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Abstract

Quantum Computing has quickly established itself as a paradigm-

shifting force, displaying properties that defy intuition. Its power has

produced revolutionary algorithms, yet we have no clear understand-

ing of else is possible; we are still stumbling through a jungle rather

than mastering the field.

Bob Coecke et al. have produced a graphical calculus and algebraic

model that intuitively captures quantum’s essential features, allowing

one to manipulate complex structures easily on paper. Major algo-

rithms can be verified in just a couple of steps. However, combining

the basic elements is still alchemy, no rules nor intuitions exist to

predict the results.

This dissertation seeks to investigate those dark corners and cata-

logue its findings, presenting any rules it encounters on the way. This

is prefaced by a thorough description of the advanced algebra and

calculus used, displaying key results and insights. The final chapter

presents interesting structures that warrant further investigation and

possible components for a higher-level quantum tool-set.
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Chapter 1

Introduction

1.1 A short history

Over the past forty years quantum computation theory has grown immensely. We

now have built small scale quantum computers, have discovered many important

algorithms and quantum key transfer is being deployed on consumer devices.

Timeline

Some of the major milestones in quantum computation’s early development;

• 1932 von Neumann designed Hilbert space quantum mechanics, the for-

malism underpinning all of Quantum computation [vN32].

• 1969 Steven Wiesner suggested quantum information processing as a pos-

sible way to better accomplish cryptographic tasks [Wie83].

• 1976 Roman Ingarden showed that Shannon Information Theory cannot

be generalised to the quantum case [Ing76].

• 1982 Richard Feynman first described the idea of a ‘quantum computer’

• 1985 David Deutsch described the universal quantum computer [Deu85]

• 1991 Artur Ekert invented entanglement based secure communication

Within the 1990s Grover’s database search was discovered, Quantum Telepor-

tation was formalised and Shor’s factoring algorithm was discovered also. These

events proved to the world that quantum computation is a very important and

exciting new field of information physics.

At the beginning of the 21st century we have seen Shor’s algorithm and

Deutsch’s algorithm implemented, created qubytes, stored them and teleported

1



2 CHAPTER 1. INTRODUCTION

them over 16km (see [phy]). The lifetimes of these experimental systems, their

complexity and their physical scale have all seen marked improvements.

1.2 Difficulties

However, despite over forty years of work in the field, we have yet to realise

quantum computers large enough to be useful. One hindrance is decoherence–

qubits break down into incoherent states by interacting with the surrounding

environment and forming entanglements. Quantum Error Correction has reduced

this problem, enabling recent successes.

A greater problem is the current Quantum formalism. In the field of clas-

sical information many well-developed abstractions and tools exist, these have

underpinned the colossal explosion of information technology. However, Quan-

tum Computation is still taught and investigated in Dirac Notation – akin to the

cumbersome Assembly language of decades ago.

|01〉 + |10〉 |0〉 + |1〉
Entanglement Superposition

Figure 1.1: Dirac Notation does not clearly differentiate between superposition and
entanglement.

The two key quantum resources – Entanglement and Superposition – have

very different abilities, yet are depicted nearly identically in Dirac notation (see

figure 1.1 above and figure 1.2 below). Once one creates moderately complex

computations in Dirac notation the result is incredibly difficult to read, it has

been argued that this is the reason that Quantum Teleportation was not discov-

ered until almost seventy years after von Neuman’s conception of the Quantum

formalism [Coe05].

However, Quantum Computers have the potential to work completely outside

the envelope of our current classical computers– for example they can decrypt

industry standard secure communications. Therefore they are an essential part of

our computational future and tools must be found to deal with the aforementioned

problems. This dissertation explores the growing field of graphical representation.

1.3 A graphical approach

The difficulties in Dirac based reasoning have led some authors to pursue di-

agrammatic approaches to communicating quantum systems. Many have used
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|ψ〉 = α|0〉+ β|1〉

|ψ〉 ⊗ β00 = (α|0〉+ β|1〉)
(

1√
2

(|00〉+ |11〉)
)

=
1√
2

(α|0〉(|00〉+ |11〉) + β|1〉(|00〉+ |11〉))

CNOT (1, 2) −→ 1√
2

(α|0〉(|00〉+ |11〉) + β|1〉(|10〉+ |01〉))

H(1) −→ 1√
2

(
α

1√
2

(|0〉+ |1〉)(|00〉+ |11〉) + β
1√
2

(|0〉 − |1〉)(|10〉+ |01〉)
)

=
1

2

(
|00〉(α|0〉+ β|1〉) + |01〉(α|1〉+ β|0〉) + |10〉(α|0〉 − β|1〉)

+ |11〉(α|1〉 − β|0〉)
)

=
1

2

1∑
b1b2=0

|b1b2〉(Xb2Zb1)|ψ〉

Figure 1.2: Quantum state teleportation is a primitive operation yet its description
in Dirac notation is lengthy and unintuitive– an excerpt of a standard treatment is
presented here as witness.

the metaphors of qubit ‘wires’ that connect up gate ‘boxes’ to form a quantum

circuit:

f

This displays the inherent two-dimensionality of the systems– qubits are ten-

sored to form parallel wires, and gates are applied along those wires. These two

operations, tensoring and composition, be seen as two separate axis of manipu-

lation:
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Tensoring (space) ⊗

Composition (time) ◦

However most of these representations have been informal. They have not

supported proof procedures, nor have they been free of ambiguity. The repre-

sentation explored here has a precise formal meaning, making it a ‘graphical

calculus’. A statement is derivable in the graphical calculus1 if and only if it is

derivable from the axioms of the underlying quantum theory.

The calculus depicts Quantum algorithms much more intuitively. For exam-

ple, its axioms (which will be later described) make the creation and measurement

of multi-qubit states into simple diagrams such as the following:

=

φφ

Figure 1.3: A diagram in the graphical calculus, showing how a primative Teleporta-
tion protocol is equal to directly handing Alice’s qubit φ to Bob

1 Multiple calculi are presented in this dissertation, not all of them have this property.



Chapter 2

Background

This dissertation builds upon the material presented in the Oxford University

lecture courses on Category Theory [Doe09a] and Quantum Computation Science

[Doe09b]. The initial chapters embed the Quantum Computation formalism into

a host category and present a graphical calculus for it. The later chapters then

explore the category that has been constructed.

This chapter outlines the prerequisite knowledge and provides references to

the papers that underpin this dissertation.

2.1 Quantum Computation

The calculus presented is a Categorical treatment of the Quantum Computation

formalism. A familiarity with the formalism is therefore helpful and a brief in-

troduction is given here. For more information Andreas Doering’s lecture notes

[Doe09b] provide a concise guide to the whole subject.

Classical Computation works with systems of bits, the states of which are

generally known at every point in time. In contrast, Quantum Computation’s

qubits are in a superposition of states; They are a probability distribution of dif-

ferent outcomes and remain so until a measurement is made. After measurement

they collapse into a single state.

The second significant departure from the Classical world is the phenomenon

of quantum entanglement : Measuring one qubit (and thus determining its state)

can instantaneously affect other qubits, regardless of their physical locality. A

composite system is no longer a simple sum of its parts, instead it becomes only

describable as a whole.

Quantum systems are modelled as states of an algebraic space (some knowl-

edge of vector spaces is assumed):

Definition 1. A Hilbert Space H is an n-dimensional vector space over the field

5



6 CHAPTER 2. BACKGROUND

F with the following properties:

• It possesses an inner product 〈−|−〉 : H×H → F that is

– Linear in its second argument, i.e. ∀α, β ∈ F , s, t, u ∈ H 〈s|αt +

βu〉 = α〈s|t〉+ β〈s|u〉
– Conjugate-symmetric: ∀s, t ∈ H 〈s|t〉 = ¯〈t|s〉
– Positive definite: ∀s ∈ H 〈s|s〉 ≥ 0 with 〈s|s〉 = 0 ⇐⇒ x = 0

• It has a norm operator |s| =
√
〈s|s〉 that is complete1.

Throughout this dissertation we will deal with Hilbert spaces, which will

always be finite dimensional and over the field of complex numbers. A qubit is

an element of the two dimensional Hilbert Space over the complex field known

here as Q.

A qubit has two primary states,

|0〉 =

(
1

0

)
and |1〉 =

(
0

1

)
As well as being in one of these states (known as the ‘Computational Basis’ for

their likeness to bits), it can be in a superposition of both2:

|θ〉 = |0〉+ |1〉

Here the qubit is equally likely to be in either state when measured. The later

section on measurement describes this in greater detail.

Just like Classical systems, Quantum systems change over time. The change

over any period of time can be described by a special type of linear map:

Definition 2. A Unitary operation is a linear map U : H → H such that its

inverse equals its adjoint, i.e.

UU † = U †U = I =


1 0 · · · 0

0 1 0 0
... 0

. . . 0

0 0 0 1


Where I is the identity matrix and † is the operation of transposing then conju-

gating the matrix.

Other aspects of Quantum Computation are introduced later as required.

1A definition of completeness is outside the scope of this chapter, please see lecture notes
[Doe09b] for further details.

2Notice the vector has not been normalised to size 1– we are only interested in the relative
probability of states. The (complex) size of a quantum state is known as its ‘global phase’ – it
does not affect the probabistic outcome of the state and therefore equality between quantum
states usually ignores the global phase. In this dissertation vectors will frequently be left
unnormalised.
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2.2 Category Theory

Category Theory is the framework within which this dissertation builds its formal

algebra. Rather than being a large scale theory, Category Theory is more of a

lexicon within which structures can be created and compared. The pre-requisite

definitions are presented in this section.

Definition 3. A Category C consists of

• A collection of objects A ∈ Ob(C).

• A collection of arrows (also known as morphisms) f : A→ B ∈ Arr(C) with

functions dom(f ) = A and codom(f ) = B mapping arrows to a domain

and co-domain object. Domain and co-domain act as a typing system

mandating which arrows can be composed. C(A,B) is the collection of

all arrows from object A to B. Arrows are such that:

– A binary composition operation ◦ exists.

– For each pair of arrows f : A → B and g : B → C a composite arrow

g ◦ f = h : A→ C exists.

– Arrow composition is associative, i.e. (h ◦ g) ◦ f = h ◦ (g ◦ f ).

• Every object A has an identity arrow 1A such that for all f : A → B

f ◦ 1A = f and for all g : B→ A 1A ◦ g = g .

Example 1. Every group (G, �) gives rise to a category Grp with

• A single object ?.

• An arrow gi : ? → ? for every gi ∈ G, where the arrow 1? corresponds to

the group identity.

• Composition such that gi ◦ gj equals the object representing gi � gj.

• An arrow gi
−1 for each gi ∈ G such that gi ◦ g−1

i = g−1
i ◦ gi = 1?.

Notice how this Category represents the group structure entirely with arrows, ob-

jects hold no information. This is typical of how Category theory is used, it recog-

nises that the relationships between objects– rather than the objects themselves–

are most important. Also notice that the group axioms of closure, associativity

and identity operation all follow from the above definition without being explic-

itly defined– this is the power of Category Theory; One only needs to describe

the essence of the structure and the rest naturally follows.
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With Categories defined one final workhorse is required: Functors. These

define a relationship between two Categories, expressed as a mapping of objects

and arrows.

Definition 4. A Functor F (−) : C→ D is such that:

• Every object A ∈ Ob(C) has an image FA ∈ Ob(D)

• Every arrow f : A→ B ∈ Arr(C) has an image Ff : FA→ FB ∈ Arr(D)

The functor respects the compositional structure of both Categories, i.e.

F (g ◦C f ) = Fg ◦D Ff and F (1A) = 1FA (2.1)

Further introduction to Category theory can be found in [BW95]. MacLane’s

imposing [Lan98a] provides an encyclopaedic treatment of the subject.

In this document Categories are displayed in bold, Arrows in italics and

Objects in sans-serif.

2.3 Graphical Calculus

This dissertation will take the Quantum Formalism and rephrase it into Categor-

ical terms. Not only will the category’s objects and morphisms have a graphical

depiction, every subsequent property we describe of the category will have a

graphical interpretation. There is no prerequisite knowledge for the graphical

calculus, but a brief historical background is presented here.

Graphical calculi have their roots in Penrose’s work during the 1970’s. They

were later formalised by Yetter [PF89], Selinger and others (see Selinger’s paper

[Sel09] for a survey of this work).

===

Figure 2.1: An example equation from the graphical X/Z calculus.

The calculus presented here builds heavily on Bob Coecke and Samson Abram-

sky’s work on formalising quantum mechanics into diagrammatic categories. See

[Coe04] for an early example of the work. The comprehensive tutorial ‘Categories

for the Practising Physicist’ [Coe08] provides an enjoyable introduction. For the

most recent work see [CK10] for a treatment of multi-partite entanglement (a fo-

cus of this dissertation). An earlier paper [CD09] presents the quite astonishing

result that a very capable (yet simple) calculus is induced by every Hilbert basis.
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The graphical calculus is both powerful and useful, it saves the user time whilst

abstracting away unnecessary details. Not only is it a dramatic improvement

upon the Dirac notation, statements that are non-trivially equal turn out to have

identical diagrams. Furthermore intuitive visual metaphors such as ‘yanking the

wire straight’ and ‘sliding the box along the wire’ express axioms that are terse

when written as equations:

= =

In the next chapters the quantum formalism will be expressed categorically

and the diagrammatic calculus will be introduced.
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Chapter 3

Bringing Quantum into the

Categorical Realm

In this chapter we survey the Quantum formalism and incrementally build a

category to represent it.

At its core the Quantum formalism allows us to take both qubits and groups

of qubits and perform operations on them in parallel. Therefore the first piece of

structure required is a basic process framework.

3.1 The Basics

Imagine we are trying to model a car production line with the category CarFac.

The parts undergo various processes e.g. SprayRed and these shall be represented

by arrows in CarFac. Next, the various stages in between processes will be

represented by objects in CarFac. Therefore we could have UnpaintedCar as the

domain of SprayRed and PaintedCar as the co-domain. We can then form a new

arrow by composing processes SprayRed and Wax e.g.

Wax ◦ SprayRed = SprayAndWax : UnpaintedCar→ RedShinyCar

Composition is such that the rightmost action is performed first, the ◦ symbol

can be read as ‘after’. Notice that the objects are not the particular cars, but

rather their ‘state’.

Similarly, we shall model quantum systems in the category FdHilb, the cat-

egory of finite dimensional Hilbert spaces. We shall consider Hilbert spaces as

the objects and linear maps as the arrows between them. Composing two arrows

is simply matrix multiplication. We shall soon see FdHilb possesses many rich

structures.

11



12 CHAPTER 3. QUANTUM IN THE CATEGORICAL

g

f

C

A

g ◦ f

C

A

=B

Figure 3.1: Processes (arrows) are graphically depicted as boxes, with composition on
the vertical axis. The diagram depicts f : A → B, g : B → C and their composition.
The diagram is read from the bottom up.

3.1.1 A bit about Objects

We now introduce a special object I. This is not a Hilbert space, it is the space

of complex scalars within which no qubits can exist.

Definition 5. An arrow from I to itself is a scalar. A scalar in a diagram is

interpreted as a probabilistic weight. Composing two scalar arrows multiplies

them. Once we have introduced monoidal structure into our category scalars

will turn out to exhibit many familiar features: they experience commutative

multiplication, form a multiplicative group and act globally.

Definition 6. A point is an arrow from I to another object (a Hilbert space).

Points prepare quantum states. Points bijectively map to quantum states:

s : I→ A⇐⇒ |s(0 )〉

Definition 7. The object Q is the two-dimensional Hilbert space within which

Qubits reside

Throughout this paper we will often use the same symbol for a point ψ and

a ket |ψ〉 since in the category FdHilb (our primary focus) they are indeed the

same thing.

ψs

Figure 3.2: The scalar space I is not depicted with wires since scalars are global and
wires transport qubits. Therefore, scalars s are drawn as floating diamonds. Since
points ψ (kets) are arrows from the scalar space I to a Hilbert space A, they are the
beginning point for a wire. Points are conveyed by triangles in the graphical notation,
imitating the kets |ψ〉 they represent.
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3.1.2 Arrows

For FdHilb to be a valid category it must fulfil two criteria:

• Every object must have an identity arrow. This is simply the identity matrix

for each given Hilbert Space (and the scalar 1 for the object I).

• Arrows must compose associatively– which is true of linear maps and matrix

multiplication.

1 =

Figure 3.3: Identity arrows are portrayed simply as blank wires

3.1.3 Parallel Processes

We now have a simple process algebra– we can combine arrows to create simple

‘production lines’. However, we cannot express parallel operations, an essential

feature of any process algebra. We wish to express situations such as the following:

b

fa fb

d

Bake Cake

Divide Cake

Feed BobFeed Alice

To do this we introduce the notion of ‘tensoring’:

Definition 8 (Monoidal Category). A Monoidal Category C possesses a covari-

ant bifunctor ⊗(−,−) : C ×C → C known as the tensor product. Its action is

known as tensoring and forms a monoid structure within the host category.

• The ⊗ symbol is overloaded such that the image of objects ⊗(A,B) is A⊗B

and the image of morphisms ⊗(f : A → C, g : B → D) is f ⊗ g : A ⊗ B →
C⊗ D.

• As ⊗ is a bifunctor it is a functor in two arguments i.e.

(A⊗ B) ◦ (C⊗ D) = (A ◦ C)⊗ (B ◦ D)
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1A⊗B = 1A ⊗ 1B

Equivalently ⊗ is a functor whose domain is the product category C×C.

Furthermore, for all A,B,C ∈ C:

1. The functor is associative; There exists a natural isomorphism

αA,B,C : A⊗ (B⊗ C) ∼= (A⊗ B)⊗ C

2. I acts as a identity for the monoid, i.e. there exist natural isomorphisms

λA : I⊗ A ∼= A and ρA : A⊗ I ∼= A.

3. Figures 3.4 and 3.5 commute (these are the ‘coherence laws’).

((A⊗B)⊗ C)⊗D (A⊗B)⊗ (C ⊗D)αA⊗B,C,D

oo

(A⊗ (B ⊗ C))⊗D

αABC⊗1D

OO

A⊗ ((B ⊗ C)⊗D)

αA,B⊗C,D

OO

A⊗ (B ⊗ (C ⊗D))
1A⊗aBCDoo

αA,B,C⊗D

OO

Figure 3.4: Associativity Coherence Law

(A⊗ I)⊗B
αA,I,B //

ρA⊗1B

$$

A⊗ (I ⊗B)

1A⊗λB

zz
A⊗B

Figure 3.5: Unit Coherence Law

Now the earlier car example can be formalised as

SprayRed ◦ AttachWheels ◦ (MakeChasis ⊗MakeWheels) : I⊗ I→ PaintedCar

where AttachWheels : Chasis⊗Wheels→ UnpaintedCar.
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Notice that the tensored systems lie parallel along the horizontal axis, with

the process stages taking place along the vertical axis. It is the projection of these

two separate aspects onto one dimension that make Dirac notation so difficult to

use.

The bifuntorality property is intuitively implicit in diagrams, it graphically

depicts as:

=

Since brackets are not required in either of the above diagrams, bifuntorality

is trivially true in the diagrammatic language.

Next we extend the Monoid Category to be Symmetric and Strict:

Definition 9 (Symmetry). A monoidal category C is symmetric if for all A,B ∈
C there exists a natural isomorphism σA,B : A⊗B ∼= B⊗A such that σA,B ◦σB,A =

1B,A.

We also require that coherence diagrams 3.6, 3.7 and 3.8 commute.

=σA,B

Figure 3.9: The symmetric operator is depicted as the crossing of two wires

By MacLane’s Coherence Theorem (see [Lan98b]) any structure that obeys

the previous five coherence conditions has a special property: Any diagram of its

α, σ, λ and ρ arrows commutes.

The graphical language that we are introducing has various equalities built

into it1, such that the visual depiction of two categorically different statements

could look identical. Strictness imports those equalities into the category, sim-

plifying it by reducing the number of objects. This ensures there is a bijection

between equal diagrams and equal categorical equations.

Definition 10 (Strictness). A symmetric monoidal category (SMC) C is strict

if

1More importantly (though obliquely) these equalities are built into the quantum physical
processes themselves, see [Coe08]
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(A⊗B)⊗ C
σA,B⊗1C //

αA,B,C

��

(B ⊗ A)⊗ C

αB,A,C

��
A⊗ (B ⊗ C)

σA,B⊗C

��

B ⊗ (A⊗ C)

1B⊗σA,C

��
(B ⊗ C)⊗ A αB,C,A

// B ⊗ (C ⊗ A)

Figure 3.6: Symmetric Associativity Coherence Law

A⊗ I
σA,I //

ρA

!!

I ⊗ A

λA

}}
A

Figure 3.7: Symmetric Unit Coherence Law

B ⊗ A

σBA

##
A⊗B

σAB

;;

1A⊗B
A⊗B

Figure 3.8: Inverse Coherence Law
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• The natural isomorphisms λA, ρA and αA,B,C are all identities (i.e. the

objects they are isomorphic between are in fact the same). We specifically

do not require σA,B : A ⊗ B ∼= B ⊗ A to be an identity as then when one

applied f ⊗g to A⊗B it would be unclear which object had which morphism

applied.

• For all A,B ∈ C σ−1
A,B = σB,A holds

• The ‘sliding’ axioms in Figs. 3.10 and 3.11 hold.

f g

f
=

g

Figure 3.10: The sliding axiom; for all f : A → B and g : C → D it is the case
that (f ⊗ 1D) ◦ (1A ⊗ g) = (1B ⊗ g) ◦ (f ⊗ 1C). Interestingly, this holds as a result of
bifunctorality.

f
fg

=
g

Figure 3.11: The symmetric sliding axiom; (f ⊗ g) ◦ σC,A = σD,B ◦ (g ⊗ f )

The Hilbert space tensor fulfils all the above properties making FdHilb a

symmetric monoidal category (SMC). It is also Strict ([Lan98b] p.257).

3.1.4 Scalar Multiplication

Now that linear maps have been formalised it is possible to define the multipli-

cation of a map by a scalar.

Definition 11. Scalar multiplication is defined for scalar s and arrow f : A→ B

as

s • f = λB ◦ (s ⊗ f ) ◦ λ−1
A

Graphically,

s f
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Furthermore, by simple manipulation of the definition

(s • f ) ◦ (t • g) = (s ◦ t) • (f ◦ g) (3.1)

and

(s • f )⊗ (t • g) ∼= (s ◦ t) • (f ⊗ g) (3.2)

=

t

f s

gt

fs

g

Figure 3.12: Proof of (3.1)

.

s

t
ts

s
s gg

1
ft gf

1
f

t

∼=2
∼=f g∼=1

Figure 3.13: Proof of (3.2). (1) holds by isomorphisms λ, ρ, α and σ. (2) holds by
isomorphisms λ and ρ. Note that wires are included for some scalars to aid clarity.

Equations (3.1) and (3.2) show that scalars act globally, they are not bound

to any part of the quantum system. Scalars are not attached to wires in the

graphical depiction, enabling them to move around the diagram.

As one would expect, scalars experience commutative multiplication. This is

possible due to the λI and ρI coherence equations. The graphical proof:

t
1

s

s
=

t

s s
s

1
=

1

t

t t

=

1

=

Figure 3.14: s ◦ t = (1⊗ s) ◦ (t⊗ 1) = t⊗ s = (s⊗ 1) ◦ (1⊗ t) = t ◦ s

Finally, since every object must have an identity, there must exist the unit

scalar 1.
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Thanks to commutation a further piece of structure emerges:

Definition 12. The zero scalar is a scalar 0 such that for all scalars s

s ◦ 0 = 0

Lemma 1. The zero scalar is unique

Proof. Consider zero scalars 0 and 0̄ . Then

0 = 0̄ ◦ 0 = 0 ◦ 0̄ = 0̄

Therefore scalars form a multiplicative group (FdHilb(I, I), ◦, 0 , 1 )

3.2 Capturing the Quantum Formalism

Here we attempt to build the Quantum Computation machinery within the sym-

metric monoidal category we have just constructed. In this section we will in-

crementally bolt on extra features to the category until it is sufficiently rich to

represent what we require.

3.2.1 Unitary operations

The evolution of a quantum system is described by unitary operations, it is there-

fore necessary to understand their place within the category we have constructed.

To achieve this we must introduce adjunction to the category FdHilb.

Definition 13. The adjoint †(−) (pronounced ‘dagger’) is an involutive identity-

on-objects contravariant endofunctor. It preserves the monoid structure and

therefore has the following properties:

• Objects A are mapped to themselves i.e. A† = A

• Arrows f : A→ B are mapped to their contra-variant equivalent f † : B→ A

and identities to themselves 1 †A = 1A.

• Due to contravariance it is anti-homorphic i.e. (f ◦ g)† = g† ◦ f †

• It preserves the tensor product i.e. (A⊗B)† = A†⊗B† and (f ⊗g)† = f †⊗g†

• Applying the dagger to itself results in the identity functor †(†(−)) = 1(−)

as it is involutive.
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• As it is involutive, the functor (as a function between hom-sets) must be

bijective– therefore the functor is fully faithful.

Equipping a symmetric monoidal category with this functor produces a †-
SMC. In FdHilb the usual adjoint operation of taking a linear map’s transpose

and then conjugate performs the † role perfectly; fulfilling the required properties.

f

A

B

f

B

A†

=

Figure 3.15: The adjoint of f : A→ B. The adjoint flips the domain and co-domain
and is therefore depicted as a vertical reflection. To make this clear the morphism boxes
are given an asymmetric shape.

With the adjoint added to the category, unitary operations can now be for-

mulated in purely categorical terms:

Definition 14 (Unitary). An arrow f : A→ B is unitary if and only if f ◦f † = 1B

Graphically,

f

f

=

3.2.2 Hilbert structure

Hilbert spaces are characterised by having an inner product space. Introducing

this structure completes our basic categorical treatment of Hilbert space.

Definition 15. Bras, the complement to Kets in Bra-ket notation, are repre-

sented as the adjoint to their corresponding Kets i.e. for each point f : I → A

(ket |f 〉), f † is the bra 〈f |.

Definition 16. The inner product

〈 〉 (f , g) = 〈f |g〉 = f † ◦ g

maps pairs of points to scalars; it combines a bra with a ket. For the domain of

f † to match the co-domain of g both points must be from the same Hilbert space.
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Graphically,

f

g
= 〈f |g〉

As expected in a Hilbert space, unitaries preserve inner products.

Proof. For a unitary f : A→ B and points x : I→ A and y : I→ A,

〈x |y〉 = x † ◦ y

= x † ◦ 1A ◦ y

= x † ◦ f † ◦ f ◦ y

= (f ◦ x )† ◦ (f ◦ y)

= 〈f ◦ x | f ◦ y〉

Definition 17. Similarly by combining a bra and ket in the opposite order a

projection is formed. Given points f : I→ A and g : I→ B

|〉 〈| (f , g) = |f 〉〈g | = f ◦ g† : B→ A

Graphically,

f

g
= |f〉〈g|

3.2.3 A first attempt at Measurement

Measurement occupies an uncomfortable place within the von Neuman formal-

ism; all manipulations of the quantum state are both linear and unitary yet

measurement is neither. The categorical approach given here only recently found

a successful approach to putting measurement and unitaries on equal footing.

However, this approach requires a lot more structure to be described and will be

presented later. In this section an earlier, simpler treatment of measurement is

given.
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Measuring a quantum system requires an observable, a self-adjoint matrix

with real eigenvalues. The eigenvectors of such a matrix form a spanning or-

thonormal basis for the state space it resides in. The measurement will result

in the quantum system being projected onto one of these eigenvectors. An ob-

servable Ψ can therefore be thought of as a set {Pi} of spanning projections for

which

∀Pi, Pj ∈ Ψ. Pi ◦ Pj = 0 if i 6= j

= Pi otherwise

The outcome of each measurement is dictated by the Bonn Rule. The prob-

ability of a particular Pi ∈ Ψ becoming the measurement result for quantum

system ψ is calculated

〈ψ|Pi|ψ〉

From this distribution one Pk is randomly chosen and the system is then projected

onto that vector

|ψ̄〉 = Pk ◦ |ψ〉

In our categorical formalisation, an observable Ψ for Hilbert space A is a set of

projection arrows {Pi : A→ A} and by relying on post-selection (i.e. we assume

the measurement will be determined later and then the choice of projection index

can be fixed) we simply label the measurement ‘arrow’ with Pi. Graphically,

∈ · · ·

Pi PnP1 P2

,

This is known as the index method, the index is used to coordinate arrow

selection across the graph. The classic example of this technique is to display

quantum teleportation:
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UiPi

Pi

|00〉+ |11〉

Figure 3.16: Teleportation with indices. The circuit has a ‘correction’ unitary that
relies on the measurement outcome.

However this measurement formalism is unsatisfactory, it requires a meta level

outside of the category. This will be solved in Chapter 4.

3.2.4 Transpose

Transposition (represented here by (−)∗) is an essential operation. It transforms

linear maps in a fundamental way such that they operate on entirely different

Hilbert spaces.

Before we can investigate transposition we need to include Dual spaces in the

FdHilb category. As a vector space, every Hilbert space H has a dual space H∗.
H∗ contains all continuous linear functionals into C, that is arrows g : H∗ → I.

These are the duals of the points contained within H.

The Riesz representation theorem states that elements of Hilbert spaces bi-

jectively map to elements of their dual. For any point f : I→ H in H its mapping

to f ∗ is defined:

f 7→ 〈f,−〉(−)

In this dual space scalar multiplication and inner-products are conjugated, i.e.

s •H∗ f = s̄ •H f 〈f |g〉H∗ = 〈g|f〉H

Definition 18. A category with duals is such that every object A comes with a

dual A∗.

The category FdHilb has duals, as described above. Note that I is self dual,

i.e. I = I∗.

In the diagrammatic language wires operating in dual spaces have their di-

rection reversed, such that their arrow-heads now point downwards. This makes

it easy to see when a morphism acts in the dual space and will gain greater

significance later on.



24 CHAPTER 3. QUANTUM IN THE CATEGORICAL

f

A

A∗ A

=f

A

Figure 3.17: Equivalent depictions of f : A∗ → A

We can now define the transposition functor:

Definition 19. The transpose functor (−)∗ is a contravariant, anti-homomorphic

involutive endofunctor with the following properties:

• Objects A are mapped to their duals A∗.

• Arrows f : A→ B map to their duals, f ∗ : B∗ → A∗.

• Composition is reversed, (f ◦ g)∗ = g∗ ◦ f ∗.

• The functor is involutive, a bijective mapping between hom-sets and fully

faithful.

Definition 20. A functor F (−) is strictly monoidal if it satisfies the equations

1. F (A⊗ B) = F (A)⊗ F (B)

2. F (I) = I

The matrix transpose operator provides a strictly monoidal transpose functor

for FdHilb. As the functor is involutive, a dual’s dual is the original object i.e.

A∗∗ = A.

f

A

B

f

B

A∗

=

Figure 3.18: Transposed arrows are graphically flipped on both axis

3.2.5 Conjugation

The final basic matrix operation to be considered is complex conjugation (−)∗.

Its operation is equal to the composition of transposition and adjunction

(−)∗ = (−)∗†

The effects of transposition and adjunction (see table 3.2.5) commute, therefore

(−)∗ = (−)†∗.

Similar to before,
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Adjunction Transposition Conjugation

Object mapping identity dual dual

Arrow mapping anti-homomorphic anti-homomorphic homomorphic

Involutive? Yes Yes Yes

Table 3.1: Properties of the basic FdHilb functors

Definition 21. The conjugate functor (−)∗ is a covariant, homomorphic involu-

tive endofunctor with the following properties:

• Objects A are mapped to their duals A∗.

• Arrows f : A→ B do not reverse domain and co-domain, but do now map

to their domains’ duals, f∗ : A∗ → B∗

• It distributes over composition, (f ◦ g)∗ = f∗ ◦ g∗

• It is involutive, a bijective mapping between hom-sets and fully faithful.

• Its action is equal to the successive application of transposition then ad-

junction.

Graphically, conjugated arrows are horizontally reflected:

f

A

B

f

A

B

∗

=

3.2.6 The interrelation between Transposition, Adjunc-

tion and Conjugation

In the previous section it was shown how conjugation could be built from the

other two functors. The functors display a rich compositional structure, forming

a group:

Considered as a multiplicative group, every element is self-inverse and there

exists an identity element2. Luckily for use as a graphical calculus, the group is

also a symmetry group. Considering adjunction as vertical reflection and conju-

gation as horizontal, arrows admit an intuitive visual depiction of which functors

they have experienced:

2Indeed, the group is isomorphic to the modulus-multiplicative group {1, 3, 5, 7} × mod 8
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◦ I † T C

I I † T C

† † I C T

T T C I †
C C T † I

Key: I is the Identity functor, † the adjoint,

T the transpose and C the conjugate.

f

A

B

Normal

B

f

A

Conjugate

A

f

Adjoint

B

A

Transpose

f

B

Notice how the morphism’s box is reflected, but the direction of the arrow-

heads on the attached wires are not reflected: their direction depends only on

whether they denote a dual space.

Also, the transpose is a 180◦ rotation as well as a reflection on both axis.

3.3 Entanglement

Entanglement is the major resource in quantum computation, it makes possible

teleportation, superdense coding and quantum cryptography. Having caused con-

troversy in the early 20th century, Einstein famously derided it as ‘spooky action

at a distance’. Yet it is the non-local correlations provided by entanglement that

truly distinguish Quantum from Classical systems and fuel the current interest

in quantum computing.

Whereas in a classical system every bit can be manipulated independently

from one another, in a quantum system modifying one qubit could have an effect

on any other. This is expressed in the formalism as a system SAB that cannot be

split into two separate tensored parts, SAB 6= SA ⊗ SB.

The most famous entangled quantum system is the Bell state Φ+, an entan-
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glement of two qubits such that they have identical values

Φ+ = |00〉+ |11〉

This can be graphically depicted as a point

Φ

However this hides the rich structure the entanglement possesses. For in-

stance, since the state measured on the first qubit will be produced by the second

qubit of the pair, the entangled pair act as an identity function. Therefore the

Bell state could be represented as a cup:

Extending the representation to measurements in the Bell basis, quantum

teleportation can then be loosely sketched as the equality:

=

This will be formalised in the next section.

3.3.1 Cups and Caps

The ‘yanking the wire’ shown above, where a cup and cap became an identity

arrow, is the essential property of the structure we now introduce.

Definition 22. Given an orthonormal basis3 Θ for space A, a cap in FdHilb is

an arrow κΘ : A⊗ A→ I such that

∀vi ∈ Θ . κΘ ◦ (vi ⊗ vi) =

(
1

|Θ |

)
I

or equivalently κ†Θ =
∑
vi∈Θ

|vi〉 ⊗ |vi〉

The cap is depicted as a u-turned wire and is invariant when its inputs are

swapped i.e. κΘ = κΘ ◦ σA,A. Graphically:

3i.e. a set of points that obey the usual conditions of being orthogonal, normalised and
spanning
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=

The adjoint to a cap is a cup, and the defining condition for caps and cups

(known as ‘compactness’4) is

=

Figure 3.19: The compactness property, (κΘ ⊗ 1A) ◦ (1A ⊗ σA,A) ◦ (1A ⊗ κ†Θ) = 1A

Now the Bell state Φ+ can be understood as κ†C, a cup over the computational

basis.

3.3.2 Other Bell Basis

This understanding of the general Bell state can be extended to rest of the Bell

basis. The basis can be thought of as functions between their two qubits, such

that applying said function to the measured right qubit gives the state of the left

qubit. From this perspective Φ+ is the identity function.

• Ψ+ = |01〉 + |10〉 Considered as a function, Ψ+ inverts the input qubit.

Therefore appending a Pauli-X gate to Ψ+ gives the desired result,

X Ψ+ = (X ⊗ 1Q) ◦ κ†C

• Φ− = |00〉 − |11〉 Similarly requires a Pauli-Z gate:

Z Φ− = (Z ⊗ 1Q) ◦ κ†C

4 Eager readers will notice that this is not the normal condition for compactness– a proper
compact closed category has a morphism ηA : A ⊗ A∗ → I and the definition of compactness
necessarily involves the dual space (see [KL80]). True compactness is covered later in this
document.
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• Ψ− = |01〉 − |10〉 Requires both an X and Z gate:

X

Z Ψ− = ((Z ◦ X )⊗ 1Q) ◦ κ†C

3.3.3 A first attempt at full Teleportation

Now that the Bell basis has been incorporated into the calculus, the teleportation

protocol can be graphically expressed.

In the teleportation protocol a measurement is made in the Bell basis– its

outcome could be any of {Φ+,Φ−,Ψ+,Ψ−} = B. As in previous measurements

we will use the post-selection indexing method of accounting for measurement

results.

Every element of B can be factorised into Φ+ with a different unitary on the

left qubit, these are {I ,Z ,X ,Z ◦X} = B̄ respective to B. Therefore measurement

can be seen as selecting an (adjointed) index of B̄ e.g.

bi

The teleportation protocol requires a unitary correction after the aforemen-

tioned measurement. This is to remove the affect of the element (bi ∈ B̄)† that

was measured. Therefore the correcting unitary is simply bi.

Putting this all together the teleportation protocol becomes:

=
bi

=

bi

bi

bi

This depiction of teleportation is much more intuitive, however it still suffers

from a reliance on meta-level indices. The following Chapter exposes further

structures within FdHilb. These structures will provide the machinery required

to successfully express measurement.
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Chapter 4

Delving Deeper

In the previous chapter the basic aspects of the Quantum formalism were trans-

lated into the category FdHilb. Although only simple structures were imported

into FdHilb, it still exhibited rich algebraic structure – e.g. compactness, the

interaction of scalars and tensors.

This chapter explores FdHilb further, adding new tools that will later help

to dissect multi-partite entanglement.

4.1 Quantum Information

It is an apt time to explore the properties of Quantum information– the aspects

that differentiate Quantum information from Classical information are funda-

mental to the structure of FdHilb.

4.1.1 Quantum Copying

Classical information can be infinitely copied, this property has led to computers’

global ubiquity. In contrast to the Classical world, Quantum information cannot

be copied. This has been famously termed the ‘No-Cloning Theorem’:

Theorem 1. There exists no unitary δA : A → A ⊗ A such that for all points

f : I→ A

δA(f ) = f ⊗ f

This presents difficulties for standard classical practices such as Error Correc-

tion (which creates redundant copies) and multicasting. However this extreme

restriction has resulted in protocols unique to the Quantum realm; one well known

example is that of communication channels that are impossible to eavesdrop.

31
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Unsurprisingly this property permeates the Quantum formalism. The tensor

structure employed by †-SMCs is resource preserving1, it stringently accounts

for each qubit; all natural isomorphisms have been chosen to avoid information

cloning. This explains some of the motivation for the I space of scalars– they

provide a flexible substance from which qubits can be formed then later returned

to. Scalars can be freely created λA : A ∼= I ⊗ A, later prepared into qubits by

points f : I→ A, then through the device of measurement g : A→ I qubits return

to scalar form to be λ−1 : I ⊗ A → A disposed of. These restrictions perfectly

reflect the physical reality of quantum information.

Despite the No-Cloning theorem a limited form of copying is possible– or-

thonormal basis can be copied. The following simple matrix provides an example:
1 0

0 0

0 0

0 1


This reliably copies the computational basis {|0〉 7→ |00〉, |1〉 7→ |11〉}.

Lemma 2. A system can be perfectly copied if its only states are those of an

orthogonal basis (and not any superposition).

Proof. Trivial. The system can therefore be measured with complete accuracy

and replicated infinitely

This produces a simple categorical definition of orthonormal basis:

Definition 23. A duplicator δΦ : A → A ⊗ A for space A is an arrow such that

for every (vi : I→ A) ∈ Φ

δΦ(vi) = vi ⊗ vi

Theorem 2. [CD09] A duplicator δΦ exists in FdHilb if and only if Φ is an

orthonormal basis. That is, duplicators bijectively map to orthonormal basis.

This definition does not rely upon the additive properties of vectors or defini-

tions of vector-spanning, making it extremely convenient and efficient. The basis

points a duplicator copies are known as its ‘classical points’ since they can be

copied akin to classical information.

As will shortly be made apparent, duplicators provide an elegant and ubiq-

uitous calculus for many of the quantum systems we wish to express. They are

therefore depicted as simple dots, the colour of which specifies which basis is in

use:
1This interpretation is very similar to Lafont’s interpretation of linear logic. Indeed, linear

logic has been incorporated into studies of Quantum physics and used as the basis of Quantum
Type Systems.
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Figure 4.1: The duplicator δ : A → A ⊗ A . For clarity arrows and basis have been
dropped in this section when there is no ambiguity

When horizontally reflected the node remains visually unchanged, this reflects

the symmetry

δ = σ ◦ δ

Furthermore the node has the same appearance when rotated by 180◦ as when

vertically reflected– this is because the duplicator’s adjoint and transpose corre-

spond, i.e.

δ† = δ∗

One final property of duplicators relates to their composition and will prove

to be very useful later:

Theorem 3. [CD09] Duplicators in FdHilb are special and obey the Frobenius

law. That is,

=

Figure 4.2: The special property; δ† ◦ δ = 1A

=

Figure 4.3: The Frobenius law; (1A ⊗ δ†) ◦ (δ ⊗ 1A) = δ ◦ δ†

4.1.2 δ as a monoid

An interesting structure that arises from duplicators is that of a monoid. By

considering the upside-down duplicator δ† as a binary multiplier, the dot of the

graphical depiction becomes the operator A ·B = C
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A B

C

This multiplication is associative. i.e.

=

Figure 4.4: δ† ◦ (1⊗ δ†) = δ† ◦ (δ† ⊗ 1)

And also commutative

=

Figure 4.5: δ† ◦ σA,A = δ†

And therefore forms a commutative monoid. The structure can be further

embellished:

Definition 24. A unit εΦ : A→ I for duplicator δΦ is an arrow such that

==

Figure 4.6: (1A ⊗ εΦ) ◦ δΦ = 1A = (εΦ ⊗ 1A) ◦ δΦ

With the addition of the unit (δ†Φ, ε
†
Φ) now forms a multiplicative group.

Theorem 4. [CD09] Units in FdHilb have the form

∀vi ∈ Φ . εΦ(vi) = 1I
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Units are known as ‘deleting points’ because they uniformly map2 their as-

sociated basis to 1. Furthermore measuring the point ε†Φ in basis Φ is equally

likely to return any vi ∈ Φ. In this sense units are ‘unbiased’ and contain no

information.

The combination of duplicator and unit,

δΦ ◦ εΦ : I→ A⊗ A =
∑
vi∈Φ

|vi〉 ⊗ |vi〉

forms a cup as defined earlier. Its adjoint is a cap. By the Frobenius Law and

the definition of the unit, it experiences compactness as expected:

===

Definition 25. The triple (A, δΦ, εΦ), where A is the space inhabited by base Φ,

is known as an Observable structure. Specifically, an observable structure is an

internal special Frobenius cocommutative comonoid3, also known as a †-Frobenius

structure.

Observable structures have the surprising property that every diagram of

duplicators and units is equal to every other with the same number of incoming

and outgoing legs. For example,

= =

This is known as the Spider Theorem,

Theorem 5 (Spider Theorem). [Lac04] For any observable structure (A, δ, ε) in

a strict †-SMC, every combination of duplicators and units f : A⊗n → A⊗m is

equal to δm ◦ δ†n where δn is recursively defined

δ0 = ε , δn = δ ◦ (1A ⊗ δn−1)

2Waiving the normalising factor
3 A quick glossary: Internal refers to the fact it is relative to a particular object, cocom-

mutative as it is commutative (‘co’ refers to it being the dual of the normal understanding of
commutative) and comonoid as the arrows form a (dual) monoid structure, as described earlier.
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Thanks to the spider theorem all dots can be fused together:

=

This is yet another instance of the graphical calculus’s strength: these systems

are non-trivially equal, yet their graphical depictions are intuitively the same.

4.2 True Compactness

In the earlier treatment of Entanglement cups and caps were presented, which

when combined ‘compacted’ into an identity arrow. These were simplifications of

the †-compact structure presented in this section– caps κ : A⊗ A→ I are refined

to become u-turn arrows η : A⊗ A∗ → I, depicted

Figure 4.7: η ◦ (|vi〉 ⊗ |v̄j〉) = 〈vi|vj〉

η arrows bridge between objects A and their duals A∗ and highlight another

area of structure latent in FdHilb.

Definition 26. A †-compact category is a †-SMC where every object A comes

with a †-compact structure. A †-compact structure is a pair (A, ηA : A⊗ A∗ → I)

where η has the compact property:

=

Figure 4.8: The compactness property (ηA ⊗ 1A) ◦ (1A ⊗ σA,A∗) ◦ (1A ⊗ η†A) = 1A

Furthermore the η arrows of an object and its dual must be connected by

=

Figure 4.9: ηA∗ = ηA ◦ σA∗,A
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Definition 27. A †-compact category is strict if (A⊗ B)∗ = B∗ ⊗ A∗ and

AA⊗B = B

Figure 4.10: ηA⊗B = ηA ◦ (1A ⊗ ηB ⊗ 1A∗)

Compact structures are deeply integrated into the category we have already

built. The transposition functor can now have its action on arrows equivalently

redefined:

=f f

Figure 4.11: (f : A→ B)∗ = (1A∗ ⊗ ηB) ◦ (1A∗ ⊗ f ⊗ 1B∗) ◦ (η†A ⊗ 1B∗)

This accounts for why an arrow’s transpose is rotated by 180◦ degrees, it is

simply ’pulling the wire taut’ in the above diagram.

Similar to the sliding axioms introduced earlier, we now introduce sliding

axioms for cups and caps. With these in place morphism boxes can freely slide

along all wires– until blocked by another box.

f
f f

f =2=1

The proof of (1) is as follows:

using the above defn. of f∗

f =f f=

The proof of (2) is similar.
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4.3 Compact Cups

We have now introduced two very similar devices- caps κ and compact structures

η. This prompts the question of whether they are interrelated. Furthermore,

since κ can be built from the duplicators δ and units ε of observable structures,

a link between κ and η would interrelate compactness and Spider theorem –

providing an extremely versatile calculus.

4.3.1 Self-duality

One approach to this problem is to simply require that every †-compact struc-

ture’s object A equals its dual. As a result wires no longer have arrowheads and

κ = η as required. This is a quick solution and has proven successful ([CD09]).

However, this poses significant problems. As discussed in the Strictness defi-

nition for †-SMC, it is vital that σA,B : A⊗B ∼= B⊗A does not become an equality

as otherwise arrows’ domain restrictions fail. However, if objects are made self

dual then

A⊗ B = (A⊗ B)∗

and by the strictness property for †-compactness

(A⊗ B)∗ = B∗ ⊗ A∗

and therefore

A⊗ B = B⊗ A

the very situation we took pains to avoid in the earlier definition of σ’s strictness!

If we desire FdHilb to be strict and have a meaningful set of objects, self-duality

is unfeasible.

4.3.2 Explicit duality

As originally described in [CPP08], a much neater solution exists – one which

breaks η down into its fundamental parts. For this we introduce a new morphism:

Definition 28. A dualiser is a unitary arrow dA : A → A∗. Many possible

dualisers exist for each object. The dualiser is depicted as

dA = dA =

Now the the definitions of η, δ and ε can be interwoven:
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Definition 29. A †-dual Frobenius structure in a †-SMC is the tuple

(A, δΦ : A→ A⊗ A, εΦ : A→ I, dA : A→ A∗)

where (A, δΦ, εΦ) is a †-Frobenius structure.

Theorem 6. [CPP08] A †-compact structure arises from every †-dual Frobenius

structure

ηA = εΦ ◦ δ†Φ ◦ (1A ⊗ d †A)

Graphically,

=

Since κΦ = εΦ ◦ δ†Φ all five operators can all be drawn together. A dualiser

factorises η in the following way:

==

Figure 4.12: ηA = κΦ ◦ (1A ⊗ d†A) = εΦ ◦ δ†Φ ◦ (1A ⊗ d†A)

One may have noticed that δ and ε are specified relative to bases, but the

dualiser d and compact structure η are specified relative to objects. This is

because η’s definition is base agnostic; η can be factorised by any observable

structure– the dualiser acts as a ‘correcting unitary’ (this property of bipartite

entanglement will be formally established later). In this fashion the dualiser

can be defined in terms of the Frobenius and Compact structures you wish it to

factorise:

Theorem 7. [CPP08] A dualiser can be defined by combining a †-compact struc-

ture with an observable structure;

dA = (ε†Φ ⊗ 1A∗) ◦ (δ†A ⊗ 1A∗) ◦ (1A ⊗ ε†A)

which is

=
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Definition 30. A †-compact category with bases is a †-SMC where every object

A comes with a †-dual Frobenius structure and the dualiser dA has the following

properties:

=

A∗

A∗

A

A

Figure 4.13: dA∗ = d†A

=

Figure 4.14: δA∗ ◦ dA = (dA ⊗ dA) ◦ δA

=

Figure 4.15: εA∗ ◦ dA∗ = εA

Definition 31 (Strictness). A †-compact category with basis is strict when the

following equalities hold:

BA⊗B A

=

Figure 4.16: dA⊗B = (dB ⊗ dA) ◦ σA,B

=

AA⊗B B

Figure 4.17: δA⊗B = (1A ⊗ σA,B ⊗ 1B) ◦ (δA ⊗ δB)
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AA⊗B

=

B

Figure 4.18: εA⊗B = εA ⊗ εB

Now it is possible to re-introduce the spider theorem, completing what we set

out to achieve:

Theorem 8 (Orientated Spider). [CPP08] In a †-compact category with bases,

any connected diagram composed entirely of elements from a single †-dual Frobe-

nius structure can be simplified down to a spider as long as the number of incoming

and outgoing legs and their directions are preserved.

Example 2. The following are equal:

= ==

Thanks to this result a †-compact category with bases (A, δΦ : A→ A⊗A, εΦ :

A→ I, dA : A→ A∗) has a simpler depiction: dualisers, duplicators and units can

all be drawn as the same familiar coloured nodes. Additionally, these nodes can

have any number of legs, in any direction.
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4.4 Interactions between different obervables

In the previous section †-dual Frobenius structures were introduced, bringing

the concepts from many earlier sections together into a single flexible calculus.

The orientated spider theorem allows for quick intuitive manipulation of these

structures, regardless of their complexity.

However when multiple Frobenius structures occur in the same diagram the

preceding theory provides no answer as to how they interact.

In this section that question is explored.

4.4.1 X and Z observables

We will focus on two observable structures in particular, those of the X and

Z Pauli matrices. These provide a rich calculus that can encode real-world

protocols– some of which will be featured in later examples.

One can construct Frobenius structures from these Pauli matrices by taking

their eigenvectors (‘classical points’) and using them as the bases for duplicators.

The two Frobenius structures are described in the following table:

Matrix Classical

Points

Unbiased points Frobenius structure

Pauli-X

(
0 1

1 0

)
|+〉, |−〉 |0〉, |1〉,

|αX〉 = cos(α
2
)|0〉 +

sin(α
2
)|1〉

δX :

{
|+〉 7→ |+ +〉
|−〉 7→ | − −〉

}
εX : |0〉 7→ 1

Pauli-Z

(
1 0

0 −1

)
|0〉, |1〉 |+〉, |−〉,

|αZ〉 = |0〉+ eiα|1〉
δZ :

{
|0〉 7→ |00〉
|1〉 7→ |11〉

}
εZ : |+〉 7→ 1

To differentiate the two observable structures their dots will be drawn in

different colours; The Pauli-X structure in red and the Pauli-Z in green.

Definition 32. Complementary observables are a pair of observable structures

with the property that each structure’s classical points are unbiased for the other.

The X and Z matrices were chosen because they are complementary and their

compact structures coincide:
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=

Figure 4.19: εX ◦ δ†X = εZ ◦ δ†Z

Another consequence of their compact structures coinciding is that they share

the same dualiser dA to form ηA:

==

Figure 4.20: (1A ⊗ dA) ◦ δZ ◦ ε†Z = η†A = (1A ⊗ dA) ◦ δX ◦ ε†X

The first consequence of being complementary is that each structure can copy

the others unit:

==

Furthermore, as each’s classical points are unbiased for the other structure,

connecting a red duplicator to a green duplicator results in no information being

transmitted i.e. a disconnected graph:

s =

Figure 4.21: The scaled Hopf law with trivial antipode

This result holds for complementary observable structures whose compact

structures coincide and at least one of which was formed from a vector basis.

4.4.2 Point Multiplication

For the calculus of complementary structures to be of practical use it needs to

include arbitrary rotation gates. This section demonstrates how points can be

used to create these rotations and afterwards presents some applications.

The first new tool is an functor mapping points f : I→ A to endomorphisms

of A:
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Definition 33. For an observable structure (A, δX , εX) let ΛX(Ψ) = δ†X ◦(Ψ⊗1A)

Ψ

=ΛX(Ψ) Ψ=

Proposition 1. Arrows ΛX(α) : A→ A are

1. Commutative

Ψ

=θ

θΨ

Ψθ
=

2. Associative

Proof. This follows naturally from morphism composition.

3. The identity when α = ε†

Next we define point multiplication:

Definition 34. For an observable structure (A, δX , εX) and points Ψ : I → A

and θ : I→ A, their multiplication is

Ψ�X θ = δ†X ◦ (Ψ⊗ θ)

Graphically,

Ψ�X θ

=

θΨ
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Proposition 2. Composition of ΛX(−) terms is equivalent to point multiplication

i.e.

ΛX(Ψ) ◦ ΛX(θ) = ΛX(Ψ�X θ)

Proof. Graphical.

Ψ

θ
Ψ θ

= =Ψ

θ

Therefore point multiplication is commutative, associative and has a unit– it

is forms the commutative monoid. (C(I,A),�, ε†)
This supports a natural extension of the previous spider theorem:

Theorem 9 (Decorated spider). Any connected graph entirely composed of ele-

ments from a †-dual Frobenius structure (A, δX , εX , dA) and points {pi} admits a

spider normal form,(⊗
m

dA or 1A

)
◦ δm ◦ ΛX

(⊙
i

pi

)
◦ δ†n ◦

(⊗
n

dA or 1A

)

purely dependant on the number n of incoming and number m of outgoing legs,

their direction and the points present. All points are multiplied together.

Proof. Using the orientated spider theorem points can be moved into the mul-

tiplying arrangement, forming an orientated spider with an ΛX(−) arrow in the

centre. Graphically:

=p0
⊙

i pi= p0

p1

p2

p2

p1
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4.4.3 Phase Shifts

Now a reflection operator can be defined:

Definition 35. For any point f : I → A in a †-dual Frobenius structure (A,

δX , εX , dA) its reflection fRX
is defined

f∗

=

fR

Figure 4.22: fRX
= dA ◦ f∗

This operator is such that

Λ(−α) ◦ ε† = (Λ(α) ◦ ε†)RX

and

(ε†Z)RX
= ε†Z

Now the multiplication operator provides an elegant definition for unbiased

points:

Definition 36. Unbiased points f : I → A in a †-dual Frobenius structure (A,

δX , εX , dA) are such that for some scalar s : I→ I

s • (f � fRX
) = ε†X

i.e.

=

f

s

fRX

Since we are dealing with complementary observables, taking one structure’s

classical points and passing them into the other’s duplicator forms a unit. By

the above definition these are classed as unbiased points:

=

Consider the points f : I → A for which ΛX(f ) is unitary: These points are

necessarily unbiased and normalised,
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= =

ΛX(f)

f
f

ΛX(f)

f

fRX

= =

Let those unbiased normalised points be the set ΞX . If we restrict the point

multiplication monoid to only act on these points then the reflection operator

performs an inversion operation and we have formed the abelian group

(ΞX ,�, ε†, (−)RX
)

This is known as the Phase group for the †-dual Frobenius structure (A, δX , εX , dX).

The following example makes the term’s origin clear:

Example 3 (Z and X phase shifts). The Bloch Sphere is a visualisation of the

Qubit such that every unique pure state (i.e. a state that is not a super-position)

of magnitude 1 maps to a point on the sphere. Some reference points are drawn

on the sphere for orientation. The sets ΞX and ΞZ are both great circles of the

Bloch sphere:

|1〉

|0〉

|−〉 |+〉
ΞZ

ΞX

Therefore the sets also form additive rotational (modulo 2π) groups with ε†X
and ε†Z as their respective zero points. For this reason the points x ∈ ΞX (ΞZ)

are respectively referred to as θX (θZ) for θ ∈ [0 . . . 2π]. The reflection operator

reflects across the line of 0◦ and therefore negates angles (where 0◦X = ε†X = |0〉),
e.g.
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|1〉

|0〉
αXRX(αX)

ΞX

Finally, δ acts as an averaging function of the two angles given to it, returning

0◦ (ε†X) for reflective pairs – as per the definition of unbiased.

|1〉

|0〉 ΞX

βα

γ
=

α

β

γ

Using the phase groups ΞX and ΞZ general rotations can be constructed:

Example 4. Any 1 bit unitary can be formed via

Λ(ψ, φ, ϕ) = ΛX(ψ) ◦ ΛZ(φ) ◦ ΛX(ϕ)

since a unitary is simply a general rotation.

Proof. The above series of rotations is equivalent to a general rotation by Euler’s

rotation theorem: Rotating in the ΞX plane then the ΞZ plane orientates the ‘|0〉
pole’ to an arbitrary axis. The final ΛX(ψ) rotation, about that axis, is therefore

sufficient to define a general rotation.

Example 5 (CNOT). Within the X-Z calculus it is possible to build a CNOT

gate and to demonstrate its action.

==

In Ctrl

Figure 4.23: The CNOT gate



4.4. INTERACTIONS BETWEEN DIFFERENT OBERVABLES 49

The gate can be tested by ‘plugging’– just as a linear function can be mapped

by applying it to each basis vector, a unitary graph can be understood by at-

taching each possible orthogonal input. First |0〉 = 0X = ε†X is plugged into the

control wire, then |1〉 = πX . See Figure 4.24 for an illustration of the process.

==
π

=

π

X=
π

π

Figure 4.24: As |1〉 is equivalent to ε†X rotated by ΛX(π) it is labelled as ‘π’. The red
center denotes its origin as an unbiased point of δX and the green rim signifies that it
is classical for δZ .

Each case produces a rotation on the input gate, where ΛX(0) is the identity

and ΛX(π) = X, i.e. the inversion gate, as expected.

As the calculus contains one bit unitaries and CNOT gates, any possible

quantum state can be built. The X/Z calculus is therefore universal, it can

express every possible quantum state and unitary gate [CD09].

Example 6 (Teleportation). It is now possible to depict the teleportation pro-

tocol without indexing.

(1) Alice measures both her qubits

(3) Bob applies corrections

φ

(2) Alice’s measurements are
classically communicated

Alice’s measurement is equivalent to measuring each of the communication

lines in the computational basis. Transferring these two (classical) bits to Bob

allows him to correct his entangled qubit and retrieve φ. This example demon-

strates how duplicator nodes successfully model classical communication, showing

the versatility of the X/Z calculus.
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Proof. Verification of the protocol’s correctness now becomes a trivial application

of the spider theorem4.

φ

=

φ
φ

==

φ

This section has explored the interaction of two particular observable struc-

tures. Whilst this work can be generalised to other observables, the X/Z calculus

has bore the most fruit. The tools presented here will be used again later as we

analyse Entanglement in the next chapter.

4Recall that a red or green node with only two legs is an identity function.



Chapter 5

A tale of Entanglement

Entanglement is fundamental in distinguishing Quantum mechanics from Newto-

nian; The ability to instantaneously affect a particle’s state regardless of distance

is truly extraordinary. Furthermore, in the previous chapters’ investigations of

FdHilb’s structure, entanglement has played a central algebraic role– consider

both Frobenius and Compact structures. However we have focused on one single

expression of entanglement– the Bell basis. In this chapter we investigate other

forms of Entanglement and look at the Multi-partite case, ultimately exploring

the tripartite GHZ/W calculus. The calculus itself has only recently been intro-

duced ([CK10], Feb. 2010 ) and little is currently known about it. This chapter

provides new insights, rules and tools for the calculus.

5.1 Distinguishing between entanglements

The aim of this section is to form distinct classifications of Entanglement. The

simplest division is the number of Qubits employed in the entangled state; so far

the focus has always been on two qubit cases. However this granularity is too

coarse, it doesn’t unearth any deeper structure. To gain finer discrimination an

equivalence relation will be employed, dividing each N-qubit case into equivalence

classes.

Ideally the equivalence class will not divide the entanglements too finely,

rather expose some fundamental structure. Also it should be robust to minor

changes; For example, the Bell Basis are trivial to generate from Φ+ and all

operate similarly– therefore they should all be in the same class.

A first attempt at an equivalence relation is to group together quantum states

that can be made equal by applying unitaries to each qubit, These local oper-

ations do not interfere with the non-local properties of the entanglement which

we are trying to categorise. The resulting equivalence classes are known as local

operations and classical communication (LOCC) classes.

51
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Definition 37 (LOCC). For points f , g : I→ Q⊗n and unitaries {ui : Q → Q}n0 ,

LOCC equivalence is

f ∼ g ⇐⇒

(
n⊗
i=0

ui

)
◦ f = g

However this classification is too restricted and forms too many classes. In-

stead a stochastic variant is used (SLOCC ) in which states are equivalent if with

non-zero probability they can be converted into one-another, using only local

operations and classical communication. The realisation of this definition is the

use of invertible linear maps rather than unitaries:

Definition 38. For points f , g : I → Q⊗n and invertible matrices {si : Q →
Q}n0 ⊆ SL(2,C) stochastic LOCC equivalence (SLOCC) is

f ∼ g ⇐⇒

(
n⊗
i=0

si

)
◦ f = g

SLOCC equivalence has been well studied ([CSZB06]) and its application

to small numbers of entangled qubits is widely known. The major results are

displayed here:

Qubits Classes Class description

1 1 No entanglement is possible therefore all qubits are in the

same class.

2 1 All entangled qubits are equivalent to the Bell state.

3 2 Each is equivalent to either the W state or the GHZ state.

N ≥ 4 ∞ The number of classes is infinite and specified by a set of

parameters that grows exponentially with N.

The equivalence of all entangled pairs of qubits to the Bell state is very use-

ful; Any bipartite entanglement can be easily constructed from Φ+ and correcting

unitaries, and therefore from the X/Z calculus with the requisite points. Further-

more it proves that every cap κ can, with an appropriate dualiser d , factorise a

compact structure η.

For graph states of four or more qubits SLOCC equivalence broke down,

providing an infinite number of classes. This is because the pure state is formed

with N qubits and therefore has O(2N) parameters, but the equivalence relation’s

‘grouping power’, achieved through its use of local operations, scales linearly

O(N). Higher level equivalences have been designed that output parameterised

classes, however the tripartite result is sufficient for the current investigation.
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5.2 The three qubit case

Perhaps surprisingly, all three-qubit entanglements fall into one of two classes.

Furthermore, the classes are distinguished by a simple structural property. In

this section the graph states will be introduced and their calculus explored.

The two classes are:

GHZ state W state

|GHZ〉 = |000〉+ |111〉 |W〉 = |001〉+ |010〉+ |100〉

The GHZ state is equal to δZ considered as a point:

= |000〉+ |111〉

Accordingly the GHZ state induces a special commutative Frobenius algebra

identical to the Z calculus presented earlier. The W state has no equivalent node

in the X/Z calculus, but can be created through a combination of X, Z nodes and

phase shifts. However for the purpose of studying entanglement, the GHZ/W is

our calculus of choice.

Note that at this time a completeness result does not exist for the GHZ/W

calculus.

5.2.1 Exploring the W state

The W state induces an algebra different from those studied earlier. The first

difference apparent is its cup structure:

Proposition 3. κW 6= κGHZ

Proof. Suppose κ†W = κ†GHZ = |00〉+ |11〉. Since

(1A ⊗ δW ) ◦ κ†W = = |100〉+ |010〉+ |001〉

then δW = |00〉〈1|+ |01〉〈0|+ |10〉〈0|, and therefore for any ε†W = α|0〉+ β|1〉

κW = δW ◦ ε†W = α • (|01〉+ |10〉) + β • |00〉 6= κ†GHZ

contradicting the initial assumption.
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Taking κ†W to equal |01〉+|10〉, the W state induces the following commutative

Frobenius algebra:

= = κ†W = |01〉+ |10〉

= ε†W = |1〉

= δW = |01〉〈1|+ |00〉〈0|+ |10〉〈1|

= X =

(
0 1

1 0

)
= X ◦ ε†W = |0〉

In this calculus nodes change their qubit value when flipped upside down–

this is due to the cap structure.

‘Flowers’

‘Stops’

〈1|

〈0|

|0〉

|1〉

Combining the GHZ and W graphical calculi forms a tick X : Q → Q:

==

The tick operator is exactly the Pauli X gate, and is therefore self-adjoint,

unitary and involutive. These properties are readily proven graphically, for ex-

ample:

= =Involutive =

As explained earlier, cups (caps) can be thought of as unitary operations

between their qubit outputs (inputs). κW and κGHZ perform unrelated operations

– therefore they do not compact when connected together. Equivalently, the tick

X does not equal the identity 1Q:
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6==

Now both states can be expressed as graphical superpositions:

=

+=

++

Speciality

The W calculus is anti-special :

=

Speciality is the distinguishing feature between the W and GHZ induced alge-

bras; More fundamentally, speciality distinguishes the two Entanglement classes

they represent. The spider theorem, which holds for the GHZ-algebra, does not

hold for the W-algebra because of anti-speciality. This is because anti-speciality

causes connected graphs to become disconnected. However, with careful han-

dling, anti-speciality enables unique and useful applications– as will be shown

later.

Factorisation of η

Both GHZ and W nodes factorise ηQ : Q⊗Q∗ → I = |00〉+ |11〉. This is possible

through the use of dualisers.

= =
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The dualiser used with the GHZ node simply maps arrows to their duals, i.e.

dGHZ(−) = (−)∗ whereas the W node’s dualiser performs the mapping dw(−) =

(X ◦ −)∗. This similarity in factorisation shows that despite the fundamental

differences in W and GHZ entanglement, they still share low-level structure.

5.2.2 Basic Axioms

By plugging the basic nodes together a wide range of axioms can be formed.

These provide simplifications for larger graphs. The axioms are given in the

graphical equations below1:

=

=

=

= =

=

=
=

=

=

=

=

=

=

=
6=

== =

=

1Notice that both the GHZ and W nodes have horizontal symmetry, therefore any axiom
can be reflected to gain another
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= |0〉=

Figure 5.1: Flowers can equivalently be drawn as ‘Loops’

An important aspect of the GHZ/W calculus is the propagation of flowers. If

a flower is attached to any leg of a GHZ or W node it will always propagate to

another leg, often both:

==

= =

This can be seen as a difficulty since flowers can rampantly spread through

carefully constructed graphs. Furthermore units (which are by definition benign

inputs to duplicator nodes) are inter-converted to flowers by ticks:

=

Therefore graph design in the GHZ/W calculus requires greater diligence than

in the X/Z. However graph primitives resilient to flowers exist – these will be

shown later.
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5.2.3 Normal Forms

One great strength of the X/Z calculus is its support of the spider theorem–

this enables graphs to be quickly and intuitively manipulated. The GHZ node

is identical to the Z node studied earlier, therefore GHZ graphs support the

(orientated and decorated) spider theorem. The W calculus does not support the

spider theorem but it does obey a weaker version:

Proposition 4. Any acyclic graph built from elements (δW , εW , dW ) obeys the

orientated spider theorem.

Proof. The requirement of acyclicity ensures that the graph never exhibits spe-

cialness and its associate disconnection; Cycles form flowers which rapidly du-

plicate through the graph. As a result, the graphs’ calculus can be considered a

†-dual ‘special’ Frobenius structure on both Q and Q∗. Therefore the orientated

spider theorem is supported.

Tick-free cycles of W nodes exhibit the following equality:

=

Figure 5.2: W node cycles always explode into flowers

Proposition 5 (Cycle theorem for W graphs). For any tick-free cycle of W nodes

(δW,1 · · · δW,n) forming the function f : Q⊗p → Q⊗q where p+ q = n,

f = (X ◦ ε†W )⊗q ◦ (εW ◦X)⊗p

Proof. If the cycle simplifies to flowers as described above one cannot plug a

in flower node; this would produce a zero scalar (a sign the graph cannot be

constructed), e.g.

(εW ◦X) ◦ (X ◦ ε†W ) = 〈1|0〉 = 0

indicating that such a structure has zero probability of occurring.

However, suppose a duplicator did not simplify to a loop, it must then simplify

to a stop, or a superposition of stop and loop. In this case one could validly plug

in a loop
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However, by the above axioms, the loop would propagate:

· · ·· · ·

and eventually two loops would meet. This results in the zero scalar, a flag

that the structure is not buildable– and therefore the assumption is incorrect and

all duplicators simplify to loops.

The above normal forms are for tick free graphs of a single type of node (GHZ

or W). These can be used within larger graphs to simplify sub-graphs. However,

the requirements of being tick free and of a single type of node are restrictive. In

the following section we explore what results exist outside of these bounds.

5.2.4 Cycle normal forms

Acyclic graphs in the GHZ/W calculus simplify easily– both GHZ and W nodes

support the spider theorem. However, as seen in the earlier discussion of special-

ity, graph cycles have differing treatments depending on node class. This section

presents a method of analysing mixed node cycles that include ticks.

Definition 39. Tree cycle form for a cycle of nodes [s1, · · · sn] where each si is

either a GHZ or W node, with each leg potentially ticked, i.e. si ∈ {δW , δGHZ, X ◦
δW , δW ◦ (X ⊗ 1Q), X ◦ δW ◦ (X ⊗ 1Q) . . . } is defined

ηQ ◦ (∆1 ⊗ 1 ∗Q) ◦ (1⊗n−1
Q ⊗ η†Q)

where

∆i = s†i ◦ (1Q ⊗∆i+1)

∆n = s†n

A graphical example:
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Example 7. Any cycle can be converted into tree cycle form. We wish to convert

nodes into a state where their legs are all correctly orientated, yet not change

the graph state. For W nodes this requires adding a tick to any legs that switch

between upward and downward orientation. By the spider law GHZ nodes can

have their legs reoriented without further changes.

= =

Therefore the following cycle converts as shown:

=

Once in this form further analysis and simplification is possible. Note that

ticks on the unconnected legs do not affect the simplification, they only change

how the outside graph ‘views’ this sub-graph. However, ticks between nodes do

affect which simplifications are possible.

Proposition 6. When no ticks occur between nodes tree cycle form experiences

the following simplification:
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• All GHZ nodes merge into a spider and disconnect from all W nodes

• All W nodes disconnect, leaving flowers

A graphical example:

=

This result is the combination of the spider theorem for GHZ graphs and the

cycle theorem for W graphs. When the cycle is entirely GHZ or W nodes the

above result reduces into those theorems.

Proof. Here we look at nodes [δ0, · · · δn] in tree cycle form, with no ticks between

nodes. Consider the GHZ and W nodes displayed as superpositions of qubit

states:

= + +

= +

Only particular states fit together. For example, when two W nodes are

connected they cannot display a unit on their spare wires as the zero scalar

would emerge (from the joining of two flowers):

= 0

Instead states must interlock in one of two ways:

=1= or 1

Omitting from the W state superposition only two cases emerge for the

tree cycle:

• All are in ‘left’ orientation. All GHZ nodes display a unit and all W nodes

display a flower.
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• All are in ‘right’ orientation. All GHZ nodes display a flower and all W

nodes display a flower.

The W state results in a ‘left’ and a ‘right’ section coexisting. This

eventually leads to a node that is met by flowers on either side, which therefore

must display units on both its linked legs (in red box, below):

left right

!

Since neither W nor GHZ nodes contain a state which displays units on both

linked legs, a complete cycle with both left and right sections is impossible. Thus

the W state cannot occur.

Therefore

• All W nodes output a flower.

• All GHZ nodes have the same output, either a flower or a unit. This is

equivalent to them being fused into one single spider node.

We have now examined cyclic and acyclic graphs of a single type of node and

the interaction between both GHZ and W nodes. However, this has all been

under the proviso that the graph is tick free.

As touched upon earlier, ticks convert benign units into flowers, which dupli-

cate rapidly through the graph. Therefore it is very difficult to provide general

rules in the presence of ticks and none have yet been discovered. However, there

do exist connectivity results as presented here.

The following table lists the significant results experienced by Tree Normal

forms with various characteristics:

The results above are elaborated further:

• W Nodes / Odd No. of ticks: This graph is a superposition of many

states, each of which always produces an odd number of units on its un-

connected wires. The other wires display flowers. As a corollary of this

observation, all the nodes must remain connected for the number of dis-

played units to always have an odd total.
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GHZ nodes only W nodes only Mixed GHZ and

W nodes

Zero ticks Spider Theorem W Cycle Theorem Tree Cycle Normal

Form

Odd No. of ticks Equals Zero scalar Connected.

Displays odd No.

of units.

Connected.

Even No. of

ticks

Ticked Spider Connected.

Displays even No.

of units.

Connected.

Note that only inter-nodal ticks are counted– those on the free legs do not affect

this analysis and are not included in the tick counts.

• W Nodes / Even No. of ticks: Exactly the even counterpart of the

above.

• GHZ Nodes / Even No. of ticks: A ‘ticked spider’ is a standard

orientated spider node with ticks on some of its free legs. By the GHZ

node’s tick axiom, ticks can be moved from between nodes to the free legs.

Since an even number of ticks exist, all inter-nodal ticks can eventually be

made to cancel out one-another.

• GHZ and W nodes / Odd or Even No. of ticks: In this circumstance

the strongest result is simply connectedness. The state superposition of

such graphs is complex and has yet to admit simplification.

These properties can be verified in exactly the same manner as used to verify

Tree Cycle Normal Form. They are not particularly difficult to prove although

the proofs are wordy and due to limited space are not included here.

5.2.5 Zeros

If a state produces a zero scalar, it is not a valid state of the system; The zero

scalar means ‘zero probability of this state occurring’. Equivalently, the appear-

ance of a zero scalar is an important sign that the graph cannot be constructed.

Unlike when working with the X/Z calculus, in GHZ/W graphs frequently result

in zero and it is therefore important to work out when the condition occurs.

Example 8. Depicted below are various graphs that either equal the zero scalar

or the one scalar
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Equal to OneEqual to Zero

The rules from the previous section give rise to a fast method of detecting

whether a graph precipitates a zero scalar:

Definition 40. A closed graph has no input nor output wires

Theorem 10 (Quick zero check). Any connected and closed graph G composed

of elements (δW , εW , dW ) with n flower nodes and m cycles produces a zero scalar

iff n+m 6= 1. It produces a non-zero scalar otherwise.

Proof. 1. Case n+m = 0: Therefore the graph is acyclic. Therefore it obeys

the orientated spider theorem. As the graph is closed it reduces down to

which equals zero.

Case n + m ≥ 2: Since every cycle reduces down to flower nodes, the graph

necessarily has multiple flower nodes. Since flower nodes are always copied and

the graph is connected, the case = 0 must eventually occur.

As cycle detection operates in linear time this method can quickly detect

zero-scalar graphs.

5.3 Applications of the GHZ/W calculus

The previous sections have presented many tools for working with the calculus

as well as an understanding of its character. In exploring the calculus we aim

to learn more about the logic of quantum information, as well as to develop

further quantum algorithms. In this section various building-blocks for future

applications are presented.

5.3.1 Universality

Earlier it was shown that the X/Z calculus is universal, every possible point and

unitary transformation can be built within the calculus. It was also stated that

the W node can be formed through a combination of X and Z nodes and phase

shifts. Similarly, the X node can be constructed out of W nodes and ticks:
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== ==

Therefore the entire X/Z calculus can be embedded in the GHZ/W calculus

and is therefore subsumed. The universality property is thus inherited once one

includes the definition of phase shifts from earlier:

Proposition 7. The GHZ/W calculus with phase shifts is universal. Therefore

the GHZ/W calculus can encode every quantum system.

The above construction of the X node is quite interesting: The X node has

the Special property, yet it has been built entirely from anti-Special W nodes and

the tick operator (the Pauli-X gate). This shows the two entanglement classes

are not separated by an algebraic gulf, instead they are very closely related.

5.3.2 Q-Swap gate

Earlier particular attention was given to the viral nature of flower nodes– they

are duplicated by every node they encounter. A quick mental induction suggests

that they may therefore defeat any attempt to build intelligent graph structures.

However, careful use of ticks can prevent this behaviour entirely.

Much as logic gates were built to harness the potential of transistors, the

Q-Swap gate leverages the anti-speciality (disconnection) of the W node.

B

Control

Ctrl

=

A

A

B

Plugging in |1〉 and |0〉

σQ,QσQ,QσQ,Q

The Q-Swap is a refinement of the Q-Mux recently presented in [CK10]. Con-

necting a unit to its control input causes the gate act as two identity arrows and

connecting a flower to the control causes it to act as a swap gate σQ,Q. Further-

more, connecting a GHZ unit (which is a superposition of the W unit and loop)

to the control places it into a superposition of identity and swap behaviour. It
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therefore provides a simple and well-defined function, one under which loops and

units have an equal footing as its operation is symmetric between them.

Using the gate one can quickly build many forms of quantum logic, examples

of which are given here.

Example 9. Quantum AND Gate: By daisy chaining Q-Swap gates an AND

function is created. Control bits c0 · cn are ANDed together, passing in through

to out when all ci are units, and outputting |0〉 otherwise:

|0〉

in

|0〉

cn

c0

〈0|

out

...

〈0|
σQ,Q

σQ,Q

Example 10. Quantum OR Gate: By ORing the control bits c0 · cn with a W

node, the following OR gate is formed. If any of the control bits are units it will

pass the input to output, otherwise it outputs |0〉:

cn
cn−1

c0

...

in

out

σQ,Q

Example 11. Controlled-Gate: Using two Q-Swaps together a gate can easily

be made switchable:
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in

out

Control

f

σQ,Q

σQ,Q

= f∧

Example 12. Quantum POW Gate: Using a chain of controlled gates the control

bits can govern matrix exponentiation, raising M to the power n where n is the

number of control bits equal to the unit:

cn

c0

out

cn−1

in

...

M∧

M∧

M∧

Example 13. Quantum POW2 Gate: By pre-exponentiating the controlled

gates, the input string can be interpreted as a binary number, to which power M

is raised:

cn

c0

out

cn−1

in

...

M∧

M2n−1∧

M2n∧

Example 14. Quantum Interconnect: A flexible interchange between n wires

can be formed with order O(n2) Q-Swap gates. The input bits to those O(n2)

gates are determined by the logic of the Bubble Sort.
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out

in

Bits supplied by Bubble Sort logic

σQ,Q

σQ,Q

σQ,Q

σQ,Q

σQ,Q

σQ,Q

The above examples demonstrate that the Q-Swap is a practical and versatile

building block.

5.3.3 Measurement Chains

Finally, a demonstration that W nodes elegantly form universal measurement

based computers. The protocol presented here is a significant extension of an

unpublished idea suggested by Alexs Kissinger of the Oxford University Comlab,

and was originally motivated by [BR05]. The protocol aims to provide a practical

and implementable way to transform a source of W states into a flexible computer.

The only aparatus required are W states, CNOT gates and measurements.

The basic protocol

The core premise is a linking operation that stochastically joins two W nodes via

a GHZ node. By repeating the operation a chain can be formed:

join

The linking operation is performed in two stages. First a qubit of each W

state is passed through a CNOT gate. Then the output of the CNOT control line

is measured in the computational basis. A measurement of zero declares that the

nodes have been successfully linked, a measurement of one indicates that a rogue

tick has been formed:
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Outcome 1

or

Outcome 0

0/1

Control

CNOT

Therefore 50% of the time the chain is successfully extended. In the other

case a protocol exists to undo the operation:

One measures the GHZ qubit in the computational basis. Depending on the

outcome of the measurement this causes the chain to ‘roll-back’ a number of links.

The resulting chain ends on a GHZ node:

· · ·

· · ·

=

=

0/1

Outcome 0

· · ·

· · ·

· · ·
Outcome 1

And then finally a measurement (in the Hadamard basis) and correction re-

move the excess GHZ node:

Ui

0/1

=

H

Chain Preparations

The W-GHZ chain can now be set up to perform calculations. By measuring the

chain’s free qubits a number of gates can be constructed.

Example 15. Measuring a zero on a W state is equivalent to the following

situation in which an X gate is produced:
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= X · · ·· · ·· · · · · ·

Example 16. Since GHZ nodes are exactly Z nodes, a phase shift can be con-

structed using a point of form |αZ〉:

= · · ·· · ·· · · · · · RZ(α)

αZ

However the previous example only brings rotation in one plane– for general

calculations we require rotation in two different planes. This was previously

achieved using X and Z node phase shifts. This practice can be employed here,

however X nodes must be constructed.

Constructing X nodes

It is surprisingly easy to create an X node using the processes described above.

This relies on an important equality2:

= = =

Therefore by measuring two GHZ nodes the following situation is reached:

And by performing a lateral link operation an X node is formed:

=

(2) Convert into a tick(1) Link

=

Taking the X node and the two surrounding Z (GHZ) nodes, a general rotation

and therefore any one bit unitary can be produced:

2The flat, un-arrowed line between the final pair of W nodes represents the fact that the
direction is not important
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γα
β

= R(α, β, γ)

Also, remembering that the above GHZ-X-GHZ configuration is usually sur-

rounded by W nodes, a handy trick exists: For any matrix M the product

X ◦M ◦ X (where X is the Pauli gate here) is simply a permutation, therefore

surrounding W nodes can be incorporated without loss of generality:

= =
R(α, β, γ)

α
β

γ

R(−α, β,−γ)

= R(−α, β,−γ)

Forming multi-qubit gates

The linking operation can be used between separate chains. By taking an X

node of one chain and a GHZ node of another and linking them, a CNOT (or

‘controlled X’) gate is formed between the chains:

CNOT gate

=

Also, since general unitaries are available, the controlled Z gate can also be

formed with the aid of Hadamard gates:

H H

With the addition of these two operations the W/GHZ chains provide a com-

putationally universal set of multi-qubit gates (see [CD09]). Therefore a simple

source of W states has been transformed into an efficient substrate for all mea-

surement based computing.



72 CHAPTER 5. A TALE OF ENTANGLEMENT



Chapter 6

Conclusion

This dissertation has surveyed a wealth of literature on Categorical Quantum

Mechanics1, bringing together the work of many papers into a single coherent

presentation. The theories from these papers have been incorporated together

and extended to cover new ground.

The final chapter presented recently published work and embellished it with

further theories, observations, examples and proofs. New protocols, both novel

and practical, have been invented and described.

Many Categorical treatments of Quantum Mechanics have presented their al-

gebras in a terse and unmotivated manner. This dissertation has attempted to

make the subject more accessible to a student of Quantum Mechanics, structur-

ing itself around pre-existing knowledge and including better designed proofs,

descriptions and examples.

Whilst the field of Categorical Quantum Mechanics is still relatively new, it

has quickly made significant advances. It is hoped this work both promotes and

furthers the field.

6.1 The work ahead

Being a new field, there are many fruitful areas to be explored. A greater em-

phasis on the implementable, reigning focus away from algebraic concerns, could

revolutionise future Quantum architectures. At the same time, deeper abstract

probing into entanglement of greater degrees could have the same effect. Tripar-

tite entanglement divides by Speciality; Looking at higher degree entanglements,

do distinct algebraic properties provide meaningful classes?

More immediately, small graph states stand to be catalogued and analysed

to find further geometric insights. Measurement based computing has proved

1[Coe08], [CD09], [BR05], [CK10], [CSZB06] and [CPP08] in particular.

73
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to be an important paradigm and the GHZ/W calculus is only beginning to be

analysed from this angle.

Much has been learned and much remains to be explored. The field of Cate-

gorical Quantum Mechanics remains an exciting one to work within.
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