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Abstract

In this dissertation we work in the framework of compositional distributional models of
meaning to examine a number of asymmetric linguistic phenomena that manifest them-
selves in language and cognition. These include overextension with respect to concept
combination, asymmetry of similarity judgment and hyponymy and typicality. In partic-
ular, we make use of the formalism of density matrices, which were recently introduced as
an alternative to the vector-based model of word meaning. We first consider the former
two of the above-mentioned phenomena using only tools that have been developed so far
in the distributional compositional model. We then proceed to define a new quantitative
asymmetric measure on density matrices, called p-hyponymy, which allows us to deter-
mine the strength of hyponymy in hyponym-hypernym pairs. We show how this can be
lifted to the level of the sentence structures that our mathematical model of meaning
supports and consider the implications of this result. We conclude with a brief discussion
of how this measure can potentially be modified to account for other similar phenomena.
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Chapter 1

Introduction

1.1 Background

Faithfully representing meaning in natural languages using mathematical formalism is one of the most
challenging questions in linguistics and computer science. The practical gains of acquiring a deeper
formal understanding of language include improvements to tasks such as machine translation, docu-
ment retrieval and search optimisation, among others. On the theory front, the process of developing
and exploring mathematical structures that better capture language has the potential to further our
understanding of cognition and intelligence.

Computers are very good at tasks that involve words existing in a vacuum, but when these words
are put together into larger grammatical units, such as sentences, they fail to produce the same high-
quality results. The main problem is that sentences are not simply concatenations of words in which
even the word order is irrelevant. In fact, there is a very deep connection between the meaning of a
sentence, the meaning of its words, and the grammar that propagates through it in order to output
a coherent whole. We humans excel at deducing meanings of sentences we have never seen before by
simply drawing upon our knowledge of grammar and vocabulary. This, it turns out, is an incredibly
complex task for a computer.

Two orthogonal solutions to this problem have been explored over the years. The more traditional
approach [27] is built upon concepts from classical mathematical logic and adheres to the principle
of compositionality [30], which tells us that the meaning of a sentence is a function of the syntactic
relationships of the words comprising it. Basic grammatical types are assigned to words, which are
represented as elements in an algebraic structure such as a Lambek grammar or pregroup [23, 24],
and interactions between words are achieved via the binary operation with which the structure is
equipped. This method, however, completely disregards the actual meanings of words.

This leads us to the second and much more recent approach, the distributional one, which is based
on Firth’s dictum that ‘You shall know a word by the company it keeps’ [8]. In this model, words are
represented via vectors, usually from high-dimensional vector spaces whose basis elements correspond
to relevant context features. These are normally extracted from a large body of text such a corpus.
The idea behind representing words in terms of other co-occurring words lies in the assumption that
meaning is based entirely on contextual co-occurrence. This approach has proved to be very useful in
practical applications, but has very limited theoretical value and does not provide us with the whole
picture either.

To sum up, the main di↵erence between the compositional and the distributional models of meaning
is that the former is qualitative and theoretical, while the latter is quantitative and practical. Neither
of them is capable of fully capturing meaning. The quest for finding a more complete mathematical
framework for the natural language problem has led in recent years to the development of a new
model, unifying the above-mentioned ones. First introduced in [4] and formalised in [7], the so-called
distributional compositional categorical (DisCoCat) model of meaning unites the structures used in
the compositional and the distributional approach, namely pregroups and finite dimensional vector
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spaces, via category theory and draws inspiration from concepts, ideas, results and formalism from
quantum information theory.

In this model, the meaning of a string of words is computed via a categorical morphism extracted
from the grammar of this string and applied to the tensor product of the vectors corresponding to
its functional words. Upon application, these so-called meaning maps give an output of the form of
a vector and vectors corresponding to meanings of structures of the same grammatical type always
live in the same vector space. This enables us to compare meanings above the word level using the
same similarity measures as for words, such as the vector cosine. However, in many cases in language
and in phenomena from cognitive linguistics, asymmetry in similarity is prevalent. Prototypicality
and hyponymy, asymmetry of similarity judgments and overextension with respect to concept combi-
nation are just some of the examples where making comparisons under the assumption of symmetry
fails to produce adequate results.

In this dissertation we will attempt to utilise the DisCoCat framework developed so far, including its
recent extension that allows the use of vectors to be replaced by density matrices, to model asymmetry
in a number of di↵erent scenarios. Work in the area has only recently began with [2,32,33] and there
is still a lot of room for the development of various approaches to capturing hyponymy, entailment,
prototypicality and many other intrinsically asymmetric phenomena.

1.2 Overview and new contributions

We begin Chapter 2 with an overview of the mathematical framework behind the distributional com-
positional model of meaning of [7]. We first introduce pregroup grammars and finite dimensional
Hilbert spaces as standalone structures, while simultaneously outlining their use in modeling syntax
and semantics, respectively. We then proceed to establish the connection between the two via the
common language of category theory. We define the categories Preg and FHilb, which are both ex-
amples of the so-called compact closed categories that come equipped with a very intuitive graphical
calculus, allowing us to reduce equational expressions within the categories to simple diagrammatic
manipulations. We show how the structural morphisms of the categories give rise to sentence meaning
maps and examine the additional structure provided by the Frobenius algebras for capturing meaning
of relative clauses [34, 35].

The development of the so-called CPM construction in categories has led to recent advancements
in the field whereby density matrices are used in place of vectors for word meaning [2, 32, 33]. This
is achieved by passing from the category FHilb to CPM(FHilb), which is also a †-compact closed
category. In Chapter 3, we outline the general framework of the CPM construction and consider
how meaning maps can be interpreted in this setting and what the advantages of working with den-
sity matrices are. In brief, density matrices showcase more clearly the di↵erence between mixing
and correlation of features, similar to their role in quantum computing. In addition, they possess
a richer structure that enables us to consider various measures of similarity that vectors do not admit.

We begin Chapter 4 with a brief discussion of a couple of linguistic phenomena from psychology and
cognition, namely the problem of overextension with respect to concept combination [17] and asym-
metry of similarity judgment [40]. While these phenomena have been around for a long time, there
is still a lot of room for improvement in terms of the mathematical models used to capture them.
Recent work [25] has shown some promise in applying the DisCoCat model to represent overextension
via the traditional vector-based approach by taking into account the grammatical structure of the
individual concepts that comprise a combined unit. Here we extend upon this work to show how
density matrices can be used for the same task. We then go on to show how asymmetry in measuring
the similarity between a more prototypical concept and another concept from the same category can
be represented by using the intrinsic asymmetry of verbs such as is similar to and the compositonality
of the meaning map. We come back to the same phenomenon in Chapter 5 and consider a di↵erent
approach in which the need for an explicit verb is eliminated and concepts are represented via density
matrices.
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One of the main advantages of transitioning to the CPM(FHilb) category and using density matrices
instead of vectors lies in the opportunity for defining various asymmetric measures on the matrices.
These in turn give rise to orderings that can be utilised in tasks such as hypernym-hyponym classifi-
cation. We define a new very simple and intuitive measure on density matrices, called p-hyponymy,
that allows us to extract quantitative information about the relative strength of a given hyponym-
hypernym bond. We show how this link manifests itself at the sentence level in a variety of di↵erent
sentence structures. Finally, we briefly discuss the possibility of implementing variations of this mea-
sure to the task of modeling linguistic phenomena other than hyponymy, such as those from Chapter
4.
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Chapter 2

A compositional distributional
model of meaning

In their paper [7], Coecke, Sadrzadeh and Clark first establish the category-theoretic framework for
a new model of meaning that aims to unite the two standard approaches to capturing the structure
of natural languages - the compositional and the distributional one. At first sight the use of category
theory - a field which is often a↵ectionately referred to as ‘general abstract nonsense’ - to model
a natural language may seem a bit surprising. However, its suitability for this purpose is easy to
observe. It enables us to model syntax and semantics separately in two di↵erent categories which,
via their shared structural identities, allow us to derive sentence meanings in a way that takes into
account grammar and individual word meanings simultaneously.

In more concrete terms, we store qualitative information about word meanings in the category FHilb
and information about syntax in the category Preg and achieve the transition from the latter to the
former via a strongly monoidal functor Preg ! FHilb.

Moreover, the structural morphisms provided by the compact closed category allow us to compute
maps which can be applied to strings of words to produce their combined meaning. This can be used
not only for the purposes of establishing whether or not a sentence is true or false (as in Montague
semantics) but also to extract richer information about it, depending on what we aim to achieve and
what data we are interested in obtaining.

This chapter serves as an introduction and overview of the categorical framework used in the distri-
butional compositional categorical (DisCoCat) model and the applications to extracting meaning out
of various structures, such as positive transitive sentences and relative clauses.

2.1 Types and distributions. Grammar and meaning.

2.1.1 Pregroup Grammars

In 1958 [22] J. Lambek introduced a syntactic calculus that formalises the grammatical structure
of language and later on built upon this work by making use of the mathematical formalism of
pregroups [23]. Below we give a brief overview of how pregroup grammars can be used to capture
syntax and grammatical reductions. For a more detailed account of the use of types as elements of a
pregroup and applications, see [21, 24].

Definition 1 (Partially ordered monoid). A partially ordered monoid (P ,  , · , 1) is a partially
ordered set (P , ) together with an associative binary operation · : P ⇥ P ! P called monoid
multiplication, and a unit element 1, and such that the multiplication is order-preserving:

(p  q) =) (r·p  r·q) ^ (p·r  q·r) 8 p, q, r 2 P.

Definition 2 (Pregroup algebra). A pregroup algebra
�
P ,  , · , 1 , (�)l , (�)r

�
is a partially ordered

monoid together with two unary operations (�)l : P ! P and (�)r : P ! P called the left and right
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adjoint respectively, such that for each p 2 P there exist pl, pr 2 P satisfying:

pl·p  1  p·pl
p·pr  1  pr·p.

Adjoints are unique and satisfy the following properties [7]:

1. Order-reversing: (p  q) =) (qr  pr) ^ (ql  pl) ;

2. Opposite adjoints annihilate: (pr)l = p = (pl)r ;

3. Self-adjoint unit and multiplication: 1r = 1 = 1l and ((p·q)r = qr·pr) ^ �(p·q)l = ql·pl� .
Definition 3 (Pregroup grammar [33]). A pregroup grammar G =

�
P ,  , · , 1 , (�)l , (�)r

�
is a

pregroup algebra which is freely generated over a set of basic types B that includes an end type and a
type dictionary which associates pregroup elements to the vocabulary of a (natural) language.

Note that we say that a pregroup P is freely generated over a set B to mean that all the elements of
P can be formed out of the elements of B via zero or more applications of the monoid operation and
the adjoint operators (�)r and (�)l.

In the context of natural languages B is often taken to be the set B = {n, s, j,�}, where n is the type
assigned to nouns by the type dictionary; j is the the type of infinitives of verbs; � is a gluing type,
and s is the type of a declarative statement. We also call the type s the end type of this grammar.
For the rest of this dissertation the pregroup grammar G will be understood to mean exactly the
grammar that is freely generated over the set B above.

The following remarks, terminology and conventions will become useful later on:

• The grammatical type of a string of words is the concatenation (i.e. the monoidal multiplica-
tion) of the types of the individual words in the string in the order in which they appear. This
is an element of G.

• We can often simplify a grammatical type by using the properties of adjoints and the associa-
tivity of the monoidal operation. We call such a simplification a reduction. When a string
x 2 G can be reduced to some other string y 2 G we write ‘x  y’ or ‘x ! y’. I will use
these interchangeably. This notion will be made more precise once compact closed categories
are introduced.

• A well-typed or grammatical sentence is a sentence whose grammatical type reduces to the
end type s.

• A well-typed noun phrase is is a phrase or a sentence whose grammatical type reduces to
the basic type n.

The most important functional words that we will need here are transitive and intransitive verbs,
adjectives and various pronouns. Thus, we summarise their types below, following the conventions
of [34, 35].

functional word type

transitive verb nrsnl

intransitive verb nrs
adjective nnl

subject relative pronoun (who, which, that) nrnsln
object relative pronoun (whom, which, that) nrnnllsl

subject possessive pronoun (whose) nrnslnnl

object possessive pronoun (whose) nrnnllslnl
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For example, the type of a transitive verb is meant to reflect the fact that it is a functional word that
takes a noun (its subject) on the left and another noun (its object) on the right in order to produce
a declarative statement.

To see these types and type reductions in action, consider the following examples.

(1) postmodern paintings (nnl)n
reduction: (nnl)n  n(nln)  n
Well-typed noun phrase.

(2) Mary likes postmodern paintings. n(nrsnl)(nnl)n
reduction: n(nrsnl)(nnl)n  (nnr)s(nln)(nln)  s
Well-typed sentence.

(3) Mary likes jumps. n(nrsnl)(nrs)
reduction: n(nrsnl)(nrs)  (nnr)s(nnrs)  snnrs
Grammatical type cannot be reduced further. Not a well-typed sentence.

(4) John dislikes the postmodern paintings that Mary buys.

n(nrsnl)(nnl)n(nrnnllsln)n(nrsnl)

reduction: n(nrsnl)(nnl)n(nrnnllsl)n(nrsnl)  (nnr)s(nln)(nln)nrnnllsl(nnr)snl

 snl(nnr)nnll(sls)nl

 s(nln)(nllnl)

 s

Well-typed sentence.

2.1.2 Finite dimensional Hilbert spaces

In contrast to the pregroup grammar formalism that enables us to capture the syntactic structure of
sentences, the idea behind the distributional model of meaning, first introduced by Firth in 1957 [9]
and formalised for practical applications in the last couple of decades, is that word meanings can be
modeled solely on the basis of the contexts in which these words appear.

In this model words, regardless of their grammatical role, occupy highly dimensional vector spaces
with orthonormal basis vectors known as target words or context words and which can be all or a
subset of lemmatised words extracted from a corpus, e.g. The British National Corpus or ukWaC.
The entries of the word meaning vectors then correspond to the number of times that the word in
question has appeared in the corpus in a window of n words of each corresponding context word,
where n can be taken to be as small as 1, but is normally as high as about 5.

The mathematical structure that encapsulates this formalism is that of finite-dimensional real vector
spaces. Here we will be more general and instead of finite-dimensional vector spaces over R we will
consider the category of finite-dimensional Hilbert spaces and bounded linear maps, of which the
former is simply a special case.

Vector space terminology and notation.

Unit vectors in a Hilbert space V will be written interchangeably as either �!v 2 V or |vi where |·i is
called the Dirac ket and can also be treated as an operator |·i : C ! V . The Dirac bra is the dual
operator of the ket and is given by h·| : V ! C. We write hv|, where �!v 2 V , to represent the e↵ect
corresponding to the state |vi. The e↵ect is the Hermitian conjugate of the state. Note that for our
purposes we will be using real Hilbert spaces and thus will be able to think of |vi as simply being a
column vector and hv| as being its transpose, i.e. the corresponding row vector.
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Together a bra hv| and a ket |wi form a bracket hv |wi , which is in fact exactly the inner product of
the vectors �!v and �!w . This will be defined more rigorously later.

We will also need the outer product of hv| and |wi for v 2 V and w 2 W , |wihv|, defined via its
action of states |ui 2 V as:

(|wihv|) (|ui) = |wihv |ui.

In applications, where the underlying field will always be assumed to be R, the outer product will
simply be the dot product of a column vector |wi and a row vector hv|, which results in a matrix.

Finally, an operator on vector spaces is defined as follows.

Definition 4. If V and W are two Hilbert spaces, an operator is a map of the form � : V ! W that
can be expressed as:

� =
X

ij

↵ij |wjihvi| for ↵ij = hwj |�|vii,

where {|vii} is a basis for V and {|wji} is a basis for W .

2.2 Category theoretic and graphical calculus framework for
DisCoCat

The common structural framework occupied by the otherwise orthogonal models of meaning provided
by the type-theoretic and the distributional models is that of compact closed categories. Before going
into more detail about how this is achieved, we give a brief introduction to the basics of category
theory that will be needed for our purposes. For more background on the vast and increasingly
important subject that is category theory, we refer the reader to some of the many good sources on
the topic [3, 6, 26].

2.2.1 What is a category?

Definition 5 (Category). A category C consist of the following:

• A collection of objects Ob(C);

• A collection of morphisms Ar(C) such that for each pair of objects A,B 2 Ob(C) there is a set
of morphisms C(A,B) = {f 2 Ar(C) | f : A ! B} ✓ Ar(C), called a hom-set;

• For any pair of morphisms f 2 C(A,B) and g 2 C(B,C), a composite morphism g�f 2 C(A,C),
satisfying the following axioms:

- associativity: 8f 2 C(A,B), 8g 2 C(B,C), 8h 2 C(C,D),

h � (g � f) = (h � g) � f

- identity: 8A 2 Ob(C) 9! idA 2 C(A,A) s.t. 8 f 2 C(A,B) and for any B 2 Ob(C),

f = f � idA = idB � f.

2.2.2 Monoidal categories

We will now define a particular subclass of categories that will prove to be especially useful for our
purposes. Before that, we will need the notion of a functor, as well as a few types of functors that
will be applicable later on.

Definition 6 (Functor [1]). Let C and D be two categories. A functor F : C ! D is given by:

• A mapping on objects: F : Ob(C) ! Ob(D) by A 7! FA;
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• A mapping on morphisms: F : Ar(C) ! Ar(D) by (f 2 C(A,B)) 7! (Ff 2 D(FA,FB)), which
preserves identities and compositions:

Fid
A

= idFA (8A 2 Ob(C)) and F(g � f) = Fg � Ff (8 f, g 2 Ar(C)).

Definition 7 (Monoidal functor; Strongly monoidal functor [1]). If C and D are two monoidal
categories and F : C ! D, we say that F is a monoidal functor to mean that, in addition to F being
a functor, we also have a natural transformation such that 8A,B 2 Ob(C), F(A)⌦F(B) ! F(A⌦B),
and a morphism I ! FI, where I 2 Ob(C) is the unit object of C . Whenever these are both invertible
we say that F is a strongly monoidal functor.

Definition 8 (Dagger functor). A dagger functor is a functor † : C ! Cop such that for all ' 2 Ar(C)
we have

�
'†�† = '.

Definition 9 (Monoidal category). A monoidal category (C , ⌦ , I , a , l , r) consists of:

• A category C;

• A functor ⌦ : C ⇥ C ! C called a tensor such that it acts of objects by:

(A,B) 7! A⌦B 2 Ob(C),

and on morphisms by:

(f 2 C(A,B), g 2 C(C,D)) 7! f ⌦ g 2 C(A⌦B,C ⌦D) .

Moreover, this functor is bifunctorial, meaning that for all f, g, h, k 2 Ar(C) we have:

(f ⌦ g) � (h⌦ k) = (f � h)⌦ (g � k).

• A distinguished object I 2 Ob(C) called unit object.

• Natural isomorphisms a, l, r whose components are given by:

(8A,B,C 2 Ob(C)) aA,B,C : A⌦ (B ⌦ C)
⇠
=�! (A⌦B)⌦ C

(8A 2 Ob(C)) lA : I ⌦A
⇠
=�! A and rA : A⌦ I

⇠
=�! A , with rI = lI : I ⌦ I

⇠
=�! I.

Moreover, these natural isomorphisms have to satisfy certain coherence conditions which ensure
that all the relevant diagrams commute.

A symmetric monoidal category is a monoidal category equipped with a swap map � : A⌦B
⇠
=�! B⌦A,

for any pair of objects A and B is the category.

Finally, a category is a dagger category if it is equipped with a dagger functor. Note that dagger
categories have a richer structure and satisfy additional criteria not mentioned here as these will not
be of direct relevance to the current discussion. Thus, we omit the details and refer the reader to [37].

The main reasons why monoidal categories are so useful for the purposes of modeling meaning lie in
the existence of the monoidal tensor ⌦ and the identity object.

The monoidal tensor allows us to consider situations where several objects (words) need to be
looked at at the same time as a sequence, or when several processes (morphisms) take place
simultaneously. Loosely speaking, one can think of the tensor of two objects A,B 2 Ob(C),
A⌦B, as being ‘object A and object B’ and the tensor of two morphisms f, g 2 Ar(C) as being
process f and process g occurring at the same time. The latter complements the sequential
composition of processes provided by the categorical morphism composition operation which
tells us that we can interpret f � g as ‘process f happens after process g’. For a more detailed
explanation and notes on how this applies in quantum computing as well, see [6]. The availability
of both parallel and sequential processes in monoidal categories is what makes them a good
candidate for a framework in which sentence meaning can be interpreted, as we will see shortly.
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The identity element I 2 Ob(C) allows us to think down to the level of the elements of which the
objects of the category are built, while at the same time retaining the generality provided by the
categorical formalism. This is because the properties of the identity object imply the existence
of a bijective correspondence between the actual elements of A 2 Ob(C) and morphisms of the
type a : I ! A, where a 2 C(I, A). This correspondence will allow us to think of words as being
linear maps in a vector space and at the same time its elements.

Graphical Calculus for monoidal categories

Another significant advantage of monoidal categories is that they are complete with respect to a
very intuitive graphical calculus. By completeness we mean that any statement about the equality
of morphisms in a monoidal category can be derived from the categorical axioms if and only if the
same statement can be obtained via an admissible sequence of manipulations of diagrams expressible
in the monoidal graphical calculus.

The origins of this useful graphical language date back to Roger Penrose [31], who first proposed
representing morphisms (processes) as boxes and objects (input and output types) as wires. For more
details about the origins and development of the graphical calculus, its applications in categorical
quantum computing, and a proof of the above statement, see [5, 38]. We will now only present the
most basic diagrams and supplement these with other constructions as necessary later. The main
building blocks of the diagrammatic calculus are boxes of various shapes and wires, which also give
rise to the name string diagrams.

If A,B 2 Ob(C) and f 2 C(A,B) is a morphism then
we represent it as a box with input wire labeled A and
output wire labeled B. We adopt the convention here
that information flows from top to bottom.

f

A

B

For any A,B,C,D 2 Ob(C) and f 2 C(A,B), g 2
C(C,D) the parallel morphism composition, i.e. the ten-
sor of morphisms

f ⌦ g 2 C(A⌦ C,B ⌦D)

is depicted by simply placing the corresponding boxes
next to each other.

f

g

A

B

C

D

f

g

A

B

C

For any A,B,C 2 Ob(C) and f 2
C(A,B), g 2 C(B,C) the sequential com-
position

g � f 2 C(A,C)

is represented by simply stacking the
boxes on top of each other, with the flow
of information from one process of the
other carried via the wire of their com-
mon type B.

9



Note that if a morphism has several inputs and/or outputs then we represent these as di↵erent wires
into/out of the appropriate morphism box. For example, f 2 C(A⌦B,C ⌦D) as a single morphism
takes the form

f

A B

C D

The identity object I 2 Ob(C) is depicted by an empty box and for each A 2 Ob(C) the identity
morphism 1A : A ! A takes the form of a single wire of type A.

Whenever we have a morphism with no inputs or out-
puts, i.e. when the input or outputs are of type I, we de-
pict these as up and down triangles respectively. These
are normally denoted by ' : I ! A and ⇡ : A ! I
and are called states and e↵ects, following the quantum
terminology.

 

⇡

A

A

[18] If A and B are two objects in our monoidal category then we call a morphism f : I ! A ⌦ B
a joint state of A and B. A joint state is said to be a product state or separable if it has the form

' : I ! I ⌦ I
f⌦g���! A⌦B, where f : I ! A and g : I ! B. Joint states which are not product states

are called entangled states. The diagram on the left hand side depicts a product state and the one
on the right is an entangled state.

A B A B

f

g '

Entangled states represent tensors A ⌦ B which cannot be decomposed into A and B as there is
some kind of intrinsic interconnectedness between the two. For example, we could have an element

!�!a ⌦
�!
b 2 A ⌦ B which cannot be separated into ⇢�!a 2 A and �

�!
b 2 B. This is very handy when

depicting functional words like verbs since in such cases we want to be able to represent the insep-
arability of the constituents. This is essentially what allows us to put together a sentence in which
the words have a way of interacting with each other, rather than simply existing next to one another
in a string. This will become more clear when we define functional words in tensor spaces explicitly
and start performing calculations.

More complicated processes are depicted diagrammatically by combining these building blocks. Note
that the topology of the diagrams, i.e. the relative positions of the boxes and wires is immaterial as
the only thing of importance is how these are connected. For more on this refer to [5]. For example,
the following two diagrams, and their corresponding morphisms, are in fact equal:

10



f

g

⇡

h

 

B

C

E

D

F

A A A

f

B

g

h

⇡

 

C

E
A A A

F

D

(⇡ ⌦ h⌦ 1F ) � (g ⌦ 1D ⌦  ) � f (⇡ ⌦ 1A ⌦ 1A ⌦ 1A ⌦ 1F ) � (g ⌦ h⌦ 1F ) � (f ⌦ 1F ) �  

2.2.3 Compact closed categories

Now we only need the morphisms for interpreting the grammatical reductions defined in the framework
of the pregroup grammars. These are provided by compact closed categories.

Definition 10 (Compact closed category). A compact closed category C is a monoidal category in
which for any object A 2 Ob(C) there exists a pair of objects Ar and Al also in Ob(C), called the right
and left adjoint of A, and corresponding structural morphisms "rA, "

l
A. ⌘

r
A, ⌘

l
A given by:

A⌦Ar "r
A�����! I Al ⌦A

"l
A�����! I I

⌘r
A�����! Ar ⌦A I

⌘l
A���! A⌦Al

The first two of these are also known as cancellations and the second pair as generations. These
satisfy the following equations, known as the yanking equations:

(1A ⌦ "lA) � (⌘lA ⌦ 1A) = 1A

("rA ⌦ 1A) � (1A⌦ ⌘rA) = 1A

("lA ⌦ 1A) � (1Al ⌦ ⌘lA) = 1Al

(1Ar ⌦ "Ar ) � (⌘rA ⌦ 1Ar ) = 1Ar

Graphical calculus for compact closed categories

The structural morphisms are depicted as caps and cups in the languages of the graphical calculus
accompanying monoidal categories. We will use the following conventions:

Al A A Ar

A Al Ar A

cups

caps

"lA : Al ⌦A ! I "rA : A⌦Ar ! I

⌘lA : I ! A⌦Al ⌘rA : I ! Ar ⌦A

Graphical calculus for †-compact closed categories

It will be easier to adopt the convention of drawing morphisms as asymmetric boxes when they inhabit
a dagger compact closed category. Note that this convention will not be applied to states and e↵ects
which will still be depicted as triangles. So, for a general morphism ' : A ! B we have:
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A

B

'

Then we depict application of the † functor to ' as a reflection of the box along the horizontal axis,
i.e '† : B ! A is depicted as:

B

A

'

Definition 11 (Name, Coname [18]). Let C be a †-compact closed category. We define the name and
coname of a morphism ' 2 C (A,B) to be (respectively) the morphisms:

p'q : I ! A⇤ ⌦B

p'q = (idA⇤ ⌦ ') � ⌘A

'

A

⇤
B

x'y : A⌦B⇤ ! I

x'y = "B � ('⌦ idB⇤)

'

A B

⇤

Definition 12 (Dual morphism [18]). Define the dual of a morphism ' : A ! B to be '⇤ : B⇤ ! A⇤,
given by:

'

B

⇤

A

⇤

which is obtained via
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'

⇤
'

B

⇤

A

⇤
A

⇤

B

⇤

A

⇤

A

B

B

⇤

'

= =
yank

Finally, we define '⇤ =
�
'†�⇤ to be:

B

A

'

A

⇤

B

⇤

'

*

=

Note that applying † to the " and ⌘ maps has the e↵ect of reflecting them along the horizontal axis.

2.3 Uniting syntax and semantics via a compact closed cate-
gory

We are finally in the position to describe the structures that we already defined as the containers for
grammar and meaning in the language of category theory.

2.3.1 Pregroup grammars as compact closed categories

A pregroup grammar G =
⇣
P ,  , · , 1 (·)r , (·)l⌘ is a compact closed category C = Preg:

• The objects are the elements of the underlying set P .

• The morphisms, denoted by ‘!’ or ‘’, correspond to the partial order  between the elements
of P in the sense that there is a morphism between p, q 2 Ob(C) i↵ p  q as elements of P .
Note that if there exists a morphism between any pair of objects then it is necessarily unique.
In other words, between any two objects of the category there is either one morphism or none.

• The existence of composite morphisms follows from the transitivity of the partial order  of P :

(p  q) ^ (q  r) =) (p  r) 8 p, q, r 2 P.

We can also express this by saying that ‘p ! q’ and ‘q ! r’ implies ‘p ! r’ for any p, q, r 2
Ob(C).

• The existence of an identity morphism on any object p 2 Ob(C) follows from the reflexivity of
the partial order:

p  p 8 p 2 P.

We also write ‘p ! p’.

• The monoidal tensor ⌦ of C is the monoidal multiplication · : P ⇥ P �! P of G.
- The tensor on objects p⌦ q (p, q 2 Ob(C)) is given by p·q, which we simply write as pq.

- The tensor on morphisms follows from the transitivity of the partial order on P and the
order-preserving property of the monoidal multiplication as follows:

[((p  q) =) pr  qr) ^ ((r  s) =) qr  qs)] =) pr  qr  qs =) pr  qs.
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• The left and right adjoints of p 2 Ob(C) are simply the left and right adjoints of the element
p 2 P , which exists by definition of G.

• The structure-preserving " and ⌘ maps are given by:

"l = pl·p ! 1 ⌘l = 1 ! p·pl
"r = p·pr ! 1 ⌘r = 1 ! pr·p

Note that we may alternatively write ‘’ instead of ‘!’, e.g. "l = [pl·p  1]. One can easily
verify that these satisfy the compact closure axioms.

Let B = {n, s,�, j} be the set of basic grammatical types that we had before. We will denote by
PregB the compact closed category corresponding to the pregroup grammar G used to model the
grammar and grammatical reductions of strings of words. As a compact closed category, PregB is
accompanied by a graphical calculus. This comes very handy as the graphical depictions of the " and
⌘ maps greatly simplify grammatical reductions. To see this, consider the reduction of one of our
previous examples done via a string diagram:

n
John

nr

dislikes
s nl n nl

the postmodern

n

paintings

nr n nll sl
that

n

Mary

nr s nl

buys

What this diagrams tells us is that the output type of the combined morphisms is simply s, as this
is the type of the only outgoing wire. Thus, the type of the sentence is s, as expected.

2.3.2 Finite dimensional Hilbert spaces as compact closed categories

The category in which we will model meaning is FHilb. Note that in the literature, meaning is often
modeled in the category of finite-dimensional (real) vector spaces and linear maps FVect. In prac-
tice, which of these is used for the purposes of any of the applications mentioned in the present work
makes no di↵erence, as in either case we restrict our attention to real vector spaces and a very narrow
set of morphisms. The advantage of working with FHilb is that it allows for more structure and is
equipped with a canonical inner product that gives rise to adjoints. It is is a motivating example for
the class of dagger compact closed categories used in the CPM construction, which will be elaborated
on in the next chapter.

Let H be an arbitrary Hilbert space. Then H has an inner product h· | ·iH : H ⇥H ! C, which is:

• antilinear in the first argument: h�f + g |hiH = �hf | giH + � hg |hiH (� 2 C) ;

• linear in the second argument: hf |�g + hiH = �hf | giH + �hf |hiH ;

• conjugate-symmetric: hf | giH = hg | fiH ;

• positive semi-definite: hf | fiH � 0.

Note that when there is no ambiguity, we will simply write h· | ·i instead of h· | ·iH . The adjoint of
a liner maps is now defined via the canonical inner product.

Definition 13 (Adjoint of linear map). If V and W are Hilbert spaces and ' : V ! W is a linear
map between them then its adjoint is defined to be the unique linear map '† : W ! V such that
8f 2 V and g 2 W , we have:

h'f | giW = hf |'†giV .

This defines a natural dagger functor on FHilb.

Definition 14 (Adjunctor functor). The adjunctor functor † : FHilb ! FHilbop is a functor which
preserves objects and takes morphisms ' 2 Ar(FHilb) to their adjoints '† 2 Ar(FHilbop). This is

a dagger functor, i.e.
�
'†�† = '.
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We can now formally define the category FHilb as the †-compact closed category with:

• Objects: finite dimensional Hilbert spaces over C.

• Morphisms : bounded C-linear maps.

• Morphism composition is provided by the closure under composition of C-linear maps.

• The unit object is the field itself.

• The monoidal tensor is the vector tensor product ⌦.

• The left V l and right V r adjoints of V 2 Ob(FHilb) are both given by the dual vector space
V ⇤ of V . Note that by fixing a basis {�!ei }i for V we have that V ⇤ ⇠= V . Thus, from now on we
will adopt the convention of writing V to mean any of these: V , V r, V l, V ⇤.

• The structure-preserving maps " and ⌘ are given by:

"rV = "lV = "V : V ⌦ V �! R by
X

ij

↵ij
�!ei ⌦�!ej 7!

X

ij

↵ijh�!ei |�!ej i

⌘rV = ⌘lV = ⌘V : R �! V ⌦ V by 1 7!
X

i

�!ei ⌦�!ei

where {�!ei }i is a basis for V and {1} is a basis for R. As we will only be interested in the
restriction to real Hilbert spaces, this definition su�ces.

For the time being, the most important type of morphisms in FHilb for us will be the states. Recall
that a state is a morphism from the unit object to another object. In this case, it is a linear map of
the form R ! V where V is a (real Hilbert) vector space. These are in a one-to-one correspondence
with elements of the space v 2 V , which can be established by considering the image of 1 2 R. Thus,
we will write v : R ! V to mean the morphism that sends 1 7! v. This allows us the flexibility of
being able to think of states as morphisms and elements (of the vector space) at the same time. More
concretely, it allows us to consider individual words in a sentence as vectors even though in reality
they are linear maps. In other words, if we are working in some vector space V and want to depict a

word that lives in this space in the form of a vector
���!
word 2 V , we will draw:

V

word

Note that |vi|wi is often used as a shorthand for �!v ⌦�!w and we will use these notations interchange-
ably.
Note also that |vihw| ⇠= |vi|wi by writing the transpose of each row of the matrix |vihw| one after the
other in a single column vector.

2.3.3 Meanings of sentences

Recall that we defined a way in which we can transition between two monoidal categories C and D
called a functor, and in particular we had a subclass of functors called strongly monoidal functors. A
very useful property of strongly monoidal functors applied to compact closed categories is that they
preserve the compact closure structure in the following sense:

F(Ar) = F(A)r and F(Al) = F(A)l 8A 2 Ob(C).

The transition between the category PregB of grammar and the category FHilb of word meaning is
achieved via a strongly monoidal functor F : PregB �! FHilb. Note that it su�ces to consider the
action of this functor on the elements of the generating set B and the morphisms between elements
of this set. We have:
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F : Ob(PregB) �! Ob(FHilb) by x 7!

8
><

>:

N if x 2 {n,�, j}
S if x := s

I = R or C if x := 1

Here N is taken to be the vector space containing the nouns and spanned by the appropriate basis
context vectors and S is the vector space that is meant to contain the meanings of sentences. Note
that in practice we will sometimes take subspaces of N for the various nouns we consider, e.g. for
objects and subjects of sentences, and also that there is no fixed vector space that gets assigned to S
by default. We may have one or two-dimensional sentence space or even S = N⌦N depending on the
problem at hand. As these will depend on specific applications, we will define them accordingly when-
ever necessary later in this thesis. A brief account of this is provided in the last section of this chapter.

F : Ar(PregB) �! Ar(FHilb) maps partial orders between elements of B to linear
maps between the appropriate vector spaces.

Some useful properties of the functor include:

• F(xr) = F(x) = F(xl) for any element x in the pregroup grammar. This follows from the fact
that for finite dimensional vector spaces we have V ⇠= V ⇤ and hence F(V ⇤) = F(V ).

• F(Xrr) = F(x) = F(xll) for any x in the grammar. This follows from V ⇤⇤ ⇠= V , and thus
F(V ⇤⇤) = F(V ).

• Functoriality tells us that if x = s
1

. . . sn is any string, i.e. element, in the pregroup grammar,
then F(x) = F(s

1

)⌦ . . .⌦ F(sn).

• Preservation of the compact closure maps " and ⌘.

For example, we have that:

F(nrsnl) = F(nr ⌦ s⌦ nl) = F(nr)⌦ F(s)⌦ F(nl)

= F(n)⌦ F(s)⌦ F(n)

= N ⌦ S ⌦N,

and nrsnl is the type of a transitive verb, so we conclude that the meanings of transitive verbs live
in the tensor space N ⌦ S ⌦N . In other words, we may represent a transitive verb as:

verb =
X

ijk

Cverb
ijk

�!ei ⌦�!sj ⌦�!ek ,

where {ei}i is a basis for N and {sj}j for S and the coe�cients Cverb
ijk come from the underlying field

R. Diagrammatically, a verb looks like this:

verb

N S N

Similarly, for adjectives we get F(nnl) = F(n ⌦ nl) = F(n) ⌦ F(nl) = N ⌦ N , and hence we can
represent these as:

adjective =
X

ij

Cadj
ij

�!ei ⌦�!ej .

Finally, we define the meaning of a string of words as follows. Suppose that we have a string of words
(not necessarily a well-typed sentence) s = w

1

. . . wn and let the type of word wi be ti. These types,
as well as the composite type of s, t

1

. . . tn, are objects in the category PregB. Now suppose that
we have a type reduction t

1

. . . tn
r��! x for some type x that cannot be reduced any further but
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need not be a basic type. This reduction r is tensor and/or composition of structural morphisms of
the category PregB and can therefore be translated into the corresponding morphisms in FHilb via
the strongly monoidal functor F . It is exactly this translation that allows us to make the transition
between grammar and meaning. More precisely, we define:

Definition 15. The from-the-meaning-of-words-to-meaning-of-sentences map, or simply meaning
map for a string of words s = w

1

. . . wn with grammatical reduction r is given by:

F(r)(�!w
1

⌦ . . .⌦�!wn).

For example, consider the sentence Carnivorous animals eat meat. The word types are, in the
order in which they appear, nnl, n, nrsnl, n. The types reduction r is given by:

(nnl)n(nrsnl)n = n(nln)nrs(nln)
1

n

⌦"l
n

⌦1

n

⌦1

s

⌦"l
n������������! (nnr)s

"r
n

⌦1

s����! s,

so
r = ("rn ⌦ 1s) � (1n ⌦ "ln ⌦ 1n ⌦ 1s ⌦ "ln).

Hence, the meaning of the sentence is given by:

F(("rn ⌦ 1s) � (1n ⌦ "ln ⌦ 1n ⌦ 1s ⌦ "ln))(
��������!
carnivorous⌦

�����!
animals⌦�!

eat⌦���!
meat)

= ("N ⌦ 1S) � (1N ⌦ "N ⌦ 1N ⌦ 1S ⌦ "N )(
��������!
carnivorous⌦

�����!
animals⌦�!

eat⌦���!
meat).

Carnivorous animals eat meat

N N N N S N N

carnivorous animals eat meat

n nl n nr s nl n

From the diagram we can simply read o↵ the meaning map, which is:

' = ("N ⌦ 1S) � (1N ⌦ "N ⌦ 1N ⌦ 1S ⌦ "N ).

Suppose that the individual words in the sentence are given by:

carnivorous =
X

i

Ccarni
i

�!ni ⌦�!ni
�����!
animals =

X

k

↵k
�!nk

���!
meat =

X

j

�j
�!nj eat =

X

lrt

Ceat
lrt

�!nl ⌦ sr ⌦�!nt

Then we obtain the meaning of the sentence as:

'
⇣
carnivorous⌦

�����!
animals⌦ eat⌦���!

meat
⌘
.

= '

0

@
X

i

Ccarni
i

�!ni ⌦�!ni ⌦
X

k

↵k
�!nk ⌦

X

lrt

Ceat
lrt

�!nl ⌦ sr ⌦�!nt ⌦
X

j

�j
�!nj

1

A

= ("N ⌦ 1S)

0

@
X

ijklrt

Ccarni
i ↵k C

eat
lrt �j h�!ni |�!nkih�!nt|�!nji�!ni ⌦�!nl ⌦ sr

1

A

= ("N ⌦ 1S)

0

@
X

ijlr

Ccarni
i ↵i C

eat
lrj �j

�!ni ⌦�!nl ⌦ sr

1

A

=
X

ijrl

Ccarni
i ↵i C

eat
lrj �j h�!ni |�!nli sr

=
X

ijr

Ccarni
i ↵i C

eat
irj �j sr.
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2.4 Relative clauses via Frobenius algebras

We introduce very briefly the additional structure on top of compact closed categories developed
in [34,35], which allows for modeling sentences and phrases containing relative pronouns that, which,
who, whose and the possessive whose. This additional structure is provided by the so-called Frobenius
algebras, first developed by F. G. Frobenius.

Definition 16 (Frobenius algebra [34]). Let C be a symmetric monoidal category and A 2 Ob(C). A
Frobenius algebra A over C is a tuple (A, �, ◆, ⇣, µ) where:

• (A, µ : A⌦A ! A, ⇣ : I ! A) is an internal monoid;

• (A, � : A ! A⌦A, ◆ : A ! I) is an internal comonoid.

These together satisfy the Frobenius condition:

(µ⌦ 1A) � (1A ⌦�) = � � µ = (1A ⌦ µ) � (�⌦ 1A) .

For a definition of monoid and comonoid see, e.g. [3], and for more on Frobenius algebras refer to [20].
For our purposes we will only need to consider Frobenius algebras over FHilb.

Let V 2 Ob(FHilb) be a finite-dimensional (real) Hilbert space with basis {�!ei }i. We define a
Frobenius algebra over it by:

µ :V ⌦ V ! V ⇣ : I ! V � : V ! V ⌦ V ◆ : V ! I

�!ei ⌦�!ej 7! �ij
�!ei 1 7!

X

i

�!ei �!ei 7! �!ei ⌦�!ei �!ei 7! 1

The intuition behind using these to model language structures can be summarized according to [35] as:

The comonoid’s comultiplication � is often referred to as copying. It has the e↵ect of produc-
ing a diagonal matrix out of a vector, i.e. �(�!v ) is the diagonal matrix in V ⌦ V whose diagonal
entries are the coe�cients of �!v . Copying enables the transfer of information contained in a single
vector (or the vector space it belongs to) to two others. For example, by copying the information con-
tained in a noun vector we can feed the two copies into a relative pronoun and a verb at the same time.

The monoid’s multiplication µ is referred to as uncopying. It extracts the diagonal entries of a
matrix and produces a vector with these as coe�cients. Uncopying allows us to merge the information
coming from two di↵erent sources. This can be used in cases where we need to put back together the
information produced after processing di↵erent parts of a sentence containing a relative clause into a
single output.

The unit ◆ lets us discard information. For example, a relative pronoun takes as input from the
verb a wire of type S corresponding to sentence type s, but does not produce an output of the same
type (as relative clauses output noun-types) and has to discard it.

Diagrams for Frobenius algebra morphisms.

µ : A⌦A ! A ⇣ : I ! A � : A ! A⌦A ◆ : A ! I

The Frobenius condition is depicted as:
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= =

Applications of the Frobenius maps to vector are depicted as the composition of the Frobenius map
with the corresponding state:

µ (�!v ⌦�!w ) � (�!v ) ◆ (�!v )

V W V

V

vvwv

V
V V

where v : I ! V and w : I ! W .

2.4.1 Relative pronouns via Frobenius algebras

Recall that the grammatical type of the subject relative pronouns who, that and which is nrnsln and
that of the object relative pronouns whom, that and which is nrnnllsl. The grammatical reductions
of relative clauses are established as follows.

n nr n sl n nr s nl n

subject relative pronoun verb object

subject relative clause

n nr n nll sl n nr s nl

object relative pronoun subject verb

object relative clause

Note that the output in either case is of type n, as expected from a well-typed relative clause.
Applying the functor F : PergB ! FHilb to the types of the relative clauses gives us the tensor
spaces in which their meanings live.

F
�
nrnsln

�
= N ⌦N ⌦ S ⌦N

F
�
nrnnllsl

�
= N ⌦N ⌦N ⌦ S

According to [34], these are functional words explicitly given in FHilb as:
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N N S N N N N S

subject object

(1N ⌦ µN ⌦ ⇣S ⌦ 1N ) � (⌘N ⌦ ⌘N ) (1N ⌦ µN ⌦ 1N ⌦ ⇣S) � (⌘N ⌦ ⌘N )

Then the diagrammatic representations for subject and object relative clauses become:

subject relative clause

N N N S N N S N N

subject relative pronoun verb object

object relative clause

N N N SN N SN N

subjectrelative pronoun verbobject

These reduce to:

subject relative clause object relative clause

N N S N N N N NS N

subject verb object subject verb object

(µN ⌦ ◆S ⌦ "N )
⇣��!
subj ⌦ verb⌦

�!
obj
⌘

("N ⌦ ◆S ⌦ µN )
⇣��!
subj ⌦ verb⌦

�!
obj
⌘

Note that these can now be used in more complicated structures, such as nested relative clauses or
positive transitive sentences containing various subject or object relative clauses. For concrete exam-
ples, see [34]. We will use instances of this construction with in the framework of the CPM(FHilb)
in the final chapter.

In their paper [35], Sadrzadeh, Clark and Coecke apply Frobenius algebras in a similar fashion in
order to model meanings of possessive subject and object relative clauses, i.e. structures of the form
possessor whose subject verb object and possessor whose object subject verb. These are
not discussed here.
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2.5 Concrete vector spaces for nouns and sentences

So far we haven’t said much about how the vector spaces N and S are chosen and how the output of
the meaning map can be interpreted so as to make the categorical compositional model of [7] truly
distributional and practically applicable. A detailed discussion of the various options that have been
utilized so far and experimental support is not necessary here, but the reader is referred to [12–14,36].
We will simply outline two main approaches that can be adopted and which are used later on in this
thesis in computations of examples.

We will introduce a running example that will help illustrate the di↵erent approaches to choosing
N and S and show the kind of results we obtain in practice. This will be a simple positive definite
sentence, but a very similar approach can be adopted when representing adjective-noun phrases and
more complicated structures involving various phrases and even adverbs [14]. The example will be
Detectives pursue criminals. Without specifying the common noun space N and sentence space
S, we define the individual word vectors as:

�������!
detectives =

X

i

↵i
�!ni

�������!
criminals =

X

j

�j
�!nj

����!pursue =
X

prt

Cprt
�!np ⌦�!sr ⌦�!nt.

The meaning of the sentence is given by

N N S N N

Detectives pursue criminals

("N ⌦ 1S ⌦ "N )
⇣�������!
detectives⌦����!pursue⌦

�������!
criminals

⌘

= ("N ⌦ 1S ⌦ "N )

0

@
X

i

↵i
�!ni ⌦

X

prt

Cprt
�!np ⌦�!sr ⌦�!nt ⌦

X

j

�j
�!nj

1

A

=
X

iprtj

↵i Cprt �j hni |npi sr hnt |nji

=
X

irj

↵i Cirj �j sr

(2.1)

2.5.1 Truth-theoretic meaning

In [7], the compositional categorical model of meaning introduced in the paper is applied in a truth-
theoretic setting, in which we assume that the noun vectors are all (standard) orthonormal basis
vectors in a vector space N , chosen to be the span of a suitable set of vectors which can be as small
as simply the set of those basis vectors that represent the nouns under consideration. The sentence
space S is taken to be one- or two-dimensional and truth-theoretic. In the one-dimensional case, i.e.
when S = Span{�!1 } we can take the basis vector

�!
1 to stand for true and

�!
0 for false. Alternatively,

we can work with S = Span{|0i, |1i}, in which case |0i =
✓
1
0

◆
stands for true and |1i =

✓
0
1

◆
for false.

In our example, we can take N to be the two dimensional vector space spanned by:

�!n
1

=

✓
1
0

◆
=

�������!
detectives and �!n

2

=

✓
0
1

◆
=

�������!
criminals,

and S to be the one-dimensional vector space with Cirjsr =

(�!
1 if �!ni pursues �!nj�!
0 o.w.

.

Then (2.1) returns
�!
1 whenever it is true that detectives pursue criminals (according to our sources)
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and
�!
0 otherwise. The same outcome can be achieved if we take S to be 2-dimensional. Also,

note that if we increase the size of the noun space by, e.g., including basis vectors for all possible

detectives and criminals and representing the vectors
�������!
detectives and

�������!
criminals as sums of these, the

above calculation will result in a sum of
�!
1 ’s and

�!
0 ’s, where there will be as many

�!
1 ’s in this sum

as there are detective-criminal pairs of people in the relationship of the latter being pursued by the
former. This can be generalised in other ways, such as by adding weights to the vectors that go into
the sums corresponding to the nouns, or even by representing the verb as a sum of other actions, e.g.:

����!pursue =
1

2

��������!
investigate+

1

2

���!
chase.

For worked examples of this form see [7].
This framework is useful for a limited number of applications and for proof of concept examples,
but is otherwise essentially no di↵erent from the model-theoretic view on semantics. For a truly
distributional perspective, we need to extract the word meanings from a corpus. Moreover, in the
case where the output of the meaning map is of type s, taking S to be truth-theoretic does not tell
us anything about the features of the individual words that comprise the sentence and how these
interact with each other to produce the output. As such, it is not a very useful space to work with
when considering practical tasks, or even for sentence comparisons.

2.5.2 A more distributional approach to word meaning and a new sentence
space

The idea developed in [14] is to take N to be a structured vector space like in other applications of the
distributional models framework. The basis vectors of this space can be taken to be a set of properties
or salient features of the nouns, depending on the application we are interested in. In the case of
applications in the area of cognitive linguistics, such as [25], these basis vectors can be taken to be
the salient features of the nouns that do not necessarily have to be extracted from a corpus, but can
be obtained from target groups in controlled experiments. We will see an example of this in Chapter 4.

In cases where we are interested in practical linguistic applications (definitions, ambiguity, information
retrieval, sentence comparisons, etc.) and working with a corpus, these vectors can be obtained
directly from the corpus via statistical (co-occurrence) methods. In this thesis, we will use the
approach of [14] for the purposes of toy examples whenever this is more suitable than a simple truth-
theoretic model. We will illustrate how this approach works by means of an example. Suppose the
following are basis vectors for N : arg-strong, subj-build, obj-clean. Then if we want to represent a
noun �!n with respect to these basis vectors, it will have entires that express how many times in the
corpus this noun has appeared as the argument of the adjective strong, the subject of the verb build
and the object of the verb clean. The sentence space can be taken to be S = N ⌦ N , so that the
basis vectors for S are of the form �!ni ⌦ �!nj , where

�!ni ,
�!nj are basis elements of N . Verbs are then

represented as: ��!
verb =

X

ij

Cverb
ij

�!ni ⌦ (�!ni ⌦�!nj)⌦�!nj .

The intuition behind this is that it allows us to output a meaning of the sentence in the form of a
matrix that contains all the information that we get from modifying the features of the noun object
and subject via the verb. The weights Cverb

ij are built by counting the number of times that a word
which is a possessor of property ni is the subject of this verb and a word that has property nj is its ob-
ject, i.e. how many times we have in the corpus (something which is ni) verb (something which is nj).

For example, suppose that we have (standard) basis vectors {n
1

, . . . n
5

} representing, in this order,
arg-cunning, arg-righteous, arg-nasty, arg-meticulous, obj-kill and in our imaginary corpus the word
detective has appeared 4 times as the argument of cunning, 5 times as the argument of righteous, 3
times as the argument of meticulous and once as the object of kill. Suppose that the word criminal
has appeared twice as the argument of cunning and meticulous, 3 times as the argument of nasty.
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Then the vectors for the two words are given by:

������!
detective =

0

BBBB@

4
5
0
3
1

1

CCCCA
,

������!
criminal =

0

BBBB@

2
0
3
2
0

1

CCCCA
,

and the meaning of the sentences can be computed accordingly.
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Chapter 3

The CPM construction and density
matrix formalism

The model of meaning of [7] summarised in the previous chapter has been applied successfully to a
number of tasks [11–14, 25, 36]. However, restricting our attention to vectors as means of capturing
word meaning also has limitations, which prevent us from making good use of it for some more in-
volved applications that necessitate for the relationships between words and between concepts and
their salient features to be taken into account. For this reason, some of the more recent work in the
field [2, 32, 33] has involved a shift of focus from vectors to density matrices to represent semantics.
This approach has already proved to be promising for disambiguation [33] and in the modeling to
hyponymy [2] and has given rise to many opportunities for further research.

Density matrices are used in quantum mechanics to represent uncertainty about the state of a phys-
ical system. Not only do they possess richer structure than vectors, but they are also equipped
with mathematical properties that allow for the introduction of various symmetric and asymmetric
measures of similarity and inclusion. In contrast, vectors can only be compared to each other via
symmetric measures, such as the cosine.

The mathematical framework in which density matrices occupy the same position as that of vectors
with respect to the †-compact closed category FHilb is the category CPM(FHilb), built on top
of FHilb. Thus, in this chapter we will first introduce the CPM construction in the context of its
applications to distributional models of meaning, following closely [33], and then shift our attention
to CPM(FHilb) and density matrices specifically.

3.1 The doubling construction and CPM

3.1.1 The doubling construction on †-compact closed categories

Definition 17 (The (doubling)D construction). The D construction D(C) on a symmetric †-compact
closed category C with monoidal tensor ⌦ is given as follows:

• Objects: The objects Ob(DC) of D(C) are the same as the objects Ob(C) or C.

• Morphisms: The morphisms Ar(DC) of D(C) consist of ' 2 DC(A,B), where

' 2 C(A⇤ ⌦A,B⇤ ⌦B).

In other words, ' : A ! B is a morphism in the double category if ' : A⇤ ⌦ A ! B⇤ ⌦ B is a
morphism in C.

• Morphism composition: If ',  2 Ar(DC) are two morphisms of D(C) with ' 2 DC(A,B) and
 2 DC(B,C), then the composition  � ' 2 DC(A,C) is provided by the morphism:

 � ' : A⇤ ⌦A ! C⇤ ⌦ C ,
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whose existence follows from the composition of ' : A⇤⌦A ! B⇤⌦B and  : B⇤⌦B ! C⇤⌦C
in C.

• Monoidal tensor: The monoidal tensor of D(C) is given by ⌦D : D(C) ! D(C), which acts

- on objects A,B 2 Ob(DC) as A⌦D B = A⌦B ;

- on morphisms ' 2 DC(A,B),  2 DC(C,D) :

'⌦D  : A⇤ ⌦A⌦ C⇤ ⌦ C
'⌦ ���! B⇤ ⌦B ⌦D⇤ ⌦D

Note that the existence of the swap map � : A⌦B
⇠
=�! B ⌦A in C implies that:

A⇤ ⌦A⌦ C⇤ ⌦ C ⇠= A⇤ ⌦ C⇤ ⌦ C ⌦A and B⇤ ⌦B ⌦D⇤ ⌦D ⇠= B⇤ ⌦D⇤ ⌦D ⌦B,

so we take:
'⌦D  : A⇤ ⌦ C⇤ ⌦ C ⌦A

'⌦ ���! B⇤ ⌦D⇤ ⌦D ⌦B.

Graphical calculus in DC

Our convention will be to represent the boxes and wires of D(C) with thicker lines so as to distinguish
between the structures D(C) and C. This is done because the transfer from the latter category to the
former essentially means doubling of the wires. Thus, for example, the map ' 2 DC(A,B) is depicted
as the LHS part of the diagram below, while its corresponding counterpart in C, ' : A⇤⌦A ! B⇤⌦B,
as the RHS:

A

B

A

⇤
A

B

⇤
B

=

CD(C)

' '

The tensor of two morphisms ' and  is depicted as:

'

 

B

⇤

A

⇤

D

⇤

C

⇤

B

A

D

C

'

 

7!

D(C) is also a †-compact closed category [37]. It inherits this structure from C via a strict monoidal
functor E : C ! D(C) given by:

E :Ob(C) ! Ob(DC) E : Ar(C) ! Ar(DC)
E ::A 7! A E :: f 7! f⇤ ⌦ f

and, inductively, E('⌦  ) = E(')⌦D E( ).
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There is a bijective correspondence between the states of D(C) i.e. morphisms ' : I ! A⇤ ⌦ A of C
and the positive operators on A, i.e. morphisms  : A ! A of C, established via the map that sends
each operator to its name:

f : C(A,A) ! C(I, A⇤ ⌦A)

' 7! p'q = (idA⇤ ⌦ ') � ⌘A

These states will be of central importance once we start working in the category CPM(FHilb). Recall
that the name of the operator ' : I ! A⇤ ⌦B, p'q is depicted (in C) as follows:

'

A

⇤
B

3.1.2 The subcategory CPM(C) of D(C)
Before we define the CMP(C) subcategory of D(C) we need the notion of a completely positive map.
Completely positive maps arise naturally in the context of density matrices as they are essentially
density matrix-preserving maps. This concept will be made more precise later, but for now we give
a general definition of completely positive maps that works in any †-compact closed category. The
definition below is due to Selinger [37].

Definition 18 (Completely positive morphism [33]). Let ' 2 DC(A,B) be a morphism of D(C), i.e.
' : A⇤ ⌦A ! B⇤ ⌦B. We say that ' is a completely positive morphism if there exists C 2 Ob(DC)
and k 2 C(C ⌦A,B), such that ' can be embedded in C by:

' 7! (k⇤ ⌦ k) � (1A⇤ ⌦ ⌘C ⌦ 1A) .

B

⇤
B

A

⇤
A

k k

CA

B

' 7!

C

⇤

Note that this implies that states in CPM(C) can be represented as:

'

k k

A A

⇤
A

7!

and we can recover the original definition from above via:

A

⇤

'

k k

A

A

⇤
A

=

k

A

k =

A

⇤
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The second equality follows from the standard definition of positive operator, which tells us that
' being positive means that we can express it as ' = k � k†. The LHS diagram will be the one used
in applications.

This representation implies that if f and g are two completely positive morphisms then the following
are also completely positive:

f � g , f ⌦ g , f⇤ ⌦ f = E(f). (3.1)

This essentially tells that any morphism in the category D(C) that can be obtained via a combination
of tensors and compositions of other completely positive morphisms is also completely positive. Thus,
we have closure under � and ⌦ of completely positive morphisms in D(C), and hence can define the
following subcategory.

Definition 19 (CPM(C)). If C is a †-compact closed category then CPM(C) is the subcategory of
D(C) which has the same objects as C and its morphisms are the completely positive morphisms of
D(C).

Let I be the embedding of CPM(C) into D(C). Then there exists (by (3.1)) a strictly monoidal functor
Ẽ : C ! CPM(C) such that E = IẼ.

The compact closure and Frobenius maps in CPM(C)

In the category CPM(C) the compact closure maps " and ⌘ are given by E(") and E(⌘), and similarly
the Frobenius algebra maps ◆, ⇣, µ and � are given my E(◆), E(⇣), E(µ) and E(�). Note that
whenever there is no ambiguity as to which category we are working in, we will adopt the convention
of writing ", ⌘, µ, �, ◆ and ⇣ to mean the corresponding morphism in C or in CPM(C). Also, in this
context we are normally only interested in left adjoints, so we will write for each A 2 Ob(DC) :

"lA = " : A⇤ ⌦A ! I ⌘lA = ⌘⇤ : I ! A⌦A⇤

Later on, when working with real Hilbert spaces, it will not matter which map we mean, as the left
and right vector space adjoints are both isomorphic to the space itself.

Diagrammatic Calculus for CPM(C)

We will mainly be interested here in how the structure-preserving maps combine with the states of
the category, so a brief discussion about this is in place. First of all, note that the diagrams for all of
the structural morphisms and Frobenius maps are simply obtained from their original counterparts
by doubling the wires. For example, for the "-map in the CPM category, we get:

CPM(C) C

However, applying the map to the tensor of two states in CPM results in some swaps in the output
wires that occur because of the way that the tensor of morphisms is defined in CPM (see diagram
above). It will be more convenient for us to represent this in an alternative, but equivalent fashion,
whereby we can treat, for example, the "-morphism as being:

CPM(C) C

To see how this works, consider the following diagram, in which on the LHS we have the diagrammatic
representation of " ('⌦  ) in CPM(C), in the middle we have the corresponding diagram in C and
on the RHS - the equivalent representation that will be used in applications.
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"

'⌦CPM  

' '

  

' '

  

'

 

CPM(C) C

7! =

Thus, we can summarise these morphisms in CPM(C) via the following diagrams:

A

⇤
A A

⇤
A

⇤
A A

A A

⇤
A A

⇤
A

⇤

E(") = "⇤ ⌦ "

" : A⇤ ⌦ A

⇤ ⌦ A⌦ A ! I

CPM(C) C

E(⌘) = ⌘⇤ ⌦ ⌘ ⌘ : I ! A⌦ A⌦ A

⇤ ⌦ A

⇤

CPM(C) C

" : (�!ei ⌦�!ej )⌦ (�!ek ⌦�!el ) 7! h�!ei |�!eki h�!ej |�!el i ⌘ : 1 7!
X

ij

�!ei ⌦�!ej ⌦�!ei ⌦�!ej

A

⇤

A A

⇤
A

⇤
A A

AA

A A

⇤

A

⇤
A

⇤

E(µ) = µ⇤ ⌦ µ µ : A⇤ ⌦ A⌦ A

⇤ ⌦ A ! A

⇤ ⌦ A

E(�) = �⇤ ⌦� � : A⇤ ⌦A ! A⇤ ⌦A⌦A⇤ ⌦A

A

A

AA A

A

µ : (�!ei ⌦�!ej )⌦ (�!ek ⌦�!el ) 7! h�!ei |�!eki h�!ej |�!el i(�!ei ⌦�!ej ) � : (�!ei ⌦�!ej ) 7! �!ei ⌦�!ej ⌦�!ei ⌦�!ej

A

⇤
AA

A

⇤

E(◆) = ◆⇤ ⌦ ◆

◆ : I ! A

⇤ ⌦ A

E(⇣) = ⇣⇤ ⌦ ⇣ ⇣ : A⇤ ⌦A ! I

AA

◆ : (�!ei ⌦�!ej ) 7! 1 ⇣ : 1 7!
X

i

�!e
1

⌦�!ei

3.1.3 Sentence meaning in the category CPM(C)
The CPM construction allows us to consider a number of new candidate categories in place of FHilb
for storing word meanings. As already mentioned, this thesis will only make use of CPM(FHilb),
but since it is possible to work in other categories, such as CPM(Rel), we first define our sentence
meaning map in a more general setting where we do not explicitly specify the category that we wish
to use, but rather work with a general †-compact closed category C and assume that our words exist
as states in the category CPM(C).

We now have all the necessary ingredients to define a new from-the-meaning-of-words-to-the-meaning-
of-sentences map, or meaning map, that will allow us to transfer the grammatical structure of a
sentence to a category containing its words’ semantics, which is some CPM(C). Recall that in the
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vector space model of distributional models of meaning the transition between syntax and semantics
was achieved via a strongly monoidal functor F : PregB ! FHilb. It turns out that we can similarly
define a strongly monoidal functor S : PregB ! CPM(C). We define this functor to be S = ẼQ,
where Q is the strongly monoidal functor Q : PregB ! C, of which F : PregB ! FHilb is a special
case. The morphisms involved can be summarised via the following diagram:

CPM(C)

C
PregB

D(C)

ẼQ
Ẽ

E

I

Q

Since Q is a strongly monoidal functor and Ẽ is strictly monoidal, we get that S is strongly monoidal,
as required. We can now define the meaning map that makes use of CPM(C) as follows.

Fix a †-compact closed category C and its corresponding CPM construction CPM(C) with unit
object I. With the same notation as above we have:

Definition 20. Let s = w
1

. . . wn be a string of words and let ti be the grammatical type of word wi in
PregB. Suppose that the type reduction of s is given by t

1

. . . tn
r��! x for some x 2 Ob(PregB). Let

⇢(wi) be the meaning of word wi in CPM(C), i.e. a state of the form I ! S(ti). Then the meaning
of s is given by:

S(r) (⇢(w
1

)⌦CPM . . .⌦CPM ⇢(wn)) . (3.2)

3.2 Modeling word and sentence meaning in CPM(FHilb)

From now on, we will only be working with the category CPM(FHilb) that is built out of the already
familiar category of finite dimensional Hilbert spaces and linear maps.

3.2.1 Density matrices as states in CPM(FHilb)

Recall that a state in a category C is a morphism of the form  : I ! A for a vector space A, and
that the states in FHilb are in a one-to-one correspondence with the elements of the vector space in
question.

Definition 21. A pure state on a vector space V is an operator V ! V which is of the form ' �'†,
where ' : I ! V is a state and '† � ' = idI .

In quantum computing pure states represent the possible states in which a physical system can be.
However, it is often the case that an observer does not have information about the exact state in
which the system is, but rather only knows the probabilities attached to several possible states. This
can be mathematically expressed as a convex sum of pure states and we will call this a mixed state.
More precisely, we use density matrices.

Suppose that a system can exist in state |⇢ii with probability pi, for some collection of state-probability
pairs {|⇢ii, pi}. Then the density matrix or density operator corresponding to this system is given
by:

⇢ =
X

i

pi |⇢iih⇢i|,

where
P

i pi = 1. Each of the |⇢iih⇢i| is a pure state.
To see how these operators fit into our categorical framework, consider the following definition.

Definition 22 (Positive matrix [18]). We call a matrix a positive matrix if it is the name of a
positive morphism ⇢ : V ! V , i.e. a morphism p⇢q : I ! V ⇤⌦V . The morphism ⇢ is called a mixed
state. Recall that these can be expressed diagrammatically as:
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⇢

p
⇢

p
⇢

p
⇢

p
⇢= =

Thus, a density matrix, which is a positive matrix with trace 1, is exactly a state in CPM(FHilb)
– the category which has as objects finite-dimensional Hilbert spaces and as morphisms completely
positive maps. Note that completely positive maps in this context means morphisms that take density
matrices to density matrices and preserve their structure. All the formalism from the previous section
carries over to the category CPM(FHilb). Just as before, we will only be using real-valued vector
spaces and hence we will be able to assume that for all meaning spaces involved we have V ⇤ ⇠= V .

3.2.2 Using density matrices to model word meanings

How can density matrices be used to capture word meaning and what do we gain by doing this, as
opposed to sticking to vector-based representations?

One use of density matrices that mirrors their role in quantum computing is in representing words
as probabilistic mixtures of their possible ambiguous meanings. For example, in [33], the ambiguous
noun queen has the density matrix representation:

pqueenq = |ElisabethihElisabeth|+ |bandihband|+ |chessihchess|,

where Elisabeth, chess and band are assumed to be all the possible meanings of the word queen and,
furthermore, these are assumed to be themselves pure states, i.e. they have unambiguous meanings.
The idea behind using this kind of representation is that once the ambiguous word is put in a sentence,
the functional words in this sentence interact with it in a similar way to how an observation a↵ects a
physical system. This allows for a single meaning to emerge out of the collection of possible meanings
and for this meaning to connect with the rest of the sentence and produce the relevant output, i.e.
sentence meaning.

Another possible use of density matrices is in representing collective nouns as sums of their parts.
For example, we could have that:

ppetq =
X

i

pi ppetiq,

where ppetiq = |petiihpeti| is the pure state corresponding to the ith pet (e.g. pcatq, pdogq, etc).
The advantage of doing this is that it lets us compare the collective nouns with their parts and see
connections and di↵erences between them that are not immediately obvious when using vectors. Also,
it allows for the introduction of various asymmetric measures which facilitate the comparison and
ordering of concepts and their components. Note that the same idea can be used for representing
verbs or, indeed, any functional word in CPM(FHilb).

To see how these density matrices are formed in practice and how the morphisms work in the
CPM(FHilb) category to form meaning maps and produce the meanings of sentences, consider the
following example, where for simplicity all the nouns are assumed to be pure states.

Example

Let the noun space be given by a real Hilbert space N with basis vectors given by {|nii}i, where for

some i, |nii =
���!
Clara and for some j, |nji =

��!
beer. Let the sentence space be some unspecified S with

basis {|sii}i. Then the density matrices for the nouns Clara and beer are given by:

pClaraq = |niihni| and pbeerq = |njihnj |.
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Suppose the verb
��!
like 2 N ⌦S⌦N is given by

��!
like =

P
rtv Crtv |nri|nti|nvi. Then its corresponding

density matrix in CPM(FHilb) is given by:

plikeq =

 
X

rtv

Crtv |nri|nti|nvi
! 

X

klu

Cklu|nki|nli|nui
!T

=
X

rtvklu

Crtv Cklu |nrihnk|⌦ |ntihnl|⌦ |nvihnu|

The meaning map is simply ("N ⌦ 1S ⌦ "N ) applied to (pClaraq⌦ plikeq⌦ pbeerq), as per the dia-
gram below:

N N N N

Clara likes beer

N N N S N N S N N N

⇢(Clara likes beer) = ("N ⌦ 1S ⌦ "N ) (pClaraq⌦ plikeq⌦ pbeerq)

= ("N ⌦ 1S ⌦ "N )

 
|niihni| ⌦

X

klurtv

CrtvCklu |nrihnk|⌦ |stihsl|⌦ |nvihnu| ⌦ |njihnj |
!

=
X

klurtv

CrtvCklu hni |nri hni |nki (|stihsl|) hnv |nji hnu |nji

=
X

ijtl

Citj Cilj |stihsl|
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Chapter 4

Applications of distributional
compositional models to cognitive
linguistics phenomena

In this chapter we consider applications of the DisCoCat model of meaning to two cognitive linguistics
phenomena, both of which possess some sort of asymmetry.

The so-called Pet Fish phenomenon is a classic example of overextension with respect to concept
combination. We first give an overview of the recent work by Lewis and Coecke [25], who modeled
this example in the original setting, in which words are represented by vectors. We then go on to
consider the same in the new framework of CPM(FHilb).

The phenomenon of asymmetry in similarity judgments is examined in the classic experiments by A.
Tversky [40], in which the perceived similarity of a more prominent country to a similar, but less
prominent one is shown to be greater than the reverse. We present a simple method to capture this
and mention an alternative solution that will be revisited in the next chapter.

4.1 Concept combination and the Pet Fish phenomenon

4.1.1 What is concept combination?

Concept combination relates to the way in which the meaning of the constituent parts of a phrase are
connected to the meaning of the whole. For example, consider the simple adjective-noun phrase flu↵y
cat and suppose that we are interested in the connection between flu↵y, cat and flu↵y cat. Intuitively,
this should be relatively straightforward - a flu↵y cat is a concept that lies in the intersection of flu↵y
things and things which are cats. This is easily modeled with conjunction in classical set theory.
However, if we tried to apply the same logic to the combination of concepts school and furniture into
school furniture, then this approach does not yield intuitive results. School furniture are not things
that are both school and furniture, but furniture which are being modified by the concept of school
in some fashion.

Here we will be interested in the problem of typicality rating and membership judgment with respect
to concept combination. Note that the membership problem can be treated simply as a special case
of typicality. Informally speaking, this problem can be phrased as follows:

Given two concepts A and B and their combination AB, what can we conclude about the typical-
ity (or membership) of an item x in A and in B from its typicality (membership) in AB, and vice versa?

These questions have been explored in detail since the 1980’s both from a mathematical point of view
and in experiments in psychology and some interesting and somewhat counterintuitive results have
been observed. For example, in [17], J. Hampton concluded that human subjects from a target group
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considered some items to be members of the combined concept school furniture but not members
of either the school or furniture categories. Similar results have been observed in connection with
typicality ratings of items with respect to concepts and conjunctions of these concepts.

4.1.2 Overextension, the Pet Fish phenomenon and the shortfalls of fuzzy
set theory

Here we will only look at the phenomenon of overextension, in which an item is perceived to have
a higher degree of membership/typicality with respect to the combination of two concepts than to
each of the concepts individually. A classical example of the overextension phenomenon in typicality
judgment with respect to concept combination was cited way back in 1981 in [29] and is known as
the Pet Fish phenomenon, or the guppy e↵ect. Here a goldfish (or guppy) is judged to be a more
typical representative of the concept pet fish than it is of either the class of pets or that of fish.

In fact, the authors argue that the typicality of an item with respect to a combination of two concepts
cannot be determined via a simple logic function and that, in particular, treating the combination
of concepts as their conjunction does not lead to fruitful results. That is to say, fuzzy set theory,
which has been traditionally used to model concept combination, cannot e�ciently be combined with
prototype theory, since it leads to paradoxes in which an item is more prototypical of a conjunction
of two concepts than of either of them.

In fuzzy set theory, the typicality rating of an item x with respect to a concept C is given by a
membership function fC(x) and the typicality of x with respect to the combination of concepts C

1

and C
2

is given by its typicality w.r.t. their conjunction C
1

^ C
2

, i.e. by fC1^C2(x), which satisfies
the rule:

fC1^C2(x)  min{fC1(x), fC2(x)}.

Whenever we have fC1^C2(x) > min{fC1(x), fC2(x)}, we call this overextension. This is exactly what
we have in the Pet Fish phenomenon, with x = goldfish, C

1

= pet and C
2

= fish.

Briefly, the problem with applying fuzzy set theory to concepts like this is that is does not allow us to
consider the interaction that occurs between the two objects and how they modify each other to form
the combined whole. It does not allow us to ‘see’ what features they have in common. A goldfish is a
more typical pet fish than it is a pet or a fish simply because it shares more of the common features
to the two concepts than it does with those of the individual words.

4.1.3 Concept combination in a vector-based DisCoCat

The DisCoCat framework allows for interactions and modifications of this type to occur very natu-
rally. In fact, as observed by Lewis and Coecke in [25], in the phrase pet fish the word pet clearly
plays the role of an adjective and should not be treated as a noun.

The compositional model of meaning allows us to take into consideration the grammatical role of
the words in the phrase and assign type nnl to the adjective pet and n to the noun fish. Then the
meaning of the combined concept is given via:

n nl n

N N N

pet fish

pet fish 7!
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(1N ⌦ "N )
⇣����!
pet-adj ⌦

��!
fish

⌘

If we take the adjective to be given by
����!
pet-adj =

P
ij ↵ij

�!ni ⌦ �!nj , with respect to the same basis

vectors {�!ni}i as for the noun
��!
fish =

P
k �k

�!nk, we obtain the meaning of the phrase to be:

(1N ⌦ "N )
⇣����!
pet-adj ⌦

��!
fish

⌘
= (1N ⌦ "N )

0

@
X

ij

↵ij
�!ni ⌦�!nj ⌦

X

k

�k
�!nk

1

A

=
X

ijk

↵ij�k
�!nih�!nj |�!nki

=
X

ij

↵ij
�!nih�!nj |

��!
fishi.

In fact, the approach taken in [25] is to simplify the model by taking the adjective to be a sum of
its attributes, in accordance with [19] and forcing it back into its assigned dimension by using the

Frobenius copy � operator. In other words, set
����!
pet-adj =

P
i
�!ei =

P
i ↵

pet
i

�!ni where
�!ei are the words

that co-occur with the adjective, i.e. in this case mostly nouns that are modified by it. Then to
return the adjective back to the appropriate dimension, we take:

����!
pet-adjcopy = �(

����!
pet-adj) =

X

i

↵pet
i

�!ni ⌦�!ni .

Then the meaning of pet fish becomes:

(1N ⌦ "N )
⇣����!
pet-adjcopy ⌦

��!
fish

⌘
=
X

i

↵pet
i

�!ni h�!ni |
��!
fishi =

����!
pet-adj �

��!
fish,

where � is the pointwise product. So we get that pet fish is simply a fish whose each feature is mod-
ified by the corresponding feature of the adjective pet, where the adjective itself takes into account
the arguments that go with it.

The idea then is the following. After computing the vector for the concept pet fish, the vector for
goldfish is compared to it, and also to the vectors for pet and fish individually. This is done via the
symmetric cosine similarity measure.

Definition 23. Let �!x = (x
1

, . . . xn)
T and �!y = (y

1

, . . . , yn)
T be two vectors of the same dimension.

Then the cosine between them is given by:

cos (�!x ,�!y ) =
�!x ·�!y

||�!x || · ||�!y || =
P

i xi ⇥ yipP
i x

2

i

pP
i y

2

i

.

Below is a summary of the toy example performed in [25], exactly as it appears in the paper.

Suppose that the nouns pet, fish, goldfish, cat, dog, shark are modeled with respect to the hand-chosen
set of salient features:

{
������!
cared-for,

����!
vicious,

����!
fluffy,

���!
scaly,

��������!
lives-in-sea,

����������!
lives-in-house},

as shown in the table below:

pet fish goldfish cat dog shark

cared-for 1 0.2 0.7 0.9 0.9 0
vicious 0.2 0.8 0 0.2 0.4 1
flu↵y 0.7 0 0 0.9 0.7 0
scaly 0. 2 1 1 0 0 1
lives in sea 0 0.8 0 0 0 1
lives in house 0.9 0.3 0.9 0.9 0.9 0

Take
����!
pet-adj =

�!
dog +

�!
cat +

�����!
goldfish = (0.5, 0.6, 1, 1, 2.7)T . Then the cosine similarities between the

words are as follows:
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goldfish cat dog shark

pet(noun) 0.7309 0.9816 0.9809 0.1497
fish 0.5989 0.2500 0.3292 0.9670
pet(adj) fish 0.9379 0.5550 0.6225 0.5846

Thus, as we can see from the table, the similarity between goldfish and pet fish is indeed higher than
that between goldfish and pet or fish individually.

4.1.4 Transition to a density-matrix based environment in CPM(FHilb)

Following the same train of thought, we introduce the density matrix for the adjective pet to be
the sum of the density matrices corresponding to the pet nouns that the adjective modifies, i.e. we
think of the adjective pet as being a mixture of its arguments. The main motivation behind making
the switch to a density-matrix based representation is that it allows us to think of the adjective pet
as a mixture of its constituents, thus making the interactions between their salient features more
prominent. It also allows for asymmetric measures of similarity to be applied to the matrices.

Suppose that the density matrices which correspond to pure states for the nouns cat, dog, fish and
goldfish are given by:

pdogq = |dogihdog| =
 
X

i

↵i |nii
!0

@
X

j

↵jhnj |

1

A =
X

ij

↵i↵j |niihnj |

pcatq = |catihcat| =
 
X

k

�k |nki
! 

X

l

�lhnl|
!

=
X

kl

�k�l |nkihnl|

pgoldfishq = |goldfishihgoldfish| =
 
X

p

�p |npi
! 

X

q

�qhnq|
!

=
X

pq

�p�q |npihnq|

pfishq = |fishihfish| =
 
X

t

�t |nti
! 

X

u

�u |nui
!

=
X

tu

�t�u |ntihnu|

And the mixed state for the adjective pet is given by the density matrix:

ppet-adjq = pdogq+ pcatq+ pgoldfishq

=
X

ij

↵i↵j |niihnj |+
X

kl

�k�l |nkihnl|+
X

pq

�p�q |npihnq|

=
X

rs

Cpet
rs |nrihns|.

As before, in order to compute the meaning of pet fish, we will first copy the adjective and then
combine it with the noun with the "-map. Diagrammatically, we get:

N

N N

N

N

N N

N N N N

N

N

N

N

pet fish
pet fish

CPM(FHilb) FHilb
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The meaing in CPM(FHilb) is thus given by:

(1N ⌦ "N ) � (�N ⌦ 1N ) (ppet-adjq⌦ pfishq)

= (1N ⌦ "N ) � (�N ⌦ 1N )

 
X

rs

Cpet
rs |nrihns| ⌦

X

tu

�t�u |ntihnu|
!

= (1N ⌦ "N )

 
X

rs

Cpet
rs |nrihns|⌦ |nrihns| ⌦

X

tu

�t�u |ntihnu|
!

=
X

rstu

Cpet
rs �t �u |nrihns| hnr |ntihns |nui

=
X

rs

Cpet
rs �r �s |nrihns|

= ppet-adjq� pfishq

The measure of similarity of density matrices that corresponds closely to the cosine measure for
vectors and that will be used here in a similar fashion as above is that of fidelity. The advantage
of using fidelity over other symmetric distance measures on density matrices, such as trace distance
and trace inner product, lies in the fact that for words represented by pure states in CPM(FHilb)
the fidelity is equal to the cosine between their corresponding one-dimensional projections, i.e. their
FHilb counterparts.

Definition 24. If ⇢ and � are two density matrices then the fidelity between them is given by:

F (⇢,�) = Tr

qp
⇢ �

p
⇢

�
.

Fidelity is a symmetric measure of similarity, i.e. we have that F (⇢,�) = F (�, ⇢).

If ⇢ and � are both pure states, then the fidelity between them is simply F (⇢,�) = |h' | i|, where
⇢ = |'ih'| and � = | ih |. Thus, when comparing the nouns that are represented by pure states via
the fidelity measure, we simply recover the results that we had before. For example,

F (pfishq, pgoldfishq) = cos(
��!
fish,

�����!
goldfish) = 0.5989

The di↵erence is in the fidelity between pet fish, represented by ppet-fishq and the rest of the nouns.
In particular, we get

F (ppet-fishq, pgoldfishq) = 0.7934

Comparing pet fish with the rest of the nouns via the fidelity gives us the following results:

goldfish cat dog shark

pet(adj) fish 0.7934 0.3906 0.4409 0.5136

We observe that all the results obtained are in fact lower than those achieved via computing the
cosine between their vectors. In particular, the decrease in similarity between pet fish and goldfish
compared to before seems to match our intuition more closely - a goldfish is indeed a fairly typical
pet fish, but a degree of similarity of 0.94 indicated a close relationship between the two bordering
on complete overlap, which should not be the case. The density matrix model allows for the shared
salient features between the concepts to become more obvious, and at the same time also results
in their di↵erences becoming more prominent, and hence the result obtained from the comparison
becoming lower.

4.2 Asymmetry of similarity judgments

4.2.1 Similarity is not symmetric

Concept similarity is another fundamental problem in psychology that also manifests itself in cogni-
tive linguistics. The problem with many of the mathematical treatments of similarity is that they are
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inherently symmetric, especially when based on geometric reasoning. As exhibited in [40] experimen-
tally, concept similarity is intrinsically asymmetric. In the same paper, Tversky argues that similarity
judgments should be treated as statements of the form ‘a is like b’ (which is usually di↵erent from ‘b
is like a’ ), rather than ‘a and b are similar’. He further claims that “the direction of the asymmetry
is determined by the relative salience of the stimuli; the variant is more similar to the prototype than
vice versa”.

In one of the experiments conducted in support of this claim, a group of test subjects is asked to
decide which of a given pair of countries is more similar to the other one. The subjects had to
chose between ‘Country A is similar to country B’ and ‘Country B is similar to country A’. In this
experiment almost all of the subjects picked the phrase ‘North Korea is similar to China’ and not
‘China is similar to North Korea’. The general observation was that given two countries which share
some common features, the more prominent country (‘the prototype’) determined the direction of the
asymmetry.

4.2.2 DisCoCat model to capture asymmetry

The distributional model of meaning framework provides us with a very natural environment for
modeling this kind of asymmetry. We propose one way of doing this in FHilb. We choose the
sentence space S to be one-dimensional truth theoretic and constant, i.e.,

�!
1 everywhere, and model

the verb: is similar to with respect to the same basis vectors {�!ni}i as those used as context words
for the noun space N . Thus, the weights Cij for the verb

���������!
is-similar-to =

X

ij

Cij
�!ni ⌦

�!
1 ⌦�!nj

⇠=
X

ij

Cij
�!ni ⌦�!nj

correspond to the number of times that a noun with salient feature ni occurs as the subject of the
verb, while at the same time a noun with feature nj appears as its object. In reality, there is no reason
why in general we should have Cij = Cji, i.e. there is no reason why the verb is similar to should be
symmetric. This asymmetry of the verb propagates through the sentence via the meaning map and
results in an output that di↵erentiates between the two sentences ‘China is similar to North Korea’
and ‘North Korea is similar to China’. Note that by essentially eliminating the sentence space, we
force the output of the meaning map applied to these sentences to be a real number. Then the idea
is that the greater number of the two corresponds to the more ‘likely’ sentence.

To make this idea concrete, we will consider a toy example. Note that all the weights in this example
were created by hand and by intuition and are vaguely based on widely available facts but not ex-
tracted from a corpus or supported by any kind of experimental evidence. Empirical evidence would
be required to verify the results.

The assumption here is that the countries China and North Korea are judged against a set of context
words which correspond to salient features that could in practice be extracted from a corpus or elicited
from human trials. We will take the context words to be the following set:

{
�!
big,

������!
populous,

�������!
prominent,

������!
affluent,

��������!
East Asian,

��������!
communist,

��������!
militarised}.

The vectors for
����!
China =

P
i ↵

Ch
i

�!ni and
���������!
NorthKorea =

P
l ↵

NK
l

�!nl are summarised in the following
table:

China North Korea

big 0.9 0.3
populous 1 0.4
prominent 0.8 0.4
a✏uent 0.5 0.2
East Asian 1 1
communist 0.6 0.8
militarised 0.6 0.9
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and the weights Cij for the verb
���������!
is-similar-to are given by:

big populous prominent a✏uent East Asian communist militarised

big 0.7 0.5 0.6 0.5 0.1 0.2 0.3
populous 0.2 0.7 0.8 0.5 0.6 0.1 0.2
prominent 0.4 0.5 0.7 0.8 0.4 0.1 0.3
a✏uent 0.6 0.6 0.8 0.6 0.3 0.2 0.2
East Asian 0.3 0.7 0.6 0.3 0.7 0.1 0.4
communist 0.1 0.1 0.2 0.1 0.3 0.8 0.5
militarised 0.2 0.1 0.4 0.2 0.2 0.1 0.5

Next we compute the meanings of the two sentences:

� = China is similar to North Korea.
 = North Korea is similar to China.

in FHilb according to the diagram:

N N S N N

country A is similar to country B

with meaning map "N ⌦ 1S ⌦ "N , which we can simply treat as f = "N ⌦ "N and forget about the
sentence space. The meanings are then:

f(�) = ("N ⌦ "N )

0

@
X

i

↵Ch
i

�!ni ⌦
X

jk

Cjk
�!nj ⌦�!nk ⌦

X

l

↵NK
l

�!nl

1

A

=
X

ik

↵Ch
i Cik ↵

NK
k ⇡ 8.1

f( ) = ("N ⌦ "N )

0

@
X

l

↵Nk
l

�!nl ⌦
X

jk

Cjk
�!nj ⌦�!nk ⌦

X

i

↵Ch
i

�!ni

1

A

=
X

ij

↵NK
j Cji ↵

Ch
i ⇡ 9.1

Thus, as expected, f( ) > f(�).

Discussion

As observed in the above example, this very simple model seems to be applicable to the task of
modeling asymmetry and there is no reason not to be believe that it can be extended to all sorts
of examples and possible scenarios. What enables us to do this is the intrinsic asymmetry of verbs,
even the auxiliary verb to be, and the fact that the compositionality of the systems allows for this
asymmetry to propagate through the sentence and result in a di↵erent meaning outputs to ‘Noun1
verb Noun2’ and ‘Noun2 verb Noun1’.

The same idea can easily be extended to the category CPM(FHilb) by making the transition from
noun vectors to matrices. However, the results obtained would provide only a marginal improvement
at the expense of increased complexity.

An alternative solution that eliminates the need to use the verb is similar to or any of its synonyms
would be to model the two concepts (countries) as mixed states in CPM(FHilb) and compare them via
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an asymmetric measure of similarity on density matrices that produces quantitative results. We will
introduce one such measure in the next chapter and discuss towards the end how it could potentially
be implemented on the task in future work.
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Chapter 5

P-Hyponymy

5.1 Introduction

As we already mentioned, one of the greatest advantages of transitioning to the CPM(FHilb) category
and using density matrices instead of vectors lies in the possibilities for applying asymmetric measures
and orders on the matrices. One such measure was developed in [2] and was utilised for the task
of determining word hyponymy. Here we will introduce a new and simpler measure, which not only
allows for exhibiting hyponymy relations between concepts, but also enables us to quantify them.
We will see how this works on the level of sentences and how it can be generalised to apply to all
familiar grammatical structures within the DisCoCat framework. Finally, we will briefly consider
what happens when we try to implement variations of this measure to model other phenomena, such
as those mentioned in Chapter 4.

5.1.1 What is hyponymy?

In simplest terms possible, hyponymy is a ‘is-a-type-of ’ relation between two concepts X (the hy-
ponym) and Y (the hypernym), i.e. X and Y are in a hyponym-hypernym relation if X is a type of Y.
For example, a Siamese cat is a type of cat. However, in reality, hyponymy is an incredibly complex
linguistic phenomenon and has no universally agreed upon rigorous mathematical definition.

Examining the various possible characterisations of hyponymy even on a superficial level is well be-
yond the scope and intention of this work. The interested reader is referred to [10]. Broadly speaking,
there are several di↵erent ways of defining this linguistic concept, including various extensional and
intentional logic, collocational, componential, and prototype-theoretic approaches. Each of these has
certain advantages and disadvantages over the others, and there are inevitably always cases of real-life
uses of hyponymy that each of them fails to capture properly, or at all.

The definition that will be assumed here will be more or less a simplified version of the prototype-
theoretic one. As we said at the beginning, the hyponym-hypernym relation X-Y is one of the form
X is a type/kind/sort of Y. To make this a bit more precise, we first need to specify that X and Y
can be any pair of concepts expressible via words or phrases of the same grammatical type, and in
terms of a pre-defined set of salient features. Then we will say that X is a hyponym of Y and that
Y is a hypernym of X if the features of X are contained in those of Y.

It will be assumed below that whenever we write ‘X-Y pair’, we mean a pair of concepts where X
is a hyponym of Y. Similarly, when we say that ‘we have hyponymy’ between X and Y, this will be
understood to mean that X is a hyponym of Y.

5.1.2 Graded hyponymy

Note that, clearly, some X-Y pairs better exemplify hyponymy than others. For example, the pair
apple - fruit as opposed to tomato - fruit. This leads to another concept, that of typicality, or
prototypicality. Loosely speaking, if the hyponymy bond between X and Y is su�ciently strong,
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then we can think of them as being in a ‘is-a-typical ’ kind of relationship, rather than a ‘is-a-type-of ’
one. On the other hand, if we have very ‘weak’ hyponymy, then we can think of X as being just a
member of the class Y. Thus, while this is not at all rigorous from a linguistic point of view, it will
be useful for us to consider membership, hyponymy and typicality as increasingly stronger versions
of the same concept, i.e. we will assume that membership  hyponymy  typicality. In fact, we
will unite these into the single new concept that we will call p-hyponymy, which will be a graded
version of hyponymy that does not necessarily coincide entirely with the linguistic definition of the
concept.

We will not only be interested in whether or not X-Y is a hyponym-hypernym pair, but also in how
strong the hyponymy between these concepts is. The idea is that the stronger this hyponymy is, the
closer we get to having prototypicality. For example, a shinai is a hyponym to kendo weapon; in fact,
a shinai is the prototypical kendo weapon. Hence, we expect to have very high hyponymy between
the two, as captured by the value of p. What we mean by that will be made precise below.

5.1.3 Using measures on density matrices for hyponymy

Modeling hyponymy in the DisCoCat framework was first considered by Balkir in [2] where she in-
troduced an asymmetric similarity measure on density matrices based on quantum relative entropy,
which can be used to translate hyponym-hypernym relations to the level of positive transitive sen-
tences. This measure relies on a version of the Distributional Inclusion Hypothesis and, while it is
possible to make it quantitative, it is only considered in its qualitative version which induces a partial
order on density matrices. Our aim here will be to provide an alternative and simpler measure, rely-
ing only on the properties of density matrices and the fact that they are the states in CPM(FHilb).
This will enable us to order the words captured via the density matrices based on the strength of
their relative hyponymy, i.e. in a quantitative fashion, as described by the idea of p-hyponymy. We
will show how the order induced by the p-hyponymy can be lifted to the sentence level, not only for
positive transitive sentences, but for a much wider range of structures. In a sense, this measure will
also be more general than that in [2] as our definition of hyponymy is much more general.

5.1.4 Properties of hyponymy

Before proceeding with defining the concept of p-hyponymy, we will list a couple of properties of
hyponymy. We will show later that these can be captured by our new measure.

• Asymmetry. If X is a hyponym of Y, then this does not imply that Y is a hyponym of X.
In fact, we may even assume that only one of these relationships is possible, and that they are
mutually exclusive. For example, tchoukball is a type of sport and hence tchoukball-sport is a
hyponym-hypernym pair. However, sport is definitely not a type of tchoukball.

• Pseudo-transitivity. If X is a hyponym of Y and Y is a hyponym of Z, then X is a hyponym
of Z. For example, a Volkswagen is a type of car, and a car is a type of vehicle, so we have
the hyponym-hypernym pairs Volkswagen-car and car-vehicle. Then it is certainly true that a
Volkswagen is a type of vehicle. However, the relationship between hyponyms becomes weaker
with the distance between them. A Volkswagen might sill be a vehicle, but is it definitely more
of a car, and similarly, the more general concept of a car is closer in meaning to the concept
of a vehicle than a Volkswagen is. This is why we call this pseudo transitivity. In a sense, this
implies a hierarchical structure of hyponyms, where the further away we go from the lowest
hyponym, the weaker the hyponymy. This is a natural consequence of the fact that in general
a hypernym defines a broader category than its hyponyms.

5.2 Background definitions and results

Here we present some definitions and results that will be used later on.

Definition 25 (Positive semi-definite matrix). Let M 2 Mn(R) be a real symmetric n ⇥ n matrix.
We say that M is positive semi-definite, and write M ⌫ 0, if for any column vector �!x 2 Rn it holds
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that:
�!x TM�!x � 0.

Note that �!x TM�!x = h�!x ,M�!x i, where h·, ·i : Rn⇥Rn ! R is the usual vector inner product on Rn.

• An alternative characterisation of positive semi-definiteness in terms of eigenvalues tells us that
a square Hermitian matrix M is positive semi-definite i↵ all of its eigenvalues are non-negative.

• Note that density matrices can be characterised in terms of positive semi-definite matrices as
density matrices are self-adjoint, positive semi-definite matrices with trace 1.

Proposition 1. The sum of an arbitrary number of positive scalar multiples of positive semi-definite
matrices is positive semi-definite.

Proof. Fix n 2 N and let X1, . . . ,Xn be positive semi-definite matrices and ↵
1

, . . .↵n be non-
negative real numbers. Let �!x 2 Rn be an arbitrary non-zero vector and consider the inner product
h�!x ,

P
i ↵iXi ·�!x i. By the linearity of the inner product, we have that:

*
�!x ,

X

i

↵iXi ·�!x
+

=
X

i

↵i h�!x ,Xi ·�!x i .

Since for each j 2 [1, n], Xj is a positive semi-definite matrix, we have that each h�!x , Xj ·�!x i � 0
and hence

P
i ↵i h�!x , Xi ·�!x i � 0.

Proposition 2. The following is a necessary condition for a Hermitian matrix A = (aij) to be
positive semi-definite: aii � 0, 8i, i.e. all the diagonal entries are non-negative.

5.3 P-Hyponyms

5.3.1 A new measure on density matrices

The measure of hyponymy that we described above and named p-hyponymy will be defined in terms
of density matrices - the containers for word meanings. The idea is then to define a quantitative order
on the density matrices, which is not a partial order, but does give us an indication of the asymmetric
relationship between words. This is based on the partial order on the set of all square matrices given
by A  B i↵ B �A ⌫ 0.

Definition 26 (P-hyponym). Let pAq and pBq be density matrix representations of the concepts A
and B respectively. We say that A is a p-hyponym of B for a given value of p in the range (0, 1] and
write pAq 2p pBq if

pBq� p pAq ⌫ 0.

Remark. Note that such a p need not be unique or even exist at all. We will consider the interpre-
tation and implications of this later on. Moreover, whenever we do have p-hyponymy between A and
B, there is necessarily a largest such p.

Definition 27 (P-max hyponym). If A is a p-hyponym of B for any p 2 (0, 1], then there is necessarily
a maximal possible such p. We denote it by pmax and define it to be the max value of p in the range
(0, 1] for which we have pAq 2p pBq, in the sense that there does not exist q 2 (0, 1] s.t. q > p and
pAq 2q pBq.

5.3.2 Interpretation of the values of p

The values of p in the p-hyponymy measure are meant to denote probabilities. The idea is that the
closer p is to 1, the stronger the hyponymy between A and B. That is to say, the closer A is to being
in a ‘is-a-typical ’ relationship with B. Clearly, the value of p is not unique for an A-B pair; however,
p-max is always unique. This can be interpreted as giving us an upper bound of how close A can
get to B, while at the same time indicating that it might not always be the case that A does get
that close to B. This might, for example, depend on the context in which the two concepts are used.
A shinai may be a very strong p-max hyponym of kendo weapons in general, but exhibit a weaker
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connection to the martial art in some context.

Below we give a brief justification of why the range of possible values of p makes sense.

Proposition 3 (P-hyponymy for p  0 is useless). It always holds that pAq 2p pBq if p  0.
Therefore, the notion of p-hyponymy is useless for non-positive values of p.

Proof. Let p  0. Then

pAq 2p pBq () pBq� p pAq ⌫ 0 () pBq+ q pAq ⌫ 0 ,

where q = �p � 0. Since pAq and pBq are density matrices and hence positive semi-definite, and q
is non-negative, we get by Proposition 1 that pBq+ q pAq ⌫ 0.

The next proposition justifies why we do not consider values of p exceeding 1. It turns out that we
never actually find ourselves in this situation. This makes sense intuitively, given our interpretation
of the value of p as being a measure of proximity or a probability. If p = 1 is interpreted as being
absolute hyponymy, or prototypicality, then we should expect to not be able to exceed this value.

Proposition 4. The value of p cannot exceed 1.

Note that we assume that the matrices we are comparing are always of the same dimension. Also,
since the density matrices correspond to words or phrases in our model, we know that all of their
entries are non-negative, given the methods by which word meaning vectors are normally constructed.

Proof. Suppose that p-hyponymy were possible for values of p exceeding 1. Let p be such a value
for which we have pAq 2p pBq, for some density matrices pAq and pBq. Then pBq � p pAq ⌫ 0.
Define the matrix C = pBq � p pAq. By assumption, this matrix is positive semi-definite and has
diagonal entries cii = bii�paii. Since a positive semi-definite matrix has only non-negative entries on
its diagonal, by Proposition 2, we have that cii � 0 , 8i. Also, the matrices pAq and pBq have only
non-negative entries, and in particular aii � 0 , 8i and bii � 0 , 8i. Moreover, since they are density
matrices, we have

P
i bii =

P
j ajj = 1. Thus,

(cii � 0 8i) =) (bii � paii 8i) =)
X

i

bii � p
X

j

ajj >
X

j

ajj =) 1 > 1 ,

which is a contradiction.

The following observation relates to the property of words to be hyponyms of themselves in a trivial
way. In other words, we expect that any word or concept should be an absolute hyponym of itself, in
the sense of being a 1-max hyponym of itself.

Proposition 5. Any word A is a 1-max hyponym of itself.

Proof. Let A be an arbitrary word with density matrix representation pAq . Then as pAq�pAq = p0q
and p0q is by definition a positive semi-definite matrix, we conclude that pAq 2

1

pAq, i.e. A is a
1-hyponym of itself, and hence a 1-max hyponym of itself.

5.3.3 Extracting p-hyponymy values out of hyponym-hypernym pairs

We will make the assumption that hypernyms can be expressed in terms of their hyponyms, which
is, again, not completely rigorous from a linguistic point of view, but is a valid assumption for our
purposes nonetheless. For example, if all the hyponyms of the hypernym sport are tchoukball, volley-
ball and pickleball, then we can think of the concept sport as being tchoukball+volleyball+pickleball.

In practice, one way of making use of this assumption is by representing the density matrix corre-
sponding to sport as a mixture of the density matrices for the individual sports, weighted by the
number of times that the given sport has co-occurred with the word sport in a large body of text or
corpus. This idea is somewhat similar to the way in which we sometimes represent collective nouns
as a sum of their constituents in the vector-based model. The weights are generally normalised to
be between 0 and 1 and are not assumed to sum to 1. However, it will be more convenient for us to
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assume that they do, i.e. to treat them as probabilities. We can always get rid of this assumption
by normalising the resulting matrix for sport so that it has trace 1 after we have already included all
the sports in it.

More generally, this works as follows. Suppose that pXiq are the density matrix representations for
the hyponyms of the word B. Then the density matrix for B is given by:

pBq =
X

i

pi pXiq.

Here
P

i pi = 1. To drop this assumption, we can define pB0
q =

P
i qi pXiq to be the normalised

version of pBq with trace 1. We will always assume any density matrix we have is already normalised.

Proposition 6. Suppose that pAq 2 {pXiq}i, i.e that we have:

pBq = pjpAq+
X

i 6=j

pi pXiq

Then
pAq 2p pBq ,

for any p  pj.

Proof. Without loss of generality suppose that pBq = p
1

pAq+
P

i 6=1

pi pXiq and consider

⇠ = h�!x , (pBq� p pAq)�!x i for any p  p
1

.

We want to show that pAq 2p pBq, i.e. ⇠ � 0, 8�!x 6= 0. We have:

⇠ = h�!x , (pBq� p pAq)�!x i =
*
�!x ,

0

@(p
1

pAq+
X

i 6=1

pi pXiq)� p pAq

1

A�!x
+

=

*
�!x ,

0

@(p
1

� p) pAq+
X

i 6=1

pi pXiq

1

A�!x
+

=

*
�!x , (p

1

� p) pAq

�!x +
X

i 6=1

pi pXiq
�!x
+

= h�!x , (p
1

� p)pAq

�!x i+
*
�!x ,
X

i 6=1

pi pXiq
�!x
+

= (p
1

� p) h�!x , pAq

�!x i+
X

i 6=1

pi h�!x , pXiq
�!x i

By assumption, all of the pXiq and pAq are positive semi-definite matrices and all the pi are non-
negative. For any choice of p s.t. p  p

1

we have p
1

� p � 0. Thus, for any such p we end up with
a non-negative linear combination of non-negative quantities, i.e. a non-negative quantity. In other
words, we have p-hyponymy.

The p-max value: Discussion and assumptions

From the above proof we notice that the value p
1

definitely gives us p
1

-hyponymy between A and
B, but it is actually possible that there exists a value, say q, such that q > p

1

and for which
we have q-hyponymy between A and B. Indeed, this happens whenever we have a q for which
(p

1

� q) h�!x , pAq

�!x i � �
P

i 6=1

pi h�!x , pXiq
�!x i. Thus, p

1

may not be the maximum value for hy-
ponymy between A to B. In practice, such a value can be determined by testing for numbers q 2 (0, 1],
s.t. q > p

1

and for which the eigenvalues of the matrix pBq� q pAq are all non-negative. This follows
from the equivalent characterisation of positive semi-definiteness in terms of eigenvalues. If pAq is
not in the span of the rest of the pXiq then we do get that the maximum value of the hyponymy is
p = p

1

. We will work under the assumption that this is always the case, i.e. that the co-hyponyms
of a hypernym are independent of each other.
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Now suppose that we drop the assumption that we have previous knowledge about all the hyponyms
of B that are meant to go into the mixture that we use to define B, i.e. suppose that we do not know
that pBq =

P
i pi pXiq, where pXiq are all the relevant hyponyms of B. Suppose that all we know

is that A is a hyponym of B. Can we still say anything about the actual strength of the hyponymy
between A and B?

According to our definition, starting only from the knowledge that A is a hyponym of B, we get that
pAq 2p pBq, for some p, and hence that pBq� p pAq ⌫ 0. So there exists some PSD matrix, say ⇢,
such that pBq = p pAq+ ⇢. Then, similar to above, to determine the maximum possible value of p,
we will need to test for values in the range (0, 1] for which the eigenvalues of the matrix pBq� p pAq

are all non-negative. So, in theory, we could find a maximal p which satisfies the definition of p-
hyponymy between A and B. However, at present we have no way of knowing straight away whether
this value is at all useful to us. In order to find out, a large-scale practical experiment would need to
be carried out to obtain empirical data that can give us an indication of the validity of this model.

Thus, in our applications and examples below, we will always work under the assumption that hy-
pernyms are expressed in terms of a relevant set of independent hyponyms, in which case we have:

pAq 2p
max

pBq () pBq = pmax pAq+
X

i

pi pXiq,

as in the previous proposition. Of course, all the results will also work for values of hyponymy below
the maximal, but since the p-max hyponymy is what we are primarily interested in, we will assume
that we mean p-max hyponymy whenever we say p-hyponymy.

Note that all of the proofs below will also work even if we do not make the above assumption, but
rather only work with the original definition that pAq 2p pBq () pBq � p pAq ⌫ 0 () pBq =
p pAq + ⇢ for an unknown positive operator ⇢. This is because the idea behind all of the proofs is
that the morphisms of the category CPM(FHilb) are positive operators and hence preserve density
matrices.

5.3.4 Properties of P-Hyponymy

The p-hyponymy measure satisfies some of the key properties of hyponymy, as described in the first
section.

Property 1 (P-hyponymy is not symmetric). Given our assumption that hypernyms are expressed
in terms of their hyponyms, the asymmetry of the hyponymy relation is satisfied by default.

Note, however, that we are also quantifying the hyponymy between the words and so it is possible to
have both A 2p B and B 2q A. In this case, if, say, p has a high value then q is bound to be very
close to 0, and hence indicative of basically non-existent hyponymy. It is also generally not true that

(pAq 2p pBq and pBq 2p pAq) =) pAq = pBq

unless p = q = 1, i.e. A 2

1

B and B 2

1

A. Then we just have the standard partial order on square
matrices induced by the positive semi-definiteness and this implies that in this case we must have
A = B. In practice, this means that either A and B are the same word or completely overlapping
synonyms, assuming that such a thing is even possible.

This is exactly how we expect hyponyms to behave in real life. As an example, we expect pork to
be a p-hyponym of meat for a relatively high value of p, and meat to be a q-hyponym of pork for a
very small value of q. We certainly do not expect this to imply an equivalence between pork and meat.

A key property of hyponymy in the linguistic sense is that its strength decreases with distance. What
we mean by that is that if concept A is a hyponym of concept B and B is a hyponym of C, then A is
still a hyponym of C, but weaker than the previous two, like in our vehicle-car-Volkswagen example.

Property 2. (P-hyponymy decreases with distance) Suppose that A is a p-hyponym of B and B is a
p0-hyponym of C, i.e. pAq 2p pBq 2p0

pCq. Then A is a p00 � hyponym of C for p00 = p · p0, i.e.
pAq 2p00

pCq.
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Proof. From pAq 2p pBq 2p0
pCq we get:

pAq 2p pBq () h�!x , (pBq� p pAq)�!x i � 0 () h�!x , pBq

�!x i � ph�!x , pAq

�!x i,

pBq 2p0
pCq () h�!x , (pCq� p0 pBq)�!x i � 0 () h�!x , pCq

�!x i � p0h�!x , pBq

�!x i.
Combining these, we get:

h�!x , pCq

�!x i � p0h�!x , pBq

�!x i � p0ph�!x , pAq

�!x i = p00h�!x , pAq

�!x i () pAq 2p00
pCq.

To illustrate this property, consider the following example.

Example

Let {|e
1

i, |e
2

i, |e
3

i, |e
4

i} be the standard orthonormal basis for R4 and consider the words:

�����������!
white chocolate =

X

i

↵i |nii,
����������!
milk chocolate =

X

j

�j |nji

����������!
dark chocolate =

X

k

�k |nki,
��!
cake =

X

l

�l |nli

We take the basis vectors to correspond to the context words sweet, milky, spongy and high-calorie
and intuitively give the following vector representations to our words, where each word is evaluated
against each property on a scale of 0 to 1.

white chocolate milk chocolate dark chocolate cake

sweet 0.8 0.8 0.5 0.6
milky 0.7 0.5 0.3 0.1
spongy 0 0 0 0.8
high-calorie 0.7 0.6 0.8 0.5

We take the hypernyms chocolate and sweets to be given by:

pchocolateq =
1

4
pwhite chocolateq+

1

2
pmilk chocolateq+

1

4
pdark chocolateq

psweetsq =
1

5
pchocolateq+

4

5
pcakeq

The first hyponymy that we are interested in is that of white chocolate to chocolate and the second
one is that of chocolate to sweets. An explicit calculation shows us that the maximum p for which
we have:

pwhite chocolateq 2p pchocolateq
0

BB@

0.6400 0.5600 0 0.5600
0.5600 0.4900 0 0.4900

0 0 0 0
0.5600 0.4900 0 0.4900

1

CCA 2p

0

BB@

0.5425 0.3775 0 0.4800
0.3775 0.2700 0 0.3325

0 0 0 0
0.4800 0.3325 0 0.4625

1

CCA

is exactly p = 0.25.
Similarly, the largest p0 for which we get:

pchocolateq 2p0
psweetsq

0

BB@

0.5425 0.3775 0 0.4800
0.3775 0.2700 0 0.3325

0 0 0 0
0.4800 0.3325 0 0.4625

1

CCA 2p0

0

BB@

0.3965 0.1235 0.3840 0.3360
0.1235 0.0620 0.0640 0.1065
0.3840 0.0640 0.5120 0.3200
0.3360 0.1065 0.3200 0.2925

1

CCA

is p0 = 0.2. Thus, we expect that the maximum value p00 for which we have:

pwhite chocolateq 2p00
psweetsq

to be p00 = 0.25 ⇥ 0.2 = 0.05. Again, a straightforward direct calculation shows that this is indeed
the case.
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5.4 P-Hyponymy lifted to the level of sentences

We will now consider what happens when we have two sentences such that one of them contains one
or more hyponyms of one or more words from the other. We will show that in this case the hyponymy
is ‘lifted’ to the sentence level, and even the p-values are preserved in a very intuitive fashion. After
considering a couple of specific sentence construction, we will generalise this result to account for a
broad category of sentence patterns that work in the distributional compositional model.

5.4.1 P-Hyponymy in positive transitive sentences

Recall that a positive transitive sentence has the following diagrammatic representation in CPM(FHilb):

N N S

N

0
N

0

subject verb object

Translated to FHilb:

N N

N

0
S N N S

N

0
N

0
N

0

subject

verb

object

So the meaning of the sentence Subject verb object is given by:

("N ⌦ 1S ⌦ "N ) (psubjq⌦ pverbq⌦ pobjq) ,

where the epsilon and identity morphisms are those from CPM(FHilb). We will represent the subject
and object vectors in FHilb by:

��!
subj =

X

i

↵subj
i

�!ni and
�!
obj =

X

j

�obj
j

�!nj .

Their corresponding density matrix representations are given by:

psubjq =
X

ik

↵subj
i ↵subj

k |niihnk| and pobjq =
X

jl

�obj
j �obj

l |njihnl|.

Finally, let the verb be given by:

verb =
X

rs

Cverb
rs |nri|si|nsi.

Its density matrix is:

pverbq =

 
X

rs

Cverb
rs |nri|si|nsi

! 
X

pq

Cverb
pq hnp|hs0|hnq|

!
=
X

rspq

Cverb
rs Cverb

pq |nrihnp|⌦|sihs0|⌦|nsihnq|
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Relationship between sentences of the type ‘A verb C ’ and ‘B verb D’,
where pAq 2p pBq and pCq 2q pDq

We will assume that the sentence space, i.e. the vector space corresponding to S, is not truth-theoretic
and that hypernyms are always represented in terms of their hyponyms, as before.

Theorem 1. Let A, B, C and D be nouns with corresponding density matrix representations pAq,
pBq, pCq and pDq, such that A is p-hyponym of B and C is a q-hyponym of D, in the sense that:

pBq = p pAq+
X

i

pi pXiq and pDq = q pCq+
X

j

qj pYjq.

Then we have that:
' (A verb C) 2pq ' (B verb D) ,

where ' = "N ⌦ 1S ⌦ "N is the sentence meaning map for positive transitive sentences.

Proof. Let the density matrix corresponding to the verb be given by pZq. Then we can write the
meanings of the two sentences as:

' (A verb C ) = ' (pAq⌦ pZq⌦ pCq) = ("N ⌦ 1S ⌦ "N ) (pAq⌦ pZq⌦ pCq)

' (B verb D) = ' (pBq⌦ pZq⌦ pDq) = ("N ⌦ 1S ⌦ "N ) (pBq⌦ pZq⌦ pDq)

Substituting pBq = p pAq +
P

i pi pXiq and pDq = q pCq +
P

j qj pYjq in the expression for the
meaning of B verb D, we get:

'(pBq⌦ pZq⌦ pDq) = ("N ⌦ 1S ⌦ "N ) (pBq⌦ pZq⌦ pDq)

= '

0

@
 
p pAq+

X

i

pi pXiq

!
⌦ pZq⌦

0

@q pCq+
X

j

qj pYjq

1

A

1

A

= '

0

@pq (pAq⌦ pZq⌦ pCq) + p

0

@
pAq⌦ pZq⌦

X

j

qjpYjq

1

A

+
X

i

pipXiq⌦ pZq⌦

0

@
X

j

qjpYjq+ q pCq

1

A

1

A

= '

0

@p

0

@
pAq⌦ pZq⌦

X

j

qjpYjq

1

A+
X

i

pipXiq⌦ pZq⌦

0

@
X

j

qjpYjq+ q pCq

1

A

1

A

+ pq ' (pAq⌦ pZq⌦ pCq)
(5.1)

Consider '(pBq⌦ pZq⌦ pDq)� pq '(pAq⌦ pZq⌦ pCq). We get:

'

0

@p

0

@
pAq⌦ pZq⌦

X

j

qjpYjq

1

A+
X

i

pipXiq⌦ pZq⌦

0

@
X

j

qjpYjq+ q pCq

1

A

1

A

= p
X

j

qj '(pAq⌦ pZq⌦ pYjq) +
X

i

X

j

piqj'(pXiq⌦ pZq⌦ pYjq) + q
X

i

pi '(pXiq⌦ pZq⌦ pCq)

(5.2)

Since pXiq, pYjq, pZq, pAq and pCq are all density matrices, all of the following are also density
matrices: '(pXiq⌦ pZq⌦ pYjq), '(pAq⌦ pZq⌦ pYjq), '(pXiq⌦ pZq⌦ pCq). This is because we are
working in the CPM(FHilb) category and the meaning map ' is a completely positive map, which
means that it sends density matrices to density matrices. Moreover, all of the scalars pi, qj , p, q are
non-negative. Thus, (5.2) is a sum of non-negative scalar multiples of positive semi-definite matrices,
and as such is positive semi-definite itself, by Proposition 1. We conclude that:

'(pBq⌦ pZq⌦ pDq)� pq '(pAq⌦ pZq⌦ pCq) ⌫ 0,
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and so
'(pAq⌦ pZq⌦ pCq) 2pq '(pBq⌦ pZq⌦ pDq).

Now suppose that all we know is that pAq 2p pBq and pCq 2q pDq. Then we can write

pBq = p pAq+ � and pDq = q pCq+ µ,

for positive operators � and µ. Then the exact same proof with � in place of
P

i pi pXiq and µ in
place of

P
j qj pYjq tells us that ' (A verb C) 2pq ' (B verb D). In particular, this applies to the case

where p = pmax and q = qmax are the maximum hyponymy values for the two hyponym-hypernym
pairs.

Two special cases of the above result occur when we take either the subjects or the objects of the
two sentences to be the same, i.e pAq = pBq or pCq = pDq.

Corollary 1. Let A, B, C be nouns with corresponding density matrix representations pAq, pBq,
pCq and such that pBq = p pAq+

P
i pi pXiq. Then we have that:

' (A verb C) 2p ' (B verb C) ,

where ' = "N ⌦ 1S ⌦ "N is the sentence meaning map.

Proof. This is just a special case of our theorem with pCq = pDq and q = 1. Then (5.2) above
becomes simply:

'(pBq⌦ pZq⌦ pCq)� p'(pAq⌦ pZq⌦ pCq) =
X

i

pi '(pXiq⌦ pZq⌦ pCq) ,

which is a positive semi-definite matrix, and thus '(pAq⌦ pZq⌦ pCq) 2p '(pBq⌦ pZq⌦ pCq).

Corollary 2. Let A, C, D be nouns with corresponding density matrix representations pAq, pCq,
pDq and such that pDq = p pCq+

P
j qj pYjq. Then we have that:

' (A verb C) 2p ' (A verb D) ,

where ' = "N ⌦ 1S ⌦ "N is the sentence meaning map.

Proof. Similar to above.

Again, these results also work if we just have that pAq 2p pBq or pCq 2p pDq without any further
assumption of knowledge about the representation of the hypernyms.

Examples of p-hyponymy in positive transitive sentences

Example 1

We assumed that the sentence space S is not truth-theoretic. The following example illustrates what
happens to positive transitive sentence hyponymy if we take a truth-theoretic approach to sentence
meaning, i.e. if we take the sentence space to be one- or two-dimensional truth-theoretic.

Suppose that our sentence space S is 1-dimensional, with its single non-trivial vector being
�!
1 .

We will take
�!
1 to stand for True and

�!
0 for False. The sentences we will consider are:

A := Annie likes holidays.
B := Students like holidays.

Let the vector space for the subjects of the sentences be R3 = SpanR{
⇣
1

0

0

⌘
,
⇣
0

1

0

⌘
,
⇣
0

0

1

⌘
}, where:

����!
Annie = |e

1

i =

0

@
1
0
0

1

A ,
���!
Betty = |e

2

i =

0

@
0
1
0

1

A ,
���!
Chris = |e

3

i =

0

@
0
0
1

1

A .
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Let the object vector space be Rn for some arbitrary n 2 N, where we take |n
1

i to be the standard

basis vector for Rn with 1 in the first position and 0 elsewhere. Let
�����!
holidays = |n

1

i. We will treat
the concept students as being a hypernym of the individual students in our universe. In other words,

pstudentsq =
1

3
pAnnieq+

1

3
pBettyq+

1

3
pChrisq =

1

3
|e

1

ihe
1

|+ 1

3
|e

2

ihe
2

|+ 1

3
|e

3

ihe
3

|.

Finally, let the verb enjoy 2 R3 ⌦ S ⌦ Rn be given by enjoy =
P

(i,j)2R|eii|nji, where

R = R
enjoy

= {(i, j)| |eii enjoys |nji},

in the style of [7]. The corresponding density matrix for the verb is then:

penjoyq =
X

(i,j)2R
(r,s)2R

|eiiher|⌦ |njihns|.

Suppose that Annie and Betty are known to enjoy holidays, while Chris does not. Then the above
set becomes simply R = {(1, 1), (2, 1)}.

Clearly, we have that pAnnieq 2p
max

pstudentq for pmax = 1

3

, since this is the maximum value of p
for which we have pstudentq� p pAnnq ⌫ 0, where:

pstudentq� 1

3
pAnnieq =

0

@
1

3

0 0
0 1

3

0
0 0 1

3

1

A� 1

3

0

@
1 0 0
0 0 0
0 0 0

1

A =

0

@
0 0 0
0 1

3

0
0 0 1

3

1

A .

We will see that the p-hyponymy for p = 1

3

does translate into p-hyponymy of sentence pAq to
sentence pBq. However, we will also observe that this will no longer be the maximum value of p for
which we have sentence hyponymy. First of all, consider the meanings of the two sentences:

pAq = ("N ⌦ 1S ⌦ "N )(pAnnieq⌦ penjoyq⌦ pholidaysq)

= ("N ⌦ 1S ⌦ "N )

0

BB@|e
1

ihe
1

|⌦
X

(i,j)2R
(r,s)2R

|eiiher|⌦ |njihns|⌦ |n
1

ihn
1

|

1

CCA

=
X

(i,j)2R
(r,s)2R

he
1

|eiihe1|erihn1

|njihn1

|nsi =
X

(i,j)2R
(r,s)2R

�
1i �1r �1j �1s =

X

(1,1)2R
(1,1)2R

1 = 1

(5.3)

pBq = ("N ⌦ 1S ⌦ "N ) (pstudentq⌦ penjoyq⌦ pholidaysq)

= ("N ⌦ 1S ⌦ "N )

0

BB@
1

3
(|e

1

ihe
1

|+ |e
2

ihe
2

|+ |e
3

ihe
3

|)⌦
X

(i,j)2R
(r,s)2R

|eiiher|⌦ |njihns|⌦ |n
1

ihn
1

|

1

CCA

=
1

3

0

BB@
X

(i,1)2R
(r,1)2R

he
1

|eiihe1|eri+
X

(i,1)2R
(r,1)2R

he
2

|eiihe2|eri+
X

(i,1)2R
(r,1)2R

he
3

|eiihe3|eri

1

CCA

=
1

3

0

BB@
X

(i,1)2R
(r,1)2R

�
1i�1r +

X

(i,1)2R
(r,1)2R

�
2i�2r +

X

(i,1)2R
(r,1)2R

�
3i�3r

1

CCA

=
1

3

0

@
X

(1,1)2R

1 +
X

(2,1)2R

1 + 0

1

A =
1

3
⇥ 2 =

2

3

(5.4)
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Clearly, we have that pAq 2p pBq for p = 1

3

, as 2

3

� 1

3

⇥ 1 � 0, but this is not the maximum
value of p for which this p-hyponymy holds. The max value for which this works is p = 2

3

. The
reason why this happens is that when we work with a truth-theoretic sentence space, the meanings
of the sentences that we obtain in the end are trivial density matrices, i.e just one-dimensional,
and hence they do not capture all the information that a non-trivial matrix can. In a sense, instead
of obtaining a real density matrix meaning of the sentences, we just get the traces of density matrices.

Example 2: Simple case of object hyponymy

We now give a simple case with a non-truth-theoretic sentence space, in which we show that the
p-hyponymy of the objects of two sentences translates into p-hyponymy between the sentences, and
that the maximality of the value of p is also preserved.

Let m 2 N, m > 2 be such that {ni}mi=1

is a collection of standard basis vectors for Rm. We will use
the nouns:

����!
Gretel = |n

1

i,
��������!
gingerbread = |n

2

i,
��!
cake = |n

3

i,
������!
pancakes = |n

4

i,

with corresponding pure density matrices:

pGretelq = |n
1

ihn
1

|, pgingerbreadq = |n
2

ihn
2

|, pcakeq = |n
3

ihn
3

|, ppancakesq = |n
4

ihn
4

|

Let the mixed density matrix corresponding to the hypernym sweets be given by:

psweetsq =
1

10
|n

2

ihn
2

|+
mX

i=3

pi |niihni|.

Our object and subject vector space will be Rm and for the sentence space we take S = Rm ⌦ Rm.
We take the verb like to be given by like 2 Rm ⌦ S ⌦ Rm ,

like =
X

jk

Clike
jk |nji|nji|nki|nki,

where the coe�cients Cjk give us the weight with which |nji likes |nki.
For the rest of this example, we will adopt the following abuse of notation for the purpose of brevity:

|sjki = |nji|nki, hsjk| = hnj |hnk|, |sijihskl| = |niihnk|⌦ |njihnl|.

Then the density matrix representation of our verb becomes:

plikeq =

0

@
X

jk

Clike
jk |nji|sjki|nki

1

A

0

@
X

lp

Clike
lp hnl|hslp|hnp|

1

A

=
X

jklp

Clike
jk Clike

lp |njihnl|⌦ |sjkihslp|⌦ |nkihnp|.
(5.5)

We will consider the following two sentences:

A := Gretel likes sweets.
B := Gretel likes gingerbread.

Let the corresponding (density matrix) sentence meanings be given by:

pAq = ("N ⌦ 1S ⌦ "N ) (pGretelq⌦ plikeq⌦ psweetsq)

pBq = ("N ⌦ 1S ⌦ "N ) (pGretelq⌦ likeq⌦ pgingerbreadq)
(5.6)

Observe that

pgingerbreadq 2p psweetsq for p  1

10
.
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In particular, we have pmax-hyponymy between gingerbread and sweets for pmax = 1

10

. We will now
show that this hyponymy translates to the sentence level, as by Corollary 2. With ' = "N⌦1S⌦"N ,
we have,

pAq = '

0

@|n
1

ihn
1

| ⌦
X

jklp

Clike
jk Clike

lp |njihnl|⌦ |sjkihslp|⌦ |nkihnp| ⌦
 

1

10
|n

2

ihn
2

|+
mX

i=3

pi|niihni|
!1

A

=
1

10
'

0

@|n
1

ihn
1

| ⌦
X

jklp

Clike
jk Clike

lp |njihnl|⌦ |sjkihslp|⌦ |npihnp| ⌦ |n
2

ihn
2

|

1

A+

+ '

0

@|n
1

ihn
1

| ⌦
X

jklp

Clike
jk Clike

lp |njihnl|⌦ |sjkihslp|⌦ |nkihnp| ⌦
mX

i=3

pi |niihni|

1

A

pBq = '

0

@|n
1

ihn
1

| ⌦
X

jklp

Clike
jk Clike

lp |njihnl|⌦ |sjkihslp|⌦ |nkihnp| ⌦ |n
2

ihn
2

|

1

A

(5.7)

We claim that the maximum p-hyponymy between pBq and pAq is achieved for p = 1

10

. In other
words, this is the maximum value of p for which we have pBq 2p pAq, i.e. pAq� p pBq ⌫ 0.
To see this, consider pAq� 1

10

pBq. We get:

("N ⌦ 1S ⌦ "N )

0

@|n
1

ihn
1

| ⌦
X

jklp

Clike
jk Clike

lp |njihnl|⌦ |sjkihslp|⌦ |nkihnp| ⌦
mX

i=3

pi |niihni|

1

A

=
X

ijklp

Clike
jk Clike

lp pi hn1

|njihn1

|nlihnk|niihnp|nii |sjkihslp|

=
X

ijklp

Clike
jk Clike

lp pi �1j�1l�ik�ip |sjkihslp|

=
mX

i=3

Clike
1i Clike

1i pi |s1iihs1i|

=
mX

i=3

�
Clike

1i

�
2

pi |n1

ihn
1

|⌦ |niihni|

(5.8)

Now suppose that Gretel is the only object in our universe that likes sweets and that she only
likes pancakes, cakes and gingerbread, all with equal weights, which we take to be 1

3

, i.e. we let:

Clike
jk =

(
1

3

if j = 1, k 2 {2, 3, 4}
0 o.w.

Then (5.8) above becomes simply 1

9

(p
3

|n
1

ihn
1

|⌦ |n
3

ihn
3

|+ p
4

|n
1

ihn
1

|⌦ |n
4

ihn
4

|). Note that this is
isomorphic to 1

9

(p
3

|n
3

ihn
3

|+ p
4

|n
4

ihn
4

|), and that the former is a positive semi-definite matrix if
and only if the latter is. Alternatively, to simplify this example we could have just taken the object

vector space to be one-dimensional and consisting only of Gretel, in which case
����!
Gretel =

�!
1 and we

get the same outcome.

Since |n
3

ihn
3

| and |n
4

ihn
4

| are pure state and p
3

and p
4

are non-negative real numbers, we get that
the matrix p

3

|n
3

ihn
3

|+ p
4

|n
4

ihn
4

| is positive semi-definite, which is what we claimed.

It is easy to see that for any other value of p below 1

10

, we would have also obtained a positive
semi-definite matrix upon computing pAq� ppBq.

Example 4

Now suppose that the subject and object vector spaces are two-dimensional and spanned by
⇣
1

0

⌘
and

⇣
0

1

⌘
. For convenience, we denote these vectors by |e

1

i and |e
2

i respectively when dealing with the
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subject vector space and |n
1

i and |n
2

i in the context of the object vector space. We let:

|e
1

i =
�����!
Hansel, |e

2

i =
����!
Gretel, |n

1

i =
��������!
gingerbread, |n

2

i =
��!
cake.

The density matrices for the hypernyms the siblings and sweets are:

pthe siblingsq =
1

2
pHanselq+

1

2
pGretelq and psweetsq =

1

2
pgingerbreadq+

1

2
pcakeq.

The verb like is given as before:

plike =q

X

ijkl

Clike
ij Clike

kl |eiihek|⌦ |sijihskl|⌦ |njihnl|,

where Clike
ij =

(
1 if |eii likes |nji
0 o.w.

and we assume that Gretel likes gingerbread but not cake and Hansel likes both.

Then we have:

pAq = ("N ⌦ 1S ⌦ "N ) (pGretelq⌦ plikeq⌦ pgingerbreadq)

pBq = ("N ⌦ 1S ⌦ "N ) (pthe siblingsq⌦ plikeq⌦ psweetsq)

= ("N ⌦ 1S ⌦ "N )

✓✓
1

2
pGretelq+

1

2
pHanselq

◆
⌦ plikeq⌦

✓
1

2
pgingerbreadq+

1

2
pcakeq

◆◆

=
1

4
("N ⌦ 1S ⌦ "N ) (pGretelq⌦ plikeq⌦ pgingerbreadq)+

+
1

4
("N ⌦ 1S ⌦ "N ) (pGretelq⌦ plikeq⌦ pcakeq)+

+
1

4
("N ⌦ 1S ⌦ "N ) (pHanselq⌦ plikeq⌦ (pgingerbreadq+ pcakeq))

(5.9)

Clearly, pBq � 1

4

pAq gives us just the last two lines of the above expression, which we compute
explicitly to be:

1

4
|s

22

ihs
22

|+ 1

4
|s

11

ihs
11

|+ 1

4
|s

12

ihs
12

|

=
1

4
|n

2

ihn
2

|⌦ |n
2

ihn
2

|+ 1

4
|n

1

ihn
1

|⌦ |n
1

ihn
1

|+ 1

4
|n

1

ihn
1

|⌦ |n
2

ihn
2

|

=

0

BB@

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

4

1

CCA+

0

BB@

1

4

0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1

CCA+

0

BB@

0 0 0 0
0 1

4

0 0
0 0 0 0
0 0 0 0

1

CCA =

0

BB@

1

4

0 0 0
0 1

4

0 0
0 0 0 0
0 0 0 1

4

1

CCA ,

(5.10)

which is obviously a positive semi-definite matrix.

5.4.2 P-Hyponymy in relative clauses

The diagrammatic representation of subject relative clauses in CPM(FHilb) is:

N N S

N

0
N

subject verb objectwhich
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which in FHilb looks like:

NN

N

0
S N S

N

0
N

N

0
N

0

subject verb object

Without loss of generality assume that the relative pronoun is which. Then the meaning map for the
relative clause subject which verb object in CPM(FHilb) is µN ⌦ ◆S ⌦ "N and the meaning of the
relative clause is given by:

(µN ⌦ ◆S ⌦ "N )(psubjq⌦ pverbq⌦ pobjq).

Relationship between relative clauses ‘A which verb C ’ and ‘B which verb

D’ where pAq 2p pBq and pCq 2q pDq

We obtain a result very similar to the one we had for the positive semi-definite sentence types, under
the same assumptions.

Theorem 2. Let A, B, C and D be nouns with corresponding density matrix representations pAq,
pBq, pCq and pDq, and such that pAq 2p pBq and pCq 2q pDq, where pBq = p pAq +

P
i pi pXiq

and pDq = q pCq+
P

j qj pYjq for some p, q 2 (0, 1]. Then we have that:

' (A which verb C) 2pq ' (B which verb D) .

Proof. The proof of this result is identical to that of the positive transitive sentence case, except for
the fact that when we consider

'(pBq which verb pDq)� pq '(pAq which verb pCq)

we get ' = µN ⌦ ◆S ⌦ "N applied to

p pAq⌦ pZq⌦
X

j

qjpZjq+
X

i

pi pXiq⌦ pZq⌦ (q pCq+
X

j

qj pYjq),

instead of ' = ("N ⌦ 1S ⌦ "N ) applied to the same. The result is, however, still a positive quantity
by the property of the morphisms µN , 1S and "N to map density matrices to density matrices. Thus,
we can conclude as before that:

' (B which verb D) 2pq ' (A which verb C) .

Like before, we have the two special cases where A = C or B = D, which are (respectively) the
following two corollaries.

Corollary 3. Let A, B, C we nouns with corresponding density matrix representations pAq, pBq

and pCq and such that pBq = p pAq+
P

i pi pXiq. Then we have that:

'(pAq which verb pCq) 2p '(pBq which verb pCq),

where ' = µN ⌦ ◆S ⌦ "N .
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Corollary 4. Let A, C, D be nouns with corresponding density matrix representations pAq, pCq and
pDq and such that pDq = p pCq+

P
j qj pYjq. Then we have that:

'(pAq which verb pCq) 2p '(pAq which verb pDq) :

Then just like with positive transitive sentences, we can generalise these results to the cases where
we just know that pAq 2p pBq and pCq 2q pDq.

Given that this kind of transition from the word to the sentence level works in a very similar fashion
here to the way in which it did in the positive transitive sentences gives an indication of the possibility
for a more general result that applies to a broader class of sentences and other structures. We will
come back to this observation in the next section. First we give an example with a relative clause.

Example

We will consider the containment of the sentence

A := Elderly ladies who own cats.

in the sentence

B := Women who own animals.

First of all, let the subject and object space for the vectors corresponding to the subjects and object
of our sentences be R2 and R3 respectively. Let:

����������!
elderly ladies = |e

1

i =
✓
1
0

◆
,

���������!
young ladies = |e

2

i =
✓
0
1

◆
,

and the density matrix for the hypernym women be:

pwomenq =
1

3
pelderly ladiesq+

2

3
pyoung ladiesq =

1

3
|e

1

ihe
1

|+ 2

3
|e

2

ihe
2

|.

Similarly, let:

��!
cats = |n

1

i =

0

@
1
0
0

1

A ,
��!
dogs = |n

2

i =

0

@
0
1
0

1

A ,
������!
hamsters =

0

@
0
0
1

1

A ,

and take the density matrix for animals to be:

panimalq =
1

2
pcatsq+

1

4
pdogsq+

1

4
phamstersq =

1

2
|n

1

ihn
1

|+ 1

4
|n

2

ihn
2

|+ 1

4
|n

3

ihn
3

|

The sentence space will not matter in this case, as it gets deleted by the ◆S morphism, so we just
take it to be an unspecified S. Let the verb own be given by own 2 R2 ⌦ S ⌦ R3,

own =
X

ij

Cij |eii|si|nji,

with corresponding density matrix

pownq =
X

ijkl

CijCkl |eiihek|⌦ |sihs0|⌦ |njihnl|.

Then the meaning of sentences A and B are given by:

pAq = (µN ⌦ ◆S ⌦ "N )(pelderly ladiesq⌦ pownq⌦ pcatsq) = (µN ⌦ ◆S ⌦ "N )(|e
1

ihe
1

|⌦ pownq⌦ |n
1

ihn
1

|)
pBq = (µN ⌦ ◆S ⌦ "N )(pwomenq⌦ pownq⌦ panimalsq)

= (µN ⌦ ◆S ⌦ "N )

✓✓
1

3
|e

1

ihe
1

|+ 2

3
|e

2

ihe
2

|
◆
⌦ pownq⌦

✓
1

2
|n

1

ihn
1

|+ 1

4
|n

2

ihn
2

|+ 1

4
|n

3

ihn
3

|
◆◆

=
1

6
(µN ⌦ ◆S ⌦ "N )(|e

1

ihe
1

|⌦ pownq⌦ |n
1

ihn
1

|)+

+
1

12
(µN ⌦ ◆S ⌦ "N ) (|e

1

ihe
1

|⌦ pownq⌦ (|n
2

ihn
2

|+ |n
3

ihn
3

|))+

+
1

3
(µN ⌦ ◆S ⌦ "N )

✓
|e

2

ihe
2

|⌦ pownq⌦ (|n
1

ihn
1

|+ 1

2
|n

2

ihn
2

|+ 1

2
|n

3

ihn
3

|)
◆

(5.11)
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Clearly, pBq� 1

6

pAq gives us just:

1

6
(µN ⌦ ◆S ⌦ "N )(|e

1

ihe
1

|⌦ pownq⌦ |n
1

ihn
1

|)

+
1

12
(µN ⌦ ◆S ⌦ "N ) (|e

1

ihe
1

|⌦ pownq⌦ (|n
2

ihn
2

|+ |n
3

ihn
3

|))

+
1

3
(µN ⌦ ◆S ⌦ "N )

✓
|e

2

ihe
2

|⌦ pownq⌦ (|n
1

ihn
1

|+ 1

2
|n

2

ihn
2

|+ 1

2
|n

3

ihn
3

|)
◆

=
1

12

0

@
X

ijkl

CijCkl he1|eiihe1|ekihn2

|njihn2

|nli+
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are both non-negative and so regardless of
the actual values of the verb coe�cients, we always get a linear combination of non-negative scalar
multiples of two density matrices: |e

1

ihe
1

| and |e
2

ihe
2

|. Thus, the resulting matrix is necessarily
positive semi-definite. In other words,

pBq� 1

6
pAq ⌫ 0.

5.4.3 General case of P-Hyponymy

As we already observed, it seems like there is no reason to believe that the p-hyponymy result lifted
to the sentence level should not be more generally applicable to all sorts of sentence structures. The
result below is meant to show that.

In the theorem below, we adopt the following conventions:

• A positive sentence is assumed to be a sentence that does not contain any negations, including
words like not and nouns which are in some way the opposite of other nouns (in the case where
these two appear in di↵erent sentences), such as satisfaction and dissatisfaction or antonyms.

• Adjective-noun pairs are counted as one word whose meaning is assumed to have been computed.
Note that the output of the meaning map applied to an adjective-noun phrase is a noun type
and hence we can safely make this assumption. Hence, for simplicity, adjective-noun pairs will
be called nouns for the purposes of the result and proof below.

• The sentence length of a sentence or a noun phrase is the number of words in it, not counting
definite and indefinite articles and assuming that a noun modified by an adjective is counted as
one word.

Theorem 3 (Generalised Sentence P-Hyponymy). Let � and  be two positive sentences of the same
sentence length and type, containing some or all of the following: nouns, verbs, relative pronouns
(who/that/which/whom) and possessive pronouns (whose). Let S be the common sentence space for
� and  (if they contain any verbs), and assume that S is not truth-theoretic. Denote the nouns
and verbs of �, in the order in which they appear, by A

1

, . . . , An. Similarly, denote these in  by
B

1

. . . Bn. Let their corresponding density matrices be denoted by pA
1

q, . . . , pAnq and pB
1

q, . . . , pBnq

respectively. Suppose that pAi1q 2p
i1

pBi1q, . . . , pAi
l

q 2p
i

l

pBi
l

q for some subset {i
1

, . . . , il} ✓
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{1, . . . , n} and some pi1 , . . . , pil 2 (0, 1], and that pAkq = pBkq for k 2 [1, n], k 62 {i
1

, . . . , il}.
Finally, let ' be the sentence meaning map for both � and  , such that '(�) is the meaning of �
and '( ) is the meaning of  . Then we have that:

'(�) 2p
i

i

···p
i

l

'( ).

Intuitively, this means that if (some of) the functional words of a sentence � are p-hyponyms of (some
of) the functional words of sentence  , then this hyponymy is translated into sentence hyponymy.
Moreover, the strength of the sentence hyponymy can only be as strong as the combined hyponymy
of the individual words, where we express combined hyponymy as multiplication.

In real terms, we can think of this as follows. Suppose that we have two sentences which are identical
apart from one word in each, say word A in the first sentence and word B in the second. Suppose,
furthermore, that A is a p-max hyponym of B for some p. We can think of this p as the proportion of
sentences that use word B which can be replaced by sentences which use word A. For example, soap
opera should be a p-hyponym of TV show for some value of p. This value of p helps us determine how
often the sentence ‘High school students watch TV shows ’ can be replaced by ‘High school students
watch soap operas’. Now, clearly, the more hyponym-hypernym pairs we have in the two sentences,
the more they di↵er from each other and hence the less likely it is that we can use one sentence
instead of the other. This is captured in the fact that the strengths of the hyponymy of the individual
hyponym-hypernym pairs multiply together to give us, essentially, the extent to which the sentence
containing the hyponyms can replace the sentence containing the hypernyms.

Before proceeding with the proof, we also observe that because of our assumptions of the sentence
structures that we allow, the meaning map ' can only be comprised of parallel and/or sequential
morphisms from the following list: {", ⌘, ⌫, ◆, µ, ⇣,�, 1}, which can be reduced to just {", µ, ◆,�, 1}.
These maps are su�cient for the purposes of modeling the meaning of sentences of the above types.
It is possible that the meanings of other sentence types can also be expressed using the morphisms of
CPM(FHilb), but since this constitutes work in progress, we do not consider these at the moment.

For the proof below we will assume w.l.o.g. that ij = j, 8ij 2 {i
1

, . . . , in}, so that pA
1

q 2p1 pB
1

q,
. . . , pAlq 2p

l

pBlq for some l  n and pAl+1

q = pBl+1

q, . . . , pAnq = pBnq. In other words, we
will assume that any hyponymy that occurs on the word level between words from the two sentences
happens between consecutive words. In the case where we have hyponymy between non-consecutive
words, the proof is similar, but slightly more notationally involved.

Proof. First of all, we have pAiq 2p
i

pBiq for i 2 [1, l] for some l  n. This means that for each i,
we have density matrices Xi

j

and non-negative reals pi
j

such that pBiq = pi pAiq+
P

j pijpXjq. Let
pYiq =

P
j pijpXjq.

Now consider the meanings of the two sentences. We have:

'(�) = �(pA
1

q⌦ . . .⌦ pAnq),

'( ) = '(pB
1

q⌦ . . .⌦ pBnq)

= ' ((p
1

pA
1

+ pY
1

q)⌦ . . .⌦ (pl pAlq+ pYlq)⌦ pBl+1

q⌦ . . .⌦ pBnq)

(5.12)

Before proceeding, we first establish some convenient notation. Let i
1

, . . . , il 2 {0, 1} be binary
values and let Ai1···il be the string of tensors of pApq’s and pYqq’s such that for each k,m 2 [1, l],
pAkq is in the string and in position number k i↵ ik = 1 and pYmq is in the string and in position
number m i↵ im = 0. For example if l = 4, then A

1010

= pA
1

q ⌦ pY
2

q ⌦ pA
3

q ⌦ pY
4

q and A
0001

=
pY
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q⌦pY
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q. We also set A
1...1 = pA

1

q⌦. . . pAlq = 0 for any value of l. Similarly, we let
Pi1···il to be the string of pm’s such that for each k 2 [1, l], pk is in the string i↵ ik = 1 and the number
1 is in the string i↵ ik = 0. Thus, P
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⇥ 1⇥ p
3
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3
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.
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With this notation, (5.12) becomes:

' ( ) = '

0

@
X

i1,...,il2{0,1}

Pi1,...,ilAi1...il ⌦ pBl+1

q⌦ · · ·⌦ pBnq

1

A

+ '(p
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1

q⌦ . . .⌦ pl pAlq⌦ pBl+1

q⌦ . . .⌦ pBnq)

=
X

i1,...,il2{0,1}

Pi1,...,il ' (Ai1,...,il ⌦ pAl+1

q⌦ . . .⌦ pAnq)

+ p
1

· · · pl '(pA1

q⌦ . . .⌦ pAlq⌦ pAl+1

q⌦ . . .⌦Anq)

Finally, consider '( )� p
1

· · · pl '(�), for which we get:

X

i1,...,il2{0,1}

Pi1,...,il ' (Ai1,...,il ⌦ pAl+1

q⌦ . . .⌦ pAnq) . (5.13)

Now, since all of the matrices pAiq and pXi
j

q are density matrices by assumption, and since ' is a
completely positive map, we get that each ' (Ai1...il ⌦ pAl+1

q⌦ . . .⌦ pAnq) is a positive semi-definite
matrix. All the pk’s are non-negative and hence so is any product of any subcollection of these. Thus,
(5.13) is a sum of non-negative scalar multiples of positive semi-definite matrices, and as such is itself
a positive semi-definite matrix. In other words, ('( )� p

1

· · · pl'(�)) � 0. We conclude that:

'(�) 2p1···pl

'( ),

as claimed.

5.5 Using the same idea for other applications

The idea behind the mathematical structure of p-hyponymy can be potentially applied to other sce-
narios where we are not necessarily interested in determining to what extent one concept is contained
in another. For example, we may have two concepts which are not in a hypernym-hyponym relation-
ship but are still similar to each other in some kind of asymmetric way. Consider again the China -
North Korea example from the end of the previous chapter. China and North Korea are by no means
synonyms and neither of them is a hyponym of the other. However, as we noted earlier, North Korea
does get judged as being more similar to China than vice versa. We want to somehow represent this
without having to use the verb is similar to.

The following is one possible way in which asymmetrical similarity can be captured in the case where
we have concepts that can be represented with respect to the same set of salient features.

Let p�q and p q be two mixed states in CPM(FHilb) represented by:

p�q =
nX

i=1

↵i pAiq and p q =
nX

j=1

�j pAjq,

where {pAiq}ni=1

is a set of pure states representing salient features which form an orthonormal basis
for the space of n⇥ n real square matrices. Also, ↵i,�j 2 (0, 1]. We do not impose here the normal-
ising condition that

P
i ↵i =

P
i �i = 1.

Define the degree of similarity of p�q with respect to p q to be the average of the maximum
values of pi for which we have:

p↵i Aiq 2p
i

p�i Aiq, (5.14)

defined as before to mean p�i Aiq� pi p↵i Aiq ⌫ 0. Note that we require that each pi � 0 but we no
longer impose an upper bound on the value of pi. More formally, we write:

S (p�q, p q) = avg ({pi | p↵i Aiq 2p
i

p�i Aiq and 8i, 6 9qi : p↵i Aiq 2q
i

p�i Aiq and qi > pi})
(5.15)
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Clearly, the maximum value for which (5.14) holds is pi =
�
i

↵
i

, since

p�i Aiq� p p↵i Aiq ⌫ 0 () (�i � p↵i) pAiq ⌫ 0 () �i � p↵i � 0 () p  �i
↵i

.

So we can alternatively write (5.15) as

S (p�q, p q) = avg

✓
�
1

↵
1

, . . . ,
�n
↵n

◆
.

We see that for each i, the number pi is a ratio of the presence of feature Ai in concept  to the
presence of the same feature in concept �. We could think of these as some kind of ‘prominence
ratio values’. Then the e↵ect of averaging over all of these is to obtain an average ratio of the fea-
tures of one concept to the other. Performing this calculation in both directions allows us to compare
the two concepts based on which of them has, on average, more prominent features than the other one.

To see how this works in practice, consider again the example of China and North Korea. Take the
set of the basic (salient) features to be the same as before and let:

|e
1

i =
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2

i =
������!
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3

i = �������!
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4

i =
������!
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|e
5

i = ��������!
East Asian, |e

6

i = ��������!
communist, |e

7

i =
��������!
militarised,

where {|eii}7i=1

is the standard orthonormal basis for R7. Let pEiq = |e
1

ihei| for each i 2 [1, 7] be
the pure state in CPM(FHilb) corresponding to the basis vectors. Represent the two countries as:
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The relative degrees of similarity are then given by:
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Thus we see that the degree of similarity between North Korea and China is greater that the degree
of similarity between China and North Korea. This confirms the result that we had before, and in
fact gives an even stronger indication of asymmetry, based on the relative prominence of the features
of the two countries.

This is a very simple idea and we do not need density matrices to implement it. However, the
advantage of working with density matrices is that we can now do the same as with p-hyponymy
and translate this asymmetric relationship into the same one but between sentences containing these
words, i.e one sentence containing the word China and one containing the words North Korea which
are of the same type. This can further be extended to cover sentences where apart from the words
China and North Korea we also have other words in a hyponym-hypernym relationship.
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Chapter 6

Conclusion and future directions

In this dissertation we make use of the framework of the distributional compositional model of meaning
to capture examples of the asymmetry that naturally occurs in phenomena from linguistics and
cognition.

Part 1: Overextension with respect to concept combination and the pet fish phenomenon

We first built upon work done in [25] in order to consider an alternative representation of overex-
tension with respect to concept combination, exemplified by the Pet Fish phenomenon, in a distri-
butional compositional model of meaning that uses density matrices as containers of word meanings
in CPM(FHilb) instead of vectors in FHilb. This approach has the advantage of allowing us to
see more clearly the correlation and interaction between the features of the parent concept and its
parts. The density matrix for pet fish is then compared to the pure matrix for goldfish via the fidelity
measure to produce a more intuitive output for similarity than the one obtained when comparing the
vectors of these concepts via the cosine measure.

Work on the Pet Fish problem, both in [25] and here, is so far purely theoretical and based on the
assumption that the hand-chosen set of salient features with respect to which we model the concepts
is suitable. Empirical evidence will be necessary to establish the appropriateness of the vector-based
and the density matrix-based models and determine if there is any significant advantage of the latter
over the former, given that the complexity of the computation doubles with the passage from vectors
to matrices. We would also need to test it on other examples, such as the case where we have a
concept which is comprised of two completely unrelated to each other words, like school furniture.

Part 2: Asymmetry of similarity judgment via positive transitive sentences containing
the verb is similar to

We briefly considered another cognitive phenomenon that goes by the name of asymmetry of similarity
judgment. We showed how the simple original framework of [7] for modeling the meaning of positive
transitive sentences can be used to account for the fact that the sentence ‘North Korea is similar to
China’ is judged by human subjects to be more likely than ‘China is similar to North Korea’ [40].
This was done by taking a graded truth-theoretic sentence space and representing the asymmetric
verb is similar to with respect to the same features as those used for the the construction of the
country vectors. The meanings of the two sentences are then simply real numbers and we judge the
higher of these to correspond to the more likely sentence. Again, for a true indication of the validity
of this model, some experimental support will be needed. It will also be useful to normalise the values
obtained in the computation of the meanings so that outputs of the meaning maps are between 0 and
1, thus allowing us to better judge the degree to which one concept is more similar to the other one
than vice versa.

Part 3: P-Hyponymy

In the final chapter of this dissertation, we presented a new way of measuring the relative hyponymy
of one concept to another. We called this measure p-hyponymy and defined it for values of p in
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the range (0, 1]. We think of these p-values as being essentially probabilities of being able to re-
place the concept A with B in some context. We were primarily interested in the upper bound on
the p-values which we called p-max hyponymy. We showed how this measure gives an order on the
density matrices that are used to represent hypernyms and how this can be lifted to the sentence level.

In our theoretical model, we assumed that a hypernym B can be expressed as a weighted mixture
of the density matrices corresponding to a relevant set of its hyponyms, where the weights can be
extracted from a large body of text and based on contextual co-occurrence. However, it might be the
case that this representation of the weights does not give us a reliable indication of the strength of
the hyponymy and we need a better method for constructing them. Also, a large-scale experiment
would be needed to establish the connection between having p-hyponymy between A and B, and any
implications this carries about the entailment of A in B. We worked under the assumption that all
the matrices we have are normalised - proper density matrices. We should consider what happens
if we drop this assumption. In particular, if we allow values for the weights of the individual words
that make up a density matrix of a hypernym to exceed 1, and we don’t normalise, we might end up
with p-hyponymy for p greater than 1. Whether or not this is at all indicative of anything interesting
from a linguistic point of view is currently unclear.

We established the result that the p-values of the p-hyponymy between hyponym-hypernym pairs in
two sentences A and B multiply together to give us the combined p-hyponymy between A and B. We
interpreted this as being the probability of being able to replace sentence B by sentence A in some
larger context. Intuitively, the more hyponyms we have in A with corresponding hypernyms in B,
the narrower the scope for replacing B with A in some larger body of text. However, assuming that
this result applies in the same way to all grammatical structures A and B seems like an unnatural
over-simplification. For example, suppose that the p-max hyponym between the words cat and ani-
mal with respect to some context is 0.5. Then this is lifted to p-hyponymy for p = 0.5 between the
sentences ‘Cats like milk ’ and ‘Animals likes milk ’ and between ‘cats which are flu↵y ’ and ‘animals
that are flu↵y ’. One possible way to model such di↵erences in sentence structure lies in making use
of the non-maximal values of hyponymy in some way, ideally dependent on the context of the sen-
tences and other relevant factors. How this can be done in practice is a possible avenue for future work.

We stated at the start of Chapter 5 that it might be useful to think of hyponymy as being a weaker
version of typicality, or even prototypicality. One way of applying this idea in practice could be as
follows. Starting from the knowledge that concept A is a p-hyponym of concept B for some value
of p, we first determine the largest such value in the (0, 1] range, by computing eigenvalues or oth-
erwise. We can then experimentally establish threshold values for hyponymy and typicality, say "
and ⇣ such that if "  p  ⇣ then we conclude that we have hyponymy, while if p > ⇣, we have
typicality. These thresholds can be set by examining the results obtained for an appropriate number
of hyponym-hypernym pairs and comparing these against data on the relative hyponymy or typical-
ity between these pairs extracted via other means, such as experiments carried out with target groups.

We concluded with a possible modification to the p-hypomymy measure that allowed us to consider
the China - North Korea example from Chapter 4 in a way that does not require the use of the verb is
similar to at all. We leave the further development and possible applications of this modified measure
to future work.
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