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Abstract

In this dissertation I present a framework for using density matrices in-

stead of vectors in a distributional model of meaning. I present an asym-

metric similarity measure between two density matrix representations

based on relative entropy and show that this measure can be used for

hyponymy-hypernymy relations. It is possible to compose density ma-

trix representations of words to get a density matrix representation of a

sentence. This map respects the generality of individual words in a sen-

tence, taking sentences with more general words to more general sentence

representations.
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Chapter 1

Introduction

The term distributional models of meaning is almost synonymous with the term vector

space models of meaning. This is because vector spaces are the simplest, most natural

candidate for modeling contextual similarity between words. There are fast, efficient

algorithms for obtaining vector representations and for processing them. Vector

spaces are basic and widely used structures in a variety of disciplines, and using

them as a basis for modeling semantic content provides a rich array of methods

at linguists’ disposal. Their obvious practicality, however, does not guarantee that

they possess the expressive power needed to model meaning. The fact that current

distributional models fall short of modeling subsumption and entailment is well noted

[23], but most of the work has been focused on developing more sophisticated metrics

on vector representations.

In this dissertation I suggest the use of density matrices instead of vector spaces as

the basic distributional representations for the meanings of words. Density matrices

are widely used in quantum mechanics, and are a generalization of vectors. The

advantages of using density matrices to model meaning are as follows:

• Density matrices have the expressive power to represent all the information

vectors can represent: they are a suitable implementation of the distributional

hypothesis.

• They come equipped with a measure of information content, and so provide

a natural way of implementing asymmetric relations between words such as

hyponymy-hypernymy relations.

• They form a compact closed category. This allows the previous work on

obtaining representations for meanings of sentences from the meaning of words

applicable to density matrices without any major modifications.
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• Density matrix representations of subsumption relations between words work

well with the categorical map from meanings of words to the meaning of the

sentence. This promises, from representations of individual words, a method to

obtain entailment relations on the level of sentences.

This work is organized as follows: in Chapter 2, I present two main paradigms

of computational linguistics, formal semantics and distributional semantics. I review

the relevant work done to address the shortcomings of distributional semantics on

modeling compositionality and entailment. I mention some literature that uses similar

methods with this work, such as information theoretic measures and density matrices.

I also review some relevant distance measures on semantic networks. These models

represent meaning based on asymmetric relations as much as symmetric ones, and

provide a natural venue for investigating and comparing measures for hyponymy.

Chapter 3 introduces the linear algebraic notation I use throughout the

dissertation, borrowed from quantum mechanics. Chapter 4 presents the relevant

measures to quantify information content of discrete probability distributions and

their generalizations to density matrices. Chapter 5 introduces the categorical

framework that the compositional distributional model presented in Chapter 6 uses.

Chapter 7 shows that density matrices fit into the same categorical framework.

Chapter 8 is the culmination of all the previous material, where I explain

what kind of a distributional model would use the full power of the density

matrix formalism, review three candidates for a similarity measure, and suggest

an asymmetric representativeness measure based on relative entropy together with

a partial order that it imposes on density matrices. I show that according to the

representativeness measure, the composition map presented in chapter 6 takes more

general words to more general sentences, irrespective of the choice for the sentence

space. Chapter 9 illustrates the ideas laid out in chapter 8 by applying them to

example sentences.

This dissertation presents theoretical work that demonstrates using density

matrices instead of vector spaces for modeling meaning provides promising methods

to overcome some basic shortcomings of the current state-of-the-art distributional

models. I suggest density matrices as a mathematical framework, and leave the

implementation and testing of these ideas for further work.
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Chapter 2

Literature Review

2.1 Formal semantics

There are two main paradigms for computational natural language semantics. First

is formal semantics, which takes a model-theoretic approach to modeling meaning. In

formal semantics, the meaning of a sentence is a mapping from the sentence to models

in which it is deemed to be true. This approach was introduced mainly by Richard

Montague and is often referred to as Montague grammar. The spirit of his method

is well reflected in the name of his famous paper “English as a Formal Language”

in which Montague declares: “I reject the contention that an important theoretical

difference exists between formal and natural languages.” [28, p.189]. He made use

of a typed intensional logic together with a model structure that included a set of

possible worlds. He defined the denotation of a sentence as a function from possible

worlds and moments of time to truth values. His program was based on converting

sentences of natural language into logic formulas, which were then assigned a semantic

interpretation in the form of a denotation. See [33, Lecture 2, Appendix] for a more

detailed presentation of his intensional logic.

Formal semantics succeeded in providing an account of two important aspects of

natural language semantics:

1. Compositionality: This is the idea that the meaning of the whole is a function

of its parts, and the way they are syntactically combined [31]. One of the

primary goals of formal semantics is to lay out the precise way the syntax of a

sentence affects its meaning, since a satisfactory linguistic theory must address

how a competent speaker can understand the meanings of novel sentences [32].

One of the most important innovations Montague brought into linguistic

semantics from the field of formal logic was lambda terms. He used lambda
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abstractions to model the meanings of some words as functions, and function

application served as the composition operation that relates the meanings of

individual words and returns the meaning of the larger phrase.

2. Entailment: In Montague’s own words, the aim of semantics should be to

“characterize the notion of a true sentence (under a given interpretation) and

of entailment” [29, p.223]. The model theoretic basis of formal semantics

provides the necessary framework for such characterization. The denotation

of a sentence characterizes in which worlds a sentence is true, and entailment

spans all possible worlds: sentence A is defined to entail sentence B if in all

models in which the interpretation of A is true, the interpretation of B is also

true[18].

2.2 Distributional semantics

Distributional semantics adopt a corpus based approach to natural language

semantics. The theoretical assumption behind a wide range of methods that fall

under distributional semantics can be summarized by Firth’s dictum: “you shall

know the word by the company it keeps”[9]. The idea that contexts are intimately

connected with meaning can be traced back to Harris [15, p.156]:

If we consider words of morphemes A and B to be more different in

meaning than A and C, then we will often find that the distributions

of A and B are more different than the distributions of A and C. In other

words, difference in meaning correlates with difference of distribution.

Distributional methods rely on co-occurrence statistics of words to represent

the words’ meanings as vectors in a high dimensional vector space. Consequently,

distributional models are also referred to as vector space or semantic space models.

Vector spaces provide a truly distributional representation: the semantic content of

a word is defined in relation to the words it is close to and far from in meaning. This

aspect gives rise to a model of meaning that is inherently gradual.

The distributional representations are usually obtained from large corpora. The

simplest way to obtain such a representation of a word w is to pick a set of context

words, then count the number of times w occurs in proximity with each of the context

words. Then the distributional representation of w would be a normalized vector

where each context word c corresponds to a basis vector
−→
bc , and the co-occurrence
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frequency of w and c becomes the weight of
−→
bc in the vector representation of w.

There are a number of computational methods that improve on this basic idea, such

as Latent Semantic Analysis (LSA) [6] and Hyperspace Analogue to Language (HAL)

[25].

Two main properties of the distributional models make them particularly suitable

for various Natural Language Processing applications:

• It is possible to automatically obtain meaning representations of words from

text.

• The geometric and gradual representations provide several natural similarity

measures on the representations.

Success stories of the applications of distributional semantics include automatic

thesaurus extraction [14, 5], automated essay marking [40], and word-sense

discrimination [27, 36].

The weaknesses of distributional semantics are exactly the strengths of formal

semantics: compositionality, inference and logic. I will focus on the previous work

done to address the first two of these.

Compositionality in distributional semantics. Distributional semantics oper-

ates almost entirely on the word level, since its methods cannot be applied to entire

sentences. On a practical level this is because entire sentences occur too infrequently

to obtain meaningful statistics. On a more conceptual level, trying to assign mean-

ings to sentences by treating them as single blocks would fail as a theory of meaning,

since it would ignore the fundamental fact that humans understand sentences they’ve

never heard before.

There has been a recent interest in methods of composition within the

distributional semantics framework. There are a number of composition methods

in literature. See [12] for a survey of compositional distributional models and a

discussion of their strengths and weaknesses. The work in this dissertation is built

upon [4], a compositional model based on category theory. This model was shown to

outperform the competing compositional models in [13].

Entailment in distributional semantics. The work on entailment in distribu-

tional semantics has been based almost entirely on lexical entailment, where it roughly

translates as follows: w entails v if the meaning of a word w is included in the meaning
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of a word v, or equivalently if w is-a v. I will refer to this property as the subsumption

relation between v and w.

The notion of distributional similarity is a somewhat loose notion that does

not necessarily capture whether the meaning will be preserved when a word is

replaced with another one, as noted in [11]. The usual similarity measure falls short

on this task since it is symmetric, whereas whether one can use a given word in

place of another is clearly not. One can freely say furniture instead of table, but

not the other way around. This distinction is important for a number of Natural

Language Processing applications such as Question Answering, Information Retrieval,

Information Extraction, and Text Categorization [19].

A number of non-symmetric similarity measures [43, 3, 19, 23] rely on some

variation of the Distributional Inclusion Hypothesis.

Distributional Inclusion Hypothesis[19]: If u is semantically narrower

than v, then a significant number of salient distributional features of u are

also included in the feature vector of v.

[11] break the Distributional Inclusion Hypothesis in two:

• Hypothesis 1: If v => w then all the characteristic features of v is expected

to appear in w.

• Hypothesis 2: If all the characteristic features of v appear in w, then v => w.

They develop an Inclusion Testing Algorithm to test the two hypotheses, and conclude

that while the first one is verified by their experiments, the second hypothesis does

not fully hold. One of their suggestions for increasing the prediction power of their

method is to include more than one word in the features.

A similar idea is confusion probability [38, 22], which measures the degree to which

a word w can be substituted in the contexts v appears in. α-skew divergence, suggested

in [22], is another asymmetrical similarity measure. It is based on Kullback-Leibler

divergence (KL-divergence) , and has been shown to outperform the other symmetric

measures considered in the study.

[35] use a measure based on entropy to detect hyponym-hypernym relationships

in given pairs. The measure they suggest rely on the hypothesis that hypernyms

are semantically more general than hyponyms, and therefore tend to occur in less

informative contexts. [16] rely on a very similar idea, and use KL-divergence between

the target word and the basis words to quantify the semantic content of the target
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word. They conclude that this method performs equally well in detecting hyponym-

hypernym pairs as the overall frequency of the word in corpus, and reject the

hypothesis that more general words occur in less informative contexts. Their method

differs from mine in that they use relative entropy to quantify the overall information

content of a word, and not to compare two target words to each other.

[1] combines entailment and composition to some degree. Their method goes

beyond lexical entailment and applies to some types of noun-phrases. They build

on the intuition that an adjective noun pair such as red car almost always entails

the noun car. They use the distributional data on such adjective-noun pairs to train

a classifier, which is then utilized to detect novel noun pairs that have the same

relation, such as dog and animal. They use the same method on detecting entailment

in quantifier-noun pairs. The classifier trained on pairs such as many dogs - some

dogs successfully predict the entailment relation between all cats - several cats.

From meaning as a point to meaning as a region. From cognitive science,

Gärdenfors suggests a model of conceptual representation that he calls conceptual

spaces [10]. This model treats concepts as regions in a space where the bases are

perceptual dimensions, and natural properties are those that occupy a convex region of

the space. Going from points to regions has the obvious application of characterizing

the generality of meanings and subsumption relations. [7] implements these ideas

in a co-occurrence space to generalize the representation of a word from a vector

to a region. She concludes that this approach is successful in detecting hyponymy-

hypernymy relations.

Density matrices in linguistics and IR. [2] use density matrices to model

context effects in a conceptual space. In their quantum mechanics inspired model,

words are represented by mixed states and each eigenstate represents a sense of the

word. Context effects are then modeled as quantum collapse.

The most notable suggestion of using density matrices in a related area is [41],

where a theory of Information Retrieval based on density matrices is sketched out.

[41] connects the logic of the space and density matrices as follows:

Let E be a projector in a Hilbert space. Then the order relation

E ≤ F if and only if FE = E

makes the set of projectors in a Hilbert space into a complete lattice, and hence ≤
provides an entailment relation.
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This logical structure is tied to density matrices conceptually by pointing out that

a density matrix is a generalized question, thus can be decomposed by the Spectral

Theorem into a linear combination of yes-or-no questions. Yes-or-no questions

correspond to projectors since any projector has exactly two eigenvalues, 1 and 0.

2.3 Semantic network models

A semantic network is a network representation of meaning, with nodes representing

words or classes of words, and directed and labeled edges representing certain relations

that hold between the classes. Most widely used semantic network is WordNet [8], a

hand coded lexical database for English that contains more than 118,000 word forms

and 90,000 word senses. The words are organized into groups of synonyms called

synsets. Wordnet defines a number of non-reflexive relations between synsets, as well

as the reflexive relations synonymy and antonymy.

• Hyponymy is the is a relationship between nouns: dog is a hyponym of animal.

The opposite relation is called hypernymy: furniture is a hypernym of table.

Because there is mostly a single hypernym for many hyponyms, this relation

organizes nodes into a hierarchical tree structure. The tree is sometimes referred

to as an is-a tree.

• Meronymy is the whole-part relationship between nouns: wheel is a meronym

of car.

• Troponymy is the verb equivalent of hyponymy: stroll is a troponymy of walk.

• Entailment is a relationship between verbs: snore entails sleep.

The hierarchical structure of hyponymy relations are suggestive of information

theoretic interpretations: the higher up an is-a tree one goes, less specific the words

become, and this intuitively correlates with less information. Indeed, there has been

several applications of these ideas to semantic networks:

Applications of entropy in semantic networks. [34] offers a model to evaluate

semantic similarity in a taxonomy based on the notion of information content. His

starting point is the hypothesis that “the similarity of two concepts is the extent

to which they share information”. He assumes a taxonomical representation, and

defines the similarity of two concepts c1 and c2 as the entropy of their lowest common

ancestor. [24] also define a similarity measure based on information content that
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they derive from reasonable assumptions for similarity. They demonstrate that it is

applicable to a number of representations of meaning, including a semantic network.
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Chapter 3

Pure States and Mixed States in
Quantum Mechanics

Quantum mechanics is formulated using complex Hilbert spaces. Hilbert spaces are

real or complex complete inner product spaces. Hilbert spaces used in linguistics

are finite dimensional, thus trivially satisfy the completeness condition. A real vector

space is a Hilbert space if it is equipped with an inner product. This qualifies meaning

spaces in distributional semantics as Hilbert spaces, so the mathematical notation

developed to reason about quantum mechanics can be applied to meaning spaces

as well. I will use this notation, referred to as the Dirac notation for the rest of

my dissertation. Here I introduce the notation together with its terminology from

quantum mechanics, following the presentation in [30] closely. What these linear

algebraic concepts correspond to in quantum mechanics is not of primary relevance.

Pure states. In quantum mechanics, pure states are unit vectors in a Hilbert space.

The standard notation for a pure state is the following:

|ψ〉

Where ψ is a label and |·〉 indicates that it is a vector (or equivalently, a pure state).

This is referred to as a ket. |ψ〉 can also be seen as an operator F→ V , where F is the

underlying field. Notice that such operators are in one-to-one correspondence with

the elements of a Hilbert space. The dual of a vector |ψ〉 is the effect corresponding

to the state, and it is the dual operator V → F. It is also referred to as a bra, and it

is written as the following:

〈ψ|

This the Hermitian conjugate of |ψ〉.
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The inner product of two vectors |ψ〉 and |φ〉 is written as 〈ψ|φ〉, and as the

notation suggests, is calculated by multiplying the Hermitian conjugate of |ψ〉 with

|φ〉. 〈ψ|φ〉 = 〈φ|ψ〉, so it doesn’t matter whether the conjugation is applied to the

first or the second vector.

Outer product representation. A useful way to represent linear operators is

called the outer product representation. Let |v〉 be a vector in a Hilbert space V and

|w〉 be a vector in a Hilbert space W . |w〉〈v| is defined to a the linear operator from

V to W , and its action is defined by:

(|w〉〈v|)(|v′〉) ≡ |w〉〈v|v′〉 = 〈v|v′〉|w〉

So the operator |w〉〈v| acts on |v′〉 ∈ V by taking it to 〈v|v′〉|w〉, which is the same

operation as multiplying |w〉 ∈ W with the scalar 〈v|v′〉.
An arbitrary operator A : V → W can be written out using the outer product

formulation. Let {|vi〉}i and {|wj〉}j be bases for V and W respectively, and [mij] be

the matrix representation of the operator A in these chosen bases. Then,

A =
∑
i,j

mij|wj〉〈vi| and

mij = 〈wj|A|vi〉

Eigenvectors and eigenvalues. A diagonal representation of an operator A on

a vector space V is:

A =
∑
i

λi|i〉〈i|

Vectors |i〉 make up an orthonormal basis A diagonalizes in, hence they are

eigenvectors of A. λi are the values in the diagonal entries: the eigenvalues

corresponding to each |i〉. With the Dirac notation it is easy to check that A|i〉 = λi|i〉.

Projectors. An operator that is equal to its own adjoint is called Hermitian

or self-adjoint. Projectors are a class of Hermitian operators that are in one-to-one

correspondence with the subspaces of a Hilbert space. These are the operators that

are defined to act as the identity morphism on a subspace V , and as the zero morphism

on V ⊥, the orthogonal complement of V .

11



Definition 3.1. Suppose W is a k-dimensional subspace of the d-dimensional Hilbert

space V . It is possible to construct an orthonormal basis |1〉, . . . , |d〉 for v such that

|1〉, . . . , |k〉 is an orthonormal basis for W using the Gram-Schmidt procedure [30,

p.66].Then, the projector onto the subspace W is:

P ≡
k∑
i=1

|i〉〈i|

Equivalently, P is a projector if it satisfies P = P 2.

Theorem 3.2. (Real Spectral Theorem) An operator M on a real vector space V

is hermitian if and only if it is diagonal with respect to some orthonormal basis for

V .

For the proof, see [30, p.72]

Mixed states. A generalization of the idea of pure states are mixed states.

Mixed states are defined to be probability distributions over ensembles of pure states,

or equivalently as probability distributions on subspaces of a Hilbert space. The

mathematical tool used to express this concept is called the density operator :

Definition 3.3. Given a set {pi, |φ〉i}i where {|φ〉i} is a set of orthonormal pure

states and {pi} is a probability distribution over them, the corresponding density

operator or density matrix is:

ρ ≡
∑
i

pi|φi〉〈φi|

Definition 3.4. A positive operator is an operator such that for any vector |v〉,
〈v|A|v〉 is a real, non-negative number.

Theorem 3.5. An operator ρ is a density operator if and only if it is a positive

Hermitian operator with trace equal to one.

Proof. Any positive Hermitian operator has a diagonal representation
∑

i λi|i〉〈i|,
with non-negative eigenvalues λi by spectral decomposition. A positive Hermitian

operator with trace equal to one would hence have
∑

i λi = 1, so it is a density

operator for the ensemble {λi, |i〉}i.
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Any density operator ρ =
∑

i pi|i〉〈i| has trace equal to one, since
∑

i pi = 1. It is

positive since for any vector |v〉:

〈v|ρ|v〉 =
∑
i

pi〈v|i〉〈i|v〉 (3.1)

=
∑
i

pi|〈v|i〉|2 ≥ 0 (3.2)

and it is clearly symmetric, so ρ is a positive Hermitian operator with trace equal to

one.

As for vector spaces, there is an inner product defined on density matrices:

Definition 3.6. If A and B are density matrices of same dimensions, the trace inner

product of A and B is defined to be

tr(ATB)

If A =
∑

i pi|i〉〈i| and B =
∑

j qj|j〉〈j|

tr(ATB) = tr

(∑
i

pi|i〉〈i|
∑
j

qj|j〉〈j|

)
(3.3)

=
∑
i,j

piqj〈i|j〉tr(|i〉〈j|) (3.4)

=
∑
i,j

piqj〈i|j〉〈i|j〉 (3.5)

=
∑
i,j

piqj〈i|j〉2 (3.6)

Concretely, the trace inner product of two density matrices is the sum of their entry-

wise products.

Trace inner product satisfies the conditions for an inner product:

Conditions for an inner product [30, p. 65] A function (·, ·) : V × V → F is an

inner product if:

• (|v〉, |v〉) ≤ 0 with equality if and only if |v〉 = 0.

• (|v〉, |w〉) = (|w〉, |v〉)∗

• (·, ·) is linear in the second argument:(
|v〉,

∑
i

λi|wi〉

)
=
∑
i

λi(|v〉, |w〉)
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One can check that the trace inner product indeed satisfies these properties, but

an easier way to see this is to note that the space of n by n matrices is isomorphic

to an n2 dimensional vector space, and the trace inner product of two n by n density

matrices is equal to the usual inner product of the n2 dimensional vector counterparts.
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Chapter 4

Classical and Quantum
Information Measures

In this chapter I will introduce the origins and the ideas behind the information

measures I apply to density matrix representations of meaning. These come from

the field of information theory, and are based on the idea of entropy. I first

introduce classical entropy and classical relative entropy, which are defined on discrete

probability distributions. Then I present von Neumann entropy and quantum relative

entropy. These generalize their classical counterparts to density matrices, and include

classical entropy measures as special cases. This chapters follows [30].

Classical entropy. Information theory quantifies the amount of information one

gains on average when an event E occurs in a probabilistic experiment, or equivalently,

the uncertainty one has before any events take place.

If the probability of an event E occurring is already 1, one gains no information

from observing E. The event was expected with certainty anyways. On the other

hand if E has a very small probability of occurring, one would be quite surprised to

observe it. The information one gains from the observation is high. If E and F are

two independent events, the information one gain from observing both E and F is

the sum of the information one gain from observing E and F separately:

I(EF ) = I(E) + I(F )

Where I(E) denotes the information of the event E.

If I(E) is required to be a smooth function only dependent on the probability of

E, then any I that suits the above conditions is necessarily defined as:

I(E) = k log pE
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Where k is an arbitrary constant, and pE is the probability of event E. Since the

constant k does not affect the desired properties, it is assigned the value −1.

Definition 4.1. The Shannon entropy associated with a discrete probability

distribution is its weighted average of information:

H(X) ≡ H(p1, p2, . . . , pn) ≡ −
∑
x

px log px

However, note that even if this is an intuitive justification for the definition of

entropy, entropy is originally defined to quantify the minimal resources to store

information. When the log in the definition is taken to be base 2, the formula gives

the minimum number of bits needed to store the outcome of string of independent,

identically distributed random variables without loosing any information.

Relative entropy. The idea of relative entropy is first introduced by Kullback and

Leibler [20] and is therefore also referred to as Kullback-Leibler divergence.

Definition 4.2. Relative entropy is an entropy-like measure of the closeness of

two probability distributions, p(x) and q(x), over the same index set, x:

H(p(x)||q(x)) ≡ −
∑
x

p(x) log
p(x)

q(x)
≡ −H(X)−

∑
x

p(x) log q(x)

Here we use the convention that 0 log 0 = 0 and x log 0 = −∞ for x > 0.

Consider the case where the probability distribution is p(x), but we erroneously

believe that it is q(x). The average information according to this erroneous belief is:

−
∑
x

p(x) log q(x)

The real amount of information we gain, however, is the regular Shannon entropy:

−
∑

x p(x) log p(x). Relative entropy is the difference of these two. For the purposes

of this dissertation, it is important that relative entropy is non-symmetric, and non-

negative.

Theorem 4.3. The relative entropy is non-negative, H(p(x)||q(x)) ≥ 0 with equality

if and only if p(x) = q(x) for all x.
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Proof. log x ln 2 + lnx ≤ x − 1, for all positive x, with equality if and only if x = 1.

So − log x ≥ (1− x)/ ln 2.

H(p(x)||q(x)) = −
∑
x

p(x) log
p(x)

q(x)
(4.1)

≥ 1

ln 2

∑
x

p(x)

(
1− q(x)

p(x)

)
(4.2)

=
1

ln 2

∑
x

(p(x)− q(x)) (4.3)

=
1

ln 2
(1− 1) = 0 (4.4)

Equality occurs on the second line only when q(x)/p(x) = 1, or in other words, if

q(x) and p(x) are identical for all x.

[42] explains the intuition behind the non-symmetry of relative entropy with the

following analogy: suppose that we are given a coin that can either be completely

fair, or always lands heads. If we toss the coin and it lands tails, we immediately

know for sure that it is not completely unfair. However, if we keep tossing it and

it keeps landing heads, even though we can be more and more certain that it is the

completely unfair coin, we cannot be totally sure.

Quantum entropy. Quantum entropy, or von Neumann entropy is the generaliza-

tion of Shannon entropy from discrete probability distributions to probability distri-

butions on Hilbert spaces.

Definition 4.4. Von Neumann entropy of a density matrix ρ is defined as:

S(ρ) ≡ −tr(ρ log ρ)

or equivalently as

s(ρ) ≡ −
∑
x

λx log λx

where λx are the eigenvalues of ρ.

Von Neumann entropy is always non-negative, and is zero only when the state is

pure, or equivalently when it is a projector onto a one dimensional subspace. It is

at most log d where d is the dimension of the Hilbert space. This happens when the

state is completely mixed: I/d. This means that the density matrix assigns uniform

probability to the entire space.
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Quantum relative entropy. Quantum relative entropy is a generalization of

classical relative entropy, and like its classical counterpart, offers a measure on the

distinguishability of two density matrices ρ and σ. It was first considered by Umegaki

[39].

Definition 4.5. The (quantum) relative entropy of two density matrices ρ and

σ is:

N(ρ||σ) ≡ tr(ρ log ρ)− tr(ρ log σ)

where 0 log 0 = 0 and x log 0 =∞ when x > 0 by convention.

Proposition 4.6. quantum relative entropy is always non-negative:

N(ρ||σ) ≥ 0

with equality if and only if ρ = σ.

Proof. Let ρ =
∑

i pi|i〉〈i| and σ =
∑

j qj|j〉〈j|, where {|i〉}i and {|j〉}j are the

orthonormal decompositions for ρ and σ respectively. Then,

S(ρ||σ) =
∑
i

pi log pi −
∑
i

〈i|ρ log σ|i〉

=
∑
i

pi log pi −
∑
i

pi〈i| log σ|i〉

=
∑
i

pi

(
log pi − 〈i|

(∑
j

log(qj)|j〉〈j|

)
|i〉

)

=
∑
i

pi

(
log pi −

∑
j

〈i|j〉2 log qj

)

[Pij] where Pij ≡ 〈i|j〉2 is a doubly stochastic matrix, which means
∑

i Pij =
∑

j Pij =

1. By this property, it follows that
∑

j Pij log qj ≤ log(
∑

j Pijqj) with equality if and

only if there exists a j for which Pij = 1. Thus

S(ρ||σ) ≥
∑
i

pi log
pi∑
j Pijqj

with equality if and only if [Pij] is a permutation matrix, that is, each row and

each column of [Pij] has one 1 and all other entries are 0. From theorem 4.3∑
i pi log

pi∑
j Pijqj

≥ 0, so S(ρ||σ) ≥ 0. This means that ρ and σ are diagonal in

the same basis and has the same eigenvalues for each eigenvector, so if S(ρ||σ) = 0

then ρ = σ.
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Proposition 4.7. For two density matrices ρ and σ, N(ρ||σ) = ∞ if supp(ρ) ∩
ker(σ) 6= 0, and is finite otherwise.

Proof. N(ρ||σ) = ∞ if and only if tr(ρ log σ) = −∞, and is finite otherwise. Let

σ =
∑

i pi|i〉〈i|.

tr(ρ log σ) =
∑
j

〈j|ρ

(∑
i

log pi|i〉〈i|

)
|j〉

Where {|j〉} = {|i〉}. If i 6= j, then log pi|i〉〈i|j〉 = 0, so the equation simplifies to:∑
j

〈j|ρ log pj|j〉 =
∑
j

〈j|ρ|j〉 log pj

For any j, 〈j|ρ|j〉 log pj = −∞ if and only if pj = 0 and 〈j|ρ|j〉 6= 0, that is, |j〉 is

both in the kernel of σ and the support of ρ.
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Chapter 5

Compact Closed Categories

Category theory has been developed as a general language for diverse mathematical

structures in that it does not really concern itself with the internal components,

but with the behaviour of the system. In other words, what is important from the

perspective of category theory is not the objects but the morphisms. This point of

view provides the flexibility for relating the structures used to represent grammatical

types and the structures used to represent distributional meaning. These are pregroup

algebras and vector spaces, and even though they are quite different, both are concrete

instances of a compact closed category.

I will not define the notion of a category here, but refer the reader to [26].

5.1 Monoidal categories

Definition 5.1. [17] A monoidal category C is a category consisting of the

following:

• a functor ⊗ : C×C→ C called the tensor product

• an object I ∈ C called the unit object

• a natural isomorphism whose components (A⊗B)⊗C
αA,B,C−−−−→ A⊗ (B⊗C) are

called the associators

• a natural isomorphism whose components I⊗A λA−→ A are called the left unitors

• a natural isomorphism whose components A ⊗ I
ρA−→ A are called the right

unitors

These need to satisfy an additional coherence property which states that every well-

formed equation built from ◦, ⊗, id , α, α−1, λ, λ−1, ρ and ρ−1 is satisfied.
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Monoidal categories are used to model systems that have both sequantial and

concurrent processes. The objects of the category are thought to be types of systems.

A morphism f : A→ B is a process that takes a system of type A to a system of type

B. for f : A→ B and g : B → C, g◦f is the composite morphism that takes a system

of type A into a system of type C by applying the process g after f . Morphisms of

type ψ : I → A are called elements of A. The reason for that is the definition of

a monoidal category does not include elements in the usual sense, for example as in

x ∈ A where A is a set. However, when the objects of a category does have elements,

they are usually in bijective correspondence with the morphisms ψ : I → A. This

formalism therefore allows us to talk about elements without digressing from the

terminology of category theory.

5.2 Compact closed categories

Definition 5.2. [4] A monoidal category is compact closed if for each object A,

there are also left and right dual objects Ar and Al, and morphisms

ηl : I → A⊗ Al ηr : I → Ar ⊗ A

εl : Al ⊗ A→ I εr : A⊗ Ar → I

that satisfy the equations

(1A ⊗ εl) ◦ (ηl ⊗ 1A) = 1A

(εr ⊗ 1A) ◦ (1A ⊗ ηr) = 1A

(εl ⊗ 1Al) ◦ (1Al ⊗ ηl) = 1Al

(1Ar ⊗ εr) ◦ (ηr ⊗ 1Ar) = 1Ar

The maps of compact categories are used to represent correlations, and in

categorical quantum mechanics they model maximally entangled states. η and ε

maps are useful in modeling the interactions of the different parts of a system. To

see how this relates to natural language, consider a simple sentence with an object,

a subject and a transitive verb. The meaning of the entire sentence is not simply an

accumulation of the individual words, but depends on how the transitive verb relates

the subject and the object. The η and ε maps provide the mathematical formalism

to specify such interactions. The distinct left and right adjoints ensure that compact

closed categories can take word order into account.
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5.3 Graphical calculus

Graphical calculus for monoidal categories. There is a graphical calculus

used to reason about monoidal categories which works through the following

correspondence:

Theorem 5.3. [4] An equational statement between morphisms in a monoidal

category is provable from the axioms of monoidal categories if and only if it is derivable

in the graphical language.

For an indepth presentation of the graphical calculus and the proof of the theorem

see [37]

In the graphical language, objects are wires, and morphisms are boxes with

incoming and outgoing wires of types corresponding to the input and output types

of the morphism. The morphism f : A→ B is depicted as:

A

B

f

Note that in literature, the flow in the diagrams are sometimes upwards and

sometimes downwards. Here I will use the convention that the information flows

downwards. Inputs of the morphisms are at the top of the boxes and outputs are at

the bottom.

Sequential composition is depicted just as one would expect, by connecting the

output wire of the first morphism to the input wire of the second. The monoidal

tensor is depicted as putting the two wires next to one another, and a morphism

g : A ⊗ B → C ⊗ D as having two input and two output wires. The identity

morphisms is depicted just as a wire. Here are some examples:

A

A

B

C

A B C D

A B

E

1A:
f

g
g ◦ f : 1A ⊗ 1B: (f ⊗ g) ◦ h:

f g

h

The unit object is depicted as empty space, so the states ψ : I → A are depicted

as a box with no input wire and an output wire with type A. Effects are the dual of

states, and they are of type π : A→ I These take the graphical forms:
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A Aψ:
ψ:

π:

π: π

ψ

π ◦ ψ:

Graphical calculus for compact closed categories :

The maps ηl, ηr, εl and εr take the following forms in the graphical calculus:

Ar A A Al

A Ar Al A
ηr: ηl: εr: εl:

The axioms of compact closure, referred to as the snake identities because of the

visual form they take in the graphical calculus, are represented as follows:

A

A A

A

Ar
ArAl

Al

A

A
Al

Al

A

A
Ar

Ar

=

=

=

=

More generally, the reduction rules for diagrammatic calculus allow continuous

deformations. One such deformation that I will make use of is the swing rule:

ψ
=

ψ

ψ

ψ

=
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Chapter 6

A Compositional Distributional
Model

The model suggested in [4] uses the fact that both finite dimensional vector spaces and

pregroups are compact closed categories, and builds a compositional distributional

model by applying the maps obtained by pregroup reductions to vector spaces.

The pregroup structure is used to specify the grammatical types of the words, and

the reduction maps show how these grammatical types interact within a sentence.

Each word also gets assigned a vector space as a distributional representation of

its meaning. Since the maps obtained from the pregroup reduction are maps of a

compact closed category, the corresponding maps for vector spaces are well defined.

The application of these maps to the distributional representations of words offer

a way to grammatically compose vector spaces, and to construct a distributional

representation for the sentence. It has the additional advantage of ensuring that

all the resulting sentence meanings live in the same space, making sentences with

different grammatical structure comparable to each other.

6.1 Algebra of pregroups

Lambek [4] recently developed a new grammatical formalism called pregroup

grammars, a type-categorial logic like his previous Lambek calculus.

Definition 6.1. [21] A partially ordered monoid (P,≤, ·, 1) consists of

• a set P ,

• a monoid multiplication operator · : P × P → P satisfying the condition

(a · b) · c = a · (b · c) for all a, b, c ∈ P
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• and the monoidal unit 1 ∈ P where for all a ∈ P

a · 1 = a = 1 · a

• a partial order ≤ on P where

TODO

Definition 6.2. [21] A pregroup (P,≤, ·, 1, (−)l, (−)r) is a partially ordered monoid

in which each element a has both a left adjoint al and a right adjoint ar such that

ala ≤ 1 ≤ aal and aar ≤ 1 ≤ ara

Adjoints of pregroups have the following properties [4] :

• Uniqueness: Adjoints are unique

• Order reversal: If a ≤ b then br ≤ ar and bl ≤ al

• The unit is self adjoint: 1l = 1 = 1r

• Multiplication operation is self adjoint: (a · b)l = bl · al and (a · b)r = br · ar

• Opposite adjoints annihilate: (ar)l = a = (al)r

• Same adjoints iterate: allal ≤ 1 ≤ arrar, alllall ≤ 1 ≤ arrrarr, . . .

Both pregroup grammars and Lambek calculus are partially ordered monoids, but

pregroup grammars replace the left and right adjoints for the monoid multiplication

in Lambek calculus with left and right adjoints for elements.

If a ≤ b, I will write a→ b and say that a reduces to b. This terminology is useful

when pregroups are applied to natural language, where each word gets assigned a

pregroup type freely generated from a set of basic elements. The sentence is deemed

to be grammatical if the concatenation of the types of the words reduce to the simple

type of a sentence. As an example, consider a simple transitive sentence: “John likes

Mary”. “John” and “Mary” get assigned a basic type n for noun. “likes” is assigned

a compound type, (nrsnl). The role of a word with a compound type can be read of

from the pregroup type assigned to it. In this example, “likes” takes a noun from the

left and a noun from the right, and returns a sentence. The pregroup reduction for

the sentence is:

n(nrsnl)n→ 1snln→ 1s1→ s
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Notice that the reduction sequence is not in general unique. It does not matter in

this example whether we choose to reduce the left or the right side of the compound

pregroup type first.

The basic types I will use are the following:

n : noun s : declarative statement

j : infinitive of the verb σ : glueing type

Pregroups as compact closed categories. A pregroup P is a concrete instance

of a compact closed category. The underlying category is given by the partial order,

and the monoidal structure is induced by the monoid structure of the pregroup. The

ηl, ηr, εl, εr maps are as follows:

ηl = [1 ≤ p · pl] εl = [pl · p ≤ 1]

ηr = [1 ≤ pr · p] εr = [p · pr ≤ 1]

These satisfy the axioms of compact closure. Consider the first snake identity:

(1p ⊗ εlp) ◦ (ηlp ⊗ 1p) :

p = 1p ≤ pplp ≤ p1 = p

The other snake identities are likewise easily confirmed.

Pregroup reductions in diagrammatic calculus. Since the pregroup reductions

are maps of a compact closed category, they can be modeled by the graphical calculus.

The graphical representation for a sentence of type “John likes Mary” is as following:

n nrsnl n

Here, one can see that the sentence is grammatical by observing that the only

outgoing wire is of type s, the type of a sentence. All the other components cancel

each other. The visualization is especially useful when the sentence structure is more

complicated. For example, consider the sentence “John does not like Mary”. The

pregroup types for the words and the reduction is as follows:

n nrsjlσ σrjjlσ σrjnl n
John does not like Mary
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6.2 Finite dimensional vector spaces

Finite dimensional vector spaces over the base field R together with linear maps, form

a monoidal category, referred to as FVect. The monoidal tensor is the usual vector

space tensor and the monoidal unit is the base field R. It is also a compact closed

category:

FVect as a compact closed category. The left and the right adjoint of an object

V are both taken to be equal to V . The compact closure maps are defined as follows:

Given a vector space V with basis {−→ei }i

ηlV = ηrV : R→ V ⊗ V

1 7→
∑
i

ei ⊗ ei

εlV = εrV : V ⊗ V → R∑
ij

cij vi ⊗ wi 7→
∑
ij

cij〈vi|wi〉

These satisfy the axioms of compact closure. Let −→v ∈ V , and consider the first

snake identity:

(1V ⊗ εlV ) ◦ (ηlV ⊗ 1V ) :: −→v 7→

(∑
i

−→ei ⊗−→ei

)
⊗−→v

7→
∑
i

−→ei 〈−→ei |−→v 〉 = −→v

The other snake identities follow by a very similar calculation.

6.3 Categorical representation of meaning space

The tensor in FVect is commutative up to isomorphism. This causes the left and

the right adjoints to be the same, and thus for the left and the right compact closure

maps to coincide. This makes it impossible to express a map from the meanings of

words to the meanings of sentences solely using the maps in FVect, since such a map

is expected to return a different representation for the sentence “dog bit man” and

“man bit dog”. In other words, a symmetric compact closed category cannot take

the effect of word ordering on meaning into account. [4] proposes a way around this

obstacle by considering the product category FVect × P where P is the category

given by a pregroup.
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Objects in FVect are of the form (V, p), where V is the vector space representation

of the meaning and p is the pregroup type. There exists a morphism (f,≤) : (V, p)→
(W, q) if there exists a morphism f : V → W in FVect and p ≤ q in P.

The compact closed structure of FVect and P lifts componentwise to the product

category FVect×P:

ηl : (R, 1)→ (V ⊗ V, p · pl)

ηr : (R, 1)→ (V ⊗ V, pr · p)

εl : (V ⊗ V, pl · p)→ (R, 1)

εr : (V ⊗ V, p · pr)→ (R, 1)

Definition 6.3. An object (V, p) in the product category is called a meaning space,

where V is the vector space in which the meanings −→v ∈ V of strings of type p live.

6.4 From the meanings of words to the meaning

of the sentence map

The idea behind the from-meanings-of-words-to-the-meaning-of-the-sentence map is

that the pregroup reductions guide the order in which the compact closure maps are

applied to the vector spaces.

Definition 6.4. Let v1v2 . . . vn be a string of words, each vi with a meaning space

representation −→vi ∈ (Vi, pi). Let x ∈ P be a pregroup type such that [p1p2 . . . pn ≤ x]

Then the meaning vector for the string is:

−−−−−−→v1v2 . . . vn ∈ (W,x) ≡ f(v1 ⊗ v2 ⊗ . . .⊗ vn)

where f is defined to be the application of the compact closure maps obtained from

the reduction [p1p2 . . . pn ≤ x] to the composite vector space V1 ⊗ V2 ⊗ . . .⊗ Vn.

This framework uses the maps of the pregroup reductions and the elements of

objects in FVect. The diagrammatic calculus provides a tool to reason about both.

As an example, take the sentence “John likes Mary”. It has the pregroup type

nnrsnln, and the vector representations
−−−→
John,

−−−→
Mary ∈ V and

−−→
likes ∈ V ⊗ S ⊗ V .

The morphism in FVect×P corresponding to the map is of type:

(V ⊗ (V ⊗ S ⊗ V )⊗ V, nnrsnln)→ (s, S)
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From the pregroup reduction [nnrsnln → s] we obtain the compact closure maps

εr1εl. In FVect this translates into:

εV ⊗ 1S ⊗ εV : V ⊗ (V ⊗ S ⊗ V )⊗ V → S

This map, when applied to
−−−→
John ⊗

−−→
likes ⊗

−−−→
Mary has the following depiction in the

diagrammatic calculus:

likesJohn Mary

Note that this construction treats the verb “likes” essentially as a function that

takes two inputs of type V , and outputs a vector of type S.

For the explicit calculation, consider how the vector space representation for

“likes” look:
−−→
likes =

∑
ijk

cijkvi ⊗ sj ⊗ vk

where vi is an orthonormal basis for V and sj is an orthonormal basis for S. Then

−−−−−−−−−−−−→
John likes Mary = εV ⊗ 1S ⊗ εV (

−−−→
John⊗

−−→
likes⊗

−−−→
Mary) (6.1)

=
∑
ijk

〈John|vi〉sj〈vk|Mary〉 (6.2)

The reductions in diagrammatic calculus help reduce the final calculation to a

simpler term. The non-reduced reduction, when expressed in dirac notation reads:

(〈εrV | ⊗ 1S ⊗ 〈εlV |) ◦ |
−−−→
John⊗

−−→
likes⊗

−−−→
Mary〉

But we can “swing”
−−−→
John and

−−−→
Mary in accord with the reduction rules in the

diagrammatic calculus. The diagram then reduces to:

likes

John Mary

This results in a simpler expression that needs to be calculated:

(〈
−−−→
John| ⊗ 1S ⊗ 〈

−−−→
Mary|) ◦ |

−−→
likes〉
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Chapter 7

Density Matrices as Elements of a
Compact Closed Category

Recall that in FVect, vectors |v〉 ∈ V are in one-to-one correspondence with

morphisms of type v : I → V . Likewise, pure states of the form |v〉〈v| are in one-to-

one correspondence with morphisms v ◦ v† : V → V such that v† ◦ v = idI (notice

that this corresponds to the condition that 〈v|v〉 = 1). A general (mixed) state ρ is

a positive morphism of the form ρ : A → A. One can re-express the mixed states

ρ : A→ A as elements ρ : I → A∗ ⊗ A. Here, as in the case for FVect as a compact

closed category, I assign A∗ = A.

Definition 7.1. f is a completely positive map if

1. It maps density matrices into density matrices. In other words, f is positive for

any positive operator A.

2. Whenever it is tensored with the identity map on any space, it maps the density

matrices in the combined space to density matrices: ( idV ⊗ f)A is positive for

any positive operator A and any space V .

Theorem 7.2. completely positive maps in FVect form a monoidal category:

• The identity map id : A∗ ⊗ A→ A∗ ⊗ A is completely positive.

• If f : A∗⊗A→ B∗⊗B and g : B∗⊗B → C∗⊗C are completely positive maps,

then g ◦ f is also completely positive.

• If f and g are completely positive maps, then f ⊗ g is also completely positive
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See [17] for the proof.

Thus one can define a new category CPM(FVect) where a morphism A → B

in CPM(FVect) is a completely positive map A∗ ⊗ A → B∗ ⊗ B in FVect. The

elements I → A in CPM(FVect) are of the form I∗ ⊗ I → B∗ ⊗ B in FVect,

providing a monoidal category with density matrices as its elements.

CPM(FVect) in graphical calculus. A morphism ρ : A → A is positive if and

only if there exists a map
√
ρ such that ρ =

√
ρ† ◦ √ρ. In FVect, the isomorphism

between ρ : A → A and pρq : I → A∗ ⊗ A is provided by ηl = ηr. The graphical

representation of ρ in FVect then becomes:

ρ =

√
ρ

√
ρ

=
√
ρ

√
ρ

Here I use the convention that:

ρ : A→ B ≡

ρ† : B → A ≡ ρ∗ : B∗ → A∗ ≡

ρ∗ : A∗ → B∗ ≡

ρ ρ

ρ ρ

The graphical depiction of completely positive morphisms come from the following

theorem:

Theorem 7.3. (Stinespring Dilation Theorem) The following are equivalent:

1. f : A∗ ⊗ A→ B∗ ⊗B is completely positive

2. There is an object C and a morphism
√
f : C ⊗ B such that the following

equation holds:
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B B

A

B

A

B

f
√
f=

√
f

A A

C

√
f and C here are not unique. For the proof of the theorem see [17, p.149]

For a given density matrix ρ and a completely positive morphism f , one can easily

check that the graphical representation of f ◦ ρ is indeed the graphical representation

of a positive matrix.

CPM(FVect) as a compact closed category.

Theorem 7.4. CPM(FVect) is a compact closed category where as in FVect,

V r = V l = V and the compact closure maps are defined to be:

ηl = (ηrFV ect ⊗ ηlFV ect) ◦ (1A ⊗ σ ⊗ 1A)

ηr = (ηlFV ect ⊗ ηrFV ect) ◦ (1A ⊗ σ ⊗ 1A)

εl = (1A ⊗ σ ⊗ 1A) ◦ (εrFV ect ⊗ εlFV ect)

εr = (1A ⊗ σ ⊗ 1A) ◦ (εlFV ect ⊗ εrFV ect)

where σ is the swap map defined as σ(v ⊗ w) = (w ⊗ w).

Proof. The graphical construction of the compact closure maps boils down to doubling

the objects and the wires:

ηr : εr : ηl : εl :

A∗A A∗A

A∗A A∗A

A∗A A∗A

A∗A A∗A

Then adding some simple bends in the wire, we can see that these are in fact in

the forms expressed above. Consider the diagram for ηr:

=

A∗ A A∗ A A∗ A A∗ A
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These clearly satisfy the axioms of compact closure since the components do.

The concrete compact closure maps are as follows:

ηl = ηr : R→ (V ⊗ V )⊗ (V ⊗ V ) :: 1 7→
∑
i

−→ei ⊗−→ei ⊗
∑
j

−→ej ⊗−→ej

εl = εr : (V ⊗V )⊗(V ⊗V )→ R ::
∑
ijkl

cijkl
−→vi ⊗−→wj⊗−→uk⊗−→pl 7→

∑
ijkl

cijkl 〈−→vi |−→uk〉〈−→wj|−→pl 〉

Let ρ be a density operator defined on an arbitrary composite space V1 ⊗ V2 ⊗
. . .⊗ Vn. then

ρ : V1 ⊗ V2 ⊗ . . .⊗ Vn → V1 ⊗ V2 ⊗ . . .⊗ Vn

It has the density matrix representation:

ρ : I → (V1 ⊗ V2 ⊗ . . .⊗ Vn)∗ ⊗ (V1 ⊗ V2 ⊗ . . .⊗ Vn)

Since the underlying category FVect is symmetric, it has the swap map σ. This

provides us with the isomorphism:

(V1⊗ V2⊗ . . .⊗ Vn)∗⊗ (V1⊗ V2⊗ . . .⊗ Vn) ∼ (V ∗1 ⊗ V1)⊗ (V ∗2 ⊗ V2)⊗ . . .⊗ (V ∗n ⊗ Vn)

So ρ can be equivalently expressed as:

ρ : I → (V ∗1 ⊗ V1)⊗ (V ∗2 ⊗ V2)⊗ . . .⊗ (V ∗n ⊗ Vn)

With this addition, we can simplify the diagrams used to express density matrices

by using a single thick wire for the doubled wires:

≡

Doubled compact closure maps can likewise be expressed by a single thick wire:

≡

≡

≡

≡

The diagrammatic expression of a from-meanings-of-words-to-the-meaning-of-the-

sentence map using density matrices will therefore look exactly like the depiction of

it in FVect, but with thick wires.
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Chapter 8

Using Density Matrices to Model
Meaning

Density matrices are probability distributions on subspaces of a Hilbert space, and one

of their primary improvements on vector spaces is that they distinguish correlation

and mixing. In vector space terminology, they distinguish between the case where we

are certain that a state is an equally weighted sum of two basis elements, that this

correlation is an intrinsic property of the state, and the case where we are simply

lacking in knowledge whether the state is equal to one basis element or the other or

any weighted sum of the two. The density matrix expressing the first case assigns

probability 1 to the one dimensional vector space spanned by the line that is halfway

through the two bases. If the two bases are x and y, this is the vector space spanned

by ( 1 1 )T . The density matrix expressing the second case is called a completely

mixed state, since it assigns an equal probability to the entire two dimensional space.

This is expressed by assigning equal probabilities to each basis vector. Assigning equal

probabilities to any set of orthonormal basis vectors gives the completely mixed state.

If one wants to use the full power of density matrices in modeling meaning, one

needs to establish an interpretation for the distinction between mixing and correlation

in the context of linguistics. To make use of this distinction, it is necessary to take

a step back from the co-occurrence space interpretation, where bases are defined to

be chosen context words, and take a more abstract point of view. I will call the

bases contextual features, and leave out their exact characterizations in this work as

it is more of an implementation issue, and not an essential part of the mathematical

framework I present here. I will just assume that these are the salient, quantifiable

features of the contexts a word is observed in, and leave the characterization and

extraction of these features for further work.
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The simple co-occurrence model can be cast as a special case of this more general

approach, where there is never any correlations between the basis vectors. Then all

word meanings are mixtures of basis vectors, and they all commute with each other.

8.1 Characterizing similarity and representative-

ness

Density matrices allow us to define symmetric and asymmetric measures with relative

naturality. In this section I define measures for similarity and representativeness on

density matrices. Similarity is a symmetric measure for quantifying the closeness

of two words in meaning. I survey three candidates for defining similarity over

density matrices: trace inner product, trace distance, and fidelity. Trace inner product

is the usual inner product defined on density matrices, while trace distance and

fidelity are generalizations of distance measures on discrete probability distributions

to density matrices. I conclude that fidelity has the most desirable properties

between the three, but I include the other two since they might be more suitable

for specific applications. I also suggest an asymmetric measure based on relative

entropy to quantify representativeness between two density matrices. I will use

representativeness to define conditions for inferring hyponymy-hypernymy relations.

Similarity. One of the fundamental aspects of a distributional semantic model is

that it embodies an idea of meaning that is gradual, and comes equipped with a

measure for the similarity. In vector space models the most widely used measure is

cosine similarity [12], even though other measures are also used depending on the

application [12, 5]

cosine(−→a ,
−→
b ) =

∑
i c
a
i c
b
i√∑

i(c
a
i )

2
∑

i(c
b
i)

2

Where cai and cbi are basis vectors for −→a and
−→
b . When −→a and

−→
b are unit vectors,

cosine similarity is equal to the inner product 〈−→a |
−→
b 〉.

Trace inner product. Since density matrices also have an inner product, trace

inner product between two density matrices is the first natural candidate for a

similarity measure. Even though having an inner product on density matrices is

very useful, One problem with using it as a measure of similarity is that it is
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not always true that tr(ATA) is equal to 1. Consider the completely mixed state

ρ = 1/2|0〉〈0|+ 1/2|1〉〈1|. Then tr(ρTρ) = tr(ρ2) = 1/2.

Another, perhaps bigger problem is that the trace distance between a state ρ and

itself might be smaller than a trace distance between ρ and another state σ. To see this

consider ρ = 1/4|0〉〈0|+ 3/4|1〉〈1|, and v = |1〉〈1|. Then tr(ρv) = 3/4 ≥ tr(ρ2) = 5/8.

If trace inner product is taken to be the similarity measure, this would read that ρ is

more similar to v then it is similar to itself.

Trace distance. This is one of the two most widely used distance measures in

quantum mechanics:

Definition 8.1. The trace distance between two density matrices A and B is

defined as

D(A,B) =
1

2
tr|A−B|

where |A| ≡
√
A†A.

Trace distance is a generalization of the Kolmogorov distance between two

probability distributions {pi} and {qi}:

K(pi, qi) ≡
1

2

∑
x

|px − qx|

When ρ and σ commute, the trace distance between σ and ρ is equal to the

Kolmogorov distance between their eigenvalues.

Trace distance provides the condition that D(ρ, ρ) = 0, and the trace distance

between two density matrices is never greater than 1. Since trace distance is a distance

measure with values within the range [0, 1], we can translate it into a similarity

measure by defining

S ′(ρ, σ) = 1−D(ρ, σ)

Fidelity. This is the other widely used distance measure in quantum mechanics.

It shares most of the desirable properties of trace distance, and has some additional

advantages as a similarity measure for meaning.

Definition 8.2. The fidelity of two probability distributions {px} and {qx} is defined

by:

F (px, qx) ≡
∑
x

√
pxqx

The fidelity of two density operators ρ and σ is defined to be

F (ρ, σ) ≡ tr
√
ρ1/2σρ1/2
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Some useful properties of fidelity are:

1. It is a symmetric measure: F (ρ, σ) = F (σ, ρ)

2. 0 ≤ F (ρ, σ) ≤ 1

3. F (ρ, σ) = 1 if and only if ρ = σ

4. If ρ and σ commute, then the fidelity of ρ and σ is equal to the classical fidelity

of their eigenvalues.

5. If |ψ〉〈ψ| is a pure state and ρ is an arbitrary state,

F (|ψ〉〈ψ|, ρ) =
√
〈ψ|ρ|ψ〉

That is, fidelity is equal to the square root of the overlap between ρ and the

pure state.

6. If |φ〉〈φ| and |ψ〉〈ψ| are two pure states, their fidelity is equal to |〈φ|ψ〉|.

Fidelity and trace distance are related by the following formula [30]:

1− F (ρ, σ) ≤ D(ρ, σ) ≤
√

1− F (ρ, σ)2

So fidelity and trace distance are qualitatively equivalent, but using fidelity as a

measure of semantic similarity has the advantages of guaranteeing that if two words

are represented as projections onto one dimensional subspaces, their similarity value

will be equal to the usual cosine similarity of the vectors.

Representativeness. The idea of using relative entropy to model hyponymy is as

follows: assume that you are given as many sentences as you like where the word dog

appears in, but the word dog is crossed out, and you are asked whether you think

the crossed out word may be animal or not. Now because animal subsumes dog, it

can be used in any context dog can be used in, thus you cannot ever be sure that

the crossed out word is not animal. However, consider the other way around where

the crossed out word is animal and you are asked whether you think the crossed out

word is dog or not. Then it is likely that you will eventually come across a sentence

of the sort: “The — flapped its wings and flew away.” from which you immediately

know that the crossed out word is not dog. Thus the distinguisability of one word

from another given its usual contexts provide us a good metric for hyponymy.
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A distributional hypothesis for hyponymy: The meaning of a word w

subsumes the meaning of v if and only if it is appropriate to use w in all the contexts

v is used.

This is a slightly more general version of the Distributional Inclusion Hypothesis

stated in [19]:

If u is semantically narrower than v, then a significant number of salient

distributional features of u are also included in the feature vector of v.

The difference lies in the additional power the density matrix formalism provides:

the distinction between mixing and correlation. The Distributional Inclusion

Hypothesis considers only whether or not the target word occurs together with the

salient distributional feature at all, and ignores any possible statistically significant

correlations of features.

Note that [11] show that while there is ample evidence for the distributional

inclusion hypothesis, this in itself does not necessarily provide a method to

detect hyponymy-hypernymy pairs: the inclusion of a significant number of salient

distributional features of u in v is not a reliable predictor that u implies v. One of

their suggestions for improvement is to consider more than one word in the features,

which is equivalent to taking correlations into account in a co-occurrence space where

the bases are context words.

A measure for representativeness based on relative entropy. Relative

entropy quantifies the distinguishability of one distribution from another. It is

therefore a good candidate to base a measure of representativeness on.

Definition 8.3. the representativeness between ρ and σ is:

R(ρ, σ) =
1

1 +N(ρ||σ)

Where N(ρ||σ) is the quantum relative entropy between ρ and σ.

Notice that when the space is a co-occurrence space with no correlations of basis

features, then ρ and σ commute, making quantum relative entropy of ρ and σ equal

to the Kullback-Leibler divergence. Then the representativeness between ρ and σ is:

R(ρ, σ) =
1

1 +K(ρ||σ)

Where K(ρ||σ) is the Kullback-Leibler divergence.
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Proposition 8.4. For all density matrices ρ and σ, R(ρ, σ) ≤ 1 with equality if and

only if ρ = σ, and 0 ≤ R(ρ, σ) with equality if and only if supp(ρ) ∩ ker(σ) 6= 0

Proof. The first part of the proposition follows directly from proposition 4.6, and the

second part from proposition 4.7.

The second property reflects the idea that if there is a context in which it is

appropriate to use v but not w, v is perfectly distinguishable from w. Such contexts

are exactly those that fall within supp(ρ) ∩ ker(σ).

Characterizing hyponyms The quantitative measure on density matrices given

by representativeness provide a qualitative partial order on meaning representations

as follows:

ρ - σ if R(ρ, σ) > 0

ρ ∼ σifρ - σ and σ - ρ

I will also denote a strict subsumption relation between ρ and σ by ≺:

ρ ≺ σ if R(ρ, σ) > 0 and R(σ, ρ) = 0

Corollary 8.5. The following are equivalent:

1. ρ - σ

2. supp(ρ) ⊆ supp(σ)

3. There exists a positive operator ρ′ and p > 0 such that σ = pρ+ ρ′

Proof. (1)⇒ (2) and (2)⇒ (1) follow directly from proposition 4.6.

(2) ⇒ (3) since supp(ρ) ⊆ supp(σ) implies that there exists a p > 0 such that

σ − pρ is positive. Setting ρ′ = σ − pρ gives the desired equality.

(3)⇒ (2) since p > 0, and so supp(σ) = supp(pρ+ ρ′) ⊆ supp(ρ).

The equivalence relation ∼ groups any two density matrices ρ and σ with

supp(ρ) = supp(σ) into the same equivalence class, thus maps the set of density

matrices on a Hilbert space H onto the set of projections on H. The projections are

in one-to-one correspondence with the subspaces ofH and they form an orthomodular

lattice, providing a link to the logical structure of the Hilbert space [41] aims to exploit

by using density matrices in IR.

Let pwq and pvq be density matrix representations of the words v and w. Then

v is a hyponym of w in this model if v ≺ w.
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Notice that even though this ordering on density matrices extracts a yes/no answer

for the question “is v a hyponym of w?” from the representativeness measure, the

existence of the quantitative measure also lets us quantify the extent to which v is

a hyponym of w. This provides with some flexibility in characterizing hyponymy

through density matrices in practice. Instead of calling v a hyponym of w even when

R(pvq, pwq) gets arbitrarily small, one can require the representativeness to be above

a certain threshold ε. This modification, however, has the down side of causing the

transivity of hyponymy to fail.

8.2 From meanings of words to the meanings of

sentences passage.

Recall that in chapter 6, a product category P× FVect is defined as the category of

meaning spaces, and the from-the-meanings-of-words-to-the-meaning-of-the-sentence

map is defined on this category as the application of the compact closure maps

obtained from the pregroup reductions to vector spaces. As in the case for FVect×P,

CPM(FVect)×P is a compact closed category, where the compact closure maps of

CPM(FVect) and P lift component wise to the product category.

Definition 8.6. A meaning space in this new category is a pair (V ∗ ⊗ V, p) where

V ∗ ⊗ V is the space in which density matrices v : I → V ∗ ⊗ V of the pregroup type

p live.

Definition 8.7. Let v1v2 . . . vn be a string of words, each vi with a meaning space

representation pviq ∈ (V ∗i ⊗ V, pi). Let x ∈ P be a pregroup type such that

[p1p2 . . . pn ≤ x]. Then the meaning density matrix for the string is defined as:

pv1v2 . . . vnq ∈ (W ∗ ⊗W,x) ≡ f(v1 ⊗ v2 ⊗ . . .⊗ vn)

where f is defined to be the application of the compact closure maps obtained from

the reduction [p1p2 . . . pn ≤ x] to the composite density matrix space (V1 ⊗ V ∗1 ) ⊗
(V ∗2 ⊗ V2)⊗ . . .⊗ (V ∗n ⊗ Vn).

From a high level perspective, the reduction diagrams for CPM(FVect)×P look

no different than the original diagrams for FVect×P, except that we depict it with

thick instead of thin wires. Consider the previous example: “John likes Mary”. As

as in chapter 6 it has the pregroup type n(nrsnl)n, and the compact closure maps

obtained from the pregroup reduction is (εr ⊗ 1⊗ εl). The reduction diagram is:
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plikesqpJohnq pMaryq

However, we can also depict the internal anatomy of the density representations

in FVect:

likes likesJohn John Mary Mary

The graphical reductions for compact closed categories can be applied to the

diagram:

plikesq

John Mary

Diagrammatically establishing the following equality:

(εr ⊗ 1⊗ εl)(pJohnq⊗ plikesq⊗ pMaryq) = (pJohnq⊗ 1⊗ pMaryq) ◦ plikesq

8.3 A hierarchy on sentences

One expects that if a word in a sentence is replaced by its hyponym, then the

meanings of the original and the modified sentences would also have a relation akin

to hyponymy. The following proposition shows that the sentence meaning map for

simple transitive sentences achieves exactly that:

Proposition 8.8. If ρ, σ ∈ (N∗⊗N, n), and ρ - σ, then for density matrix pAq with

a pregroup type n and pBq with a pregroup type nlsnr,

f(ρ⊗ pBq⊗ pAq) - f(σ ⊗ pBq⊗ pAq) and
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f(pAq⊗ pBq⊗ ρ) - f(pAq⊗ pBq⊗ σ)

where f is the from-meanings-of-words-to-the-meaning-of-the-sentence map in defini-

tion 8.7

Proof. If ρ - σ, then there exists a positive operator ρ′ and α > 0 such that σ = αρ+ρ′

by proposition 8.5. Then

f(σ ⊗ pBq⊗ pAq) = (εr ⊗ 1⊗ εl)(σ ⊗ pBq⊗ pAq)

= (σ ⊗ 1⊗ pBq) ◦ pAq

= ((αρ+ ρ′)⊗ 1⊗ pBq) ◦ pAq

= (αρ⊗ 1⊗ pBq) ◦ pAq + (ρ′ ⊗ 1⊗ pBq) ◦ pAq

f(ρ⊗ pBq⊗ pAq) = (ρ⊗ 1⊗ pBq) ◦ pAq

since α 6= 0, supp(f(ρ⊗pBq⊗pAq)) ⊆ supp(f(σ⊗pBq⊗pAq), which by proposition

8.5 proves the first part of the proposition. The second part is proved by a very

similar calculation.

In some cases, the more general sentence entails the more specific one: “Humans

use language” entails “Polynesians use language”, and “Jane loves herbs” entails

“Jane loves basil”. However, it is also common that the exact opposite is true: “Jane

wants a beer” entails “Jane wants a beverage”, and “A dog barked” entails “An animal

barked”. These examples illustrate that even between the simplest of sentences, the

entailment relation relies on implicit quantifiers. In the next chapter I present some

toy some examples that suggest some notion of entailment, but leave its rigorous

characterization for further work.
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Chapter 9

Examples

Here I will present several examples that demonstrate the application of the from-

meanings-of-words-to-the-meaning-if-the-sentence map where the initial meaning

representations of words are density matrices, and explore how the hierarchy on

nouns induced by their density matrix representations carry over to a hierarchy in

the sentence space.

Let “lions”, “sloths”. “plants” and “meat” have one dimensional representations

in the noun space of our model:

plionsq = |
−−−→
lions〉〈

−−−→
lions|

pslothsq = |
−−−→
sloths〉〈

−−−→
sloths|

pmeatq = |−−−→meat〉〈−−−→meat|

pplantsq = |
−−−−→
plants〉〈

−−−−→
plants|

Let the representation of “mammals” be a mixture of one dimensional represen-

tations of individual animals:

pmammalsq = 1/2|
−−−→
lions〉〈

−−−→
lions|+ 1/2|

−−−→
sloths〉〈

−−−→
sloths|

Notice that

N(plionsq||pmammalsq)

= tr(plionsq logplionsq)− tr(plionsq logpmammalsq)

= log 1− 1

2
log

1

2
= 1

Hence R(plionsq, pmammalsq) = 1/2.
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N(pmammalsq||plionsq)

= tr(pmammalsq logpmammalsq)− tr(pmammalsq logplionsq)

=∞

Since the intersection of the support of pmammalsq and the kernel of plionsq is non-

empty, so R(pmammalsq, plionsq) = 0. This confirms that plionsq ≺ pmammalsq.

9.1 One dimensional truth theoretic sentences

Consider a sentence space that is one dimensional, where 1 stands for true and 0 for

false. Let

peatq =(|
−−−→
sloths〉|

−−−−→
plants〉+ |

−−−→
lions〉|−−−→meat〉)(〈

−−−→
sloths|〈

−−−−→
plants|+ 〈

−−−→
lions|〈−−−→meat|)

=(|
−−−→
sloths〉|

−−−−→
plants〉)(〈

−−−→
sloths|〈

−−−−→
plants|)+

(|
−−−→
sloths〉|

−−−−→
plants〉)(〈

−−−→
lions|〈−−−→meat|)+

(|
−−−→
lions〉|−−−→meat〉)(〈

−−−→
sloths|〈

−−−−→
plants|)+

(|
−−−→
lions〉|−−−→meat〉)(〈

−−−→
lions|〈−−−→meat|)

∼(|
−−−→
sloths〉〈

−−−→
sloths| ⊗ |

−−−−→
plants〉〈

−−−−→
plants|)+

(|
−−−→
sloths〉〈

−−−→
lions| ⊗ |

−−−−→
plants〉〈−−−→meat|)+

(|
−−−→
lions〉〈

−−−→
sloths| ⊗ |−−−→meat〉〈

−−−−→
plants|)+

(|
−−−→
lions〉〈

−−−→
lions| ⊗ |−−−→meat〉〈−−−→meat|)

This is the density matrix representation of a pure composite state that relate

“sloths” to “plants” and “lions” to “meat”. If we fix the bases {
−−−→
lions,

−−−→
sloths} for

N1, and {−−−→meat,
−−−−→
plants} for N2, peatq : N1 ⊗N1 → N2 ⊗N2 has the following matrix

representation: 
1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1


“Lions eat meat” . This is a transitive sentence, so as before, it gets assigned the

pregroup type: nnlsnrn. The diagrammatic expression of the pregroup reduction is

as follows:
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peatqplionsq pmeatq

This reduces to:

peatq

lions meat

Explicit calculation gives:

(εlN ⊗ 1S ⊗ εrN)(plionsq⊗ peatq⊗ pmeatq)

= 〈
−−−→
lions|

−−−→
sloths〉2〈

−−−−→
plants|−−−→meat〉2+

〈
−−−→
lions|

−−−→
sloths〉〈

−−−→
lions|

−−−→
lions〉〈−−−→meat|−−−→meat〉〈

−−−−→
plants|−−−→meat〉+

〈
−−−→
lions|

−−−→
lions〉〈

−−−→
lions|

−−−→
sloths〉〈−−−→meat|−−−→meat〉〈

−−−−→
plants|−−−→meat〉+

〈
−−−→
lions|

−−−→
lions〉2〈−−−→meat|−−−→meat〉2

= 0 + 0 + 0 + 1

= 1

“Sloths eat meat” . This sentence has a very similar calculation to the one above,

and has the result:

(εlN ⊗ 1S ⊗ εrN)(pslothsq⊗ peatq⊗ pmeatq) = 0

“Mammals eat meat” . This sentence has the same pregroup types as the first

sentence, and so has the same reduction map:

(εlN ⊗ 1S⊗εrN)(pmammalsq⊗ peatq⊗ pmeatq)

= (εlN ⊗ 1S ⊗ εrN)((
1

2
plionsq +

1

2
pslothsq)⊗ peatq⊗ pmeatq)

=
1

2
(εlN ⊗ 1S ⊗ εrN)(plionsq⊗ peatq⊗ pmeatq)+

1

2
(εlN ⊗ 1S ⊗ εrN)(pslothsq⊗ peatq⊗ pmeatq)

=
1

2
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The meaning for the sentence “Mammals eat meat” is a mixture of “lions eat

meat”, which is true, and “sloths eat meat” which is false. Thus the value 1/2 can

be interpreted as being neither completely true or completely false: the sentence

“mammals eat meat” is true for certain mammals and false for others.

9.2 Two dimensional truth theoretic sentence

For two dimensional truth theoretic meaning, I will keep the noun representations

the same, but use a two dimensional sentence space where:

true ≡ |0〉 ≡
(

1
0

)
and false ≡ |1〉 ≡

(
0
1

)
This changes the representation of “eats”. Let A = {lions, sloths} and B =

{meat, plants}

peatq ≡
∑

a1,a2∈A
b1,b2∈B

|−→a1〉〈−→a2 | ⊗ |−→x 〉〈−→x | ⊗ |
−→
b1 〉〈
−→
b2 |

where

|x〉 ≡

{
|0〉 if |a1〉|b1〉, |a2〉|b2〉 ∈ {|

−−−→
lions〉|−−−→meat〉, |

−−−→
sloths〉|

−−−−→
plants〉}

|1〉 otherwise

The generalized matrix representation of this verb in the spirit of [?] is:
1 0 0 1 0 1 1 0
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
1 0 0 1 0 1 1 0


“Lions eat meat” The calculation of the meaning of the sentence is almost exactly

the same as the case for one dimensional meaning, only the result is not the scalar

that stands for true but the density matrix:

(εlN ⊗ 1S ⊗ εrN)(plionsq⊗ peatq⊗ pmeatq) = |0〉〈0|

“Sloths eat meat” Likewise, the calculation for “Sloths eat meat” return false:

(εlN ⊗ 1S ⊗ εrN)(pslothsq⊗ peatq⊗ pmeatq) = |1〉〈1|
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“Mammals eat meat” As we have seen before, “Mammals eat meat” has the

meaning that is the mixture of “Lions eat meat” and “Sloths eat meat”:

(εlN ⊗ 1S⊗εrN)(pmammalsq⊗ peatq⊗ pmeatq) =

=
1

2
(εlN ⊗ 1S ⊗ εrN)(plionsq⊗ peatq⊗ pmeatq)+

1

2
(εlN ⊗ 1S ⊗ εrN)(pslothsq⊗ peatq⊗ pmeatq)

=
1

2
|1〉〈1|+ 1

2
|0〉〈0|

So in a two dimensional truth theoretic model, “Mammals eat meat” give the

completely mixed state in the sentence space, which has maximal entropy. This is

equivalent to saying that we have no real knowledge whether mammals in general eat

meat or not. Even if we are completely certain about whether individual mammals

that span our space for “mammals” eat meat, this information differs uniformly within

the members of the class, so we cannot generalize.

Already with a two dimensional truth theoretic model, the relation plionsq ≺
pmammalsq carries over to the sentences:

N(plions eat meatq||pmammals eat meatq)

= N

(
|0〉〈0|

∣∣∣∣∣∣∣∣ 1

2
|0〉〈0|+ 1

2
|1〉〈1|

)
= (|0〉〈0|) log(|0〉〈0|)− (|0〉〈0|) log

(
1

2
|0〉〈0|+ 1

2
|1〉〈1|

)
= 1

N(pmammals eat meatq||plions eat meatq) =∞ since the intersection of the support

of the first argument and the kernel of the second argument is non-trivial. Thus the

representativeness of the sentences are as follows:

R(plions eat meatq, pmammals eat meatq) = 1/2

R(pmammals eat meatq||plions eat meatq) = 0

plions eat meatq ≺ pmammals eat meatq

The from-meaning-of-words-to-the-meaning-of-the-sentence map carries the hy-

ponymy relation in the subject words of the respective sentences to the resulting

sentence meanings. By using the density matrix representations of word meanings
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together with the categorical map from the meanings of words to the meanings of

sentences, the knowledge that a lion is an animal lets us infer that “mammals eat

meat” implies “lions eat meat”:

(plionsq ≺ pmammalsq)→ (plions eat meatq ≺ pmammals eat meatq)

“Dogs eat meat” To see how the completely mixed state differs from a perfectly

correlated but pure state in the context of linguistic meaning, consider a new

noun pdogq = |
−→
dog〉〈

−→
dog| and redefine eat in terms of the bases {

−−−→
lions,

−−→
dogs} and

{−−−→meat,
−−−−→
plants}, so that it will reflect the fact that dogs eat both meat and plants. I

define “eat” so that it results in the value of being “half-true half-false” when it takes

“dogs” as subject and “meat” or “plants” as object. The value “half-true half-false”

is the superposition of true and false: 1
2
|0〉+ 1

2
|1〉

peatq will still be a pure state so that we can first write the representation of “eat”

in FVect:

|−→eat〉 =|
−−−→
lions〉 ⊗ |0〉 ⊗ |−−−→meat〉+

|
−−−→
lions〉 ⊗ |1〉 ⊗ |

−−−−→
plants〉+

|
−−→
dogs〉 ⊗ (

1

2
|0〉+

1

2
|1〉)⊗ |−−−→meat〉+

|
−−→
dogs〉 ⊗ (

1

2
|0〉+

1

2
|1〉)⊗ |

−−−−→
plants〉

The density matrix representation of “eat” then becomes:

peatq = |−→eat〉〈−→eat|

The calculation is as follows:

(εlN ⊗ 1S⊗εrN)(pdogsq⊗ peatq⊗ pmeatq)

= (εlN ⊗ 1S ⊗ εrN)(|
−−→
dogs〉〈

−−→
dogs| ⊗ |−→eat〉〈−→eat| ⊗ |−−−→meat〉〈−−−→meat|)

= (
1

2
|0〉+

1

2
|1〉)(1

2
〈0|+ 1

2
〈1|)

So in this case, we are certain that it is half-true and half-false that dogs eat

meat. This is in contrast with the completely mixed state we got from “Mammals

eat meat”, for which the truth or falsity of the sentence was entirely unknown.

48



“Mammals eat meat”, again . Let “mammals” now be defined as:

pmammalsq =
1

2
plionsq +

1

2
pdogsq

The calculation for this sentence with the new definition of “mammals” and “eat”

gives:

(εlN ⊗ 1S⊗εrN)(pmammalsq⊗ peatq⊗ pmeatq)

=
1

2
(εlN ⊗ 1S ⊗ εrN)(plionsq⊗ peatq⊗ pmeatq)+

1

2
(εlN ⊗ 1S ⊗ εrN)(pdogsq⊗ peatq⊗ pmeatq)

=
1

2
|0〉〈0|+ 1

2
((

1

2
|0〉+

1

2
|1〉)(1

2
〈0|+ 1

2
〈1|))

=
3

4
|0〉〈0|+ 1

4
|0〉〈1|+ 1

4
|1〉〈0|+ 1

4
|1〉〈1|

This time the resulting sentence representation is not completely mixed. This

means that we can generalize the knowledge we have from the specific instances of

mammals to the entire class to some extent, but still we cannot generalize completely.

This is a mixed state, which indicates that even if the sentence is closer to true than

to false, the degree of truth isn’t homogeneous throughout the elements of the class.

The non-zero non-diagonals indicate that it is also partially correlated, which means

that there are some instances of “mammals” for which this sentence is true to a

degree, but not completely. The relative similarity measures of true and false to the

sentence can be calculated explicitly using fidelity:

F
(
|1〉〈1|, pmammals eat meatq

)
= 〈1|pmammals eat meatq|1〉 =

1

4

F
(
|0〉〈0|, pmammals eat meatq

)
= 〈0|pmammals eat meatq|0〉 =

3

4

Notice that these values are different than the values for the representativeness

for true and false of the sentence, even thought they are proportional: the more

representative a density matrix of another, the more similar they are to each other

as well.

N
(
|1〉〈1| ‖ pmammals eat meatq

)
= tr

(
|1〉〈1|) log(|1〉〈1|)

)
− tr

(
|1〉〈1| log(

3

4
|0〉〈0|+ 1

4
|0〉〈1|+ 1

4
|1〉〈0|+ 1

4
|1〉〈1|)

)
≈ 2
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R
(
|1〉〈1| ‖ pmammals eat meatq

)
≈ .33

N
(
|0〉〈0| ‖ pmammals eat meatq

)
= tr

(
|0〉〈0|) log(|0〉〈0|)

)
− tr

(
|0〉〈0| log(

3

4
|0〉〈0|+ 1

4
|0〉〈1|+ 1

4
|1〉〈0|+ 1

4
|1〉〈1|)

)
≈ 0.41

R
(
|0〉〈0| ‖ pmammals eat meatq

)
≈ 0.71

9.3 Verb hierarchy

Just as a meaning of a noun can subsume the meaning of another noun, a meaning of

a verb might subsume the meaning of another verb. This is called troponymy and it

is one of the relations in WordNet. An example of troponymy is the relation between

“slap” and “hit”.

“Mary hit Jane” . Let the noun space be the same for both the subject and the

object, and be spanned by basis vectors {
−−−→
Mary,

−−−→
Jane}. Let it be true that Mary

slapped Jane, but she didn’t punch or kick her. Jane, on the other hand, both kicked

and punched Mary back. Then, in a one dimensional truth theoretic model the vector

space representations of these verbs are:

|
−−→
slap〉 ≡ |

−−−→
Mary〉|

−−−→
Jane〉

|
−−−→
punch〉 ≡ |

−−→
kick〉 ≡ |

−−−→
Jane〉|

−−−→
Mary〉

The density matrix representations are:

ppunchq = |
−−−→
punch〉〈

−−−→
punch| pkickq = |

−−→
kick〉〈

−−→
kick| pslapq = |

−−→
slap〉〈

−−→
slap|

and

phitq = ppunchq + pkickq + pslapq

Then the calculation for “Mary hit Jane” is as follows:

(εlN ⊗ 1S⊗εrN)(pMaryq⊗ phitq⊗ pJaneq)

= (εlN ⊗ 1S ⊗ εrN)(pMaryq⊗ pslappedq⊗ pJaneq)+

(εlN ⊗ 1S ⊗ εrN)(pMaryq⊗ ppunchedq⊗ pJaneq)+

(εlN ⊗ 1S ⊗ εrN)(pMaryq⊗ pkickedq⊗ pJaneq)

= 1 + 0 + 0 = 1
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Thus in a one dimensional truth theoretic setting, by defining the general verb

through more specific ones we can get the truth value of a sentence where the general

verb is used. Unfortunately, this construction fails in the two dimensional truth

theoretic case with the truth interpretation, since the mixing causes the meaning of

“Mary hit Jane” to be only one third true.
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Chapter 10

Conclusion and Further Work

10.1 Summary

I show how density matrices can be used to model hyponymy relations if the following

hypothesis is assumed:

Distributional hypothesis for hyponymy: The meaning of a word w subsumes

the meaning of v if and only if it is appropriate to use w in all the contexts v is used.

I suggest to use density matrices to model hyponymy, but instead of using context

words as bases, I assume a model that takes some abstract salient features of the

context as a basis. This point of view characterizes a one dimensional subspace as a

particular context, which stands for a particular correlation of feature elements. A

general density matrix represents a probability distribution on correlations of feature

elements.

Fidelity of two density matrices provide a similarity measure that coincides

with the cosine similarity on two pure states. There are a number of measures

based on Kullback-Leibler divergence in literature [22], and I suggest a measure of

representativeness using quantum relative entropy that generalizes KL-divergence to

density matrices. Relative entropy is used as a measure of distinguishability, and fits

well with the distributional hypothesis for hyponymy.

The model where basis elements are chosen to be context words can be realized

as a special case for the more general salient-features framework, where there is never

any correlations between basis vectors. All density matrices are then mixtures of basis

vectors, and they all commute with each other. In this case, the quantum relative

entropy reduces to the classical KL-divergence.
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The category of density matrices are elements in a compact closed category, and

hence the from-meanings-of-words-to-the-meaning-of-the-sentence map can be used

on density matrix representations, providing a composition method of word meanings

into the meaning of the sentence that takes the grammar of the sentence into account.

For a simple transitive sentence, this map is monotone in relation to the partial order

on the density matrices obtained from the representativeness measure.

10.2 Discussion and Further Work

The model presented in this dissertation relies on the distributional hypothesis for

hyponymy in a very strong sense: if it is appropriate for w to be used in all the

contexts v is used, then the distributional model is assumed to reflect this perfectly.

If pwq has even the slightest non-zero weight on a subspace that belongs to the

kernel of pvq, w will be judged to be perfectly distinguishable from v. Assuming such

a perfect representation allows for a clearer theoretical framework, but it is impossible

to obtain with statistical analysis of corpus data, thus unfit for implementation in its

current form. [22] present two measures that have KL-divergence as their basis, and

their generalizations to density matrices might overcome this issue.

There is also the question of how density matrix representations of meanings that

make use of both mixing and correlation might be generated from corpus data. Here

I sketch a skeleton for a possible algorithm:

A method to generate density matrix representations from corpus.

• Each particular context has a pure state representation, since it is a particular

correlation of the feature elements.

• If a word w occurs in contexts that are close to each other (in terms of their pure

state representations) to some statistically significant degree, these contexts are

clustered together to a single average context representation.

• The average vector for each cluster gets assigned a weight according to the

clusters relative frequency.

• These weights are generalized to a probability distribution on the entire space,

providing a density matrix representation for contextual distribution of w.
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This can be seen as a method of obtaining the density matrix representations in [2],

where the pure states are particular senses of a word, and the general density matrix

representations are weighted mixtures of its senses. The detection of relevant features

for such an algorithm is another implementation issue that needs to be addressed.

The partial order I define on density matrices corresponds to the orthomodular

lattice of the subspaces of a Hilbert space. Unfortunately, the negation defined

through this logic does not resemble negation in natural language. Moreover, it can

be argued that “good” can be used appropriately in any context “bad” can be used.

In that sense, its inability to distinguish synonyms and antonyms is a weakness of

this model, as it is of many other distributional models. It is simply not immediately

obvious how the contexts of synonyms and antonyms differ.
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