
Combinatorial Structures and
Lambda Calculi

Kate LaHorgue

University of Oxford

A thesis submitted for the degree of

MSc in Mathematics and Foundations of Computer Science

September 2018

Acknowledgements

First, I would like to thank my supervisor Dr. Dan Marsden for suggesting a project
that combined so many interesting areas of math and computer science, and for
providing such attentive supervision throughout. His enthusiasm and encouragement
were instrumental in making this a thoroughly enjoyable first exposure to research.
I would also like to thank JS Lemay for taking the time to speak to me about
di↵erential categories as I was preparing Chapter 5.

On a personal note, I am deeply grateful to my family, and in particular my mother,
for every opportunity they have given me that led to my being here today. Thanks
are also due to my friends, who provided moral support and snacks, and to my
MFoCS coursemates, who made the whole experience more joyful by being their
lovely selves. Finally, I would like to dedicate my work to my grandfather, who
passed away before I finished this thesis but whose curiosity, work ethic, and mastery
of trees (though of the fruit-bearing rather than the combinatorial variety) inspired
the path to its completion.

Abstract

The bicategory of generalized species Esp, introduced by Fiore, is both a generaliza-
tion of Joyal’s combinatorial species and the co-Kleisli bicategory of a linear expo-
nential pseudo-comonad on the bicategory of profunctors. As a result, the structure
of Esp is closely related to the notion of combinatorial structure as well as to the
di↵erential �-calculus. The precise connection between Esp and the di↵erential
�-calculus has not before been investigated; such is the aim of this dissertation.

Here we define a model of the di↵erential �-calculus within Esp, using a new con-
struction for interpreting di↵erentiation. We then construct an alternative interpre-
tation that is combinatorial in nature. Terms are viewed as functors which map lists
of vertices equipped with information about their connectivity to sets of specifically
constructed graphs on those vertices. Our main result is that these two interpre-
tations are naturally isomorphic, so we can take a graph theoretic perspective on
the di↵erential �-calculus. Several examples of interpreted �-terms are presented,
both in the categorical and the combinatorial interpretations. An method for deter-
mining cardinality of the graph sets arising from the combinatorial interpretation of
�D-normal terms is given, and extensions of the model via syntactical additions are
also considered.

Contents

1 Introduction 1

2 Species of structure 5

2.1 Combinatorial species . 5

2.2 Generalized species . 7

2.3 Species operations . 8

2.4 The bicategory of generalized species . 9

3 Esp as a model of linear logic 13

3.1 Relations and profunctors . 13

3.2 Making Rel and Prof into models of linear logic 13

4 The di↵erential �-calculus 15

4.1 Syntax + reduction rules . 15

4.2 Typing system . 16

5 Interpreting the di↵erential �-calculus in Esp 17

5.1 Interpreting types, contexts, and terms . 17

5.2 Soundness . 18

5.3 Examples . 23

6 A combinatorial view of the interpretation 27

6.1 Objects of !� as vertices . 27

6.2 Grafting + the action of morphisms in !� and A on graphs 29

6.3 Reinterpreting terms as sets of graphs . 34

6.4 Examples . 45

7 Counting graphs in the interpretation 49

8 Further Work 53

Appendix A Coends 55

Appendix B Assorted proof details 57

Bibliography 67

i

Chapter 1

Introduction

Drawing connections between computation and category theory has been a useful tool in theoret-

ical computer science, as developments like the Curry-Howard-Lambek correspondence provide a

new angle from which to approach problems in either field. Due to the Curry-Howard-Lambek

correspondence, we can use knowledge about the �-calculus to learn about the theory of a

Cartesian closed category (CCC), as well as use category theory to inform our understanding

of computations in the �-calculus. As new variants of computational calculi have arisen from

di↵erent computing needs, similar correspondences between calculi and categorical models have

been detailed. The linear �-calculus, a variation introduced to manage computations involving

finite resources, has been linked to symmetric monodical closed categories through a similar

construction [1]. Several formulations have been put forth for creating models of Ehrhard’s

di↵erential �-calculus, which incorporates elements of linear logic to the full lambda calculus

by introducing nondeterminism and linear application, inside di↵erential categories [4, 6]. Pro-

cess calculi have been introduced to formalize concurrent computation; these, too, have been

analyzed from a categorical perspective [10].

The field of combinatorics, while home to a wide variety of mathematics, is often charac-

terized by a focus on enumerative problems. Many combinatorial problems concern finding

the size, or establishing the non-emptiness, of particular sets of structures given a collection of

constraints. The underlying computational nature of this field suggests that combinatorics is

another such area that could benefit from a correspondence with the theory of computation.

In particular, being able to view sets of combinatorial structures as models of a calculus could

spur new techniques for counting and transforming structures.

Fiore’s introduction of generalized species of structure in [8] is an ideal starting point for

an exploration of the connection between combinatorics and computation, and serves as the

primary motivation for this project. The bicategory of generalized species Esp arises both as

an encoding of combinatorial structure and also as the result of a construction which ensures the

category will be a model of the di↵erential �-calculus. Though this fact is mentioned by Fiore

and by others, the construction of a model of the di↵erential �-calculus inside Esp has not yet

been made explicit. In this dissertation we provide the details of this model, and then reframe it

from a combinatorial perspective as a model consisting of sets of graphs whose transformations

mirror the behaviour of the di↵erential �-calculus. Finally, we provide a simplified method of

counting these sets of graphs as well as provide further ideas for extending the correspondence

through new syntactical constructions. Our main results are in Chapters 5-7:

• In Chapter 5, we interpret typing judgements � ` t : A of di↵erential �-terms as species

JtK�A : J�K !! JAK. Methods in the literature of interpreting the di↵erential �-calculus in

a general di↵erential category rely on various formulations of an operator D(�) satisfying

certain axioms [4, 6]; as there is not one canonical choice and no such operator is specified

in Fiore’s treatment of Esp, we instead interpret di↵erential terms by

JDs · tK�A!B = lev � hD � JsK�A!B , JtK�Ai

1

where lev and D are the new linear evaluation and di↵erentiation operators we introduce

in Chapter 2.3. In Proposition 5.2 we prove that this interpretation is sound, a step that

is necessary because our choice of interpretation does not directly follow from a previous

construction.

• In Chapter 6 we define a second interpretation of di↵erential �-terms: the typing judge-

ment � ` t : A is interpreted as a species hti�A where hti�A(G)(a) is a set of graphs on a

fixed vertex set for each G 2 !� and a 2 A. The main result of this chapter is the following

theorem.

Theorem 6.5. If � ` t : A then the species JtK�A and hti�A are naturally isomorphic.

This isomorphism between interpretations allows us to look at the model of di↵erential

�-calculus within Esp from a graph-theoretic perspective.

• In Chapter 7 we show that for di↵erential �-terms in normal form, the definition of

the term’s interpreted species can be significantly simplified so as to accomodate easier

calculation of the sizes of the graph sets that arise from the combinatorial interpretation.

Proposition 7.1. If � ` t : A for a di↵erential �-term t in normal form and G 2 ! J�K,
then there is an index set I and maps shape : I ! Set and point : I ! A such that for

all a 2 JAK,
JtK�A (G)(a) ⇠=

X

i2I
shape(i) ⇥ A(a, point(i))

In addition to being of interest to combinatorists for the purposes of studying structures

via �-calculi, these results may also be useful to computer scientists with an interest in better

understanding the bicategory Esp as it relates to various models of computation.

The structure of the dissertation is as follows:

• Chapter 2 presents the definitions and operations of combinatorial species of structure,

following [3] and [17]. The bicategory of generalized species of structure as defined in [8, 9]

is then introduced. In addition to presenting the operations on species defined by Fiore,

we also introduce two new operators to use in Chapter 5.

• Chapter 3 details how generalized species of structure arise not only as generalizations

of combinatorial structures, but also as the co-Kleisli bicategory of a pseudo-comonad on

the bicategory of profunctors. The fact that this construction gives the Esp the structure

it needs to model the �-calculus is explained by analogy to the category Rel as outlined

in [6].

• In Chapter 4 the syntax of the di↵erential �-calculus is presented as an extension of the

simply typed �-calculus. The reduction and typing rules of the di↵erential �-calculus are

also introduced.

• In Chapter 5, we define our interpretation of the di↵erential �-calculus into the bicategory

Esp and prove the soundness of this interpretation. We also include several examples of

interpreted di↵erential �-terms to motivate the combinatorial perspective of the next

chapter.

2

• In Chapter 6 we define the alternative combinatorial description of the di↵erential �-

calculus within Esp, and then prove that this description is naturally isomorphic to the

categorical interpretation from Chapter 5. We illustrate this connection with several

examples of representative graphs from interpreted di↵erential �-terms.

• Chapter 7 focuses specifically on terms in normal form, and gives another formulation of

interpreted terms to enable easier computation of the cardinalities of the graph sets from

the combinatorial interpretation in Chapter 6.

• Finally, Chapter 8 suggests further extensions to the syntax of the di↵erential �-calculus

and proposes how those extensions would manifest in the combinatorial interpretation.

There are two appendices; the first presents lemmas relevant to carrying out the coend

calculations upon which the contents of Chapters 5-7 depend, and the second contains details

of various proofs presented in Chapters 5-7. Appendix A in particular will be useful to the

reader wishing to follow along with the proof of soundness in Chapter 5.2.

This dissertation assumes a basic background in category theory up to the level of co/monads

and co/ends. Treatment of these topics can be found in [14]. Chapter 3 assumes knowledge of

linear logic, information about which can be found in [5]. In addition, we assume familiarity

with the simply typed �-calculus.

3

4

Chapter 2

Species of structure

In this chapter we will first introduce combinatorial species, a category theoretic framework for

describing combinatorial structures, before generalizing these species according to a construction

by Fiore [8]. The definitions in Chapter 2.1 are drawn from [3, 13, 17], while the definitions in

Chapters 2.2-2.4, except where otherwise noted, are from [8].

2.1 Combinatorial species

Combinatorial structures, such as trees, permutations, and linear orderings, can be thought of

as structures on sets of labels. For example, ‘tree’ describes all structures that could be created

by taking a collection of labels (vertices) and connecting some of those labels via edges in a way

that does not create any cycles. Thus we can define a map Tree which takes in a label set and

returns the set of all trees on that label set.

In 1981, Joyal [13] introduced combinatorial species as a way to formalize this notion:

combinatorial species are functors P : B ! Set, where B is the category of finite sets and

bijections. For any finite label set X, P(X) is the set of all P-structures on X. For a bijection

f : X ! Y , Pf : P(X) ! P(Y) is the function that takes a P-structure over the label set X

and maps it to the same structure where each label x 2 X is replaced by the label f(x) 2 Y .

Example 2.1. For the linear order species LO,

LO({A,B,C}) =
⇢
A < B < C, A < C < B, B < A < C,
B < C < A, C < A < B, C < B < A

�

If f : {A,B,C} ! {1, 2, 3} is the bijection defined by f(A) = 1, f(B) = 2, and f(C) = 3, then

LO(f)(A < C < B) is the linear order 1 < 3 < 2.

In general, we will depict a P-structure on X with the following diagram:

P

X

Q

X

P

Q

X

P

P

P

Q

X

P

X

1

Combinatorial species are equipped with operations — namely addition, product, multiplication,

composition and di↵erentiation — which allow us to build up new structures from existing

species. Diagrams in the style of the one above will be helpful in visualizing what each operation

entails.

5

Figure 2.1: A (P +Q)-structure.

Addition

Adding two species together gives the coproduct, or

disjoint union, of those species. That is, if P and

Q are two combinatorial species, then for all label

sets X we have

(P + Q)(X) = P(X) + Q(X) = P(X)] Q(X)

This means that a P + Q structure is either a P-

structure or a Q-structure, along with an indicator of which type of structure it is.

P Q

X

3

Figure 2.2: A (P ⇥Q)-structure.

Product

The product of species is also intuitive: for all X,

(P ⇥ Q)(X) = P(X) ⇥ Q(X)

So a (P ⇥ Q)-structure is a pair of a P-structure and a Q-

structure.

Multiplication

P

X

Q

X

P

Q

X

P

P

P

Q

X

P

X

1

Figure 2.3: A (P·Q)-structure.

There is also a multiplication operation for species:

(P · Q)(X) =
X

(X1,X2)

2Part(X)

P(X
1

) ⇥ Q(X
2

)

Here, Part(X) denotes the set of partitions of X into two pieces.

This multiplication operation amounts to partitioning the label set

X into two setsX
1

andX
2

, putting a P-structure onX
1

and putting

a Q-structure on X
2

.
P

X

Q

X

P

Q

X

P

P

P

Q

X

P

X

1

Figure 2.4: A (Q � P)-
structure.

Composition

Species can be composed as well, which amounts to partitioning the input

label set into pieces, putting a P structure on each piece, and then putting

a Q-structure on the set of new P-structures we’ve created.

(Q � P)(X) =
X

U2Part(X)

Q(U) ⇥
Y

u2U
P (u)

6

P

X

Q

X

P

Q

X

P

P

P

Q

X

P

X

1Figure 2.5: A @

@x

P-structure.

Di↵erentiation

The di↵erentiation operator on combinatorial species takes a

species P and creates a species that takes in a label set X and

returns a P-structure on X [{x}, where x is a fresh element not

appearing in X:

@

@x
P (X) = P (X � {x})

.

2.2 Generalized species

More recently, in [8] Fiore introduced generalized species of structure, which generalize combi-

natorial species from functors B ! Set to profunctors of the form !A ⇥ Bop ! Set, where A
and B are both small categories and !A is the free symmetric monoidal completion of A. We can

think of these functors as resembling combinatorial species in that they map ‘bags’ of A labels

parameterized by a B label to sets of structures. These profunctors can also be seen as functors

of the form !A ! bB; we will use this notation to represent the action of species on objects and

arrows. We will also sometimes denote an (A,B)-species by A !! B.
Explicitly, the objects of !A are lists of objects from A, possibly containing duplicates. For

two lists X = [x
1

, ..., xn] and Y = [y
1

, ..., ym] in !A, an arrow X ! Y is a matching of the

elements of the two lists, formed by arrows from A:

X = [x
1

, x
2

, x
3

, . . . , xn]

Y = [y�(1), y�(2), y�(3), . . . , y�(n)]

f f1 f2 f3 f
n

fi 2 A(xi, y�(i)), � 2 S|X|

Note that this definition of hom-sets in !A immediately entails that !A(X,Y) = ; if X and Y

are lists of di↵erent lengths. We will use the notation |A| to denote the length of a list A.

Though the objects of !A are lists and thus have internal ordering, it follows from the

definition of arrows in !A that if two lists X and Y have the same contents in a di↵erent order,

then for all Z 2!A,
!A(X,Z) ⇠= !A(Y, Z) and !A(Z,X) ⇠= !A(Z, Y)

It will be useful to define equivalence of bags via their contents, as most functors we will see

over the course of this dissertation will e↵ectively disregard the ordering of input lists.

We can also apply ! to the disjoint union of categories. In this case, the objects of !(A u B)
are lists of objects from A and B, with each listed object indexed by which category — A or B
— it is from. Arrows X ! Y in !(A u B) are matchings of the objects in the two lists formed

by arrows from A and B. If A
1

and A
2

are both objects in !A, then A
1

�A
2

denotes the object

of !A constructed by appending the list A
2

to the end of the list A
1

. If A 2 !A and B 2 !B, then

7

A ⌦ B denotes the object in !(A u B) constructed by considering each A and B as objects in

!(A u B) and then appending B to the end of A.

Another fact we will utilize is that !(A u B)(X,Y) ⇠= !A(XA, YA)⇥ !B(XB, YB), where XA is

the sublist of X whose objects are exactly those from A. This is because the construction of an

arrow in !(AuB) requires that objects from A can only be matched with other objects from A,
and likewise objects from B can only be matched with others from B.

Remark. A specific case of note is when A = 1, the category consisting of one object and the

identity arrow. Each object in !1 is of the form [1, ..., 1]. So for each n there is an object in

!1 consisting of a list of n copies of the object 1, and each arrow in !1 is a permutation a list

of 1’s. Thus !1 is equivalent to the category B of finite sets and bijections. This tells us that

generalized species are indeed a generalization of combinatorial species, as a (1,1)-species can

be seen as a profunctor B ⇥ 1op ! Set, or more simply as a functor B ! Set.

2.3 Species operations

The operations on combinatorial species can also be generalized to operations on generalized

species. In each case, the new operator bears resemblance to the same operation on combina-

torial species.

Addition & Product

The definitions of addition and product for generalized species are the same as those for com-

binatorial species: for two species P,Q : A !! B, the species P + Q : A !! B is defined

by

(P + Q)(A)(b) = P(A)(b) + Q(A)(b) where A 2 !A, b 2 Bop

and P ⇥ Q : A !! B is defined by

(P ⇥ Q)(A)(b) = P(A)(b) ⇥ Q(A)(b) where A 2 !A, b 2 Bop

Multiplication

The multiplication on generalized species is the Day tensor [8]. For species P,Q : A !! B and

objects A 2 !A, b 2 Bop, the species P · Q : A !! B is defined by

(P · Q)(A)(b) =

Z A1,A22!A
P(A

1

)(b) ⇥ Q(A
2

)(b)⇥ !A(A
1

� A
2

, A)

Using properties of coends and the ! construction (see Appendix A), we can alter this definition

to 1

(P · Q)(A)(b) ⇠=
X

(A1,A2)2D(A)

P(A
1

)(b) ⇥ Q(A
2

)(b)

where D(A) is the set of partitions of the list A into two sublists, preserving relative order of

elements. As with combinatorial species, multiplying generalized species also involves separating

1Note that here we are redefining an operation up to isomorphism. This change is allowed because the set
(P ·Q)(A)(b) is originally defined as a coend, which is itself only unique up to isomorphism. Henceforth we will
only be concerned with generalized species up to isomorphism.

8

the input bag into two pieces before creating a P structure on one and a Q structure on the

other, each parameterized by the object b.

Composition

For P : B !! C and Q : A !! B, the composition P � Q : A !! C is defined by

(P � Q)(A)(c) =

Z B2!B
P(B)(c) ⇥ Q#(A)(B)

where Q#(A)(B) =
R X2(!A)|B| Q

k2|B|
Q(Xk)(Bk)⇥!A(

L
k2|B|

Xk, A). Using techniques from Ap-

pendix A again, this definition simplifies to

(P � Q)(A)(c) ⇠=
B2 !BZ X

(A1,...,A|B|)
2D(A)

P(B)(c) ⇥
2

4
Y

k2|B|

Q(Ak)(Bk)

3

5

Partial Di↵erentiation

For a species P : A !! B and an object x 2 A, the partial derivative @
@xP : A !! B is defined by

@

@x
P(A)(b) = P(A � [x])(b)

In keeping with the earlier remark that a (1,1)-species is a combinatorial species, these opera-

tions each reduce to the analagous operations on combinatorial species when A = B = C = 1.

2.4 The bicategory of generalized species

From this definition of generalized species we can define the bicategory Esp whose 0-cells

(objects) are small categories, 1-cells (arrows) are generalized species, and 2-cells are natural

transformations [9]. Composition of arrows in Esp is defined by the composition operator given

above. Esp has been shown to be a Cartesian closed bicategory as well as having symmetric

monoidal structure [8]. The internal hom in Esp is defined by A) B = !Aop ⇥B and the linear

hom is A (B = Aop ⇥ B.

Projection & Pairing

The projection species ⇡j : ui2ICi !! Cj is defined by

⇡j(C)(c) = !(ui2ICi)

0

@

2

4
a

j

(c)

3

5 , C

1

A

where
`

j(z) is the inclusion of the object z 2 Cj into the coproduct
d
i2I

Ci. If Pi : C !! Ci,

then the pairing hPiii2I : C !! ui2I Ci is defined by

hPiii2I(C)(c) =
X

j2I

2

4
Z z2C

j

Pj(C)(z) ⇥ ui2ICi(c,
a

j

(z))

3

5

9

Note that if c’s index in the product ui2ICi is k, then ui2ICi(c,
`

j(z)) = ; whenever j 6= k.

So for c 2 Ck,

hPiii2I(C)(
a

k

(c)) =

Z z2C
k

Pk(C)(z) ⇥ ui2ICi(
a

k

(c),
a

k

(z))

⇠=
Z z2C

k

Pk(C)(z) ⇥ Ck(c, z)

⇠= Pk(C)(c) (by Lemma A.2)

Abstraction & Evaluation

For a species P : � u A !! B, the abstraction �A(P) : � !! (A) B) is defined by

�A(P)(X)(A, b) = P(X ⌦ A)(b)

For each A,B, the evaluation species evA,B : (A) B) u A !! B is defined by

evA,B(M)(b) =

F2 !(A)B), A2 !A)ZZ
!(A) B)([(A, b)], F)⇥ !((A) B) u A)(F � A,M)

Di↵erentiation

The version of di↵erentiation presented in [8] is an (A) B, A) (A (B))-species. However,

for reasons addressed in Chapter 4.2, we will slightly change this definition and instead use an

(A) B, A ((A) B))-species as the di↵erentiation operator. For F 2 !(A) B), A 2 !A, a 2
A, and b 2 Bop,

DA,B(F)(a,A, b) = !(A) B)([(A � [a], b)], F) (1)

Note that in Esp, A ((A) B) = Aop⇥ !Aop ⇥ B ⇠= !Aop ⇥ Aop ⇥ B = A) (A (B).
So in fact all we have changed about the standard definition of di↵erentiation is to swap the

positions of a and A on the left-hand side of (1). In fact, for any categories A and B, viewing
di↵erentiation as A ((A) B) rather than A) (A (B) turns out to be equivalent [15].

Linear evaluation

Since our new definition of di↵erentiation introduces the linear hom, we will need a new operator

for linear evaluation. For each A,B, define the linear evaluation species

levA,B : (A (B) u A !! B

by

levA,B(M)(b) =

F2!(A(B), a2AZZ
!(A (B)([(a, b)], F)⇥ !((A (B) u A)(F ⌦ [a],M)

The following lemmas pertain to calculating two common combinations of these operators that

will be of use when we interpret �-terms as species in Chapter 5. The proofs of these lemmas

uses several of the techniques for calculating coends presented in Appendix A.

10

Lemma 2.2. For species P : � !! A) B and Q : � !! A, and X 2 !�, b 2 B,

ev � hP,Qi(X)(b) ⇠=

A2 !A,H2 !�,
N2 !(�)|A|ZZZ

P(H)(A, b) ⇥
2

4
Y

k2|A|

Q(Nk)(Ak)

3

5⇥ !�

0

@H �
M

k2|A|

Nk, X

1

A

Proof. ev � hP,Qi(X)(b)

=

F2 !((A)B)uA)Z
ev(F)(b) ⇥ hP,Qi#(X)(F)

⇠=
F2 !((A)B)uA), A2 !AZZ

!((A) B) u A)([(A, b)] ⌦ A,F) ⇥ hP ,Qi#(X)(F)

⇠=
A2 !AZ

hP,Qi#(X)([(A, b)] ⌦ A)

⇠=

A2 !A,H2 !�,
N2(!�)|A|ZZZ

hP,Qi(H)(A, b) ⇥
2

4
Y

k2|A|

hP,Qi(Nk)(Ak)

3

5⇥ !�

0

@H �
M

k2|A|

Nk, X

1

A

⇠=

A2 !A,H2 !�,
N2(!�)|A|ZZZ

P(H)(A, b) ⇥
2

4
Y

k2|A|

Q(Nk)(Ak)

3

5⇥ !�

0

@H �
M

k2|A|

Nk, X

1

A

Lemma 2.3. For species P : � !! (A) B) and Q : � !! A, and X 2 !�, A 2 !A, b 2 B:

lev � hD0 � P,Qi(X)(A, b) ⇠=

a2A,
F1,F22 !�ZZ

P(F
1

)(A � [a], b) ⇥ Q(F
2

)(a)⇥ !� (F
1

� F
2

, X)

Proof. lev � hD0 � P,Qi(X)(A, b)

=

F2 !(lin(A,(A)B))uA)Z
lev(F)(A, b) ⇥ hD0 � P,Qi#(X)(F)

⇠=
F2 !((A)B)uA), a2AZZ

!((A ((A) B)) u A)([(a,A, b), a], F) ⇥ hP,Qi#(X)(F)

⇠=
a2AZ

hP,Qi#(X)([(a,A, b), a])

⇠=

a2A,
F1,F22 !�ZZ

hD0 � P,Qi(F
1

)(a,A, b) ⇥ hD0 � P,Qi(F
2

)(a)⇥ !� (F
1

� F
2

, X)

11

⇠=

a2A,
F1,F22 !�ZZ

(D0 � P)(F
1

)(a,A, b) ⇥ Q(F
2

)(a)⇥ !� (F
1

� F
2

, X)

⇠=

a2A,
F1,F22 !�ZZ

P(F
1

)(A � [a], b) ⇥ Q(F
2

)(a)⇥ !� (F
1

� F
2

, X)

12

Chapter 3

Esp as a model of linear logic

We’ve noted that Fiore’s species of structure are indeed generalizations of Joyal’s combinatorial

species, and also that Esp is a Cartesian closed bicategory, making it a model of the simply

typed �-calculus. To see why generalizing combinatorial species should yield a category with

a connection to computation, we can take a di↵erent perspective on Esp and compare it by

analogy to the construction of MRel, the category of finite multisets and relations. Both Esp

and MRel are formed via a construction that makes them models of linear logic, and as a

result, Cartesian closed [12]. In fact, this construction guarantees that both MRel and Esp

will be models of the di↵erential �-calculus, which will be presented in Chapter 4 [15]. This

chapter assumes knowledge of linear logic; a good preliminary source is [5].

3.1 Relations and profunctors

In the category Rel, objects are sets and arrows are relations between sets, though we can view

a relation R : X +! Y as a function r : X ⇥Y ! {0, 1} where r(x, y) = 1 if xRy and r(x, y) = 0

otherwise. The function r indicates only whether two objects are related, and holds no other

information about the nature of their relatedness.

Prof is the category whose objects are small categories and whose arrows are profunctors,

or functors of the form F : C ⇥ Dop ! Set. We can think of a profunctor as a relation holding

more information about the related objects: if objects c and d are not related then F (c, d) = ;,
and if c and d are related then the set F (c, d) holds ‘proofs’ of their relatedness. The similarity

of composition in Rel and Prof also lends to this analogy: the elements a and c are related by

A B CR S in Rel i↵ there is some b 2 B such that (a, b) 2 R and (b, c) 2 S, while

(S �R)(a, c) =
R b2B R(a, b)⇥S(b, c) for profunctors R : A ⇥ Bop ! Set and S : B ⇥ Cop ! Set.

This similarity arises from the fact thatRel is the Kleisli category of the powerset monad and

Prof is, roughly speaking, the Kleisli bicategory of a presheaf 2-monad. (For more information

on why this is not quite a monad, yet results in a similar structure, see [12].) As a result

of these constructions, Rel and Prof each have the necessary structure to be extended into

models of the full linear logic. This is done through another Kleisli construction, using a linear

exponential comonad.

3.2 Making Rel and Prof into models of linear logic

To create a new category MRel, take the free commutative monoid monad, or the multiset

monad, on Rel. By the duality of Rel, this monad is also a comonad. The multiset comonad

maps a set X to Mf (X), the set of all finite multisets of X. A multiset (or ‘bag’) m 2 Mf (X)

will be represented as an unordered list [x
1

, ..., xk] with all xi 2 X. The co-Kleisli category

of this comonad is MRel, the category whose objects are sets and whose arrows X ! Y are

relations Mf (X) +! Y . Composition in MRel is given by

13

(m, c) 2 R � S () 9b
1

, ..., bk 2 B and a partition of m into m
1

, ...,mk such that

([b
1

, ..., bk], c) 2 R and (mi, bi) 2 S for all i, where R : B +! C and S : A +! B

MRel is Cartesian closed, with the exponential X) Y defined as Mf (X) ⇥ Y , the ab-

straction operator defined by

⇤(R) = {(x, (y, z)) : (x] y, z) 2 R} for R a relation X ⇥ Y +! Z

and the evaluation relation evX,Y : (X) Y) ⇥ X +! Y defined by

evX,Y = {(([(m, y)]] m), y) : m 2 Mf (X), y 2 Y } .

This model resembles a system of resource trading: (r,m) 2 (Mf (X)) Y)&Mf (X)

is related to b 2 Y by application i↵ r is the ‘rule’ (m, b) encoding the ability to trade all

the elements we have (consisting of the multiset m) for the element we want (‘b’). Figure

3.1 illustrates how a bag of elements is related to an element c by the relations in MRel

corresponding to the �-terms xy and xy(zy), respectively. The multiple instances of application

in the latter term correspond to multiple trades taking place in order to obtain c.

(a) A bag and an element related
by JxyK.

(b) A bag and an element related by Jxz(yz)K.

Figure 3.1: In each diagram, the bag of elements at the top is related to the element at the bottom because there
is a way to first assign each element a variable of an appropriate type, and then make a trade (or series of trades)
according to the variable assignments and using rules inside the bag.

Just as we started with Rel and used a co-Kleisli construction to create a new category,

we can use a similar (pseudo)-comonad on the bicategory Prof to obtain the bicategory Esp

[9]. This time, the linear exponential comonad is the free symmetric monoidal completion

pseudo-comonad ! defined in Chapter 2.2. The objects in the co-Kleisli bicategory of the !

pseudo-comonad are objects of Prof (small categories), and arrows A ! B are arrows !A +! B
in Prof. That is, arrows are profunctors of the form !A ⇥ Bop ! Set. Composition of arrows

in the bicategory is also as defined in Chapter 2.3. Thus generalized species arise not only as

general forms of combinatorial species of structure, but also as the co-Kleisli bicategory of the

! pseudo-comonad, analagous to the MRel construction that extends Rel to a model of linear

logic. The analogy extends to the resource perspective of MRel illustrated above: Esp has

also been studied for its connection to resource calculi [19].

14

Chapter 4

The di↵erential �-calculus

The �-calculus is a notational system in which ‘terms’ representing computation can be formed

through three constructions: variables, abstractions, and applications. Abstracting a variable

from a term creates a function in that variable, while applying one term to another corre-

sponds to feeding an argument into a function. However, the pure �-calculus does not include

restrictions on the use of resources, which in practice may be limited. Ehrhard and Regnier

[7] developed the di↵erential �-calculus, an extension of the simply typed �-calculus which in-

tegrates resource-awareness by introducing the ability to both linearly and fully apply terms.

Linear application is important to managing finite resources, as it prevents an argument from

duplicating when applied to an abstraction whose leading bound variable appears free as a sub-

term multiple times. In the di↵erential �-calculus, linear application is achieved by means of

syntax for nondeterminism and di↵erentiation, where di↵erentiation is viewed as linear substi-

tution into a function. We will alter the terminology of [7] slightly in presenting the specifics of

the di↵erential �-calculus: while Ehrhard and Regnier originally formulated linear combinations

of �-terms as having coe�cients from an arbitrary semiring, we follow the convention here of

taking that semiring to be N.

4.1 Syntax + reduction rules

The di↵erential �-calculus extends the syntax of the �-calculus by allowing linear combinations

of terms as well as adding a di↵erentiation operator:

s, t := 0 | x | �x.t | s t | s+ t | Dt · s

The two reduction rules in the di↵erential �-calculus are

(�x.t) s ! t [s/x] (�-rule) D(�x.t) · s ! �x.
@t

@x
· s (D-rule)

where @t
@x · s is defined inductively:

@y

@x
· t =

(
t if x = y

0 if x 6= y

@(s+ u)

@x
· t = @s

@x
· t+ @u

@x
· t

@0

@x
· t = 0

@(s u)

@x
· t =

✓
@s

@x
· t
◆

u+

✓
Ds ·

✓
@u

@x
· t
◆◆

u

@(�y.s)

@x
· t = �y.

@s

@x
· t @(Ds · u)

@x
· t = D

✓
@s

@x
· t
◆

· u+Ds ·
✓
@u

@x
· t
◆

The new term 0 represents the empty sum, or the empty linear combination of terms. Linear

combinations of terms roughly correspond to nondeterministic choice: thinking of terms s and

t as short computer programs, the term s + t represents a program that either computes s or

computes t. However, these terms do not embody the choice itself, i.e. there is no reduction

15

rule in the di↵erential �-calculus that mimics choice by reducing a term s + t to s or to t. In

keeping with this notion of nondeterministic choice, we would like to be able to identify certain

terms containing sums. For instance, the term �x.s+ t should act the same as �x.s+�x.t, and

(t + u) v should act like t v + u v. Later, when we interpret the di↵erential �-calculus in the

bicategory of generalized species, we will see that these identifications indeed hold in the model.

The other new syntactical construction is the di↵erentiation operator Ds · t. Whereas the

term st represents the application of a function s to an argument t, the new termDs·t represents
the linear application of s to t. In particular, if s is a function of x (i.e. s ⌘ �x.u), then Ds · t
represents the substitution of t for one instance of x within the term u. The choice of which

x to replace is what brings about the need for linear combinations of terms. The D-reduction

rule implements the linear substitution of s for x into the term t; note the resemblance between

the inductive definition of @t
@x · s and the rules governing derivatives in calculus.

4.2 Typing system

The typing rules for the di↵erential �-calculus are as follows:

�(x) = A

� ` x : A � ` 0 : A

� ` s : A and � ` t : A

� ` s+ t : A

� ` s : A ! B and � ` t : A

� ` s t : B

� ` s : A ! B and � ` t : A

� ` Ds · t : A ! B

�, x : A ` t : B

� ` �x.t : A ! B

In the typing system we will also allow for reordering of the context �, as well as typing a term

in a context containing extraneous variables not appearing free in the term:

�, x : A, y : B ` t : C

�, y : B, x : A ` t : C
(Exchange)

� ` t : A and x 62 �

�, x : B ` t : A
(Weakening)

In Chapter 2.3 we defined di↵erentiation in Esp as an ((A) B), (A ((A) B)))-species.
This is motivated by the behaviour of the di↵erentiation operator in the di↵erential �-calculus.

For any function t : A ! B, we can think of di↵erentiation in the di↵erential �-calculus as an

operator Ds · which takes in an argument t of type A and returns another function of type

A ! B. It does this by linearly substituting t into the function s, so Ds · is in e↵ect a

function of type A ((A ! B). As such, we would like the species embodying di↵erentiation,

or linear substitution, to behave like the operator D · : (A ! B) ! (A ((A ! B)).

16

Chapter 5

Interpreting the di↵erential �-calculus
in Esp

It is known that Esp is a model of the di↵erential �-calculus [8, 18], but the details of construct-

ing such a model have not been expressly spelled out. Multiple methods have been provided for

modeling the di↵erential �-calculus in di↵erential categories using a derivative operator on mor-

phisms [6, 4], but this construction is not immediately compatible with the di↵erential structure

presented in [8]. Here we use the newly introduced operator levA,B and the altered definition of

DA,B to interpret the di↵erential �-calculus into Esp.

To demonstrate that the bicategory of generalized species forms a model of the simply typed

di↵erential �-calculus, we will interpret each �-term as a morphism in Esp, and each type and

typing context as an object of Esp. The typing judgement of each term will be represented

in the endpoints of the interpreted species: if context � gives the term t type A, then the

interpretation of this typing judgement, denoted JtK�A, will be a (J�K , JAK)-species. For ease

of notation, we will refer to J�K simply as �, and we will denote JAK := A, JBK := B, etc. In

addition, if the type or typing context of t is unambiguous, we may omit the subscript and/or

superscript of JtK�A.

5.1 Interpreting types, contexts, and terms

We define interpretations of type inductively, beginning with atomic types:

• For an atomic type A, JAK = A where A is some small category,

• JA ! BK = JAK) JBK = ! JAKop ⇥ JBK.

Next, we interpret typing contexts, beginning with the empty context:

• J;K = 0, the empty category with no objects or arrows,

• J�, x : AK = J�K u JAK, the disjoint union of the categories J�K and JAK.

It may be that multiple variables in a context � are assigned the same type; for example, when

� = {x : A, y : A, z : B}. To avoid confusion in these cases we will label each category with the

variable from which it arose, so that the interpretation of � is denoted J�K = 0 uAx uAy u Bz.

Finally, we interpret typing judgements of �-terms. Interpretations of terms are defined

inductively as follows:

• J0K�A = O : J�K !! JAK, defined by O(X)(a) = ; for all X 2! J�K and a 2 JAK

• JxK�A = ⇡n+1

: J�K !! JAK, where n is the index of the type assignment x : A in the

context �. (Note that the correct interpretation is ⇡n+1

rather than ⇡n because the

1-indexed component of J�K is always the empty category 0.)

17

• J�x.tK�A)B = ⇤JAK(JtK�,x:AB) : J�K !! (JAK) JBK)

• Js tK�B = ev � hJsK�A!B , JtK�Ai : J�K !! JBK

• Js+ tK�A = JsK�A + JtK�A : J�K !! JAK

• JDt · sK�A!B = lev � hD � JtK�A!B , JsK�Ai : J�K !! (JAK) JBK)

For the purposes of working with our interpretation, it will be necessary to permute elements

of a context, and to extend the context typing a term t to include variables that do not appear

free in t. Suppose � has size k, and G is a bag in !(� u B u A). Let G0 2 !(� u A u B) be the

bag created by replacing all objects in G of the form (b, k+ 1) with (b, k+ 2), and replacing all

objects of the form (a, k + 2) 2 G with (a, k + 1). Then for all c 2 C, define JtK�,y:B,x:A
C by

JtK�,y:B,x:A
C (G)(c) = JtK�,x:A,y:B

C (G0)(c)

Finally, if � ` t : B and x 62 FV(t), then

JtK�,x:AB = JtK�B � ⇡
1

: J�K u JAK !! JBK

5.2 Soundness

This interpretation matches the standard interpretation of the simply typed �-calculus into a

CCC on ordinary �-terms (those containing no linear or di↵erential subterms), but as we have

devised a new method of interpreting di↵erential terms, we will need to show that this choice

still gives a sound interpretation. In order for the interpretation to be sound, all statements

that are true in the theory of the di↵erential �-calculus must also hold of the interpreted terms.

That is, if � ` t : A and � ` s : A and t =�D s, then JtK�A (X)(a) ⇠= JsK�A (X)(a) for all X 2 !�

and a 2 A.

Proposition 5.1. For two di↵erential �-terms t and s, if � ` t : A ! B and � ` s : A then

J(�x.t) sK�B (X)(b) ⇠= Jt [s/x]K�B (X)(b) (⇤)
and

JD(�x.t) · sK�A!B (X)(A, b) ⇠=
s
�x.

@t

@x
· s

{
�

B

(X)(A, b) (†)

for all X 2 !�, A 2 !A, and b 2 B.

To prove Proposition 5.1 we will first need several lemmas. The following two corollaries arise

from Lemmas 2.2 and 2.3, respectively:

Corollary 5.2.

JtsK�B (X)(b) ⇠=
A2 !A, H2 !�, N2 !(�)

|A|ZZZ
JtK�A!B (H)(A, b) ⇥

2

4
Y

k2|A|

JsK�A (Nk)(Ak)

3

5⇥ !�(H ⌦
M

k2|A|

Nk, X)

18

Corollary 5.3.

JDt · sK�A!B (X)(A, b) ⇠=
a2A, F1,F22 !�ZZ

JtK (F
1

)(A � [a], b) ⇥ JsK (F
2

)(a)⇥ !� (F
1

� F
2

, X)

Recall that we can define equivalence of bags for G,G0 2 !� by

G ⌘ G0 i↵ G and G0 have the same contents.

Lemma 5.4. If G ⌘ G0 2 !� and � ` t : A, then JtK�A (G)(a) ⇠= JtK�A (G0)(a) for all a 2 A.

Lemma 5.5. Let � ` t : A, and suppose that the typing context � contains an assignment x : B

such that x does not appear free in any subterm of t. If the bag G 2 ! J�K contains any objects

whose index in J�K is the index of x in �, then JtK�A (G)(a) = ; for all a 2 A.

Proofs of Lemmas 5.4 and 5.5, both by structural induction on t, are presented in Appendix B.

Lemma 5.6. Let P : � !! A and Q : � !! B be generalized species and let X 2 !�, a 2 A, and
b 2 B. Then

X1,X22 !�Z
P (X

1

� [x])(a) ⇥ Q(X
2

)(b)⇥ !�(X
1

� X
2

, X)

+

X1,X22 !�Z
P (X

1

)(a) ⇥ Q(X
2

� [x])(b)⇥ !�(X
1

� X
2

, X)

⇠=
X1,X22 !�Z

P (X
1

)(a) ⇥ Q(X
2

)(b)⇥ !�(X
1

� X
2

, X � [x])

Proof. We prove this lemma using Lemma A.4 twice: once in the forward direction and once

backward.

X1,X22 !�Z
P (X

1

� [x])(a) ⇥ Q(X
2

)(b)⇥ !�(X
1

� X
2

, X)

+

X1,X22 !�Z
P (X

1

)(a) ⇥ Q(X
2

� [x])(b)⇥ !�(X
1

� X
2

, X)

⇠=

2

664
X

(X1,X2)

2D(X)

P (X
1

� [x])(a) ⇥ Q(X
2

)(b)

3

775+

2

664
X

(X1,X2)

2D(X)

P (X
1

)(a) ⇥ Q(X
2

� [x])(b)

3

775

⇠=
X

(X1,X2)

2D(X�[x])

P (X
1

)(a) ⇥ Q(X
2

)(b)

⇠=
X1,X22 !�Z

P (X
1

)(a) ⇥ Q(X
2

)(b)⇥ !�(X
1

� X
2

, X � [x])

19

Lemma 5.7. If �, x : A ` t : B and � ` s : A then

J(�x.t) sK�B (X)(b) ⇠= (JtK�,x:AB � hId
�

, JsK�Ai)(X)(b)

for all X 2 !� and b 2 B.

Proof.

J(�x.t) sK�B (X)(b) = (ev � hJ�x.tK�A!B , JsK�Ai)(X)(b)

⇠= (ev � h⇤A(JtK�,x:AB) � Id
�

, IdA � JsK�Ai)(X)(b)

⇠= (ev � h⇤A(JtK�,x:AB), IdAi � hId
�

, JsK�Ai)(X)(b)

⇠= (JtK�,x:AB � hId
�

, JsK�Ai)(X)(b)hId
�

, JsK�Ai

We are now ready to prove that the interpretation is sound.

Proof of Proposition 5.1. By structural induction on the term t. When restricted to ordinary

�-terms, this interpretation is the standard interpretation of the simply typed �-calculus into

a CCC, so we can infer that (⇤) holds when t is an ordinary �-term. What remains is to show

that (⇤) holds for di↵erential terms t, and that (†) holds for all terms t and s. First, we prove

the inductive cases of (⇤) when t is 0, a linear combination or a di↵erentiation term.

case t ⌘ 0:

J0 [s/x]K�B (X)(b) = J0K�B (X)(b)

= ;
= (J0K�,x:AB � hId

�

, JsK�Ai)(X)(b)

⇠= J(�x.0) sK�B (X)(b)

case t ⌘ u+ v:

J(u+ v)[s/x]K�B (X)(b) ⇠= Ju[s/x]K�B (X)(b) + Jv[s/x]K�B (X)(b)

⇠= J(�x.u) sK�B (X)(b) + J(�x.v) sK�B (X)(b)

⇠= J((�x.u) + (�x.v)) sK�B (X)(b)

⇠= J(�x.u+ v) sK�B (X)(b)

case t ⌘ Du · v:

J(Du · v)[s/x]K�B!C = lev � hD � Ju[s/x]K�B!C , Jv[s/x]K�Bi
⇠= lev � hD � JuK�,x:AB!C � hId

�

, JsK�Ai, JvK�,x:AB � hId
�

, JsK�Aii
⇠= lev � hD � JuK�,x:AB!C , JvK�,x:AB i � hId

�

, JsK�Ai
= JDu · vK�,x:AB!C � hId

�

, JsK�Ai
⇠= J(�x.Du · v) sK�B!C

Next, we need to show that (†) holds for all terms t and s, by structural induction on t. A full

proof of (†) can be found in Appendix B; here, we will only present two cases to demonstrate

the technique.

20

case t ⌘ x: Let |�| = n � 1, so that the index of x in �, x : A is n. (Or, in the case that x is

already typed in �, let the index of x in � be n.)

JD(�x.x) · sK�A!A (X)(A, a)

⇠=

a⇤2A,
M1,M22 !�ZZ

JxK�,x:AA (M
1

⌦ A ⌦ [
a

n

(a⇤)])(a) ⇥ JsK�A (M
2

)(a⇤)⇥ !�(M
1

� M
2

, X) (1)

⇠=

a⇤2A,
M1,M22 !�ZZ

⇡n(M1

⌦ A ⌦ [
a

n

(a⇤)])(a) ⇥ JsK�A (M
2

)(a⇤)⇥ !�(M
1

� M
2

, X) (2)

⇠=

a⇤2A,
M1,M22 !�ZZ

!(� u A)([
a

n

(a)],M
1

⌦ A ⌦ [
a

n

(a⇤)]) ⇥ JsK�A (M
2

)(a⇤)⇥ !�(M
1

� M
2

, X) (3)

⇠=
a⇤2A,M22 !�ZZ

!A([a], A ⌦ [a⇤]) ⇥ JsK�A (M
2

)(a⇤)⇥ !�(M
2

, X) (4)

⇠=
a⇤2AZ

!A([a], A ⌦ [a⇤]) ⇥ JsK�A (X)(a⇤) (5)

⇠=
8
<

:

a⇤2AR
A(a, a⇤) ⇥ JsK�A (X)(a⇤) if A = []

; if A 6= []
(6)

⇠=
(

JsK�A (X)(a) = JsK�,x:AA (X ⌦ A)(a) if A = []

; if A 6= []
(7)

⇠=
(
�(JsK�,x:AA)(X)(A, a) if A = []

; if A 6= []
(8)

⇠= J�x.sK�A!A (X)(A, a) (9)

⇠=
s
�x.

@x

@x
· s

{
�

A)A

(X)(A, a) (10)

(1) Corollary 5.3; (2) Definition of JxK�,x:A
A

; (3) Definition of ⇡
n

; (4) Lemma A.6; (5) and (7) Lemma A.2; (8)-(9)
Lemma 5.5; (10) Definition of @x

@x

· s.

21

case t ⌘ Du · v:
r
�x.@(Du·v)

@x · s
z
�

A!B!C
(X)(A,B, c)

=

s
�x.D

✓
@u

@x
· s
◆

· v +Du ·
✓
@v

@x
· s
◆{

�

(X)(A,B, c) (1)

⇠=
s
�x.D

✓
@u

@x
· s
◆

· v
{
�

(X)(A,B, c) +

s
�x.Du ·

✓
@v

@x
· s
◆{

�

(X)(A,B, c) (2)

=

s
D

✓
@u

@x
· s
◆

· v
{
�,x:A

B!C

(X ⌦ A)(B, c) +

s
Du ·

✓
@v

@x
· s
◆{

�,x:A

B!C

(X ⌦ A)(B, c) (3)

⇠=

b2B,
M1,M22 !(�uA)ZZ s

@u

@x
· s

{
�,x:A

B!C

(M
1

)(B � [b], c) ⇥ JvK�,x:AB (M
2

)(b)⇥ !(� u A)(M
1

� M
2

, X ⌦ A)

+

b2B,
M1,M22 !(�uA)ZZ

JuK�,x:AB!C (M
1

)(B � [b], c) ⇥
s
@v

@x
· s

{
�,x:A

B

(M
2

)(b)⇥!(� u A)(M
1

� M
2

, X ⌦ A) (4)

⇠=
X

(X1,X2)2D(X)

(A1,A2)2D(A)

b2BZ s
@u

@x
· s

{
�,x:A

B!C

(X
1

⌦ A
1

)(B � [b], c) ⇥ JvK�,x:AB (X
2

⌦ A
2

)(b)

+
X

X1,X22D(X)

A1,A22D(A)

b2BZ
JuK�,x:AB!C (X

1

⌦ A
1

)(B � [b], c) ⇥
s
@v

@x
· s

{
�,x:A

B

(X
2

⌦ A
2

)(b) (5)

⇠=
X

(X1,X2)2D(X)

(A1,A2)2D(A)

b2BZ
JD(�x.u) · sK�,x:AB!C (X

1

)(A
1

, B � [b], c) ⇥ JvK�,x:AB (X
2

⌦ A
2

)(b)

+
X

(X1,X2)2D(X)

(A1,A2)2D(A)

b2BZ
JuK�,x:AB!C (X

1

⌦ A
1

)(B � [b], c) ⇥ JD(�x.v) · sK�,x:AB (X
2

)(A
2

, b) (6)

⇠=
X

(X1,X2)2D(X)

(A1,A2)2D(A)

(Y1,Y2)2D(X1)

b2B, a2AZZ
JuK�,x:AB!C (Y

1

⌦ A
1

⌦ [a])(B � [b], c) ⇥ JsK�,x:AA (Y
2

)(a) ⇥ JvK�,x:AB (X
2

⌦ A
2

)(b)

+
X

(X1,X2)2D(X)

(A1,A2)2D(A)

(Y1,Y2)2D(X1)

b2B, a2AZZ
JuK�,x:AB!C (X

1

⌦ A
1

)(B � [b], c) ⇥ JsK�,x:AA (Y
1

)(a) ⇥ JvK�,x:AB (Y
2

⌦ A
2

⌦ [a])(b)

(7)

22

⇠=
X

(X1,X2,X3)

2D(X⌦A)

b2B, a2AZZ
JuK�,x:AB!C (X

1

⌦ [a])(B � [b], c) ⇥ JsK�,x:AA (X
2

)(a) ⇥ JvK�,x:AB (X
3

)(b)

+
X

(X1,X2,X3)

2D(X⌦A)

b2B, a2AZZ
JuK�,x:AB!C (X

1

)(B � [b], c) ⇥ JsK�,x:AA (X
2

)(a) ⇥ JvK�,x:AB (X
3

⌦ [a])(b) (8)

⇠=
a2A, b2BZZ X

(X1,X2,X3)

2D(X⌦A⌦[a])

JuK�,x:AB!C (X
1

)(B � [b], c) ⇥ JsK�,x:AA (X
2

)(a) ⇥ JvK�,x:AB (X
3

)(b) (9)

⇠=
X

(X1,X2)2D(X)

a2AZ
JDu · vK�,x:AB!C (X

1

⌦ A ⌦ [a])(B � [b], c) ⇥ JsK�,x:AA (X
2

)(a) (10)

⇠= JD(�x.Du · v) · sK�A!B!C (X)(A,B, c) (11)

(1) Definition of @(Du·v)
@x

· s; (2)-(3) by the interpretation; (4) Corollary 5.3; (5) Lemma A.4; (6) Inductive
hypothesis; (7) Corollary 5.3; (8) Rewriting sums and Lemma 5.4; (9) Lemma 5.6; (10)-(11) Corollary 5.3 and
Lemma A.4.

5.3 Examples

Now that we have a sound interpretation of the di↵erential �-calculus in Esp, we can calculate

some examples of interpreted terms to motivate a combinatorial description of the interpretation.

The results of these sample calculations are unions and products of hom-sets, and as such are

not particularly enlightening at first glance, but we will revisit them in a more visually intuitive

form after we have established the combinatorial interpretation in Chapter 6.

Example 5.8 (Variable). Suppose � ` x : A such that the index of x in � is n, and let G 2 !�

and a 2 A.

JxK�A (G)(a) = ⇡n(G)(a)

= !�([
a

n

(a)], G)

⇠=
(
A(a, a⇤) if G = [a⇤] where the index of a⇤ in � is n

; otherwise

Example 5.9 (Application). Let � = �0, x : A ! B, y : A, and let G 2 !� and b 2 B. By

Lemma 5.5, JxyK�B (G)(b) = ; if G contains any objects from J�0K. So we can say G ⌘ Gx ⌦Gy,

23

where Gx is the sublist of G containing exactly the objects from (A) B) and Gy is the sublist

of G containing exactly the objects from A. Then

JxyK�B (G)(b) ⇠=

A2 !A,H2 !�,
N2 !�

|A|ZZZ
JxK�A!B (H)(A, b) ⇥

2

4
Y

k2|A|

JyK�A (Nk)(Ak)

3

5⇥ !�(H ⌦
M

k2|A|

Nk, G)

⇠=

A2 !A,H2 !�,
N2 !�

|A|ZZZ
!�([(A, b)], H) ⇥

2

4
Y

k2|A|

!�(Ak, Nk)

3

5⇥ !�(H ⌦
M

k2|A|

Nk, G)

⇠=
A2 !AZ

!�([(A, b)] ⌦
M

k2|A|

[Ak], G)

⇠=
A2 !AZ

!�([(A, b)] ⌦ A,G)

⇠=
A2 !AZ

!(A) B)([(A, b)], Gx)⇥ !A(A,Gy)

⇠= !(A) B)([(Gy, b)], Gx)

From this calculation we can observe a few things: first, that JxyK�B (G)(b) = ; unless |Gx| = 1.

So we can limit our calculations specifically to the instance

JxyK�B ([(A⇤, b⇤)] ⌦ Gy)(b)

for some A⇤ 2 !Aop and b⇤ 2 B:

JxyK�B ([(A⇤, b⇤)] ⌦ Gy)(b) ⇠= !(A) B)([(Gy, b)], [(A
⇤, b⇤)])

⇠= !A(A⇤, Gy) ⇥ B(b, b⇤)

Example 5.10 (Di↵erentiation). Again,let � = �0, x : A ! B, y : A and G 2 !� and b 2 B.
Then

JDx · yK�A!B (G)(A, b) ⇠=

F1,F22 !�

a2AZZ
JxK�A!B (F

1

)(A � [a], b) ⇥ JyK�A (F
2

)(a)⇥ !�(F
1

� F
2

, G)

⇠=

F1,F22 !�

a2AZZ
!�([(A � [a], b)], F

1

)⇥ !�([a], F
2

)⇥ !�(F
1

� F
2

, G)

⇠=
a2AZ

!�([(A � [a], b), a], G)

⇠=
a2AZ

!(A) B)([(A � [a], b)], Gx)⇥ !A([a], Gy)

24

This calculation tells us that JDx · yK�A!B (G)(A, b) = ; unless |Gx| = |Gy| = 1. Limiting

ourselves to the scenario where Gy = [a⇤] and Gx = [(A⇤, b⇤)] for a⇤ 2 A, A⇤ 2 !A, and b⇤ 2 B,
we get

JDx · yK�A!B (G)(A, b) ⇠=
a2AZ

!(A) B)([(A � [a], b)], [(A⇤, b⇤)])⇥ !A([a], [a⇤])

⇠=
a2AZ

!(A) B)([(A � [a], b)], [(A⇤, b⇤)]) ⇥ A(a, a⇤)

⇠= !(A) B)([(A � [a⇤], b)], [(A⇤, b⇤)])

⇠= !A(A⇤, A � [a⇤]) ⇥ B(b, b⇤)

Example 5.11. Let � = {x : (A ! A) ! B}, G 2 !� and b 2 B.
Jx(�y.y)K�B (G)(b)

⇠=

F2 !(A)A),H2 !�,

N2 !�

|F |ZZZ
JxK� (H)(F, b) ⇥

2

4
Y

k2|F |

J�y.yK� (Nk)(Fk)

3

5⇥ !�(H ⌦
M

k2|F |

Nk, G)

⇠=

F2 !(A)A),
N2 !�

|F |ZZ 2

4
Y

k2|F |

JyK�,y:A (Nk ⌦ Ak)(ak)

3

5⇥ !�([(F, b)] ⌦
M

k2|F |

Nk, G) where Fk = (Ak, ak)

⇠=

F2 !(A)A),
N2 !�

|F |ZZ X

(F ⇤,b⇤)2G

X

(G1,...,G|F |)
2D(G�(F ⇤,b⇤))

2

4
Y

k2|F |

!�([ak], Nk ⌦ Ak)⇥ !�(Nk, Gk)

3

5⇥ �((F, b), (F ⇤, b⇤))

⇠=
X

(F ⇤,b⇤)2G

X

(G1,...,G|F⇤|)
2D(G�(F ⇤,b⇤))

2

4
Y

k2|F ⇤|

!�([a⇤k], Gk ⌦ A⇤
k)

3

5⇥ B(b, b⇤) where F ⇤
k = (A⇤

k, a
⇤
k)

In Examples 5.8-5.11 an interpreted �-term maps two inputs to a disjoint union of products

of hom-sets, where each component of each input appears exactly once in the expression (though

perhaps split up, as in the object (F ⇤, b⇤) being split into the parts A⇤
k, a

⇤
k, and b⇤ in Example

5.11). This pattern suggests that interpreted terms can be visualized as sets of structures built

up out of all the pieces of the input objects, connected together by arrows. Rather, looking at

objects as vertices and arrows as edges between them, we can view these sets as sets of graphs.

25

26

Chapter 6

A combinatorial view of the interpre-
tation

To visualize the interpretation of di↵erential �-terms in Esp from Chapter 5.1, we will view

JtK�A (G)(a) as a set of rooted, directed graphs, each of which has the same vertex set V (G, a)

as well as a ‘shape’ corresponding to the term t. The edges of each graph will be arrows in

the category J�K. To establish that this is an accurate description, we will first define a new

translation of terms hti�A : J�K !! JAK (where types and contexts are interpreted in the same way

as in the categorical interpretation) and then prove that hti�A and JtK�A are naturally isomorphic

whenever � ` t : A.

6.1 Objects of !� as vertices

In the graphs we will be defining for the combinatorial interpretation, objects of the input list

G are vertices. Recall that J�K = ui2|�| JTiK where � =
�
x
1

: T
1

, ..., x|�| : T|�|

. This means

that each object in the list G arises from JTiK for some i. For organizational purposes, we will

associate each vertex in the tree with a variable and an index. The variable associated with

g 2 G is the aforementioned xi such that g arises from the category JTiK. The index of a vertex

is its position in the list G.

Definition 6.1. Suppose T
1

, ..., Tn are types, and Tn is atomic. For an object

a = (A
1

, ..., An�1

, an) 2 JT
1

! T
2

! ... ! TnK ,

the vertex set V (G, a) is the multiset underlying the list G⌦A
1

⌦ . . .⌦An�1

⌦ [an]. The vertex

an will be the root of each graph in hti�A(G)(a).

Remark. Any type T can be written in a unique way as T
1

! T
2

! . . . ! Tn where Tn is

atomic (though T
1

, ..., Tn�1

need not be atomic types), so V (G, a) is well-defined. Also note

that V (G, a) is not dependent upon which term t is being interpreted.

Since every object in the input bag G will appear as a vertex in every graph in hti�A(G)(a),

we need a method of linking together objects via edges. In order to describe how vertices may

be connected by edges, it will be helpful to visualize each vertex as containing an internal tree

whose root and leaves are ports by which it can be connected to other vertices. To distinguish

between internal trees and external edges when drawing an element of hti�A(G)(a), we will

delineate the vertices from G by containing them in circles.

The internal structure of a vertex in G is dependent on the type of its associated variable.

For an atomic type A, an object a 2 JAK will be represented by the tree consisting of the single

node a, while an object (A, b) 2 (A) B) can either be represented as a tree with a single node

27

a (A, b)
. . .

b

A
1

A
2

Ak

Figure 6.1: Nodes representing the objects a 2 A (left) and (A, b) 2 A) B (middle and right).

(A, b) or as a tree consisting of the root node b whose children are the members of the list A

(Fig. 6.1).

The choice of how to represent a vertex of type A) B relates to the mechanism for

connecting vertices. A vertex (A, b) can link to a vertex a via an arrow f : Ai ! a (Fig. 6.2a),

or it can connect to a vertex whose leaves have type A) B (Fig. 6.2b).

.

b

A
1

Ak

Ai

a

f

(a)

.

c

↵
1

↵k

↵i

(A, b)

g

(b)

Figure 6.2: Two ways to connect the node (A, b) to another node. In (a), (A, b) is the parent vertex linked to
child node a by the arrow f : A

i

! a. In (b), (A, b) is the child of the vertex (↵, c) 2 (A) B)) C, connected
by the arrow g : ↵

i

! (A, b).

Note that while we may draw the children A
1

, ..., Ak of a root node b in a di↵erent order

than that of the list A, we will keep track of each child’s index in the list A, as it is a relevant

part of the vertex’s structure and will a↵ect the action of morphisms on the graph. Drawing

the children in a di↵erent order than index order, however, does not change the underlying

combinatorial object.

The two methods of considering the internal tree of the vertex (A, b) seem like distinct cases,

but they are simply di↵erent ways of visualizing the fact that every vertex v is connected to

the rest of the graph by a single arrow of the form f : v⇤ ! v. The one exception to this

rule is the root node r, in which case the arrow will be of the form f : r ! r⇤. In the case

of Fig. 6.2b the vertex (A, b) is connected to the graph by the arrow g : ↵i ! (A, b). Figure

6.3 extends the graph in Figure 6.2a by connecting all open ports in the (A, b) node to other

vertices. In this diagram, the vertex (A, b) is connected to the rest of the graph by the arrow

g : ([a
1

, ..., ak], b⇤) ! (A, b) which consists of h : b⇤ ! b and a collection of arrows fi : Ai ! a�
i

for i 2 k = |A| and some permutation � 2 Sk.

28

.

.
a�(k)a�(1)

A
1

Ak

b

f
1

fk

b⇤

h

Ai

a�(i)

fi

Figure 6.3

Similarly, in the case that an object g 2 G has an associated variable with type A) B) C,
that object can be portrayed by any of the following vertices:

(A,B, c)

(a)

. . .

(B, c)

A
1

A
2

Ak

(b)

.

c

A
1

AkB1

Bn

(c)

Figure 6.4: Three vertices representing the object (A,B, c) 2 (A) B) C)

Finally, we will impose rules on the construction of the graphs in hti�A(G)(a) built up out of

these vertices:

Definition 6.2. A graph on the vertex set V (G, a) is well-formed if it is connected and every

port of each vertex is linked to a port of another vertex by an arrow in !�. That is, the degree

of each vertex is one more than the number of leaves in its internal tree, and all edges connect

two ports of the same type.

6.2 Grafting + the action of morphisms in !� and A on graphs

An operation we will be using to combine and transform graphs is grafting, which consists

of removing a vertex in a graph and replacing that vertex with another graph. Figure 6.5

demonstrates a simple example of grafting a tree S into a tree T at the vertex v. Note that the

number of children of the vertex being replaced must match the number of leaves in the tree

being inserted.

29

v

(a) Tree T (b) T with vertex v removed

(c) Tree S (d) S grafted into T at v

Figure 6.5: The process of grafting a tree S into the tree T at vertex v.

A⇤
1 A⇤

2

A1 A2 A3

b

b⇤

j1
j2

A⇤
3

j3

h

(a) Graph T

A⇤
1 A⇤

2

A1 A2 A3

b

b⇤

j1
j2

A⇤
3

j3

h

(b) T with vertex (A, b) removed

A1

A2

a2 a3
c2

g2

A3

g3

c1
a1

g1

c01 c02

b0

f1 f2

b

h0

(c) Graph S

a2 a3

c2c1

a1

c01 c02

b0

f1 f2

A⇤
1 A⇤

2 A⇤
3

b⇤

h0 � h

j1 � g1
j2 � g2

j3 � g3

(d) S grafted into T at (A, b)

Figure 6.6: Grafting S into T .

30

For the graphs in hti�A(G)(a), whose edges are arrows in �, the grafting process requires com-

position of arrows. Figure 6.6 restates the grafting example from Figure 6.5 in terms of graphs

made up of objects from �.

Since the elements of hti�A(G)(a) will be graphs, we will need to understand how morphisms

in !� and A act on these graphs. To do so, we combine the notion of objects as vertices and

the concept of grafting described above. A property of hti�A(G)(a) is that all graphs in the set

include an arrow from a into the graph, and for all g 2 G each graph includes an arrow from

the rest of the graph to g.

Proposition 6.3. Suppose G 2 !� and a = (A
1

, ..., An�1

, an) 2 A
1

) . . .) An. Then for any

well-formed graph T on the vertex set V (G, a) with an as the root, there is a graph Y such that

T can be written as

an

Y

A⇤
1

h1 . . .

A⇤
k

h
k

g

where A⇤ = A
1

⌦ . . . ⌦ An�1

and k = |A⇤|.

Proof. Because an is the root node of the graph, T can be written as

an

Y 0

f

where Y 0 is the rest of the graph. This means that all of the objects in the list A⇤ are vertices

inside Y 0. (Note: here we are using the fact that T is well-formed, so all ports of the vertex A⇤
i

are connected to other nodes in the graph.) Suppose the variable associated with vertex A⇤
i has

type B
1

! . . . ! Bn. Recall that B1

) . . .Bm = !Bop
1

⇥ . . .⇥ !Bop
m�1

⇥ Bm, so an arrow

j : (B0
1

, ..., B0
m�1

, b0m) ! (B
1

, ..., Bm�1

, bm)

consists of an arrow g : b0m ! bm and an arrow hi : Bi ! B0
i for each i 2 m� 1. Breaking down

the latter arrows further, each hi consists of a permutation �i : |Bi| ! |Bi| and a collection of

arrows (hi)k : (Bi)�(k) ! (B0
i)k. Take all the edges (arrows) connecting the A⇤

i vertex to the

rest of the graph and consolidate them into a single arrow j : ↵ ! A⇤
i (Figure 6.7).

31

an

f

X

A⇤
i

g

h1 h
k. . .

(a)

an

f

. . .

A⇤
i

g h1 h
k

W

(b)

an

W

A⇤
i

j

f

(c)

Figure 6.7: ‘Extracting’ a vertex A⇤
i

from the interior of the graph. (a) Isolate the vertex within the graph, (b)
Rearrange the graph, (c) Consolidate the arrows linking A⇤

i

into the graph.

Repeating this process with A⇤
i for each i 2 |A⇤| results in a shape of the form

an

Y

A⇤
1

h1 . . .

A⇤
k

h
k

g

Note: in the case that any of the vertices A⇤
i and A⇤

j are adjacent to each other, or to the root

node an in the graph Y , we must modify the graph slightly before extracting each vertex. Figure

6.8 demonstrates the process of modifying a graph so that the nodes A⇤
i can be extracted.

Suppose a = (A
1

, ..., An�1

, an) and a0 = (A0
1

, ..., A0
n�1

, a0n), and let ↵ = A
1

⌦ . . .⌦An�1

and

↵0 = A0
1

⌦ . . . ⌦ A0
n�1

. Given an arrow f : a ! a0, f acts on a graph Sa0 2 hsi�A(G)(a0) to

create a new graph Sa 2 hsi�A(G)(a). By Proposition 6.3 there is a graph Y such that Sa0 can

be written as the graph in Figure 6.9(a). Transform Sa0 to Sa by composing this graph with f .

The arrow f : a ! a0 consists of an arrow g : an ! a0n and a family of arrows hi : ↵0
�(i) ! ↵i

where � is a permutation of |↵|. In this case, transforming Sa0 to Sa results in Figure 6.9(b).

a0n

Y

↵0
1

�1 . . .

↵0
k

�
k

�

(a)

an

Y

↵
1

h1 � �
�(1) . . .

↵k

h
k

� �
�(k)

� � g

(b)

Figure 6.9

32

A⇤
i

g

h1

A⇤
j

c0
f

c

h
k

. . .

j1 j
k. . .

X

(a)

A⇤
i

g

h1

A⇤
j

id c0

f c

id

h
k

. . .

j1 j
m. . .

X

(b)

fc c0

A⇤
i

g h1 h
k id

. . .

A⇤
j

j1 j
m

id
. . .

W

(c)

W

A⇤
i A⇤

j

(d)

Figure 6.8: Extracting adjacent nodes A⇤
i

and A⇤
j

. (a) A⇤
i

and A⇤
j

are connected by an arrow f : c ! c0; (b) Add
placeholder nodes c and c0 linked by f so that the vertices A⇤

i

and A⇤
j

are now connected to c and c0, respectively,
by id arrows; (c) Rearrange the graph; (d) Consolidate the arrows linking A⇤

i

and A⇤
j

to the new shape W . When
this graph is grafted into another graph, the placeholder nodes will be removed and the edges composed.

Similarly, given any arrow f : a ! a0 and a graph T containing the vertex a in any position

other than the root, f acts on T by transforming it into a graph T 0 containing a0 in the place of

a. This happens by first isolating the node a inside the graph, then replacing it with the graph

constructed by composing the vertex a0 with the arrow f (Fig. 6.10(b)). Call this new vertex

f(a) and graft it into T at the vertex a.

. . .

a

↵

d

�1

C1

�
k

Ck

X

(a) T

d

a0

C
1

h1

C

0
�(1)

. . .

Ck

h
k

C

0
�(k)

g

d

0

(b) f(a)

. . .

a0

g �
↵

d

0

�
1
�
h
1

C 0
�(1)

� k
� h

k

C 0
�(k)

X

(c) f(a) grafted into T at a

Figure 6.10

Likewise, an arrow f : G ! G0 in !� is a permutation � : |G| ! |G| and a family of arrows

fi : Gi ! G0
�(i), so f acts on a graph in hti�A(G)(a) containing the objects of G as interior

vertices by iteratively grafting fi(Gi) into the graph in place of Gi for each i.

33

6.3 Reinterpreting terms as sets of graphs

Definition 6.4. The combinatorial interpretation of �-terms is defined inductively:

• h0i�A(G)(a) is the set of empty graphs that can be made on the vertex set V (G, a).

• hxi�A(G)(a) is the set of trees of the shape

an

x

A⇤
1

. . . A⇤
k

that can be made out of the vertex set V (G, a), where a = (A
1

, A
2

, ..., An�1

, an) and

A⇤ = A
1

⌦ A
2

⌦ . . . ⌦ An�1

and |A⇤| = k.

• hs+ ti�A(G)(a) is the disjoint union of the sets hsi�A(G)(a) and hti�A(G)(a).

• h�x.ti�A!B(G)(A, b) is defined as the set hti�,x:AB (G ⌦ A)(b).

• hDs · ti�A!B(G)(A, b) is the set of graphs on the vertex set V (G, (A, b)) that can be con-

structed by the following process:

1. Partition the list G into G
1

and G
2

,

2. Choose an object a 2 A,

3. Pick a graph T from hti�A!B(G1

)(A � [a], b),

4. Pick a graph S from hsi�A(G2

)(a),

5. Graft S into T at the vertex a.

• hsti�B(G)(b) is the set of graphs on the vertex set V (G, b) that can be constructed by the

following process:

1. Split the vertex set G into G
1

and G
2

,

2. Choose a list of objects A 2 !A,

3. Split the vertex set G
2

into H
1

, ..., H|A|,

4. Pick a graph T from hti�A!B(G1

)(A, b),

5. For each i 2 |A|, pick a graph Si from hsi�A(Hi)(Ai),

6. For each i 2 |A|, graft Si into T at the vertex Ai.

We can see from this definition that the root of every graph in hti�A(G)(a) is an (as defined

in Definition 6.1), and for each g 2 G, every graph in hti�A(G)(a) contains g as a non-root

vertex. The latter is because in the application and di↵erentiation constructions, the vertices

eliminated by the grafting step are exactly the new vertices introduced from outside the vertex

set V (G, a) in Step 2.

34

Theorem 6.5. If � ` t : A, then hti�A ⇠= JtK�A.

Proof. By induction on t.

• case t ⌘ 0: The vertex set V (G, a) is necessarily nonempty, so there are no empty graphs

that can be constructed out of those vertices. Accordingly,

h0i�A(G)(a) = ; = J0K�A (G)(a)

for all G 2 !� and a 2 A. Since both h0i�A and J0K�A map all objects to the empty set, they

both must map all arrows to the empty function ; ! ;. So in fact h0i�A and J0K�A are the

same functor.

• case t ⌘ x: The only way to assemble all the vertices in V (G, a) into a single graph of the

desired shape is if the bag G in fact only contains a single object, which must be associated

with the variable x. Then hxi�A(G)(a) = ; if |G| 6= 1 or if G contains any objects associated

with a di↵erent variable. (Note the connection between this fact and Lemma 5.5, which

tells us that JtK (G)(a) is always empty if G contains any objects arising from variables

that do not appear in t.) If G = [a⇤] for some a⇤ 2 Ax and A⇤ = A
1

⌦ ... ⌦ An�1

, then

hxi�A(G)(a) is the set of graphs of the form

an

a⇤

A⇤
1

. . . A⇤
k

or equivalently

a

a⇤

The number of ways to make such a graph is |A(a, a⇤)|. So

hxi�A(G)(a) ⇠=
(
A(a, a⇤) if |G| = [a⇤] for any a⇤ 2 A
; otherwise

⇠= !A([a], G)

= JxK�A (G)(a)

Recall that an arrow f : !A([a
1

], [a
2

]) consists of a single arrow f
1

: a
1

! a
2

. For each

G 2!� and a 2 A, define an isomorphism ⌘G,a JxK�A (G)(a) ! hxi�A(G)(a) so that for

f 2!A([a], G), ⌘G,a(f) is the graph

a

a⇤

f
1

35

Suppose we have an arrow k : a0 ! a and an arrow h : G ! G0, implying that |G| = |G0|.
Both hxi�A(G)(a) and JxK�A (G)(a) are empty if |G| 6= 0, so in that case ⌘G0,a0�JxK�A (h)(k) =

hxi�A(h)(k) � ⌘G,a because both are the empty map. If G = [a⇤
1

] and G0 = [a⇤
2

] then

⌘G0,a0 � JxK�A (h)(k) is the map that takes an arrow f 2!A([a], G), composes it with h and

[k] to get h � f � [k] 2!A([a0], G0), and then maps this new arrow to the graph

a0

a⇤
2

h
1

� f
1

� k

While the morphism hxi�A(h)(k) � ⌘G,a first maps f to the graph

a

a⇤
1

f
1

�h
1

� k

and then composes that graph with h
1

and k to get

a0

a⇤
2

h
1

� f
1

� k

Since these arrows commute, ⌘ is a natural isomorphism JxK�A) hxi�A.

• case t ⌘ u+ v: By the inductive hypothesis, there exist two natural isomorphisms

U : hui�A) JuK�A and V : hvi�A) JvK�A. By the functoriality of colimits, the profunctors

hui�A + hvi�A and JuK�A + JvK�A are also naturally isomorphic. So hu+ vi�A ⇠= Ju+ vK�A.

• case t ⌘ �x.s: By induction, there is a natural isomorphism S : JsK�,x:AB) hsi�,x:AB . Use

S to define a new natural isomorphism ⌘ : J�x.sK�A!B) h�x.si�A!B by setting

⌘G,(A,b) = SG⌦A,b

For di↵erentiation and application of terms, we require a more involved strategy to show that

the functor hti�A is naturally isomorphic to the categorical interpretation. Recall that the inter-

pretation of a di↵erential term Dt · s was defined by

JDt · sK�A!B (G)(A, b) ⇠=
a2A, F1,F22 !�ZZ

JtK (F
1

)(A � [a], b) ⇥ JsK (F
2

)(a)⇥ !� (F
1

� F
2

, G)

Or, simplifying this expression with Lemma A.2,

JDt · sK�A!B (G)(A, b) ⇠=
X

(G1,G2)

2D(G)

a2AZ
JtK (G

1

)(A � [a], b) ⇥ JsK (G
2

)(a)

36

We can also state this definition as

JDt · sK�A!B (�)(�,�) ⇠=
X

(G1,G2)

2D(�)

a2AZ
JtK (G

1

)(� � [a],�) ⇥ JsK (G
2

)(a)

By the inductive hypothesis there are natural isomorphisms T : JtK) hti and S : JsK) hsi.
This means for any fixed G

1

and G
2

there is also a natural isomorphism

JtK (G
1

)(� � [a],�) ⇥ JsK (G
2

)(a)) hti(G
1

)(� � [a],�) ⇥ hsi(G
2

)(a)

Furthermore, by the functoriality of colimits, and therefore coends, there is a natural isomor-

phism

X

(G1,G2)

2D(�)

a2AZ
JtK (G

1

)(� � [a],�) ⇥ JsK (G
2

)(a))
X

(G1,G2)

2D(�)

a2AZ
hti(G

1

)(� � [a],�) ⇥ hsi(G
2

)(a)

If we can show that the functor hDt · si�A!B is in fact the same as the functor

X

(G1,G2)

2D(�)

a2AZ
hti(G

1

)(� � [a],�) ⇥ hsi(G
2

)(a),

we will have the desired result that JDt · sK�A!B
⇠= hDt · si�A!B. To accomplish this, we will use

the coequalizer definition of coends. Fix a partition of the bag G 2 !� into G
1

and G
2

, and let

F (a, a0) = hti�A!B(G1

)(A � [a], b) ⇥ hsi�A(G2

)(a0)

Then
`

f :a!a0
F (a, a0) =

`
a,a02A

A(a, a0) ⇥ F (a, a0) is the set of tuples (f, Ta, Sa0) where

• f : a ! a0 is an arrow in A,

• Ta is a graph from hti�A!B(G1

)(A � [a], b), and

• Sa0 is a graph from hsi�A(G2

)(a0).

The set
`
a2A

F (a, a) is the set of tuples (T, S) where T is a graph from hti�A!B(G1

)(A � [a], b)

and S is a graph from hsi�A(G2

)(a). Recall from Chapter 6.2 that given an arrow f : a ! a0,

we can alter a graph Sa0 2 hsi�A(G2

)(a0) to get a new graph Sa 2 hsi�A(G2

)(a) by composing the

graph with the arrow f .

Sa0 =

d0

Y

C 0
1

�1 . . .

C 0
k

�
k

�

=) Sa =

d

Y

C
1

h1 � �
�(1) . . .

Ck

h
k

� �
�(k)

� � g

37

We can also use f to make a graph Ta 2 hti�A!B(G1

)(A � [a], b) into a graph Ta0 from

hti�A!B(G1

)(A � [a0], b) by replacing the vertex a with the modified vertex f(a).

Ta =

X

a

↵

d

�1

C1

�
k

Ck

. . .

=) Ta0 =

X

a0

g � ↵

d0

�1 � h1

C

0
�(1)

�
k

� h
k

C

0
�(k)

. . .

The coend
a2AR

F (a, a) is the coequalizer of

`
f :a!a0

F (a, a0)
`
a2A

F (a, a)
F ⇤

F⇤

where F ⇤ maps (f, Ta, Sa0) to (Ta, Sa), and F⇤ maps (f, Ta, Sa0) to (Ta0 , Sa0). Since we are

working in the category Set, the coequalizer of these arrows is formed by quotienting
`
a2A

F (a, a)

by the smallest equivalence relation such that for all x 2 `
f :a!a0

F (a, a0), F ⇤(x) ⌘ F⇤(x). Our

strategy for explicitly defining this coend will be as follows:

1) Define an equivalence relation on
`
a2A

F (a, a).

2) Show that F ⇤(f, Ta, Sa0) ⌘ F⇤(f, Ta, Sa0) for all tuples (f, Ta, Sa0) 2 `
f :a!a0

F (a, a0).

3) Show that if (Ta, Sa) ⌘ (Ta0 , Sa0) in this equivalence relation, then it must be true that

(Ta, Sa) ⌘ (Ta0 , Sa0) in any equivalence relation satisfying F ⇤(x) = F⇤(x) for all x in
`

f :a!a0
F (a, a0).

Say that (Ta, Sa) ⌘ (Ta0 , Sa0) if there exist graphs X and Y such that

Ta =

. . .

a

f

d

g1

C1

g
k

Ck

X

Sa =

d

Y

C
1

�1 . . .

Ck

�
k

↵

38

Ta0 =

. . .

a0

h

d

0

j1

C

0
1

j
k

C

0
k

X

Sa0 =

d0

Y

C 0
1

�1 . . .

C 0
k

�
k

�

where � � h = ↵ � f and ji � �i = �i � gi for all i in |C|. (Note that in order for (Ta, Sa) and

(Ta0 , Sa0) to be equivalent, |C| must equal |C 0|.) The second condition is akin to saying that

grafting Sa into Ta at a gives the same graph as grafting Sa0 into Ta0 at a0:

. . .

Y

↵
�
f

�
1
�
g
1

� k
� g

k

X

=

. . .

Y

� �
h

j
1
�
�
1

j k
� �

k

X

For step 2), take a tuple (f : a ! a0, Ta, Sa0) where f consists of arrows g : d ! d0 and

hi : C 0
i ! Ci, and

Ta =

. . .

a

↵

d

�1

C1

�
k

Ck

Ta

Sa0 =

d0

Y

C 0
1

�1 . . .

C 0
k

�
k

�

Then F ⇤(f, Ta, Sa0) = (Ta, Sa) and F⇤(f, Ta, Sa0) = (Ta0 , Sa0), where

Ta0 =

. . .

a0

g �
↵

d

0

�
1
�
h
1

C 0
�(1)

� k
� h

k

C 0
�(1)

X Sa =

d

Y

C
1

h1 � �
�(1) . . .

Ck

h
k

� �
�(k)

� � g

39

These pairs satisfy the first condition of the equivalence relation, and grafting each pair

results in the graph:

. . .

Y

� �
g �

↵
�
1
�
h
1
�
�
�

(1
) � k

� h
k

� �
�

(k
)

X

So indeed (Ta, Sa) ⌘ (Ta0 , Sa0), as desired. Next, we need to show that this is the smallest

equivalence relation on
`
a2A

F (a, a) satisfying this constraint. Suppose (Ta, Sa) ⌘ (Ta0 , Sa0).

Then there are graphs X and Y such that we can express Ta, Sa, Ta0 , and Sa0 with the diagrams

in Fig. 6.11, and such that � � h = ↵ � f and ji � �i = gi � �i for all i in |C| = k.

Ta =

. . .

a

f

d

g1

C1

g
k

Ck

X

Sa =

d

Y

C
1

�1 . . .

Ck

�
k

↵

Ta0 =

. . .

a0

h

d

0

j1

C

0
�(1)

j
k

C

0
�(k)

X

Sa0 =

d0

Y

C 0
�(1)

�1 . . .

C 0
�(k)

�
k

�

Figure 6.11

There is some object a⇤ = (C⇤, d⇤) and permutation � : k ! k such that ↵ : d ! d⇤ and � :

d0 ! d⇤, and �i : C⇤
i ! Ci and �i : C⇤

�(i) ! C 0
i for i 2 k. We can then define Sa⇤ 2 hsi�A(G2

)(a⇤):

d⇤

Y

C⇤
1

id . . .

C⇤
k

id

id

40

Define an arrow p : a ! a⇤ by u : d ! d⇤ and v : C⇤ ! C where u = ↵ and vi = �i. Then

F ⇤(p, Ta, Sa⇤) = (Ta, Sa) and F⇤(p, Ta, Sa⇤) = (Ta⇤ , Sa⇤) where Ta⇤ is the graph in Fig. 6.12.

. . .

a⇤

u �
f

d

⇤

g
1
�
v
1

C⇤
1

g k
� v

k

C⇤
k

X

Figure 6.12: T
a

⇤

Now define the arrow p0 : a0 ! a⇤ by u0 : d0 ! d⇤ and v0 : C⇤ ! C 0 where u0 = � and v0 = �.

Then F ⇤(p0, Ta0 , Sa⇤) = (Ta0 , Sa0) and F⇤(p0, Ta0 , Sa⇤) = (Ta⇤ , Sa⇤) (Fig. 6.13).

. . .

a⇤

u 0�
h

d

⇤

j
1
�
v 01

C⇤
1

j k
� v

0
k

C⇤
k

X =

. . .

a⇤

� �
h

d

⇤

j
1
�
�
1

C⇤
1

j k
� �

k

C⇤
k

X =

. . .

a⇤

↵
�
f

d

⇤

g
1
�
�
1

C⇤
1

g k
� �

k

C⇤
k

X = Ta⇤

Figure 6.13

By these two constructions, (Ta, Sa) ⌘ (Ta⇤ , Sa⇤) and (Ta0 , Sa0) ⌘ (Ta⇤ , Sa⇤), so by transi-

tivity (Ta, Sa) ⌘ (Ta0 , Sa0). Since (Ta, Sa) ⌘ (Ta0 , Sa0) implies that (Ta, Sa) and (Ta0 , Sa0) are

necessarily equivalent in any equivalence relation where F ⇤(x) ⌘ F⇤(x), our chosen relation is

the smallest equivalence relation satisfying this property and therefore the set of equivalence

classes of this relation is the coend
a2AR

F (a, a). So
P

(G1,G2)

2D(G)

a2AR hti(G
1

)(A� [a], b) ⇥ hsi(G
2

)(a) is the

set of graphs with vertices V (G, (A, b)) that can be made by separating G into two pieces, choos-

ing a new object a 2 A, picking a graph T from hti�A!B(G1

)(A� [a], b), and grafting an graph S

from hsi�A(G2

)(a) into T at the vertex a. This is precisely how we defined hDt · si�A!B(G)(A, b),

so

hDt · si�A!B =
X

(G1,G2)

2D(�)

a2AZ
hti(G

1

)(� � [a],�) ⇥ hsi(G
2

)(a)

and therefore

JDt · sK�A!B
⇠= hDt · si�A!B

41

By a similar construction, we can define the interpretation JtsK�B (G)(b) as a set of graphs

whose vertices are the input objects. Once again, begin with the definition

JtsK�B (G)(b) ⇠=
X

(H1,H2)

2D(G)

A2 !AZ X

(G1,...,G|A|)
2D(H2)

JtK�A!B (H
1

)(A, b) ⇥
2

4
Y

k2|A|

JsK�A (Gk)(Ak)

3

5

⇠=
X

(H1,H2)

2D(G)

A2 !AZ X

(G1,...,G|A|)
2D(H2)

hti�A!B(H1

)(A, b) ⇥
2

4
Y

k2|A|

hsi�A(Gk)(Ak)

3

5

By induction there are natural isomorphisms JtK�A!B) hti�A!B and JsK�A) hsi�A, so by

functoriality of colimits there is a natural isomorphism

JtsK�B)
X

(H1,H2)

2D(�)

A2 !AZ X

(G1,...,G|A|)
2D(H2)

hti�A!B(H1

)(A,�) ⇥
2

4
Y

k2|A|

hsi�A(Gk)(Ak)

3

5

As in the di↵erentiation case, we will prove that JtsK�B ⇠= htsi�B by solving for the coend above

to show that it is the same functor as htsi�B. Fix a partition (H
1

, H
2

) 2 D(G) and let

F (A,A0) = hti�A!B(H1

)(A, b) ⇥
X

(G1,...,G|A0|)

2D(H2)

2

4
Y

k2|A0|

hsi�A(Gk)(A
0
k)

3

5

Then
`

f :A!A0
F (A,A0) =

`
A,A02A

!A(A,A0)⇥F (A,A0) is the set of tuples (f, TA,
⇣
SA0
i

⌘

i2|A0|
) where

• f : A ! A0 is an arrow in !A,

• TA is a graph from hti�A!B(H1

)(A, b), and

• There is a partition of H
2

into G
1

, ..., Gk, where k = |A0|, such that for each i 2 |A0|, SA0
i

is a graph from hsi�A(Gi)(A0
i).

The set
`

A2 !A
F (A,A) is the set of tuples (T,

�
SA
i

�
i2|A|) where T 2 hti�A!B(H1

)(A, b) and there

is a partition of H
2

into k = |A| lists G
1

, ..., Gk such that SA
i 2 hsi�A(Gi)(Ai) for each i 2 k.

Let f : A ! A0 such that the component arrows are fi : Ai ! A0
�(i) for a permutation

� : k ! k where |A| = |A0| = k. Using the action of the arrow f on the tuple of graphs
⇣
SA0
i

⌘

i2k
,

F ⇤(f, TA,
⇣
SA0
i

⌘
) = (TA,

�
SA
i

�
) where each SA

i 2 hsi�A(Gi)(A0
�(i) is formed by composing SA0

i

with the arrow fi:

SA0
i =

A0
�(i)

Yi

q
i

=) SA
i =

Ai

Yi

q
i

� f
i

42

Next, F⇤(f, T,
⇣
SA0
i

⌘
) = (TA0 ,

⇣
SA0
i

⌘
) where TA0 is created by finding and extracting all nodes

Ai inside TA via the method of Proposition 6.3 and composing the arrows linking them into the

graph with the arrows fi:

TA =

X

A1

g1 . . .

Ak

g
k

=) TA0 =

X

A�(1)

f1 � g1 . . .

A�(k)

f
k

� g
k

This time, the equivalence relation on the set
`

A2 !A
F (A,A) is defined by

(TA, (S
A
i)i2|A|) ⌘ (TA0 , (SA0

i)i2|A0|) i↵

(1) |A| = |A0| = k,

(2) There is a permutation p : k ! k and graphs X,Y
1

, ..., Yk such that TA, TA0 , SA
i , and

SA0
i can be written as

TA =

X

A1

g1 . . .

Ak

g
k

SA
i =

Ai

Yi

r
i

TA0 =
X

A0
p(1)

h1 . . .

A0
p(k)

h
k

SA0
i =

A0
p(i)

Yi

q
i

(3) ri � gi = qi � hi for all i 2 k.

Let f : A ! A0 consist of the collection of arrows fi : Ai ! A0
�(i). For the tuple (f, TA,

⇣
SA0
i

⌘

i2k
)

in
`

f :A!A0
F (A,A0), we have F ⇤(f, TA,

⇣
SA0
i

⌘

i2k
) = (TA,

�
SA
i

�
i2k) and F⇤(f, TA,

⇣
SA0
i

⌘

i2k
) =

(TA0 ,
⇣
SA0
i

⌘

i2k
), where

TA =

X

A1

g1 . . .

Ak

g
k

SA
i =

A0
i

Yi

q
i

� f
i

TA0 =

X

A0
�(1)

f1 � g1 . . .

A0
�(k)

f1 � gk
SA0

�(i) =

A0
�(i)

Yi

q
i

43

These diagrams confirm that F ⇤(f, T,
⇣
SA0
i

⌘

i2k
) ⌘ F⇤(f, T,

⇣
SA0
i

⌘

i2k
).

Now suppose that (TA,
�
SA
i

�
i2k) ⌘ (TA0 ,

⇣
SA0
i

⌘

i2k
). Then |A| = |A0| = k and there are

shapes X,Y
1

, ..., Yk and a permutation p : k ! k such that using the graphs can be represented

by the following diagrams, where ri � gi = qi � hi for all i 2 k.

TA =

X

A1

g1 . . .

Ak

g
k

SA
i =

Ai

Yi

r
i

TA =

X

A0
p(1)

h1 . . .

A0
p(k)

h
k

SA0

p(i) =

A0
p(i)

Yi

q
i

For each i 2 k there is an object ↵i 2 A such that ri : Ai ! ↵i and qi : A0
p(i) ! ↵i; define a list

A⇤ 2 !A so that A⇤
i = ↵i. Let SA⇤

i be the graph

SA⇤
i =

A⇤
i

Yi

id

Then F ⇤(r, TA, (SA⇤
i)i2k) = (TA, SA

i) and F⇤(r, TA, (SA⇤
i)i2k) = (TA⇤ , SA⇤

i), where

TA⇤ =

X

A⇤
1

r1 � g1 . . .

A⇤
k

r
k

� g
k

Also, F ⇤(r, TA, (SA⇤
i)i2k) = (TA, (SA

i)i2k) and F⇤(r, TA, (SA⇤
i)i2k) = (TA⇤ , (SA⇤

i)i2k), where

TA⇤ =

X

A⇤
1

q1 � h1 . . .

A⇤
k

q
k

� h
k

=

X

A⇤
1

r1 � g1 . . .

A⇤
k

r
k

� g
k

So (TA,
�
SA
i

�
i2k) ⌘ (TA⇤ ,

�
SA⇤
i

�
i2k) ⌘ (TA0 ,

⇣
SA0
i

⌘

i2k
) in any equivalence relation on

`
A2 !A

F (A,A)

that satisfies F ⇤(x) ⌘ F⇤(x) for all x. Therefore

X

(H1,H2)

2D(G)

A2 !AZ X

(G1,...,G|A|)
2D(H2)

hti�A!B(H1

)(A, b) ⇥
2

4
Y

k2|A|

hsi�A(Gk)(Ak)

3

5

44

is the set of graphs that can be created via the procedure:

1. Partition G into H
1

and H
2

,

2. Choose a list A 2 !A,

3. Form a hti�A!B(H1

)(A, b) graph T ,

4. Partition H
2

into G
1

, ..., G|A|,

5. Form an hsi�A!B(Gi)(Ai) graph Si for each i 2 |A|, and

6. Graft Si into T at the vertex Ai for each i 2 |A|.

This is how we defined the functor htsi�B, so JtsK�B ⇠= htsi�B as desired.

6.4 Examples

In this section, example members of four interpreted term sets hti�A(G)(a) are constructed.

Examples 6.6 and 6.9 recalculate the terms from Examples 5.9 and 5.11, respectively, in the

combinatorial interpretation.

Example 6.6 (Application of variables). For this example, we will choose an input list G

so that hxyi�B(G)(b) is nonempty and then construct a member of hxyi�B(G)(b). Suppose � =

{x : A ! B, y : A}. Let G = [([ax
1

, ax
2

], bx), ay
1

, ay
2

], where ([ax
1

, ax
2

], bx) has index 1, and ay
1

and.ay
2

have index 2. To construct a sample graph from hxyi�B(G)(b), follow the steps from Definition

6.4 (Figure 6.14).

b

A
1

g1

ax1

A
2

g2

ax2

f

bx

(a)

A
1

ay
1

h
1

A
2

ay
2

h
2

(b)

b

ay
1

h1 � g1

ax1

ay
2

h2 � g2

ax2

f

bx

(c)

Figure 6.14: (a) Take the sublist H = [([ax

1 , a
x

2], b
x)] ⇢ G and choose a list A = [A1, A2] 2 !A. Construct a graph

from the set hxi�
A!B

(H)(A, b). (b) Split the remainder of G into two lists G1 = [ay

1] and G2 = [ay

2] and construct
a hyi�

A

(G1)(A1) graph as well as a hyi�
A

(G2)(A2) graph.
1 (c) Graft the two hyi graphs into the hxi graph.

Depending on our choices of G
1

, G
2

, and the arrows in the graph we could have obtained a

di↵erent member of hxyi�B(G)(b). However, all members will be of the shape

b

x

y . . . y

45

Example 6.7 (�-reduction). This time we will construct a member of h(�z.zy)xi�B(G)(b).

Again, let G = [([ax
1

, ax
2

], bx), ay
1

, ay
2

]. First, take the sublist H = [ay
1

, ay
2

] ⇢ G and choose a list

F 2 !(A) B). In this case we will choose F = [([aF
1

, aF
2

], bF)]. Using the result of Example 6.6,

make a graph from h�z.zyi�
(A!B)!B(H)(F, b) = hzyi�B(H ⌦F)(b). Next, use the object from G

to make a member of the set

hxi�A!B([([a
x
1

, ax
2

], bx)])(F
1

) = hxi�A!B([([a
x
1

, ax
2

], bx)])([az
1

, az
2

], bF)

Finally, graft the x graph into the �z.zy graph at the vertex F
1

. Figure 6.15 illustrates this

3-step process.

b

ay
2

g1

aF1

ay
1

g2

aF2

f

bF

(a)

bF

aF
2

k1

ax1

aF
1

k2

ax2

h

bx

(b)

b

ay
1

g1 � k1

ax1

ay
2

g2 � k2

ax2

h � f

bx

(c)

Figure 6.15: (a) A graph from hzyi�
B

(H⌦F)(b); (b) A graph from hxi�
A!B

([([ax

1 , a
x

2], b
x)])([az

1, a
z

2], b
F); (c) Graph

(a) grafted into graph (b).

Notice that in the grafting step of Example 6.7 a graph with the shape of Fig. 6.16a is trans-

formed into a graph with the shape of Fig. 6.16b.

b

z

y . . . y

(a)

b

x

y . . . y

(b)

Figure 6.16

This transformation embodies the �-reduction (�z.zy)x !� xy, which replaces all free instances

of z in the original tree with x.

Example 6.8 (D-reduction). Figure 6.17 shows the process of constructing an element of

hD(�x.yx) · zi�A!B(G)(A, b) where � = {y : A ! B, z : A} and G = [(Ay, by), az]. Note that

taking a D-reduction step on this term yields the term �x.(Dy ·w)x. Accordingly, the graph in

Fig. 6.17(c) could have instead been created by following the procedure for making an element

of h�x.(Dy · z)xi�B(G)(A, b) = h(Dy · z)xi�,x:AB (G ⌦ A)(b) (Figure 6.18).

Example 6.9. Let � = {x : (A ! A) ! B} andG = [(F ⇤, b⇤)] where F ⇤ = [([A⇤
1

], a
1

), ([A⇤
2

], a
2

)].

Figure 6.19 illustrates the construction of a graph from hx(�y.y)i�B(G)(b).

46

b

H
1

A
1

g
1

Ay
1

A
2

g
2

Ay
2

a

g
3

Ay
3

f

by

(a)

a

az

h

(b)

b

H
1

A
1

g
1

Ay
1

A
2

g
2

Ay
2

az

h � g
3

Ay
3

f

by

(c)

Figure 6.17: Construction of an element of hD(�x.yx) · zi�
A!B

(G)(A, b). (a) Choose a subset H = [(Ay, by)] of
G, as well as some object a 2 A, and make a graph from hxyi�

B

(H ⌦A⌦ [a])(b). (b) Using the remaining element
az of G, make a hzi�

A

(az)(a) graph. (c) Graft the hzi graph into the h�x.yxi graph at the vertex a.

b

H
1

Ay
1

id

Ay
1

Ay
2

id

Ay
2

az

h � g
3

Ay
3

f

by

(a)

Ay
1

A
1

g
1

Ay
2

A
2

g
2

(b)

b

H
1

A
1

g
1

Ay
1

A
2

g
2

Ay
2

az

h � g
3

Ay
3

f

by

(c)

Figure 6.18: Construction of an element of h�x.(Dy · z)xi�
B

(G)(A, b). (a) Choose the list A⇤ = [Ay

1 , A
y

2] and make
an element of hDy · zi�,x:A

A!B

(G)(A⇤, b). (b) For i = 1, 2, make a graph from hxi�,x:A
A

([A
i

])(Ay

i

). (c) Graft the
graphs in (b) into the graph in (a) at the appropriate vertices.

b

F
1

g1

F ⇤
1

F
2

g2

F ⇤
2

f

b⇤

(a)

↵i

↵⇤
i

hi)
A⇤

i a⇤i

id id

hi

Yi
)

Fi

Yi

id

(b)

b

Y
2

g1

F ⇤
1

Y
1

g2

F ⇤
2

f

b⇤

=

b

f

q
1

� h
1

� r
1

a⇤
1

A⇤
1

q
2

� h
2

� r
2

a⇤
2A⇤

2

(c)

Figure 6.19: Construction of an element of hx(�y.y)i�
B

(G)(b). (a) A graph from hxi(G)(F, b) where F
i

= ([↵⇤
1],↵1)

and each arrow g
i

consists of an arrow r
i

: a⇤
i

! ↵
i

and an arrow q
i

: ↵⇤
i

! A⇤
i

. (b) A graph from h�y.yi([])(F
i

) =
hyi([↵⇤

i

])(↵
i

). (c) The graphs from (b) grafted into the graph from (a).

47

48

Chapter 7

Counting graphs in the interpretation

Now we have a combinatorial description of the model of di↵erential �-calculus within Esp,

in which each term and pair of inputs is associated with a set of graphs, and inductively

constructing terms corresponds to transforming and combining these graphs. The next step we

might want to take is to count explicitly the number of graphs associated with each interpreted

term hti�A for inputs G and a. However, reasoning by graph transformations alone is not the most

computationally straightforward method of determining cardinality. The following proposition

rewrites the sets JtK�A (G)(a) in a form whose size will be easier to calculate.

Proposition 7.1. For any bag G 2 !� and any typing judgement � ` t : A where t is in normal

form and t is not an abstraction, there is

1. an index set I(t,�, G)

2. a map shape(t,�, G) : I(t,�, G) ! Set, and

3. a map point(t,�, G) : I(t,�, G) ! A

such that for all a 2 A,

JtK�A (G)(a) ⇠=
X

i2I(t,�,G)

shape(t,�, G)(i) ⇥ A(a, point(t,�, G)(i))

The notation in Proposition 7.1 is informed by the combinatorial description. Each member

of a term’s associated set of graphs can be thought of as having two layers: its unlabeled shape,

and the choice of arrow for each edge within that shape. The point component represents our

ability to extract the root of the graph when undertaking a grafting step:

a

shape(t, G)(i)

Remark. Though this proposition only covers non-abstracted normal forms, which may include

abstracted subterms, it will be useful in simplifying the interpretation of abstracted terms as

well. Any term in normal form which is an abstraction must be of the form

t ⌘ �~x.s

where s is some non-abstracted normal term. Say � ` t : C where C ⌘ A
1

! . . . ! An ! B,

and � ` s : B. Then by the proposition,

JtK�C (G)(A
1

, ..., An, b) = JsK�B (G ⌦ A
1

⌦ . . . ⌦ An)(b)

49

⇠=
X

i2I(s,�0,G⌦A1⌦...⌦A
n

)

shape(s,�0, G⌦A
1

⌦ . . .⌦An)(i)⇥B(b, point(s,�0, G⌦A
1

⌦ . . .⌦An)(i))

where �0 = �, x
1

: A
1

, ..., xn : An.

Though Proposition 7.1 still expresses terms as sets, we can use this result to define a

numerical expression for the size of each set.

Definition 7.2. If � ` t : A, then for G 2 !� and a 2 A define

#t(G)(A) =
X

i2I(t,�,G)

|shape(t,�, G)(i)| ⇥ |A(a, point(t,�, G)(i))|

where in this case the ⇥ and
P

symbols refer to numerical operations on integers rather than

the categorical product and coproduct of sets.

Proposition 7.1 only holds in the case that t is in normal form – that is, there are no � or

D-reductions that can be done on t – so we will use the fact that the simply typed di↵erential

�-calculus is strongly normalizing [7]. To calculate the cardinality of hti�A(G)(a), first reduce t

fully to get a term s in normal form, and then recursively calculate #s(G)(a).

Let D(G,n) = {(G
1

, ..., Gn) : G1

, ..., Gn form a partition of the contents of G}. We will

need to enumerate the partitions of G: let Gi
1

, ..., Gi
n denote the ith partition of G into n

bags. The sets I, shape, and point are defined inductively as follows. As shorthand, we will

omit � and simply write I(t, G) when � is unambiguous.

Definition 7.3. For the empty sum term 0 of type A, let I(0, G) = shape(0, G) = ; for all

G 2 !�. Choose an arbitrary object a 2 A and let point(0, G) = a for all G. (We can assume

that A is nonempty, as otherwise any (�,A)-species is the empty functor 0 ! Set.)

For a variable x, context � such that � ` x : A, and G 2 !�,

• I(x,G) =

(
{1} , if G = [a] for some a 2 A

; otherwise

• shape(x,G)(1) = {1}

• point(x,G)(1) =

(
a, if G = [a] for a 2 A

a⇤ otherwise, for arbitrary a⇤ 2 A

If t and s are non-abstracted terms in normal form such that � ` t+ s : A, then for G 2 !�,

• I(t+ s,G) = I(t, G)] I(s,G) = {(i, 1) : i 2 I(t, G)} [{(i, 2) : i 2 I(s,G)}

• shape(t+ s,G)(i, j) =

(
shape(t, G)(i) if j = 1

shape(s,G)(i) if j = 2

• point(t+ s,G)(i, j) =

(
point(t, G)(i) if j = 1

point(s,G)(i) if j = 2

50

If t and s are both in normal form such that � ` t : A ! B and � ` s : A, and t is not an

abstraction, then for G 2 !�,

• I(ts,G) = {(i, j, k) : i 2 |D(G, 2)|, j 2 I(t, Gi
1

), and k 2 |D(Gi
2

, |A|)| where (A, b) =

point(t, Gi
1

)(j)}

• shape(ts,G)(i, j, k) = shape(t, Gi
1

)⇥ Q
m2|A|

JsK�A ((Gi
2

)km)(Am), where (A, b) = point(t, Gi
1

)(j)

• point(ts,G)(i, j, k) = b, where (A, b) = point(t, Gi
1

)(j)

Note that because s is a subterm of ts, it must also be in normal form. The JsK�A ((Gi
2

)km)(Am)

component of the expression for shape(ts,G)(i, j, k) can therefore be rewritten in I, shape, point

form as well.

If t and s are both in normal form such that � ` t : A ! B and � ` s : A, and t is not an

abstraction, then for G 2 !�,

• I(Dt·s,G) = {(i, j, k) : i 2 |D(G, 2)|, j 2 I(t, Gi
1

), and k 2 |A|, where (A, b) = point(t, Gi
1

)(j)}

• shape(Dt ·s,G)(i, j, k) = shape(t, Gi
1

)(j) ⇥ JsK�A (Gi
2

)(Ak), where (A, b) = point(t, Gi
1

)(j)

• point(Dt · s,G)(i, j, k) = (A � [Ak], b), where (A, b) = point(t, Gi
1

)(j)

Proof of Proposition 7.1. By induction on t. The full proof is presented in Appendix B.

51

52

Chapter 8

Further Work

Beyond the syntax of the di↵erential �-calculus, there is plenty of remaining structure in both

Esp and the graph-theoretic model left unexplored. An interesting further direction of this work

would be to extend the correspondence by introducing new syntax to the di↵erential �-calculus

that possesses a meaningful interpretation in both models.

One operation introduced in [8] but not incorporated into the interpretation is the Day

tensor, which we gave as the multiplication of species in Chapter 2.3 by

(P · Q)(A)(b) =

Z A1,A22!A
P(A

1

)(b) ⇥ Q(A
2

)(b)⇥ !A(A
1

� A
2

, A)

or more simply,

(P · Q)(A)(b) =
X

(A1,A2)2D(A)

P(A
1

)(b) ⇥ Q(A
2

)(b)

To incorporate the Day tensor into the categorical and combinatorial interpretations is fairly

straightforward:

• Extend the di↵erential �-calculus with the syntax s • t and the typing rule

� ` s : A and � ` t : A

� ` s • t : A

• Define (s • t)[u/x] = s[u/x] • t[u/x] and @(s•t)
@x · u = (@s@x · u) • t+ s • (@t@x · u).

• Interpret Js • tK�A (G)(a) =
P

(G1,G2)2D(G)

JsK�A (G
1

)(a) ⇥ JtK�A (G
2

)(a).

• Interpret hs • ti�A(G)(a) as the set of graphs that can be constructed by first partitioning

the list G into G
1

and G
2

and then choosing both a hsi�A(G1

)(a) graph and a hti�A(G2

)(a)

graph. (We can think of this pair of chosen graphs as being connected by a common root

node.)

The relevant proofs of soundness and isomorphism between interpretations can be extended

to include the Day tensor using the above definitions. A potential source of interest in this

addition is that it adds new shapes of graph to the model. In the sets hti�A(G)(a), all graphs

share the property that there is a root node of degree 1 whose single adjacent edge is outgoing.

However, introducing the Day tensor creates graphs within the model whose roots have outgoing

degree > 1.

Another construction left to implement is a fixed point operator. This would take the form

of a term or an operator f in the syntax such that

Jt(ft)K�A (G)(a) ⇠= JftK�A (G)(a) 8 G 2 !�, a 2 A

From the perspective of our combinatorial model, an operator fulfilling this description would

need to satisfy a condition akin to closure under grafting: there must be a 1-1 correspondence

53

a

Figure 8.1: The shape of a graph in hs • ti�
A

(G)(a), where s and t are terms of the di↵erential �-calculus.

between graphs in JftK�A (G)(a) and graphs that result from grafting an JftK�A (Gi)(Ai) graph

into a JtK�A!A (H)(A, a) for some choice of A 2 !A and partition (H,G
1

, ..., G|A|) 2 D(G).

Constructions of fixed points by iterative processes as in [2] may provide the behaviour of fixed

point operators in the categorical and combinatorial models.

The combinatorial description and accompanying counting method introduced in this disser-

tation may have future uses for studying the existence and number of graphs satisfying certain

constraints. When viewed combinatorially, the profunctors in this model appear to take an

input bag of vertices along with information about how each vertex may connect to each other,

and map that bag to the set of graphs that can be ‘properly’ constructed out of them. In the

case where atomic types are interpreted as the terminal category 1, the information included in

each vertex in � is its degree; when atomic types are interpreted as categories with only iden-

tity arrows (though potentially multiple objects), the internal information can be configured

to encode what type, or color, each vertex can be connected to via each edge. Investigating

the connection of this model to graph coloring and other such problems is an opportunity for

further work.

54

Appendix A

Coends

The proofs of various lemmas and theorems in this dissertation require calculating (up to iso-

morphism) several coends; the following lemmas allow us to manipulate and simplify coends

towards this goal.

Theorem A.1 (Fubini’s theorem for coends [16]). Given a functor F : Cop ⇥ C ⇥ Eop ⇥ E ! D,

Z
(c,e)

F (c, c, e, e) ⇠=
Z c Z e

F (c, c, e, e) ⇠=
Z e Z c

F (c, c, e, e)

Lemma A.2 (Ninja Yoneda Lemma [16]). Let F : Cop ! Set and G : C ! Set be functors.

Then

1.

Z c

F (c) ⇥ C(– , c) ⇠= F

2.

Z c

G(c) ⇥ C(c, –) ⇠= G

Lemma A.3 (Empty Set Lemma). Let C be a category and F : C ⇥ Cop ! Set a profunctor.

Suppose C; is a subcategory of C such that for all c 2 C;, F (c, c) = ;. Let C+ be the subcategory of

C consisting of exactly the objects and arrows that are not in C;, and let F+ : C+⇥(C+)op ! Set

be the profunctor F restricted to the domain C+. Then

Z c2C
F (c, c) ⇠=

Z c2C+

F+(c, c)

Proof. First, let (!a)a2C be the projection maps of the coend
R c F+(c, c) and (!+

a)a2C+ the

projection maps of the coend
R c F+(c, c). By the properties of

R c F (c, c) the following diagram

commutes for all arrows f : a ! b in C+:

F+(a, a)

F+(a, b)
R c F (c, c)

F+(b, b)

!
a

F+
(f,id)

F+
(id,f)

!
b

There is a unique morphism h+ :
R c F+(c, c) ! R c F (c, c) such that h+ �!+

a = !a for all a 2 C+.

Now define !+

b to be the empty map ; ! R c F+(c, c) for each b 2 C;. Since F (b, b) = ;, it must

be the case that !b is the empty map ; ! R c F (c, c). So h+ � !+

b = !b on the values b 2 C; as

well.

55

Also, the following diagram commutes for all f : a ! b in C:
F (a, a)

F (a, b)
R c F+(c, c)

F (b, b)

!+
a

F (f,id)

F (id,f)

!+
b

This is in part because if F (a, a) = ; then F (b, a) and F (a, b) must also be empty. If any arrow

f : a ! b, then the functions F (id, f) and F (f, id) induced by f can only be the empty function,

which makes the above diagram commute trivially.

Then there is a unique morphism h :
R c F (c, c) ! R c F+(c, c) such that h � !a = !+

a for all

a 2 C. But then we have h � h+ � !+

a = !+

a for all a 2 C, which implies that h � h+ = id due

to the fact that a coend is unique up to unique isomorphism. Thus
R c F+(c, c) ⇠= R c F (c, c) as

desired.

Lemma A.4. Let P : � !! A and Q : � !! B be generalized species and let Y 2 !�, a 2 A, and
b 2 B. Then

X1,X22 !�Z
P (X

1

)(a) ⇥ Q(X
2

)(b)⇥ !�(X
1

� X
2

, Y) ⇠=
X

(Y1,Y2)2D(Y)

P (Y
1

)(a) ⇥ Q(Y
2

)(b)

Proof.
X1,X22 !�R

P (X
1

)(a) ⇥ Q(X
2

)(b)⇥ !�(X
1

� X
2

, Y)

⇠=
X1,X22 !�Z

P (X
1

)(a) ⇥ Q(X
2

)(b) ⇥
2

4
X

(Y1,Y2)2D(Y)

!�(X
1

, Y
1

)⇥!�(X
2

, Y
2

)

3

5

⇠=
X1,X22 !�Z X

(Y1,Y2)2D(Y)

P (X
1

)(a) ⇥ Q(X
2

)(b)⇥ !�(X
1

, Y
1

)⇥!�(X
2

, Y
2

)

⇠=
X

(Y1,Y2)2D(Y)

X1,X22 !�Z
P (X

1

)(a) ⇥ Q(X
2

)(b)⇥ !�(X
1

, Y
1

)⇥!�(X
2

, Y
2

)

⇠=
X

(Y1,Y2)2D(Y)

P (Y
1

)(a) ⇥ Q(Y
2

)(b)

The following lemma and corollary follow from the functoriality of coends and Lemma A.3.

Lemma A.5. If F : C ⇥ Cop ! Set is a profunctor and X is a set, then
Z c

F (c, c) ⇥ X ⇠= X ⇥
Z c

F (c, c)

Corollary A.6. If F : !A⇥ !Aop ! Set is a profunctor and F (A,A) = ; for all A 2 !A except

for the empty list [], then Z A

F (A,A) ⇠= F ([], [])

56

Appendix B

Assorted proof details

This appendix contains proofs of several lemmas stated in Sections 5-7.

Lemma 5.5. Let � ` t : A, and suppose that the typing context � contains an assignment x : B

such that x does not appear free in any subterm of t. If the bag G 2 ! J�K contains any objects

whose index in J�K is the index of x in �, then JtK�A (G)(a) = ; for all a 2 A.

Proof. By induction on t. Let � =
�
x
1

: A
1

, ..., x|�| : A|�|

. Suppose the variable xn does not

appear free in any subterm of t, and the list G 2 ! J�K contains some object g 2 G with index n

within J�K =
d

i2|�| Jxi : AiK.

• case t ⌘ 0: J0K�A (G)(a) = ;, so the property holds trivially.

• case t ⌘ xi where i 6= n: JxiK�A (G)(a) = !�([
`
i
(a)], G) = ; because there is no object in

[
`
i
(a)] that can be matched to the object g with index n in G.

• case t ⌘ u+ v:

Ju+ vK�A (G)(a) = JuK�A (G)(a) + JvK�A (G)(a)

= ; + ; by inductive hypothesis

= ;

• case t ⌘ �xi.s:

J�xi.sK�A!B (G)(A, b) = JsK�B (G ⌦ A)(b)

= ; by inductive hypothesis

• case t ⌘ Du · v:

JDu · vK�A!B (G)(A, b) ⇠=
X

(G1,G2)

2D(G)

a2AZ
JuK (G

1

)(A � [a], b) ⇥ JvK (G
2

)(a)

For each partition (G
1

, G
2

) 2 D(G), g appears either in G
1

or G
2

. If g 2 G
1

then

JuK (G
1

)(A � [a], b) = ;, and if g 2 G
2

then JvK (G
2

)(a) = ;. So

X

(G1,G2)

2D(G)

a2AZ
JuK (G

1

)(A � [a], b) ⇥ JvK (G
2

)(a) ⇠=
X

(G1,G2)

2D(G)

a2AZ
;

= ;

57

• case t ⌘ uv:

JuvK�B (G)(b) ⇠=
X

(H1,H2)

2D(G)

A2 !AZ X

(G1,...,G|A|)
2D(H2)

JuK�A!B (H
1

)(A, b) ⇥
2

4
Y

k2|A|

JvK�A (Gk)(Ak)

3

5

For each partition (H
1

, H
2

) 2 D(G), g appears either in H
1

or H
2

. If g 2 H
1

then

JuK (H
1

)(A, b) = ; for any choice of A. If g 2 H
2

then it will be put into one of the sets

in the partition (G
1

, . . . , G|A|) 2 D(H
2

). For each i 2 |A|, if g 2 Gi then JvK (Gi)(Ai) = ;.
So

X

(H1,H2)

2D(G)

A2 !AZ X

(G1,...,G|A|)
2D(H2)

JuK (H
1

)(A, b) ⇥
2

4
Y

k2|A|

JvK (Gk)(Ak)

3

5 ⇠=
X

(H1,H2)

2D(G)

A2 !AZ X

(G1,...,G|A|)
2D(H2)

;

= ;

Lemma 5.4. If G ⌘ G0 2 !� and � ` t : A, then JtK�A (G)(a) ⇠= JtK�A (G0)(a) for all a 2 A.

Proof. By induction on t.

• case t ⌘ 0:

J0K�A (G)(a) = ; = J0K�A (G0)(a)

• case t ⌘ x:

JxK�A (G)(a) = !�([a], G) ⇠= !�([a], G0) = JxK�A (G0)(a)

• case t ⌘ u+ v:

Ju+ vK�A (G)(a) = JuK�A (G)(a) + JvK�A (G)(a)

⇠= JuK�A (G0)(a) + JvK�A (G0)(a) by inductive hypothesis

= Ju+ vK�A (G0)(a)

• case t ⌘ �x.s:

J�x.sK�A!B (G)(A, b) = JsK�B (G ⌦ A)(b)

⇠= JsK�B (G0 ⌦ A)(b) by inductive hypothesis

= J�x.sK�A!B (G)(A, b)

• case t ⌘ Du · v:
JDu · vK�A!B (G)(A, b)

=
X

(G1,G2)

2D(G)

a2AZ
JuK (G

1

)(A � [a], b) ⇥ JvK (G
2

)(a)

⇠=
X

(G1,G2)

2D(G0
)

a2AZ
JuK (G

1

)(A � [a], b) ⇥ JvK (G
2

)(a) because D(G) ⇠= D(G0)

= JDu · vK�A!B (G0)(A, b)

58

• case t ⌘ Du · v:

JuvK�B (G)(b) =
X

(H1,H2)

2D(G)

A2 !AZ X

(G1,...,G|A|)
2D(H2)

JuK�A!B (H
1

)(A, b) ⇥
2

4
Y

k2|A|

JvK�A (Gk)(Ak)

3

5

⇠=
X

(H1,H2)

2D(G0
)

A2 !AZ X

(G1,...,G|A|)
2D(H2)

JuK�A!B (H
1

)(A, b) ⇥
2

4
Y

k2|A|

JvK�A (Gk)(Ak)

3

5

= JuvK�B (G0)(b)

Proposition 5.1. In Section 5.2 we gave two cases of the inductive proof that the equation

JD(�x.t) · sK�A!B (X)(A, b) ⇠=
s
�x.

@t

@x
· s

{
�

B

(X)(A, b) (†)

holds for all s and t. The remaining cases are presented here.

case t ⌘ 0:

JD(�x.0) · sK�A!B (X)(A, b)

⇠=
a2A,M1,M22 !�ZZ

J0K�,x:AB (M
1

⌦ A ⌦ [a])(b) ⇥ JsK�A (M
2

)(a)⇥ !�(M
1

� M
2

, X) (1)

⇠=
a2A,M1,M22 !�ZZ

; (2)

= ; (3)

⇠= J0K�,x:AB (X ⌦ A)(b) (4)

⇠= J�x.0K�A!B (X)(A, b) (5)

⇠=
s
�x.

@0

@x
· s

{
�

A)B

(X)(A, b) (6)

(1) Corollary 5.3 and the definition of J�x.0K; (2) and (4) Definition of J0K; (5) Definition of J�x.0K; (6) Definition
of @0

@x

· s.

case t ⌘ y:

JD(�x.y) · sK�A!B (X)(A, b)

⇠=

a2A,
M1,M22 !�ZZ

JyK�,x:aB (M
1

⌦ A ⌦ [a])(b) ⇥ JsK�A (M
2

)(a)⇥ !�(M
1

� M
2

, X) (1)

⇠=

a2A,
M1,M22 !�ZZ

; ⇥ JsK�A (M
2

)(a)⇥ !�(M
1

� M
2

, X) (2)

59

⇠= ; (3)

⇠= J0K�,x:AB (X ⌦ A)(b) (4)

⇠= J�x.0K�A!B (X)(A, b) (5)

⇠=
s
�x.

@y

@x
· s

{
�

A!B

(X)(A, b) (6)

(1) Corollary 5.3; (2) Lemma 5.5; (4) Definition of J0K; (5) Definition of J�x.0K; (6) Definition of @y

@x

· s.

case t ⌘ �y.u:

s
�x.

@(�y.u)

@x
· s

{
�

A!B!C

(X)(A,B, c) =

s
�xy.

@u

@x
· s

{
�

A!B!C

(X)(A,B, c) (1)

=

s
@u

@x
· s

{
�,x:A,y:B

C

(X ⌦ A ⌦ B)(c) (2)

⇠=
s
@u

@x
· s

{
�,x:A,y:B

C

(X ⌦ B ⌦ A)(c) (3)

=

s
�x.

@u

@x
· s

{
�,y:B

A!C

(X ⌦ B)(A, c) (4)

⇠= JD(�x.u) · sK�,y:BA!C (X ⌦ B)(A, c) (5)

⇠=

a2A,
M1,M22 !(�uB)ZZ

JuK�,x:A,y:B
C (M

1

⌦ A ⌦ [a])(c) ⇥ JsK�,y:BA (M
2

)(a)⇥ !(� u B)(M
1

� M
2

, X ⌦ B) (6)

⇠=
X

(X1,X2)

2D(X⌦B)

a2AZ
JuK�,x:A,y:B

C (X
1

⌦ A ⌦ [a])(c) ⇥ JsK�,y:BA (X
2

)(a) (7)

⇠=
X

(X1,X2)

2D(X)

a2AZ
JuK�,x:A,y:B

C (X
1

⌦ B ⌦ A ⌦ [a])(c) ⇥ JsK�,y:BA (X
2

)(a) (8)

⇠=
a2A, M1,M22 !�ZZ

JuK�,x:A,y:B
C (M

1

⌦ B ⌦ A ⌦ [a])(c) ⇥ JsK�,y:BA (M
2

)(a)⇥ !�(M
1

� M
2

, X) (9)

⇠= JD(�xy.u) · sK�A!B!C (X)(A,B, c) (10)

(1) Definition of @(�y.u)
@x

; (2) Interpretation of abstraction; (3) Lemma 5.4; (4) Interpretation of abstraction; (5)
Inductive hypothesis; (6) Corollary 5.3; (7) Lemma A.4; (8) Lemma 5.5 (because s contains no instances of y);
(9) Lemma A.4; (10) Corollary 5.3.

60

case t ⌘ u+ v:

r
�x.@(u+v)

@x · s
z
�

A!B
(X)(A, b)

=

s
�x.

@u

@x
· s+ @v

@x
· s

{
�

A!B

(X)(A, b) (1)

⇠=
s
�x.

@u

@x
· s

{
�

A!B

(X)(A, b) +

s
�x.

@v

@x
· s

{
�

A!B

(X)(A, b) (2)

⇠= JD(�x.u) · sK�A!B (X)(A, b) + JD(�x.v) · sK�A!B (X)(A, b) (3)

⇠=
a2A, M1,M22 !�ZZ h

JuK�,x:AB (M
1

⌦ A ⌦ [a])(b) ⇥ JsK�A (M
2

)(a)⇥ !�(M
1

� M
2

, X)
i

+
h
JvK�,x:AB (M

1

⌦ A ⌦ [a])(b) ⇥ JsK�A (M
2

)(a)⇥ !�(M
1

� M
2

, X)
i

(4)

⇠=
a2A, M1,M22 !�ZZ h

JuK�,x:AB (M
1

⌦ A ⌦ [a])(b) + JvK�,x:AB (M
1

⌦ A ⌦ [a])(b)
i

⇥ JsK�A (M
2

)(a)⇥ !�(M
1

� M
2

, X) (5)

⇠=
a2A, M1,M22 !�ZZ

Ju+ vK�,x:AB (M
1

⌦ A ⌦ [a])(b) ⇥ JsK�A (M
2

)(a)⇥ !�(M
1

� M
2

, X) (6)

⇠= JD(�x.u+ v) · sK�A!B (X)(A, b) (7)

Figure B.1: (1) Definition of @u+v

@x

·s; (3) Inductive hypothesis; (4) Corollary 5.3 and the fact that coends commute
with coproducts; (5) Distributivity of product over coproduct; (6) Definition of Ju+ vK; (7) Corollary 5.3.

case t ⌘ u v: First, note that

s
�x.

@(uv)

@x
· s

{
�

(X)(A, b) ⇠=
s✓

@u

@x
· s
◆
v

{
�,x:A

(X ⌦ A)(b) +

s✓
Du ·

✓
@v

@x
· s
◆◆

v

{
�,x:A

(X ⌦ A)(b)

We will calculate the two summands separately.

q�
@u
@x · s� vy�,x:A

B
(X ⌦ A)(b)

⇠=
X

(H1,H2)

2D(X⌦A)

C2 !CZ X

(X1,...,X|C|)
2D(H2)

s
@u

@x
· s

{
�,x:A

(H
1

)(C, b) ⇥
2

4
Y

k2|C|

JvK�,x:A (Xk)(Ck)

3

5 (1)

⇠=
X

(H1,H2)

2D(X)

X

(A1,A2)

2D(A)

C2 !CZ X

(X1,...,X|C|)
2D(H2⌦A2)

s
@u

@x
· s

{
�,x:A

(H
1

⌦ A
1

)(C, b) ⇥
2

4
Y

k2|C|

JvK�,x:A (Xk)(Ck)

3

5 (2)

61

⇠=
X

(H1,H2)

2D(X)

X

(A1,A2)

2D(A)

C2 !CZ X

(X1,...,X|C|)
2D(H2⌦A2)

JD(�x.u) · sK� (H
1

)(A
1

, C, b) ⇥
2

4
Y

k2|C|

JvK�,x:A (Xk)(Ck)

3

5 (3)

⇠=
X

(H1,H2)

2D(X)

X

(Y1,Y2)

2D(H1)

X

(A1,A2)

2D(A)

C2 !C, a2AZZ X

(X1,...,X|C|)
2D(H2⌦A2)

JuK�,x:A (Y
1

⌦ A
1

⌦ [a])(C, b) ⇥ JsK�,x:A (Y
2

)(a)

⇥
2

4
Y

k2|C|

JvK�,x:A (Xk)(Ck)

3

5 (4)

⇠=
X

(H1,H2,H3)

2D(X)

X

(A1,A2)

2D(A)

C2 !C, a2AZZ X

(X1,...,X|C|)
2D(H3⌦A2)

JuK�,x:A (H
1

⌦ A
1

⌦ [a])(C, b) ⇥ JsK�,x:A (H
2

)(a)

⇥
2

4
Y

k2|C|

JvK�,x:A (Xk)(Ck)

3

5 (5)

⇠=
X

(H1,H2,H3)

2D(X⌦A)

C2 !C, a2AZZ X

(X1,...,X|C|)
2D(H3)

JuK�,x:A (H
1

⌦ [a])(C, b) ⇥ JsK�,x:A (H
2

)(a)

⇥
2

4
Y

k2|C|

JvK�,x:A (Xk)(Ck)

3

5 (6)

(1) Lemmas 5.3 and A.4; (2) Lemma 5.4; (3) Inductive hypothesis; (4) Lemma 5.3; (5)-(6) By consolidating the
limits of summation and Lemma 5.4.

Next,
q�
Du · � @v@x · s�� vy (X ⌦ A)(b)

⇠=
X

(H1,H2)

2D(X)

X

(A1,A2)

2D(A)

C2 !CZ X

(X1,...,X|C|)
2D(H2⌦A2)

s
Du ·

✓
@v

@x
· s
◆{

(H
1

⌦ A
1

)(C, b) ⇥
2

4
Y

k2|C|

JvK (Xk)(Ck)

3

5 (7)

⇠=
X

(H1,H2,H3)

2D(X)

X

(A1,A2,A3)

2D(A)

C2 !C, c2CZZ X

(X1,...,X|C|)
2D(H3⌦A3)

JuK (H
1

⌦ A
1

)(C � [c], b) ⇥
s
@v

@x
· s

{
(H

2

⌦ A
2

)(c)

⇥
2

4
Y

k2|C|

JvK (Xk)(Ck)

3

5 (8)

⇠=
X

(H1,H2,H3)

2D(X)

X

(A1,A2,A3)

2D(A)

C2 !C, c2CZZ X

(X1,...,X|C|)
2D(H3⌦A3)

JuK (H
1

⌦ A
1

)(C � [c], b) ⇥ JD(�x.v) · sK (H
2

)(A
2

, c)

⇥
2

4
Y

k2|C|

JvK (Xk)(Ck)

3

5 (9)

62

⇠=
X

(H1,H2,H3,H4)

2D(X)

X

(A1,A2,A3)

2D(A)

C2 !C, c2C,
a2AZZZ X

(X1,...,X|C|)
2D(H4⌦A3)

JuK (H
1

⌦ A
1

)(C � [c], b) ⇥ JvK (H
2

⌦ A
2

⌦ [a])(c)

⇥ JsK (H
3

)(a) ⇥
2

4
Y

k2|C|

JvK (Xk)(Ck)

3

5 (10)

⇠=
X

(H1,H2,H3,H4)

2D(X⌦A)

C2 !C, c2C,
a2AZZZ X

(X1,...,X|C|)
2D(H4)

JuK (H
1

)(C � [c], b) ⇥ JvK (H
2

⌦ [a])(c) ⇥ JsK (H
3

)(a)

⇥
2

4
Y

k2|C|

JvK (Xk)(Ck)

3

5 (11)

⇠=
X

(H1,H2,H3)

2D(X⌦A)

C2 !C, c2C,
a2AZZZ X

(X1,...,X|C|+1)

2D(H3⌦[a])

JuK (H
1

)(C � [c], b) ⇥ JsK (H
2

)(a) ⇥
2

4
Y

k2|C|+1

JvK (Xk)((C � [c])k)

3

5

(12)

⇠=
X

(H1,H2,H3)

2D(X⌦A)

C2 !C, a2AZZ X

(X1,...,X|C|)
2D(H3⌦[a])

JuK (H
1

)(C, b) ⇥ JsK (H
2

)(a) ⇥
2

4
Y

k2|C|+1

JvK (Xk)(Ck)

3

5 (13)

(7)-(8) Corollary 5.3 and Lemma A.4; (9) Inductive hypothesis; (10) Corollary 5.3 and Lemma A.4; (11)-(13) By
consolidating the limits of summation and Lemma 5.4.

Finally,
q�

@u
@x · s� vy�,x:A (X ⌦ A)(b) +

q�
Du · � @v@x · s�� vy�,x:A (X ⌦ A)(b)

⇠=
X

(H1,H2,H3)

2D(X⌦A)

C2 !C, a2AZZ X

(X1,...,X|C|)
2D(H3)

JuK (H
1

⌦ [a])(C, b) ⇥ JsK (H
2

)(a) ⇥
2

4
Y

k2|C|

JvK (Xk)(Ck)

3

5

+
X

(H1,H2,H3)

2D(X⌦A)

C2 !C, a2AZZ X

(X1,...,X|C|)
2D(H3⌦[a])

JuK (H
1

)(C, b) ⇥ JsK (H
2

)(a) ⇥
2

4
Y

k2|C|+1

JvK (Xk)(Ck)

3

5 (14)

⇠=
a2A, C2!CZZ X

(H1,H2,H3)

2D(X⌦A⌦[a])

X

(X1,...,X|C|)
2D(H3)

JuK (H
1

)(C, b) ⇥ JsK (H
2

)(a) ⇥
2

4
Y

k2|C|

JvK (Xk)(Ck)

3

5 (15)

⇠=
a2A, C2!CZZ X

(H1,H2,H3)2D(X)

(A1,A2)2D(A�[a])

X

(X1,...,X|C|)
2D(H3⌦A2)

JuK (H
1

⌦ A
1

)(C, b) ⇥ JsK (H
2

)(a) ⇥
2

4
Y

k2|C|

JvK (Xk)(Ck)

3

5 (16)

63

⇠=
X

(H1,H2)2D(X)

a2AZ
JuvK (H

1

⌦ A ⌦ [a])(b) ⇥ JsK (H
2

)(a) (17)

⇠= JD(�x.uv) · sK�A!B (X)(A, b) (18)

(15) Lemma 5.6; (16) Rearranging the limits of summation and Lemma 5.4; (17) Corollary 5.2 and Lemma A.4;
(18) Corollary 5.3 and Lemma A.4.

Proof of Proposition 7.1

• case t ⌘ 0: for G 2 !� and a 2 A,

X

i2I(0,G)

shape(0, G)(i) ⇥ A(a, point(0, G)(i)) =
X

i2;

; ⇥ A(a, a⇤)

= ;
= J0K�A (G)(a)

• case t ⌘ x: Suppose � ` x : A and a 2 A. If G = [a⇤] for some a⇤ 2 A, then
P

i2I(x,G)

shape(x,G)(i) ⇥ A(a, point(x,G)(i))

=
X

i2{1}

shape(x,G)(i) ⇥ A(a, point(x,G)(i))

= shape(x,G)(1) ⇥ A(a, point(x,G)(1))

= {1} ⇥ A(a, a⇤)
⇠=A(a, a⇤)
⇠= !A([a], [a⇤])
= !A([a], G)

⇠= !�([a], G)

= JxK�A (G)(a)

On the other hand, if G is not of the form [a⇤] for any a⇤ 2 A, then
P

i2I(x,G)

shape(x,G)(i) ⇥ A(a, point(x,G)(i))

=
X

i2;

shape(x,G)(i) ⇥ A(a, point(x,G)(i))

= ;
= !�([a], G)

= JxK�A (G)(a)

64

• case t ⌘ u+ v: Suppose � ` u : A and � ` v : A. Then for any G 2 !�,
P

(i,j)2I(u+v,G)

shape(u+ v,G)(i, j) ⇥ A(a, point(u+ v,G)(i, j))

=

2

4
X

(i,1)2I(u+v,G)

shape(u+ v,G)(i, 1) ⇥ A(a, point(u+ v,G)(i, 1))

3

5+

2

4
X

(i,2)2I(u+v,G)

shape(u+ v,G)(i, 2) ⇥ A(a, point(u+ v,G)(i, 2))

3

5

=

2

4
X

i2I(u,G)

shape(u,G)(i) ⇥ A(a, point(u,G)(i))

3

5+

2

4
X

i2I(v,G)

shape(v,G)(i) ⇥ A(a, point(v,G)(i))

3

5

⇠= JuK�A (G)(a) + JvK�A (G)(a)

= Ju+ vK�A (G)(a)

• case t ⌘ Du · v: Suppose � ` u : A ! B and � ` v : A. Since t is in normal form, both

u and v must be in normal form, and u must not be an abstraction. Then the induction

hypothesis applies to u. For any G 2 !�,

JDu · vK�B (G)(A, b)

⇠=
a2AZ F1,F22!�Z

JuK�A!B (F
1

)(A � [a], b) ⇥ JvK�A (F
2

)(a)⇥ !�(F
1

� F
2

, G)

⇠=
X

(G1,G2)2D(G)

a2AZ
JuK�A!B (G

1

)(A � [a], b) ⇥ JvK�A (G
2

)(a)

⇠=
X

i2|D(G)|

a2AZ
JuK�A!B (Gi

1

)(A � [a], b) ⇥ JvK�A (Gi
2

)(a)

⇠=
X

i2|D(G)|

a2AZ 2

4
X

j2I(u,Gi

1)

shape(u,Gi
1

)(j) ⇥ (A) B)((A � [a], b), point(u,Gi
1

)(j))

3

5

⇥ JvK�A (Gi
2

)(a)

⇠=
X

i2|D(G)|

X

j2I(u,Gi

1)

a2AZ
shape(u,Gi

1

)(j)⇥ !A(A⇤, A � [a]) ⇥ B(b, b⇤) ⇥ JvK�A (Gi
2

)(a)

where (A⇤, b⇤) = point(u,Gi
1

)(j)

⇠=
X

i2|D(G)|

X

j2I(u,Gi

1)

a2AZ
shape(u,Gi

1

)(j) ⇥ B(b, b⇤) ⇥ JvK�A (Gi
2

)(a)

⇥
X

a⇤2A⇤

[!A(A⇤ � [a⇤], A) ⇥ A(a⇤, a)]

65

⇠=
X

i2|D(G)|

X

j2I(u,Gi

1)

X

a⇤2A⇤

a2AZ
shape(u,Gi

1

)(j) ⇥ B(b, b⇤) ⇥ JvK�A (Gi
2

)(a)

⇥ !A(A⇤ � [a⇤], A) ⇥ A(a, a⇤)

⇠=
X

i2|D(G)|

X

j2I(u,G1)

X

a⇤2A⇤

shape(u,Gi
1

)(j) ⇥ B(b, b⇤) ⇥ JvK�A (Gi
2

)(a⇤)⇥ !A(A⇤ � [a⇤], A)

⇠=
X

i2|D(G)|

X

j2I(u,Gi

1)

X

a⇤2A⇤

shape(u,Gi
1

)(j) ⇥ JvK�A (Gi
2

)(a⇤) ⇥ (A) B)((A, b), (A⇤ � [a⇤], b⇤))

⇠=
X

i2|D(G)|

X

j2I(u,Gi

1)

X

k2|A⇤|

shape(u,Gi
1

)(j) ⇥ JvK�A (Gi
2

)(Ak) ⇥ (A) B)((A, b), (A⇤ � [A⇤
k], b

⇤))

=
X

(i,j,k)2I(Du·v,G)

shape(u,Gi
1

)(j) ⇥ JvK�A (Gi
2

)(Ak) ⇥ (A) B)((A, b), (A⇤ � [A⇤
k], b

⇤))

where (A⇤, b⇤) = point(u,G⇤
1

)(j)

=
X

(i,j,k)2I(Du·v,G)

shape(Du · v,G)(i, j, k) ⇥ point(Du · v,G)(i, j, k)

• t ⌘ uv case: Suppose � ` u : A ! B and � ` v : A. Then for any G 2 !�,

JuvK�B (G)(b)

⇠=

A2 !A,H2!�,
N2(!�)|A|ZZZ

JuK�A!B (H)(A, b) ⇥
2

4
Y

k2|A|

JvK�A (Nk)(Ak)

3

5⇥ !�(H ⌦
M

k2|A|

Nk, G)

⇠=
X

(H1,H2)

2D(G,2)

A2 !A,
N2(!�)|A|ZZ

JuK�A!B (H
1

)(A, b) ⇥
2

4
Y

k2|A|

JvK�A (Nk)(Ak)

3

5⇥ !�(
M

k2|A|

Nk, H2

)

⇠=
X

(H1,H2)

2D(G,2)

A2 !A,
N2(!�)|A|ZZ 2

4
X

i2I(u,H1)

shape(u,H
1

)(j) ⇥ (A) B)((A, b), point(u,H
1

)(j))

3

5

⇥
2

4
Y

k2|A|

JvK�A (Nk)(Ak)

3

5⇥ !�(
M

k2|A|

Nk, H2

)

⇠=
X

(H1,H2)

2D(G,2)

X

j2I(u,H1)

A2 !A,
N2(!�)|A|ZZ

shape(u,H
1

)(j) ⇥
2

4
Y

k2|A|

JvK�A (Nk)(Ak)

3

5⇥ B(b, b⇤)⇥ !A(A⇤, A)

⇥ !�(
M

k2|A|

Nk, H2

), where (A⇤, b⇤) = point(u,H
1

)(i)

66

⇠=
X

(H1,H2)

2D(G,2)

X

j2I(u,H1)

N2(!�)|A⇤|Z
shape(u,H

1

)(j) ⇥
2

4
Y

k2|A⇤|

JvK�A (Nk)(A
⇤
k)

3

5⇥ B(b, b⇤)⇥ !�(
M

k2|A⇤|

Nk, H2

)

⇠=
X

(H1,H2)

2D(G,2)

X

j2I(u,H1)

X

(G1,...,G|A⇤|)
2D(H2,|A⇤|)

shape(u,H
1

)(j) ⇥
2

4
Y

k2|A⇤|

JvK�A (Gk)(A
⇤
k)

3

5⇥ B(b, b⇤)

⇠=
X

i2|D(G,2)|

X

j2I(u,H1)

X

k2|D(Gi

2,|A⇤|)|

shape(u,Gi
1

)(j) ⇥
2

4
Y

m2|A⇤|

JvK�A ((Gi
2

)km)(A⇤
m)

3

5⇥ B(b, b⇤)

where (A⇤, b⇤) = point(u,Gi
1

)(j)

=
X

(i,j,k)2I(uv,G)

shape(uv,G)(i, j, k) ⇥ point(uv,G)(i, j, k)

67

68

Bibliography

[1] S. Abramsky and N. Tzevelekos. Introduction to categories and categorical logic. In New

structures for physics, pages 3–94. Springer, 2010.

[2] R. Amadio and P.L. Curien. Domains and Lambda-calculi. Cambridge University Press,

New York, NY, USA, 1998.

[3] F. Bergeron. Combinatorial species and tree-like structures. Cambridge University Press,

Cambridge New York, NY, USA, 1998.

[4] R. F. Blute, J.R.B. Cockett, and R.A.G. Seely. Di↵erential categories. Mathematical

structures in computer science, 16(6):1049–1083, 2006.

[5] R. F. Blute and P. Scott. Category theory for linear logicians. Linear logic in computer

science, 316:3–65, 2004.

[6] A. Bucciarelli, T. Ehrhard, and G. Manzonetto. Categorical models for simply typed

resource calculi. Electronic Notes in Theoretical Computer Science, 265:213–230, September

2010.

[7] T. Ehrhard and L. Regnier. The di↵erential lambda-calculus. Theoretical Computer Sci-

ence, 309(1):1–41, December 2003.

[8] M. Fiore. Mathematical models of computational and combinatorial structures. In Foun-

dations of Software Science and Computational Structures, pages 25–46. Springer Berlin

Heidelberg, 2005.

[9] M. Fiore, N. Gambino, M. Hyland, and G. Winskel. The cartesian closed bicategory of

generalised species of structures. Journal of the London Mathematical Society, 77(1):203–

220, October 2007.

[10] M. Fiore, E. Moggi, and D. Sangiorgi. A fully-abstract model for the pi-calculus. In Logic

in Computer Science, 1996. LICS’96. Proceedings., Eleventh Annual IEEE Symposium on,

pages 43–54. IEEE, 1996.

[11] J.Y. Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, 1987.

[12] M. Hyland. Some reasons for generalising domain theory. Mathematical Structures in

Computer Science, 20(2):239–265, 2010.

[13] A. Joyal. Une théorie combinatoire des séries formelles. Advances in Mathematics, 42(1):1–

82, October 1981.

[14] S. Mac Lane. Categories for the Working Mathematician. Springer New York, 1978.

[15] J.S. Lemay. Personal communication. 31 July 2018.

[16] F. Loregian. This is the (co)end, my only (co)friend, 2015.

69

[17] M. Méndez. Set Operads in Combinatorics and Computer Science (SpringerBriefs in Math-

ematics). Springer, 2015.

[18] C.-H. Luke Ong. Quantitative semantics of the lambda calculus: Some generalisations of

the relational model. In 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer

Science (LICS). IEEE, June 2017.

[19] T. Tsukada, K. Asada, and C-H. L. Ong. Generalised species of rigid resource terms. In

Logic in Computer Science (LICS), 2017 32nd Annual ACM/IEEE Symposium on, pages

1–12. IEEE, 2017.

70

	Introduction
	Species of structure
	Combinatorial species
	Generalized species
	Species operations
	The bicategory of generalized species

	Esp as a model of linear logic
	Relations and profunctors
	Making Rel and Prof into models of linear logic

	The differential -calculus
	Syntax + reduction rules
	Typing system

	Interpreting the differential -calculus in Esp
	Interpreting types, contexts, and terms
	Soundness
	Examples

	A combinatorial view of the interpretation
	Objects of ! as vertices
	Grafting + the action of morphisms in ! and A on graphs
	Reinterpreting terms as sets of graphs
	Examples

	Counting graphs in the interpretation
	Further Work
	Appendix Coends
	Appendix Assorted proof details
	Bibliography

