponding to |+i〉 and |−i〉, we can completely picture single qubit stabilizer quantum

theory using the Bloch sphere.

Can one find an analogous picture for qutrit quantum mechanics?

Let {|0〉, |1〉, |2〉} and {|+〉, |>〉, |⊥〉} be the eigenbases for the qutrit Z and X observables

respectively. Then the unbiased states for the Z and X observable:

|{α1, α2}Z〉 = |0〉+ eiα |1〉+ eiα2 |2〉 ; |{α1, α2}X〉 = |+〉+ eiα |>〉+ eiα2 |⊥〉 (5.37)

under pairwise addition of phases form a torus group S1 × S1.

All the single qutrit stabilizer states, corresponding to the eigenstates of the qutrit X,

Z, XZ and XZ2 operators, can be written as unbiased states for either the Z basis or the X

basis since:

|0〉 = |{0, 0}X〉 , |1〉 =

∣∣∣∣{
4π

3
,

2π

3
}X
〉
, |2〉 =

∣∣∣∣{
2π

3
,

4π

3
}X
〉

;

|+〉 = |{0, 0}Z〉 , |>〉 =

∣∣∣∣{
2π

3
,

4π

3
}Z
〉
, |⊥〉 =

∣∣∣∣{
4π

3
,

2π

3
}Z
〉

;

|−〉 =

∣∣∣∣{
4π

3
,

4π

3
}Z
〉

=

∣∣∣∣{
2π

3
,

2π

3
}X
〉
, |`〉 =

∣∣∣∣{0,
2π

3
}Z
〉

=

∣∣∣∣{
4π

3
, 0}X

〉
, |a〉 =

∣∣∣∣{
2π

3
, 0}Z

〉
=

∣∣∣∣{0,
4π

3
}X
〉

;

|×〉 =

∣∣∣∣{
2π

3
,

2π

3
}Z
〉

=

∣∣∣∣{
4π

3
,

4π

3
}X
〉
, |h〉 =

∣∣∣∣{
4π

3
, 0}Z

〉
=

∣∣∣∣{
2π

3
, 0}X

〉
, |i〉 =

∣∣∣∣{0,
4π

3
}Z
〉

=

∣∣∣∣{0,
2π

3
}X
〉

(5.38)

Single qutrit stabilizer operations take subsets of these 12 states to other subsets of these

12 states. This shows that the phase group for qutrit stabilizer quantum mechanics is Z3×Z3.

Therefore, single qutrit stabilizer quantum theory can be pictured using 12 points on two

toruses, which is a direct generalization of the Bloch sphere case, where the 4 elements on

each of the two unbiased circles (coinciding on two elements) visualized in three dimensions

are replaced by 9 elements on each of two unbiased toruses coinciding on six points

(the blue and yellow points in Figures (5.7a, 5.7b)).

In fact, this picture can easily be generalized to higher dimensional qudit stabilizer the-



155

(a) Qutrit stabilizer states on the unbiased
torus for the Z observable.

(b) Qutrit stabilizer states on the unbiased
torus for the X observable.

Figure 5.7: Depicting qutrit stabilizer theory on two tori.

ories for prime dimensions. In that case, the single qudit states of qudit stabilizer quantum

theory correspond to the vectors in the D+1 mutually unbiased eigenbases of the single

qudit operators: X,Z,XZ,XZ2, ..., XZD−1. The mutually unbiased points with respect to

each of these bases forms a D-torus. If we chose an observable structure, whose eigenstates

are a basis, then all the other stabilizer states are on the unbiased D-torus of the chosen

basis. In this way, qudit stabilizer theory for prime dimension D can be pictured using

D2 points on each of two D-toruses (unbiased toruses for the Z and X operators for

example), which coincide on D2 −D points and can be visualized in D+1 dimensions.

In general, the phase group for qudit stabilizer quantum theory of dimension D > 3 is

an Abelian subgroup of the group ZD × ZD × ... × ZD (D-1 times). In fact, every finite

dimensional closed subgroup of the torus group is isomorphic to a product of finite cyclic

groups [258]. Therefore, the phase group for mutually unbiased qudit theories which are also

sub-theories of quantum mechanics must be of the form Zn1 × Zn2 × ... × Znk for positive

integers n1, ..., nk. In further work, we will study how these integers n1, ..., nk for stabilizer

phase groups depend on the dimension D. In general, we would like a physical classification

of all the mutually unbiased qudit sub-theories of quantum mechanics in terms of n1, ..., nk.

Once we have determined their phase group, the qudit ZX calculus allows us to fully

describe these physical theories.
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As an example of the ZX calculus for stabilizer quantum theory in non-prime dimensions,

we study the four-dimensional case.

In four dimensions, we can write three coherent mutually unbiased bases corresponding

to the eigenbases of the operators Z, X and Y = XZ2. The eigenbasis of Z can be written

as:

{|0〉 = (1, 0, 0, 0)T , |1〉 = (1, 0, 0, 0)T , |2〉 = (1, 0, 0, 0)T , |3〉 = (1, 0, 0, 0)T } (5.39)

The Z and Y eigenbases can respectively be written as:

{ |+〉 =
1

2
(|0〉+ |1〉+ |2〉+ |3〉), |×〉 =

1

2
(|0〉+ i |1〉 − |2〉 − i |3〉),

|−〉 =
1

2
(|0〉 − |1〉+ |2〉 − |3〉), |÷〉 =

1

2
(|0〉 − i |1〉 − |2〉+ i |3〉)}

(5.40)

{ |>〉 =
1

2
(|0〉 − |1〉 − |2〉 − |3〉), |⊥〉 =

1

2
(|0〉 − i |1〉+ |2〉+ i |3〉),

|`〉 =
1

2
(|0〉+ i |1〉+ |2〉 − i |3〉), |a〉 =

1

2
(|0〉+ |1〉 − |2〉+ |3〉)}.

(5.41)

Note that we can always construct D+1 mutually unbiased bases when D is an integer

power of a prime [31,189] but that in the case when D is not an integer power of a prime then

the maximal number of mutually unbiased bases is not known [66,175].

The set of unbiased states (up to global phase) for the |0〉, |1〉, |2〉, |3〉 eigenbasis of the

qudit Z observable can be written as:

|{α1, α2, α3}Z〉 = |0〉+ eiα |1〉+ eiα2 |2〉+ eiα3 |3〉 . (5.42)

These unbiased states for the Z observable form a 3-torus group under the operation:

|{α1, α2, α3}Z〉 �Z |{β1, β2, β3}Z〉 = |{α1 + β1, α2 + β2, α3 + β3}Z〉 . (5.43)

Similarly, the set of unbiased states (up to global phase) for the |+〉, |×〉, |−〉, |÷〉
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eigenbasis of the ququit X observable can be written as:

|{α1, α2, α3}X〉 = |+〉+ eiα |×〉+ eiα2 |−〉+ eiα3 |÷〉 (5.44)

and these unbiased states for the X observable form a 3-torus group under the operation:

|{α1, α2, α3}X〉 �X |{β1, β2, β3}X〉 = |{α1 + β1, α2 + β2, α3 + β3}X〉 . (5.45)

All the single four-dimensional stabilizer states, correspond to the eigenstates of the X,

Z and XZ2 operators and these can be written as unbiased states for either the Z basis or

the X basis. Indeed, the 8 stabilizer states unbiased for the Z observable can be written as:

|+〉 = |{0, 0, 0}Z〉 , |×〉 =

∣∣∣∣{
π

2
, π,

3π

2
}Z
〉
,

|−〉 = |{π, 0, π}Z〉 , |÷〉 =

∣∣∣∣
3π

2
, π,

π

2
}Z
〉

;

|>〉 = |{π, π, π}Z〉 , |⊥〉 =

∣∣∣∣
3π

2
, 0,

π

2
}Z
〉
,

|`〉 =

∣∣∣∣
π

2
, 0,

3π

2
}Z
〉
, |a〉 = |{0, π, 0}Z〉

(5.46)

Similarly, the 8 stabilizer states unbiased for the X observable can be written as:

|0〉 = |{0, 0, 0}X〉 , |1〉 =

∣∣∣∣{
3π

2
, π,

π

2
}X
〉
,

|2〉 = |{π, 0, π}X〉 , |3〉 =

∣∣∣∣{
π

2
, π,

3π

2
}X
〉

;

|>〉 = |{π, π, π}X〉 , |⊥〉 = |{π, 0, 0}X〉 ,

|`〉 = |{0, 0, π}X〉 , |a〉 = |{0, π, 0}X〉

(5.47)

Single stabilizer operations take subsets of these 12 states to other subsets of these 12

states. The group of unbiased points for a basis in four-dimensional quantum stabilizer

theory is a proper abelian subgroup of Z4×Z4×Z4 with eight elements which has the group

multiplication table given in Figure 5.8 below.
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Figure 5.8: Group table for the four-dimensional stabilizer phase group.

+ id a b c d e f g

id id a b c d e f g

a a g id f e c d b

b b id g e f d g a

c c f e id g b a d

d d e f g id a b c

e e c d b a g id f

f f d g a b id g e

g g b a d c f e id

Note that if we use addition modulo 4 and modulo 2 we can take:

id = (0, 0), a = (1, 1), b = (3, 1), c = (0, 1)

d = (2, 1), e = (3, 0), f = (1, 0), g = (2, 0)
(5.48)

Therefore the phase group is: Z4 × Z2.

It seems odd that stabilizer quantum mechanics in four dimensions only uses three of the

five possible mutually unbiased bases. Indeed, this means that single qudit four dimensional

stabilizer theory has exactly the same number of states as three dimensional stabilizer theory.

Perhaps, it would be interesting to extend four-dimensional stabilizer quantum mechanics

to a theory which has all the 20 vectors from all five mutually unbiased bases as single qudit

states. We would then expect the phase group to be a larger subgroup of Z4×Z4×Z4 than

the one above. In either case, we can picture qudit stabilizer quantum mechanics using two

3-toruses as we described before.

In general, qudit stabilizer theory for non-prime dimension D will only have 3×D states

corresponding to three mutually unbiased bases. It is still an open question whether there

exist sets with more than three mutually unbiased bases in non prime power dimensions,

such as D=6,10,... .

Thus, we have shown how qudit Stabilizer theory can be described as a †-compact



159

symmetric mondonoidal theory of processes using the qudit ZX calculus, where the choice

of the phase group determines which state preperations, effects and single qudit maps

ΛX(α1, ..., αD) and ΛZ(α1, ..., αD) are included in the pictorial calculus. The CNOT and

SWAP gates are always included in the calculus and together with single qudit gates, they

provide arbitrary Clifford operations.

5.3.5 Depicting Spekkens-Schreiber toy theory for dits

We define the category FRel whose objects are finite sets and whose morphisms are rela-

tions. By taking the Cartesian product of sets as the tensor product, the single element set

{?} as the identity object and the relational converse as the dagger, FRel can be viewed as

a SMC with dagger structure.

We can then define the category DSpek as a subcategory of FRel whose objects are

the single element set I = {?} and n-fold Cartesian products of the D2-element set: D :=

{1, 2, ..., D2}.
The morphisms of DSpek are those generated by composition, Cartesian product and

relational converse from the following relations:

(a) All (D2)! permutations σi : D → D of the D2- element set.

(b) The copying relation: δZ : D → D ×D defined as:

1 2 ... D

D 1 ... D-1

... ... ... ...

2 3 ... 1

D+1 D+2 ... 2D

2D D+1 ... 2D-1

... ... ... ...

D+2 D+3 ... D+1

... ... ... ...

... ... ... ...

... ... ... ...

... ... ... ...

D(D-1)+1 D(D-1)+2 ... D2

D2 D(D-1)+1 ... D2-1

... ... ... ...

D(D-1)+2 D(D-1)+3 ... D(D-1)+1

where there is x in the (y,z) location of the grid iff δZ : x ∼ (y, z).

(c) The deleting relation: εZ : D → I defined as: {1, D+1, 2D+1, ..., D(D−1)+1} ∼ ?.
(d) The relevant unit, associativity and symmetry natural isomorphisms.
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If we interpret relations from I to n-fold tensor products of D as epistemic states on

phase space then this category corresponds to Spekkens-Schreiber theory for dits with only

states of maximal knowledge. Adding the maximally mixed state ⊥D:: {?} ∼ {1, 2, ..., D2}
to DSpek yields the category MDSpek, corresponding to Spekkens-Schreiber theory for

dits of dimension D.

DSpek and MDSpek inherit symmetric monoidal and †-compact structure from FRel

since we can define Bell states (corresponding to compact structures) as:

µD := δZ ◦ ε†Z : I → D ×D :: ? ∼ {(1, 1), (2, 2), ..., (D2, D2)} (5.49)

We can define the other copying map as:

δX = (ΠD−1
k=1 σ(k+1,(kD)+1) ⊗ΠD−1

k=1 σ(k+1,(kD)+1)) ◦ δZ ◦ (ΠD−1
k=1 σ(k+1,(kD)+1)) (5.50)

where σ(j,k) permutes entries j and k of the input D2-element set (epistemic state). This

map is explicitly: δX : D → D × D such that: δX : x ∼ (y, z) iff there is x in the (y,z)

location of the following grid:

1 D+1 ... ... ... ... D(D-1)+1

2 D+2 ... ... ... ... D(D-1)+2

... ... ... ... ... ... ...

D 2D ... ... ... ... D2

D(D-1)+1 1 ... ... ... ... D(D-2)+1

D(D-1)+2 2 ... ... ... ... D(D-2)+2

... ... ... ... ... ... ...

D2 D ... ... ... ... D(D-1)

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

D+1 2D+1 ... ... ... ... 1

D+2 2D+2 ... ... ... ... 2

... ... ... ... ... ... ...

2D 3D ... ... ... ... D

and the other erasing map as: εX : D → I such that: {1, 2, 3, ..., D} ∼ ?. It is easy to

check that this then gives us two strongly complementary observable structures, analogous

to the Z and X observable structures in quantum theory.

In fact, we can use the fact that 3Spek can be depicted in the qutrit ZX calculus to

provide a novel proof of the following known result:
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Theorem 3.7 [158,262]: Spekkens-Schreiber theory for trits is operationally equivalent

(meaning equivalence of preparation, transformation and measurement processes) to sta-

bilizer theory for qutrits.

Proof. We can define the Z and X observable structures (D, δ(trit)
Z , ε

(trit)
Z ) and

(D, δ(trit)
X , ε

(trit)
X ) for 3Spek as described above.

The Z observable structure is: (D = {1, 2, ..., 9}, δZ : D × D → D, εZ : D → I) where:

δZ :: x ∼ (y, z) iff there is x in the (y,z) location of the following grid:

1 2 3

3 1 2

2 3 1

4 5 6

6 4 5

5 6 4

7 8 9

9 7 8

8 9 7

and εZ : {1, 4, 7} ∼ ?.
The X observable structure is: (D = {1, 2, ..., 9}, δX : D ×D → D, εX) : D → I

where: δX = ((σ(2,4) ◦ σ(3,7)) ⊗ (σ(2,4) ◦ σ(3,7))) ◦ δZ ◦ (σ(2,4) ◦ σ(3,7)) defined as usual by

the table:

1 4 7

2 5 8

3 6 9

7 1 4

8 2 5

9 3 6

4 7 1

5 8 2

6 9 3
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and εX : {1, 2, 3} ∼ ?.
The Z observable structure has three classical states:

z0 :: ? ∼ {1, 2, 3} ; z1 :: ? ∼ {4, 5, 6} ; z2 :: ? ∼ {7, 8, 9} (5.51)

and nine unbiased states:

x0 :: ? ∼ {1, 4, 7} ; x1 :: ? ∼ {2, 5, 8} ; x2 :: ? ∼ {3, 6, 9}

(xz)0 :: ? ∼ {1, 6, 8} ; (xz)1 :: ? ∼ {2, 4, 9} ; (xz)2 :: ? ∼ {3, 5, 7}

(xz2)0 :: ? ∼ {1, 5, 9} ; (xz2)1 :: ? ∼ {2, 6, 7} ; (xz2)2 :: ? ∼ {3, 4, 6} (5.52)

The X observable also has 3 classical states x0, x1, x2 and nine unbiased states z0, z1, z2,

(xz)0, (xz)1, (xz)2, (xz2)0, (xz
2)1 and (xz2)2.

Similarly, one could define two other observable structures corresponding to “XZ” and

“XZ2” which each have three classical states and nine unbiased states. Therefore, 3Spek

contains 4 observable structures and 12 single trit states. Also, there are 12 (measurement)

effects, corresponding to taking the converse relations of the 12 states.

If we define phase maps: ΛZ(ψ) := (δ
(trit)
Z )†(ψ ⊗ 1D) : D → D and

ΛX(ψ) := (δ
(trit)
X )†(ψ⊗1D) : D → D, then it is clear that the phase group of 3Spek is Z3×Z3.

Therefore, both 3Spek and 3Stab can be expressed in the qutrit ZX calculus as mu-

tually unbiased qutrit theories with twelve states and phase group Z3 × Z3. This uniquely

determines all the allowable preperations, measurements and transformations (compositions

of spiders with phases adding according to Z3 × Z3).

Explicitly, we can associate the twelve single trit states of 3Spek with those of 3Stab
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according to:

[[z0]] ≡ |0〉 =
0,0

; [[z1]] ≡ |1〉 =
4π
3 ,

2π
3 ; [[z2]] ≡ |2〉 =

2π
3 ,

4π
3 ;

[[x0]] ≡ |+〉 =
0,0

; [[x1]] ≡ |>〉 =
2π
3 ,

4π
3 ; [[x2]] ≡ |⊥〉 =

4π
3 ,

2π
3 ;

[[(xz)0]] ≡ |−〉 =
4π
3 ,

4π
3 ; [[(xz)1]] ≡ |`〉 =

0, 2π
3 ; [[(xz)2]] ≡ |a〉 =

2π
3 , 0;

[[(xz2)0]] ≡
2π
3 ,

2π
3 ; [[(xz2)1]] ≡ |h〉 =

4π
3 , 0; [[(xz2)2]] ≡ |i〉 =

0, 4π
3

(5.53)

The post-selected measurements (indicator functions) are the adjoints of these and the

reversible transformations in 3Spek are mapped to the reversible of 3Stab corresponding

to the same spider diagram. This means that our previous discussion of qutrit stabilizer

quantum theory carries through to 3Spek.

We will now study DSpek in the four-dimensional case.

Now, the Z observable structure has a copying map δZ given by:

1 2 3 4

4 1 2 3

3 4 1 2

2 3 4 1

5 6 7 8

8 5 6 7

7 8 5 6

6 7 8 5

9 10 11 12

12 9 10 11

11 12 9 10

10 11 12 9

13 14 15 16

16 13 14 15

15 16 13 14

14 15 16 13

and a deleting map: εZ :: {1, 5, 9, 13} ∼ ?. This has classical points:

z0 :: ? ∼ {1, 2, 3, 4} (5.54)

z1 :: ? ∼ {5, 6, 7, 8} (5.55)
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z2 :: ? ∼ {9, 10, 11, 12} (5.56)

z3 :: ? ∼ {13, 14, 15, 16} (5.57)

.

And similarly, the X observable has a copying map δX described by:

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

13 1 5 9

14 2 6 10

15 3 7 11

16 4 8 12

9 13 1 5

10 14 2 6

11 15 3 7

12 16 4 8

5 9 13 1

6 10 14 2

7 11 15 3

8 12 16 4

and a deleting map εX :: {1, 2, 3, 4} ∼ ?. The classical points of the X observable

structure are:

x0 :: ? ∼ {1, 5, 9, 13} ≡ |{0, 0}Z〉 (5.58)

x1 :: ? ∼ {2, 6, 10, 14} ≡
∣∣∣{π

2
, 0}Z

〉
(5.59)

x2 :: ? ∼ {3, 7, 11, 15} ≡ |{π, 0}Z〉 (5.60)

x3 :: ? ∼ {4, 8, 12, 16} ≡
∣∣∣∣{

3π

2
, 0}Z

〉
(5.61)



165

The Bell state is given by:

BELL := {(k, k)|k = 1, 2, ...16} = δZ ◦ ε†Z = δX ◦ ε†X (5.62)

There are now 12 unbiased points for both the Z and X observables, such that δ†Z ◦ (pi×
pi)λI = εZ and δ†X ◦ (pi× pi)λI = εX , corresponding to distinct epistemic states. These are:

u1 :: ? ∼ {1, 8, 11, 14} ≡
∣∣∣{0, π

2
}Z
〉

; u2 :: ? ∼ {2, 5, 12, 15} ≡
∣∣∣{π

2
,
π

2
}Z
〉

;

u3 :: ? ∼ {3, 6, 9, 16} ≡
∣∣∣{π, π

2
}Z
〉

; u4 :: ? ∼ {4, 7, 10, 13} ≡
∣∣∣∣{

3π

2
,
π

2
}Z
〉

;

u5 :: ? ∼ {1, 6, 11, 16} ≡ |{0, π}Z〉 ; u6 :: ? ∼ {2, 7, 12, 13} ≡
∣∣∣{π

2
, π}Z

〉
;

u7 :: ? ∼ {3, 8, 9, 14} ≡ |{π, π}Z〉 ; u8 :: ? ∼ {4, 5, 10, 15} ≡
∣∣∣∣{

3π

2
, π}Z

〉
;

u9 :: ? ∼ {1, 7, 10, 16} ≡
∣∣∣∣{0,

3π

2
}Z
〉

; u10 :: ? ∼ {2, 8, 11, 13} ≡
∣∣∣∣{
π

2
,
3π

2
}Z
〉

; (5.63)

u11 :: ? ∼ {3, 5, 12, 14} ≡
∣∣∣∣{π,

3π

2
}Z
〉

; u12 :: ? ∼ {4, 6, 9, 15} ≡
∣∣∣∣{

3π

2
,
3π

2
}Z
〉

(5.64)

Note the redundancy in the unbiased points (similar to a choice of global phase) that

leads us to keep only half of the 24=4! relations that satisfy the unbiasedness relation for

Z and X. So we can see that the group of unbiased points for Z (or X) in 4Spek can be

interpreted as the direct product of the Z4 group corresponding to the ‘position’ part of the

phase space in Spekkens-Schreiber theory and a Z4 group corresponding to the ‘momentum’

part of the phase space in Spekkens-Schreiber theory. Note that theorem 3.4 is satisfied

since the group Z4 of classical points for the X observable (or Z observable) is a subgroup

of the unbiased group Z4 × Z4 for the Z observable (or X observable).

Therefore, the phase group of 4Spek is Z4 × Z4.

In general, DSpek contains D classical points of the Z (or X) observable and D2 unbiased

points for the Z (or X) observable structures. Note that: D!+D = D2 iff D = 2, 3, otherwise

there is a redundancy in the relations satisfying the unbiasedness condition which means
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that D! +D−D2 of them must be discarded since they correspond to a repeated epistemic

state (with the same isotropic subspace and valuation vector). Therefore, the phase group

for DSpek in general is ZD × ZD.

This should allow us to depict these theories for any dimension using (a version of) the

qudit ZX calculus. We can then study the relationship between Spekkens-Schreiber theory

for dits and qudit stabilizer theory in the general case.

5.4 A periodic table of quantum-like theories

We have shown how to study operational physical theories using symmetric monoidal cat-

egories and diagrammatic calculi. The key ingredient in our analysis has been the phase

group. Isolating this particular feature provides a method for classification and yields a

periodic table of quantum-like operational theories, described by the Phase Group.

Definition 4.1: Let Π be an Abelian group. We can interpret this group as a category P
with a single object X and arrows from X to X, corresponding to the underlying set of Π.

Let FSMC(ZXD)/ ≡ZXD be the free symmetric monoidal category of the ZX calculus for

qudits in dimension D, quotient to the axioms of the qudit ZX calculus.

We can map the phase group to a symmetric monoidal category defined using the qudit

calculus corresponding to a MUQT, which allows us to classify alternative operational the-

ories by using their phase group. This yields the following Periodic Table of Quantum-like

theories:
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Figure 5.9: Periodic table of quantum-like theories.

This provides a classification of physical theories arising from fundamental symmetry

within the framework, as illustrated in Figure 5.9. Note that the horizontal axis represents

the order of the phase group and the vertical axis represents the number of direct products

of component cyclic groups. We can summarize by recalling the phase groups corresponding

to the theories we have analyzed:

In two dimensions– Spekkens’ theory: Z2 × Z2 and Stabilizer theory: Z4

In three dimensions– Spekkens’ theory and Stabilizer theory: Z3 × Z3

In four dimensions– Spekkens’ theory: Z4 × Z4 and Stabilizer theory: Z4 × Z2

Quantum theory– Torus group S1 × ...× S1.

A natural question involves whether this periodic table can be extended to include more

groups, such as non-Abelian groups and Lie groups.

Note that it could be interesting to interpret the phase group as a Galois group. An

operational theory can then be identified in terms of a field extension (of the rational numbers

Q, for instance).

Each physical theory can be associated with a collection of polynomials, corresponding

to a specific field extension of the rational numbers Q. The analysis of operational theories

through the phase group then follows from the application of Galois theory. The phase

group arises from a fundamental polynomial of a physical theory, by the fundamental
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theorem of Galois theory.

Example 5.1:

Consider the trivial field extension of the rationals Q/Q. The phase field is in correspond-

ence with any polynomial which has only rational roots, for example (x-2)2, or (x-2)(x-1).

The Galois group is then the trivial group and therefore corresponds to a trivial operational

theory, where the only physical process is the identity map.

Example 5.2:

Consider the field extension of the rationals Q(
√

2,
√

3)/Q.

This has the fundamental polynomial: p(x) = x4 − 10x2 + 1, shown in Figure 5.10.

Figure 5.10: Plot of the fundamental polynomial for Spekkens toy theory.

Therefore, the corresponding Galois group is the phase group Gal(p) = Z2 × Z2 so this

theory is Spekkens toy theory (in two dimensions).

Example 5.3:

Consider the field extension of the rationals Q(e
2πi
5 , e

4πi
5 )/Q. This field admits the fun-

damental polynomial: p(x) = x4 + x3 + x2 + x+ 1 shown in Figure 5.11.
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Figure 5.11: Plot of the fundamental polynomial for stabilizer quantum mechanics.

Therefore, the corresponding Galois group is the phase group Gal(p) = Z4 so this

theory is stabilizer quantum theory (in two dimensions).

In fact, we can consider a quartic fundamental polynomial

f(x) = x4 + ax2 + b (5.65)

with a, b ∈ Z, which has roots {±α,±β} and take α2, α ± β ∈ Q so that f(x) is

irreducible. Then the phase group Π = Gal(Q(α, β)/Q) corresponding to the fundamental

polynomial f is isomorphic to [96]:

(i) Z2 × Z2 iff αβ ∈ Q.

(ii) Z4 iff Q(α, β) = Q(α2).

(iii) Z4 × Z2 iff αβ /∈ Q(α2).

Cases (i), (ii) and (iii) respectively correspond to Spekkens toy theory, stabilizer quantum

mechanics in two dimensions and stabilizer quantum mechanics in four dimensions.

As we can see from this example, this method provides an efficient way of classifying

quantum-like theories, through the features of fundamental polynomials.
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5.5 Topological Ontological models

The previous three levels of analysis of quantum-like theories have solely focused on an

operational interpretation of these theories, without seeking any ontological significance for

the theoretical constructs used to define physical theories. In this section, we aim to provide

a realist ontic level of analysis of alternative physical theories, based upon an extension of

the usual measure space ontic model of Bell [48], Harrigan, Spekkens and Rudolph [165,167,166].

Note that the ontic space Λ need not be restricted to a set and can a priori be any

mathematical object. One must be careful not to discard potential realist interpretations of

physics because of mathematically naive restrictions. It may be useful to illustrate the ontic

space Λ as a simple generalization of the Bloch sphere, or as a real line, where we integrate

over a parameter λ to reproduce quantum statistical predictions. If we are seeking out a

mathematical object underlying all physical states of reality, however, we have to be careful

not to restrict too stringently our analysis of potential ontic spaces. Stressing this point is

the main goal of this section.

Thus far in the study of ontological models, several tacit mathematical assumptions

have been made with regard to the nature of the ontic space. The main assumption we shall

question here is that the ontic space must be a measure space. It is clear that the capacity

to define integration and thereby associate a number to subspaces of the ontic space is a

valuable and desirable feature to retrieve the operational theories from our posited under-

lying reality. Without the measure space structure it is difficult to account for probabilities

and measurement structure.

Nevertheless, it feels over-simplified to assume that a mathematical object aiming to

describe something called “underlying reality” should pander to our desire to associate

numbers to physical objects and procedures. Moreover, if we seek to define ontological

models for alternative operational theories then we should allow for greater generality. The

aim to directly reproduce quantum theory from underlying ontic assumptions is then no

longer the prime concern. This leads to the notion of meta-ontological models, where the

ontic space can be any mathematical object and all transformations are general abstractions

of those for standard ontological models.

In the following, we question the assumption that the ontic space must always be a
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measure space. This leads to the introduction of topological ontological models, where

the ontic space is a topological space. We also discuss how these models relate to the current

measure space ontic models.

We shall now restrict the mathematical form of ontic spaces to topological spaces and

introduce the notion of a topological ontic space. This will lead to an alternative frame-

work for ontological models where topology is at the heart.

Let us first of all take the ontic space Λ to be a topological space with a topology τ . We

can then define a topological ontic model in the following way:

(i) All the physical properties of a system are determined by the ontic state λ, which is

an element of the topological ontic space Λ.

(ii) An operational preparation procedure within a physical theory can be obtained

from an incomplete description of the underlying reality. This is defined by introducing a

measure µ, constructed from the Borel sigma-algebra B(Λ) generated by all the open sets

in the topological ontic space Λ. Preparation procedures can then be obtained from the

measure µ by defining a distribution:

|ψ〉 ↔ (µ(λ)) (5.66)

(iii) Measurements correspond to introducing an ensemble of separated sets, cor-

responding to subsets of the ontic topological space Λ that are neither overlapping nor

touching. The exact notion of separation to be used is related to the Trennungsaxiom

Hierarchy which we introduced in Chapter 2. Indeed, depending on which separation axiom

applies to the topological ontic state, we can call subsets L1, L2 of Λ separated if one of the

following holds:

(1) L1 and L2 are disjoint, meaning that their intersection is empty.

(2) L1 and L2 are disjoint from each other’s closure.

(3) L1 and L2 are separated by neighborhoods, meaning that there are neighborhoods U1

of L1 and U2 of L2 such that U1 and U2 are disjoint.

(4) L1 and L2 are separated by a function, meaning that there exists a continuous function

f : Λ→ R such that f(L1) = 0 and f(L2) = 1.
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Measurement results are obtained by testing for the inclusion of the ontic state λ ∈ Λ

into one of the separated subsets.

As before, we can construct measures ξi constructed on the Borel sigma-algebra B(Li),

generated by all the open sets, in each separated topological subspace Li. Measurement

procedures can then be obtained from the measures {ξi}, which can be used to define

distributions {ξi(λ)} in the usual way. These satisfy:

0 ≤ ξi(λ) ≤ 1 and
∑

i ξi(λ) = 1, for all λ.

(iv) The probability of getting outcome k for a measurement M given preparation P is

then given by ‘averaging ’ over the measure space obtained via the ontic space through the

use of the measures µ and ξi, which we previously defined.

p(i|µ,M) = 〈ξi(λ)µ(λ)〉Λ :=

∫
dλξi(λ)µ(λ) (5.67)

This allows us to compare the predictions of the ontological model with the operational

framework we wish to consider, as in the case of the standard ontological models. One

could also, however, decide that the transition from the topological ontic model formalism

to the measure space framework which allows us to make statistical predictions requires

an excessive loss of information and that predictive power weakens the model’s aptitude to

approximate “underlying reality”.

(v) Transformation of the topological ontic space Λ correspond to continuous maps.

Also, measurements can disturb the space Λ and the model should account for this by

defining continuous measurement maps.

Borel measure spaces, which are the mathematical object used to define random variables

and probability spaces, arise as a special case of topological spaces. Therefore, we can

recover the usual structure of ontological models of quantum mechanics as a special case

of the topological ontic model formalism. Naturally, this may require restrictions on the

allowable topological ontic spaces and we expect a trade-off between abstraction and the

reproduction of predictions of operational theories. For example, practical considerations

may dictate that the ontic topological space Λ should be restricted to a metrizable space, and
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obey the conditions from the metrization theorems from Chapter 2. In general, what types

of topological spaces should we use as topological ontic spaces for quantum-like theories?

Furthermore, we stress that the theoretical analysis of topological ontic models could

be conducted independently from the retrieval of familiar measure-theoretic notions. In the

present section, an effort was made to ensure that we can associate values with measurement

results and reproduce the predictions of operational physical theories, even if this means that

a process of approximation is inevitable. In future work, it will be important to consider

methods for obtaining real numbers as the results of physical measurements, which come

directly from topological methods, perhaps through the use of sheaf theory.

Could we define notions of psi-ontic, psi-epistemic and psi-calculational topological ontic

models, independently of measure-theoretic structure? Is it possible that the use of abstract

mathematical objects to describe physical reality might provide a new light on no-go results

such as the Bell, Kochen-Specker and PBR theorems? Could mathematical intricacy and

abstraction provide a novel defense of psi-epistemic interpretations of quantum theory?

Another interesting direction is to add a manifold structure to topological ontic spaces.

The key question would then be to understand the meaning of these ontic manifolds and

whether they may be related to our notions of space-time. Naturally, imposing additional

mathematical structure to the ontic space reduces the likelihood that our abstract domain

of discourse can claim any ontological significance.

Finally, we can also consider the idea of using category theory to describe the ontolo-

gical space which underlies our operational physical theories. This leads to the notion of a

categorical ontic model, where the ontic space is modelled by a category.

A possible method of comparing predictions of the ontological model with operational

frameworks is by relating the categorical ontic space to the category Meas of measure

spaces and measure preserving maps. measure preserving maps. In future work it would be

desirable to bypass the use of measure spaces and rely on a more direct method to relate

the underlying ontology with operational predictions.
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5.6 Further work

We will conclude this chapter with a brief outline of possible avenues of research which

follow from the work presented here.

The framework we have presented is rather incomplete in a number of respects. We

have hardly touched on the relationship between the five levels of analysis. A particular

point which requires further analysis is the ontological significance of the phase group and

of Galois particles.

As we mentioned earlier, understanding how the qubit calculus fits into the general qudit

calculus and proving the completeness of the generalized qudit ZX calculus for stabilizer

quantum mechanics would certainly provide new insights into qudit stabilizer quantum

mechanics. This might lead to modifications of the qudit ZX calculus before it reaches its

final form [27].

For example, can the qudit ZX calculus be expressed without angles by adding axioms

relating to graph structure [120] or use multiple edges between vertices? This approach could

simplify proofs of completeness or provide a graphical depiction of non-locality. Another

possible mathematical framework for studying the qudit ZX calculus would be to use product

and permutation categories (PROPs) [62]. This approach may yield an elegant synthetic

axiomatization of numerous physical process theories and could provide new completeness

theorems for corresponding graphical calculi.

On a more practical note, the calculus for qudit stabilizer quantum theory can help

generalize qubit protocols to qudits and understand new features of familiar quantum pro-

cesses. For example, the formalism could be used to give a general description of error

correction and fault tolerance for qudits, such that links can be made between error correc-

tion in various dimensions. Furthermore, getting new insights into the abstract structure

of qudit quantum mechanics could play a pivotal role in the development of new quantum

algorithms.

There are also a number of quantum foundations questions which could be addressed

next. It would be interesting to develop the periodic table of quantum-like theories and

include more explicit examples. For instance, we know that the single qudit stabilizer theory

is operationally equivalent to Spekkens-Schreiber theory for dits for finite odd dimensions
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and therefore admits a non-contextual, local hidden variable model in those cases. But

what is the relationship between qudit stabilizer theory and Spekkens-Schreiber toy theory

in general? We could also study van Enk’s toy model [291] as a MUQT and find its phase

group.

More generally, it would be useful to classify all the mutually unbiased qudit theories and

determine which physical features each one exhibits. For example, we can build on previous

work aiming to elucidate the relationship between a theory’s phase group and whether it

admits a local hidden variable interpretation [91,152]. The study of the qudit ZX calculus with

different Abelian phase groups should produce a large class of interesting toy models. In

the future, we could also consider theories where distinct observable structures have phase

groups that are non-Abelian or Lie groups.

Moreover, the qudit ZX calculus provides the ideal framework to study other similar

foundational questions related to complementarity. We could, for example, use the categor-

ical framework to study how various notions of complementarity arise in different dimen-

sions. Can one find a pictorial calculus which captures complementarity of more than two

observables?

Finally, it would be interesting to understand the interpretation of the D-torus phase

groups for qudit quantum mechanics observables from a physical point of view. Perhaps

studying the operational interpretation of phase [141] in physical theories could help us find

the physical reason for each phase group taking the form it does. The study of phase

and complementarity from an operational point of view may also provide insight into the

relationship between categorical quantum mechanics and generalized probabilistic theories.



Chapter 6
Quantum collapse theories and Quantum

Integrated Information

T
hroughout this thesis, we have analyzed possible formulations of quantum theory and

alternative theories in quantum foundations. In this final chapter, we will pursue this

same objective from a different angle, through the study of quantum collapse theories.

As we have discussed, quantum theory admits the delicate coexistence of two radic-

ally different dynamics. Unobserved systems undergo linear, deterministic, unitary evolu-

tion whereas observation causes a non-linear, probabilistic, non-unitary “collapse” of the

quantum state. In addition, the ontological significance of the quantum state is unclear.

Moreover, the quantum superposition of distinguishable states and the arising of prob-

abilities seem to contradict the behavior we observe in macroscopic systems. Is there a

classical/quantum divide and if so, where does it lie?

These issues are inextricably related to the impossibility of separating the physical sys-

tem under examination from the observer acquiring knowledge about the system. If we

admit that measuring devices should be described by the same dynamical equations as the

systems under consideration, then why does the measurement process break the superposi-

tion of states? This leads us to follow Bell [48] in asking:

“What exactly qualifies some physical systems to play the role of ‘measurer’?”

In a joint project with Kobi Kremnizer [192], we aim to provide a potential answer to

this question. We postulate that physical systems act more or less as measuring devices

176
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depending on how much they exhibit a property called quantum Integrated Information

(QII). This leads us to outline a novel, experimentally falsifiable theory with a universal

dynamics depending on the levels of QII of physical systems.

There have been numerous proposals to replace both unitary and measurement dynamics

by a single, universal dynamics governing all physical processes [230,146,147,113,232,7]. Such a

dynamical theory could be described using a non-linear, stochastic differential equation

which does not allow superluminal signaling. This equation is expected to both reduce to

Schrödinger’s equation in the quantum regime and also provide an accurate description of

the classical behavior of macroscopic objects.

We stress that such a model aims to describe the physical world from an ontological

perspective, whether or not any act of observation takes place. Knowledge about physical

systems plays no fundamental role.

An important question which naturally arises is the basis which should be chosen for

the localization of the wavefunction. From our experience of macroscopic superpositions

rapidly collapsing into localized states, it may seem that position should be considered as a

privileged basis for collapse. We will discuss the role that relevant properties of the physical

state could play in determining the basis on which the wavefunction is localized.

From a phenomenological point of view, all space collapse models are equivalent: they

induce a collapse of the wavefunction in space, such that the collapse rate depends on the

size of the system. The assumption that the speed of localization of the system in space

depends only on the size of the system but on none of its other properties seems rather ad

hoc and naive.

The key idea we explore here is that the relevant property of a physical system affecting

the rate of collapse of the state might not be its size (or mass distribution) but should rather

be related to its informational complexity.

This naturally follows from the idea that quantum mechanical observers are expected

to exhibit some form of ‘consciousness’ which induces the wavefunction collapse. We take

the view that consciousness plays a crucial role in quantum collapse and that conscious

perceptions do not obey the linear laws of quantum mechanics. This leads to the difficult

problem of finding a physicalist measure of consciousness. In the present work, we make

no claims of having resolved this intricate philosophical issue but instead we take a working
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approach to this problem.

For the purpose of the present theory, we use a modified version of an existing ‘measure

of consciousness’, called Integrated Information (II) [287,288]. The II of a physical system is

defined as the information of the whole system above and beyond the information contained

in its parts.

We introduce a quantum version of this measure, called Quantum Integrated Information

(QII), which enables us to explicitly present a novel Integrated Information-induced

collapse theory .

This theory may be interpreted as a modification of existing collapse models, where the

rate of collapse of states is determined by a specific feature of their informational complexity:

the QII. We believe that this already provides an important conceptual shift, even if QII is

completely unrelated to consciousness.

This chapter will spend some time presenting the philosophy of consciousness and pre-

vious quantum collapse models. We will then introduce quantum Integrated Information

and present the universal theory of Integrated Information-induced collapse. We shall also

describe potential experimental tests of the new theory in realms where it might not agree

with quantum mechanics. Finally, we will discuss some of the modifications we might expect

this collapse theory to undergo and sketch some issues that may arise.

6.1 The philosophy of consciousness

6.1.1 History

Despite the ubiquity of doubt in human experience, Descartes [107] encounters certitude

through the process of thought: “cogito ergo sum”. This can be interpreted as an inductive

definition of existence through consciousness. Indeed, Descartes [106] states that: “By the

word ‘thought’, I understand all that of which we are conscious as operating in us” and

“ainsi l’activité de l’esprit et la conscience me caractérisent : la conscience est l’essence de

la pensée”.

Similarly, Locke uses consciousness as a cornerstone of his theory of personal identity [211]:

“[A person] can consider it self as it self, the same thinking thing in different times and places;

which it does only by that consciousness, which is inseparable from thinking, and as it seems



179

to me essential to it: It being impossible for any one to perceive, without perceiving that

he does perceive”.

Aiming to understand the essence of this key concept, Leibniz [204] presented the analogy

of the mill:

“Supposing that there were a machine whose structure produced thought, sensation,

and perception, we could conceive of it as increased in size with the same proportions until

one was able to enter into its interior, as he would into a mill. Now, on going into it he

would find only pieces working upon one another, but never would he find anything to

explain perception. It is accordingly in the simple substance, and not in the compound nor

in a machine that the perception is to be sought. Furthermore, there is nothing besides

perceptions and their changes to be found in the simple substance. And it is in these alone

that all the internal activities of the simple substance can consist”.

This denial that consciousness and perception are constricted to the physical world of

matter is a recurrent argument in the philosophy of consciousness. Indeed the 19th century

biologist Huxley colorfully asked: “How it is that anything so remarkable as a state of

consciousness comes about as a result of irritating nervous tissue, is just as unaccountable

as the appearance of the Djin, when Aladdin rubbed his lamp”?

To Kant, the unity of consciousness [178] is an essential feature of the human mind:

“The experiences must have a single common subject [...] The consciousness that this

subject has of represented objects and/or representations must be unified”.

The manner in which our experience is tied together through consciousness is an essential

Kantian justification for truth in mathematics and physics and reflects the way that physical

objects in the world must be tied together [178]: “If, therefore, there exist any pure a priori

concepts, they cannot indeed contain anything empirical; they must, nevertheless, all be a

priori conditions of a possible experience, for on this ground alone can their objective reality

rest”.

This integration of conscious thought led William James [174] to describe the stream of

consciousness: “Consciousness, then, does not appear to itself chopped up in bits [...] it

is nothing jointed; it flows. A ’river’ or a ’stream’ are the metaphors by which it is most

naturally described”.

Analyzing the unity of the conscious mind has played an important role in historical
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debates on consciousness [172,64,254,174]. For example, investigating the limitations in the

range of psychological phenomena over which unified consciousness ranges and whether

most of what goes on in our mind is due to conscious thought led Freud to popularize the

idea of the subconscious: “The conscious mind may be compared to a fountain playing in

the sun and falling back into the great subterranean pool of subconscious from which it

rises”.

We will end this section by mentioning that considerable scientific progress has recently

been made in understanding the neural basis for consciousness [101,265,38].

6.1.2 Philosophical positions

To define the term ‘consciousness’, we can borrow one of the multifarious definitions given

by the Oxford English Dictionary: “The state or faculty of being conscious, as a condition

and concomitant of all thought, feeling and volition”.

We can distinguish three broad positions [57] concerning the nature of consciousness.

The first of these states that consciousness cannot be understood in a materialist ontology

but requires an immaterial explanation. This interpretation is an extension of Cartesian

dualism, with the realm of res cogitans [106], or of Karl Popper’s World 2 of mental objects and

events [245]. We will not thoroughly investigate the denial of a physical basis for consciousness

but it is important to remember the progress made by avenues of human inquiry that are

not seeking a scientist’s reductionist materialist ontology.

A second position doubts that consciousness is a coherent philosophical concept and/or

denies that human beings have the mental capabilities to comprehend their own state of

consciousness. It can be argued that it is impossible to bridge the “explanatory gap” [205]

between the material brain and the lived world of conscious experience. Are we even cap-

able of understanding [216] how “the water of the physical brain is turned into the wine of

consciousness”? Some philosophers place the concept of consciousness on the same footing

as ghosts and ether, concepts that, according to Churchland [15]: “under the suasion of a

variety of empirical-cum-theoretical forces [...] lose their integrity and fall apart”.

The third position states that consciousness is a natural physical phenomenon, intricate

and complex but not beyond analysis using an advanced scientific framework. The goal

is then to figure out how the diverse fields of philosophy, psychology, neuroscience, com-
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puter science, physics, physiology can work together to provide a physicalist framework for

consciousness.

Using methodology from the study of animal behavior, we can attempt a scientific ana-

lysis of consciousness by asking Tinbergen’s four questions [285].

(i) Function: Why does consciousness exist? Does it have a function, and if so what

is it? Does it affect the operation of the environment which contains it, and if so how and

why?

(ii) Evolution: How did consciousness come to exist? Did evolution through nat-

ural selection play a crucial role? Can consciousness arise from nonconscious entities and

processes?

(iii) Development: How does consciousness arise in individuals? What is the process

explaining its genesis through reproduction and embryonic growth? What genetic and

environmental factors play a key role in the development period?

(iv) Causation: What is consciousness? What are its physical features and how can

these be modeled? Does it act causally and if so with what types of effects and mechanisms?

What defines a conscious being and where is the locus of consciousness?

6.1.3 Problems

In ‘What is it like to be a bat?’ Thomas Nagel argues that the essential component of

consciousness is that there is something that it is (or feels) like to be a particular conscious

thing [223]: “But fundamentally an organism has conscious mental states if and only if there

is something it is like to be that organism – something it is like for the organism”.

Nagel reasons that:

“[...] if the facts of experience– facts about what it is like for the experiencing organism–

are accessible only from one point of view, then it is a mystery how the true character of

experiences could be revealed in the physical operation of that organism. [...] A Martian

scientist with no understanding of visual perception could understand the rainbow, or light-

ning, or clouds as physical phenomena, though he would never be able to understand the

human concepts of rainbow, lightning, or cloud”.

There is an asymmetry between our understanding and access to our own consciousness

compared with that of other beings: this is the first person versus third person problem.
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Does this mean that one cannot comprehend the consciousness of others and moreover our

own self consciousness is incapable of understanding itself, since [220]: “Turning a tool on

itself may be as futile as trying to soar off the ground by a tug at one’s bootstraps”?

Block [56] has introduced a distinction between access consciousness and phenomenal

consciousness: “Phenomenal consciousness is experience; the phenomenally conscious aspect

of a state is what it is like to be in that state. The mark of access-consciousness, by contrast,

is availability for use in reasoning and rationally guiding speech and action”.

This leads to a contrast between representational access consciousness (such as thoughts

beliefs and desires) used in reasoning and experiential phenomenal consciousness (resulting

from sensory experiences) corresponding to ‘what is is like’ to be in a state.

One can then introduce qualia, or instances of subjective conscious experiences, which

are at the heart of the philosophy of consciousness. Qualia cannot be reduced to physical

information or communicated but they are private and immediately apprehensible to the

subject of a phenomenal experience.

This notion is well captured by Schrödinger’s statement that [264]: “The sensation of

color cannot be accounted for by the physicist’s objective picture of light-waves. Could the

physiologist account for it, if he had fuller knowledge than he has of the processes in the

retina and the nervous processes set up by them in the optical nerve bundles and in the

brain? I do not think so”.

The idea that qualia do not affect the course of physical events has led to interest-

ing philosophical inquiry. The inverted spectrum thought experiment, first introduced by

Locke [211], asks whether it is conceivable that we could wake up one day to find that two

colours have been inverted, whilst no physical change has occurred that would explain the

phenomenon.

Similarly, one can define philosophical zombies [193,74] which are beings whose behavior,

functional, and physical structure are identical to those of normal human beings but who

lack any conscious experience.

Of course, the notion of qualia is not universally accepted. Dennett [104], for example,

has argued that: “conscious experience has no properties that are special in any of the ways

qualia have been supposed to be special”.

We mention in passing Wittgenstein’s denial of the existence of a private language [299,300]
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where: “The words of this language are to refer to what can be known only to the speaker;

to his immediate, private, sensations”. He argues [299] that such a language must be unin-

telligible to its supposed originator and that another cannot understand the language.

David Chalmers [75] has introduced a distinction between the easy and hard problems of

consciousness. Chalmers lists some of the easy problems, which could readily be understood

through computational and neural mechanisms:

“• the ability to discriminate, categorize, and react to environmental stimuli;

• the integration of information by a cognitive system;

• the reportability of mental states;

• the ability of a system to access its own internal states;

• the focus of attention;

• the deliberate control of behavior;

• the difference between wakefulness and sleep”.

The problems of conscious experience, phenomenal consciousness and qualia, on the other

hand, are described as hard in the sense that they may elude any scientific explanation.

6.2 Consciousness and Integrated Information

It has been suggested that physical systems exhibiting consciousness must satisfy two funda-

mental properties [23,219,287,288]. Firstly, differentiation of information states that conscious-

ness should allow discrimination of a single possibility amongst a vast repertoire of possible

states, leading to the acquisition of information. Secondly, integration is the feature that

this differentiation should be performed by a unified physical system, not decomposable into

a collection of independent parts.

These concepts can be illustrated [287] by considering two unconscious physical systems.

On the one hand, a digital camera with a million photodiodes exhibits a high level of dif-

ferentiation but very little integration since it can enter a large number of distinct states

but each photodiode acts independently. On the other hand, a million Christmas lights
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connected to a single switch exhibit a large amount of integration but almost no differen-

tiation since either all the lights are on or they are all off. Both of these examples are in

contrast with the neural networks associated with consciousness in the human brain, since

such physical systems are known to exhibit high levels of both differentiation of information

and integration [215,29].

This observation hints that the amount of ‘consciousness’ a physical system may manifest

can be related to how much it exhibits a property called Integrated Information [287,288].

For our purpose, we define quantum Integrated Information (QII) as a general property

of a quantum system, which corresponds to how much information the parts of a physical

system contain above and beyond the information generated by the system as a whole.

Therefore QII embodies this particular definition of consciousness as the capacity to process

information in an integrated way.

Definition: Given a quantum system in a Hilbert space H described by a density matrix

ρ, we define the system’s quantum Integrated Information as:

Φ(ρ) = inf S(ρ||
N⊗

i=1

Trī(ρ)) : H ∼=φ H1 ⊗ ...⊗HN (6.1)

where we take the infimum over decompositions of the Hilbert space into subsystem

Hilbert spaces Hi (by the isomorphism φ). Note that we fix the basis used for the decom-

position of the total Hilbert space H (as the position basis for example) and fix N. The trace

over ī denotes the trace taken over all the subspaces other than the i subspace. Following

terminology used in the definition of Integrated Information [288] we call the Hilbert space

partition which minimizes the QII the minimum information partition (MIP).

S is the quantum relative entropy:

S(σ1||σ2) := Tr(σ1 log σ1)− Tr(σ1 log σ2) (6.2)

between the state of the system and the tensor product of the states obtained by tracing

out each subsystem i in the MIP.

Note that we can extend this definition to the case where the Hilbert space is decomposed

into an infinite number of subspaces such that: H ∼=
⊗

i∈I Hi, where the index set I is no
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longer the finite set {1, ..., N }.
An interesting question is whether the MIP always splits the Hilbert space into two

subsystems. We expect that finding the MIP and calculating the QII of realistic physical

systems will rely on the use of approximations and numerical techniques.

6.3 Calculating the Quantum Integrated Information

We will now explicitly calculate the QII of two simple tripartite systems: the GHZ [157] and

W [121] states.

The density matrices for these pure states are:

GHZ =
1

2
(|000〉+ |111〉)(〈000|+ 〈111|) (6.3)

W =
1

3
(|001〉+ |010〉+ |100〉)(〈001|+ 〈010|+ 〈100|) (6.4)

Since both of these states are symmetrical, we only need to consider two candidate

splittings for the MIP, namely separating the Hilbert space into three subsystems A, B and

C or into two subsystems A and BC. Calculating the relevant reduced density matrices

yields:

GHZA ⊗GHZBC =
1

4



1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1



(6.5)

GHZA ⊗GHZB ⊗GHZC =
I
8

(6.6)



186

WA ⊗WBC =
1

9



2 0 0 0 0 0 0 0

0 2 2 0 0 0 0 0

0 2 2 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 1 0

0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0



(6.7)

WA ⊗WB ⊗WC =
1

27



8 0 0 0 0 0 0 0

0 4 0 0 0 0 0 0

0 0 4 0 0 0 0 0

0 0 0 2 0 0 0 0

0 0 0 0 4 0 0 0

0 0 0 0 0 2 0 0

0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 1



(6.8)

Matrix diagonalization gives us:

log (GHZ) = log (W ) = 0 (6.9)

Therefore:

S(GHZ||GHZA ⊗GHZBC) = −Tr(GHZ log (GHZA ⊗GHZBC))

= Tr



1 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1



= 2
(6.10)

S(GHZ||GHZA ⊗GHZB ⊗GHZC) = 3 (6.11)

S(GHZ||WA ⊗WBC) = 2 log (
3

2
) ≈ 1.17 (6.12)
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S(GHZ||WA ⊗WB ⊗WC) =
1

3
(log

27

2
+ 2 log

27

4
) ≈ 3.09 (6.13)

Hence, we get that the QII of these states are: Φ(GHZ) = 2 and Φ(W) = 2 log 3
2 ≈ 1.17.

6.4 A review of existing quantum collapse theories

Quantum mechanics admits a clash between the linear deterministic evolution of an un-

observed system and the nonlinear stochastic collapse of observed systems [294,40]. This

dichotomy is at the heart of the difficulty in interpreting quantum theory and leads to the

impossibility of attributing definite properties to physical systems independently of meas-

urement.

We will now review some of the main quantum collapse theories [44] which aim to provide

a unified dynamical model describing both observed and unobserved physical systems.

6.4.1 Pearle’s collapse equation

The seminal article investigating the possibility of using a stochastic nonlinear modification

of the Schrödinger equation to explain quantum measurement is due to Pearle [230]. He

postulates that a non-linear term can be added to the Schrödinger equation which, upon

measurement, rapidly drives the amplitude of one of the state vectors in a superposition to

one and the other amplitudes to zero.

Pearle proposes the following non-linear equation describing his collapse model in terms

of the probability amplitudes:

i~
dan
dt

= ~ωnan +
N∑

m6=1

〈φn(t)|HI |φm(t)〉am + λ~
arn
a∗n

N∑

m=1

(a∗m)rαnm exp irβnm (6.14)

where Anm := αnm exp irβnm are elements of a Hermitian matrix (such that αnm = αmn

and βnm = −βmn), λ is a real coupling constant, HI is the usual interaction Hamiltonian

and an := 〈φn(t)|ψ(t)〉 is the interaction picture probability amplitude for the nth state.

Given the non-linear collapse equation, one can derive (using a weak coupling approxima-

tion) a diffusion equation, describing the reduction of an ensemble of state vectors (described
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by a density matrix ρ):

∂ρ(~x, t)

∂t
= λ2

N∑

n<m

[(
∂

∂xn
− ∂

∂xm
)2αnmx

r
nx

r
m]ρ(~x, t) (6.15)

Note that the rate of collapse depends on the Hermitian matrix A (through the elements

αnm) and the coupling constant λ. Experimental verification is expected to constrain the

allowable values of the constants in equation (6.14).

Two possible shortcomings of Pearle’s model are the lack of an explicit description of

the preferred collapse basis on which reductions take place and a missing description of the

amplification mechanism reducing superpositions when moving from the microscopic to the

macroscopic level.

6.4.2 GRW Model

Both of these limitations were overcome ten years later when Ghirardi, Rimini and

Weber [145] presented their GRW collapse model. In their theory, the basis on which re-

ductions take place is chosen such that macroscopic objects have a definite position in space

and there is an amplification mechanism such that objects composed of more particles un-

dergo a higher rate of collapse.

GRW consider a system of N particles represented by a wavefunction ψ(t) which evolves

according to the Schrödinger equation:

i~
∂

∂t
|ψ(t)〉 = H |ψ(t)〉 (6.16)

at most times, but at every time interval τ
N on average there is a reduction in the spread of

the wavefunction (spontaneous collapse):

|ψ(t+ dt)〉 =
1√
p(qk)

√
E(k)(qk) |ψ(t)〉 (6.17)

where E(k)(qk) =
∫
drkK exp −(rk−qk)2

σ2 |rk〉 〈rk| is a positive operator which has expecta-

tion values: pk = 〈ψ(t)|E(k)(qk) |ψ(t)〉 and K is a normalization constant. Also, k is chosen

at random and qk is chosen by sampling from p(qk).
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This introduces two new universal constants, which are the mean time between collapses

for one particle τ := λ−1
GRW ' 1016s, and the localization width of each particle σ ' 10−7m.

Jumps are assumed to be distributed in time similarly to a Poissonian process with frequency

λGRW . This process is like a POVM with a continuous outcome space occurring on average

every τ
N , which is like a noisy position measurement.

The GRW model also reproduces the operational quantum results for measurement

without the need for any observer. Indeed, the overall wavefunction, after interaction

between the observed system and the apparatus is in the superposition:

ψ =
∑

n

Cnψn(x)φn(y1, ..., yR, Y ) (6.18)

where x is the coordinate of the observed system, y1, ..., yR are the internal coordinates of

the apparatus and Y is the macroscopic pointer setting of the apparatus. The spontaneous

collapse process of a single particle will affect directly the spread of the pointer coordinate Y

and will leave the single result φm(y1, ..., yR, Y ) with a well defined pointer reading (collapses

occur very rapidly).

A consideration of an ensemble of such experiments will leave a randomly distributed

selection of results where the probability of the mth result is |Cm|2, in agreement with

quantum mechanics.

We can write a GRW master equation:

dρ(t)

dt
= − i

~
[H, ρ(t)]−

N∑

i=1

Ti[ρ(t)] (6.19)

where there are N non-linear Ti operators (one for each particle) such that:

〈x|Ti[ρ(t)]|y〉 = τ−1[1− exp
−(x− y)2

4σ2
]〈x|ρ(t)|y〉 (6.20)

in the position representation. It is then clear that the collapse amplification mechanics

depends directly on the number of particles (or the size of the system).
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6.4.3 QMULP Model

Diósi [113] introduced a gravity-based version of the GRW model where unwanted macro-

scopic superpositions of quantum states become destroyed in very short times for massive

objects due to gravitational measures for reducing macroscopic fluctuations of the mass

density. This led to the introduction of the QMULP collapse model, which we shall describe

now.

Quantum mechanics with universal position localization (QMULP) is an alternative

collapse model which admits a more streamlined mathematical form. The dynamics can be

described by using a stochastic non-linear dynamical equation:

dΨt = [− i
~
Hdt+

N∑

i=1

√
λi(qi − 〈qi〉)dW (i)

t −
1

2

N∑

i=1

λi(qi − 〈qi〉)2dt]Ψt (6.21)

where H is the quantum Hamiltonian, qi are the position operators of the N particles and

〈qi〉 := 〈Ψt|qi|Ψt〉. The λi are collapse coefficients for each particle which can be taken as:

λi = mi
mnuc

λQMULP , where mi is the particle mass, mnuc is the nucleon mass and λQMULP

is a universal collapse constant. There are N independent Wiener processes W
(i)
t , which

are continuous-time stochastic processes for t ≥ 0 with W
(i)
0 = 0, such that each increment

W
(i)
s −W (i)

u is Gaussian with mean 0 and variance s-u for any 0 ≤ u < s and increments for

non overlapping time intervals are independent.

In contrast with the GRW model described above, the QMULP model does not have

a parameter corresponding to the localization width σ of each particle since stochastic

fluctuations only take place in time. Also, the model is built for systems of distinguishable

particles. Note that work has been done to extend the QMULP model to include more

realistic noise [39] and dissipative effects [42].
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6.4.4 Continuous Spontaneous Localization Model

The Continuous Spontaneous Localization (CSL) model [147] is the most current space col-

lapse model. It can be defined by using the following stochastic differential equation:

dΨt = [− i
~
Hdt+

√
γ

mnuc

∫
dx(M(x)−〈M(x)〉)dWt(x)− γ

2(mnuc)2

∫
dx(M(x)−〈M(x)〉)2dt]Ψt

(6.22)

where H is the quantum Hamiltonian, mnuc is the nucleon mass, γ is a positive coupling

constant and the Wt(x) are an ensemble of independent Wiener processes (one for each

point in space).

M(x) is a mass density operator:

M(x) =
∑

j

mj

∫
dy(
√

2πσ)−3 exp−(y− x)2

2σ2
a†j(y)aj(y) (6.23)

where a†j(y) and aj(y) are the creation and annihilation operators of a particle of mass

mj at position y and σ is the particle localization width, which is a fundamental constant

of the model.

We can define the collapse rate for the model as:

λCSL :=
γ

(4πσ2)
3
2

≈ 2.2× 10−17s−1 (6.24)

The CSL model can be generalized by including more elaborate (non-white) noise [10]

but the dynamical equations then become non-Markovian.

6.4.5 Gravity-induced collapse models

An alternative class of collapse models puts forward the idea that spontaneous collapse

might be related to the curvature of spacetime produced by material bodies. Gravity would

then play the key role in wave-function reduction for macroscopic objects, whilst leaving the

microscopic domain unaffected. In that light, gravity may provide a fundamental underpin-

ning for spontaneous collapse models and explicate the new parameters for rate of collapse

and localization width.
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The idea of reconciling quantum theory and general relativity led Karolyhazy [179] to

combine the Heisenberg’s uncertainty relations with gravitation and derive a quantitative

limit on the ‘sharpness’ of the structure of space-time.

According to the Karolyhazy uncertainty relation [179], the distance s in Minkowski space-

time cannot be known to a better accuracy than:

∆s = (
G~
2c3

)
1
3 s

1
3 (6.25)

Including this relation into the dynamical (Klein-Gordon) equation for the propagation

of the quantum wavefunction gives a novel theory where pure wavefunctions evolve into mix-

tures and a single pure wavefunction survives only as long as it corresponds to a sufficiently

small spread in the position of any massive part of the system under investigation. In this

K model, which can be related to the GRW model [137], the reduction time decreases with

increasing mass and there are no new free parameters.

Diósi [112] followed Karolyhazy and introduced an explicit gravity-induced collapse model

described by the master equation:

d

dt
ρ(t) = − i

~
[H, ρ(t)]− G

2~

∫ ∫
drdr’

|r− r’| [f(r)[f(r’), ρ(t)]] (6.26)

where f(r) is the local mass density operator at the point r. The collapse rate can

then be calculated in terms of the local mass density operator so that the collapse rate free

parameter is replaced by the gravitational constant G. Interpreting this collapse model by

using a stochastic Schrödinger equation gives a model called QMUDL (quantum mechanics

with universal density localization) [113], which is analogous to the QMULP model but with

the mass density operator f(r) playing the role of the position operators qi. At present

there is no gravity-induced collapse model corresponding to the CSL model.

Penrose [232,233] has argued in favor of gravity-induced quantum collapse by noting that

time translation and the operator ∂
∂t are not well defined in the presence of gravitation. This

leads to a fundamental uncertainty in the energy of states in a quantum superposition [232]

due to the fact that there must be two different spacetimes (one for each one of the two

superposed quantum states) which cannot be identified with each other because of the

general covariance principle. Quantum states in a superposition then have a finite lifetime,
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with a collapse rate τ ≈ ~
E∆

inversely proportional to the energy uncertainty. This provides

an interpretation where, in the presence of gravity, spontaneous collapse of the wavefunction

arises naturally from the laws of General Relativity.

Finally, an important difficulty for gravity-induced collapse is to specify which quantum

states are to be regarded as the stable basic states which are not considered as superposi-

tions and do not decay by spontaneous state reduction. Penrose argued that [233] these basic

stationary states can be taken as stationary solutions of the Schrödinger-Newton system of

partial differential equations [255], where a nonlinear modification corresponding to a New-

tonian gravitational potential is added to the Schrödinger equation. Taken together with

the Diósi master equation described above, this gives the Diósi-Penrose collapse model.

6.4.6 Adler trace dynamics

We shall conclude our presentation of collapse models by mentioning that Adler [7] has pro-

posed that quantum field theory emerges from a matrix theory where particles (bosons and

fermions) are represented by Grassmannian non-commuting matrices and the Lagrangian

is constructed by taking the trace of a function of these matrices. Quantum theory is then

treated as a thermodynamic approximation to a general statistical mechanics of the matrix

models and Brownian motion around the thermodynamic approximation naturally yields

non-linear stochastic modifications of the Schrödinger equation.

This trace dynamics method gives an underlying framework for spontaneous collapse

theories, where fluctuations about the equilibrium lead away from quantum theory. Adler’s

work, however, does not provide any understanding of the arising of fundamental parameters

such as collapse rate or localization width.

6.5 Integrated Information and state-vector reduction

As we have seen, collapse theories are alternatives to standard quantum mechanics, which

aim to resolve its issues by presenting a universal non deterministic, nonlinear evolu-

tion law such that microprocesses and macroprocesses are governed by a single dynam-

ics [230,146,147,113,232,7].

We expect a universal dynamical equation to satisfy the following constraints, which
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strongly restrict the allowed form of the non-linear modification to Schrödinger’s equation:

(i) It must be almost identical to Schrödinger’s equation in the quantum regime but should

break the superposition principle at the macroscopic level.

(ii) It must be stochastic and should explain why measurement situations yield results

distributed according to the Born rule.

(iii) It must not allow for superluminal signaling [148] in order to preserve relativistic causal

structure.

Previous work on collapse models has shown that a universal equation of the form:

d

dt
ρ(t) = − i

~
[H, ρ(t)]− I[ρ(t)] (6.27)

where I is a non-linear operator representing the effect of the spontaneous collapse, can

satisfy all three constraints.

Standard space collapse models (such as GRW or CSL) are astutely set up such that

each particle undergoes random collapse leading to larger systems collapsing faster than

small systems. In the dynamical equations, the rate of collapse is directly dependent on the

number of particles or size of the physical system under study.

In our model, however, particles no longer undergo random collapse at random times

but instead we consider that the spontaneous collapse follows from a type of group behavior.

We expect that a physical system exhibiting a certain amount of informational complexity

has an increased chance of spontaneous collapse. In that sense, we expect collapse to be

less random than in other space collapse models: physical systems which have a high QII

should naturally collapse faster.

We believe that a physical system’s capacity to act as an observer should not depend

on its size but on other physical properties instead. Indeed, localization follows from the

process of observation which occurs in a measurement. This observation process taking

place should require the observer in question to exhibit consciousness. This leads us to

postulate that the main physical property determining whether or not a system can act as

an observer is directly related to a key aspect of its informational complexity, namely its

capacity to process information in an integrated way.
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The idea that a physical description of consciousness could be at the heart of resolving

fundamental issues in quantum theory is not new [298,279]. In the present chapter we make no

claims of presenting such a description, but assume that quantum Integrated Information

determines how much a system acts like an observer and exhibits spontaneous collapse.

We introduce a novel collapse model where the rate of collapse does not depend on a

system’s size but on how much QII it exhibits. The general evolution equation we propose

is of the form:

d

dt
ρ(t) = − i

~
[H, ρ(t)] +

N2−1∑

n,m=1

hn,m(Φ(ρ(t)))(Lnρ(t)L†m −
1

2
(ρ(t)L†mLn +L†mLnρ(t))) (6.28)

where the Hermitian matrix elements hn,m are continuous functions of the QII of ρ

(which are all zero when Φ(ρ) = 0) and {Lk} is a basis of operators on the N dimensional

system Hilbert space, which determines the basis in which the state collapses.

Note that this is a highly non-linear Markovian collapse equation [43]. It has been ar-

gued [93,41] that macro-objectification must take place in space and time and that position

must therefore play the preferred role in collapse theories. Since space collapse models ap-

pear to be the only ones which explain the classical behavior of macroscopic objects, we

must choose the {Lk} basis such that the wavefunction localizes in the position basis.

Hence, our model’s objective description of how macroscopic reality arises is rather sim-

ilar to the one resulting from the standard space collapse theories [146,147], but where the

mechanism causing the collapse onto the position basis depends on the QII. An underlying

equation for wave function dynamics, whose general form would resemble that of stand-

ard space collapse models [43] but with parameters related to QII, could also provide an

alternative description of our model.

We can produce a large class of Integrated Information collapse models by replacing this

evolution equation by equation (6.27), with a more general non-linear operator I describing

how the collapse rate depends on the system’s QII.

In the future, we expect a slightly modified version of the QII dynamical reduction

equation to be compatible with relativity. This universal dynamics may emerge from a

fundamental underlying theory in the spirit of trace dynamics [7,9] or of quantum theory
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without spacetime [210].

It could also turn out that the level of QII of a physical system is not the optimal

measure of its capacity to encompass various distinguishable states and process information

in a cohesive, integrated manner. Therefore, QII may have to be replaced by a more astute

measure or one which is more convenient to calculate. We stress that the key idea of

this article is that informational complexity, and more precisely the capacity to process

information in an integrated manner, should replace size as the property of a physical

system which determines its rate of collapse. Further details will require more fine tuning

and input from experiments.

6.6 Experimental tests of Integrated Information-induced

collapse

The Integrated Information collapse model we have presented here is an experimentally

verifiable theory which is expected to yield some physical predictions which are in conflict

with quantum mechanics. We will briefly discuss potential experiments which could serve

to validate, reject or at least refine the new theory.

The predictions of the new theory almost coincide with those of standard quantum mech-

anics at the microscopic level. Most current collapse models become significantly different

from quantum theory when the size of the system under study increases. This leads to nu-

merous experimental challenges due to the fact that environmental influences become more

and more difficult to eliminate for larger systems.

Typical experiments testing collapse models aim to set bounds on model parameters by

studying the collapse of sizable physical systems in a large superposition [135,226,18]. The aim

of most superposition experiments is to observe spontaneous collapse of the wavefunction at a

mesoscopic scale, after reducing the interaction with the environment. Tests of superposition

include diffraction experiments with large molecules [19,143,124], optomechanical systems [214],

microsphere interferometers [256] and indirect tests using cosmological data [8,102].

Testing Integrated Information collapse is different from previous work on verifying the

validity of collapse models. It is no longer sufficient to study large systems in order to

increase the predicted rate of collapse. Indeed, we expect novel behavior in conflict with
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quantum theory to arise in situations where physical systems with a high level of QII exhibit

non-linear collapse and cause a breakdown of the quantum principle of linear superposition.

Therefore, the first step in verifying QII collapse consists of calculating the quantum In-

tegrated Information of various interesting physical systems. This may require some numer-

ical approximations and clever optimization in order to determine the minimum information

partition (MIP) for each system.

The next step would then be to compare the collapse rate of various physical systems

with very different QII. We expect these experiments testing quantum superposition to be

similar in nature to current collapse model tests. They would require an extremely precise

control of the environment since the effects of decoherence need to be accounted for to a

high precision. Note that one would expect conscious beings to clearly exhibit high levels

of QII and therefore physical systems including such beings would undergo spontaneous

collapse. It may be the case, however, that certain complex inanimate objects may have a

high QII and therefore also behave as observers, in the sense that their presence within a

larger physical system leads to collapse.

In some respects, the experimental tests of QII collapse models may be simpler to im-

plement than those for standard spontaneous collapse since the systems under examination

might not have to be as large. Indeed, several relatively small mesoscopic systems of sim-

ilar size may exhibit very different levels of QII and have observably different spontaneous

collapse rates.

These experiments should help us refine the collapse model dynamics and determine the

hn,m(Φ) matrix elements in equation (6.28). They will also lead to a better understanding

of whether QII is indeed the best measure of a physical system’s capacity to spontaneously

collapse.

6.7 Conclusion

We have presented a novel theory which is in conflict with quantum mechanics. Even if

it turns out that QII spontaneous collapse does not agree with future experiments, we feel

that the theoretical implications of the new collapse theory are of interest for their own sake

and may shed some light on various features of quantum theory.
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First of all, it may be interesting to study computational properties of the new collapse

model. How would the spontaneous collapse of systems with high QII affect the possibility

of performing large ‘quantum’ computations. Can one define a modified version of many-

worlds theory which can be related to the QII collapse model?

Moreover, we believe that the basis on which wavefunction localization takes place should

not always be position. The relationship between another physical definition of Integrated

Information and the so-called quantum factorization problem has been addressed in [282].

In general, we expect that the collapse basis for each system may depend on properties

of a quantum version of qualia space [30], corresponding to the quality of consciousness of

the system in question. In this sense, dynamics would not just be governed by the QII of a

physical system but also by the set of all the informational relationships that causally link

its elements.

In the model we are currently proposing, the collapse mechanism is universal and not

related to specific systems since position plays a fundamental role, similarly to the current

spontaneous collapse models. Further work, however, could redefine equation (6.28) and the

operator basis {Lk} such that the collapse basis is different for each physical system in a

way which explains the apparent fundamental role of the position basis. Space-time would

then emerge from the fact that we cannot extract ourselves from the physical systems we

examine.

This may lead to alternative versions of quantum field theory, where space-time does

not play a fundamental role. We expect new particles – complexetrons– to arise due to the

spontaneous collapse term in equation (6.27).

We look forward to revealing the physical world described by Integrated Information-

induced collapse.



Chapter 7
Conclusion

“There must be some way out of here,

Said the joker to the thief,

There’s too much confusion,

I can’t get no relief.”

Bob Dylan

O
ur brief foray through the foundations of alternative quantum theories was only a

succinct introduction. The use of mathematical abstraction and symmetry as a tool

for classification and clarification in the foundations of physics is a promising avenue of

inquiry. The thesis outlined a research program whose formal development is still in the

initial stages.

In the preceding chapters, we used several different approaches to explore the world of

alternative theories that share features with quantum mechanics. Chapter 4 focused on

the use of a quantum circuit calculus to analyze the logical features of stabilizer quantum

theory, a sub-theory of quantum mechanics. Chapter 5 emphasized the role of symmetry

and of the phase group in the study of mutually unbiased qudit theories. We presented five

different levels of analysis for physical theories: using an explicit operational representation,

a categorical representation, a group-theoretic representation, a finite field representation

and finally a generalized ontological model representation. Chapter 6 introduced another

199
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class of quantum-like theories, called collapse models, and defined a new type of quantum

collapse model.

We took a step towards reaching the goal of presenting and examining a diverse range of

physical theories by using an elegant and concise abstract framework. Could it be, however,

that the aim of reducing confusion through the use of synthetic mathematical analysis might

be undesirable and destined to ineluctable failure from the start? Perhaps we should simply

accept that:

“Science is essentially an anarchic enterprise: theoretical anarchism is more humanitarian

and more likely to encourage progress than its law-and-order alternatives.”
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