
Models of Multipartite Entanglement

Thesis submitted for the degree of
Master of Science

Michael Herrmann

September 2010

Abstract

While multipartite entanglement is a crucial resource for many quantum algo-
rithms and protocols, the abstract, structural rules governing it are still not fully
understood. In their recent paper [14], Coecke and Kissinger propose a new lan-
guage called GHZ/W-calculus that aims to give a structural axiomatization of
multipartite entanglement in terms of interacting “special” and “anti-special”
commutative Frobenius algebras (S/A-CFAs). These algebraic structures cor-
respond precisely to the two different types of genuine entanglement between
three qubits, as given by inter-convertability by stochastic local (quantum) op-
erations and classical communication (SLOCC). An important feature of the
language is that it lives in the framework of categorical quantum mechanics and
thus comes with a Penrose-Joyal-Street graphical calulus.

This thesis explores the expressive power of the GHZ/W-calculus. We prove
a new result that demonstrates the canonicity of the recent concept of anti-
speciality for CFAs and use it to give a new classification of Frobenius Algebras
on C2 in FdHilb, the category of finite-dimensional Hilbert spaces and bounded
linear maps. Next, we look at the non-standard model of categorical quantum
mechanics given by FRel, the category of finite sets and binary relations. We
classify all special CFAs in this category, prove some properties of anti-special
ones and identify precisely which SCFAs/ACFAs are captured by the GHZ/W-
language. Finally, we define a quantum AND gate in the graphical language
and prove (or disprove) some of its properties. We come to the conclusion
that the GHZ/W-calculus is unlikely to be the final answer to the structural
entanglement problem in dimensions D > 2 and identify intermediate ranks
1 < rank < D as the notion it fails to explain.

Acknowledgements

I would particularly like to thank my supervisor, Dr. Bob Coecke, for giving me
the oportunity to take part in his research and treating me like an equal member
of his group. He made writing this dissertation a very rewarding experience and
it was moreover nice to see him around the Wolfson College bar for the odd drink
(or two). I am also indebted to Aleks Kissinger for many explanations and giving
me the LATEX code of his transfer report [29] that was used to typeset many of
the diagrams in this thesis. Finally, I would like to thank Jacob Biamonte for
his feedback on parts of a first draft of this report.

This dissertation marks the end of my taught studies in the UK. I am ex-
tremely grateful to my parents, Elisabeth and Kurt, and my brother Andreas
for their continuous support throughout the last four years. I had a great time
here, but now I look forward to coming back home.

Contents

1 Introduction 6

2 Background 10
2.1 Assumed knowledge . 10
2.2 LOCC and SLOCC-equivalence 10

2.2.1 GHZ- and W-states . 11
2.2.2 SLOCC super-classes . 11

2.3 Categorical quantum mechanics 12
2.3.1 Vectors and scalars as morphisms 12
2.3.2 Adjoints . 13
2.3.3 Non-standard models . 14
2.3.4 Graphical calculi . 15
2.3.5 Observables and bases . 17
2.3.6 Complementarity – The Z/X-calculus 24
2.3.7 Multipartite entanglement 25
2.3.8 Classical computation . 29

3 A new classification of Frobenius algebras 31

4 GHZ/W-Pairs in (F)Rel 35
4.1 Preliminaries . 35

4.1.1 Notation . 35
4.1.2 General results . 36

4.2 Computational results . 38
4.2.1 Method . 38
4.2.2 Results . 40

4.3 Classification of SCFAs . 41
4.3.1 Proof . 42

4.4 Properties of ACFAs . 46
4.4.1 Minimal ACFAs . 49

4.5 Classification of GHZ/W-pairs 51

5 A quantum AND gate 56
5.1 Correctness and commutativity 56
5.2 A third truth value . 58
5.3 Complements . 59
5.4 Absorption . 60
5.5 Violated properties . 61

6 Conclusions and further work 63

A Auxiliary results and proofs 69
A.1 ... for Chapter 3 . 69
A.2 ... for Chapter 5 . 70

A.2.1 Correctness and commutativity 70
A.2.2 A third truth value . 72
A.2.3 Complements . 73
A.2.4 Absorption . 73

B List of CFAs on 2 and 3 in (F)Rel 75
B.1 Commutative Frobenius algebras on {0, 1} 76

B.1.1 SCFAs . 76
B.1.2 ACFAs . 76
B.1.3 Others . 76

B.2 Commutative Frobenius algebras on {0, 1, 2} 76
B.2.1 SCFAs . 76
B.2.2 ACFAs . 77
B.2.3 Others . 78

C Code listings 81

Chapter 1

Introduction

In quantum informatics, computations are performed using qubits instead of
bits as in classical computation. An important distinction between the two is
that bits have only two possible values, 0 and 1, while each qubit can be in
an arbitrary (complex) superposition α|0⟩ + β|1⟩ of the two ground states |0⟩
and |1⟩. Mathematically, these states are described as vectors in the complex
Hilbert space C2, while state transitions are expressed as particular kinds of
linear maps. Composition of systems is given by the linear tensor product ⊗
and composition of operators is normal function composition ◦. The formalism
that prescribes these rules is called the Hilbert space formalism of quantum
mechanics and was proposed by von Neumann in 1932 [42].

While the Hilbert space formalism has proven extremely successful in pre-
dicting the outcomes of experiments, using it to prove equational statements is
often rather involved. Consider for example the derivation shown in Figure 1.1.
At first glance, all we can make out from the series of equations is that the

Id⊗ (|00⟩+ |11⟩)(⟨00|+ ⟨11|)⊗ Id

[
1√
2
(|00⟩+ |11⟩)⊗ 1√

2
(|00⟩+ |11⟩)

]
(1)

=
1

2
(Id⊗ (|00⟩+ |11⟩)(⟨00|+ ⟨11|)⊗ Id) [(|00⟩+ |11⟩)⊗ (|00⟩+ |11⟩)]

=
1

2
(Id⊗ (|00⟩+ |11⟩)(⟨00|+ ⟨11|)⊗ Id) [|0000⟩+ |0011⟩+ |1100⟩+ |1111⟩]

=
1

2
(|0⟩(|00⟩+ |11⟩)|0⟩+ |1⟩(|00⟩+ |11⟩)|1⟩)

=
1√
2
|0⟩
(

1√
2
(|00⟩+ |11⟩)

)
|0⟩+ 1√

2
|1⟩
(

1√
2
(|00⟩+ |11⟩)

)
|1⟩. (2)

Figure 1.1: It doesn’t have to be like that.

application of an operator to a state as in Equation (1) yields a new state given
by Equation (2). We do not gain any structural insight into what is going on.

Let us rewrite Equation (1) graphically, as follows: We represent the entan-

6

gled state 1√
2
(|00⟩+ |11⟩) by a cap,

. :=
1√
2
(|00⟩+ |11⟩).

The two lines coming out of the cap stand for the two qubits that make up the
state. We write tensor products by placing the corresponding graphical entities
horizontally next to each other (juxtaposition). Thus for instance

1√
2
(|00⟩+ |11⟩)⊗ 1√

2
(|00⟩+ |11⟩) = . . .

Applications and compositions of linear operators are written vertically, from
top to bottom, in the order in which they are applied. If, in the spirit of Dirac
notation, we interpret kets | . ⟩ as linear maps from C to C2 and bras ⟨ . | as
maps from C2 to C and set

. :=
√
2(⟨00|+ ⟨11|),

then the graphical rule for composition yields

. = (|00⟩+ |11⟩)(⟨00|+ ⟨11|).

As a final step, we set
.:= Id.

Using the graphical notation we have just introduced, Equation (1) can be
rewritten as

.

..

A simple calculation now shows that

. =
(
Id⊗

√
2(⟨00|+ ⟨11|)

)
◦
(

1√
2
(|00⟩+ |11⟩)⊗ Id

)
= Id = .

..

By a few more technical properties of the graphical calculus that essentially
allow us to “stretch” wires, we then have

. = .

..

If we recall that . represents an entangled state, then it is now easy to see
that the application of the operator in Equation (1) transformed the system
from the state . . , in which qubits one and two as well as three and four
were entangled, into the state . ., in which qubits one and four as well
as two and three are entangled. This is one of four cases of the entanglement
swapping protocol [26].

7

The simple graphical calculus we have just seen has been generalised and
given a rigorous mathematical foundation as part of the development of the field
of categorical quantum mechanics [2, 18, 13, 11]. Using category theory, this
area of active research abstracts away from the Hilbert space formalism and
identifies the key structural principles that underly quantum mechanics. One
of the most important of these principles is the identity

. = .

from above.
The graphical Z/X-calculus arose from categorical quantum mechanics and

gives an abstract axiomatisation of (the interaction of) complementary quantum
observables [11]. With a certain continuous extension that allows for arbitrary
phases, it is universal for quantum computation. The Z/X-calculus can be seen
as one of the cornerstones of the development of categorical quantum mechanics,
however there are things it does not explain.

One of the long-standing open problems in the field of quantum informa-
tion science is providing a generic description of entanglement in N -qubit sys-
tems [29, 15]. A common classification of entanglement in this field is given by
considering states up to inter-convertability by stochastic local operations and
classical communication (SLOCC) [15, 14, 24, 33, 34]. While there is only one
SLOCC-class of genuinely entangled two-qubit systems, there are already two
for the tripartite case [24], witnessed respectively by the GHZ- and W-states

|GHZ⟩ = 1√
2
(|000⟩+ |111⟩), |W ⟩ = 1√

3
(|001⟩+ |010⟩+ |100⟩).

A limitation of the Z/X-language is that it cannot easily express the W-state. As
a consequence, the Z/X-calculus often fails to intuitively explain the interactions
between the GHZ- and the W-class and generally between different types of
entanglement.

In the recent paper [15], Coecke and Kissinger propose a new graphical lan-
guage for categorical quantum mechanics called GHZ/W-calculus. This calculus
tries to overcome the limitations of the Z/X-calculus by giving an axiomatisation
of the interactions between the GHZ- and the W-class. Technically, the states
in the GHZ -class are identified in the categorical framework as special commu-
tative Frobenius algebras (SCFAs) while members of the W-class are identified
as anti-special ones (ACFAs). For the model of qubits in the Hilbert space
formalism, the authors prove that there is a bijective correspondence between
SCFAs and ACFAs and that the GHZ/W-calculus refines the Z/X-calculus.

One of the advantages of the categorical approach to quantum mechanics is
that it allows one to explore quantum mechanical structures in settings other
than Hilbert spaces. Two important such non-standard models are Spekkens’
toy quantum theory [41] and the category FRel of finite sets and binary re-
lations. By previous work of several authors [13, 39, 25], the meaning of the
Z/X-calculus in these models is well understood. The GHZ/W-calculus on the
other hand has not yet been studied in these contexts.

This thesis evaluates the expressive power of the recent GHZ/W-calculus,
with a particular emphasis on the non-standard model FRel. Its main contri-
butions can be summarized as follows:

8

• We prove a new result that, in a highly abstract manner, demonstrates the
canonicity of the recent concept of anti-speciality for Frobenius algebras
(Chapter 3).

• We use the result just mentioned to give a new classification of Frobenius
algebras on C2 in the standard model of categorical quantum mechanics
given by the category FdHilb of finite dimensional Hilbert spaces and
bounded linear maps (Chapter 3). We argue that this classification can to
some extent be seen as giving a new, abstract explanation of the existence
of two classes of genuine tripartite entanglement for qubits.

• We give a Haskell implementation that can produce all commutative Frobe-
nius algebras on the two- and three-element sets in FRel and use it to show
that analogues of several results known to hold for the GHZ/W-calculus
on C2 in FdHilb do not hold in FRel (Section 4.2).

• We strengthen a result by Pavlovic [39] to give a new characterisation
of all SCFAs in Rel, the category of arbitrary sets and binary relations
(Section 4.3).

• We prove several properties of ACFAs in Rel (Section 4.4) and use them
together with the new classification of SCFAs to identify precisely which
SCFAs/ACFAs are captured by the GHZ/W-language in this category
(Section 4.5).

• We use the GHZ/W-calculus to define a quantum analogue of the Boolean
AND gate and identify several additional graphical axioms that can be
used to prove some of its properties (Chapter 5).

9

Chapter 2

Background

2.1 Assumed knowledge

We will assume that the reader is familiar with basic notions of category theory
and quantum computer science. For the former, a good general introduction
is [3], while a treatise that is more directed towards our needs is [9]. For the
latter, accessible first introductions are [36, 30]; a more comprehensive standard
reference is [37].

2.2 LOCC and SLOCC-equivalence

Entanglement is one of the most powerful and yet one of the least understood
features of quantum mechanics. This section lists some of its known structural
properties; a slightly more detailed overview is for instance given in [29].

In quantum information theory, it is often useful to regard quantum states
to be equivalent as computational resources iff they are LOCC-equivalent

Definition 1. Two states |ψ⟩ and |ϕ⟩ of an n-qubit system are LOCC-equivalent
iff they deterministically inter-converted with only local (i.e. one-qubit) physical
operations and classical communication.

LOCC-equivalence has a clear mathematical meaning in terms of local unitary
maps:

Theorem 2 ([4]). Two states |ψ⟩ and |ϕ⟩ of an n-qubit system are LOCC-
equivalent iff there exist unitary transformations U1, . . . , Un : C2 → C2 such
that

|ψ⟩ = (U1 ⊗ · · · ⊗ Un)|ϕ⟩.

A natural generalisation of LOCC-equivalence is that of SLOCC-equivalence:

Definition 3. Two states |ψ⟩ and |ϕ⟩ of an n-qubit system are SLOCC-equivalent
iff they can be made LOCC-equivalent with some non-zero probability.

This yields an even nicer mathematical interpretation:

10

Theorem 4 ([24]). Two states |ψ⟩ and |ϕ⟩ of an n-qubit system are SLOCC-
equivalent iff there exist invertible operators L1, . . . , Ln : C2 → C2 such that

|ψ⟩ = (L1 ⊗ · · · ⊗ Ln)|ϕ⟩.

On N = 2 qubits, there are only two SLOCC classes, namely product states,
which are SLOCC-equivalent to |00⟩ and entangled states, which are SLOCC-
equivalent to the Bell state 1√

2
(|00⟩+ |11⟩).

2.2.1 GHZ- and W-states

Recall the following key definition:

Definition 5. Let H1,H∈ be Hilbert spaces. A state |ψ⟩ ∈ H1 ⊗H2 is called
(genuinely) entangled iff it cannot be written as a product state, i.e. there does
not exist |ϕ1⟩ ∈ H1, |ϕ2⟩ ∈ H2 such that

|ψ⟩ = |ϕ1⟩ ⊗ |ϕ2⟩.

An important point to make is that we do not call a state entangled when just
one of its subparts is entangled – e.g. |0⟩⊗ 1√

2
(|00⟩+ |11⟩) is not entangled even

though 1√
2
(|00⟩+ |11⟩) is.

Up to SLOCC, there are only two genuinely entangled tripartite states [24]:
The Greenberger-Horne-Zeilinger (GHZ) state

|GHZ⟩ = 1√
2
(|000⟩+ |111⟩)

and the W-state

|W ⟩ = 1√
3
(|001⟩+ |010⟩+ |100⟩).

The GHZ and W states represent qualitatively very different kinds of entan-
glement. The GHZ state can (up to SLOCC) be seen as the state that maximises
true three party entanglement, as measured by a metric called the three tan-
gle [20]. However, when we trace out one of its qubits, we get an unentangled
state. The W state is the exact opposite: It minimises the three tangle (up to
SLOCC) amongst entangled tripartite states, but retains maximally bipartite
entangled under tracing-out one qubit [24]. Intuitively, this is because all of the
entanglement present in the W state is due to pairwise correlations between the
three qubits while the entanglement of the GHZ state is solely due to corre-
lations involving all three qubits [29]. Another interesting distinction between
the two states is that certain classical computational problems are only solvable
with one but not the other [21].

2.2.2 SLOCC super-classes

While there are only finitely many SLOCC classes for N = 3 qubits, there are
necessarily infinitely many for the cases where N ≥ 4 [24]. To nevertheless be
able to obtain finitary classification results, Lamata et al. introduced so-called
SLOCC super-classes [33, 34]. This inductive scheme regards an N -partite state
as a map M from ⊗N−1C2 to C2. Performing a singular value decomposition

11

onM yields a one- or two-dimensional subspace spanned by two vectors |ϕ⟩ and
|ψ⟩ in ⊗N−1C2. The SLOCC-superclass of M is then described by the SLOCC
super-classes of |ϕ⟩ and |ψ⟩. The base case of this scheme is C2 ⊗ C2, where a
state is regarded as either a product state or the Bell state [15].

2.3 Categorical quantum mechanics

The field of categorical quantum mechanics was initiated by Abramsky and
Coecke in [2]. It uses the fact that a lot of the structure of the von Neumann
formalism can be recast at an abstract level. Good first tutorials that assume
little or no prior knowledge of category theory are [8, 9, 10]; more advanced
cornerstones of the field are [11, 15].

2.3.1 Vectors and scalars as morphisms

The formal realm in which most of categorical quantum mechanics takes place
is that of symmetric monoidal categories (SMCs):

Definition 6. A monoidal category (C,⊗, I) is a category which comes with a
bifunctor

−⊗− : C×C → C,

a unit object I, natural left and right unit isomorphisms

λA : A ≃ I ⊗A and ρA : A ≃ A⊗ I,

and a natural associativity isomorphism

αA,B,C : A⊗ (B ⊗ C) ≃ (A⊗B)⊗ C

which are subject to certain coherence conditions spelled out for instance in [35].
A monoidal category is called symmetric if it moreover comes with a natural
symmetry isomorphism

σA,B : A⊗B ≃ B ⊗A,

again subject to certain coherence conditions [35]. The four morphisms are
called the structure maps of the SMC.

Symmetric monoidal categories are a very natural setting for describing phys-
ical systems [9]: Consider a system of type A (e.g. a billiard ball, or a qubit,
or two qubits). We can perform an operation f on it (e.g. change the momen-
tum of the tennis ball or discard one of the two qubits), obtaining a system of
possibly different type B:

A
f // B

Given an operation of the form B
g−→ C, we can first do f and then g, obtaining

A
g◦f // C .

Clearly, we have h◦ (g ◦f) = (h◦ g)◦f since the brackets merely indicate which
of the operations we conceive as one. We also have identity operations

A
1A // A

12

that represent “doing nothing” to a system and hence satisfy

1B ◦ f = f = f ◦ 1A.

These observations yield a category C. If we then want to be able to conceive
compound systems (e.g. two billiard balls), we need the product A ⊗ B and
compound operations

A⊗B
f⊗g // C ⊗D .

In the usual case where the order in which physical systems are composed does
not matter, we also have A⊗B ≃ B⊗A. This puts us in the setting of symmetric
monoidal categories.

The prototypical category in categorical quantum mechanics is FdHilb, the
category of finite dimensional Hilbert spaces and bounded linear maps. If we
take ⊗ to be the tensor product and the tensor unit I to be C, then it is not
difficult to see that (FdHilb,⊗,C) is a symmetric monoidal category.

How would we define vectors and scalars in the language of symmetric
monoidal categories? When we think about FdHilb, we can identify each vector
|ϕ⟩ in a Hilbert space H with the linear map

f : C −→ H
λ 7−→ λ|ϕ⟩.

Since the scalars in FdHilb can be seen as vectors in the Hilbert space C, we
can use the same construction to represent scalars as linear maps of type C → C.
Generalizing these observations yields

Definition 7. Let (C,⊗, I) be a symmetric monoidal category. The vectors
or states of an object X of C are the morphisms of type I → X. The scalars
are the morphisms of type I → I. For c : I → I a scalar and f : A → B a
morphism, the scalar multiplication c · f : A→ B of f with c is defined as

c · f := λ−1
B ◦ (c⊗ f) ◦ λA.

In FdHilb, for example, c · f is the function that sends |ϕ⟩ 7→ cf(|ϕ⟩).
Already at the abstract level of symmetric monoidal categories, it is possible

to prove that scalars distribute through function composition and products:

(c · f) ◦ (d · g) = (c ◦ d) · (f ◦ g) and (c · f)⊗ (d · g) = (c ◦ d) · (f ⊗ g). (3)

Moreover, it can be shown that the scalars form a commutative monoid [28].

2.3.2 Adjoints

A piece of structure that plays an important role for quantum mechanics but
is not captured by the SMC language is the existence of adjoints: Every linear
map f : H1 → H2 between Hilbert spaces has a unique adjoint f† : H2 → H1.
Technically, this makes FdHilb a †-symmetric monoidal category [11]:

Definition 8. A †-symmetric monoidal category (†-SMC) is a symmetric monoidal
category equipped with an involutary identity-on-objects contravariant endo-
functor

(−)† : Cop −→ C

13

which coherently preserves the monoidal structure, that is,

f†† = f (f ◦ g)† = g† ◦ f† 1A = 1†A (f ⊗ g)† = f† ⊗ g†,

together with the fact that each natural isomorphism θ of the symmetric monoidal
structure is unitary, that is, θ−1 = θ†.

2.3.3 Non-standard models

Our abstract approach makes it possible to reinterpret key notions of quantum
mechanics such as scalars and vectors in settings other than the Hilbert space
formalism. Technically, this is achieved by looking at †-SMCs other than Fd-
Hilb. The two most important examples of such †-SMCs for categorical quan-
tum mechanics are Robert Spekkens’ toy quantum theory [41, 13] and FRel,
the category which has finite sets as objects and binary relations as morphisms.

FRel

In the SMC FRel of finite sets and binary relations, the bifunctor −⊗− is the
cartesian product while the unit I is the one-element set {∗}. For R a binary
relation, R† is the relational converse {(b, a) | (a, b) ∈ R}. It is not difficult to
see that FRel is a sub-†-SMC of Rel, the category of sets and binary relations
with the same symmetric monoidal structure. Many of the results proved in
later chapters are proved in the generality of Rel and then follow for FRel by
this observation.

The vectors of an object X ∈ FRel precisely correspond to its subsets (cf.
Definition 7). Since scalars are the vectors of the tensor unit, it follows that
there are only two: the singleton relation {(∗, ∗)}, which we write as 1, and the
empty relation {}, which we write as 0. This allows us to view each vector as a
linear combination of the elements of X, with coefficient 1 (“in the subset”) or
0 (“not in the subset”).

Similarly to FdHilb, the Dirac notation can be used for FRel1: Let X be
an object and ψ ⊆ X. We write

|ψ⟩ := {∗} × ψ and ⟨ψ| := |ψ⟩†.

Given another subset ϕ ⊆ X, we define

|ψ⟩+ |ϕ⟩ := |ψ⟩ ∪ |ϕ⟩
|ψ⟩⟨ϕ| := |ψ⟩ ◦ ⟨ϕ| = ψ × ϕ

⟨ψ|ϕ⟩ := ⟨ϕ| ◦ |ψ⟩ =

{
{(∗, ∗)} = 1 if ϕ ∩ ψ ̸= {}
{} = 0 otherwise.

If we identify {i} with i, then these rules suffice to represent any morphism
f ⊆ X ⊗ Y as

f =
∑

(i,j)∈f

|j⟩⟨i|.

The induced calculus behaves exactly like the Dirac notation for Hilbert spaces,
with the Boolean semiring ({0, 1},∨,∧) instead of (C,+,×) and the n-element
set n := {0, . . . , n− 1} instead of Cn [13].

1For a similar argument involving matrices, see for instance [13].

14

The above observations show that FRel is similar in structure but consider-
ably simpler than FdHilb. At the same time, it is powerful enough to simulate
the quantum teleportation and dense coding protocols [13]. This is why it is
the main model under study in this thesis.

Spek

Spekkens constructs his toy quantum theory [41] by analysis of the simple prin-
ciple that, for a quantum system, the amount of information we have about the
state of the system cannot exceed the amount we lack. In line with this em-
phasis on knowledge, the states in Spekkens’ theory always express (necessarily
incomplete) knowledge rather than physical reality. Spekkens’ theory is finitary
in that all its systems are built from a system with four possible states, however,
it is powerful enough to simulate the teleportation and dense coding protocols.
Spekkens uses this fact to argue that the main driving feature of his theory,
viewing quantum states as states of incomplete knowledge, is more natural than
viewing them as states of physical reality.

In their paper [13], Coecke and Edwards show that it is possible to give a
quantum categorical model of Spekkens’ toy theory called Spek, a sub-†-SMC
of FRel. The construction reveals the natural necessity of relations rather than
functions to model measurements in the theory, a case not considered in [41].
More importantly, however, the fact that categorical quantum mechanics has
an independent quantum theory as a model substantiates its claim to structural
generality.

2.3.4 Graphical calculi

The interplay of the two key structural ingredients ◦ and ⊗ of SMCs makes the
associated theory very two-dimensional: The tensor product acts like a spatial
dimension while the composition of morphisms provides a causal, or temporal
dimension [29]. This follows from the bifunctoriality of the tensor product – for
any morphisms a, b, c and d of appropriate types,

(c⊗ d) ◦ (a⊗ b) = (c ◦ a)⊗ (d ◦ b). (4)

We will now see how the two-dimensional character can be exploited to define
a graphical calculus.

We represent objects as edges and morphisms as nodes that connect edges,
with the inputs at the top and the outputs at the bottom. For example, a
morphism f : A→ B is written as

f = .

..A

.f

..B .

When the types of the edges are clear or not important, we omit the corre-
sponding annotations. Tensor products are expressed by juxtaposition, function
composition is obtained by connecting outputs and inputs of the corresponding

15

graphs:

f ⊗ g = .

.

.f

.

.

.g

.

g ◦ f = .

.

.f

.g

. ..

Note how Equation (4) is implicit in this graphical notation: Both of its sides
are equal to

.

.

.a

.c

.

.

.b

.d

. ..

The ingredients of the monoidal structure are represented in particularly
simple ways. By Mac Lane’s strictification theorem [35, p. 257], we can assume
without loss of generality that our SMC is strict, that is,

A⊗ (B ⊗ C) = (A⊗B)⊗ C and A⊗ I = A = I ⊗A.

This implies that the structure maps λA, ρA and αA,B,C become (tensor prod-
ucts of) identities, which are represented as edges:

1A = .
.A

..

The only exception to this rule is when A is the tensor unit – the strict equality
A = A⊗I makes it natural to represent I by an empty space instead of an edge,

1I = .

Putting everything together, we for example have that the scalar multiplication
c · f of f : A→ B with c : I → I (cf. Definition 7) is

λ−1
B ◦ (c⊗ f) ◦ λA = ..c

..A

.f

..B .

Note how the graphical representation of c has no incoming or outgoing lines –
this is because both are of type I.

The symmetry map σ is represented by a crossing of wires:

σ = .

.

...

.

.

16

Its naturality for instance is captured by the identity

.

.

.f

.

.

.g

.

= .

.

.f

.

. ..

.g

.

We end this section with a powerful completeness result for the above graph-
ical language. It was first proved by Joyal and Street in [27, Thm 2.3] and given
its succinct phrasing by Selinger in [40]:

Theorem 9 (Coherence for symmetric monoidal categories). A well-formed
equation between morphisms in the language of symmetric monoidal categories
follows from the axioms of symmetric monoidal categories if and only if it holds,
up to isomorphism of diagrams, in the graphical language.

2.3.5 Observables and bases

Just as scalars, vectors and adjoints can be axiomatized in the language of †-
SMCs, so can quantum observables and bases. Following the presentation given
in [11] to some extent, we will now see how.

Definition 10. An internal monoid in a monoidal category is a triple

(A, .. : A⊗A→ A, .. : I → A)

for which the multiplication .. is associative and has .. as its unit, that is,
respectively,

..
.

. . .

.
= .

.
.

...

.

.
. .

.

.
= .

..

.

.
= .

.

. .

If we furthermore have

.. = ..

.,

then (A, .. , ..) is called commutative.

In the SMC Set of sets and functions with the cartesian product as tensor,
internal (commutative) monoids precisely correspond to the usual notion of
(commutative) monoids. The category-theoretic viewpoint however also lets us
consider the dual notion, internal (cocommutative) comonoids:

Definition 11. An internal comonoid in a monoidal category is a triple

(A, .. : A→ A⊗A, .. : A→ I)

for which the comultiplication .. is coassociative and has .. as its counit, that
is, respectively,

17

.

.
.

. . .

.

= .
.

.
...

.

.
. .

.

.

= .
..

.

.

= .

. .

.

If we furthermore have

.

.
= ..

.,

then (A, .. , ..) is called cocommutative.

It is not difficult to see that, for each internal commutative monoid (A, .. , ..)
in a †-SMC, (

A,
(
..
)†
,
(
..
)†)

is an internal cocommutative comonoid and vice versa.
In [18], Coecke and Pavlovic showed that particular kinds of commutative

Frobenius algebras (CFAs) can be used to represent the classical interfaces to
the quantum universe given by the †-SMC:

Definition 12. A Frobenius algebra consists of an internal monoid (A, .. , ..)

and an internal comonoid (A, .. , ..) on the same carrier such that the Frobenius
condition

.

.

.

..

..

= .
.

.

. .

. .

= .
.

.

. .

. . .

(5)

is satisfied. A Frobenius algebra is called (co)commutative iff its (co)monoid
part is (co)commutative.

Historically, the Frobenius condition (5) first appeared in Carboni and Wal-
ters’ paper [6]. This paper exhibits a relationship between commutative Frobe-
nius algebras and compact closed categories which played an important role
in the initial development of categorical quantum mechanics [2]. The crucial
property for establishing the relationship is given by

Proposition 13 (Compactness [6]). For any Frobenius algebra
(
A, .. , .. , .. , ..

)
,

.

.

.

.

.

.

.

= .

.

.

= .

.

.

.

.

.

.

..

Proof. By the Frobenius condition and unitality,

.

.

.

.

.

.

.

= .
.

.

. .

. .

= .

.,

and similarly for the vertical mirror image of these equations.

18

Because they are so common and important, we write

.. := ..
.

and .. := ..
.

for the cup and cap of a Frobenius algebra, respectively.
The following lemma allows us to drop the distinction between commutative

and cocommutative Frobenius algebras in Definition 12:

Lemma 14 ([31, Lem 3.6.14]). A Frobenius algebra in a symmetric monoidal
category is commutative iff it is cocommutative.

Definition 15. A Frobenius algebra is called special iff the loop

.

.

. =
.

..

It is called dagger (written †) iff

.. =
(
..
)†

and .. =
(
..
)†
.

A commutative Frobenius algebra that satisfies both of these conditions is called
an observable or classical structure2.

Example 16. The notion of classical structures is intrinsic in a †-SMC: The unit
object I always comes with observable structure

.. := λI : I ≃ I ⊗ I and .. := 1I .

Theorem 17 ([18, 19]). The classical structures in FdHilb precisely correspond
to orthonormal bases {|ψi⟩}i via the construction

.. : |ψi⟩ 7→ |ψi⟩ ⊗ |ψi⟩ and .. : |ψi⟩ 7→ 1. (6)

In other words, if {|ψi⟩}i is an orthonormal basis for a Hilbert space H then
Equation (6) defines a classical structure and if (H, .. , ..) is a classical structure
then it is of the form (6) for some orthonormal basis {|ψi⟩}i of H.

Theorem 17 provides evidence for the above claim that commutative Frobe-
nius algebras represent classical interfaces to the quantum universe: In quantum
mechanics, each orthonormal basis gives rise to a measurable and performing
the measurement yields a scalar that identifies one of the basis vectors. Orthog-
onal bases can thus be seen as the “classical data” that can be obtained about
the quantum system. Theorem 17 tells us that this classical data corresponds to
the copyable and deletable points of observable structures. This is in line with
an important distinction between classical and quantum data in general, namely
that the former can be copied and deleted while the latter, by the no-cloning
and no-deleting theorems [43, 38], cannot. Further evidence in support of the
description as classical interfaces is that (†-) commutative Frobenius algebras
enable us to specify projector spectra and quantum measurements [18].

The notion of copyable points is easily captured in the †-SMC language:

2Classical structures were called classical objects in the original paper [18]. In recent work
on the subject, the two names from Definition 15 appear to be more common.

19

Definition 18. We call a morphism .. : I → A a copyable point of a Frobenius
algebra

(
A, .. , .. , .. , ..

)
iff

.

.

. = .. .

..

Similarly to the correspondence between †-special commutative Frobenius
algebras (i.e. observable structures) and orthonormal bases, more general types
of CFAs correspond to more general types of bases. This is shown in Table 2.1.
In each case, the basis is determined by the copyable points of the respective
Frobenius algebra [19].

Type of basis Algebraic structure
Arbitrary Special commutative Frobenius algebra (SCFA)
Orthogonal †-commutative Frobenius algebra (†-CFA)
Orthonormal †-special commutative Frobenius algebra (†-SCFA)

Table 2.1: Correspondence bases – CFAs in FdHilb ([19])

The following is a final very nice result that we will refer to later:

Lemma 19 ([7, Lem 2]). In a symmetric monoidal category (C,⊗, I), there
is at most one special commutative Frobenius algebra

(
A, .. , .. , .. , ..

)
for each

cocommutative comultiplication .. : A→ A⊗A.

From the proof of Lemma 19 [7], it is not difficult to see that the correspond-
ing statement also holds for commutative multiplications .. : A⊗A→ A.

Dimension

A scalar that turns out to be of particular importance is the dimension

. := .

.

.

.

...

It satisfies

Lemma 20 ([11]). Any two commutative Frobenius algebras
(
A, .. , .. , .. , ..

)
and

(
A, .. , .. , .. , ..

)
on the same carrier induce the same dimension, that is,

.

.

.

.

.
= .

.

.

.

...

The choice of the word “dimension” is of course not arbitrary:

Proposition 21. In FdHilb, the circle . induced by a CFA corresponds to the
dimension of the underlying Hilbert space H.

Proof. Let H be a Hilbert space of finite dimension D. By Lemma 20, it suffices
to find one CFA on H whose circle corresponds to D. Let {|ψi⟩}Di=1 be an
orthonormal basis for H. By Theorem 17, this induces a †-SCFA

.. : |ψi⟩ 7→ |ψi⟩ ⊗ |ψi⟩ .. : |ψi⟩ 7→ 1.

20

We get that

. . =
D∑
i=1

|ψi⟩ ⊗ |ψi⟩

and thus, by orthonormality

. =
D∑
i=1

⟨ψi|⟨ψi|ψi⟩|ψi⟩ = D.

Observables in FRel

The following theorem due to Pavlovic classifies all observable structures in Rel
(and thus in FRel):

Theorem 22 ([39]). The observable structures in Rel are precisely

.. =
∪
j∈J

Mj
.. = {ej}j∈J

where J is any set, Gj = (Xj , ∗j , ej) are abelian groups with disjoint carriers and
Mj ⊆ (Xj ×Xj)×Xj are the graphs of the respective group multiplications ∗j.

Definition 23. For an observable structure .. =
(
A, .. , ..

)
in Rel, we call the

set {Gj | j ∈ J} from Theorem 22 the group decomposition or simply the groups
of .. and write

.. =
∑
j∈J

Gj .

Example 24. By Theorem 22, there is only one observable structure on the one-
element set in Rel, given by the singleton group Z1. For the two-element set
{0, 1}, since 2 can be written as 1 + 1 or as 2, we get two observable structures
(up to swapping 0s and 1s): The first corresponds to the disjoint union Z1+Z1,

..
1+1

= {((0, 0), 0), ((1, 1), 1)} ..
1+1 = {(∗, 0), (∗, 1)},

while the second corresponds to the two-element group Z2,

..
2
= {((0, 0), 0), ((0, 1), 1), ((1, 0), 1), ((1, 1), 0)} ..

2 = {(∗, 0)}.

We will encounter these observable structures again in the computational clas-
sification of SCFAs on the two-element set in FRel (Section 4.2).

Normal forms

Definition 25 ([29]). We say that a morphism f is constructed from a Frobe-
nius algebra (A, .. , .. , .. , ..) iff it can be written as a combination of the algebra

maps .. , .. , .. , .. and the (symmetric) monoidal structure maps λ, ρ, σ, α only.
We say such a morphism is connected iff its graphical representation is con-
nected.

Example 26. The following are examples of connected morphisms constructed
from a Frobenius algebra (A, .. , .. , .. , ..):

21

.

.

.

.,

..

. . .

. . .

.

.

....

....
:= .

.
.
....
.

.

. . . .

.,

.

....
.

.

.

.
......

Connected morphisms constructed from a commutative Frobenius algebra
have particularly nice normal forms, as shown by the following folk theorem
(stated eg. in [29, 15]):

Theorem 27. A connected morphism constructed from a commutative Frobe-
nius algebra is completely determined by the numbers of its inputs, outputs and
loops where

• “the numbers of inputs/outputs” are the numbers of incoming/outgoing
wires in the graphical representation (so copies of the tensor unit I do not
count) and

• “the number of loops” is the number of “closed compartments” in the
graphical representation, or equivalently, the number of holes in the cor-
responding cobordism [31].

The proof of Theorem 27 exploits the fact that the symmetric monoidal
category generated by morphisms constructed from a CFA is canonically iso-
morphic to 2Cob, the category of 1-dimensional manifolds and 2-dimensional
cobordisms [31]:

Proof of Theorem 27 (Outline). Let f and g be connected morphisms constructed
from a CFA (A, .. , .. , .. , ..), with the same numbers of inputs, outputs and
loops. By [31, Thm 3.6.19], there is a unique symmetric monoidal functor
F : 2Cob → C such that F1 = A, where 1 is the unique closed connected
1-manifold. By the definition of F [31, Thm 3.3.2], each of the basic morphisms
listed in Definition 25 has a singleton preimage under F , hence there exist unique
cobordisms f ′ and g′ such that

f = Ff ′ and g = Fg′.

Since f and g are connected and have the same number of loops, f ′ and g′

must be connected and have the same genus. Similarly, because f and g have
the same number of inputs and the same number of outputs, f ′ and g′ must
agree on the numbers of in-boundaries and out-boundaries. This implies by a
fundamentel result of cobordisms (cf. [31, p. 64]) that f ′ = g′ and thus

f = Ff ′ = Fg′ = g,

as required.

Example 28. By Theorem 27, we have

..

.
= ..

.,

.

.

. = .
..,

.

.

.

.

.

= .

.

.

.

.

..

22

The interested reader should not find it too difficult to prove these equalities
from first principles.

For non-connected morphisms constructed from a CFA, we have

Corollary 29. Any morphism constructed from a commutative Frobenius alge-
bra can be written as

.

....
.

.

.

....

.

.

.
....

....
.

.

.

....

.

.

.
....

.· · ·

....
.

.

.

....

.

.

.
.... ..

The restriction of Theorem 27 to (†-)SCFAs is sometimes called “spider
theorem” in literature (eg. [11, 15, 17]) and has been proved for †-SCFAs in [16]
and for arbitrary SCFAs in [32, Example 5.4]. The terminology stems from the
fact that connected morphisms constructed from special commutative Frobenius
algebras can be written as spiders

.

.

. . .

. . .

.

.

....

.... .

This is because the speciality condition allows us to remove all loops.

Frobenius states

The very recent paper [14] shows that some of the data
(
A, .. , .. , .. , ..

)
is

redundant for commutative Frobenius algebras. The authors give a crisper defi-
nition using the (new) notion of Frobenius states, a particular kind of symmetric
states:

Definition 30. A state ψ : I → A⊗ · · · ⊗ A is called symmetric iff it remains
constant under swapping of outcoming wires in its graphical representation.

Definition 31. A symmetric state .. : I → A⊗A⊗A is said to be a Frobenius
state iff there exist morphisms . . : A⊗A→ I and .. : A→ I such that

.

.

.
.

= . (7)

and

.

. .
.

= .

. .
.

..
(8)

23

In FdHilb, Equation (7) already has an interesting connection with entan-
glement: Any symmetric tripartite state .. : I → A⊗A⊗A that satisfies it
is SLOCC-maximal, in that any other state in the same SLOCC class can be
obtained from .. by stochastic local operations and classical communication.

The following two theorems establish the correspondence between CFAs and
Frobenius states:

Theorem 32. For every commutative Frobenius algebra
(
A, .. , .. , .. , ..

)
, the

induced tripartite state

.. := ...
...

.

forms a Frobenius state under the cup . . and the counit .. .

Theorem 33. Any Frobenius state induces at least one commutative Frobenius
algebra, given by

.. := .
.

. . .
.
:= .

.

. .
.. := .

.
. .

. := .
...

Furthermore, each cup . . of a Frobenius state uniquely determines a counit ..
and vice versa.

Theorems 32 and 33 imply that every commutative Frobenius algebra is
determined by its induced tripartite state .. and one of { .. , . . }.

2.3.6 Complementarity – The Z/X-calculus

Given the axiomatisation of quantum observables as †-special commutative
Frobenius algebras, we can ask how different quantum observables relate to
each other. The most important such relationship for quantum mechanics is
that of complementarity, which has been axiomatised by Coecke and Duncan in
[11], as follows:

Definition 34. Two observable structures (A, .. , ..), (A, .. , ..) are called com-
plementary iff

.
.

.
=.

.

.

where the dualiser

. := .

.

.

.

.

.

.

..

The standard example of complementary observables are the Z- and X-
observables given by, respectively,

.. :

{
|0⟩ 7→ |00⟩
|1⟩ 7→ |11⟩

.. : |0⟩+ |1⟩ 7→ 1

24

and

.. :

{
|+⟩ 7→ |++⟩
|−⟩ 7→ | − −⟩

.. :
√
2|0⟩ 7→ 1.

Direct calculation shows that these two observables moreover constitute a scaled
bialgebra with trivial antipode, that is, they satisfy, up to scalars,

.

.

.

. .
= .

. .

. ..,
.

.

.

. .
= .

. .

. ..,
.

. .

. .

. .

. .

= .

. .

.

.

. ..,

.

.

.

. .
= .

.

.

. ...
(9)

Because of their importance as a motivating example, the graphical calculus of
complementary observables is called the Z/X-calculus.

Coecke and Duncan showed that, with an extension that allows for arbi-
trary phase shifts, the Z/X-calculus is universal for quantum computation on
qubits [11]. Meanwhile, the Z/X-calculus has found applications in the foun-
dations of quantum mechanics [12] and measurement-based quantum compu-
tation [23]. Moreover, there exists software called quantomatic which semi-
automates reasoning within it [22].

Complementarity in FRel

The complementary observables in Rel were classified by Evans et al. in [25].
Interestingly, the group structure exhibited by Pavlovic’s classification of single
observables [39] (see also Section 2.3.5) does not play a role: The only thing
that influences whether two observable structures are complementary are the
partitions given by the respective biproducts of abelian groups:

Theorem 35 ([25]). An observable structure
∑

j∈J Gj in FRel has a comple-
mentary observable structure iff its partition is uniform, that is, all its constituent
groups Gj have the same size. Further, two observable structures

∑
j∈J Gj and∑

k∈K Hk are complementary iff the respective partitions are complementary,
that is, |Gj ∩Hk| = 1 for all j ∈ J, k ∈ K.

Example 36. The two observable structures Z1 + Z1 and Z2 from Example 24
above are complementary. More generally, the observable structures

∑
1≤i≤n Z1

and Zn are complementary. The observable structure Z1 + Z2 does not have a
complementary observable because its partition is not uniform.

2.3.7 Multipartite entanglement

In their recent papers [29, 15, 14], Coecke and Kissinger show that special
commutative Frobenius algebras precisely correspond to the members of the
SLOCC equivalence class of the GHZ state:

Theorem 37. In FdHilb, the induced tripartite state .. of a special commu-
tative Frobenius algebra on C2 is always SLOCC-equivalent to |GHZ⟩. Con-
versely, any symmetric state that is SLOCC-equivalent to |GHZ⟩ arises as the
induced tripartite state of a SCFA on C2.

25

If we recall that the Z/X-calculus only involves (interacting) †-SCFAs, then
Theorem 37 suggests that it will not be able to give an abstract explanation
of the interactions between the GHZ and W class, nor those between more
general kinds of entanglement. For this reason, Coecke and Kissinger propose
the new GHZ/W-calculus whose primitives are (arbitrary) SCFAs and so-called
anti-special CFAs:

Definition 38. A Frobenius algebra (A, .. , .. , .. , ..) is called anti-special iff

.

.

. = .
.

.
.,

(10)

where the anti-unit and anti-counit are, respectively,

.. := .

.

.

.

.

and .. := .

.

.

.

.

..

The new notion of anti-speciality yields the analogue of Theorem 37 for the
SLOCC class of the W state:

Theorem 39. The induced tripartite state .. of an anti-special commutative
Frobenius algebra on C2 in FdHilb is always SLOCC-equivalent to |W ⟩. Con-
versely, any symmetric state that is SLOCC-equivalent to |W ⟩ arises as the
induced tripartite state of an ACFA.

Example 40. The special and anti-special commutative Frobenius algebras that
respectively give rise to (scalar multiples of) the GHZ and W states are

.. = |0⟩⟨00|+ |1⟩⟨11| .. = |0⟩+ |1⟩

.. = |00⟩⟨0|+ |11⟩⟨1| .. = ⟨1|+ ⟨1|
(11)

and

.. = |1⟩⟨11|+ |0⟩⟨01|+ |0⟩⟨10| .. = |1⟩

.. = |00⟩⟨0|+ |01⟩⟨1|+ |10⟩⟨1| .. = ⟨0|.
(12)

Because of their importance as a motivating example, these two CFAs are called
the standard GHZ/W-pair.

An interesting difference between SCFAs and ACFAs in FdHilb is that,
while there is an abundance of †-SCFAs (one for each orthonormal basis), there
are no non-trivial †-ACFAs:

Proposition 41. 3 If .. =
(
A, .. , ..

)
is a †-ACFA in FdHilb then dimA ≤ 1.

Proof. If dimA = 0, then we are done. Suppose dimA > 0. Since .. is a †-
CFA, Corollary 4.5 of [19] (see also Table 2.1 above) implies that there is an
orthogonal basis {ψi}i for A such that

.. =
∑
i

|ψiψi⟩⟨ψi|.

3This fact was first observed by Bob Coecke and Aleks Kissinger and has been transmitted
by personal communication.

26

Since .. is dagger, we then have that

.

.

. =
∑
i

||ψi||4|ψi⟩⟨ψi| (13)

has (full) rank dimA. But now, recalling that in FdHilb the circle . corre-
sponds to dimA and is thus > 0, the anti-speciality condition (10) implies that
the rank of the loop (13) is less than or equal to 1. Hence, as required,

dimA ≤ 1.

Similarly to how the Z/X-calculus axiomatises the interactions between com-
plementary observable structures, Coecke and Kissinger propose the following
axiomatisation of the relationship between the GHZ- and the W-class:

Definition 42 ([15]). A GHZ/W-pair consists of a SCFA
(
A, .. , .. , .. , ..

)
and

an ACFA
(
A, .. , .. , .. , ..

)
on the same carrier such that the following four

conditions are satisfied:

1. .

.

.
.- := .

.

.
.

.
= .

.

.
.

.

2. .
.
.

. .

.-
= .

.

.
. ..- .-

3. .
.
.

. .
= .

. .

. .

4. ...- = ..

The standard example of a GHZ/W-pair in FdHilb are the GHZ SCFA and
the W ACFA from Example 40 above. By interpreting the bra-ket notation as
described in Section 2.3.3, we furthermore have that their defining equations (11)
and (12) also define a GHZ/W-pair in (F)Rel.

The four conditions of Definition 42 have a clear interpretation [15]: By
compactness, the first condition implies that a tick on a wire is self-inverse,
which together with condition 2. implies that it is a permutation of the copyable
points of the SCFA:

.

.

. = .. .

=⇒ .

.

..- = .

.

..- .-
= .. .

.- .-

.. (14)

The third condition means that the black unit is a copyable point and the fourth

that so is .. (up to a scalar).
The remaining three results in this (sub-)section demonstrate the power of

the GHZ/W-calculus in FdHilb:

Theorem 43. The equations in Definition 42 suffice to establish (up to per-
mutation of basis vectors) a bijective correspondence between SCFAs on C2 and
ACFAs on C2 in FdHilb. That is to say, fixing one Frobenius algebra uniquely
determines the other.

Theorem 44. If we allow single-qubit states of the form

|z(α)⟩ := |0⟩+ e2iα|1⟩,

then the GHZ/W-calculus is universal for quantum computation. That is, it can
express any N -qubit entangled state and any linear map L : ⊗MC2 → ⊗NC2.

27

Recall from Equation (9) above that scaled bialgebras are particular kinds
of complementary quantum observables. If we generalise the notion of a scaled
bialgebra to arbitrary SCFAs by requiring that the identities given by Equa-
tion (9) also hold when written upside-down, we get that the GHZ/W-calculus
is at least as “fine-grained” as the Z/X-calculus on C2:

Theorem 45. Each GHZ/W-pair on C2 in FdHilb induces a scaled bialgebra,
given up to scalars by

.. = = = = ..

.. = .
. .
. .

.

.

.-

.-.-

.- .-

.-

.. = ...- .. = .
. .
. .

.

.

.-

.-.- .. = .. .

As we shall see in Chapter 4, Theorems 43 and 45 do not hold in general
in FRel.

Graphical Lemmas

This subsection lists some lemmas, either obvious or taken from [29, 15], that
we will use for the proofs in later sections.

Lemma 46. For any GHZ/W-pair, the conditions 1.−4. also hold when written
upside-down.

Proof. Using the normal form theorem 27 similarly to Example 28.

Since the same holds for the Frobenius algebra axioms, we get

Corollary 47. Any equational statement that involves only morphisms con-
structed from a GHZ/W-pair and can be proved in the GHZ/W-language also
holds when written upside-down.

Lemma 48 (Loop copy). For any ACFA, we have

.

.

.
. .

= .
. .

. ...

Proof. The lemma follows from Theorem 27 and anti-speciality (10):

.

.

.
. .

= .

.
.
. = .

.
.

.
= .

. .

. ...

Lemma 49. For any GHZ/W-pair, .. = ...- .

Proof. Using the fact that the tick ..- is self-inverse and axiom 2. upside-
down (cf. Lemma 46),

.

.
= .

.
.-.- = ..

. .

.-
.- = ..

. ..-
= .

.
.- ..

28

Lemma 50. For any GHZ/W-pair, if the dimension . : I → I has an inverse
. , then

....- = ... = 1I .

Proof. Using the fact that . has an inverse and Lemma 49,

1I = . = .
.
. =

.

.

..- = .
.
.

. .

.-

= .
.
..-

.

..- = .
.
..- = .

.

...

2.3.8 Classical computation

An important component in classical computation is the so-called multiplexer.
It has three inputs (in1, in2 and ctrl) and one output (out) and computes{

in1 if ctrl = 0

in2 if ctrl = 1.

In other words, it acts as a switch. The GHZ/W-calculus from the previous
section can be used to define the following quantum analogue of the classical
multiplexer:

Definition 51 ([15]). Given a GHZ/W-pair, the quantum multiplexer

QMUX : A⊗A→ A⊗A

is defined as

.

. .

. .

.QMUX := .

. .

. .

. .

. .

.-

.-

.-

.-

.-

..

The defining property of the quantum multiplexer is given by

Theorem 52 ([15]). If the scalar . : I → I has an inverse . then the quantum
multiplexer QMUX acts like a classical multiplexer when the first (“control”)

output is projected onto .. resp. ...- . That is,

.

. .

. .

.QMUX

.

= .
.

.-

and .

. .

. .

.QMUX

..-
= .

..-

..

Proof. By the GHZ/W-axioms, Lemma 46 and Lemma 48,

.

. .

. .

. .

.
.

.-

.-

.-

.-

.- = .

. .

. .

.
.

.

.

.-

.-

.-

.-

= .

. .

.

.
.

.

.-

.-

.- = .

. .
.

.

.

.

.-

.-

.- = .

. .

.

.

.

.

.-

.-.-

.-

.- = .

. .

.

.-

..

29

Similarly,

.

. .

. .

. .

.
.

.-

.-.-

.-

.-

.- = .

. .

. .

. .

.
.

.- .-

.-

.- = .

. .

. .

. ..

.

.- .-

.-

.- = .

. .

.

.
.

.

.-

.-

.- = .

. .

.
.

.

.

.-

.-

.-
= .

. .

.
.

.

.

.-

.-

.-

= .

.

..-

..

The quantum multiplexer can be used to realise the inductive step of the
classification of states into SLOCC super-classes (recall Section 2.2.2) [29, 15].
We will see in Chapter 5 how its computational capabilities can furthermore be
exploited to define a quantum AND gate.

30

Chapter 3

A new classification of
Frobenius algebras

We saw in the previous chapter that special and anti-special commutative Frobe-
nius algebras enjoy certain canonical properties in the category FdHilb. The
present chapter exhibits several new results that set out special and anti-special
Frobenius algebras, in any symmetric monoidal category. These results then
give rise to a new classification of Frobenius algebras on C2 in FdHilb, in
terms of the rank of the induced loop.

The following new result establishes the canonicity of the recent notion of
anti-speciality, in any SMC:

Theorem 53. If the loop of a Frobenius algebra .. =
(
A, .. , .. , .. , ..

)
in a sym-

metric monoidal category (C,⊗, I) is “disconnected”, that is, there are .. : A→ I
and .. : I → A such that

.

.

. = .

.

.
.,

then .. is anti-special.

Proof. Under the assumption of the proposition, and using the fact that scalars
move freely around diagrams (recall Equation (3)), we have

.

.

.
= .

.

.

.

.

.

.

= .

.

.
= .

.

.
..

In FdHilb, Theorem 53 means that any Frobenius algebra whose loop has
rank ≤ 1 is anti-special. Since conversely the anti-speciality condition (10)
implies that the loop has rank ≤ 1 (recall that . is equal to the dimension of
the underlying Hilbert space and thus 0 iff the dimension is zero), we have

Corollary 54. In FdHilb, the Frobenius algebras whose loop has rank ≤ 1 are
precisely the anti-special ones.

31

Remark. If the rank of the loop is 0, then also the dimension

. = .

.

.

.

.

is equal to 0. Since the only Frobenius algebra on the 0-dimensional space is
both special and anti-special, this means that we moreover have

Proposition 55. If the loop of a Frobenius algebra .. =
(
H, .. , .. , .. , ..

)
in

FdHilb has rank 0, then dimH = 0 and .. is both special and anti-special.

The following definition will allow us to obtain analogous results to Theo-
rem 53 and Corollary 54 for special Frobenius algebras:

Definition 56. We call two Frobenius algebras
(
A, .. , .. , .. , ..

)
and

(
A, .. , .. ,

.. , ..
)
in an SMC (C,⊗, I) locally equivalent iff there are invertible morphisms

l : A→ A and m : A→ A such that

.. = .
.

.l
.
.
= .

.

.l−1 .. = .
.
.m .

. =
.

.
.m−1

..

It should not be difficult to see that local equivalence of Frobenius algebras
is an equivalence relation. Using Definition 56, we get the following, to our
knowledge also new, result. Its proof was inspired by that of Theorem 102 in
Appendix A.

Theorem 57. Let .. =
(
A, .. , .. , .. , ..

)
be a (commutative) Frobenius algebra

in an SMC (C,⊗, I). Then the loop

.

.

.

is invertible iff .. is locally equivalent to a special (commutative) Frobenius alge-
bra ...

Proof. “⇒”: Suppose the loop is invertible, that is, there exists .. : A→ A such
that

.

.

.

.
= .

.

.

.

= .

..

(15)

Define

.. := .
.
.

.,
.
.
:= ..

.,
.. := ..

.,
.
. := .

. ..

We want to show that .. is a special (commutative) Frobenius algebra. By defi-
nition, we clearly have that

(
A, .. , ..

)
is a (cocommutative) comonoid because(

A, .. , ..
)
is. Next, we need the following

Claim. ..
.

= ... = ..
.

..

32

Proof. By Equation (15), the Frobenius condition and associativity,

..
.

= .

.
.

.

.

.

= .

.
.

.

.

.

= .
.
.

.
.
.

= ...
..

The same equalities hold for the vertical mirror images of the diagrams.

Using the claim and associativity of .., we have

..

.

= ..

.

.

.
= .

.
.

.

.
= .

.
.

.

.
= ..

.

.

.

= ..

.

..

Also by the claim and unitality of ..,

..
.

= ..
.

.
= ..

.

. = ..
.

= .

.,

and similarly for the vertical mirror images of these equations. This shows that(
A, .. , ..

)
is an internal monoid.

For the Frobenius condition, we have

.. . = .
.
.
.

= ...
.
= .

.

.

. = ...
.,

and again similarly for the vertical mirror images. This shows that .. is a (com-
mutative) Frobenius algebra. To see that it is moreover special, observe that

.

.

. = .
.

.

.
= .

..

“⇐”: Suppose .. is locally equivalent to a special (commutative) Frobenius
algebra .., via invertible l,m : A→ A as in Definition 56. Then

.

.

. = .

.m
.

.

.l

= .
.m

.l
..

This is invertible because l and m are.

Corollary 58. Suppose .. =
(
H, .. , .. , .. , ..

)
is a commutative Frobenius alge-

bra in FdHilb whose loop is invertible. Then the copyable points of .. determine
a basis for H.

33

Proof. By the proof of Theorem 57, .. induces a SCFA with the same comultipli-
cation and thus the same copyable points1. The result follows from the fact that
the copyable points of any SCFA on H determines a basis (see Table 2.1).

The above observations yield the following new classification of Frobenius
algebras on C2 in FdHilb in terms of the loop rank:

Theorem 59. Each Frobenius algebra on C2 in FdHilb is either

• anti-special, if the rank of its loop is 1, or

• locally equivalent to a special one, otherwise.

Proof. By Proposition 55, the rank of the loop must be greater than 0. The
result then follows from Corollary 54, Theorem 57 and the fact that a morphism
f : C2 → C2 in FdHilb is invertible iff it has rank 2.

Remark. Under assumption of a correspondence between Frobenius algebras
and genuinely entangled tripartite qubit states along the lines of Theorems 32,
33, 37 and 39, Theorem 59 may be seen as giving a new, abstract explanation
of the existence of two different types of genuine tripartite entanglement. This
is mentioned again in Chapter 6.

1By Lemma 19, this SCFA is actually unique.

34

Chapter 4

GHZ/W-Pairs in (F)Rel

This chapter covers the meaning of the GHZ/W-calculus and its ingredients
in the non-standard model FRel of categorical quantum mechanics. All re-
sults are proved for the category Rel of arbitrary sets and binary relations and
then follow for FRel. We begin by extending the graphical language of sym-
metric monoidal categories and proving a few preliminary results about CFAs.
Then, we describe a Haskell program that can be used to produce all com-
mutative Frobenius algebras on the two- and three-element sets and discuss
some of its (partly surprising) findings. Next, we use Pavlovic’s classification
of †-SCFAs [39] to give a new classification of arbitrary SCFAs and prove some
properties of the (recent concept of) anti-special CFAs. Finally, we use these
results to give a new classification of GHZ/W-pairs.

4.1 Preliminaries

4.1.1 Notation

Since we are working in Rel, we will be making many statements of the form

(a, b) ∈ R

for some binary relation R ⊆ A×B. Whenever it makes sense, we will instead
write this graphically, as

.

..a

.R

.
.b ..

For the particular case of vectors/subsets .. : I → A, we will write the statement

(∗, a) ∈ .. (16)

as just

.

.

.a ..
(17)

35

When Q ⊆ B × C is another binary relation and (a, c) ∈ Q ◦ R with witnesses
(a, b) ∈ R, (b, c) ∈ Q, we will write

.

.a

.R

.b

.Q

.c ..

Similarly, we will sometimes write ((a, b), (x, y)) ∈ P ×Q as

.

.a

.P

.b

.x

.Q

.y ..

In writing, we will often identify A with the canonically isomorphic sets
{∗} × A and A × {∗}. When we use this notation, the precise type should
always be clear from the context. Similarly, we will sometimes write just x for
the singleton sets {(∗, x)} and {(x, ∗)}. In this way, for instance, Equations (16)
and (17) from above could also be written as

a ∈ .. .

4.1.2 General results

This section proves several results that hold for all commutative Frobenius al-
gebras in Rel and will be used throughout the remainder of this chapter.

Proposition 60. For any CFA .. =
(
A, .. , .. , .. , ..

)
in Rel, the cap .

.
is a

permutation. That is, for all a ∈ A there is a unique a
..

such that

.

.a .a
...

.

Proof. Let a ∈ A. We have (a, a) ∈ 1A so by compactness, there is a
..
such that

.
.a

.
.a

..
.

.a.

(18)

This shows existence. For uniqueness, suppose a′ ∈ A is such that

.

.a .a′.

.

Since .. is commutative, we then have by Equation (18) that

36

.
.a
..

.
.a

.

.a′.

This implies by compactness that a′ = a
..
. Hence .

.
is a permutation.

Definition 61. Given a commutative Frobenius algebra .. =
(
A, .. , .. , .. , ..

)
and an element a ∈ A, we will keep writing (−)

..
for the unique induced element

from Proposition 60.

Proposition 62. For any CFA .. in Rel, we have .
.

=
(
. .
)†

.

Proof. Suppose

.

.a .a
...

.

By Proposition 60, (a, a
..
) is the only such tuple that involves a on the left side.

Therefore, by compactness,

.

.a

.

.a
..

.

.a

.,

and thus, by commutativity,

.
.a .a

..

. ..

This shows .
.

⊆ (. .)
†
. Suppose now that

.
.a .b

. ..

We must have

.

.a
..

.

.a
.

.b

.,

hence b = a
..
. This implies again by commutativity that

.

.a .b.

.

Hence (. .)
† ⊆ .

.
.

Corollary 63. The function (−)
..

is an involution, that is, (−)
.. ..
= (−).

Proof. Immediate from Proposition 60, Proposition 62 and compactness.

Corollary 64. We can use (−)
..

to bend wires around: For all a, b, c,

37

.

.a

.

.b .c

⇐⇒ .

.a .c
..

.

.b ..

Proof. Recall from Example 28 that

..
.

= ..
..

Together with the above properties of (−)
..
, this implies

.

.a

.

.b .c

⇐⇒ .

.a

.c
..

.

.b .c
.

⇐⇒ .

.a .c
..

.

.b ..

It is not too difficult to see that, in conjunction with commutativity, Corol-
lary 64 allows us to bend wires of not just multiplication and comultiplication,
but of any connected morphism constructed from a CFA.

Proposition 65. For any CFA on a non-empty carrier in Rel, we have

. = 1I .

Proof. Since the carrier is non-empty, Propositions 60 and 62 imply that 1I ⊆ . .
The result follows from the fact the only scalars are ∅ and 1I .

4.2 Computational results

In order to get anunderstanding of the meaning of commutative Frobenius al-
gebras in FRel on top of the above results, a Haskell program was used to ex-
haustively search for and thus classify all CFAs on the two- and three-element
sets. Once this was in place, the program was expanded to generate CFAs in
higher dimensions (i.e. sets with more elements) and query their properties.
This section gives an overview of the implementation and the results obtained.
The list of all CFAs on the two- and three-element sets 2 and 3 can be found
in Appendix B. A bare-bones version of the Haskell code that can be used to
reproduce all computational results is given in Appendix C.

4.2.1 Method

The main aim of this subsection is to provide a handle on seeing that the imple-
mentation and thus the computational results given in this thesis are correct.
We will make references to the code given in Appendix C, however, these refer-
ences will not be crucial for gaining an understanding of the general structure
of the approach. For this reason, no prior knowledge of Haskell is required.

The reason Haskell was used is that it is a mature programming language
whose syntax and primitives make it very easy to describe sets and binary

38

relations. This is exemplified by the fact that many of the functions of the
implementation are near-literal translations of the corresponding mathematical
definitions. Furthermore, interactive command-line interpreters such as GHCi [1]
make it very easy to test and then “play around with” an implementation.

The basic ingredients of the †-SMC FRel are modelled as follows: Objects
are represented as lists, binary relations as lists of tuples (Haskell type BinRel).
Composition and tensoring are near-literal translations of the mathematical
definitions for FRel (Haskell functions o, x). Similarly identity maps and the
symmetric monoidal structure maps are direct translations of the mathematical
definitions (idBinRel, alBinRel, lamBinRel, rhoBinRel, sigBinRel). Finally,
a dedicated Haskell function (eqBinRel) determines when two binary relations
are equal. These building blocks make it possible to define Boolean predicates
that capture when a tuple consisting of an object and binary relations of the
right type define a (commutative, special or anti-special) Frobenius algebra
(isFrobeniusAlgebra, isCFA, isSCFA, isACFA).

Finding CFAs, Attempt 1

Recall that a Frobenius algebra on a given carrier A consists of four morphisms
.. , .. , .. and .. . In FRel, these are all binary relations and thus subsets of
A⊗n for particular values of n. The first version of the Haskell implementation
simply went through each possible combination of subsets of the right type
and checked whether it was a commutative Frobenius algebra (cfasOn). Not
surprisingly, this was extremely inefficient and too slow to obtain results for the
three-element set1.

Finding CFAs, Attempt 2

The second (and final) attempt at finding all commutative Frobenius algebras
on the two- and three-element sets in FRel relies on the fact that each commu-
tative Frobenius algebra is uniquely determined by its induced tripartite state
and counit (Theorems 33 and 32). The implementation generates all possible
combinations of symmetric tripartite states and counits and filters out those for
which the induced tuple

(
.. , .. , .. , ..

)
is a CFA (cfasOn’). This approach is

much faster than the previous one, resulting in a reduction of time from over one
minute to less than one second to find all commutative Frobenius algebras on
the two-element set and making it possible to find all CFAs on the three-element
set in less than three minutes2.

Querying CFA properties

Once the approach described above had found all CFAs on the two- and three-
element sets, the Haskell implementation was extended by Boolean predicates
to query their properties. The most important examples of such predicates are

1Running the command cfasOn [0, 1] took over 1 minute on an Intel T2400 Dual Core
machine with 2x1.83 GHZ, 1.5 GB of RAM, Windows 7 and version 6.12.3 of the interactive
environment of the Glasgow Haskell compiler. The command cfasOn [0, 1, 2] failed to
produce a single CFA in over four hours.

2Commands cfasOn [0, 1], cfasOn’ [0, 1] and cfasOn’ [0, 1, 2] in the environment
described in Footnote 1.

39

eqFrobenius- AlgebraUpToPermutation, that determines whether to Frobe-
nius algebras are equal up to a bijection between carriers, and isGHZWPair,
that identifies when two commutative Frobenius algebras form a GHZ/W-pair.

Generating (canonical) examples

In order to get a grip on CFAs on carriers with more than three elements, the
Haskell implementation contains functions that generate examples of (canonical)
CFAs for any dimension. The function discreteSCFAProduct can be used to
generate SCFAs with group decompositions of the form Zn1 + · · · + Znk

(see
Theorem 66). The function minACFA can be used to generate minimal ACFAs,
as per Definition 81 below.

4.2.2 Results

SCFAs

The SCFAs exhibited by the implementation are precisely those predicted by
Pavlovic’s classification of dagger -SCFAs [39] (see also Section 2.3.5). This
sparked the proof of Theorem 66 below, which states that every SCFA in Rel
is dagger.

ACFAs

The Haskell implementation found 4 ACFAs on 2 (two up to a permutation of
carrier elements) and 66 on 3 (13 up to permutation). Since there are only 10
SCFAs on 3, this means that there are more ACFAs than SCFAs. An intuitive
explanation for this phenomenon is that the speciality condition imposes an “ab-
solute” constraint (the loop of the FA has to be equal to the identity, a constant)
while anti-speciality is only a relative statement between FA morphisms.

Several of the ACFAs found show that some of the theorems from Chapter 2
do not hold in greater generality. Unlike in FdHilb (Proposition 41), there are
†-ACFAs on non-trivial carriers (..b, ..

6 – ..
12). Unlike for SCFAs (Lemma 19),

there can be several different ACFAs for the same commutative multiplication
(..3, ..

6).
A final interesting observation is that all ACFAs exhibited by the Haskell

implementation have singleton units and counits. This turns out to be true for
all ACFAs in Rel, see Proposition 76 below.

GHZ/W-pairs

Interestingly, there is only one GHZ/W-pair each on the two- and three-element
sets (up to permutation of carrier elements). On 2, this pair is (..1+1, ..a), while
on 3, it is (..1+1+1, ..1). Already on the two-element set, this leaves out a SCFA
(..2) and an ACFA (..b), that are not part of any GHZ/W-pair. This is in
contrast to FdHilb, where every SCFA on C2 uniquely determines (up to a
permutation of basis vectors) an ACFA under the GHZ/W-axioms, and vice
versa (Theorem 43).

40

Non-special or -anti-special CFAs

The Haskell implementation revealed (up to permutation) one CFA that is nei-
ther special nor anti-special on the two-element set, and nine such CFAs on the
three-element set. In terms of their loops, all of them satisfy(

.

.

.

)m

=

(
.
.

.

)n

for some (distinct) m and n.

Non-generality of induced Z/X-calculus

Recall from Theorem 45 above that each GHZ/W-pair on C2 in FdHilb in-
duces a scaled bialgebra and thus gives rise to a Z/X-calculus. Unfortunately,
the construction of the corresponding proof does not work in general: The X-
observable

.. = .
. .
. .

.

.

.-

.-.-

.- .-

.-

.. = ...- .. = .
. .
. .

.

.

.-

.-.- .. = ..

induced by the GHZ/W-pair (..1+1+1, ..1) is not even a SCFA3.

4.3 Classification of SCFAs

The main aim of this section is to prove the following (new)

Theorem 66. Every special commutative Frobenius algebra (A, .. , .. , .. , ..) in
Rel is dagger, that is,

.. =
(
..
)†

and .. =
(
..
)†
.

Theorem 66 allows us to strengthen Pavlovic’s classification of †-SCFAs in Rel
([39], see also Section 2.3.5):

Corollary 67. The special commutative Frobenius algebras in Rel are precisely

the quintuples
(
A, .. , .. ,

(
..
)†
,
(
..
)†)

such that

A =
∪
j∈J

Xj
.. =

∪
j∈J

Mj
.. = {ej}j∈J ,

where J is any set, Gj = (Xj , ∗j , ej) are abelian groups with disjoint carriers and
Mj ⊆ (Xj ×Xj)×Xj are the graphs of the respective group multiplications ∗j.

As is natural, we extend Definition 23:

Definition 68. For a SCFA .. in Rel, we call the set {Gj | j ∈ J} from
Corollary 67 the group decomposition or simply the groups of .. and write

.. =
∑
j∈J

Gj .

3Haskell command (uncurry5 isSCFA)(inducedXObservable (discreteSCFAProduct

[1,1,1])(minACFA [0..2] [(0, 1)])).

41

Corollary 67 also allows us to give a more general form of a result due to
Evans et al., that we will use later:

Lemma 69 ([25, Thm 3.2]). The copyable points of a SCFA .. in Rel are
precisely the group carriers Xj from Corollary 67. That is,

.

.

. = .. . ⇐⇒ .. = {∗} ×Xj ,

for some j ∈ J .

Example 70. The copyable points of the SCFA Z1 + Z1, given by

..
1+1

= {((0, 0), 0), ((1, 1), 1)} and ..
1+1 = {(∗, 0), (∗, 1)},

are precisely the sets {(∗, 0)} and {(∗, 1)}. The SCFA Z2, for which

..
2
= {((0, 0), 0), ((0, 1), 1), ((1, 0), 1), ((1, 1), 0)} and ..

2 = {(∗, 0)},

has only one copyable point, namely {(∗, 0), (∗, 1)}.

4.3.1 Proof

Let .. =
(
A, .. , .. , .. , ..

)
be a special commutative Frobenius algebra in Rel.

Lemma 71. For all a ∈ A, ..

.a
implies a = a

..
.

Proof. Suppose ..

.a
. By speciality, there are b and c such that

.

.a

.

.b .c
.

.a ..

By Corollary 64, we have

..a .c
..

.

.b ..

Since a ∈ .. , this implies b = c
..
. By repeated applications of Corollary 64,

commutativity and Corollary 63, we then also get

.

.c
..
.c

.

.a
..
..

But then,

42

.

.a

.

.c
..
.c
.

.a
..
..

This implies by speciality that a = a
..
.

Corollary 72. .. =
(
..
)†

Proof. Using Lemma 71, we have

..
.a

⇐⇒ ..
.

.a
..
⇐⇒ .

.

.a
.. ⇐⇒ .

.

.a ..

Lemma 73. .. contains all coidentity elements, i.e.

.

.a

.

.a .e

=⇒ .
.

.e ..

Proof. We have

.

.a

.

.a .e

=⇒ .

.a .a
..

.

.e ..

By the definition of (−)
..
, we furthermore have

.

.

.

.a .a
..
..

The result follows by speciality.

Corollary 74. .
.
.

.a .b

.a .c

implies b = c.

Proof. By the Frobenius condition, Lemma 73 and unitality,

.

.

.

.a .b

.a .c

=⇒ .
.
.

.a .b

.a .c

=⇒ ..
.

.b

.c

=⇒ b = c.

43

Proof of Theorem 66. .. =
(
..
)†

is Corollary 72. We now show

.. =
(
..
)†
,

the result then follows from the fact that (−)† is an involution.
Suppose

.

.a .b

.

.c ..

By unitality and Corollary 72, there are e, f ∈ .. such that

.

.c

.

.c .e

and .

.b .f

.

.b ..

Gluing together diagrams, we get

..
.

.a .b .f

.c ..

By associativity, we get the existence of some x such that

..

.

.a .b .f

.c

.x

..

Since ..

.f
, we must have x = c. Hence we have

.

.c .f

.

.c

and .

.c

.

.c .e ..

Gluing these two diagrams together yields

.

.

.

.c .f

.c .e,

so, by Corollary 74, e = f . Bending wires, this implies

44

.

.a .b
.

.c
.

.f
.

.b
..
.b.c ..

By coassociativity, there now exists y such that

.

.a .b
.

.c
.

.y

.

.b
..

.b.c ..

By commutativity and Corollary 74, a = y. Hence, finally,

.

.c

.

.a .b ..

This shows .. ⊆
(
..
)†
.

Suppose now that

.

.c

.

.a .b ..

Bending wires, we get,

.

.a
..
.b
..

.

.c
..
..

We can apply the above reasoning to obtain

.

.c
..

.

.a
..
.b
..
..

Bending the wires back, we then get

.

.a .b

.

.c .,

45

as required. This shows
(
..
)† ⊆ .. and thus concludes the proof.

Remark. It may be possible to obtain a nicer proof of Theorem 66 using
Lemma 19.

4.4 Properties of ACFAs

This section exhibits several (new) results about ACFAs in Rel that will be
used throughout the remainder of this chapter. As a first observation, note that
the (only) CFA on the empty carrier ∅ is (both special and) anti-special. Since
by Proposition 65 the circle induced by all other CFAs is equal to 1I , this means
that we have

Proposition 75. A commutative Frobenius algebra .. in Rel is anti-special iff

.

.

. = .
.

.
..

The following property was already observed to hold for the ACFAs exhibited
by the Haskell implementation. We now prove it for the general case:

Proposition 76. If the carrier of an ACFA .. in Rel is non-empty, then its
unit and counit are singleton sets. That is,

∣∣ .. ∣∣ = ∣∣ .. ∣∣ = 1.

Proof. By unitality and the fact that the carrier is non-empty, we have
∣∣ .. ∣∣ ≥ 1.

Suppose

.
.

.a

.

.b ..

We will show that a = b. By unitality, there is e ∈ .. such that

.

.a .e

.

.a ..

However, since a ∈ .. , we have e = a. By a similar argument, it can be shown
that

.

.b .b

.

.b ..

Bending wires and using unitality, we then have

.

.a

.

.a .a
..

.

.a
..

.

.b

.

.b .b
..

.

.b
.. ..

46

Hence, by anti-speciality,

.

.a
.

.

.a
..

.b
.

.

.b
..
..

This implies

.

.a
.

.

.b
..
.,

and so, by anti-speciality, there are x and y such that

.

.a

.

.x .y
.

.b
.. ..

Since a ∈ .. , we have y = x
..
. Then, bending wires,

..

.

.x.b.a

.x

. x

.,

so by associativity, there is a z such that

..

.

.a .b .x

.x

.z

..

Since a, b ∈ .. , we then have that a = z = b. This implies that
∣∣ .. ∣∣ = 1. That

also
∣∣ .. ∣∣ = 1 follows from the fact that . . is a permutation (Propositions 60

and 62) and the equation
.
. = .

.
. ..

The next result represents a certain analogue of Proposition 41, which stated
that there are no non-trivial †-ACFAs in FdHilb:

47

Proposition 77. For
(
A, .. , .. , .. , ..

)
an ACFA in Rel, we have

.. = .. ⇐⇒ |A| ≤ 1.

Proof. “⇒”: Suppose .. = ... Then by unitality, the normal form theorem for
CFA morphisms (Theorem 27) and anti-speciality in Rel (Proposition 75), we
have

. = ..
.
= ..

.
= .

.

. = .
.

.
= .

.

.
..

(19)

Let a ∈ A. Then by the definition of 1A,

.
.a

.a .,

and thus, by Equation (19),

.

.a
.
.

.a ..

This implies that a ∈ .. and thus that A ⊆ .. . Since by Proposition 76 the size∣∣ .. ∣∣ ≤ 1, we then have |A| ≤ 1, as required.

“⇐”: If |A| = 0, then trivially .. = ∅ = ... Suppose |A| = 1 and write A = {a}.
By unitality and counitality, we must have .. = {(∗, a)} and .. = {(a, ∗)}. This
implies

.

.

.a
.

.a .a
.

.a
.,

and thus {(∗, a)} ⊆ ... Since by definition ..⊆ I ×A, this shows .. = ...

Finally, we have

Lemma 78. If
∣∣∣ ..
∣∣∣ = 1, then .. =

(
..
)†

.

Proof. Since
∣∣∣ ..
∣∣∣ = 1, we have that the carrier of .. is non-empty. This implies

by Proposition 65 that

1I = . =

Since by Proposition 76 also
∣∣ .. ∣∣ = 1, this implies that .. =

(
..
)†
.

48

4.4.1 Minimal ACFAs

Suppose .. =
(
A, .. , .. , .. , ..

)
is a CFA in Rel with distinct singleton unit and

counit, i.e. such that there exist u and c ∈ A which satisfy

u ̸= c, .. = {(∗, u)}, .. = {(c, ∗)}. (20)

Write

.
.⟨u|

:= {(u, ∗)}, .
.|c⟩

:= {(∗, c)}, . := 1A. (21)

Then, using the graphical notation for the †-SMC Rel and assuming strict-
ness of the symmetric monoidal structure (recall Section 2.3.4), unitality and
counitality of .. imply that

.
.⟨u|

. = {((u, a), a) | a ∈ A} ⊆ .. , . .
.⟨u|

= {((a, u), a) | a ∈ A} ⊆ .. ,

.
.|c⟩

. = {(a, (c, a)) | a ∈ A} ⊆ .. , . .
.|c⟩

= {(a, (a, c)) | a ∈ A} ⊆ .. .

Furthermore, by Propositions 60 and 62, we know that the cup . . and cap
. . induce an involutary bijection (−)

..
: A → A. By these results and the

definition of (−)
..
, we must also have

.
.

.
.|c⟩

= {((a, a ..), c) | a ∈ A} ⊆ .. ,

.
.⟨u|

.
.

= {(u, (a, a ..)) | a ∈ A} ⊆ .. .

Suppose now that .. , .. , .. and .. contain nothing but the elements de-
scribed above. That is, writing + instead of ∪ in order not to confuse cups,

.. = .
.⟨u|

. + . .
.⟨u|

+ .
.

.
.|c⟩

.. = {(∗, u)} (22)

.. = .
.|c⟩

. + . .
.|c⟩

+ .
.⟨u|

.
.

.. = {(c, ∗)}. (23)

Does this give a CFA? By construction, we have unitality and counitality. For
associativity, observe that, since u ̸= c, we have

..

.⟨u|
= .

.⟨u|
.

.⟨u|
..
. = .

.⟨u|
.
. + .

.
.⟨u| + .

.
.

.⟨u|
.

Hence

..
.

= ..

.⟨u|
. + .. .

.⟨u|
+ ..

.
.
.|c⟩

= .
.⟨u|

.
.⟨u|

.

+ .
.⟨u|

. .
.⟨u|

+ . .
.⟨u|

.
.⟨u|

+ .
.

.
.|c⟩

.
.⟨u|

+ .
.⟨u|

.
.

.
.|c⟩

+ .
.

.⟨u| .
.|c⟩

+ .
.

.
.⟨u|

.
.|c⟩

.

49

This is invariant with respect to any swapping of incoming wires. Therefore,

..
.

= ..
.

.

A similar proof shows that likewise

... = .. .
.

For the Frobenius condition, note that, again since u ̸= c, we have

..
.|c⟩

= .
.|c⟩

.
.⟨u|

+ .
.⟨u|

.
.|c⟩

= .
.|c⟩

.
.⟨u|

and

..
.

= .
.|c⟩

. + .
.

.
.⟨u|

+ . .
.|c⟩

= ..
.

This implies

... = .
.|c⟩

.. + .. .
.|c⟩

+ ..

.⟨u|
.
.

= .
.|c⟩

.. + .. .
.|c⟩

+ .
.⟨u|

.
.⟨u|

.
.

= .
.|c⟩

.
.⟨u|

. + .
.|c⟩

. .
.⟨u|

+ .
.|c⟩

.
.

.
.|c⟩

+ .
.⟨u|

. .
.|c⟩

+ . .
.⟨u|

.
.|c⟩

+ .
.

.
.|c⟩

.
.|c⟩

+ .
.⟨u|

.
.⟨u|

.
.

and

.. . = .
.|c⟩

.. + . ..
.|c⟩

+ .
.⟨u|

..
.

= .
.|c⟩

.
.⟨u|

. + .
.|c⟩

. .
.⟨u|

+ .
.|c⟩

.
.

.
.|c⟩

+ . .
.|c⟩

.
.⟨u|

+ .
.⟨u|

.
.|c⟩

. + .
.⟨u|

. .
.|c⟩

+ .
.⟨u|

.
.⟨u|

.
.

.

These are equal since

. .
.|c⟩

.
.⟨u|

= . .
.⟨u|

.
.|c⟩

and .
.⟨u|

.
.|c⟩

. = .
.|c⟩

.
.⟨u|

.
.

Since . . is an involutary bijection, we have that .. is commutative. Therefore,
.. is a commutative Frobenius algebra.

50

We have one more interesting property: Observe that

.

.

. = ..
.|c⟩

+ ..
.|c⟩

+ .
.⟨u|

.. = .
.|c⟩

.
.⟨u|

+ .
.⟨u|

..
.

Since u
..
= c and because (−)

..
being an involutary bijection implies

.

.

. = 1I ,

(note A ̸= ∅ as u ∈ A), we have

.. = ..
.
= .

.

.⟨u|
+ .

.

.⟨u|
+ .

.

.
.
.|c⟩

= .
.|c⟩

.

Similarly, it can be shown that

.. = .
.⟨u| .

This finally implies

.

.

. = .
.|c⟩

.
.⟨u|

= .
.

.
..

By Proposition 75, this means that .. is an ACFA.
From the above discussion, we have

Theorem 79. Suppose .. =
(
A, .. , .. , .. , ..

)
is a commutative Frobenius al-

gebra in Rel with distinct singleton unit and counit, i.e. such that there are u
and c ∈ A which satisfy Equation (20). Then .. contains an ACFA, given by
Equations (22) and (23).

We also have the converse:

Theorem 80. Given a set A, two distinct elements u, c ∈ A and an involutary
bijection (−)

..
: A → A such that u

..
= c, Equations (21)–(23) define an anti-

special commutative Frobenius algebra if we set

.
. := {((a, a ..), ∗) | a ∈ A} and .

.
:= .

.
†
.

Definition 81 (Minimal ACFAs). We call the induced ACFA from Theorem 80
the minimal ACFA for the respective parameters.

Minimal ACFAs will be used as a convenient source of counterexamples in
Chapter 5.

4.5 Classification of GHZ/W-pairs

Building on the results from the previous two sections, we can now explain the
meaning of the GHZ/W-axioms in Rel. The main result we are going to prove is

Theorem 82. The GHZ/W-pairs on a carrier A with at least two elements in
Rel are precisely those SCFA/ACFA-pairs (.., ..) such that

51

i. there are at least two copies of the singleton group Z1 in the group decom-

position of .., given by ..and ..

ii. (−)
..

is an isomorphism of the groups of ... That is, if x and y are in the
same group Gj = (Xj , ∗j , ej) of .., then x

..
and y

..
are in the same group Gk

of .. and
x
.. ∗k y

..
= (x ∗j y)

..
.

Since it is not difficult to see that there is precisely one GHZ/W-pair on the
empty and one-element sets (recall Example 16), this gives a complete classifi-
cation of all GHZ/W-pairs in Rel.

Before the proof, we need two small auxiliary results. The first follows
immediately from Corollary 67:

Lemma 83. For a SCFA .. in Rel with group decomposition
∑

j Gj, where
Gj = (Xj , ∗j , ej), we have

.

.x .y

.

.z

⇐⇒
x, y, z are in the same group Gj

and x ∗j y = z.

The second explains the meaning of the function (−)
..
for a SCFAs:

Proposition 84. For a SCFA .. in Rel, the function (−)
..

identifies group
inverses. That is, for an element x of a group (Xj , ∗j , ej) of .., x

..
is the unique

element such that
x ∗j x

..
= ej . (24)

Proof. Let x be an element of a group Gj = (Xj , ∗j , ej) of ... By counitality, we
have

.

.x

.

.e .x

for some e ∈ .. . Bending wires, this implies

.

.x .x
..

.

.e ..

By Lemma 83, we must now have that x
..
and e are in Gj and that

x ∗j x
..
= e.

By Theorem 66, .. must be dagger so we must have e ∈ .. . By the classification
of SCFAs (Corollary 67), this then implies that e = ej .

That x
..
is the unique element satisfying Equation (24) follows from the

well-known fact that group inverses are unique.

Proof of Theorem 82. By Proposition 65, the GHZ/W-axioms become

52

1. .

.

.
.- := .

.

.
.

.
= .

.

.
.

.

2. .
.
.

. .

.-
= .

.

.
. ..- .-

3. .
.
.

. .
= .

. .

. .

4. ...- = ...

“⇒”: Suppose (.., ..) is a GHZ/W-pair on a carrier A with at least two el-
ements. First observe that, by the fact that cups and caps are permutations
(Propositions 60 and 62), compactness and Axiom 1., the tick ..- is an involutary
function.

By Axiom 3., .. is a copyable point of ... This implies by Lemma 69 that .. is
one of the groups that make up ... Since by Proposition 76 the size

∣∣ .. ∣∣ is equal
to 1, this group is (isomorphic to) Z1. By Axiom 2., we have that ...- identifies

another group in the decomposition of .. (recall Equation (14)). By Axiom 4.,

this group is given by .., and, since the tick is a function, it also has size 1. If

.. = .., then by Proposition 77 the size |A| ≤ 1, a contradiction. This shows that

.. and .. identify two distinct copies of Z1 in the group decomposition of ...
To see that (−)

..
is an isomorphism of the groups of .., let Gj = (Xj , ∗j , ej)

be one of these groups and x, y ∈ Gj . By Lemma 83, we have

.

.x .y

.

.x ∗j y.

Now by Axiom 2. upside-down (Lemma 46) and the fact that the tick ..- is
self-inverse, we have

.

.

.
. .

= .

.

.
. .

.-

.- .-

and thus

.

.x .y

.

.x ∗j y.

.- .-

.-

By the definition of the tick, this implies

.

.x
.....y

....

.

.(x ∗j y)
....

and hence, bending wires,

.

.x
..
.y

..
.

.

.(x ∗j y)
..

Since .. must be dagger, we then have

53

.

.x
.. .y

..

.

.(x ∗j y)
...

By Lemma 83, this implies that x
..
, y

..
and (x ∗j y)

..
are in the same group Gk

of .. and that
x
.. ∗k y

..
= (x ∗j y)

..
.

This shows that (−)
..
is a group homomorphism; that it is moreover an isomor-

phism follows from compactness.

“⇐”: Suppose (.., ..) is a SCFA/ACFA pair on a carrier A with at least two
elements such that conditions i. and ii. are satisfied. Again by the fact that
cups and caps are permutations (Propositions 60 and 62), we have that the tick

.

.

.
.- := .

.

.
.

.

is a function. By Proposition 84, condition ii. and a well-known fact of group
homomorphisms, we then have that, for x ∈ A,

x
....
= (x−1)

..
= (x

..
)−1 = x

....
.

This implies

.

.

.
.- = .

.

.
.

...

Axiom 1. (which we have just shown to hold) implies that the tick is self-
adjoint. Together with the fact that .. is dagger, this implies that Axiom 2. is
equivalent to

.

.

.
. .

.- .-

= .

.

.
. .

.-

..

By Lemma 83 and Axiom 1., we have

.

.x .y

.

.z

.- .- ⇐⇒
x
....
, y

....
, z are in the same group Gj

and x
.... ∗j y

....
= z.

Now, since (−)
..
is an involutary group isomorphism, for some group Gk of ..,

x
.... ∗j y

....
= (x

.. ∗k y
..
)
..
.

Then, by Proposition 84 and the fact that Gk is abelian,

(x
.. ∗k y

..
)
..
= (x−1 ∗k y−1)

..
=
(
(x ∗k y)−1

) ..
= (x ∗k y)

....
.

Hence, by Lemma 83,

.

.x .y

.

.z

.- .- ⇐⇒ (x ∗k y)
....
= z ⇐⇒ x ∗k y = z

.... ⇐⇒ .

.x .y

.

.z
.-

..

54

From this, it can be seen that Axiom 2. holds.
By Lemma 69, Axiom 3. is the first half of condition i. Write e for the unique

element of .. . By Proposition 84, identifying singleton sets {(∗, x)} with x,

...- = e
....
=
(
e−1
) ..

= e
..
=
(
.. .
)†

=
(
..
)†
.

The fact that .. identifies a copy of Z1 in the group decomposition of .. implies

that
∣∣∣ ..
∣∣∣ = 1. Then, by the above and Lemma 78, we have

...- = ...

This is Axiom 4.

Example 85. The two GHZ/W-pairs (..1+1, ..a) and (..1+1+1, ..1) exhibited by
the Haskell implementation (cf. Section 4.2) satisfy the conditions given by
Theorem 82. More generally, let .. be a SCFA with group decomposition of the
form D = Z1 + · · · + Z1 and .. be any ACFA on the same carrier such that

| .. | = 1. By Propositions 76 and 77, we have
∣∣ .. ∣∣ = 1 and .. ̸= ... This implies

that condition i. is satisfied. Since moreover any bijection from D to D is an
isomorphism, we then have by Theorem 82 that (.., ..) forms a GHZ/W-pair.

The fact that SCFAs of the form Z1+ · · ·+Z1 form a GHZ/W-pair with any

ACFA on the same carrier satisfying the (weak) condition | .. | = 1 indicates
that the GHZ/W-axioms do not “scale” as we look at sets with more elements.
This can also be seen from the fact that, on the two-element set, the SCFA
is completely determined by the constraint that it must contain two distinct
copies of Z1, while on carriers with more than 3 elements, this is no longer the
case. We will get back to this in Chapter 6.

55

Chapter 5

A quantum AND gate

As a final, more practical evaluation of the expressive power of the GHZ/W-
calculus, we use it to define a quantum analogue of the Boolean AND gate.1

We identify one new and several known graphical conditions that hold for the
standard GHZ/W-pair from Example 40 and use these conditions in conjunc-
tion with the GHZ/W-axioms to prove some properties of our gate. We also
exhibit some properties it does not satisfy and argue that there are probably
no additional simple graphical axioms that could rectify this situation. In order
not to blur the line of argument, almost all proofs are given in Appendix A.

By Propositions 21 and 65, the following assumption holds for all non-trivial
CFAs in FdHilb and (F)Rel and will be used throughout this chapter:

Assumption 86. The dimension . : I → I has an inverse . .

Definition 87. Given a GHZ/W-pair, the quantum and gate

QAND : A⊗A→ A

is defined as

.

. .

.

.QAND := .

. .

. .

.QMUX

.

. .

.

..

5.1 Correctness and commutativity

The following condition already played a role in the Z/X-calculus [11] (see also
Equation (9) above):

Definition 88. We say a GHZ/W-pair satisfies bialgebraic commutation or the
bialgebra law iff

.

. .

. .

. .

. .
= .

. .
.
.

. .
(25)

and the same equality also holds when written upside-down.

1Another quantum AND gate was recently proposed in [5].

56

The fact that the standard GHZ/W-pair satisfies bialgebraic commutation was
noted in [29]. As a small aside, this paper also makes the following interesting
observation:

Proposition 89 ([29]). A GHZ/W-pair satisfies Equation (25) if and only if
the GHZ comonoid is a homomorphism of W monoids:

..(A, .. , ..) .(A⊗A, .. . ,)
. ..

Bialgebraic commutation allows us to prove the following crucial defining
property of QAND:

Theorem 90 (Correctness of QAND). Under assumption of the bialgebra law,
we have

.

. .

.

.QAND

.

= . = .

. .

.

.QAND

.

and .

. .

.

.QAND

..-

= .
.

.
.-

= .

. .

.

.QAND

.
.-

..

This implies that the quantum AND gate behaves like Boolean ∧ with respect to
the inputs .. (“true”) and ...- (“false”). That is, it has the following truth table:

Input 1 Input 2 Output
..

.. ...- ...-

...--

...- ...- ...-

Note how the tick ..- , by virtue of being self-inverse, acts like a logical NOT
gate. This is exemplified by the standard GHZ/W-pair in both FdHilb and
(F)Rel, where

..- = |0⟩⟨1|+ |1⟩⟨0|.

Moreover, for the standard GHZ/W-pairs, since the morphisms .. and ...- act

like a basis for C2 resp. 2, Theorem 90 implies

.

. .

.

.QAND = |0⟩⟨00|+ |0⟩⟨01|+ |0⟩⟨10|+ |1⟩⟨11|.

Using the spider notation for connected CFA morphisms without loops (re-
call Example 26), we also get that QAND is commutative for all inputs:

Theorem 91 (Commutativity of QAND). If a GHZ/W-pair satisfies bialge-
braic commutation, then its induced quantum AND gate has a symmetric graph-
ical representation, given by

.

. .

.

.QAND = ..

.

. .
.- .-

.-.-

.- .-

..

57

This implies that it is commutative, i.e.

..QAND = .

. .

.

.QAND

..

A key ingredient of the proof of Theorem 91 is that a tick on the control
output of the quantum multiplexer effects a swapping of inputs.

Proposition 92. For any GHZ/W-pair, we have

.

. .

. .

.QMUX

.-
= ..QMUX

.

5.2 A third truth value

An interesting observation to make at this point is that, by Theorem 90 and
Lemma 49, the white unit .. nearly behaves like a third truth value “unknown”
(up to a scalar):

.

. .

.

.QAND

. .

= .
.

.

. .

.

.QAND

. .
.-

= .
.
.- .

.
.- = .

.

In words, unknown ∧ true = unknown since replacing unknown by true or
false could result in either true or false, while unknown ∧ false = false
because both true ∧ false and false ∧ false are equal to false. Furthermore,
NOT unknown = unknown.

The only equality that does not follow from Theorem 90 is unknown ∧
unknown = unknown, or

.

. .

.

.QAND

. .

= .
.

..

Definition 93. 2 We say a GHZ/W-pair satisfies eta idempotence iff

..
. .

= .
.

..

The standard GHZ/W-pair from Example 40 does not satisfy eta idempo-
tence in FdHilb:

..
. .

= 2|0⟩+ |1⟩ ̸= |0⟩+ |1⟩ = .
.

..

However, in (F)Rel, since there are only two scalars and thus intuitively “2 = 1”,
we do have

..
. .

= |0⟩+ |1⟩ = .
.

..

The fact that the equality holds in (F)Rel but not in FdHilb can be explained
graphically by

2The use of eta idempotence to prove Proposition 95 was suggested by Aleks Kissinger.
The presentation given here and Lemma 94 are my own work.

58

Lemma 94. If a GHZ/W-pair satisfies eta itempotence, then

. = 1I .

Proof. By speciality, eta idempotence, Lemmas 49, 50 and Corollary 47,

. = .

.

.

.

.
= .

.

. = .. .
.
= .. .

.
.- = .. .

.
= .

.
.
.

. = ... = 1I .

Proposition 95. If a GHZ/W-pair satisfies bialgebraic commutation and eta
idempotence, then the quantum AND gate behaves like ternary ∧ with respect
to the inputs .. (“true”), ...- (“false”) and .. (“unknown”). That is, it has the
following truth table in addition to that given by Theorem 90:

Input 1 Input 2 Output
..

..

...--

.. ...- ...-

..

The proof of Proposition 95 uses yet another, simpler graphical representa-
tion of QAND.

Lemma 96. Under assumption of the bialgebra law, we have

.

. .

.

.QAND =
.

. .-
.-

.-

..

5.3 Complements

Similarly to the general proof of commutativity above, we would like to prove
other axioms of Boolean algebra without reference to particular truth values. In
order to be able to do this, we can use the fact that .. and ...- are both copied by

the white comultiplication .. . In this way for instance, the law of complements

p ∧ ¬p = ⊥

can be expressed as

..QAND

.
.-

= .
.

.
.- ..

(26)

Definition 97. We say a GHZ/W-pair satisfies ticked bialgebraic commutation
iff

.

. .

. .

. .

. .

.-

= .. .
.-

.-
(27)

and the same equality also holds when written upside-down.

59

Direct calculation shows that the standard GHZ/W-pair satisfies ticked bial-
gebraic commutation in both FdHilb and (F)Rel.3

Theorem 98 (Complements for QAND). If a GHZ/W-pair satisfies ticked and
non-ticked bialgebraic commutation, then it satisfies Equation (26).

The proof of Theorem 98 uses the following result, which in a similar form
already appeared in the Z/X-calculus:

Lemma 99 ([11, Thm 9]). If a GHZ/W-pair satisfies bialgebraic commutation,
then it satisfies the Hopf law

.

.

.
.- = .

.

.
.- ..

5.4 Absorption

Since the tick ..- behaves like logical NOT , we can use De Morgan’s law

¬(p ∨ q) = (¬p) ∧ (¬q)

to define a quantum or gate:

Definition 100. Given a GHZ/W-pair, the quantum or gate

QOR : A⊗A→ A

is defined as

.

. .

.

.QOR := .

. .

.

.QAND

.- .-

.-

..

By using .. and .. similarly to above as “placeholders” for truth values, this
allows us to express the absorption law,

p ∨ (p ∧ q) = p,

graphically as

.

.

.QAND

.QOR

= . .

..

(28)

3The paper [29] states that the standard GHZ/W-pair satisfies Equation (27) with .. instead

of ..
.- . In my calculations, ..

.- seems to be correct.

60

Theorem 101 (Absorption for QAND). Under assumption of ticked and non-
ticked bialgebraic commutation and the identity

.

. .

. .

.QMUX

. .

= .
. .

., (29)

we have that Equation (28) holds.

Direct calculation again verifies that the standard GHZ/W-pair satisfies
Equation (29) in FdHilb and (F)Rel. Interestingly, Equation (28) is indepen-
dent of the GHZ/W-axioms, eta idempotence, ticked and non-ticked bialgebraic
commutation: The SCFA .. = Z1 + Z1 + Z2 + Z2 with respective group carriers
{0}, {1}, {2, 3}, {4, 5} and .. = {0, 1, 2, 4} and the minimal ACFA on {0, . . . 5}
with .. = {(∗, 0)} and (in cycle notation)

(−)
..
= (01)(24)(35)

satisfies all these constraints but not absorption as per Equation (28). 4

5.5 Violated properties

There are two more properties that we would like our quantum AND gate to
satisfy. The first is associativity,

a ∧ (b ∧ c) = (a ∧ b) ∧ c.

This can be expressed graphically, as follows:

.

.QAND

.QAND

= .

.QAND

.QAND

.

(30)

The second is distributivity,

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c),

graphically,

.

.QAND

.QOR

= .
.QOR .QOR

.QAND

.

.

The GHZ/W-pair described at the end of the previous section does not
satisfy these conditions.5 This implies that they are not provable from the

4Haskell commands isGHZWPair s a, satisfiesEtaIdempotence s a, satisfies-
TickedBialge s a, satisfiesBialge s a and inducedAndSatisfiesAbsorption s a where
s = discreteSCFAProduct [1,1,2,2] and a = minACFA (carrier s)[(0,1),(2,4),(3,5)].

5Haskell commands isAssociative (carrier s)(logicalAnd s a) and induced-
AndSatisfiesDistributivity s a for s and a as in Footnote 4.

61

GHZ/W-axioms, eta idempotence, ticked and non-ticked bialgebraic commuta-
tion. Moreover, it can be shown that associativity is equivalent to

.

.QMUX

.QMUX

.

.

= .

.QMUX

.QMUX

.

.

,

which is at least not easily provable by additionally assuming Equation (29)
from the previous section.

In order to find another graphical axiom from which associativity could be
derived, Equation (30) was rewritten using Theorem 91, obtaining the condition

.

.

.

. .
.- .-

.-.-

.- .-

.

.

. .
.- .-

.-.-

.-

.- = .

.

.

. .
.- .-

.-.-

.- .-

.

.

. .
.- .-

.-.-

.-

.-

.

(31)

In this equation, connecting wires were then “cut” in turn to obtain subgraphs
that could serve as new graphical axioms. For instance, the equality

.

.

.

. .
.- .-

.-.-

.- .-

.

.

. .
.- .-

.-

.-

.-

?
= .

.

.

. .
.- .-

.-.-

.- .-

.

.

. .
.- .-

.-

.-

.-

would imply Equation (31) and could maybe in turn be explained by an equa-
tion between subgraphs that were obtained by cutting wires. Unfortunately,
cutting any of the wires in Equation (31) like this actually destroys equality
for the standard GHZ/W-pair. This suggests that there may not be a simpler,
equational graphical axiom from which associativity of QAND can be proved.

62

Chapter 6

Conclusions and further
work

We have roughly followed three strands in this thesis. In the first, we abstractly
established the canonicity of the recent notion of anti-speciality for Frobenius
algebras and showed how speciality and anti-speciality in FdHilb correspond
to maximality resp. minimality of the rank of the induced loop. Using this
result, we obtained a new classification of FAs on C2, which we interpreted as
to some extent giving a new, abstract explanation of the existence of two types
of genuine tripartite entanglement for qubits.

In the second strand, we looked at the non-standard model FRel of cate-
gorical quantum mechanics. We first used a Haskell implementation to find all
commutative Frobenius algebras on the two- and three-element sets and pointed
out several counterexamples that show that analogues of certain results known
to hold for the GHZ/W-calculus in FdHilb do not generalise. Next, we gave
a new classification of special commutative Frobenius algebras and proved that
every CFA with distinct, singleton unit and counit contains an ACFA. Finally,
we used the theory developed to classify GHZ/W-pairs in terms of the group

decomposition of the constituent SCFA and the anti-unit .. and the cup . . of
the constituent ACFA.

In the third and final, we used the GHZ/W-language to define an analogue
of the Boolean AND gate. We identified several graphical axioms that can
be used on top of those of the GHZ/W-calculus to prove some properties this
gate and showed that it fails to satisfy several properties that would normally
be expected to hold. We came to the conclusion that introducing additional
(equational) axioms is unlikely to rectify this situation.

One of the main conclusions to be drawn from this thesis is that anti-
speciality, just like speciality, seems to be a crucial notion in the study of Frobe-
nius algebras. This stems from its connection to multipartite entanglement in
FdHilb ([15] and Chapter 3 above), the canonicity of (minimal) ACFAs in
Rel (Section 4.4.1) but also abstractly from the fact that a Frobenius algebra
has a disconnected loop iff it is anti-special (Theorem 53). For these reasons,
while the GHZ/W-axioms may change (see below), I expect anti-special Frobe-
nius algebras to become an even more important player in categorical quantum
mechanics.

63

Another conclusion to be drawn is that the current form of the GHZ/W-
calculus may not be the final answer to the problem of obtaining an abstract,
structural understanding of multipartite entanglement. This is suggested by
several results in this thesis:

• The counterexamples exhibited by the Haskell implementation (cf. Sec-
tion 4.2) show that the proof that the GHZ/W-calculus refines the Z/X-
calculus does not work for the general case and that similarly the current
axiomatisation does not in general establish a bijective correspondence
between SCFAs and ACFAs.

• Theorem 82 shows that in (F)Rel, the GHZ/W-axioms only constrain two

of the groups of the SCFA and the anti-unit .. and cup . . of the ACFA.
As the size of the carrier is increased, these constraints fail to fully relate
the structure of the two constituent Frobenius algebras, a fact exemplified
by the existence of SCFAs which form a GHZ/W-pair with many different
ACFAs (Example 85).

• Theorems 57 and 53 establish that the speciality and anti-speciality condi-
tions for Frobenius algebras in FdHilb correspond precisely to maximality
resp. minimality of the rank of the induced loop. While the GHZ/W-
calculus works well for qubits, where every loop rank is either maximal or
minimal, this seems to indicate that it may not be as successful in higher
dimensions, where intermediate ranks exist.

Following the above discussion, an obvious next step is to try to classify the
Frobenius algebras with intermediate loop ranks in FdHilb. It appears that this
will be more difficult to formulate in the language of †-SMCs, as intermediate
ranks are unlikely to enjoy similarly canonical properties (disconnected/invert-
ible) as minimal/maximal ones. A first starting point might be the observation
from Section 4.2 that the non-special or -anti-special CFAs .. on the two- and
three-element sets in FRel satisfy(

.

.

.

)m

=

(
.
.

.

)n

for some distinct values m and n.
Another interesting next step would be to extend the theory developed in

the first strand of this thesis in such a way that it can give an autonomous,
structural explanation of the existence of two different types of genuine tripar-
tite entanglement. This would involve establishing a correspondence between
tripartite qubit states and Frobenius algebras without using the SLOCC classi-
fication [24] by Dür et al.

64

Bibliography

[1] GHC: The Glasgow Haskell compiler, August 2010. Available online at
http://www.haskell.org/ghc.

[2] S. Abramsky and B. Coecke. A categorical semantics of quantum pro-
tocols. In Proceedings of the 19th Annual IEEE Symposium on Logic in
Computer Science: LICS 2004, pages 415–425. IEEE Computer Society,
2004. arXiv:quant-ph/0402130v5.

[3] S. Abramsky and N. Tzevelekos. Introduction to categories
and categorical logic. In Bob Coecke, editor, New Struc-
tures for Physics. Springer-Verlag, 2010. Available online at
http://web.comlab.ox.ac.uk/people/Bob.Coecke/AbrNikos.pdf.

[4] C. H. Bennett, S. Popescu, D. Rohrlich, J. A. Smolin, and A. V. Thapliyal.
Exact and asymptotic measures of multipartite pure-state entanglement.
Phys. Rev. A, 63(1):012307, Dec 2000.

[5] J. Biamonte, S. Clark, M. Williamson, and V. Vedral. The
Quantum Theory of Information and Computation. Ox-
ford Graduate Course, TT2010. Course contents available at
www.comlab.ox.ac.uk/activities/quantum/course/.

[6] A. Carboni and R. F. C. Walters. Cartesian bicategories I. Journal of Pure
and Applied Algebra, 49:11–32, 1987.

[7] Aurelio Carboni. Matrices, relations, and group representations. Journal
of Algebra, 136(2):497 – 529, 1991.

[8] B. Coecke. Kindergarten quantum mechanics – lecture notes. In Quantum
Theory: Reconsiderations of the Foundations III, pages 81–98. AIP Press,
2005.

[9] B. Coecke. Introducing categories to the practising physicist. In G. Sica,
editor, What is Category Theory?, volume 3 of Advanced Studies in Math-
ematics and Logic, pages 45–74. Polimetrica Publisher, 2006.

[10] B. Coecke. Quantum picturalism. Contemporary Physics, 51:59–83, Jan-
uary 2010. arXiv:0908.1787v1 [quant-ph].

[11] B. Coecke and R. W. Duncan. Interacting quantum observables: Categori-
cal algebra and diagrammatics. In Automata, Languages and Programming,
ICALP’08, number 5126 in Lecture Notes in Computer Science, pages

65

298–310. Springer-Verlag, 2008. Extended version: arXiv:0906.4725v1

[quant-ph].

[12] B. Coecke, B. Edwards, and R. W. Spekkens. Phase groups and the origin
of non-locality for qubits. arXiv:1003.5005v1 [quant-ph], March 2010.

[13] B. Coecke and W. Edwards. Toy quantum categories. In B. Coecke and
P. Panangaden, editors, Proceedings of the 2008 QPL-DCM Workshop,
pages 25–35. Springer-Verlag, 2008. arXiv:0808.1037v1 [quant-ph].

[14] B. Coecke and A. Kissinger. The compositional structure of multipartite
quantum entanglement. arXiv:1002.2540v2 [quant-ph], August 2010.

[15] B. Coecke and A. Kissinger. The compositional structure of multipartite
quantum entanglement. arXiv:1002.2540v1 [quant-ph], February 2010.

[16] B. Coecke and E. O. Paquette. POVMs and Naimark’s theorem without
sums. In Proc. of the 4th International Workshop on Quantum Program-
ming Languages, 2006.

[17] B. Coecke, E. O. Paquette, and D. Pavlovic. Classical and quantum
structuralism. In I. Mackie and S. Gay, editors, Semantic Techniques in
Quantum Computation, pages 29–69. Cambridge University Press, Febru-
ary 2010. arXiv:0904.1997v2 [quant-ph].

[18] B. Coecke and D. Pavlovic. Quantum measurements without sums. In
G. Chen, L. Kauffmann, and S. Lomonaco, editors, The Mathematics of
Quantum Computation and Quantum Technology, pages 567–604. Chap-
man and Hall/CRC, 2007. arXiv:quant-ph/0608035v2.

[19] B. Coecke, D. Pavlovic, and J. Vicary. A new description of orthogonal
bases. Mathematical Structures in Computer Science, 13:08100812, 2008.

[20] V. Coffman, J. Kundu, and W. K. Wootters. Distributed entanglement.
Phys. Rev. A, 61(5):052306, April 2000.

[21] E. D’Hondt and P. Panangaden. The computational power of the W and
GHZ states. Journ. Quantum Inf. and Comp., 6(2):173–183, 2005.

[22] L. Dixon, R. Duncan, and A. Kissinger. quantomatic.
http://dream.inf.ed.ac.uk/projects/quantomatic.

[23] R. Duncan and S. Perdrix. Automata, Languages and Programming,
volume 6199 of Lecture Notes in Computer Science, chapter Rewriting
Measurement-Based Quantum Computations with Generalised Flow, pages
285–296. Springer Berlin / Heidelberg, 2010.

[24] W. Dür, G. Vidal, and J. I. Cirac. Three qubits can be entangled in two
inequivalent ways. Phys. Rev. A, 62(6):062314, November 2000.

[25] J. Evans, R. W. Duncan, A. Lang, and P. Panangaden. Classifying all mutu-
ally unbiased bases in Rel. arXiv:0909.4453v2 [quant-ph], September
2009.

66

[26] M. Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert. “Event-ready-
detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett.,
71(26):4287–4290, Dec 1993.

[27] A. Joyal and R. Street. The geometry of tensor calculus I. Advances in
Mathematics, 88:55–113, 1991.

[28] G. M. Kelly and M. L. Laplaza. Coherence for compact closed categories.
Journal of pure and applied algebra, 19:193–219, December 1980.

[29] A. Kissinger. Entanglement, monoidal categories and Frobenius algebras.
Transfer report from the status of probationary research student to DPhil
student at the Computing Laboratory, University of Oxford, January 2010.

[30] A. Yu. Kitaev, A. H. Shen, and M. N. Vyalyi. Classical and Quantum
Computation. American Mathematical Society, 2001.

[31] J. Kock. Frobenius Algebras and 2D Topological Quantum Field Theories,
volume 59 of London Mathematical Society Student Texts. Cambridge Uni-
versity Press, 2003.

[32] S. Lack. Composing PROPs. Theory and Applications of Categories,
13(9):147–163, 2004.

[33] L. Lamata, J. León, D. Salgado, and E. Solano. Inductive classification of
multipartite entanglement under stochastic local operations and classical
communication. Phys. Rev. A, 74(5):052336, Nov 2006.

[34] L Lamata, J Leon, D Salgado, and E Solano. Inductive entanglement clas-
sification of four qubits under SLOCC. Physical Review A, 75(2):022318,
2007.

[35] S. Mac Lane. Categories for the Working Mathematician (Graduate Texts
in Mathematics). Springer, 2nd edition, September 1998.

[36] N. D. Mermin. Quantum Computer Science. Cambr, 2007.

[37] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum
Information. Cambridge University Press, 2000.

[38] A. K. Pati and S. L. Braunstein. Impossibility of deleting an unknown
quantum state. Nature, 404(6774):164–165, March 2000.

[39] D. Pavlovic. Quantum and classical structures in nondeterministic com-
putation. In Proceedings of the 3rd International Symposium on Quantum
Interaction, Lecture Notes In Artificial Intelligence 5494, pages 143–157.
Springer-Verlag, 2009. arXiv:0812.2266v3 [quant-ph].

[40] P. Selinger. A survey of graphical languages for monoidal categories. In
B. Coecke, editor, New Structures for Physics, pages 275–337. Springer-
Verlag, 2009.

[41] R. W. Spekkens. In defense of the epistemic view of quantum states: a toy
theory. Phys. Rev. A, 75(3):032110, March 2007.

67

[42] J. von Neumann. Mathematische Grundlagen der Quantenmechanik.
Springer-Verlag, 1932. English translation: Mathematical Foundations of
Quantum Mechanics, Princeton University Press, 1996.

[43] W. K. Wootters and W. H. Zurek. A single quantum cannot be cloned.
Nature, 299(5886):802–803, October 1982.

68

Appendix A

Auxiliary results and proofs

A.1 ... for Chapter 3

The following unpublished result is due to Bob Coecke and Aleks Kissinger and
has been transmitted by personal communication. The reason it is included
here is that its proof inspired Theorem 57 in Chapter 3.

Theorem 102. If the loop of a commutative Frobenius algebra
(
.. , .. , .. , ..

)
on CD in FdHilb has (full) rank D, then it is equal to a phase. That is,

.

.

. =
..

.

for some .. : C → CD such that there exists .. : C → CD for which

..

..

= .
.

..

Proof. When the loop has full rank, it is invertible so there exists .. : C → CD

such that

.

.

.

. = .
.

..

Set

.

.

:= ..

..

Then, by the normal form theorem for CFA-morphisms (Theorem 27),

..

..

= ..
..

= .

.

.

. = .
.

..

69

A.2 ... for Chapter 5

This section contains most of the graphical proofs for Chapter 5 and some
associated lemmas. Throughout, we will often make (unmentioned) use of

Lemma 103. For any GHZ/W-pair, the tick ..- allows us to “slide” dots of
different colours past each other. That is,

.. ..- = ..
.

and- = ..
.

.

Proof. Using Axiom 1. of the GHZ/W-axioms, we have

.. ..- = .. .
.
. = ..

.

.

A similar proof can be used for the case where black and white nodes are
swapped.

Recall also that we are assuming that the dimension . : I → I has an inverse .

(Assumption 86).

A.2.1 Correctness and commutativity

Unlike the presentation given in Chapter 5, we first prove the commutativity of
QAND. This will simplify the proof of its correctness (Theorem 90).

Proof of Proposition 92. Using the fact that the tick is self-inverse, axiom 2. of
the GHZ/W-axioms and Corollary 47,

..QMUX = .
. .

. .

. .

.-

.-

.-

.-

.- = .

. .

. .

. .

. ..-

.-

.-

.-.- = .

. .

. .

. .

. .

.- .-

.-

.- = .

. .

. .

. .

. .

.-

.-.-

.-

.-

.- = .

. .

. .

.QMUX

.- ..

Lemma 104. If a GHZ/W-pair satisfies bialgebraic commutation, then we have

.

. .

. .

.QMUX

.

= ..

.

. .

.- .-.-

.- .- ..

Proof. First observe that we can “stretch wires” to get

.

. .

. .

.QMUX

.

= .

. .

. .

. .

. .

.-

.-

.-

.-

.- = ..
.
.

. ..-
.-.-

.- .- ..

70

Next, using the bialgebra law,

.

.
.

.

.-

.-

.-
= .

.
. .

. .-
.

.-

.-

= .
.

. .

.
. .-

= .
. .

. .
. .-

.

= .
. .

. ..-

. .-

.

= ..
.

..-

.-

.

= .

.
.

.
.-

.-

.

.-

= .
.

.
.

.-
.-

.- ..

This implies

..

.

.

. ..-
.-.-

.- .-

= .
.

.
.

.-
.-

.-

.

.

.-

.-

= ..

.

. .

.- .-.-

.- .- .,

as required.

Proof of Theorem 91. Using Proposition 92 and Lemma 104,

.

. .

.

.QAND = .

. .

. .

.QMUX

.

. .

.

= .

. .

. .

.QMUX

.

.
.-

.

.

= ..

.

. .

.- .-.-
. ..- .-

.

= ..

.

. .
.- .-

.-.-

.- .-

..

Since all involved Frobenius algebras are commutative, the symmetry of this
graphical representation implies that QAND is, too.

Proof of Theorem 90. Using Theorem 52, the graphical lemmas from section 2.3.7,
commutativity and compactness,

.

. .

.

.QAND

.

= .

. .

. .

.QMUX

.
.

. .

.

= .

. .

. .

.QMUX

.
.

. .- .

.

= .

. .

. .

.QMUX

.

..-
.

.

= .
.

.
.-

.

. = .

..

Similarly,

.

. .

.

.QAND

..-

= .

. .

. .

.QMUX

.
.

.

.-

.

.

= .

. .

. .

.QMUX

.

.
.

.

= .

.
.

.-

.

.

= .
.

.
.- ..

The remaining two equations follow from the commutativity of QAND (Theo-
rem 91).

The fact that QAND behaves like Boolean ∧ with respect to .. and .. follows
from Assumption 86 and Lemma 50.

71

A.2.2 A third truth value

Proof of Lemma 96.

..

.

. .
.- .-

.-.-

.- .-

= .
.

.

. .

.-.-

.- .-

= .

. .

. .
.

.

.-

.

.

.-

.-

= .

.

.

.

.

.

.

.

.-

.-

=
.

. .-
.-

.-

..

The result follows by Theorem 91.

Lemma 105. If a GHZ/W-pair satisfies bialgebraic commutation and eta idem-
potence, then

.

.

.
.-.- = ..-

..

Proof.

.

.

.
.-.- = .

.
..

. = .
. .

. .
.

= .
.

.

. .

.
= ..

.
.

= ..-

..

Proof of Proposition 95. Any case involving .. follows immediately from Theo-
rem 90. Next, by Lemmas 49, 50 and Corollary 47,

.

. .

.

.QAND

. ..- .-
= .

.

.

.
.-

.-

= .
.

.

.

.-

= .
.
.- ..

Similarly, by Lemma 94,

.

. .

.

.QAND

. ..-

= .
.

.

.

.-

= .
.
.-

= .
.
.- ..

Finally, by Lemma 96,

.

. .

.

.QAND

. .

=
.

. .-
.-

.

.-

.

.-

= . ..
.

. .-
.-

.

.-

.-

= ..
. .

.-

.

.
.-

.-

.-

= ..

.

.

.
.-

.- .-
.-

.

.,

and, by Lemma 105,

..

.

.

.
.-

.- .-
.-

. = .

.

.
.-

.-

.

.-

= ..
. .

.-
= .

.
.- = .

.

..

72

A.2.3 Complements

Proof of Theorem 98. By the commutativity of QAND and then by “pulling
up” the middle white dot,

..QAND

.
.-

= ..QAND

.

.-

= ..

.

. .
.- .-

.-.-

.
.-

= .

.

. .

. .

.-

.-.-

.

..

Now, by the ticked bialgebra law,

.

.

. .

. .

.-

.-.-

.

= .

.

.
.

.-

.-
.-

. .-

= .
.

.
.- = .

.

.

.-

.-

..

Hence, by Lemma 99, since the bialgebra law holds,

..QAND

.
.-

= .
.

.

.-

.-

= .
.

.
.- ..

A.2.4 Absorption

Proof of Theorem 101. First, by Lemma 96 and the Frobenius condition,

.

.

.QAND

.QOR

= .
. ..

.

. .-
.-

.-.

.QOR

= ..
..

.

. .-
.-

.-

.

.QOR

..

Now, by the definition of QOR, Lemmas 96 and 103,

.
.QOR

.
.

= .
. ..

.

. .-
.-

.-

.
..-

= ..
..

.

. .-

.- .-

.-

.
..-

= ..
..

.

.
.- .-

.-

.-

.
.

..

(32)

Next, by Lemma 49,

..
.

= ..
..-

= .. .
. = ..

...

73

Also, it is not difficult to see that

.. ..- :=- = .. .
.
. = . ..

.
. = ..

..-

..

Together with (co-)associativity, these observations let us rewrite Equation (32)
as

.
.QOR

.
.

= .

.
.

. ..-

.
.

.

..

Now, by the bialgebra law and unitality,

.

.
. .
.

.- = .
.

.

.

.

.
= .

.

.

.

.
= ..

.

..

This implies by associativity, the ticked bialgebra law and Lemma 50 upside
down (Corollary 47),

.
.QOR

.
.

= .

.
.
.

.

.

.-

.-

.-

= .

.
.

.

.

.

.-

.-

.-

= .. .

. .
.-

.-

.
.

.
= .. .

. .
.-

.-

.-
.
.

.

= .
..

.
.-

.-

.-
..-
.

.

= .. .
. ..

Hence, by putting the above together, the Frobenius condition and Lemma 96,

.

.

.QAND

.QOR

= ..
..

.

. .-
.-

.-

.

.QOR

= ..
..

.

. .-
.-

.-

.

.

=
.

. .-
.-

.-

.

.

= ..QAND

.

.

..

The result now follows from the derivation

.

. .

.

.QAND

.

= .

. .

. .

.QMUX

.

. .

.

.

= .

. .

. .

.QMUX

.

. .

.

= .
. .

. . = .
. ...

74

Appendix B

List of CFAs on 2 and 3 in
(F)Rel

This appendix lists all commutative Frobenius Algebras on the two- and three-
element sets 2 = {0, 1} and 3 = {0, 1, 2} in the category FRel of finite sets
and binary relations. The results were obtained by using a Haskell program to
exhaustively check all possibilities for multiplication, unit, comultiplication and
counit, as described in Section 4.2. The Haskell code is listed in Appendix C.

Not surprisingly, if
(
A, .. , .. , .. , ..

)
is a Frobenius algebra of some kind

(commutative, dagger, special or anti-special) and L : A → A is a unitary
morphism (i.e. invertible with L−1 = L†) , thenA, ..

.L−1

.L .L

, .

.

.L−1 , ..
.L

.L−1 .L−1

, .

.
.L−1

is a Frobenius algebra of the same kind. In FRel, unitary morphisms are
precisely the (graphs of) invertible functions. For this reason, the Frobenius
algebras in this appendix are only listed up to a permutation of the carrier
elements.

Special commutative Frobenius algebras are displayed as white dots ... Sub-
scripts indicate the group partitioning given by Theorem 66. Sums of the form∑
ki suffice for these subscripts because on k ≤ 3 elements, all abelian groups

are isomorphic to the cyclic group Zk. For example, ..
1+2 stands for the SCFA

Z1 + Z2. Since by Theorem 66 all SCFAs in Rel are dagger, that is,

.. =
(
..
)†

and .. =
(
..
)†
,

we furthermore only list the monoid parts of special commutative Frobenius
algebras.

Anti-special CFAs are displayed as black dots .. and CFAs that are neither
special nor anti-special are displayed as grey dots ... Finally, we use the Dirac
notation for FRel as described in Section 2.3.3.

75

B.1 Commutative Frobenius algebras on {0, 1}
There are nine commutative Frobenius Algebras on {0, 1}. These Frobenius
Algebras can be divided into special commutative ones (SCFAs), anti-special
commutative ones (ACFAs) and all others.

B.1.1 SCFAs

Up to swapping 0’s and 1’s, there are two SCFAs. Both are dagger so we only
list the respective multiplications and units:

1.

..
1+1

= |0⟩⟨00|+ |1⟩⟨11| ..
1+1 = |0⟩+ |1⟩.

2.

..
2
= |0⟩⟨00|+ |1⟩⟨01|+ |1⟩⟨10|+ |0⟩⟨11| ..

2 = |0⟩.

B.1.2 ACFAs

Again up to swapping 0’s and 1’s, there are two ACFAs:

1.

..
a
= |0⟩⟨01|+ |0⟩⟨10|+ |1⟩⟨11| ..

a = |1⟩
..
a = |10⟩⟨1|+ |01⟩⟨1|+ |00⟩⟨0| ..a = ⟨0|

2.

..
b
= |0⟩⟨01|+ |0⟩⟨10|+ |1⟩⟨11|+ |0⟩⟨00|+ |1⟩⟨00| ..

b = |1⟩
..
b =

.. † .. b = ..†.

B.1.3 Others

There is one other type of Frobenius Algebra on {0, 1}:

.. = |1⟩⟨00|+ |0⟩⟨01|+ |0⟩⟨10|+ |1⟩⟨11| .. = |1⟩

.. = |00⟩⟨0|+ |01⟩⟨1|+ |10⟩⟨1|+ |11⟩⟨0| .. = ⟨0|.

B.2 Commutative Frobenius algebras on {0, 1, 2}
There are 130 commutative Frobenius Algebras on the three-element set.

B.2.1 SCFAs

There are 10 SCFAs, all of which are dagger. Up to a permutation of the
elements of {0, 1, 2}, there are only three different types:

76

1.

..
1+2

= |1⟩⟨22|+ |2⟩⟨21|+ |0⟩⟨00|+ |2⟩⟨12|+ |1⟩⟨11|
..
1+2 = |0⟩+ |1⟩.

2.

..
1+1+1

= |0⟩⟨00|+ |1⟩⟨11|+ |2⟩⟨22|
..
1+1+1 = |0⟩+ |1⟩+ |2⟩.

3.

..
3
= |0⟩⟨21|+ |2⟩⟨20|+ |1⟩⟨22|+ |2⟩⟨11|+ |0⟩⟨12|
+ |1⟩⟨10|+ |2⟩⟨02|+ |1⟩⟨01|+ |0⟩⟨00|

..
3 = |0⟩.

B.2.2 ACFAs

There are 66 ACFAs, of which 30 are dagger. There are 13 different types:

ACFAs with unit |0⟩ and counit |1⟩:

1.

..
1
= |0⟩⟨00|+ |1⟩⟨01|+ |2⟩⟨02|+ |1⟩⟨22|+ |2⟩⟨20|+ |1⟩⟨10|

..
1 = |01⟩⟨0|+ |10⟩⟨0|+ |22⟩⟨0|+ |12⟩⟨2|+ |21⟩⟨2|+ |11⟩⟨1|.

2.

..
2
= ..

1
+ |2⟩⟨22| ..

2 = ..
1 + |22⟩⟨2|.

3.

..
3
= ..

2
+ |2⟩⟨12|+ |0⟩⟨11|+ |0⟩⟨22|+ |2⟩⟨21|

..
3 = ..

2 + |22⟩⟨1|+ |00⟩⟨1|+ |02⟩⟨2|+ |20⟩⟨2|.

4.

..
4
= ..

2
+ |2⟩⟨12|+ |2⟩⟨11|+ |0⟩⟨12|+ |0⟩⟨22|+ |2⟩⟨21|+ |0⟩⟨21|

..
4 = ..

2 + |22⟩⟨1|+ |20⟩⟨1|+ |02⟩⟨1|+ |02⟩⟨2|+ |20⟩⟨2|+ |00⟩⟨2|.

5.

..
5
= ..

4
+ |0⟩⟨11| ..

5 = ..
4 + |00⟩⟨1|.

77

†-ACFAs

There are 7 types of †-ACFA. All their units are singleton, hence we can take
.. = |0⟩ throughout. Under these assumptions, each †-ACFA is completely de-
termined by the multiplication .. .

1. ..
6
= ..

3
.

2. ..
7
= ..

6
+ |1⟩⟨11|.

3.

..
8
= |2⟩⟨21|+ |2⟩⟨20|+ |0⟩⟨21|+ |2⟩⟨22|+ |1⟩⟨21|+ |1⟩⟨01|+ |2⟩⟨02|
+ |0⟩⟨00|+ |1⟩⟨11|+ |2⟩⟨12|+ |1⟩⟨10|+ |0⟩⟨12|+ |1⟩⟨12|.

4. ..
9
= ..

1
+ |0⟩⟨11|+ |2⟩⟨11|+ |1⟩⟨12|+ |2⟩⟨12|+ |1⟩⟨21|+ |2⟩⟨21|+ |0⟩⟨22|.

5. ..
10

= ..
9
+ |2⟩⟨22|.

6.

..
11

= ..
2
+ |0⟩⟨12|+ |1⟩⟨12|+ |1⟩⟨11|+ |2⟩⟨12|

+ |2⟩⟨11|+ |0⟩⟨21|+ |1⟩⟨21|+ |2⟩⟨21|.

7. ..
12

= ..
3
+ |1⟩⟨11|+ |2⟩⟨11|+ |1⟩⟨12|+ |1⟩⟨21|.

One More

..
13

= ..
8
+ |2⟩⟨11| ..

13 = |0⟩
..
13 = ..

8 + |22⟩⟨1| ..13 = ..†
13.

B.2.3 Others

The remaining 54 CFAs fall into 9 different categories.

1.

.. = |0⟩⟨00|+ |2⟩⟨02|+ |1⟩⟨11|+ |2⟩⟨20| .. = |0⟩+ |1⟩

.. = |02⟩⟨0|+ |20⟩⟨0|+ |11⟩⟨1|+ |22⟩⟨2| .. = ⟨1|+ ⟨2|.

2.

.. = |2⟩⟨20|+ |0⟩⟨22|+ |1⟩⟨11|+ |0⟩⟨00|+ |2⟩⟨02| .. = |0⟩+ |1⟩

.. = |22⟩⟨2|+ |00⟩⟨2|+ |11⟩⟨1|+ |02⟩⟨0|+ |20⟩⟨0| .. = ⟨1|+ ⟨2|.

3.

.. = |1⟩⟨22|+ |2⟩⟨20|+ |0⟩⟨21|+ |2⟩⟨02|+ |0⟩⟨00|
+ |1⟩⟨01|+ |2⟩⟨11|+ |0⟩⟨12|+ |1⟩⟨10|

.. = |0⟩
.. = |12⟩⟨2|+ |21⟩⟨2|+ |00⟩⟨2|+ |22⟩⟨0|+ |01⟩⟨0|

+ |10⟩⟨0|+ |20⟩⟨1|+ |02⟩⟨1|+ |11⟩⟨1|
.. = ⟨1|.

78

4.

.. = |0⟩⟨11|+ |1⟩⟨10|+ |2⟩⟨12|+ |1⟩⟨22|+ |2⟩⟨21|
+ |0⟩⟨22|+ |2⟩⟨20|+ |1⟩⟨01|+ |2⟩⟨02|+ |0⟩⟨00|

.. = |0⟩
.. = .. †

.. = ..†.

5.

.. = |1⟩⟨10|+ |2⟩⟨12|+ |0⟩⟨11|+ |1⟩⟨22|+ |2⟩⟨20|
+ |0⟩⟨22|+ |2⟩⟨21|+ |0⟩⟨00|+ |1⟩⟨01|+ |2⟩⟨02|

.. = |0⟩
.. = |11⟩⟨1|+ |22⟩⟨1|+ |00⟩⟨1|+ |12⟩⟨2|+ |21⟩⟨2|

+ |02⟩⟨2|+ |20⟩⟨2|+ |01⟩⟨0|+ |10⟩⟨0|+ |22⟩⟨0|
.. = ⟨1|.

6.

.. = |1⟩⟨10|+ |2⟩⟨12|+ |2⟩⟨11|+ |0⟩⟨12|+ |0⟩⟨11|+ |1⟩⟨22|+ |2⟩⟨20|
+ |0⟩⟨22|+ |2⟩⟨21|+ |0⟩⟨21|+ |0⟩⟨00|+ |1⟩⟨01|+ |2⟩⟨02|

.. = |0⟩
.. = |11⟩⟨1|+ |22⟩⟨1|+ |20⟩⟨1|+ |02⟩⟨1|+ |00⟩⟨1|+ |12⟩⟨2|+ |21⟩⟨2|

+ |02⟩⟨2|+ |20⟩⟨2|+ |00⟩⟨2|+ |01⟩⟨0|+ |10⟩⟨0|+ |22⟩⟨0|
.. = ⟨1|.

7.

.. = |0⟩⟨11|+ |1⟩⟨10|+ |2⟩⟨11|+ |1⟩⟨12|+ |1⟩⟨01|+ |0⟩⟨00|
+ |2⟩⟨02|+ |1⟩⟨21|+ |0⟩⟨22|+ |2⟩⟨20|+ |2⟩⟨22|

.. = |0⟩
.. = .. †

.. = .. †.

8.

.. = |0⟩⟨00|+ |1⟩⟨11|+ |2⟩⟨12|+ |1⟩⟨22|+ |2⟩⟨21|+ |2⟩⟨22|
.. = |0⟩+ |1⟩
.. = .. †

.. = .. †.

79

9.

.. = |0⟩⟨00|+ |2⟩⟨02|+ |1⟩⟨01|+ |0⟩⟨12|+ |1⟩⟨10|+ |1⟩⟨11|
+ |2⟩⟨12|+ |2⟩⟨11|+ |2⟩⟨20|+ |0⟩⟨21|+ |1⟩⟨22|+ |2⟩⟨21|

.. = |0⟩
.. = |00⟩⟨0|+ |21⟩⟨0|+ |12⟩⟨0|+ |01⟩⟨1|+ |10⟩⟨1|+ |12⟩⟨1|

+ |21⟩⟨1|+ |22⟩⟨1|+ |20⟩⟨2|+ |02⟩⟨2|+ |11⟩⟨2|+ |22⟩⟨2|
.. = ..†.

80

Appendix C

Code listings

This appendix lists a bare-bones version of the Haskell code that was used to
obtain the computational results in this thesis. The implementation and most
of its results are described in Section 4.2.

import Data.List

import qualified Data.Set as Set

data I = X deriving (Eq , Ord , Show)

type BinRel a b = [(a, b)]

o :: (Eq a, Eq b, Eq c) => BinRel b c -> BinRel a b ->

BinRel a c

o q p = nub [(x, z) | (x, y) <- p, (y’, z) <- q, y ==

y’]

x :: BinRel a b -> BinRel x y -> BinRel (a, x) (b, y)

x p q = [((i, k), (j, l)) | (i, j) <- p, (k, l) <- q]

eval :: (Eq a, Eq b) => BinRel a b -> [a] -> [b]

eval p x = nub (map snd (filter ((flip elem x) . fst)

p))

idBinRel :: [a] -> BinRel a a

idBinRel = map (\x -> (x, x))

alBinRel ’ :: [a] -> [b] -> [c] -> BinRel ((a, b), c) (

a, (b, c))

alBinRel ’ a b c = [(((x, y), z), (x, (y, z))) | x <- a

, y <- b, z <- c]

alBinRel :: [a] -> [b] -> [c] -> BinRel (a, (b, c)) ((

a, b), c)

alBinRel a b c = [((x, (y, z)), ((x, y), z)) | x <- a,

y <- b, z <- c]

81

lamBinRel :: [a] -> BinRel a (I, a)

lamBinRel = map (\x -> (x, (X, x)))

lamBinRel ’ :: [a] -> BinRel (I, a) a

lamBinRel ’ = map (\x -> ((X, x), x))

rhoBinRel :: [a] -> BinRel a (a, I)

rhoBinRel = map (\x -> (x, (x, X)))

rhoBinRel ’ :: [a] -> BinRel (a, I) a

rhoBinRel ’ = map (\x -> ((x, X), x))

sigBinRel :: [a] -> [b] -> BinRel (a, b) (b, a)

sigBinRel a b = [((x, y), (y, x)) | x <- a, y <- b]

eqBinRel :: (Ord a, Ord b) => BinRel a b -> BinRel a b

-> Bool

eqBinRel p q = (Set.fromList p) == (Set.fromList q)

isMonoid :: Ord a => [a] -> BinRel (a, a) a -> BinRel

I a -> Bool

isMonoid a mu eta

= eqBinRel (mu ‘o‘ (((idBinRel a) ‘x‘ mu) ‘o‘

alBinRel ’ a a a)) (mu ‘o‘ (mu ‘x‘ idBinRel a)) --

assoc.

&& eqBinRel (mu ‘o‘ ((eta ‘x‘ (idBinRel a)) ‘o‘

lamBinRel a)) (idBinRel a) -- left unitality

&& eqBinRel (mu ‘o‘ (((idBinRel a) ‘x‘ eta) ‘o‘

rhoBinRel a)) (idBinRel a) -- right unitality

isComonoid :: Ord a => [a] -> BinRel a (a, a) ->

BinRel a I -> Bool

isComonoid a delta epsilon

= eqBinRel ((epsilon ‘x‘ idBinRel a) ‘o‘ delta) (

lamBinRel a)

&& eqBinRel (((idBinRel a) ‘x‘ epsilon) ‘o‘ delta)

(rhoBinRel a)

&& eqBinRel ((alBinRel ’ a a a) ‘o‘ (delta ‘x‘

idBinRel a) ‘o‘ (delta)) (((idBinRel a) ‘x‘

delta)‘o‘ delta)

dag :: BinRel a b -> BinRel b a

dag = map (\(x, y) -> (y, x))

isFrobeniusAlgebra :: Ord a => [a] -> BinRel (a, a) a

-> BinRel I a -> BinRel a (a, a) -> BinRel a I ->

Bool

isFrobeniusAlgebra a mu eta delta epsilon

= (isMonoid a mu eta)

&& isComonoid a delta epsilon

82

&& eqBinRel ((mu ‘x‘ idBinRel a) ‘o‘ ((alBinRel a

a a) ‘o‘ ((idBinRel a) ‘x‘ delta))) (delta ‘o

‘ mu)

&& eqBinRel (((idBinRel a) ‘x‘ mu) ‘o‘ ((alBinRel

’ a a a) ‘o‘ (delta ‘x‘ idBinRel a))) (delta ‘

o‘ mu)

isCFA :: Ord a => [a] -> BinRel (a, a) a -> BinRel I a

-> BinRel a (a, a) -> BinRel a I -> Bool

isCFA a mu eta delta epsilon

= eqBinRel (mu ‘o‘ sigBinRel a a) mu

&& eqBinRel ((sigBinRel a a) ‘o‘ delta) delta

&& isFrobeniusAlgebra a mu eta delta epsilon

isSCFA :: Ord a => [a] -> BinRel (a, a) a -> BinRel I

a -> BinRel a (a, a) -> BinRel a I -> Bool

isSCFA a mu eta delta epsilon

= eqBinRel (mu ‘o‘ delta) (idBinRel a)

&& isCFA a mu eta delta epsilon

isACFA :: Ord a => [a] -> BinRel (a, a) a -> BinRel I

a -> BinRel a (a, a) -> BinRel a I -> Bool

isACFA a mu eta delta epsilon

= eqBinRel ((epsilon ‘x‘ idBinRel a) ‘o‘ ((l ‘x‘ l)

‘o‘ ((eta ‘x‘ idBinRel a) ‘o‘ lamBinRel a)))

(((((lamBinRel a) ‘o‘ l) ‘o‘ eta) ‘o‘ epsilon) ‘o

‘ l)

&& isCFA a mu eta delta epsilon

where

l = mu ‘o‘ delta

uncurry5 f (a, b, c, d, e) = f a b c d e

powerset :: [a] -> [[a]]

powerset [] = [[]]

powerset (x:xs)

= xss ++ map (x:) xss

where

xss = powerset xs

cartProd as bs = [(a, b) | a <- as , b <- bs]

binRels a b = powerset (cartProd a b)

choose _ 0 = [[]]

choose xs n = [y : ys | y:xs ’ <- tails xs , ys <-

choose (y:xs ’) (n - 1)]

symmetrize :: [[a]] -> [[a]]

symmetrize as = concat (map permutations as)

83

faFrom :: Eq a => [a] -> BinRel I (a, (a, a)) ->

BinRel a I -> FrobeniusAlgebra a

faFrom a tri epsilon

= (a, mu, eta , delta , epsilon)

where

mu = (rhoBinRel ’ a) ‘o‘ (((idBinRel a) ‘x‘ cup) ‘o

‘ ((alBinRel ’ a a a) ‘o‘ (delta ‘x‘ idBinRel a)

))

delta = (rhoBinRel ’ (cartProd a a)) ‘o‘ (((

idBinRel (cartProd a a)) ‘x‘ cup) ‘o‘ (alBinRel

’ (cartProd a a) a a) ‘o‘ (((alBinRel a a a) ‘x

‘ idBinRel a) ‘o‘ ((tri ‘x‘ idBinRel a) ‘o‘ (

lamBinRel a))))

eta = ((rhoBinRel ’ a) ‘o‘ ((idBinRel a) ‘x‘

epsilon)) ‘o‘ cap

cap = (lamBinRel ’ (cartProd a a)) ‘o‘ ((epsilon ‘x

‘ ((idBinRel a) ‘x‘ (idBinRel a))) ‘o‘ tri)

cup = dag cap

symmetrizeBinRel :: BinRel a a -> BinRel a a

symmetrizeBinRel p = p ++ dag p

isCommutative :: (Ord a, Ord b) => BinRel (a, a) b ->

Bool

isCommutative p = eqBinRel p (map (\((x, y), z) -> ((y

, x), z)) p)

isAssociative :: (Ord a) => [a] -> BinRel (a, a) a ->

Bool

isAssociative c p = eqBinRel (p ‘o‘ ((idBinRel c) ‘x‘

p)) (p ‘o‘ ((p ‘x‘ idBinRel c) ‘o‘ (alBinRel c c c)

))

minACFA :: Eq a => [a] -> BinRel a a ->

FrobeniusAlgebra a

-- Pre: length p > 0

minACFA a p

= (a, mu, [(X, eta)], delta , [(epsilon , X)])

where

p’ = (idBinRel (a \\ ((uncurry (++)) . unzip) p))

++ symmetrizeBinRel p

eta = head a

epsilon = head [x | (y, x) <- p’, y == eta]

mu = nub ([((x, eta), x) | x <- a] ++ [((eta , x),

x) | x <- a] ++ [(t, epsilon) | t <- p’])

delta = nub ([(x, (y, z)) | ((y, z), x) <- p’ ‘o‘

(mu ‘o‘ (p’ ‘x‘ p’))])

discreteSCFA :: Integer -> FrobeniusAlgebra Integer

84

-- Returns the SCFA corresponding to Z_n

discreteSCFA n

= (a, [((x, y), mod (x + y) n) | (x, y) <- cartProd

a a], [(X, 0)], [(mod (x + y) n, (x, y)) | (x, y)

<- cartProd a a], [(0, X)])

where

a = [0..(n - 1)]

extendFA :: Eq a => FrobeniusAlgebra a -> BinRel (a, a

) a -> FrobeniusAlgebra a

-- Extend the multiplication of the given fa by xt.

Updates the comultiplication accordingly.

extendFA f xt

= (carrier f, mu f ++ xt, eta f, delta f ++ ((xt ‘x‘

i f) ‘o ‘((al f) ‘o‘ (((i f) ‘x‘ cap f) ‘o‘ (ru

f)))), epsilon f)

extendCFA :: Eq a => FrobeniusAlgebra a -> BinRel (a,

a) a -> FrobeniusAlgebra a

extendCFA f xt = extendFA f (xt ++ map (\((x, y), z)

-> ((y, x), z)) xt)

relabelFA :: (a -> a) -> FrobeniusAlgebra a ->

FrobeniusAlgebra a

relabelFA f (a, mu , eta , delta , epsilon)

= (map f a, map (\((x, y), z) -> ((f x, f y), f z))

mu , map (\(X, x) -> (X, f x)) eta , map (\(x, (y,

z)) -> (f x, (f y, f z))) delta , map (\(x, X) ->

(f x, X)) epsilon)

biproductFA :: Eq a => FrobeniusAlgebra a ->

FrobeniusAlgebra a -> FrobeniusAlgebra a

biproductFA (a, mu , eta , delta , epsilon) (a’, mu ’, eta

’, delta ’, epsilon ’)

= (nub (a ++ a’), nub (mu ++ mu ’), nub (eta ++ eta ’)

, nub (delta ++ delta ’), nub (epsilon ++ epsilon

’))

discreteSCFAProduct :: [Integer] -> FrobeniusAlgebra

Integer

-- Returns the SCFA corresponding to Z_n_1 + ... +

Z_n_k

discreteSCFAProduct (n:ns) = foldl (\fa n’ ->

biproductFA fa (relabelFA (+((maximum (carrier fa))

+ 1)) (discreteSCFA n’))) (discreteSCFA n) ns

candidates :: Eq a => [a] -> [FrobeniusAlgebra a]

candidates a = [(a, mu , eta , delta , epsilon) | mu <-

binRels (cartProd a a) a, eta <- binRels [X] a,

delta <- binRels a (cartProd a a), epsilon <-

85

binRels a [X]]

commutativeCandidates :: Eq a => [a] -> [

FrobeniusAlgebra a]

commutativeCandidates a = [faFrom a tri epsilon | tri

<- map (map (\[a, b, c] -> (X, (a, (b, c))))) (map

symmetrize (powerset (choose a 3))), epsilon <-

powerset (map (\x -> (x, X)) a)]

cfasOn a = filter (uncurry5 isCFA) (candidates a)

cfasOn ’ a = filter (uncurry5 isCFA) (

commutativeCandidates a)

fasOn a = filter (uncurry5 isFrobeniusAlgebra) (

candidates a)

cfas a = filter (uncurry5 isCFA) a

scfas a = filter (uncurry5 isSCFA) a

acfas a = filter (uncurry5 isACFA) a

nonSCFAorACFAs a = filter (not . (\fa -> (uncurry5

isSCFA) fa || (uncurry5 isACFA) fa)) a

type FrobeniusAlgebra a = ([a], BinRel (a, a) a,

BinRel I a, BinRel a (a, a), BinRel a I)

eqFrobeniusAlgebra :: Ord a => FrobeniusAlgebra a ->

FrobeniusAlgebra a -> Bool

eqFrobeniusAlgebra a b

= (carrier a) == carrier b

&& eqBinRel (mu a) (mu b)

&& eqBinRel (eta a) (eta b)

&& eqBinRel (delta a) (delta b)

&& eqBinRel (epsilon a) (epsilon b)

bijections :: [a] -> [b] -> [BinRel a b]

bijections as bs = map (zipWith (\a b -> (a, b)) as) (

permutations bs)

--eqBinRelUpToPermutation :: (Ord a, Ord b) => [a] ->

[b] -> BinRel a b -> BinRel a b -> Bool

eqBinRelUpToPermutation as bs p q = not (null [(b, b’)

| b <- bijections as as, b’ <- bijections bs bs,

eqBinRel (b’ ‘o‘ p ‘o‘ b) q])

eqFrobeniusAlgebraUpToPermutation :: (Ord a, Ord b) =>

FrobeniusAlgebra a -> FrobeniusAlgebra b -> Bool

eqFrobeniusAlgebraUpToPermutation a b

= length as == length bs

&& or [eqFrobeniusAlgebra (as , (dag p) ‘o‘ ((mu b)

‘o‘ (p ‘x‘ p)), (dag p) ‘o‘ (eta b), ((dag p) ‘x

‘ (dag p)) ‘o‘ ((delta b) ‘o‘ p), (epsilon b) ‘o

86

‘ p) a | p <- bijections as bs]

where

as = carrier a

bs = carrier b

quotients :: (a -> a -> Bool) -> [a] -> [[a]]

quotients f as

= quotients ’ f as []

where

quotients ’ _ [] qs = qs

quotients ’ f (a : as) [] = quotients ’ f as [[a]]

quotients ’ f (a : as) (q : qs)

| f a (head q) = quotients ’ f as ((a : q) : qs)

| otherwise = quotients ’ f as (q : (quotients ’ f

[a] qs))

al :: FrobeniusAlgebra a -> BinRel (a, (a, a)) ((a, a)

, a)

al (a, _, _, _, _) = alBinRel a a a

al’ :: FrobeniusAlgebra a -> BinRel ((a, a), a) (a, (a

, a))

al’ (a, _, _, _, _) = alBinRel ’ a a a

i :: FrobeniusAlgebra a -> BinRel a a

i (a, _, _, _, _) = idBinRel a

lu :: FrobeniusAlgebra a -> BinRel a (I, a)

lu (a, _, _, _, _) = lamBinRel a

lu’ :: FrobeniusAlgebra a -> BinRel (I, a) a

lu’ (a, _, _, _, _) = lamBinRel ’ a

ru :: FrobeniusAlgebra a -> BinRel a (a, I)

ru (a, _, _, _, _) = rhoBinRel a

ru’ :: FrobeniusAlgebra a -> BinRel (a, I) a

ru’ (a, _, _, _, _) = rhoBinRel ’ a

carrier :: FrobeniusAlgebra a -> [a]

carrier (c, _, _, _, _) = c

mu :: Eq a => FrobeniusAlgebra a -> BinRel (a, a) a

mu (_, m, _, _, _) = m

eta :: Eq a => FrobeniusAlgebra a -> BinRel I a

eta (_, _, e, _, _) = e

delta :: Eq a => FrobeniusAlgebra a -> BinRel a (a, a)

delta (_, _, _, d, _) = d

87

epsilon :: Eq a => FrobeniusAlgebra a -> BinRel a I

epsilon (_, _, _, _, e) = e

cup :: Eq a => FrobeniusAlgebra a -> BinRel (a, a) I

cup fa = (epsilon fa) ‘o‘ (mu fa)

cap :: Eq a => FrobeniusAlgebra a -> BinRel I (a, a)

cap fa = (delta fa) ‘o‘ (eta fa)

circ :: Eq a => FrobeniusAlgebra a -> BinRel I I

circ fa = (cup fa) ‘o‘ (cap fa)

loop :: Eq a => FrobeniusAlgebra a -> BinRel a a

loop fa = (mu fa) ‘o‘ (delta fa)

lollie :: Eq a => FrobeniusAlgebra a -> BinRel I a

lollie fa = (mu fa) ‘o‘ (cap fa)

tri :: Eq a => FrobeniusAlgebra a -> BinRel I (a, (a,

a))

tri fa = ((i fa) ‘x‘ delta fa) ‘o‘ cap fa

isDag :: Ord a => FrobeniusAlgebra a -> Bool

isDag fa = (eqBinRel (dag (mu fa)) (delta fa)) && (

eqBinRel (dag (eta fa)) (epsilon fa))

tick :: Eq a => FrobeniusAlgebra a -> FrobeniusAlgebra

a -> BinRel a a

tick a b = ((((lu ’ a) ‘o‘ ((cup a) ‘x‘ i a)) ‘o‘ (al a

)) ‘o‘ ((i a) ‘x‘ cap b)) ‘o‘ (ru a)

qmux :: Eq a => FrobeniusAlgebra a -> FrobeniusAlgebra

a -> BinRel (a, a) (a, a)

qmux scfa acfa

= (t ‘x‘ t) ‘o‘ (((mu scfa) ‘x‘ (mu acfa)) ‘o‘ (((t

‘x‘ i scfa) ‘x‘ (t ‘x‘ t)) ‘o‘ ((middleSwap a a a

) ‘o‘ ((delta acfa) ‘x‘ (delta acfa)))))

where

a = carrier scfa

t = tick scfa acfa

logicalAnd :: Eq a => FrobeniusAlgebra a ->

FrobeniusAlgebra a -> BinRel (a, a) a

logicalAnd s a

= (mu a) ‘o‘ (((i s) ‘x‘ tick s a) ‘o‘ (((i s) ‘x‘

mu a) ‘o‘ (((i s) ‘x‘ ((tick s a) ‘x‘ i s)) ‘o‘

((al ’ s) ‘o‘ ((((mu s) ‘x‘ i s) ‘x‘ i s) ‘o‘ (((

al s) ‘x‘ i s) ‘o‘ ((((i s) ‘x‘ delta a) ‘x‘ (i

s)) ‘o‘ ((((i s) ‘x‘ (eta s)) ‘x‘ (tick s a)) ‘o‘

88

((ru s) ‘x‘ (i s))))))))))

logicalOr :: Eq a => FrobeniusAlgebra a ->

FrobeniusAlgebra a -> BinRel (a, a) a

logicalOr s a

= t ‘o‘ ((logicalAnd s a) ‘o‘ (t ‘x‘ t))

where

t = tick s a

logicalXOr :: Eq a => FrobeniusAlgebra a ->

FrobeniusAlgebra a -> BinRel (a, a) a

logicalXOr s a

= (logicalOr s a) ‘o‘ (butterfly (((i s) ‘x‘ t) ‘o‘

delta s) ((t ‘x‘ i s) ‘o‘ delta s) (logicalAnd s

a) (logicalAnd s a))

where

t = tick s a

blackX :: Eq a => FrobeniusAlgebra a ->

FrobeniusAlgebra a -> BinRel (a, a) (a, a)

-- | |

-- x-+-x

-- | |

-- where x = black dot , + = tick

blackX s a = ((i a) ‘x‘ mu a) ‘o‘ ((al ’ a) ‘o‘ ((((i a

) ‘x‘ tick s a) ‘x‘ i a) ‘o‘ ((delta a) ‘x‘ i a)))

inducedXObservable :: Ord a => FrobeniusAlgebra a ->

FrobeniusAlgebra a -> FrobeniusAlgebra a

inducedXObservable s a

= (carrier s, inducedMu , lollie a, dag inducedMu ,

epsilon a)

where

t = tick s a

inducedMu = t ‘o‘ ((mu a) ‘o‘ ((t ‘x‘ t) ‘o‘ ((

blackX s a) ‘o‘ (t ‘x‘ t))))

isGHZWPair :: Ord a => FrobeniusAlgebra a ->

FrobeniusAlgebra a -> Bool

isGHZWPair s a

= eqBinRel (tick s a) (tick a s)

&& eqBinRel ((delta s) ‘o‘ t) ((t ‘x‘ t) ‘o‘ delta

s)

&& eqBinRel ((delta s) ‘o‘ (eta a)) (((eta a) ‘x‘ (

eta a)) ‘o‘ lamBinRel [X])

&& eqBinRel ((lu ’ a) ‘o‘ (((circ a) ‘x‘ (t ‘o‘ eta

a))) ‘o‘ lamBinRel [X]) (lollie a)

where

t = tick s a

89

isGHZWPairUpToPermutation :: Ord a => FrobeniusAlgebra

a -> FrobeniusAlgebra a -> Bool

isGHZWPairUpToPermutation s a

= not (null [p | p <- bijections (carrier s) (

carrier s), isGHZWPair s (relabelFA (\x -> head (

eval p [x])) a)])

butterfly :: Eq a => BinRel a (a, a) -> BinRel a (a, a

) -> BinRel (a, a) a -> BinRel (a, a) a -> BinRel (

a, a) (a, a)

butterfly a b c d = (c ‘x‘ d) ‘o‘ (swapMiddle (a ‘x‘ b

))

satisfiesBialge :: Ord a => FrobeniusAlgebra a ->

FrobeniusAlgebra a -> Bool

satisfiesBialge (_, _, _, ds , _) (_, ma , _, _, _)

= eqBinRel (ds ‘o‘ ma) (butterfly ds ds ma ma)

satisfiesTickedBialge :: Ord a => FrobeniusAlgebra a

-> FrobeniusAlgebra a -> Bool

satisfiesTickedBialge s a

= eqBinRel (butterfly da da ms mst) (((lollie a) ‘x‘

mst) ‘o‘ ((alBinRel ’ [X] c c) ‘o‘ ((lu s) ‘x‘ i s)

))

where

(c, ms , _, _, _) = s

da = delta a

mst = ms ‘o‘ ((i s) ‘x‘ tick s a)

satisfiesEtaIdempotence :: Ord a => FrobeniusAlgebra a

-> FrobeniusAlgebra a -> Bool

satisfiesEtaIdempotence s a

= eqBinRel (eta s) ((mu a) ‘o‘ (((eta s) ‘x‘ eta s)

‘o‘ lamBinRel [X]))

inducedAndSatisfiesAbsorption :: Ord a =>

FrobeniusAlgebra a -> FrobeniusAlgebra a -> Bool

inducedAndSatisfiesAbsorption s a

= eqBinRel ((ru’ s) ‘o‘ ((i s) ‘x‘ (epsilon s))) ((

logicalOr s a) ‘o‘ (((i s) ‘x‘ logicalAnd s a) ‘o

‘ ((al ’ s) ‘o‘ ((delta s) ‘x‘ i s))))

inducedAndSatisfiesDistributivity :: Ord a =>

FrobeniusAlgebra a -> FrobeniusAlgebra a -> Bool

inducedAndSatisfiesDistributivity s a

= eqBinRel ((logicalOr s a) ‘o‘ ((i s) ‘x‘

logicalAnd s a)) ((logicalAnd s a) ‘o‘ (((

logicalOr s a) ‘x‘ logicalOr s a) ‘o‘ (swapMiddle

((delta s) ‘x‘ ((i s) ‘x‘ i s)))))

90

findPairwiseIndices :: (a -> b -> Bool) -> [a] -> [b]

-> [(Int , Int)]

findPairwiseIndices f as bs

= map (\((i, a), (j, b)) -> (i, j)) (filter (\((i, a)

, (j, b)) -> f a b) (cartProd (label as) (label bs

)))

label = label ’ 0

where

label ’ _ [] = []

label ’ n (x : xs) = (n, x) : label ’ (n + 1) xs

middleSwap :: (Eq a, Eq b, Eq c) => [a] -> [b] -> [c]

-> BinRel ((a, b), (b, c)) ((a, b), (b, c))

middleSwap a b c = ((((alBinRel ’ (cartProd a b) b c) ‘

o‘ ((alBinRel a b b) ‘x‘ idBinRel c)) ‘o‘ (((

idBinRel a) ‘x‘ sigBinRel b b) ‘x‘ idBinRel c)) ‘o‘

((alBinRel ’ a b b) ‘x‘ idBinRel c)) ‘o‘ alBinRel (

cartProd a b) b c

--swapMiddle :: BinRel ((a, b), (c, d)) -> BinRel ((a,

c), (b, d))

swapMiddle = map (\(x, ((a, b), (c, d))) -> (x, ((a, c

), (b, d))))

91

