
Probability and nondeterminism in
compositional game theory

Josef Bolt

St. Anne’s College

University of Oxford

A thesis submitted for the degree of

Doctor of Philosophy

Hilary 2019

Abstract

We substantially extend previous work in the emerging field of composi-

tional game theory.

We generalise work by Escardó and Oliva relating the selection monad to

game theory. Escardó and Oliva showed that the tensor operation of se-

lection functions computes a subgame perfect equilibirium of a sequential

game. We investigate game theoretic interpretations of selection functions

generalised over a monad. In particular we focus on the finite non-empty

powerset monad which we use to model nondeterministic games. We prove

a negative result: that nondeterministic selection functions do not com-

pute the collection of all subgame perfect plays of a sequential game. We

then define a solution concept related to the iterated removal of strongly

dominated strategies, and then show that the tensor of nondeterministic

selection functions computes the plays of strategy profiles satisfying this

solution concept.

In the second part of this thesis we greatly expand the expressive power

of open games, first introduced by Jules Hedges [Hed16]. In the current

literature, open games are defined using the category of sets and func-

tions as an ambient category. We define a category of open games that

can use any symmetric monoidal category as an ambient category. This

is accomplished using coend lenses which can be used to model certain

bidirectional processes. Generalising open games to arbitrary symmetric

monoidal categories allows us to, in particular, model probablistic games

involving Bayesian agents in an open games formalism.

Acknowledgements

The work in this thesis could not have been completed without the help of many

others. Outside of academia, I am grateful to my family for their continuing support

of my studies. Concerning research, top thanks must go to my co-supervisor Jules

Hedges for his insight and a steady stream of interesting problems to work on. I

have also benefited greatly from conversations with Bob Coecke (co-supervisor), Dan

Marsden, Philipp Zahn, Maaike Zwart, Guillaume Boisseau, and Mitchell Riley. I

must also extend my thanks to my examiners Jeremy Gibbons and Neil Ghani for

their helpful constructive feedback and suggestions. I gratefully acknowledge that my

DPhil was funded by an EPSRC doctoral training grant, reference OUCL/2015/JMB.

Preface

I had originally planned, at the start of my DPhil in 2015, to work on incorporating

dynamic epistemic logic into the string diagrams of monoidal category theory by

extending the work in the paper [BCS07]. Conceptually, the leap from dynamic

epistemic logic to game theory is not so great. Both involve epistemic states that can

be updated in the face of new information or events. When Bob Coecke mentioned

in 2016 that a post-doc called Jules Hedges had just arrived to work on making

game theory compositional using monoidal category theory, my interest was piqued

and I got in touch. The field of open games was even younger then than it is now,

and the list of interesting open problems was long. It took several months to get

to grips with the existing literature (Jules’ own PhD thesis for the most part). It

was then suggested that I attempt to generalise open games such that players in an

open game would be able to perform Bayesian updating. The problem seemed like

it would be straightforward at first, requiring only that the type structure of open

games be modified slightly. Before long, however, it became clear that the problem

was more subtle than originally thought and it would take roughly six months for the

first category of Bayesian open games to be defined. This first pass at a definition

bore little resemblance to the category presented in the second part of this thesis,

and the process of streamlining it into its current form was greatly expedited by two

fortuitous encounters. The first was a meeting between Jules, Mitchell Riley, and

myself, in which we realised that Mitchell’s work on coend lenses in the excellent

paper [Ril18] was perfectly suited to open games. The second was a conversation

between myself and Guillaume Boisseau, in which Guillaume suggested a modified

definition for the best response function of an open game. This insight allowed the

use of more coend lenses in the definition of an open game, and brought open games

to a pleasing level of generality and theoretical unity.

During bouts of frustration over open games, I found time to work on nondeter-

ministic sequential games. Sequential games, introduced by Paolo Oliva and Martin

Escardó in [EO10b], are another approach to compositional game theory that make

4

use of the selection monad to model backwards induction. I answered some open

questions regarding selection functions generalised over the finite non-empty power-

set monad and, in doing so, laid some of the foundations for further work on sequential

games generalised over monads. This work is presented in Part I of this thesis.

5

Contents

1 Introduction 1

1.1 Compositionality . 1

1.1.1 Compositional game theory 2

1.1.2 Compositional tools . 3

1.2 Category theory . 4

1.3 Game theory . 4

1.4 Structure of this thesis . 4

1.5 Contributions . 5

1.6 Notational conventions . 7

I Sequential games 8

2 Sequential games 9

2.1 Chapter overview . 10

2.2 Monads . 10

2.3 Quantifiers . 12

2.4 Selection functions . 14

2.5 Solution concepts . 16

2.6 Sequential games . 19

2.6.1 Strategies and subgame perfection 19

2.6.2 Limitations . 21

3 Generalised selection functions 22

3.1 Chapter overview . 23

3.2 Selection functions over a monad . 23

3.3 Nondeterminism in games . 24

3.4 Nondeterministic selection functions 26

3.5 Nondeterministic sequential games 27

i

3.6 Well-behaved selection functions . 28

3.7 Rational strategies for nondeterministic games 31

3.8 Relation to subgame perfect Nash equilibria 36

3.9 Finite length nondeterministic sequential games 38

3.10 Dominating strategies . 42

3.10.1 Dominance free strategy profiles 42

3.10.2 Subgame perfect dominance 43

3.10.3 Dominance selection functions 43

4 Conclusions and further work 47

4.1 Dependent products . 48

4.2 Exotic monads . 48

II Open games 49

5 Concrete open games 50

5.1 Chapter overview . 51

5.2 Monoidal categories . 51

5.2.1 Diagrams for symmetric monoidal categories 53

5.2.2 Comonoids . 56

5.3 Lenses . 57

5.4 The category of concrete lenses . 58

5.5 The monoidal structure of concrete lenses 60

5.6 Concrete open games . 62

5.6.1 Agents . 66

5.6.2 Best response with concrete lenses 67

5.6.3 Sequential composition of concrete open games 67

5.6.4 Tensor composition for concrete open games 68

5.6.5 Equivalence of open games . 70

5.6.6 The category of concrete open games 72

5.6.7 Encoding functions as games 78

5.7 Game theory with concrete open games 78

5.7.1 Bimatrix games . 78

5.7.2 Deterministic sequential games as open games 79

5.7.3 Nondeterministic sequential games as open games 80

5.7.4 Normal form games . 81

ii

5.8 Problems with open games . 81

6 General open games 84

6.1 Chapter overview . 84

6.2 Generalising concrete lenses . 84

6.3 Co-wedges and Coends . 85

6.4 Coend lenses . 87

6.5 Generalising open games . 91

6.6 States, continuations, and contexts 92

6.7 General open games . 94

6.7.1 Composing open games . 95

6.7.2 The tensor of open games . 95

6.8 Equivalence of open games . 96

6.9 The category of open games . 97

6.10 The symmetric monoidal structure of open games 98

6.11 Nice categories of open games . 103

7 Bayesian open games 106

7.1 Chapter Overview . 106

7.2 Commutative monads . 106

7.3 The category of sets and random functions 108

7.4 Bayesian games . 110

7.4.1 Epistemics in Bayesian games 112

7.5 Bayesian open games . 113

7.6 Bayesian agents . 114

7.7 Bayesian games as Bayesian open games 117

7.7.1 Decisions under risk . 117

8 Conclusion and further work 122

8.1 Incomplete information . 122

8.2 Subgame perfection . 122

8.3 Compact closure . 123

8.4 Higher categorical structure . 123

8.5 Extensive form . 124

8.6 Concluding thoughts . 124

Bibliography 125

iii

Chapter 1

Introduction

This thesis is about game theory and its methods are from applied category theory.

It is written with the applied category theorist, rather than the game theorist, in

mind. Interesting categories are defined, but their categorical structure is not probed

too deeply. Rather, we prove correctness results demonstrating that we have chosen

our categories well and give examples showing how various games can be translated

into an appropriate category. It is not assumed that the reader has prior knowledge

of game theory, but an understanding of basic category theory is assumed. Anyone

approaching this thesis from a purely game theoretic background will find it tough

going, for which the author can only apologise.

1.1 Compositionality

Good design requires that attention be paid to the possible contexts in which a

structure or object will be placed and how that context may change over time. An

upgrade-able machine is superior to a non-upgrade-able machine; a machine that

interfaces easily with other machines is superior to a machine that does not; and

the more varied conditions under which a machine can operate, the better. These

observations illustrate aspects of good compositional design (we might also call it

good modular design). When we design, it is not sufficient to consider how well a

structure carries out its narrow function. We must also consider how robustly that

structure will compose with other structures to make larger structures.

An example of the power of good compositional design is the advent of inter-

changeable parts. Prior to the eighteenth century, gun components were made to fit

one particular gun currently under construction. Every gun was custom-made, and it

was unlikely that the components of any given gun would function in any other gun.

As a consequence, if a component broke, either a new component would have to be

1

custom-made , or else the gun would have to be replaced in its entirety. Gun com-

ponents were only able to perform their function in the very specific context of the

gun they were originally designed for. The introduction of standardised components,

which worked in the contexts of various types of gun, led to scalable manufacturing,

ease of repair, and predictable performance.

Good compositional design is as important in applied mathematics as it is in

engineering. Given the choice between two modeling techniques, both of which model

a particular phenomenon equally well, we should prefer the technique with superior

compositional properties. We should ask questions such as, ‘which generalises more

easily?’, ‘which is more easily related to other areas of mathematics?’, ‘which scales

better?’, and ’which model’s instances are easier to compose?’

1.1.1 Compositional game theory

Compositional game theory applies good compositional design in the following ways:

1. Games are defined such that there exist meaningful composition operators. Se-

quential games (Part I) can be sequentially composed, open games (Part II)

can be composed in sequence and in parallel;

2. These operators, moreover, preserve information about the solution concepts of

their operands. That is, the solutions of a composite game are computed by

the composition operators given the solutions of the component games;

3. Atomic games are defined, out of which a large class of more complex games

can be constructed using the compositional operators.

In order to achieve the above, we (loosely) shift our perspective on games as

follows. In classical game theory, games are typically defined by some structure

describing how a game is played (a tuple of sets of strategies in the case of simultaneous

games, a tree for games with sequential play) together with an outcome function for

each player. In compositional game theory, games have a play structure but take an

outcome function (or generalisation thereof) as an argument, and return information

about the optimal strategies of the game. The technical advantages of considering

games in this way are

1. Game structures readily compose; and

2

2. An outcome function for a composite game can recursively be broken down into

outcome functions for the subgames, which can then be supplied as arguments

to the ‘outcome function to solution’ mapping of those subgames.

The benefits of this compositional approach to the resulting theory are

1. Many interesting types of game can be constructed from a small collection of

atoms and the composition operators;

2. Games can be analysed by looking at their compositional structure. It is no

longer necessary to consider a given game as a monolith;

3. The theory is sufficiently expressive to describe many different kinds of game,

unifying much of game theory into one framework.

1.1.2 Compositional tools

In Part II of this thesis, we will be using monoidal category theory extensively.

Monoidal category theory and its associated string diagrams provide a powerful

toolkit for doing compositional mathematics with a comparatively low bar to en-

try. Many facts which, obscure in their ‘native’ language, are proven much more

easily once phrased in the language of an appropriate monoidal category. Monoidal

categories have already been applied, with great success, to quantum theory (Coecke

and Kissinger’s book [CK17] is an excellent introduction to the monoidal category

theory of quantum mechanics). An example of the expressive power of monoidal cate-

gory for quantum theory is quantum teleportation, a phenomenon not considered until

1993 in the paper [BBC+93], many decades after the initial introduction of quantum

theory. In the diagrammatic language of the category of Hilbert spaces, quantum

teleportation is simply described by the diagram

ψ

Ui Ui =
ψ

where ψ is the quantum state to be teleported and the Ui represent the introduc-

tion and correction of quantum error (represented as unitary matrices in a Hilbert

space).

3

1.2 Category theory

This thesis assumes some basic competence in category theory. In particular the def-

initions of category, functor, natural transformation, (co)product, and (co)equaliser

are assumed to be known to the reader. Categorical notions beyond these will be

introduced as and when they are needed (it is not assumed that the reader is famil-

iar with monads or monoidal categories, for instance, but their introductions will be

terse). For the reader unfamiliar with category theory, the following texts are excellent

for background reading and as references. Good general category theory references

are the textbooks by Leinster [Lei16] and Awodey [Awo10].The textbook [ML71] is

the classic reference for monoidal categories, and the paper [Sel10] is a comprehensive

guide to the various diagrammatic calculi associated with monoidal categories. Chap-

ter 6 relies heavily on coends and a visual short-hand for them. The literature on

coends is scant, but the paper [Lor15] provides good background and the paper [Ril18]

is the original source for the diagrams we will be using.

1.3 Game theory

It is not assumed that the reader has any prior knowledge of game theory. Game

theoretic notions will be introduced and discussed when they are needed, but the

game theory covered is not strenuous. The game theory literature is fragmented and

foundational works are often written with economists in mind. Good references with

a more mathematical style are the textbooks [MSZ13] and [LB08].

Part I of this thesis can be seen as an extension of the work on sequential games in

the papers [EO10b] and [EO10a]. These papers will be discussed at length in Chap-

ter 2, as a thorough understanding of them is essential for understanding Chapter 3.

1.4 Structure of this thesis

The two parts of this thesis pursue a similar goal. Namely, a compositional account of

a particular class of games. In spite of their similar aims, however, the two parts differ

markedly in the style of their mathematics. Part I has a ‘close-up’ view of its subject

matter, focusing in particular on the interaction between the selection monad and the

nondeterminism monad and the resulting game theoretic implications. Part II takes

a more general categorical perspective before specialising to probability distributions

in order to model games with Bayesian components.

In part I:

4

• Chapter 2 covers the existing literature on sequential games. A key result is that

selection functions compute a subgame perfect equilibrium play for a sequential

game. This chapter is included for completeness and as a prerequisite for the

following chapter.

• Chapter 3 generalises sequential games in order to model games with nonde-

terminism. We prove that nondeterministic selection functions do not compute

the set of subgame perfect Nash equilibrium plays and also prove that there is a

solution concept, the plays of which are computed by nondeterministic selection

functions.

• Chapter 4 contains concluding remarks on selection functions and possible di-

rections for future work.

In part II:

• Chapter 5 covers existing literature on lenses and open games in some detail.

In this chapter these notions are considered only over the category Set. The

work in this chapter is mostly not original, but it does fill in some gaps in the

existing literature and, in places, takes a slightly different approach.

• Chapter 6 presents a generalisation of lenses over (more) arbitrary symmetric

monoidal categories, and also generalises open games similarly. This generali-

sation is non-trivial, and this chapter is the most conceptually difficult in this

thesis.

• Chapter 7 climbs back down from the abstraction of Chapter 6 to analyse

Bayesian open games, which are open games over the Kleisli category of the

finite distribution monad. It is established that Bayesian open games model

certain classes of Bayesian games from classical game theory.

• Chapter 8 offers some concluding remarks about sequential games and selection

functions, considering directions for future work and where future difficulties

are likely to lie.

1.5 Contributions

In Part I, the definitions of nondeterministic sequential games, generalised selection

functions and their tensor operations, are due to the papers [EO10b] and [EO14]

rather than the author. The remainder of Part I (from 3.6 onward), mainly comprising

5

in definitions and results concerning generalised selection functions, is original work.

This work includes

• A definition of ‘well-behaved’ nondeterministic selection functions (3.6);

• A definition of rationality for strategy profiles in two-player nondeterministic

sequential games 3.7;

• A theorem stating that well-behaved selection functions compute the plays of

rational strategy profiles (3.7.0.5);

• A generalisation of the above to n-round nondeterministic sequential games

(3.9);

• A negative result stating that nondeterministic selection functions do not, in

general, compute the set of subgame perfect plays (3.8.0.3);

• A proof that rational strategy profiles correspond to a sequential version of an

already-known solution concept from game theory — the iterated removal of

strictly dominated strategies (3.10).

In Part II, the main original contributions are the definition of a context for a

generalised open game (6.6.0.2) and the proof that generalised open games form a

symmetric monoidal category. The chronology of the definition of a context for an

open game is reversed in this thesis: first it is presented in a more general form as a

state

LensLensC(I, (Φ,Ψ)) =

∫ Θ:LensC

LensC(I,Θ⊗ Φ)× LensC(Θ⊗Ψ, I)

in a category of iterated lenses. We then show that contexts can equivalently be given

(where Φ = (X,S) and Ψ = (Y,R)) as members of the coend∫ A:C
C(I, A⊗X)× C(A⊗ Y,R)

in the case where the monoidal unit I of C is terminal. In reality, the latter form

was discovered first by the author, resulting in the first definition of a category of

generalised open games for which the monoidal product of the underlying category

need not be cartesian (and, as a consequence, which could accommodate games in-

volving Bayesian agents). The former form was discovered with the help of Guillaume

Boisseau (in an informal conversation), who suggested taking a coend in LensC in

place of a coend in C, meaning that the requirement that I must be terminal could

be dropped. The realisation that the more general form corresponds to a state in a

category of iterated lenses is due to the author.

6

1.6 Notational conventions

Given a function f : X → Y and U ⊆ X, we write f(U) for
{
f(x)

∣∣ x ∈ U
}

(a

standard abuse of notation). If k : X×Y → Z, we sometimes write k(x,−) to denote

λ(y : Y). k(x, y) to make expressions more concise. The ‘bang’ operator ! is used to

denote unique objects. For instance, ! : X → τ may denote the unique arrow to the

terminal object τ in a category. Given a set X, Rel(X) denotes the set of relations

on X. That is, Rel(X) = X → P(X). We also use double-headed arrows to denote

relations. For example, β : X � Y denotes a relation β from X to Y . Then x
β∼ y

just means y ∈ β(x). Given a category C with objects X, Y , we denote the hom-set

of morphisms X → Y by C(X, Y). We adopt the following neat convention from the

game theory literature. If x = (x1, · · · , xn) ∈
∏n

i=1Xi, we write x−i to denote the

tuple x with the ith component removed. That is x−i = (x1, · · · , xi−1, xi+1, · · · xn).

We also write (x−i, x
′
i) for the tuple obtained by replacing xi with x′i in x.

7

Part I

Sequential games

8

Chapter 2

Sequential games

Let’s characterise an agent simply as something that makes a choice and then receives

some outcome from its environment. This outcome may depend on the choice made

by the agent and it may also depend on things external to the agent (perhaps the

choices of other agents or random events). Let’s also presume that our agent has

some preference regarding the outcome it will receive and will make choices to induce

satisfactory outcomes. If our agent makes a choice of type X and receives an outcome

of type R, a function of type X → R specifies a way that choices are mapped to

outcomes. We call such functions contexts, but they may also be understood as

outcome functions or utility functions.

In what follows, we allow the collection of outcomes considered acceptable to an

agent to depend on the agent’s context. That is, a function which picks out a satis-

factory outcome will have type (X → R) → R. We call such functions quantifiers1.

As a paradigm example, when R = R and X is finite, there is the max quantifier

given by max(k) = max(k(X)).

Similarly, we can allow the choices that an agent considers satisfactory to depend

on a context. A function picking out a satisfactory choice given a context has type

(X → R) → X and is called a selection function. Analogous to the max quanti-

fier, there are arg max selection functions. If R = R and X is finite as before, an

arg max selection function is a selection function arg max satisfying, for all contexts

k, arg max(k) = x where k(x) = max(k(X))2. We will see that quantifiers and selec-

tion functions admit of a product operation that can be used to describe backward

induction in games involving sequential play.

Giving agents access to contexts is the technical innovation that gives the theory

of sequential games its power. An analogy to computation is that we are doing game

1This name is justified in 2.3
2arg max selection functions are not unique, and we address this in detail in the next chapter

9

theory in continuation passing style. Functions in this style take a ‘continuation’

function as an extra parameter (where a continuation can be thought of as ‘what is

going to be done with the output of the function’). In game theoretic terms, this

corresponds to giving the players of a game access to the function that will generate

outcomes given their choices. That is, players get access to the context of the game.

Throughout this chapter we assume that we work over some underlying category C
which is cartesian closed. In particular we use the fact that terms of the simply typed

lambda calculus can be interpreted as morphisms in a cartesian closed category. We

take a fairly relaxed approach to this, as we are predominantly interested in the case

where the underlying category is Set. Nevertheless, the definitions in the following

sections do hold for arbitrary cartesian closed categories.

2.1 Chapter overview

This chapter is mainly drawn from [EO10b] and [EO10a], the authoritative works on

sequential games (in particular, the work in this chapter is not original). In 2.2 we

cover various definitions concerning monads that will be needed throughout the rest of

this thesis. 2.3 introduces quantifiers, functions with types of the form (X → R)→ R;

2.4 introduces selection functions, functions with types of the form (X → R) → X;

2.5 introduces some concepts from classical game theory including the notion of a

solution concept ; 2.6 formally introduces sequential games.

The content of this chapter is included for completeness and ease of reference.

Moreover, the material in this chapter is a hard prerequisite for the material in Chap-

ter 3.

2.2 Monads

In this section we cover some basic monad definitions. We will be terse and direct

readers to the book [BW85] as a reference.

Definition 2.2.0.1 (Monad). A monad on a category C is a triple (T, η,−†) where

1. An assignment T : C → C (this is a mapping on objects, not a functor);

2. η is a family of morphisms {ηA : A → T (A) | A : C} where η is called the unit

of T ;

3. −† is a family of Set functions
{
−†A,B : C(A, T (B)) → C(T (A), T (B))

∣∣ A,B :

C
}

where f † is called the (Kleisli) extension of f ;

10

such that whenever f : A→ T (B) and g : B → T (C) the following axioms hold,

η†A = idT (A) f † ◦ ηA = f g† ◦ f † = (g† ◦ f)†.

We abuse notation slightly and refer to a monad by its associated mapping T .3

Definition 2.2.0.2 (Kleisli category). The Kleisli category, Kl(T), of a monad T on

a category C has the same objects as C and hom-sets Kl(T)(X, Y) = C(X,T (Y)).

The identity morphism on an object X is the unit map ηX : X → T (X) and the

composition of f : X → T (Y) and g : Y → T (Z) is g† ◦ f .

A monad is strong if it comes with a strength natural transformation stA,B :

(A×T (B))→ T (A×B) satisfying certain coherence axioms. If C is cartesian closed,

T being strong is equivalent to T being C-enriched [Koc70]. That is, the action of T

on morphisms is given by a morphism (A→ B)→ (T (A)→ T (B)) of C rather than

a Set function C(A,B)→ C(T (A), T (B)) (as a consequence, all monads over Set are

strong).

Strong monads induce useful tensor operations that will correspond to sequential

play in the theory of sequential games.

Definition 2.2.0.3 (Dependent tensor for strong monads). A strong monad T over

a cartesian closed category C induces a dependent tensor �A,B :
(
T (A) × (A →

T (B))
)
→ T (A×B)) given by

a� f =
(
λ(x : A).

(
λ(y : B).ηX×Y (x, y)

)†
(f(x)))

)†
(a).

Definition 2.2.0.4 (Independent tensor for strong monads). A strong monad T over

a cartesian closed category C induces an independent tensor ⊗A,B : T (A)× T (B)→
T (A×B) given by

a⊗ b = a� (λ(x : A). b)

Example 2.2.0.5. In the case of the powerset monad P over Set, the independent

tensor is the standard cartesian product

A⊗P B =
{

(a, b)
∣∣ a ∈ A and b ∈ B

}
and the dependent tensor is

A�P f =
{

(a, b)
∣∣ a ∈ A and b ∈ f(a)

}
.

3This is the ‘haskell style’ definition and it is not standard, but is convenient for our purposes and
can be shown to be equivalent to the standard definition by extending T to a functor and defining
multiplication as id†TA.

11

Definition 2.2.0.6 (Algebra for a strong monad). An algebra4 for a strong monad

T over C is an object R of C together with a family of maps
{
−?A : (A → R) →

(T (A)→ R)
∣∣ A : C

}
such that, for all f : A→ T (B) and g : B → R,

1. g? ◦ ηB = g, and

2. (g? ◦ f)? = g? ◦ f †.

2.3 Quantifiers

In this section we make formal the notion of a quantifier, a higher order function taking

a function as argument and returning a value in the codomain of that argument.

Definition 2.3.0.1 (Quantifier). A quantifier is function ϕ : (X → R) → R. The

type (X → R)→ R is denoted by KR(X).

A good first intuition of a quantifier is the higher-order function max.

Example 2.3.0.2. Given a finite nonempty set X, the quantifier max : (X → R)→
R is given by max(k) = max(k(X)).

The max quantifier is thought of as modelling the utility maximising agents of

classical game theory. Given a mapping from actions X to utility R, max returns the

optimal outcome.

The name ‘quantifier’ is not a misnomer. Functions of type (X → B) → B were

introduced in the paper [Mos79] as ‘generalised quantifiers.’ To see why, consider the

following. A function k : X → B can naturally be viewed as a unary predicate on X

where k(x) is true if and only if k(x) = 1. We recover the traditional quantifiers ∃
and ∀ as generalised quantifiers as follows.

Example 2.3.0.3. The quantifier ∃ : (X → B)→ B is given by

∃(k) =

{
1, if there is x ∈ X such that k(x) = 1

0, otherwise.

Similarly, ∀ : (X → B)→ B is given by

∀(k) =

{
1, if k(x) = 1 for all x ∈ X
0, otherwise.

4This definition, used also in [EO14], is not standard but is equivalent to the standard definition.
We make use of it because it is convenient for our purposes and because our work is an extension
of [EO14].

12

Note that ∃ and ∀ are, respectively, the max and min quantifiers for the poset

{0 < 1}.
As the name suggests, generalised quantifiers are flexible enough to describe many

interesting logical quantifiers not definable in terms of ∃ and ∀.

Example 2.3.0.4. Define most : KB(X) by most(k) = 1 if and only if

|
{
x ∈ X

∣∣ k(x) = 1}| > |{x ∈ X
∣∣ k(x) = 0}|.

Example 2.3.0.5. Define countable : KB(X) by countable(k) = 1 if and only if

|{x ∈ X
∣∣ k(x) = 1}| ≤ ℵ0.

Generalising further, we have many interesting example other than max where

R 6= B.

Example 2.3.0.6. Suppose now that we are working over a cartesian closed category

of topological spaces5 and that R is a topological space satisfying the fixed point

property. That is, for every continuous function f : R → R there exists r ∈ R such

that f(r) = r. Then there exist quantifiers fix : KR(R) satisfying k(fix(k)) = fix(k)

for all k : R→ R.

The mapping X 7→ KR(X) is the well-studied continuation monad (for discussion

see, for example, Moggi’s paper [Mog91]). Its unit is given by

ηX = λ(x : X). λ(k : X → R). k(x)

and given a morphism f : X → KR(Y), its Kleisli extension f † : KR(X)→ KR(Y) is

given as follows. Given ϕ : KR(X) and k : Y → R, there is λ(x : X).f(x)(k) : X → R.

Then f †(ϕ)(k) is given by ϕ(λ(x : X).f(x)(k)). That this forms a strong monad is

shown by simple checks.

We explicitly describe the independent tensor induced by the strong monad struc-

ture.

Definition 2.3.0.7 (Tensor of quantifiers). Given ϕ : KR(X), ψ : KR(Y), and k :

X × Y → R, define

(ϕ⊗ ψ)(k) = ϕ
(
λ(x : X).ψ(λ(y : Y).k(x, y))

)
.

5The category of topological spaces and continuous functions is not cartesian closed. Categories of
topological spaces which are cartesian closed (and also satisfy certain other ‘nice to have’ properties)
are often referred to as convenient categories of topological spaces (see the paper [S+67], for example),
an example being the category of compactly generated spaces.

13

Example 2.3.0.8. The tensor in the case of ∃ is as one would expect.

(∃X ⊗ ∃Y)(k) =

{
1 if there are x ∈ X and y ∈ Y with k(x, y) = 1

0 otherwise.

The result of tensoring ∃ and ∀ is also not surprising.

Example 2.3.0.9. Given ∃X : KB(X) and ∀Y : KB(Y) their tensor is explicitly given

by

(∃X ⊗ ∀Y)(k : X × Y → B) =

{
1 ∃x : X ∀y : Y k(x, y) = 1

0 otherwise.

Tensoring max quantifiers together simply yields a max operator on functions of

two arguments.

Example 2.3.0.10. Given maxX : KR(X) and maxY : KR(Y),

(maxX ⊗maxY)(k : X × Y → R) = max(k(X × Y))

2.4 Selection functions

If quantifiers return a satisfactory outcome, then selection functions return a choice

that attains that satisfactory outcome. Accordingly, we think of selection functions

as returning a satisfactory choice.

Definition 2.4.0.1 (Selection function). A selection function is a function of the

form (X → R)→ X. The type (X → R)→ X is denoted JR(X).

Example 2.4.0.2. Given a function k : X → R on some finite set X, define

arg max(k) to be {x ∈ X | k(x) = max(k(X))}. Then an arg max selection function

εarg max : JR(X) is a selection function satisfying ε(k) ∈ arg max(k) for all contexts

k : X → R.

Given a finite set X, the higher-order function arg max : (X → R) → P(X) is

naturally multivalued as a function may attain its maximum in multiple places. In

the next chapter we look at nondeterministic selection functions, and study higher-

order functions with this type structure in much more detail. For now, we work with

an arg max selection function from a family of arg max selection functions (noting

our reliance on the Axiom of Choice).

Selection functions have associated quantifiers. If a satisfactory play in a context

k is x, then a satisfactory outcome is given by k(x).

14

Definition 2.4.0.3. Given a selection function ε : JR(X), the quantifier for ε is

ϕε : KR(X) given by ϕε(k) = k(ε(k)). A quantifier ϕ : KR(X) is attained by a

selection function ε : JR(X) if ϕ is the quantifier for ε. We also say that ϕ is

attainable if it is attained by some ε : JR(X).

Note that a quantifier is considered not attainable precisely when there exists a

context in which no argument attains the ‘satisfactory’ outcome as specified by the

quantifier.

Example 2.4.0.4. Let ϕ : KR(X) be a quantifier such that ϕ(c0) = 1 where c0 :

X → R is the constant function x 7→ 0. Then ϕ is not attainable.

The mapping JR → KR described above is, in fact, a monad morphism (as shown

in [EO10a]).

Example 2.4.0.5. The existential quantifier ∃ : KB(X) is attained by selection func-

tions ε∃ : JB(X) satisfying(
∃x ∈ X. k(x) = 1

)
=⇒ k

(
ε∃(k)

)
= 1

for all contexts k : X → B.

The mapping X 7→ JR(X) has a strong monad structure, though far less is known

about it than about the continuation monad.

Definition 2.4.0.6. The selection monad JR is given by JR(X) = (X → R) → X.

The unit ηX is

λ(x : X).λ(k : X → R).x

and the Kleisli extension of a morphism f : X → JR(Y) is given by

f †(ε)(k) = f

(
ε
(
λ(x : X). k(f(x)(k))

))
(k).

The proof that this structure is a strong monad can be found in [EO10a]. As

with quantifiers, selection functions have dependent and independent tensors induced

by the strong monad structure. We give an explicit formulation of the independent

tensor for later use.

Definition 2.4.0.7 (Selection tensor). Let ε : JR(X) and δ : JR(Y). The tensor

ε⊗ δ : JR(X × Y) is given by

(ε⊗ δ)(k : X × Y → R) = (a, f(a))

15

where

f = λ(x : X).δ
(
λ(y : Y).k(x, y)

)
and

a = ε
(
λ(x : X).k(x, f(x))

)
.

Example 2.4.0.8. In the case ε = arg max
x∈X

, δ = arg max
y∈Y

, R = R, the tensor of

selection functions is explicitly given by (arg max
x∈X

⊗ arg max
y∈Y

)(k : X × Y → R) =

(a, f(a)) where

f(x) = arg max
y∈Y

(
k(x, y)

)
a = arg max

x∈X

(
k(x, arg max

y∈Y

(
k(x, y))

))
.

In words, an x is chosen to maximise the function that will result after a y has been

chosen to maximise k given x. In a sense, the selection functions are cooperating to

maximise the value returned by k.

Example 2.4.0.9. If we change the above example such that δ = arg min rather than

arg max, the selection functions can be seen to be competing. An x ∈ X is chosen to

maximise k(x, y) where it is assumed that the y will be chosen such that it minimises

k(x, y). If one thinks of X and Y as the types of moves in a game, the connection to

game theory is apparent.

2.5 Solution concepts

One of the concerns of classical game theory is that of providing solution concepts.

A solution concept is usually a property of strategy profiles and strategy profiles

satisfying a solution concept are considered ‘optimal’ in some sense. The most well-

known solution concept in game theory, and the solution concept upon which many

other solution concepts are based, is the Nash equilibrium (the modern usage of which

can first be found in the seminal book [VNM44]). It is easiest to define Nash equilibria

with respect to normal form games, which we give a definition of here.

Definition 2.5.0.1 (Normal form game). A normal form game with n players is

given by tuples (S1, · · · , Sn) and (q1, · · · , qn) where

• Si is the set of strategies for player i, and

• qi :
∏n

i=1 Si → R is the outcome function for player i.

16

An element si of Si is called a strategy (for player i) and a tuple (s1, · · · , sn) ∈
∏n

i=1 Si

is called a strategy profile.

We are to think of the players 1, · · · , n as each choosing some strategy si ∈ Si

simultaneously. Each player i is then assigned the outcome qi(s1, · · · , sn).

Example 2.5.0.2 (Prisoners’ dilemma). The prisoners’ dilemma is a two person

normal form game of perfect information where S1 = S2 = {cooperate, defect}. If

both players choose ‘cooperate,’ they both receive utility −1; if both players choose

‘defect’, they both receive utility −2; if one player chooses ‘cooperate’ and the other

chooses ‘defect,’ the player who cooperated receives utility -3 and the player who

defected receives utility 0.

Given a strategy profile s = (s1, · · · , sn), we can think of the outcome that might

occur if a particular player i were to unilaterally deviate from s.

Definition 2.5.0.3 (Unilateral deviation). Given a normal form game (Si, qi)
n
i=1 we

define the unilateral deviation function U s
i of player i with respect to a strategy profile

s = (s1, · · · , sn) by

U s
i : Si → R

U s
i (s′i) = qi(s−i, s

′
i).

A Nash equilibrium is then defined as a strategy profile from which no player

stands to gain by unilaterally deviating.

Definition 2.5.0.4 (Nash equilibrium). A strategy profile s = (s1, · · · , sn) for a

normal form game (Si, qi)
n
i=1 is a Nash equilibrium if for all 1 ≤ i ≤ n and all s′i ∈ Si

it holds that

qi(s) ≥ U s
i (s′i).

In the example of the prisoners’ dilemma, the only Nash equilibrium is the strategy

profile {defect, defect}. If one player cooperates, then the other player stands to gain

by defecting.

Nash equilibria are ‘optimal’ in the sense that they are stable; no player has incen-

tive to deviate. In games with sequential play, however, there exist Nash equilibria

for which stability is implausible. A game of perfect information in extensive form

can be described by a tree where each non-leaf node is labelled with the player whose

turn it is to act; leaf nodes are labelled with outcomes for each player for that path

through the tree; and edges are labelled with strategies. So, for instance, the tree

17

1

2

2

1,0

0,1

1,1

0,0

a

b

a′

b′

c′

d′

represents an extensive form game in which player 1 chooses a strategy from {a, b},
then player 2 makes a choice either from {a′, b′} (if player 1 picked a) or from {c′, d′}
(if player 1 picked b). Both players then receive utility according to the appropriate

leaf on the tree. A strategy profile for an extensive form game consists in a choice of

strategy at each node. So, for instance, player 1 has two strategies in the above game;

choose a or choose b. Player 2 has four strategies given by (a′, c′), (a′, d′), (b′, c′), and

(b′, d′). These strategies for each player then form the obvious normal form game.

Consider the extensive form game described by

1

2

2

1,0

−1,−1

0,1

1,0

a

b

a′

b′

c′

d′ .

The strategy profile (b, (b′, c′)) is a Nash equilibrium. Currently player 1 receives

utility 0 and player 2 receives utility 1. If player 1 were to unilaterally deviate and

play a, player 2 would play b′ and both players would receive −1. This equilibrium is

suspect; if player 1 actually played a, then player 2 would receive a better outcome

by playing a′. The equilibrium (b, (b′, c′) is a so-called implausible threat. A solution

concept that does not classify such threats as ‘solutions’ is the subgame perfect Nash

equilibrium (SPNE). Subgame perfect Nash equilibria can be defined in one of two

equivalent ways. The first approach is to define an SPNE as a strategy profile which

is a Nash equilibrium on all subtrees of the game tree (i.e. restricting the strategy

profile to a subgame in the obvious way always yields a Nash equilibrium). By this

definition, the strategy profile (b, (b′, c′) fails to be a subgame perfect Nash equilibrium

because the strategy profile b′ is not a Nash equilibrium of the game

2
0

-1

a′

b′ .

18

The second approach to refining the notion of ‘Nash equilibrium’, and the one that

will be used for the remainder of this thesis, is the one shot deviation principle. The

one shot deviation principle states that a strategy profile for an extensive form game

is a subgame perfect Nash equilibrium if no player can profit by deviating from that

strategy profile by a single decision in any subgame. Our example fails the one shot

criterion as player 2 can profit by deviating from their decision in the same subgame

given above.

2.6 Sequential games

Sequential games model a particular kind of strategic interaction. Suppose there

are agents A1, . . . ,An, and that each Ai has an associated type of choices Xi. The

game plays out as follows: A1 makes a choice from X1, A2 observes the choice made

by A1 before making a choice from X2, then A3 observes the choices made by A1

and A2 before making a choice from X3, . . . , then An observes the choices made by

A1, · · · ,An−1 before making a choice from Xn. Finally, an outcome is generated by

an outcome function q :
∏n

i=1 Xi → R.

Definition 2.6.0.1 (Sequential game). An n-round sequential game is given by an

n-tuple of selection functions (ε1, · · · , εn) where εi : JR(Xi) together with an outcome

function k :
∏n

i=1 Xi → R. The type Xi is thought of as the type of choices at round

i. We denote a sequential game using the triple
(
(Xi)

n
i=1, (εi)

n
i=1, k

)
.

Sequential games can be seen as a special kind of extensive form game. Consider,

for example, a 2 player sequential game ((X, Y), (ε, δ), k : X × Y → R) where X =

{x1, · · · , xn} and Y = {y1, · · · , yn}. We can represent this game by the tree

x1

xn

y1

ym

y1

ym k(xn, ym)

k(xn, y1)

k(xn, ym)

k(x1, y1)

...

...

...

2.6.1 Strategies and subgame perfection

A strategy profile for a sequential game consists in a choice for every node in the

game tree. A node at the jth stage of a game
(
(Xi)

n
i=1, (εi)

n
i=1, q

)
is given by a tuple

(x1, · · · , xj−1) ∈
∏i−1

j=1Xi. We therefore make the following definition.

19

Definition 2.6.1.1 (Strategy). A strategy profile for a sequential game
(
(Xi)

n
i=1, (εi)

n
i=1, q

)
is a tuple (σ1, · · · , σn) where σi :

(∏
j<iXj

)
→ Xi. We refer to the individual σi as

strategies at round i.

A strategy profile straightforwardly induces a playthrough of a sequential game.

Similarly, a partial play of a sequential game can be extended to a full playthrough

given a partial strategy profile for the rest of the game.

Definition 2.6.1.2 (Play of a strategy profile). A play of a sequential game
(
(Xi)

n
i=1, (εi)

n
i=1, k

)
is a tuple x ∈

∏n
i=1Xi. A partial play is a tuple y ∈

∏i
j=1 Xj for some i < n. The

strategic play xσ of a strategy profile σ = (σ1, · · · , σn) is the play given recursively by

• xσ1 = σ1,

• xσi = σi(x
σ
1 , · · · , xσi−1).

Given a partial play x ∈
∏i

j=1 Xj and a partial strategy profile σ = (σi+1, · · · , σn),

the strategic extension xσ of x is given by

xσj =

{
xi if j ≤ i

σj(x
σ
1 , · · · , xσj−1) otherwise.

In order to define SPNE for sequential games, we must first define unilateral

deviation from a strategy profile.

Definition 2.6.1.3 (Unilateral deviation). Let
(
(Xi)

n
i=1, (εi)

n
i=1, q

)
be a sequential

game. Let x ∈
∏i−1

j=1Xj, where i ≤ n, be a partial play and let σ = (σi+1, · · · , σn) be

a partial strategy profile. The unilateral deviation function Uσ
x : Xi → R for i at x is

given by

Uσ
x (yi) = q

(
(x, yi)

σ
)

where (x, yi)
σ is the strategic extension of (x1, · · · , xi−1, yi) by σ. The best deviation

from σ at i for x is given by

εi

(
λ(yi : Xi). U

σ
x (yi)

)
.

We think of a strategy profile σ as being ‘acceptable’ at round i if it agrees with

the best deviation at i for every partial play of length i − 1 (i.e. the acceptable

deviation is no deviation at all). That is, for all x ∈
∏i−1

j=1Xj,

σi(x) = εi

(
λ(yi : Xi). U

σ
x (yi)

)
.

A subgame perfect Nash equilibrium for a sequential game is then just a strategy

profile which is acceptable at every round.

20

Definition 2.6.1.4 (Subgame perfect Nash equilibrium (SPNE)). A strategy profile

σ = (σ1, · · · , σn) for a sequential game
(
(Xi)

n
i=1, (εi)

n
i=1, q

)
is a subgame perfect Nash

equilibrium (or an SPNE) if, for every 1 ≤ i ≤ n and x ∈
∏i−1

j=1Xj, it holds that

σi(x) = εi

(
λ(yi : Xi). U

(σi+1,··· ,σn)
x (yi)

)
.

We note that there is precisely one SPNE for any sequential game because selection

functions pick out only one acceptable move. In trying to find a subgame perfect

strategy profile, the strategy in the final round is therefore fixed and, therefore the

strategy in the penultimate round also fixed, and so on. Consequently, ‘the SPNE

play’ of a sequential game is well-defined.

We now note the significance of the independent tensor of selection functions. It

computes the SPNE play of a sequential game as described in the following theorem.

Theorem 2.6.1.5. Let G =
(
(Xi)

n
i=1, (εi)

n
i=1, q

)
be a sequential game. Then

(⊗n
i=1 εi

)
(q)

is the SPNE play of G.

We can relate this result to the utility maximising agents of classical game theory

as follows.

Example 2.6.1.6. For 1 ≤ i ≤ n, suppose that εi : JRn(Xi) is such that

εi(k : Xi → Rn) ∈ arg max(πi ◦ k)

for all k : Xi → Rn. Then, letting the ith projection of k corresponds to the utility

given to player i, the tensor of selection functions
(⊗n

i=1 εi

)(
k :

∏n
i=1Xi → Rn

)
returns the SPNE play of the sequential game

(
(Xi)

n
i=1, (εi)

n
i=1, k

)
in the traditional

game theoretic sense.

2.6.2 Limitations

The single-valued nature nature of the selection functions presented in this chapter

restrict the theory to computing only one SPNE play, whilst more general extensive

form games may have many SPNE strategy profiles and plays. This is the main

motivation in considering the multi-valued generalisation of selection functions in the

next chapter. An ideal situation would be a theory of generalised selection functions

of the type (X → R)→ P(X) and a theorem showing that a tensor of such selection

functions computes the set of SPNE plays of a sequential game. We shall see that

the reality is not so neat, but that some interesting results can be salvaged.

21

Chapter 3

Generalised selection functions

In the previous chapter we modelled players in a sequential game with selection

functions ε : JR(X) = (X → R) → X. In this chapter we consider generalised

selection functions with type (X → R) → TX where T is some strong monad over

the underlying category and R is an algebra of T . In particular we are interested in

the case where T is the non-empty finite powerset monad Pf which we use to model

nondeterminism. Working with generalised selection functions of the form (X →
R) → Pf(X) (which we call multi-valued or nondeterministic selection functions)

allows us to take seriously the multi-valued-ness of arg max and, in doing so, model

game theoretic agents which may be able to maximise their utility in multiple ways.

One might conjecture that, as single-valued selection functions compute a subgame

perfect play, multi-valued selection functions compute the set of subgame perfect

plays. This turns out to not be the case, and for fundamental reasons. On a technical

level, this reason is that the algebra of the monad destroys much of the fine-grained

information about a sequential game. From a game theoretic perspective the reason

is that, if a player has multiple ways to maximise their outcome, then other players

acting earlier in the game are acting under possibilistic uncertainty regarding how

this later player will maximise. These players acting earlier do not know which plays

they would be deviating from if they do choose to deviate from a strategy profile.

We will show that multi-valued selection functions do compute a kind of solution

for sequential games, and that these solutions are those appropriate to games with

possibilistic uncertainty.

Generalised selection functions have been studied in the context of proof theory in

the paper [EO14], but the work in this chapter constitutes the first concerted attempt

at an application of generalised selection functions to game theory.

22

3.1 Chapter overview

3.2 introduces generalised selection functions which have type (X → R) → T (X)

where T is a strong monad and R is a T -algebra; 3.3 is a discussion of how non-

deterministic uncertainty can arise in deterministic games; 3.4 specialises generalised

selection functions to the case of the finite non-empty powerset monad; 3.5 introduces

nondeterministic sequential games ; 3.6 defines two classes of particularly well-behaved

generalised selection functions; 3.7 specifies an appropriate notion of rationality for

two-player nondeterministic sequential games; 3.8 proves an important negative re-

sult about nondeterministic selection functions and subgame perfect Nash equilibria;

3.9 generalises rationality from two-player games to n-player games; and, finally, 3.10

provides a positive characterisation of the solution concept appropriate to nondeter-

ministic sequential games.

3.2 Selection functions over a monad

Definition 3.2.0.1 (Generalised selection function). Let C be a cartesian closed

category. Suppose that X : C is an object, T is a strong monad over C, and R is a

T -algebra. A T -selection function is a morphism with type (X → R) → TX. The

type (X → R)→ TX is denoted by J T
R (X).

Recall that we defined algebras of a strong monad as an object R together with a

family of morphisms
{

(X → R)→ (TX → R)
∣∣ X ∈ C} in 2.2.0.6.

As with the selection functions of the previous chapter, generalised selection func-

tions also form a strong monad.

Theorem 3.2.0.2 (Generalised selection functions form a strong monad [EO14]).

J T
R is a strong monad with structural maps given as follows. The unit map is

ηX : X → J T
R (X) = λ(x : X). λ(k : X → R). ηTX(x).

Let f : X → J T
R (Y) and k : Y → R. Define

αk : X → TY

αk(x) = f(x)(k)

and, for ε : J T
R (X), define

βε,k : TX

βε,k = ε(k? ◦ αk).

23

The Kleisli extension f † : J T
R (X)→ J T

R (Y) is then given by

f †(ε) = λ(k : Y → R). (αk)†(βε,k).

As J T
R is a strong monad it has an associated dependent tensor product.

�J
T
R : J T

R (X)× (X → J T
R (Y))→ J T

R (X × Y).

Explicitly this is given as follows. Fix ε : J T
R (X), ∆ : X → J T

R (Y), and k : X ×Y →
R. Define

f : X → TY

f(x) = ∆(x)
(
k(x,−)

)
and

a : TX

a = ε
(
λ(x : X).

(
k(x,−)?(f(x))

))
.

Then ε�J
T
R ∆ = a�T f .

In practice we only need the simpler independent product ⊗ : J T
R (X)×J T

R (Y)→
J T
R (X × Y) given by taking the argument of type X → J T

R (Y) for � to be constant

(note that, crucially, the independent product for J T
R still makes use of the dependent

product for T). We give an explicit definition of this independent product in the case

where T is the finite nonempty powerset monad in 3.4.

3.3 Nondeterminism in games

‘Nondeterministic sequential game’ is a subtle misnomer for the type of game we are

interested in. A more accurate name might be ‘games with nondeterministic uncer-

tainty,’ but the former name is certainly snappier. We are interested in deterministic

games during which nondeterministic uncertainty can arise, rather than games with

nondeterministic components. Consider the following game of two players in extensive

form.

24

1

2

2

a

b

(1, 0)

(−1, 0)

a′

b′

(1, 0)

(−1, 0)

c′

d′

Player 2 is entirely indifferent about the outcome of the game, but player 1 is not.

Moreover, player 1 cares about which choice player 2 makes but has no way to know

which choice he will actually make. Moreover, player 1 has no way of assigning

probabilities to player 2’s choices and so has no notion of expected outcome. Player 1

has to make her choice under profound possibilistic uncertainty about how player 2

will behave. An interesting problem, then, is finding a suitable definition of ‘rational

play’ for player 1. We take the approach that a strategy is rational for player 1 if

there is at least one way in which player 2 can maximise their outcome such that

there is no incentive for player 1 to deviate from the strategy. Player 1 shrugs and

guesses at how player 2 might behave. In the example above, both plays are rational

for player 1. If player 2 would choose a′ and d′, then player 1 should choose a. If

player 2 would choose b′ and c′, player 1 should choose b. If player 2 would choose b′

and d′, player 1’s decision is irrelevant. In the game

1

2

2

a

b

(1, 0)

(−1, 0)

a′

b′

(2,−10)

(−2, 0)

c′

d′

player 1 should always choose a as player 2 will never choose c′ under rational play.

25

3.4 Nondeterministic selection functions

In this section we specialise generalised selection functions to the finite nonempty

powerset monad, which we use to model nondeterminism.

Definition 3.4.0.1 (Finite non-empty powerset monad). The finite nonempty pow-

erset monad is given by the following data. The underlying functor Pf : Set→ Set

maps a set to the set of its finite, nonempty subsets:

Pf (X) =
{
U ∈ P(X)

∣∣∣ 0 < |X| < ℵ0

}
.

The unit is given by ηX(x) = {x}; the Kleisli extension f † : Pf (X) → Pf (Y) of a

function f : X → Pf (Y) is given by f †(U) =
⋃
x∈U fx.

Definition 3.4.0.2. The dependent product � : Pf(X)×(X → Pf(Y))→ Pf(X×Y)

for Pf is explicitly given by

U � f =
{

(x, y) ∈ X × Y
∣∣∣ x ∈ U, y ∈ f(x)

}
The algebras of the finite non-empty powerset monad are join semilattices.

Definition 3.4.0.3 (Join semilattice). A join semilattice is a partial ordering (R,≤)

such that every finite non-empty subset S of R has a least upper bound (or supremum)∨
S.

Given an assignment of joins to subsets, the partial ordering can be recovered by

setting r ≤ s if and only if
∨
{r, s} = s. Given a semilattice (R,

∨
), the associated

algebra mapping of a function f : X → R is given by

f ? : P(X)→ R

U 7→
∨
{fx : x ∈ U}.

Definition 3.4.0.4. A multi-valued or nondeterministic selection function is a Pf-

selection function.

We will be using the independent product of multi-valued selection functions ex-

tensively and so we explicitly unpack its definition here.

Definition 3.4.0.5 (Independent product of nondeterministic selection functions).

Let ε : J Pf
R (X), δ : J Pf

R (Y), and k : X × Y → R. Then

(ε⊗ δ)(k) = {(x, y) ∈ X × Y : x ∈ a, y ∈ f(x)}

26

where f : X → P(Y) is given by

x 7→ δ
(
k(x,−)

)
and a : P(X) is given by

a = ε
(
λ(x : X).

∨
y∈δ(q(x,−))

q(x, y)
)
.

3.5 Nondeterministic sequential games

In this section we modify some of the definitions from chapter 2 so they make sense

in a nondeterministic setting. This amounts, for the most part, to replacing the

single-valued selection functions of the previous chapter with multi-valued selection

functions. We abstain from defining nondeterministic subgame perfect Nash equilibria

until 3.8 where it will be more relevant.

Definition 3.5.0.1 (Nondeterministic sequential game). An n-round nondeterminis-

tic sequential game consists in a tuple of multi-valued selection functions (ε1, · · · , εn)

where εi ∈ J Pf
R (Xi) together with an outcome function q :

∏n
i=1 Xi → R. We refer to

a nondeterministic sequential game by the triple
(
(Xi)

n
i=1, (εi)

n
i=1, q

)
.

Throughout the rest of this chapter we will let G denote the arbitrary nondeter-

ministic sequential game
(
(Xi)

n
i=1, (εi)

n
i=1, q

)
. We also, from hereon, often refer to

nondeterministic sequential games simply as sequential games, or even just as games.

The definition of a strategy for a nondeterministic sequential game is entirely

unchanged.

Definition 3.5.0.2 (Nondeterministic strategy). Let G be a game. A strategy at

round i is a function
(
σi :

∏
j<iXj

)
→ Xi. A strategy profile for G is a tuple

σ = (σ1, · · · , σn) where each σi is a strategy for round i.

Just as single-valued selection functions were thought of as returning a satisfactory

play given a context, so multi-valued selection functions are thought as providing the

set of acceptable plays in a context.

27

3.6 Well-behaved selection functions

We will now specify ‘niceness’ constraints for multi-valued selection functions. The

‘niceness’ of a multivalued selection function relates to its interaction with the semi-

lattice R. These constraints are chosen as they pick out a subclass of nondeterministic

selection functions which are particularly relevant to sequential games.

Definition 3.6.0.1 (Witnessing selection function). A multi-valued selection func-

tion ε : J Pf
R (X) is witnessing if for all indexing functions I : X → Pf(X → R) and

all

x ∈ ε
(
λ(x′ : X).

∨
p∈I(x′)

p(x′)

)
there exists a choice function p− : X → (X → R) for I (so px′ ∈ I(x′) for all x′) such

that

x ∈ ε(λ(x′ : X).px′(x
′)).

I(x) is thought of as the set of contexts that might arise if x is chosen. The

choice function p− picks out a ‘plausible scenario,’ a possible context for each choice

x ∈ X that could be made. In game theoretic terms, a witnessing selection function

represents a player that finds a move x acceptable to play only if there is some

plausible hypothesis regarding how later players will behave under which x is an

acceptable move.

Definition 3.6.0.2 (Upwards closed selection function). A multi-valued selection

function ε : J Pf
R (X) is upwards closed if, whenever p− : X → (X → R) is a choice

function for some indexing function I : X → Pf (X → R) such that x ∈ ε(λx′.px′(x′)),
it holds that

x ∈ ε
(
λ(x′ : X).

∨
p∈I(x′)

p(x′)

)
.

Upwards closure is a converse notion to witnessing. If x is an acceptable choice,

then x remains an acceptable choice in contexts where other possible contexts are

added and then combined with the join operator (this notion is, admittedly, more

game theoretically vague but its interpretation will become clearer in the case where

R = Pf(R) and the semilattice join is given by union).

A good heuristic for thinking about witnessing and upwards closed selection

functions is as follows. Suppose ε : J Pf
R (X) and that X = {x1, · · · , xn} and let

I : X → Pf(X → R) with I(x) = {px1 · · · , pxmx}. We can organise this information in

a game tree:

28

x1

xn

px1
1 (x1)

px1
mx1

(x1)

pxn1 (xn)

pxnmxn (xn)

...

...

...

A choice function q− : X → (X → R) for I then corresponds to choosing a leaf of

this tree for each x ∈ X. Visually (omitting dots for clarity),

x1

xn

px1
1 (x1)

px1
mx1

(x1)

pxn1 (xn)

pxnmxn (xn)

qx1(x1)

qxn(xn)

The red subtree then corresponds to the context λ(x : X).qxx. In contrast, the

context λ(x : X).
∨
p∈I(x) p(x) corresponds to the collapsed game tree∨

p∈I(x1) p(x1)

∨
p∈I(xn) p(xn)

x1

xn

...

A witnessing selection function is a selection function where, if x is an acceptable

play in the collapsed tree, there is some choice of leaves such that x is an acceptable

play in the associated context. An upwards closed selection function has the converse

property: if there is a choice of leaves under which x is an acceptable play, then x is

an acceptable play in the collapsed tree.

29

Example 3.6.0.3. We will show that arg max is witnessing but not upwards closed.

For a finite set X, define arg max : (X → R)→ Pf(X) by

arg max(k) =
{
x ∈ X

∣∣∣ ∀x′ ∈ X k(x) ≥ k(x′)
}
.

arg max is then a multi-valued selection function with the join operator on R given

by max.

Claim 1: arg max is witnessing. Proof: Suppose

x ∈ arg max
x′∈X

(
max
p∈I(x′)

(p(x′))
)

for some I : X → Pf(X → R). Then ∀x′ ∈ X it holds that

max
p∈I(x)

p(x) ≥ max
p∈I(x′)

p(x′).

As I(x′) is finite, we can choose px′ ∈ I(x′) such that px′(x
′) = maxp∈I(x′) p(x

′). Then

x ∈ arg max
(
λ(x′ : X).px′(x

′)
)
.

Hence arg max is witnessing.

Claim 2: arg max is not upwards closed. Proof: Let X = {0, 1} and let ci : X →
R denote the constant function x 7→ i. Define I : X → P(X → R) by

0 7→ {c0}

1 7→ {c1, c−1}

Note that the function λ(x : X).maxp∈I(x) p(x) is given by

0 7→ 0

1 7→ 1

and, hence, arg max
x∈X

(
max
p∈I(x)

p(x)
)

= {1}. Define a choice function p− : X → (X → R)

for I by p0 = c0 and p1 = c−1. Then arg max
x∈X

(
px(x)

)
= {0}, but {0} 6⊆ {1} and hence

arg max is not upwards closed.

That arg max is witnessing follows from a more general result regarding multi-

valued selection functions for which the semilattice R is total.

Proposition 3.6.0.4. If the semilattice R is total, then for all sets X and all selection

functions ε : J Pf
R (X), ε is witnessing.

30

Proof. Suppose R is total and I : X → Pf(X → R). Then for all x′ ∈ X there exists

px′ ∈ I(x′) such that ∨
p∈I(x′)

p(x′) = px′(x
′).

Then

x ∈ ε
(
λ(x′ : X).

∨
p∈I(x′)

p(x′)

)
=⇒ x ∈ ε

(
λ(x′ : X).px′(x

′)
)

We now consider an example of a multi-valued selection function which is upwards

closed but not witnessing.

Example 3.6.0.5. Let X = {0, ?}. We think of ? as ε’s ‘favourite move’ which is

satisfactory in any context. Define a semilattice R = {>,⊥1,⊥2} where ⊥1 ≤ >,

⊥2 ≤ >, and ⊥1 and ⊥2 are not comparable. Define ε : J Pf
R (X) by

ε(p) = {?} ∪ {x ∈ X | p(x) = >}.

Suppose that x ∈ ε(λx′.px′(x
′)) where px′ ∈ I(x′) for some I : X → Pf(X → R).

Then either x = ? or px(x) = >. In either case, x ∈ ε
(
λ(x′ : X).

∨
p∈I(x′) p(x

′)
)

.

Hence ε is upwards closed.

Conversely, define an indexing function given by I(0) = I(?) = {c⊥1 , c⊥2} (where

the ci are constant functions as in the previous example). Then 0 ∈ ε
(
λ(x′ :

X).
∨
p∈I(x′) p(x

′)
)

= X, but there is no choice function p− : X → (X → R) for

I such that 0 ∈ ε(λ(x′ : X).px′(x
′)). Hence ε is not witnessing.

We will see an important example of a multi-valued selection function which is

both witnessing and upwards closed in 3.10.

3.7 Rational strategies for nondeterministic games

In this section we define a notion of rationality for nondeterministic games. A strategy

profile is rational precisely when there is some plausible hypothesis about how later

players will behave under which that strategy profile is acceptable. As it sounds, this

notion is closely linked to the properties ‘witnessing’ and ‘upwards closed.’ We show

that witnessing and upwards closed selection functions compute precisely the plays

of rational strategy profiles. We start by restricting ourselves to games of length 2,

considering an arbitrary game given by

G2 =
(

(X, Y),
(
ε : J Pf

R (X), δ : J Pf
R (Y)

)
, k : X × Y → R

)
.

31

Definition 3.7.0.1 (Rational strategy profile). Let G be the two-player game speci-

fied above. Let ε : J Pf
R (X), δ : J Pf

R (Y), and k : X × Y → R. A strategy τ2 : X → Y

is rational at round 2 (or rational for δ) if

τ2(x) ∈ δ
(
k(x,−)

)
for all x ∈ X. A strategy profile (σ1 : X, σ2 : X → Y) of G is rational if

1. σ2 is rational at round 2; and

2. There is τ2 rational at round 2 such that

σ1 ∈ ε
(
λ(x : X).k

(
x, τ2(x)

))
.

The set of rational plays of G is given by

Rat(G) =
{

(x, y) ∈ X × Y
∣∣∣ (x, y) = (σ1, σ2(σ1)) for some rational (σ1, σ2)

}
.

Remark 3.7.0.2. If (x, y) ∈ (ε ⊗ δ)(k) where ε, δ, and k are as above, then the

definition of the tensor of selection functions tells us that

x ∈ ε
(
λ(x′ : X).

∨
y′∈δ(k(x′,−))

k(x′, y′)
)
.

In the definitions of witnessing and upwards closed selection functions we were con-

cerned with expressions of the form

x ∈ ε
(
λ(x′ : X).

∨
p∈I(x′)

p(x′)
)
.

It will be worthwhile to spend a few lines on the relationship between these two

similar-looking expressions. Given δ : J Pf
R (Y) we can define an indexing function

Iδ,k : X → Pf(X → R) by

x′ 7→
{
k(−, y′)

∣∣∣∣ y′ ∈ δ(k(x′,−))

}
so that

λ(x′ : X)
∨

y′∈δ(k(x′,−))

k(x′, y′) = λ(x′ : X)
∨

p∈Iδ,k(x′)

p(x′).

Moreover, a rational strategy σ2 : X → Y for δ induces a choice function for Iδ,k via

the mapping x 7→ k(−, σ2(x)). The converse does not quite hold. If k(−, y) = k(−, y′)
but y 6= y′, then a choice function does not uniquely induce a rational strategy for δ.

The consequences of these remarks are worked out in the following lemma and

theorem.

32

Definition 3.7.0.3. Let δ : J Pf
R (Y) and k : X × Y → R. Define Iδ,k : X → Pf(X →

R) by

x 7→
{
k(−, y)

∣∣∣∣ y ∈ δ(k(x,−)
)}
.

Lemma 3.7.0.4. Let δ : J Pf
R (Y) and k : X × Y → R. Then p− : X → (X → R) is

a choice function for Iδ,k if and only if there exists σ2 : X → Y , rational for δ, such

that

λ(x : X).px(x) = λ(x : X).k(x, σ2(x)).

Theorem 3.7.0.5. Let ε : J Pf
R (X) be a multi-valued selection function. The following

equivalences hold.

1. ε is witnessing if and only if for any k : X × Y → R and δ : J Pf
R (Y) it holds

that (ε⊗ δ)(k) ⊆ Rat(G) where G =
(
(X, Y), (ε, δ), k

)
.

2. ε is upwards closed if and only if for any k : X × Y → R and δ : J Pf
R (Y) it

holds that Rat(G) ⊆ (ε⊗ δ)(k) (with G as above).

Proof. We first prove the forward directions of both equivalences which follow quickly

from the above lemma.

1. ⇒:

Suppose that ε is witnessing and (x, y) ∈ (ε⊗ δ)(k). Then

x ∈ ε
(
λ(x′ : X).

∨
y′∈δ(k(x′,−))

k(x′, y′)

)
= ε

(
λ(x′ : X)

∨
p∈Iδ,k(x′)

p(x′)

)

and

y ∈ δ
(
k(x,−)

)
.

By the previous lemma and the fact that ε is witnessing, there exists σ2 : X → Y ,

rational for δ, such that

x ∈ ε
(
λ(x′ : X).k(x′, σ2(x′))

)
.

Then the strategy profile (x, τ2) where

τ2(x′) =

{
y if x′ = x

σ2(x′) otherwise

is rational with play (x, y).

33

2. ⇒:

Suppose that ε is upwards closed and (σ1, σ2) is rational. Then σ2(x) ∈ δ
(
k(x,−)

)
for all x ∈ X. In particular, σ2(σ1) ∈ δ

(
k(σ1,−)

)
.

By rationality there exists τ2 : X → Y , rational for δ, such that σ1 ∈ ε
(
λ(x :

X).k(x, τ2(x))
)
. By 3.7.0.4 and the fact that ε is upwards closed,

x ∈ ε
(
λ(x′ : X)

∨
p∈Iδ,k(x′)

p(x′)

)
= ε

(
λ(x′ : X).

∨
y′∈δ(k(x′,−))

k(x′, y′)

)
.

Hence (σ1, σ2(σ1)) ∈ (ε⊗ δ)(k).

For the converse directions of the two equivalences we construct a pathological

counter example and prove the contrapositives. Define the context k : X × (X →
R) → R to be function application (x, p) 7→ p(x). Given an indexing function I :

X → Pf(X → R) define δI,k : J Pf
R (X → R) by

δI,k(p) =

{
I(x′) if p = k(x′,−)

arbitrary otherwise.

Note that k(x,−) = k(x′,−) if and only if x = x′ or |R| < 2. In the latter case the

theorem holds vacuously for R = ∅ and, for |R| = 1, we have that |X → R| = 1 and

so I(x) = I(x′) for all x, x′ ∈ X. Consequently, δI,k is well-defined.

1. ⇐:

Suppose ε is not witnessing. Then there is some indexing function I : X →
Pf(X → R) and x ∈ ε

(
λ(x′ : X).

∨
p∈I(x′) p(x

′)
)

such that there is no choice function

p− : X → (X → R) for I such that x ∈ ε(λ(x′ : X).px′(x
′)). By construction,

λ(x′ : X).
∨

p∈I(x′)

p(x′) = λ(x′ : X).
∨

p∈δI(k(x′,−))

k(x, p).

Then, by the definition of the tensor of selection functions, (x, p) ∈ (ε ⊗ δI,k)(p) for

any p ∈ δI,k(k(x,−)). By hypothesis there is no choice function p− : X → (X → R)

for I such that x ∈ ε(λ(x′ : X).px′(x
′)) and hence there are no rational strategy

profiles with play (x, p). Hence (ε⊗ δI,k)(p) 6⊆ Rat(G).

2. ⇐:

Suppose ε is not upwards closed. Then there is I : X → Pf(X → R) and a choice

function p− : X → (X → R) for I such that there is x ∈ ε(λ(x′ : X).px′(x
′)) and

x 6∈ ε
(
λ(x′ : X).

∨
p∈I(x′)

p(x′)

)
= ε

(
λ(x′ : X).

∨
p∈δI,k(k(x′,−))

k(x′, p)

)
.

Define σ2 : X → (X → R) by σ2(x′) = px′ . Then (x, σ2) is rational but (x, σ2(x)) 6∈
(ε⊗ δI,k)(k).

34

This theorem has an easy corollary regarding selection functions which are both

witnessing and upwards closed.

Corollary 3.7.0.6. Suppose ε : J Pf
R (X) is witnessing and upwards closed. Then for

all k : X × Y → R and all δ : J Pf
R (Y), (ε⊗ δ)(k) = Rat(G).

The property of being witnessing is not closed under the independent product of

selection functions. In 3.10 we will see an example where ε and δ are both witnessing

and upwards closed, but where (ε⊗δ) is not witnessing. A heuristic for why witnessing

fails is that it might be possible to choose witnesses for ε and δ, but be impossible to

choose such witnesses simultaneously. The property of being upwards closed is closed

under the independent product of selection functions. In order to show this, we first

prove an easy lemma.

Lemma 3.7.0.7. Suppose ε : J Pf
R (X) is upwards closed and let k, k′ : X → R be

such that k(x) ≥ k′(x) for all x ∈ X. Then x ∈ ε(k′)⇒ x ∈ ε(k).

Proof. Define I : X → Pf(X → R) to be the constant function x 7→ {k, k′}. Define

p− : X → (X → R) to be the constant function px = k′. Then p− is a choice function

for I. Also,

λ(x : X).
∨

q∈I(x)

q(x) = λ(x : X).
∨{

k(x), k′(x)
}

= k.

Hence, x ∈ ε(k′)⇒ x ∈ ε(k).

Proposition 3.7.0.8. Suppose ε : J Pf
R (X) and δ : J Pf

R (Y) are upwards closed. Then

(ε⊗ δ) is upwards closed.

Proof. Let p− : (X × Y)→
(
(X × Y)→ R

)
be a choice function for I : (X × Y)→

Pf

(
(X × Y)→ R

)
and let (x, y) ∈ (ε⊗ δ)

(
λ
(
(x′, y′) : X × Y

)
. p(x′,y′)(x

′, y′)
)

. By the

definition of the selection tensor, we know that

x ∈ ε
(
λ(x′ : X).

∨
y′∈δ(p(x′,−)(x

′,−))

p(x′,y′)(x
′, y′)

)
(?)

y ∈ δ
(
λ(y′ : Y). p(x,y′)(x, y

′)
)
. (??)

To show that (ε⊗ δ) is upwards closed, we need to show that

(x, y) ∈ (ε⊗ δ)
(
λ
(
(x′, y′) : X × Y

)
.

∨
k∈I(x′,y′)

k(x′, y′)
)
.

35

That is, we need to show

x ∈ ε
(
λ(x′ : X).

∨
y′∈A(x′)

∨
k∈I(x′,y′)

k(x′, y′)
)

(1)

where A(x′) = δ
(
λ(y′ : Y).

∨
k∈I(x′,y′) k(x′, y′)

)
, and

y ∈ δ
(
λ(y′ : Y).

∨
k∈I(x,y′)

k(x, y′)
)
. (2)

(2): Define Ix : Y → Pf(Y → R) by y′ 7→
{
k(x,−)

∣∣ k ∈ I(x, y′)
}

and note that

y′ 7→ λ(y′′ : Y). p(x,y′)(x, y
′′) is a choice function for Ix. Moreover, Ix(y

′) = I(x, y′).

By (??) and upwards closure of δ,

y ∈ δ
(
λ(y′ : Y).

∨
k∈Ix(y′)

k(y′)
)

= δ
(
λ(y′ : Y).

∨
k∈I(x,y′)

k(x, y′)
)
.

(1): Using (?) and 3.7.0.7, it suffices to show that∨
y′∈δ(p(x′,−)(x

′,−))

p(x′,y′)(x
′, y′) ≤

∨
y′∈A(x′)

∨
k∈I(x′,y′)

k(x′, y′)

for all x′ ∈ X. It is therefore sufficient to prove that{
p(x′,y′)(x

′, y′)
∣∣∣ y′ ∈ δ(p(x′,−)(x

′,−)
)}
⊆
{
k(x′, y′)

∣∣∣ y′ ∈ A(x′), k ∈ I(x′, y′)
}

for all x′ ∈ X. If p(x′,y′)(x
′, y′) is an element of the left-hand side, then y′ ∈ A(x′)

by the upwards closure of δ. Also, as p− is a choice function for I, we have that

p(x′,y′) ∈ I(x′, y′). Hence p(x′,y′)(x
′, y′) is also an element of the right-hand side.

3.8 Relation to subgame perfect Nash equilibria

This section concerns a negative result: multi-valued selection functions cannot, in

general, compute the set of plays of subgame perfect strategies. We can generalise

the definition of subgame perfect Nash equilibrium from 2.6.1 as follows.

Definition 3.8.0.1 (Multi-valued subgame perfect strategy profile). Let ε : J Pf
R (X),

δ : J Pf
R (Y), and k : X × Y → R. A strategy profile (σ1 : X, σ2 : X → Y) for the

game G2 =
(
(X, Y), (ε, δ), k

)
is a subgame perfect Nash equilibrium (we also say that

(σ1, σ2) is subgame perfect) if

1. σ1 ∈ ε
(
λ(x : X). k(x, σ2(x))

)
; and

36

2. for all x ∈ X, σ2(x) ∈ δ
(
λ(y : Y). k(x, y)

)
.

The set of subgame perfect plays of G is

SP(G2) =
{

(σ1, σ2(σ1)) ∈ X × Y
∣∣∣ (σ1, σ2) is subgame perfect

}
.

Remark 3.8.0.2. Note that subgame perfect strategy profiles are rational: subgame

perfect strategy profiles are those where ε’s guess about δ’s future behaviour is correct.

Theorem 3.8.0.3. Let ε : J Pf
R (X). If, for all sets Y , selection functions δ : J Pf

R (Y),

and functions k : X × Y → R it holds that (ε ⊗ δ)(k) = SP(Gδ,k), where Gδ,k =(
(X, Y), (ε, δ), k

)
, then ε is constant.

Proof. The proof proceeds by contradiction. Suppose that for all δ and k, (ε⊗δ)(k) =

SP(Gδ,k), and that ε is not constant. That is, there exist p1, p2 : X → R and x ∈ X
such that x ∈ ε(p1) and x 6∈ ε(p2). Let q : X × (X → R) → R be the function

application operator, (x, p) 7→ px. Define δ : J Pf
R (X → R) by

δ(p) =

{
{p1, p2} p = q(x,−)

{p1} otherwise.

As p1 6= p2, we have that |R| > 1. Consequently, q(x,−) = q(x′,−) if and only if

x = x′. Moreover, x′ 6= x implies that δ(q(x′,−)) = {p1}. Consider the play (x, p2)

of Gδ,q noting that, by construction, (x, p2) is not the play of any subgame perfect

strategy profile. Define p− : X → (X → R) to be the constant mapping px′ = p1 so

that x ∈ ε(λx′. px′x′) = ε(p1).

As all subgame perfect plays are rational, we have that ε is upwards closed by

3.7.0.5. Hence (x, p2) ∈ (ε⊗ δ)(q), but we have already established that (x, p2) is not

a subgame perfect play.

This proof emphasizes the point that multi-valued selection functions fail to com-

pute subgame perfect plays because players in a sequential game can be indifferent

between two choices. In the case where x is played, δ is indifferent between playing

p1 or p2 whilst ε is not. In games where there is no such conflicting indifference,

witnessing and upwards closed selection functions do compute the set of subgame

perfect plays.

Definition 3.8.0.4. Let ε : J Pf
R (X), δ : J Pf

R (Y), and q : X × Y → R. We say that

the game
(
(X, Y), (ε, δ), k

)
has coinciding indifference if, for all x ∈ X and y, y′ ∈ Y ,

y, y′ ∈ δ
(
k(x,−)

)
=⇒ ε

(
k(−, y)

)
= ε
(
k(−, y′)

)
37

Proposition 3.8.0.5. Suppose
(
(X, Y), (ε, δ), k

)
has coinciding indifference and that

ε is witnessing and upwards closed. Then (ε⊗ δ)(k) = SP(k, ε, δ) = Rat(k, ε, δ).

Proof. Let (x, y) ∈ (ε⊗ δ)(k). By 3.7.0.5, (x, y) is the play of some rational strategy

profile (σ1, σ2). Then there exists some function y(−) : X → Y where, for all x′ ∈ X,

y(x′) ∈ δ
(
q(x′,−)

)
and σ1 ∈ ε(λx′. q(x′, y(x′))

)
. By coinciding indifference, σ1 ∈

ε
(
λx′.q(x′, σ2x

′)
)
.

Conversely, subgame perfect plays are rational. Hence, if (x, y) is a subgame

perfect play, then (x, y) ∈ (ε⊗ δ)(q) by 3.7.0.5.

To summarize, in a two round game with first player ε, (ε ⊗ δ)(k) computes

subgame perfect plays for arbitrary second player δ and arbitrary context k if and

only if ε is constant. (ε⊗δ)(k) does compute subgame perfect plays in the special cases

where ε is upwards closed and witnessing, and (q, ε, δ) has coinciding indifference.

3.9 Finite length nondeterministic sequential games

In this section we generalise the results concerning games of length 2 to games of

arbitrary finite length. The main proof strategy is induction on the results of the

previous sections.

Notation 3.9.0.1. Given A ⊆
⋃n
i=1Xi, we use A(j) to denote Xj ∩ A.

In particular, if Γ is a set of strategies for some sequential game G, then Γ(j)

denotes the set of strategies in Γ which are strategies for round j.

In the two player case, if a strategy profile (σ1, σ2) is rational with respect to(
(X, Y), (ε, δ), k

)
, there is some rational strategy τ2 : X → Y for δ such that σ1 is

acceptable to ε if δ plays according to τ2. To generalise to the n-round case, we can

simply extend this heuristic as follows. Given a game
((
Xi

)n
i=1
,
(
εi
)n
i=1
, k
)
, a strategy

σ1 : X1 is rational if there are strategies σ2, · · · , σn, rational for ε2, · · · , εn respectively,

under which σ1 is a good move. For players εi acting in the ‘mid-game,’ a strategy is

rational if it is rational for all subgames given by partial plays x ∈
∏i−1

j=1Xj.

We define a more general notion of sets of strategies as consistent for a game G.

The set of rational strategy profiles will then be realised as the maximal consistent

set of strategy profiles.

38

Definition 3.9.0.2. Let Γ be a set of strategies for a sequential game G =
(
(Xi)

n
i=1, (εi)

n
i=1, k

)
.

Γ is G-consistent if for all i < n and σi ∈ Γ(i), and all partial plays x ∈
∏i−1

j=1Xj,

there exists σ = (σi+1, · · · , σn) where σi+1, · · · , σn ∈ Γ such that

σi(x) ∈ εi
(
λ(y : Xi).k

(
(x, y)σ

))
where (x, y)σ is the strategic extension of (x1, · · · , xi−1, y) by (σi+1, · · · , σn).

Note that if Γ is G-consistent, the G-consistency of Γ ∪ {σi} depends only on Γ(j)

for j > i. With that in mind, we can define the maximal G-consistent set of strategies,

denoted by Σ(G), as follows.

Definition 3.9.0.3. Σ(G) is given by

Σ(G)(n) =
{
σn :

∏
i<n

Xi → Xn

∣∣∣ ∀x ∈ n−1∏
i=1

Xi. σn(x) ∈ εn
(
q(x,−)

)}
Σ(G)(i) =

{
σi :

∏
j<i

Xj → Xi

∣∣∣ {σi} ∪⋃
j>i

Σ(G)(j) is G-consistent
}
.

Definition 3.9.0.4. Let Γ be a set of strategies for a sequential game G. A play

x ∈
∏n

i=1Xi is a Γ play if x is the strategic play of a strategy profile σ = (σ1, · · · , σn)

where σi ∈ Γ(i) for each i ≤ n.

The following lemma and corollary show that adding ineffectual players to a game

does not impact which choices are considered acceptable.

Lemma 3.9.0.5. Let k : X → R and define k′ : X × Y → R by k′(x, y) = k(x).

Then, for all ε : J Pf
R (X) and δ : J Pf

R (Y),

x ∈ ε(k)⇔ ∃y ∈ Y such that (x, y) ∈ (ε⊗ δ)(k′).

Proof. If x ∈ ε(k) then, for all y ∈ Y ,

x ∈ ε(k) = ε
(
λ(x′ : X).

∨
y∈δ(k(x′))

k(x′)
)

= ε
(
λ(x′ : X).

∨
y∈δ(k′(x′,−))

k′(x′, y)
)
.

Hence if y ∈ δ
(
k(x,−)

)
then (x, y) ∈ (ε⊗ δ)(k′).

Conversely,

(x, y) ∈ (ε⊗ δ)(k′)⇒ x ∈ ε
(
λ(x′ : X).

∨
y′∈δ(k′(x′,−))

k′(x′, y′)
)

= ε(k)

39

Corollary 3.9.0.6. Let
(
(Xi)

n
i=1, (εi)

n
i=1, k

)
be a sequential game. Suppose there exists

j < n and kj : Xi ×Xn → R such that, for all x ∈
∏n

i=1 Xi, k(x) = kj(xj, xn). Then

(xj, xn) ∈ (εj⊗εn)(kj) if and only if there exist x1, · · · , xj−1, xj+1, · · · , xn−1 with each

xj ∈ Xj such that (x1, · · · , xn) ∈
(⊗n

i=1 εi

)
(k).

Proof. The proof proceeds by a routine induction on n, noting that the case n = 2 is

trivial. When j 6= 1 the result follows easily by choosing

x1 ∈ ε1

(
λ(y1 : X1).

∨
(y2,··· ,yn)∈A(y1)

k(y1, · · · , yn)
)

where A(y1) = (
⊗m

i=2 εi)(k(y1,−)) and applying the inductive hypothesis to the game(
(Xi)

n
i=2, (εi)

n
i=2, k(x1,−)

)
. For the case j = 1, note that the value of the function

λ(y1 : X1)., · · · , λ(yn : Xn).
∨

yn∈εn(k(y1,··· ,yn−1,−))

k(y1, · · · , yn)

depends only on y1. Then, using 3.9.0.5,

(x1, xn) ∈ (ε1 ⊗ εn)(k1)

⇔x1 ∈ ε1

(
λ(y1 : X1).

∨
yn∈εn(k1(y1,−))

k1(y1, yn)
)

and xn ∈ εn
(
k1(x1,−)

)

⇔∃x ∈
n−1∏
i=2

Xi. (x1, x) ∈
(n−1⊗

i=1

εi

)(
λy1, y.

∨
yn∈εn(k(y1,y,−))

k(y1, y, yn)
)

and xn ∈ εn
(
k(x1, x,−)

)

⇔∃x ∈
n−1∏
i=1

Xi. (x1, x, xn) ∈
(n⊗

i=1

εi

)
(k).

The following theorem generalises 3.7.0.5 to games of arbitrary finite length.

Theorem 3.9.0.7. Let εi : J Pf
R (Xi) for i < n. For all sets Xn, selection functions

εn : J Pf
R (Xn), and contexts k :

∏n
i=1 Xi → R, the following equivalences hold.

1. εi is witnessing for each i < n if and only if

(⊗n
i=1 εi

)
(k) is a subset of the

set of Σ(G) plays.

40

2. εi is upwards closed for each i < n if and only if

(⊗n
i=1 εi

)
(k) is a superset of

the set of Σ(G) plays.

Proof. We prove the forward directions of the two equivalences first. The proof pro-

ceeds by induction on n, noting that the cases n = 1 are trivial.

(1) : Suppose x = (x1, · · · , xn) ∈
(⊗n

i=1 εi

)
(k). As ε1 is witnessing, it is the

play of some rational strategy profile (x1, f : X1 →
∏n

i=2Xi) of the two round game(
(X1,

∏n
i=2Xi), (ε1,

⊗n
i=2 εi), k

)
. By hypothesis we have that(n⊗

i=2

εi

)
(k(y1,−))

is a subset of the set of Σ(Gy1) plays for all y1 ∈ X1 where

Gy1 =
(
(Xi)

n
i=2, (εi)

n
i=2, k(y1,−)

)
Hence f(y1) is the play of some Σ(Gy1)-consistent strategy profile σy1 for all y1 ∈ X1.

Then the strategy profile τ for G given by

τ1 = x1

τi+1(y1, · · · , yi) = σy1

i+1(y2, · · · , yi)

is such that τi ∈ Σ(G) for all i and the play of τ is x.

(2) : Suppose that x = (x1, · · · , xn) is the Σ(G) play of (σ1, · · · , σn). A simple

check demonstrates that for all y1 ∈ X1, we have that σ2, · · · , σn ∈ Σ(Gy1). By

hypothesis, the strategic play y
σ−1

1 of (σ2, · · · , σn) for the game Gy1 is such that

y
σ−1

1 ∈
(n⊗

i=2

εi

)(
k(y1,−)

)
.

In particular,

(x2, · · · , xn) ∈
(n⊗

i=2

εi

)(
k(x1,−)

)
. (?)

As x1 = σ1 ∈ Σ(G) there exists τ = (τ2, · · · , τn) with each τi ∈ Σ(G) such that

x1 ∈ ε1

(
λ(y1 : X1).k(yτ1)

)
and, for all y1 ∈ X1,

(yτ1)−1 ∈
(n⊗

i=2

εi

)(
k(y1,−)

)
.

41

As ε1 is upwards closed,

x1 ∈ ε1

(
λ(y1 : X1).

∨
z∈A(y1)

k(x1, z)

)

where A(y1) =
(⊗n

i=2 εi

)(
k(y1,−)

)
. From this and (?) we conclude that

x ∈
(n⊗

i=1

εi

)
(k).

As for the backward directions, for i < n consider the construction δiI : J Pf
R (Xi)

as in the proof of 3.7.0.5 and let ki :
(∏n−1

j=1 Xj

)
× (Xi → R) → R be given by

(x, p) 7→ p(xi). The converse directions are then a corollary of 3.9.0.6 and 3.7.0.5 by

considering the game ((ε1, · · · , εn−1, δI), k) for each i.

3.10 Dominating strategies

We have seen that multivalued selection functions do not, in general, compute sub-

game perfect plays. We have also characterised the plays nondeterministic selection

functions do compute. In this section we make sense of this, relating it to a solution

concept that is already well-known.

3.10.1 Dominance free strategy profiles

Consider a normal form game N =
(
Si, qi

)n
i=1

. For a given player i there may exist

strategies si, s
′
i ∈ Si such that, whatever choices the other players of the game make,

choosing si results in a strictly better outcome than choosing s′i for player i. In this

instance, we say that the strategy si strictly dominates the strategy s′i.

Definition 3.10.1.1 (Dominating strategy). Let N =
(
Si, qi

)n
i=1

be a normal form

game, 1 ≤ i ≤ n, and si, s
′
i ∈ Si. Then si strictly dominates s′i if for all tuples

(t1, · · · , ti−1, ti+1, · · · tn) ∈
∏

1≤j≤n
j 6=i

Sj

it holds that

qi(t1, · · · , si, · · · , tn) > qi(t1, · · · , s′i, · · · , tn).

We also say that s′i is strictly dominated by si.

42

Let’s assume that strictly dominated strategies are never chosen in the course

of rational play, as a player would be guaranteed a better outcome by choosing the

corresponding dominating strategy. Given that such strategies will never be chosen,

let’s consider games that result from dropping the strictly dominated strategies. By

removing a strictly dominated strategy from some normal form game N =
(
Si, qi

)n
i=1

we obtain a new game N 1 =
(
S1
i , q

1
i

)n
i=1

. Iterating, we arrive at some game N 2, and

then N 3, and so on. If we iterate until N j = N j+1 (which will always happen strategy

sets are finite) then we arrive at a game in which no strategy is strictly dominated. If

a set of strategy profiles contains no strictly dominated strategy profiles, we say that

it is strict dominance free.

Definition 3.10.1.2 (Dominance free (Normal form)). Let N =
(
Si, qi

)n
i=1

be a nor-

mal form game. S ′i ⊆ Si is strict dominance free if Si contains no strictly dominated

strategies. We also say that N is dominance free if each Si is.

The iteration of the removal of strictly dominated strategies therefore results in a

dominance free game. There is then a result that states that the game that results

from this process is independent of the order in which the strategies were removed

(see, e.g. [MSZ13]).

Proposition 3.10.1.3. Let N be a normal form game and suppose that H and K are

games obtained by iteratively removing strictly dominated strategies from N . Then

H = K.

A corollary of this proposition is that the largest dominance free subset of a set

of strategies is well-defined.

3.10.2 Subgame perfect dominance

Strong domination is well-understood in the context of normal form games. There

is little in the literature about dominant strategies in games with sequential play.

Just as Nash equilibria generalise to subgame perfect Nash equilibria, dominance free

strategies can be generalised to subgame perfect dominance free strategies.

3.10.3 Dominance selection functions

In this section we generalise the solution concept of the iterated removal of dominated

strategies to sequential games.

43

In a normal form game we can associate to each strategy a set of real numbers

that may result from playing that strategy. In this way we can see a corresponding

notion of ‘strict domination’ amongst subsets of the real numbers.

Definition 3.10.3.1. Let S, T ⊆ R and suppose that S, T 6= ∅. S strictly dominates

T if min(S) > max(T). We write S �s T .

We now define the strict dominance selection functions to be those that return

the set of choices that are not mapped to strictly dominated subsets of the reals for

a given context.

Definition 3.10.3.2. Let R be Pf(Rn) where the semilattice join is given by union

(equivalently, the order structure is given by inclusion). Given k : Xi → Pf(Rn),

define ki : Xi → Pf(R) to be
(
Pf(πi)

)
◦ = k. Define the ith strict dominance selection

function, εsi : J Pf
R (Xi) by

εsi (k : Xi → Pf(Rn)) =

{
xi ∈ Xi

∣∣∣∣ ∀x′i ∈ Xi, k
i(xi) 6≺s ki(x′i)

}
.

The strict dominance selection functions are witnessing and upwards closed, demon-

strating that they provide an appropriate solution concept for multi-valued selection

functions.

Proposition 3.10.3.3. εsi is witnessing and upwards closed.

Proof. Let I : Xi → Pf(Xi → Pf(Rn)). Suppose first that

x ∈ εsi (λ(x′ : X).
⋃

k∈I(x′)

k(x′)).

That is, for all x′ ∈ Xi,

max(
⋃

k∈I(x)

ki(x)) ≥ min(
⋃

k∈I(x′)

ki(x′))

Then, setting px ∈ I(x) to be a function attaining the maximum of
⋃
k∈I(x) k

i(x) and,

for x′ 6= x, setting px′ ∈ I(x′) to be a function attaining the minimum of
⋃
k∈I(x′) k

i(x′),

we define a choice function p− : Xi → (Xi → Pf(Rn)) such that

x ∈ εsi (λ(x′ : X).px′(x
′)).

Hence εsi is witnessing.

It is similarly easy to show that εsi is upwards closed as

max(pix(x)) ≥ min(pix′(x
′)) =⇒ max(

⋃
p∈I(x)

pi(x)) ≥ min(
⋃

p∈I(x′)

pi(x′)).

44

The two strict dominance selection functions is not, in general, witnessing as

shown by the below counterexample.

Proposition 3.10.3.4. Let X1 = X2 = {0, 1} and let R = Pf(R2). (εs1 ⊗ εs2) is not

witnessing.

Proof. Define contexts pεs1 , pεs2 , p0 : X1 ×X2 → Pf(R2) by

pεs1(x, x′) =

{
{(1,−1)} x = x′ = 0

{(0, 0)} otherwise

pεs2(x, x′) =

{
{(−1, 1)} x = x′ = 0

{(0, 0)} otherwise

p0(x, x′) = {(0, 0)}.

Define I : X2 → Pf(X
2 → Pf(R2)) by

I(x, x′) =

{
{pεs1 , pεs2} x = x′ = 0

{p0} otherwise.

We think of εεs1 and δεs2 as playing the following game where the outcome function is

chosen nondeterministically.

εs1

εs2

εs2

0

1

{pεs1 , pεs2}0

{p0}1

{p0}0

{p0}1

We will see that (εs1⊗ εs2) fails to be witnessing as εs1 is satisfied with playing 0 in the

case (0, 0) results in pεs1 and εs2 is satisfied playing 0 when (0, 0) results in pεs2 , but

there is no possible resulting context under which both εs1 and εs2 are happy to choose

0. Indeed, simple checks verify that

(0, 0) ∈ (εs1 ⊗ εs2)

(
λ
(
(x, y) : X1 ×X2

)
.
⋃

k∈I(x,y)

k(x, y)

)

45

but that there is no choice function p:(X
1×X2)→ ((X1×X2)→ Pf(R

2)) for I with

(0, 0) ∈ (ε⊗ δ)(λ(x, y).p(x,y)(x, y)).

Consider the game given by
(
(Xi)

n
i=1, (ε

s
i)
n
i=1, k

)
. By 3.9.0.7, we know that

(⊗n
i=1 εi

)
(k)

is equal to the set of Σ(G) plays. The set of strategies Σ(G) is then the maximal set

of strategies such that no strategy is strictly dominated in any subgame. When each

Xi is finite, this simply means that
(⊗n

i=1 ε
s
i

)
(k) computes the plays of strategies

obtained via the iterated removal of strictly dominated strategies.

46

Chapter 4

Conclusions and further work

The selection monad and its generalised counterparts are not well-studied. This is

perhaps not surprising as the first non-automated proof that selection functions form

a monad appeared as recently as 2010 in [EO10a]. To the author’s knowledge, the

body of work making use of selection functions consists in a handful of papers on

• Synthetic topology [Esc04,Esc08,Esc07];

• Proof theory [EO14,OP15,EO15];

• Functional programming foundations [Hed14,Hed15]; and

• Game theory (these works being closely related to the work in this thesis)

[EO10a,EO10b,HOS+17a,HOS+17b]

It is perhaps slightly concerning that work on selection functions is being con-

ducted by so few authors, the potential reasons for this being that

1. The study of selection functions began only relatively recently and has not yet

reached a wider audience;

2. The current uses of selection functions are somewhat esoteric and of less interest

to the wider computer science community (unlike, say, the continuation monad);

3. The mathematics of selection functions is sometimes tedious and difficult to

communicate (though this situation should improve as they become better un-

derstood).

In the rest of this chapter, we discuss some of the possible future work on sequential

games and selection functions.

47

4.1 Dependent products

There is currently no clear game theoretic interpretation of the dependent product of

selection functions. Recall that a strong monad T induces a dependent product

� : (TX × (X → TY))→ T (X × Y)

as well as the simpler independent product

⊗ : (TX × TY)→ T (X × Y)

that we have been using. For the selection monad, the dependent product is an

operation

� :
(
JR(X)×

(
X → JR(Y)

))
→ JR(X × Y).

We can imagine that ε� δ represents a sequential game where the moves δ considers

optimal depends not merely on a context, but also on the move chosen by ε. Whether

this brings new solutions concepts within the purview of selection functions is, as of

yet, unclear.

4.2 Exotic monads

In 3.8 we showed that multi-valued selection functions fail, in general, to compute

subgame perfect plays. Prima facie, this is because the algebras of the finite nonempty

powerset monad destroy much of the fine-grained information about the structure of

a sequential game. It may be the case that there exist monads that are better suited

to this task and that do compute the set of subgame perfect plays.

Selection functions in arbitrary cartesian closed categories and over arbitrary mon-

ads are not well-understood. Moreover, the problem of generalising results regarding

multi-valued selection functions to arbitrary T -selection functions seems very difficult.

48

Part II

Open games

49

Chapter 5

Concrete open games

Open games offer an approach to compositional game theory that is significantly

more expressive than the theory of sequential games. Sequential games offer no

account of simultaneous play, whilst open games support both sequential and parallel

composition. There are instances of real-world games that include both sequential and

simultaneous play and any satisfactory attempt at compositional game theory must

be able to account for both types of play within the same formalism. For instance,

in warfare we can imagine that opposing nations might simultaneously and privately

decide where to deploy troops. Following this they must react to intelligence about

where the other nation has deployed. Another example is ‘hidden move Go’ whereby

two players each place a number of invisible (i.e. the other play does not know their

location) stones on the Go board before play begins. The game then proceeds as usual

and the location of the hidden stones is revealed as and when they would impact the

game (for example, in the case of a capture or if a player tries to place a stone on top

of an invisible stone).

In this chapter we cover concrete open games, which correspond to games of

perfect information and which use Set as an ambient category. The key ideas in

this chapter are not the author’s (the best early work on open games is likely the

PhD thesis [Hed16], and a more recent treatment is the paper [GKLF18]), but are

presented both for completeness and because there were some minor gaps in the

original works which I have since filled. In chapter 6 we will generalise concrete open

games to ambient categories other than Set and, in doing so, we will greatly enhance

the expressive power of the open games formalism.

50

5.1 Chapter overview

5.2 covers the basic definitions and results concerning symmetric monoidal categories,

which form the foundation for the rest of the work in this thesis; 5.3 introduces lenses,

a bidirectional mathematical structure which is used to describe the structure of an

open game; 5.4 and 5.5 show how lenses form a symmetric monoidal category; 5.6

formally defines concrete open games, the structure of interest for this chapter, and

shows how concrete open games form a symmetric monoidal category; 5.7 shows how

the games of classical game theory can be modelled using concrete open games; 5.8 is

a discussion of the possible benefits of a different definition of concrete open games.

5.2 Monoidal categories

The remainder of this thesis will be carried out in the context of (symmetric) monoidal

categories which provide a natural setting for processes that can be combined in two

dimensions (for instance, in sequence and in parallel). Monoidal categories admit of

a powerful graphical calculus of string diagrams that we use extensively. This cal-

culus makes readable many proofs and equations that would otherwise be obscure.

In the past decade there has been an explosion of applications for monoidal category

theory and its string diagrams in work on quantum mechanics [CK17, Bae06, Sel12],

compositional models of natural language [BCG+17,KSPC13], chemical reaction net-

works [BP17], and probability theory [CS12] (to name a few). The standard reference

for monoidal categories, and where a much more detailed discussion of the following

definitions and results can be found, is [ML71].

Definition 5.2.0.1 (Monoidal category). A monoidal category is a category C to-

gether with

• A bifunctor ⊗ : C × C → C called the tensor product ;

• An object I ∈ C called the monoidal unit ; and

• Natural isomorphisms αX,Y,Z : (X ⊗ Y)⊗Z → X ⊗ (Y ⊗Z), λX : I ⊗X → X,

and ρX : X⊗I → X called the associator and left and right unitors respectively.

It is moreover required that the following diagrams commute for all objectsX, Y, Z,W ∈
C.

51

((X ⊗ Y)⊗ Z)⊗W (X ⊗ (Y ⊗ Z))⊗W X ⊗ ((Y ⊗ Z)⊗W

X ⊗ (Y ⊗ (Z ⊗W))(X ⊗ Y)⊗ (Y ⊗ Z)

αX,Y,Z ⊗ idW αX,Y⊗Z,W

idX ⊗ αY,Z,WαX⊗Y,Z,W

αX,Y,Z⊗W

(X ⊗ I)⊗ Y) X ⊗ (I ⊗ Y)

X ⊗ Y

αX,I,Y

ρX ⊗ idY
idX ⊗ λY

The above diagrams are sometimes referred to as the MacLane pentagon and MacLane

triangle respectively.

The diagrams in the above definition are sufficient for establishing the following

coherence theorem for monoidal categories.

Theorem 5.2.0.2 (Coherence for monoidal categories). Every formal diagram in a

monoidal category constructed using the structural isomorphisms and monoidal unit

commutes.

When the monoidal tensor ⊗ is ‘sufficiently’ commutative, we obtain a symmetric

monoidal category.

Definition 5.2.0.3 (Symmetric monoidal category). A symmetric monoidal category

is a monoidal category C together with a swap natural isomorphism sX,Y : X ⊗ Y →
Y ⊗X such that, for all X, Y, Z ∈ C,

X ⊗ I I ⊗X

A

sX,I

ρX
λX

and

(X ⊗ Y)⊗ Z (Y ⊗X)⊗ Z Y ⊗ (X ⊗ Z)

X ⊗ (Y ⊗ Z) Y ⊗ (Z ⊗X)(Y ⊗ Z)⊗X

sX,Y ⊗ idZ αY,X,Z

αX,Y,Z

sX,Y⊗Z αY,Z,X

idY ⊗ sX,Z

commute, and sY,X ◦ sX,Y = idX⊗Y .

52

Example 5.2.0.4. Set is symmetric monoidal. The monoidal unit is the one element

set {?}; the monoidal tensor is the cartesian product; and the structural natural

isomorphisms are the obvious bijections.

Example 5.2.0.5. The category FVectR of finite dimensional real vector spaces is

symmetric monoidal. The monoidal unit is the one-dimensional vector space and if

V and U are vector spaces with bases BV = {v1, · · · , vn} and BU = {u1, · · · , um}
respectively, then V ⊗ U is the vector space with basis BV × BU .

A monoidal functor is a functor between monoidal categories that respects monoidal

structure.

Definition 5.2.0.6. A monoidal functor F : C → D between monoidal categories

C and D is a functor together with a natural transformation ϕA,B : FA ⊗ FB →
F (A⊗ B) and a morphism ψ : IC → FIC such that the following diagrams commute

for all objects A,B, and C of C.

(FA⊗ FB)⊗ FC
α

FA⊗ (FB ⊗ FC)
id⊗ ϕB,C

FA⊗ F (B ⊗ C)

ϕA,B ⊗ id

F (A⊗B)⊗ FC F ((A⊗B)⊗ C)
ϕA⊗B,C

F (A⊗ (B ⊗ C))
Fα

ϕA,B⊗C

FA⊗ ID
id⊗ ψ

FA⊗ FIC
ρ

FA F (A⊗ IC)

ϕA,IC

Fρ

ID ⊗ FB
ψ ⊗ id

FIC ⊗ FB

λ

FB F (IC ⊗B)

ϕIC ,B

Fλ

5.2.1 Diagrams for symmetric monoidal categories

A thorough review of the many diagrammatic calculi associated with various types of

monoidal categories is [Sel10]. There exist many extensions of the ‘vanilla’ calculus for

monoidal categories that are able to visually represent additional structure that can

exist in a monoidal category. The calculus we make use of is relatively modest, the

only addition being a representation of the ‘swap’ morphisms that exist in symmetric

monoidal categories. The string diagrams in this thesis should be read ‘left to right,’

53

but we note that there is little consensus on the appropriate orientation of string

diagrams in the literature1.

• An object X of C is denoted by a wire

X X ,

• A morphism f : X → Y is denoted by a box

f YX
,

• Given another morphism g : Y → Z, the sequential composite g ◦ f : X → Z is

f gY
X Z

,

• Given h : X ′ → Y ′ then tensor f ⊗ h : X ⊗X ′ → Y ⊗ Y ′ is

f

h

YX

Y ′X ′
,

• The swap maps sX,Y : X ⊗ Y → Y ⊗X are

X

Y

Y

X ,

• In general, morphisms k : X1⊗ · · · ⊗Xn → Y1⊗ · · · ⊗ Ym are denoted by boxes

with multiple inputs/outputs

k

Y1

Ym

X1

Xn

...
...

,

• morphisms s : I → X1 ⊗ · · · ⊗Xn and e : Y1 ⊗ · · · ⊗ Ym → I are called states

and effects, and are respectively denoted by

1Left-right is most common, but bottom-top is popular among quantum theorists. Top-bottom
and right-left exist, but are rarely used.

54

s
X1

Xn

... and e
Y1

Ym

...
.

The remarkable theorem underlying the diagrammatic calculus is as follows.

Theorem 5.2.1.1 (Correctness of string diagrams for symmetric monoidal cate-

gories). A well-typed equation of morphisms in a formal symmetric monoidal category

follows from the symmetric monoidal category axioms if and only if it holds in the

graphical language up to four-dimensional isotopy.

Intuitively, morphisms in a symmetric monoidal category are invariant under topo-

logical deformations of string diagrams which keep the inputs and outputs fixed. That

these deformations are ‘four dimensional’ simply means that deformations where the

diagram passes through itself are permitted. For instance, the following equalities

hold in any symmetric monoidal category.

=

=

=

Reasoning using string diagrams is carried out by performing topological defor-

mation and by using known equalities of the category in consideration to perform

substitutions in a string diagram.

55

5.2.2 Comonoids

A comonoid in a symmetric monoidal category C is a ‘copying-like’ operation. A

comonoid on an object X : C is given by a two maps c : X → X ⊗X and e : X → I

where c is the ‘copying’ map and e is a ‘deleting’ map. These maps must be like

copying in two ways. Firstly, it should be co-associative and, secondly, copying and

then deleting one of the copies should be the same as doing nothing at all.

Definition 5.2.2.1 (Comonoid). A comonoid in a monoidal category C on an object

X : C is a pair of maps c : X → X ⊗X, e : X → I, denoted by

X

X

X and X

respectively, such that

X

X

X

X = X

X

X

X

and

X

X =
X

X = X X

.

Example 5.2.2.2 (The copy/delete comonoid). Let X be a set. The diagonal map

∆ : X → X ×X and deleting map ! : X → {?} form a comonoid in Set.

Definition 5.2.2.3 (Comonoid homomorphism). Suppose we have comonoids on ob-

jects X and Y in a monoidal category denoted by white and black circles respectively.

A comonoid homomorphism is a morphism f : X → Y such that

f
Y

Y

X =
f

f

Y

Y

X

and

fX = X

Example 5.2.2.4. Any function is a comonoid homomorphism for the copy/delete

comonoid in Set.

56

5.3 Lenses

The lenses used in this thesis are direct descendants of the lenses of database theory

(see the paper [BS81] for an embryonic account of lenses for databases). We use lenses

to describe the flow of information through a game (the connection to databases will

be explained shortly). A lens for a given game describes which players have access to

what information when making a strategic decision, and also how information about

players’ strategic decisions is ultimately fed into the outcome function for the game.

For example, it may specify an order of play, or whether two players are playing

in parallel, or even whether some players are privy to certain information in the

environment that other players are not.

In general, lenses can be thought of as processes that perform some computation

and then propagate some resulting feedback from the environment backwards through

a system of which they are a part. In particular, this means that lenses have both

covariant and contravariant components. The covariant component carries out the

initial computation and the contravariant component propagates the resulting feed-

back back through the system. Crucially, lenses are also compositional in the sense

that they admit both sequential and parallel composition and, consequently, form a

symmetric monoidal category.

Given a database x of type X we may want to view some subdatabase y of type

Y . This is encapsulated by a view function v : X → Y . From this ‘close-up’ view

of the database we may want to edit the database by updating y. Given an update

of the view y we then need to know how this update propagates to an update of

the original superdatabase x. That is, given an original database x and an updated

view y′ : Y , we should specify some updated x′ : X given by some update function

u : X × Y → X. The pair (v, u) is a lens with type X → Y . The connection to our

previous abstract definition of lenses is as follows:

• The covariant computation associated with the lens is the view function v :

X → Y ,

• the resulting feedback from the environment is the update made to the sub-

database returned by the view function, and

• this feedback is propagated back to the whole database via the update function.

Abstracting away from databases, there is no reason to demand that the feedback

generated by the environment will have the same type as the output of the lens

57

computation. Similarly, we may be interested in cases where the update function

is not-so-literally an ‘update’ function, but merely a function that propagates some

kind of feedback back through the system. As such, the lenses we will be using will

have types of the form (X,S)→ (Y,R) where the covariant component of the lens is

of type X → Y and the contravariant component is of type X ×R→ S.

In game theory, we can regard players as ‘lenses that care about the feedback

they receive from the environment.’ In a game with sequential play, players make

some play (computation), receive some utility (feedback) from the outcome function,

and then pass some feedback to earlier players in the game (their outcome function

given the moves that the later players chose). Moreover, given that lenses admit of

parallel composition as well as sequential composition, we obtain a nuanced notion

of information flow in a game.

In the next section we describe a symmetric monoidal category of concrete lenses.

‘Concrete’ here refers to the fact that the view and update functions are functions

in Set. In chapter 6 we give a further generalisation of lenses, noting some of the

surprising obstacles that arise.

5.4 The category of concrete lenses

Definition 5.4.0.1 (Concrete lens). Let X,S, Y and R be sets. A concrete lens

l : (X,S)→ (Y,R) is a pair of functions (lv : X → Y, lu : X ×R→ S).

We offer game theoretic interpretations of the sets X,S, Y, and R in 5.6.

As a trivial first example, there is an obvious mapping that takes a morphism of

Set× Setop and returns a concrete lens.

Example 5.4.0.2. Let f : X → Y and g : R → S. Define a concrete lens 〈f, g〉 :

(X,S)→ (Y,R) by

〈f, g〉v = f

〈f, g〉u(x, r) = g(r)

Definition 5.4.0.3 (Sequential composition of concrete lenses). Let l : (X,S) →
(Y,R) and t : (Y,R) → (Z,Q) be concrete lenses. The sequential composite t ◦ l :

(X,S)→ (Z,Q) is given by
(
(t ◦ l)v : X → Z, (t ◦ l)u : X ×Q→ S

)
where

(t ◦ l)v = tv ◦ lv

and (t ◦ l)u is given by

58

X ×Q X ×X ×Q X × Y ×Q X ×R S.
∆X × idX idX × lv × idQ idX × tu lu

As a string diagram (t ◦ l)u is given by

tu
lu

R

Slv
Y

X

Q

Lemma 5.4.0.4 (Sequential composition of concrete lenses is associative). Suppose

we have concrete lenses

(X,S) (Y,R) (Z,Q) (W,T)
l m n

.

Then n ◦ (m ◦ l) = (n ◦m) ◦ l.

Proof.
(
n◦(m◦l)

)
v

=
(
n◦m)◦l

)
v

by associativity of function composition.
(
n◦(m◦l)

)
u

is given by

(m ◦ l)v
nu

Z (m ◦ l)u

Q

X

T

S

which, expanding, is

lv mv
Y

nu

Z
lv

mu

Y

Q

X

T

lu

R

S

.

Using the comonoid equations for the copy/delete comonoid (5.2.2.1) and the fact that

every function is a comonoid homomorphism (5.2.2.3) for the copy/delete comonoid,

we see that

lv

lvX Y

X

Y

=
lv

Y

Y

X

X

Substituting, we see that
(
n ◦ (m ◦ l)

)
u

is

59

lv
Y

mv

nu

Z
mu

Q

X lu

R

S

T .

This, then, is just

lv
(n ◦m)u

Y
lu

R

SX

T

which is
(
(n ◦m) ◦ l

)
u

as required.

Theorem 5.4.0.5 (Concrete lenses form a category). There is a category CL with

object class Set× Set and concrete lenses as morphisms.

Proof. It just remains to show that CL has identity morphisms id(X,S) : (X,S) →
(X,S). Define idXv(x) = x and idXu(x, s) = s. The result then follows by easy

checks.

5.5 The monoidal structure of concrete lenses

Definition 5.5.0.1 (Tensor composition of concrete lenses). Let l1 : (X1, S1) →
(Y1, R1) and l2 : (X2, S2) → (Y2, R2) be concrete lenses. The tensor composition

l1 ⊗ l2 : (X1 × X2, S1 × S2) → (Y1 × Y2, R1 × R2) is given by
(
(l1 ⊗ l2)v, (l1 ⊗ l2)u

)
where

(l1 ⊗ l2)v = l1v × l2v
and (l1 ⊗ l2)u is given by

X1 ×X2 ×R1 ×R2 X1 ×R1 ×X2 ×R2 S1 × S2

∼= l1u × l2u

In a diagram, (l1 ⊗ l2)u is

l1u

l2u

S1

S2

X1

X2

R1

R2

60

Lemma 5.5.0.2. ⊗ is a functor.

Proof. Suppose we have concrete lenses

(X1, S1) (Y1, R1) (Z1, Q1)
l1 m1

and

(X2, S2) (Y2, R2) (Z2, Q2)
l2 m2

.

We note that

(m1 ◦ l1)⊗ (m2 ◦ l2) = (m1 ⊗m2) ◦ (l1 ⊗ l2).

is easy to verify for the view function and, concerning the update function, the cor-

responding string diagrams

l1v m1
u

X1

l1u S1Y1

R1

l2v m2
u

l2u S2Y2

R2
Q2

X2

R1

and

l1v

l2v

m1
u

m2
u

Y1

Y2 l2u

R2

l1u

R1

S1

S2

X1

X2

Q1

Q2

are equal.

That id(X,S) ⊗ id(X′,S′) = id(X×X′,S×S′) follows easily from simple checks.

Theorem 5.5.0.3. There is a symmetric monoidal category CL where the objects

are pairs of sets and the morphisms are concrete lenses. Sequential composition and

the monoidal tensor are as in the above definitions.

61

Proof. The structural isomorphisms are inherited from Set as follows.

α(X1,S1),(X2,S2),(X3,S3) = 〈αX1,X2,X3 , α
−1
S1,S2,S3

〉

λ(X,S) = 〈λX , λ−1
S 〉

ρ(X,S) = 〈ρX , ρ−1
S 〉

s(X,S),(X′,S′) = 〈sX,X′ , s−1
S,S′〉

Where the α, ρ, λ, and s on the right-hand side are the obvious Set isomorphisms.

These maps satisfy the axioms for symmetric monoidal categories as α, ρ, λ, and

s satisfy the axioms for Set. Naturality of these maps follows by easy checking.

The following observations about states and effects in CL will be useful in the

remainder of this chapter.

Lemma 5.5.0.4. CL
(
I, (X,S)

) ∼= X.

Proof. This is easily seen as a state l ∈ CL
(
(I, (X,S)

)
is given by a pair(

s : {?} → X, e : {?} × S → {?}
)
.

Lemma 5.5.0.5. CL
(
(Y,R), I

) ∼= (Y → R)

Proof. An effect l ∈ CL
(
(Y,R), I

)
is given by a pair(

v : Y → {?}, u : Y × {?} → R
)
.

5.6 Concrete open games

In this section we give the definition of the central notion for this chapter, the concrete

open game. A concrete open game consists in a set of strategy profiles; a family of

concrete lenses indexed by the set of strategy profiles; and a best response function.

Definition 5.6.0.1 (Concrete open game). Let X,S, Y, and R be sets. A concrete

open game G : (X,S)→ (Y,R) is given by

1. A set of strategy profiles Σ;

62

2. A play function P : Σ→ CL
(
(X,S), (Y,R)

)
; and

3. A best response function B : X × (Y → R)→ Rel(Σ).

Recall that Rel(Σ) is the set of relations on Σ, given by Σ → P(Σ). The type

X is the type of observations made by the game; the type Y is the type of actions

that can be chosen; the type R is the type of outcomes ; and the type S is the type of

co-outcomes. Of the four types associated with a concrete open game, the type S is

the most mysterious. Succinctly, its purpose is to relay information about outcomes

to games acting earlier. In a sequential composite H ◦ G of open games (we will

define sequential composition of concrete open games shortly), the co-outcome type

of H is also the outcome type G. We think of H as receiving some outcome which is

then acted upon by the contravariant component of a concrete lens given by H’s play

function before being passed back to G as G’s outcome.

The best response function of an open game is an abstraction from the selection

functions of the previous part and from the utility functions of classical game theory.

Recall that a Nash equilibrium for a normal form game is a strategy profile in which

no player has incentive to unilaterally deviate. We can instead think of a relation on

the set of strategy profiles for a normal form game where strategy profiles σ and τ are

related if τ is the result of players unilaterally deviating from σ to their most profitable

unilateral deviation. Nash equilibria are then the fixed points of this relation. In the

definition of a concrete open game, we work directly with a best response relation

rather than preference relations.

The play function takes a strategy as argument and returns a concrete lens that

describes an open play of the game G (‘open’ here means ‘lacking a particular obser-

vation and outcome function’ and is explained in the next paragraph). To justify this

interpretation, recall that a concrete lens l : (X,S) → (Y,R) consists in v : X → Y

and u : X ×R→ S. The view function v describes how a game decides on an action

given an observation (similar to how strategies for sequential games work). The up-

date function u describes precisely how games relay information about outcomes to

other games acting earlier.

As the name suggests, concrete open games are open to their environment. The

appropriate notion of a context for a concrete open game is given in the following

definition. A concrete open game together with a context can be thought of as a full

description of a game.

63

Definition 5.6.0.2. Let G : (X,S)→ (Y,R). A history for G is an element x of X,

an outcome function for G is a function k : Y → R, and a context for G is a pair

(x, k) : X × (Y → R).

We are now in a position to justify the type of the best response function. The

best response function takes a context as argument, and a context is precisely the

information required for resolving the ‘openness’ of a concrete open game. Given a

context, the best response function then returns the set of best deviations from a

strategy profile σ.

We represent a concrete open game G : (X,S) → (Y,R) using the following

diagram.

G
Y

RS

X

This diagrammatic notation emphasizes the point that information flows both

covariantly through G from observations to actions, and contravariantly through G
from outcomes to co-outcomes. These diagrams constitute a bona fide diagrammatic

calculus for the category of concrete open games defined in the remainder of this

chapter, as detailed in [Hed17].

Notation 5.6.0.3. String diagrams in the category of open games will always be

drawn with arrowheads on wires, whilst string diagrams in the ambient category will

always be drawn without arrowheads.

Atomic concrete open games are an important class of concrete open games, and

are the basic components out of which more complex games are constructed. Whilst

concrete open games can, in general, represent aggregates of agents responding to

each other (in a way that will be made precise in 5.6.3 and 5.6.4), atomic concrete

open games describe games in which there is no strategic interaction. Examples are

simple computations in which no decisions are made whatsoever and single agents

sensitive only to a given context.

Definition 5.6.0.4 (Atomic concrete open game). A concrete open game a : (X,S)→
(Y,R) is atomic if

1. Σa ⊆ CL
(
(X,S), (Y,R)

)
;

2. For all l ∈ Σa, Pa(l) = l; and

64

3. For all contexts c : X × (Y → R), Ba(c) is constant.

We sometimes refer to an atomic concrete open game simply as an atom.

Note that an atom a : (X,S) → (Y,R) is fully determined by a subset Σa ⊆
CL
(
(X,S), (Y,R)

)
and a preference function εa : X × (Y → R)→ P(Σa). The play

function is given by the identity on Σa, and the best response function Ba : X×(Y →
R)→ Rel(Σa) is given by Ba(x, k)(σ) = εa(x, k).

Given f : X → Y and g : R→ S, as in CL, the pair (f, g) ∈ Set× Setop can be

represented as a concrete open game. We refer to such games as computations as no

strategic choice is being made.

Example 5.6.0.5 (Computation). Let f : X → Y and g : R → S. The atom

〈f, g〉 : (X,S)→ (Y,R) is given by

1. Σ = {〈f, g〉}; and

2. For all c : X × (Y → R), ε(c) = Σ.

Similar to CL, the following computations will turn out to be the underlying

structural maps for the symmetric monoidal category of concrete open games.

Definition 5.6.0.6 (Structural computations). Define identity, associator, swaps,

and left/right unitor computations to be the atomic concrete open games given by

id(X,S) = 〈idX , idS〉

αX⊗(Y⊗Z),A⊗(B⊗C) = 〈αX,Y,Z , α−1
X,Y,Z〉

s(X,A),(Y,B) = 〈s(X,Y), s
−1
(A,B)〉

ρ(X,Y) = 〈ρX , ρ−1
Y 〉

λ(X,Y) = 〈λX , λ−1
Y 〉

where the Set functions on the right-hand side of the equalities are the obvious Set

isomorphisms.

Counit games are an interesting class of atoms that reverse the direction of infor-

mation flow in a concrete open game.

Definition 5.6.0.7 (Counit). Let f : X → S. Define an atomic concrete open game

cf : (X,S)→ ({?}, {?}) by

1. Σcf = {〈!, f〉}; and

65

2. For all c : X × ({?} → {?}), ε(c) = Σcf .

We are being slightly relaxed with notation here as the update function for cf has

type X × {?} → S while f has type X → S. We represent cf as follows.

f
X

S

5.6.1 Agents

So far we have only seen open games for which the set of strategies is a singleton,

describing games with no strategic decisions. Our first examples of a concrete open

game with non-trivial strategy set are agents. These can be used to represent the

utility-maximising agents of traditional game theory or, more generally, to represent

players trying to influence the outcome of a game.

Definition 5.6.1.1 (Agent). An agent A : (X, {?}) → (Y,R) is an atom such that

Σ = CL
(
(X, {?}), (Y,R)

)
.

Recall that a concrete lens l : CL
(
(X, {?}), (Y,R)

)
is a pair (v : X → Y, u :

X × R → {?}) and, hence, is uniquely determined by a function of type X → Y .

Consequently, a strategy for an agent specifies how an agent map chooses an action

of type Y given an observation of type X. Given a context c : X × (Y → R), BA(c)

picks out the set of strategies A considers acceptable in the context c.. Agents are

represented diagrammatically by

A
Y

R
X

We can specialise the definition above to model the utility-maximising agents of

traditional game theory.

Example 5.6.1.2 (Utility-maximising agent). The utility-maximising agent A :

(X, {?})→ (Y,R) is given by

ε(x, k) =
{
σ : X → Y

∣∣ σ(x) ∈ arg max(k)
}
.

66

5.6.2 Best response with concrete lenses

Recall from 5.5.0.4 and 5.5.0.5 that CL
(
I, (X,S)

) ∼= X and that CL
(
(Y,R), I

) ∼=
Y → R. Using these facts we can rephrase the type of best response for a concrete

open game G : (X,S)→ (Y,R) as

BG : CL
(
I, (X,S)

)
×CL

(
(Y,R), I

)
→ Rel(ΣG).

This formulation allows for a concise and natural definition of sequential com-

position for concrete open games where it would otherwise seem ad hoc. To make

matters clear, we write x when talking about elements of X and x? when talking

about corresponding states in CL
(
I, (X,S)

)
. Similarly, we write k : Y → R when

talking about functions in Set and we write k? when talking about corresponding

effects in CL
(
(Y,R), I

)
.

5.6.3 Sequential composition of concrete open games

In this section we specify how to define the sequential composite H ◦ G : (X,S) →
(Z,Q) of two concrete open games G : (X,S)→ (Y,R) and H : (Y,R)→ (Z,Q).

We imagine that this composition really is sequential in a straightforward way. G
is ‘played out’ according to some strategy σ ∈ ΣG and thenH is ‘played out’ according

to some τ ∈ ΣH. A choice of (σ, τ) ∈ ΣG × ΣH therefore determines an open play of

G and H played in sequence, and so we take ΣG ×ΣH to be the strategy profile set of

H ◦ G.

The play function of the sequential composite is defined straightforwardly using

the sequential composition of concrete lenses defined in 5.4.0.3.

Defining best response for a sequential composite is a bit more delicate and, for

explanatory purposes, we make use of the informal notion of a local context for a

subgame. Given a context c = (x : X, k : Z → Q) and a strategy (σ, τ) for H ◦ G, the

best response relation of H ◦ G is specified by calling the best response function of G
with a modified context corresponding to how c ‘appears’ to G whenH plays according

to τ and, similarly, calling the best response function of H with a modified context

corresponding to how c ‘appears’ to H when G plays according to σ. In practice we

define these ‘local contexts’ in the obvious way that type checks, but this is because

the work has already been done in carefully choosing the correct definitions.

Definition 5.6.3.1 (Sequential composition for concrete open games). Let G =

(ΣG,PG,BG) : (X,S) → (Y,R) and H = (ΣH,PH,BH) : (Y,R) → (Z,Q) be con-

crete open games. Define

67

1. ΣH◦G = ΣG × ΣH,

2. PH◦G(σ, τ) = PH(τ) ◦ PG(σ) (where ◦ composition is in CL), and

3. BH◦G(x
?, k?)(σ, τ) = BG(x

?, k? ◦ PH(τ))σ × BH(PG(σ) ◦ x?, k?)(τ).

We represent H ◦ G with the diagram

G
X

S
H

Y

R

Z

Q
.

5.6.4 Tensor composition for concrete open games

The tensor composition of open games represents simultaneous play. Given concrete

open games G : (X1, S1)→ (Y1, R1) and H : (X2, S2)→ (Y2, R2), the strategy set for

G ⊗H is ΣG ×ΣH; we make use of the tensor composition in CL in defining the play

function; and the best response function is given by modifying the context c to give

local contexts for G and H.

Definition 5.6.4.1 (Local contexts for tensor composition). Define the left local

tensor context operator

L :
(
X ′ × (X ′ → Y ′)× (Y × Y ′ → R×R′)

)
→ (Y → R)

by

L(x′, p′, k)(y) = π1 ◦ k(y, p′(x′)).

As a diagram, L(x′, p′, l) is the function

x′
X ′

p′
Y ′ k R′

Y R

Similarly, define the right local tensor context operator

R :
(
X × (X → Y)× (Y × Y ′ → R×R′)

)
→ (Y ′ → R′)

by

R(x, p, k)(y′) = π2 ◦ k(p(x), y).

As a diagram,

68

x
X p Y

k

R

R′Y ′

Suppose we have concrete open games G : (X,S) → (Y,R) and H : (X ′, S ′) →
(Y ′, R′) and we wish to combine them to create some game G⊗H : (X×X ′, S×S ′)→
(Y ×Y ′, R×R′). Consider the left context operator L acting on some triple (x′, p′, k).

If k is an outcome function for the game G⊗H and H observes x′ and plays according

to the function p′, then L(x′, p′, k) is the ‘apparent’ outcome function for G. Similarly,

R(x, p, k) is the ‘apparent’ outcome function for H when G observes x and plays

according to p. With this in mind, we define tensor composition for concrete open

games as follows.

Definition 5.6.4.2 (Tensor composition of concrete open games). Let G : (X,S)→
(Y,R) and H : (X ′, S ′)→ (Y ′, R′) be concrete open games. Define

G ⊗H : (X ×X ′, S × S ′)→ (Y × Y ′, R×R′)

by

1. ΣG⊗H = ΣG × ΣH,

2. PG⊗H(σ, τ) = PG(σ)⊗ PH(τ) (in CL),

3. BG⊗H :
(

(X ×X ′)× (Y × Y ′ → R×R′)
)
→ Rel(ΣG⊗H) is given by

BG⊗H
(
(x, x′)?, k?

)
(σ, τ) = BG

(
x?,L(x′, (PH(τ))v, k)?

)
(σ)

× BH
(
x′?,R(x, (PG(σ))v, k)?

)
(τ)

G ⊗H is represented by the diagram

G
X

S

Y

R

H
X ′

S′

Y ′

R′ .

69

5.6.5 Equivalence of open games

One subtlety remains before we can define the category of concrete open games. We

aim to define a category with object class Set×Set and morphisms given by concrete

open games. If carried out näıvely, this runs into the problem that strategy sets which

should be identical are merely isomorphic. For instance, the strategy set of (G◦H)◦K
is (ΣG×ΣH)×ΣK whilst the strategy set of G◦(H◦K) is ΣG×(ΣH×ΣK). In order for

concrete open games to form a category, we must first take an appropriate quotient.

We do this by defining a notion of simulation between concrete open games of the

same type.

Definition 5.6.5.1. A relation α : A� B is serial2 if for all a ∈ A there exists some

b ∈ B such that α(a, b).

Definition 5.6.5.2. Let G,H : (X,S) → (Y,R) be concrete open games. A sim-

ulation α : G → H is given by a serial relation α : ΣG � ΣH such that, for all

σ, σ′ ∈ ΣG, τ ∈ ΣH, and c ∈ X × (Y → R), if α(σ, τ) then

1. PG(σ) = PH(τ); and

2. σ′ ∈ BG(c)(σ) =⇒ ∃τ ′ ∈ ΣH such that α(σ′, τ ′) and τ ′ ∈ BH(c)(τ).

Definition 5.6.5.3. Let G,H : (X,S) → (Y,R) be concrete open games. G and H
are equivalent, written G ∼ H, if there exists a simulation α : G → H where the

converse relation αc : H → G is also a simulation. In this instance we say that α is

a bisimulation of open games. We write [G] for the equivalence class of G under this

relation. We also say that the relation α witnesses the equivalence between G and H
and write G α∼ H.

We note that this approach is not standard in the open games literature, and

that there are multiple sensible definitions for ‘maps’ between open games. In the

paper [Hed18a], Jules Hedges defines contravariant lens morphisms between open

games as follows.

Definition 5.6.5.4 (Contravariant lens morphism). Let G1 : (X1, S1)→ (Y1, R1) and

G2 : (X2, S2) → (Y2, R2) be open games. A contravariant lens morphism α : G → G ′

consists in

• Concrete lenses sα : (X2, S2)→ (X1, S1) and tα : (Y2, R2)→ (Y1, R1);

2In the literature, serial relations are sometimes called total or entire.

70

• and a function Σα : ΣG1 → ΣG2

such that, for all σ ∈ ΣG1 , the square

(X1, S1)
PG1(σ)

(Y1, R1)

sα

(X2, S2) (Y2, R2)
PG2

(
Σα(σ)

)

tα

commutes and, for all (x2, k1) ∈ X2 × (Y1 → R1) and σ1, σ
′
1 ∈ ΣG1 ,

σ′1 ∈ BG1(sα ◦ x?2, k?1)(σ1) =⇒ Σα(σ′1) ∈ BG2(x?2, tα ◦ k?1)
(
Σα(σ1)

)
Using these morphisms Hedges constructs a symmetric monoidal pseudo double

category of concrete open games — a level of generality where one can work without

needing to take a quotient. Moreover, if one views open games as the objects of a

double category (rather than as morphisms as we have been doing in this chapter),

one can talk about open games specified by universal properties.

One other approach to defining maps between open games is given by Neil Ghani

et al. in the paper [GKLF18], though this approach is a means to a different end.

Namely, providing a definition of infinitely repeated games as final coalgebras.

The following results demonstrate that sequential and tensor composition of con-

crete open games respects equivalence of concrete open games.

Lemma 5.6.5.5. Let G,G ′ : (X,S)→ (Y,R) and H,H′ : (Y,R)→ (Z,Q) be concrete

open games. If G ∼ G ′ and H ∼ H′, then G ◦ H ∼ G ′ ◦ H′.

Proof. Suppose G α∼ H and G ′ β∼ H′. Then α× β : ΣG × ΣG � ΣG′ × ΣH′ given by

(α× β)
(
(σ, τ), (σ′, τ ′)⇔ α(σ, σ′) and β(τ, τ ′)

is such that G ⊗H α×β∼ G ′ ⊗H′.

Lemma 5.6.5.6. Let G,H : (X,S) → (Y,R) and G ′,H′ : (X ′, S ′) → (Y ′, R′) be

concrete open games. If G ∼ H and G ′ ∼ H′, then G ⊗ G ′ ∼ H⊗H′.

Proof. If G α∼ H and G ′ β∼ H′, then G ⊗ G ′ α×β∼ H⊗H′ as in the previous lemma.

71

In addition to its utility for defining a category of concrete open games, quotienting

by equivalence rules out some pathological behaviour. Given a game G : (X,S) →
(Y,R), we can define G ′ : (X,S) → (Y,R) where ΣG′ = ΣG + ΣG and where the

behaviour of G ′ is the same on both copies of ΣG. G and G ′ are distinct, but equivalent

concrete open games.

Example 5.6.5.7. Let il, ir : A→ A+A be the left and right injections respectively.

If a ∈ il(A), then a is a member of the ‘left’ copy of A in A + A. If a ∈ ir(A), a is a

member of the ‘right’ copy. Let G : (X,S)→ (Y,R) be a concrete open game. Define

G ′ : (X,S)→ (Y,R) by

1. ΣG′ = ΣG + ΣG;

2. PG′(σ) = PG(σ); and

3. For all c ∈ X × (Y → R), x ∈ {l, r}, and σ ∈ ix,

BG′(c)(σ) =
{
τ ∈ ix(A)

∣∣∣ τ ∈ BG(c)(σ)
}
.

Let β : ΣG � ΣG+ΣG be the relation given by β(σ) = {il(σ), ir(σ)}. Then β witnesses

the equivalence between G and G ′.

We will have more to say about the meaning of this quotient in 5.8, but for now we

will simply show that it allows us to form a symmetric monoidal category of concrete

open games.

5.6.6 The category of concrete open games

We are now finally in a position to show that concrete open games form a symmetric

monoidal category.

Notation 5.6.6.1. In string diagrams we refer to a play function applied to a strategy

simply by the strategy. For example, σ may refer to PG(σ). In practice this does not

lead to ambiguity because proofs and definitions proceed by assigning fixed strategies

to particular open games. This notational convention allows for less cluttered string

diagrams.

Lemma 5.6.6.2. Sequential composition of concrete open game equivalence classes

is associative.

Proof. Suppose we have concrete open games

72

(X,S) (Y,R) (Z,Q) (W,T)
G H K

.

Define a relation β : (ΣG×ΣH)×ΣK � ΣG× (ΣH×ΣK) by β
((

(σ, τ), µ
)
,
(
σ, (τ, µ)

))
.

PK◦(H◦G)((σ, τ), µ) = P(K◦H)◦G(σ, (τ, µ)) as composition in CL is associative.

Also,

BK◦(H◦G)(x
?, k?)((σ, τ), µ)

=BH◦G
(
x?, k? ◦ PK(µ)

)
(σ, τ)× BK

(
PH◦G(σ, τ) ◦ x?, k?

)
(µ)

=
(

BG
(
x?, k? ◦ PK(µ) ◦ PH(τ)

)
(σ)× BH

(
PG(σ) ◦ x?, k? ◦ PK(µ)

)
(τ)

× BK
(
PH◦G(σ, τ) ◦ x?, k?

)
(µ)
)

β∼BG
(
x?, k? ◦ PK◦H(τ, µ)

)
(σ)×

(
BH
(
PG(σ) ◦ x?, k? ◦ PK(µ)

)
(τ)

× BK
(
PK(µ) ◦ PH(τ) ◦ x?, k?

)
(µ)
)

= BG
(
x?, k? ◦ PK◦H(τ, µ)

)
(σ)× BK◦H

(
PG(σ) ◦ x?, k? ◦ PK(µ)

)
(τ, µ)

= B(K◦H)◦G(x
?, k?)(σ, (τ, µ))

Basic checks verify that β does witness an equivalence between K ◦ (H ◦ G) and

(K ◦ H) ◦ G.

Remark 5.6.6.3. In the above proof we handwave slightly in the best response

calculation where we use the relation β. Really, we are manipulating the best response

function until it is obvious why β witnesses an equivalence between the two open

games. The gory details are easy, but also tedious and not illuminating.

The identity morphism (X,S)→ (X,S) is given by the computation 〈idX , idS〉.

Lemma 5.6.6.4. Let G : (X,S)→ (Y,R). Then [G] = [G ◦ 〈idX , idS〉] = [〈idY , idR〉 ◦
G].

Proof. Define a relation β : ΣG � ΣG×{?} by β(σ, (?, σ)). Then G β∼ (〈idY , idR〉◦ G).

A similar argument works for G ◦ 〈idX , idS〉.

Corollary 5.6.6.5. There is a category ConGame with object class Set× Set and

equivalence classes of concrete open games as morphisms.

We now move on to proving that ConGame is symmetric monoidal.

Lemma 5.6.6.6. ⊗ : ConGame×ConGame→ ConGame is a functor.

Proof. Suppose we have concrete open games

73

(X,S) (Y,R) (Z,Q)
G H

(X ′, S ′) (Y ′, R′) (Z ′, Q′)
G′ H′ .

Let σ ∈ ΣG, τ ∈ ΣH, σ
′ ∈ ΣG′ , and τ ′ ∈ ΣH′ . Let β : (ΣG × ΣH)× (ΣG′ × ΣH′) �

(ΣG × ΣG′)× (ΣH × ΣH′) be the relation generated by(
(σ, τ), (σ′, τ ′)

) β∼
(
(σ, σ′), (τ, τ ′)

)
.

As CL is symmetric monoidal,

P(H◦G)⊗(H′◦G′)
(
(σ, τ), (σ′, τ ′)

)
= P(H⊗H′)◦(G⊗G′)

(
(σ, σ′), (τ, τ ′)

)
.

We now proceed by showing that the games G,G ′,H, and H′ have the same local

contexts in both (H◦G)⊗ (H′ ◦ G ′) and (H⊗H′) ◦ (G ⊗G ′). Let x ∈ X, x′ ∈ X ′, and

k : Z × Z ′ → Q × Q′. For the local outcome function for G, unpacking definitions

reveals that

kG := L
(
x′,PG(σ

′),
(
k? ◦ PH⊗H′(τ, τ

′)
))

= k
τv

τ ′v

σu

σ′u

R

σ′vx′

Y

X ′

Z

Z ′

Q

Q′

Y ′

=

k
τv

τ ′v

σu R

σ′vx′

Y

X ′

Z

Z ′

Q
Y ′

Q

=
k

τv

τ ′v

σu R

σ′vx′

Y
Z

Q

QX ′ Y ′ Z ′
.

74

= L
(
x′,PH′◦G′(σ

′, τ ′), k
)
?
◦ PH(τ)

For H′ the local outcome function is given by

kH′ := R
(

PG(σ)v(x),PH(τv), k
)

=
σv(x)

Y τv
Z

k

Q

Q′

Z ′

=
x

X σv
Y τv

Z

k

Q

Q′Z ′

= R
(
x,PH(τ)v ◦ PG(σ)v, k

)
The following equalities for the local outcome functions of G ′ and H respectively

follow by similar checks.

kG′ := R
(
x,PG(σ), k? ◦ PH⊗H′(τ, τ

′)
)

= R
(
x,PH◦G(σ, τ), k

)
?
◦ PH′(τ

′)

kH := L
(

PG′(σ
′)v(x

′),PH′(τ
′)v, k

)
= L

(
x′,PH′(τ

′)v ◦ PG′(σ
′)v, k

)
Then

B(H⊗H′)◦(G⊗G′)
(
(x, x′)?, k?

)(
(σ, σ′), (τ, τ ′)

)
=

(
BG
(
x?, kG?

)
(σ)× BG′

(
x′?, kG′?

)
(σ′)

)
×
(

BH
(
PG(σ)v(x)?, kH?

)
τ × BH′

(
PG′(σ

′)v(x
′)?, kH′?

))
β∼
(

BG
(
x?, kG?

)
(σ)× BH

(
PG(σ)v(x)?, kH

)
(τ)

)
×
(

BG′
(
x′, kG′

)
(σ′)× BH′

(
PG′(σ

′)v(x
′)?, kH′

))
=B(H◦G)⊗(H′◦G′)

(
(x, x′), k

)(
(σ, τ), (σ′, τ ′)

)
All that remains is to show that id(X,S)⊗id(X′,S′) ∼ id(X×X′,S×S′). This equivalence

is witnessed by the relation γ : {?}×{?}� {?} given by the total relation γ
(
(?, ?), ?

)
.

75

Lemma 5.6.6.7. The associator in ConGame is natural.

Proof. Let Gi : (Xi, Si)→ (Yi, Ri) be open games where i ∈ {1, 2, 3}. We need to show

that α◦ (G1⊗ (G2⊗G3)) ∼ ((G1⊗G2)⊗G3)◦α. Define β : (ΣG1× (ΣG2×ΣG3))×{?}�
{?} × ((ΣG1 × ΣG2)× ΣG3) by

(
(σ, (τ, µ)), ?

) β∼
(
?, ((σ, τ), µ)

)
.

As CL is symmetric monoidal, we have that

α ◦ PG1⊗(G2⊗G3)(σ, (τ, µ)) = P(G1⊗G2)⊗G2((σ, τ), µ) ◦ α.

Let xi ∈ Xi and k : (Y1× Y2× Y3)→ (R1×R2×R3). We will show that the local

contexts for G1,G2, and G3 are the same in both G1 ⊗ (G2 ⊗ G2) and (G1 ⊗ G2) ⊗ G3.

First we consider G1. Let k′ := L(x3,PG3µ, k). Then,

kG1 := L
(
(x2, x3),PG2⊗G3(τ, µ), k

)

=
(x2, x3) (τ ⊗ µ)v

X2

X3

Y2 k

Y3

Y1

R1

=
x2

x3

X2 τv

X3

µv

Y2
k

Y3

Y1

R1

=
x2

X2 τv
Y2 k′

R1Y1

= L
(
x2,PG2(τ),L

(
x3,PG3µ, k

))
Similar arguments hold for G2 and G3, showing that

kG2 := R
(
x1,PG1(σ),L

(
x3,PG3(µ), k

))
= L

(
x3,PG3(µ),R

(
x1,PG1(σ), k

))

76

and

kG3 := R
(

(x1, x2),PG1⊗G2(σ, τ), k
)

= R
(
x2,PG2(τ),R

(
x1,PG1(σ), k

))
.

Then

Bα◦(G1⊗(G2⊗G3))

(
(x1, (x2, x3)), k

)(
?, (σ, (τ, µ))

)
=B? ×

(
BG1(x1, kG1)(σ)×

(
BG2(x2, kG2)(τ)× BG3(x3, kG3)(µ)

))
β∼
((

BG1(x1, kG1)(σ)× BG2(x2, kG2)(τ)
)
× BG3(x3, kG3)(µ)

)
× B?

=B((G1⊗G2)⊗G3)◦α
(
((x1, x2), x3), k

)(
((σ, τ), µ), ?

)
where B? is the total best response relation of α.

The above lemma relies on the fact that the monoidal tensor in Set is cartesian.

In particular we needed that bipartite states s : I → S1 ⊗ S2 in Set (i.e. elements

of S1 × S2) correspond to pairs of states (s1 : I → S1, s2 : I → S2). In an arbitrary

monoidal category, it need not be the case that for all states s : I → S1 ⊗ S2 there

exist states s1 : I → S1 and s2 : I → S2 such that

s
S1

S2

=

s1 S1

s2 S2

.

This poses a significant barrier to generalising concrete open games to monoidal cat-

egories where the monoidal tensor is not cartesian, and chapter 6 addresses this

problem.

Lemma 5.6.6.8. The structural computations λ, ρ, and s are natural in ConGame.

Proof. Easy checks.

Theorem 5.6.6.9. ConGame is symmetric monoidal.

Proof. All that remains to be checked is that the structural maps satisfy the MacLane

pentagon and triangle identities, but this follows easily from the symmetric monoidal

structure of Set.

77

5.6.7 Encoding functions as games

Recall that, given functions f : X → Y and g : R → S, there is a computation

concrete open game 〈f, g〉 : (X,S)→ (Y,R). In fact, this operation is functorial.

Lemma 5.6.7.1 ([Hed16]). Define F : Set × Setop → ConGame by F (X,S) =

(X,S) and F (f : X → Y, g : R → S) = 〈f, g〉. Then F is a faithful monoidal

functor.

We also incorporate computations directly into the diagrammatic calculus for

concrete open games, representing the computation 〈f, g〉 : (X,S)→ (Y,R) by

f

g

YX

S R
.

Two particularly useful examples of this notation are the covariant and contravariant

copying computations 〈∆X , id〉 : (X, I) → (X × X, I) and 〈id,∆R〉 : (I, R × R) →
(I, R) which are represented by

X

X

X

and

R

R

R

respectively.

5.7 Game theory with concrete open games

In this section we give some examples of games modeled using concrete open games.

We will be light on details, aiming to simply demonstrate some of the expressive

power of concrete open games. We direct the reader to [Hed16] for more details.

5.7.1 Bimatrix games

Bimatrix games are simply two player normal form games, the most well-known

example of which is likely the prisoners’ dilemma, discussed in 2.5.0.2. We assume

for simplicity that the set of actions available to each player is finite.

Definition 5.7.1.1. A bimatrix game consists in

1. Finite set of actions A and B; and

78

2. An outcome function k : A×B → R2.

A bimatrix game G = (A,B, k) is represented by the concrete open game

A

B

ck

A

B

R

R

where A and B are utility-maximising agents and ck is the counit game associated

with k. In diagrammatic form, the structure of the game is made clear. Players

A and B make independent choices from A and B respectively which are then used

to generate two real numbers as outcomes. Bimatrix games may not have a Nash

equilibrium in pure strategies, but in cases that do have Nash equilibria, they appear

as fixed points of the best response function of the above concrete open game.

5.7.2 Deterministic sequential games as open games

There is an obvious mapping from selection functions to concrete open games.

Example 5.7.2.1. Let ε : JR(X) be a single-valued selection function. Define a

concrete open game Gε : I → (X,R) to be the agent with preference function3

ρGε(?, k : X → R) = {ε(k)}

Given in this form it is not clear how we should compose these open games that

correspond to selection functions. Given Gε and Gδ, where ε : JR(X) and δ : JR(Y)

there is no obvious operation that forms Gε⊗δ due to the fact that Gδ does not have an

observation type of X. This asymmetry between sequential composition of selection

functions and sequential composition of open games is not surprising: open games

have a notion of history, whilst sequential games do not. Nevertheless, given a pair

of selection functions, we can still define an open game related to their tensor.

Example 5.7.2.2. Let ε : JR(X) and δ : JR(Y) be single-valued selection functions.

Define Gε,δ : I → (Y,R) to be the concrete open game given by

3ε was chosen as the notation for preference functions due to their similarity to selection functions.
In this section, we wish to carefully distinguish between the preference functions of open games and
the selection functions of sequential games, so we will be using ρ instead.

79

Gε

X Hδ

Y

R

X

where Gε is as in the previous example and where Hδ is the agent with preference

function

ρHδ(x, k : X × Y → R) =
{
δ
(
k(x,−)

)}
.

The obvious question to ask of Gε,δ is whether the fixed points of its best response

function given an outcome function k correspond to the value (ε⊗ δ)(k). The answer

is that, in general, the fixed points do not correspond to the play computed by the

tensor of selection functions. This is because selection functions compute subgame

perfect plays, whilst the fixed points of the best response function of an open game

are Nash equilibria. That is, the fixed points of BGε,δ(?, k) are the Nash equilibria

for the two-round sequential game
(
(X, Y), (ε, δ), k

)
, which are strategy profiles (σ1 :

X, σ2 : X → Y such that

1. σ1 = ε
(
λ(x : X).k(x, σ2(x))

)
; and

2. σ2(σ1) = δ
(
λ(y : Y).k(σ1, y)

)
.

5.7.3 Nondeterministic sequential games as open games

As with deterministic sequential games, there is an obvious mapping from nondeter-

ministic selection functions to concrete open games.

Example 5.7.3.1. Let ε : J Pf
R (X) be a nondeterministic selection function. Define

GPf
ε : I → (X,R) to be the agent with preference function ρGPf

ε
(?, k : X → R) = ε(k).

Also, as in the previous subsection, given another nondeterministic selection func-

tion δ, we can define an open game related to a nondeterministic sequential game

involving ε and δ.

Example 5.7.3.2. Let ε : J Pf
R (X) and δ : J Pf

R (Y) be nondeterministic selection

functions. Define GPf
ε,δ : I → (Y,R) to be the concrete open game given by

80

GPf
ε

X HPf
δ

Y

R

X

where GPf
ε is as in the previous example and where HPf

δ is the agent with preference

function

ρHδ(x, k : (X × Y)→ R) = δ
(
k(x,−)

)
.

Whilst, superficially, the structure of the open game above seems similar to the

structure of a nondeterministic sequential game
(
(X, Y), (ε, δ), k

)
, they in fact have

quite different associated solution concepts. As we saw in Chapter 3, the tensor of

nondeterministic selection functions computes the plays of rational strategies (when

the selection functions are sufficiently well-behaved). Open games, in contrast, com-

pute Nash equilibria which, for a nondeterministic sequential game
(
(X, Y), (ε, δ), k

)
,

are strategy profiles (σ1 : X, σ2 : X → Y) such that

1. σ1 ∈ ε
(
λ(x : X).k(x, σ2(x))

)
; and

2. σ2(σ1) ∈ δ
(
λ(y : Y).k(σ1, y)

)
.

5.7.4 Normal form games

Let
(
(Si)

n
i=1, (ki)

n
i=1

)
be a normal form game for n players. Define k :

∏n
i=1 Si → Rn

by s = (s1, · · · , sn) 7→ (q1(s), · · · , qn(s)). We can model this normal form game using

the concrete open game

ck ◦
(n⊗

i=1

Ai
)

where Ai : I → (Si,R) is the utility-maximising agent. The fixed points of this game

are then the Nash equilibria of the normal form game.

5.8 Problems with open games

The category ConGame defined in this chapter has some less-than-ideal properties.

Namely,

81

• Morphisms (open games) are specified, in part, by an arbitrary set of strategy

profiles. This seems unnecessary and also means that the category of concrete

open games is not locally small.

• The need to quotient by bisimulation adds an additional layer of complexity. A

category of open game where no such quotient is necessary would be preferable.

These two problems are related and, also, quite persistent. We will discuss a

potential solution to these problems and, in doing so, illustrate why these problems

are difficult to resolve.

A natural approach is to define concrete open games in the way atomic concrete

open games are specified. That is, a concrete open game G : (X,S) → (Y,R) would

be given by a set of strategy profiles ΣG ⊆ CL
(
(X,S), (Y,R)

)
and a preference

function εG :
(
X × (Y → R)

)
→ Rel(Σ). Given another concrete open game H :

(Y,R) → (Z,Q) given by (ΣH, εH), we could then easily define ΣH◦G =
{
m ◦ l

∣∣ l ∈
ΣG, m ∈ ΣH

}
. This operation is clearly associative, obviating the need to take a

quotient. Defining the set of strategy profiles for tensor composition is similarly not

problematic. Moreover, bounding sets of strategy profiles by hom-sets in CL means

that the resulting category would be locally small. Problems begin to arise when one

attempts to define sequential composition of preference functions. Consider G and H
as above. We would expect εH◦G to have type X × (Z → Q)→ Rel(ΣH◦G). If we fix

n ∈ ΣH◦G, there may be no canonical way of factoring n as m ◦ l where l ∈ ΣG and

m ∈ ΣH. Consequently, there may be no canonical way to call εG and εH given n and

a context (x, k) ∈ X × (Z → Q).

Abstracting, we can explain why this problem arises by pointing to the two pur-

poses of the set of strategy profiles in our original definition of concrete open games.

1. Concrete lenses describing the structure of a concrete open game are indexed

by strategy profiles; and

2. The structure of the set of strategy profiles describes which subgames can uni-

laterally deviate from the rest of the game. That is, the set of strategy profiles

carves up a concrete open game into components over which different agents

have control.

In our attempted redefining of concrete open games above, we do not keep enough

fine-grained structure about strategies to fulfill the second item on this list.

Given these observations, designing a category of concrete open games where no

quotient needs to be taken seems like a difficult problem. We can fare better in

82

making the category of concrete open games locally small. We cannot define open

games just as we specify atoms, but we can limit ourselves to only those open games

that are generated by the atoms and sequential and tensor composition. This results

in a locally small category of concrete open games.

83

Chapter 6

General open games

This chapter constitutes the beating heart of this thesis. We define a notion of

‘open game’ over arbitrary symmetric monoidal categories, clearing the path for a

vastly more expressive theory of open games. In the next chapter we show that this

generalisation provides a model of various classes of Bayesian games. We will find

that there are two primary obstacles to overcome.

1. Concrete lenses do not straightforwardly generalise to arbitrary symmetric monoidal

categories; and

2. The notion of best response needs to be suitably modified in order to account

for Bayesian updating.

Fortunately, there exists mathematical machinery that will help solve both of these

problems: coends.

6.1 Chapter overview

In 6.3 we introduce coends. In 6.4 we show how coends can be used to generalise

concrete lenses. 6.5 discusses the problem of generalising concrete open games to

more general monoidal categories. In 6.6, we develop the notion of a context for

general open games.

6.2 Generalising concrete lenses

In the proof of 5.4.0.4 we made use of the fact that every Set function is a comonoid

homomorphism for the copy/delete comonoid. Recall that a morphism is a comonoid

homomorphism if it can be ‘moved through’ the comonoid structure.

84

f =

f

f

f =

If Set is replaced with some arbitrary symmetric monoidal category C and the

copy/delete comonoid is replaced with some arbitrary comonoid in C, sequential com-

position of lenses, as defined in 5.4.0.3, may not be associative. This presents a

substantive problem — there exist categories relevant to game theory in which se-

quential composition of concrete lenses is not associative. Of particular interest is

the Kleisli category of the finitary distribution monad, Kl(D), which we will need in

order to model Bayesian games (discussed in chapter 7). Kl(D) inherits a copy/delete

comonoid from Set, but its comonoid homomorphism are the deterministic maps (i.e.

precisely the non-probabilistic maps).

In the next section we introduce some standard categorical machinery — co-wedges

and coends. These will allow us to generalise concrete lenses to categories other than

Set. We call these generalised lenses coend lenses or, simply, lenses. The introduc-

tion of coend lenses proceeds similarly to the introduction of symmetric monoidal

categories (5.2) in that we first introduce the technical notion before describing a

graphical notation allowing for more readable proofs.

6.3 Co-wedges and Coends

Co-wedges1 are a variant of natural transformations applying to functors that act

both covariantly and contravariantly on an argument. In 5.3 we noted that lenses have

both covariant and contravariant components. We will see that this behaviour can be

described by coends, which are initial co-wedges. For extra motivation, discussion,

and examples, we refer the reader to [Lor15].

Definition 6.3.0.1 (Co-wedge). Let F : Cop × C → D be a functor. A co-wedge

c : F → α is an object α : D together with maps
{
ca : F (a, a)→ α

∣∣ a : C
}

such that,

for any morphism f : a′ → a, the diagram

1‘Co-wedges’ is hyphenated because it was once remarked to me that ‘cowedge’ could be read
‘cow edge’ and some things cannot be unseen.

85

α F (a, a)

F (a′, a′) F (a′, a)

ca

ca′

F (a′, f)

F (f, a)

commutes.

Definition 6.3.0.2 (Coend). A coend is a couniversal co-wedge. Diagrammatically,

the coend of a functor F : Cop×C → D is a co-wedge
{
ca : F (a, a)→ coend(F)

∣∣ a : C
}

such that for any other co-wedge
{
da : F (a, a)→ α

∣∣ a : C
}

and morphism f : a′ → a

the diagram

coend(F) F (a, a)

F (a′, a′) F (a′, a)

α

F (f, a)

F (a′, f)

ca

ca′

da

da′

h

commutes for a unique morphism h : coend(F)→ α.

We adopt the integral notation for co-ends, writing∫ a:C
F (a, a)

for coend(F). We will make use of the fact that coends can be characterised by the

following coequaliser.

Lemma 6.3.0.3. Let F : Cop×C → D. If D is cocomplete and C is small, the coend∫ a:C
F (a, a) is given by the coequaliser of the following pair of arrows.

∐
a,a′:C
f :a′→a

F (a, a′)
∐
a:C

F (a, a)
F1

F2

Where the f : a′ → a components of F1 and F2 are F (f, a′) and F (a, f) respectively.

When C is not small (as is usually the case), we need to show directly that coends

exist.

86

6.4 Coend lenses

The content of this section is due to Mitchell Riley’s work in [Ril18], which contains

a far more detailed treatment and which serves as a good standard reference for

coend lenses. We first give an abstract definition of coend lenses, then provide some

justification.

Definition 6.4.0.1 (Coend lens). Let X,S, Y, and R be objects in a symmetric

monoidal category (C,⊗). A coend lens l : (X,S)→ (Y,R) is an element of the set∫ A:C
C(X,A⊗ Y)× C(A⊗R, S)

We think of the coend in the above definition as acting as a kind of existential

quantifier over the type variable A, followed by a quotient (to be described) over the

resulting structure. That is, a coend lens l : (X,S)→ (Y,R) consists in an equivalence

relation over triples comprised of a choice of type A, a morphism v : X → A ⊗ Y ,

and another morphism u : A⊗R→ S.

By 6.3.0.3 we can characterise coend lenses (X,S) → (Y,R) as the elements

of a particular coequaliser. Moreover, coequalisers in Set are given by quotients.

Unpacking the coequaliser explicitly, coend lenses (X,S) → (Y,R) are given by the

set of triples of the form described above, quotiented by the equivalence relation

generated by (
(f ⊗ idY) ◦ v, u

)
∼
(
v, u ◦ (f ⊗ idR)

)
for all A,B : C and f : A→ B. In diagrammatic form, the pair

v
f B

Y

A

X

,
u S

B

R

is related to the pair

vX
A

Y ,

f
u S

A

R

B

.

We refer to the types A and B as bound types (B is bound in the first diagram, A in

the second). In chapter 7, we will see that this bound type keeps track of correlations

between random variables in the Kleisli category of the distribution monad.

In vague terms, two pairs of morphisms are related if one can get from one to the

other by ‘sliding’ a morphism off the bound type of one morphism on to the bound

87

type of the other. Given a pair of morphisms (v : X → A ⊗ Y, u : A ⊗ R → S),

we write [v, u] for their equivalence class. When we need to talk explicitly about the

bound type of [v, u] we write [A, v, u] to specify that the pair (v, u) has bound type

A. We also adopt the convention that l = [Al, lv, lu] where, as with concrete lenses,

we say that lv is the view morphism and lu is the update morphism. We follow [Ril18],

taking the hint from the diagrammatic representation of the equivalence relation by

representing a coend lens [v, u] : (X,S)→ (Y,R) as

v
Y

u
R

X S

.

We usually omit the bound type in diagrams for clarity. The equivalence relation is

then simply

vX
Y

u
R

f

S = vX
Y

u
R

f

S

The equivalence relation permits the cancelling of isomorphisms.

v
Y

u
R

X S = vX

f f−1

u
Y R

S

.

Many proofs in this chapter proceed by allowing symmetric monoidal structure to

interact with coend structure as, for example, in the following diagram.

vX
Y

u
R

S = vX u
Y R

S

.

We suspect that this notation corresponds to a graphical calculus on a par with

the various calculi for monoidal categories, but verifying this falls outside the scope

of this thesis. We consider these diagrams as mere short-hand. The cases relevant to

us in this work are certainly not problematic. For instance, the above equation

v
Y

u
R

X S = vX

f f−1

u
Y R

S

.

is a shorthand for the following inference:

88

vX
Y ,

u S
R

=

vX

f f−1

Y ,

u S
R

∼

vX

f

Y ,

u S
f−1

R

Example 6.4.0.2 (Identity lens). The identity lens id(X,S) : (X,S)→ (X,S) is given

by [idX : X → X, idS : S → S]. Diagrammatically,

X X SS

Example 6.4.0.3. A pair of morphisms (f : X → Y, g : R → S) is encoded by the

coend lens [I, f, g] : (X,S)→ (Y,R):

fX Y gR S

Definition 6.4.0.4 (Sequential composition of coend lenses). Let [v, u] : (X,S) →
(Y,R) and [v′, u′] : (Y,R)→ (Z,Q) be coend lenses. Define [v′, u′] ◦ [v, u] : (X,S)→
(Z,Q) to be

vX

v′

Y Z
u′

Q

u

R

S

.

Explicitly,

[v′, u′, A′] ◦ [v, u, A] = [(v′ ⊗ idA) ◦ v, u ◦ (idA ⊗ u′), A⊗ A′].

89

Theorem 6.4.0.5 (Coend lenses form a category). Suppose C is a category such that,

for all objects X,S, Y,R ∈ C,∫ A:C
C(X,A⊗ Y)× C(A⊗R, S)

exists. Then there is a category LensC with object class C × C and where

LensC
(
(X,S), (Y,R)

)
=

∫ A:C
C(X,A⊗ Y)× C(A⊗R, S)

.

When C is small, the existence of the coend lens types are guaranteed by the

cocompleteness of Set. When C is not small, and the lens types correspond to coends

indexed by a large category, we must verify that these types exist by some other

means (by, for example, giving a Set isomorphism). Fortunately, this is not difficult

for the categories of interest in this work.

Definition 6.4.0.6 (Tensor composition of coend lenses). Let [v, u] : (X,S)→ (Y,R)

and [v′, u′] : (X ′, S ′)→ (Y ′, R′) be coend lenses. Define [v, u]⊗ [v′, u′] : (X ⊗X ′, S ⊗
S ′)→ (Y ⊗ Y ′, R⊗R′) to be

vX

v′X ′
Y ′

Y

u′

u

R′

R

S

S′

.

Explicitly, [v, u, A]⊗ [v′, u′, A′] is given by[
(idA ⊗ sY,A′ ⊗ idY ′) ◦ (v ⊗ v′), (u⊗ u′) ◦ (idA ⊗ sA′,R ⊗ idR′), A⊗ A′

]
Theorem 6.4.0.7 (LensC is symmetric monoidal). The category LensC is symmet-

ric monoidal with the tensor given in 6.4.0.6, monoidal unit I = (IC, IC), and with

structural morphisms inherited from C given by

α(X,A),(Y,B),(Z,C) = [αX,Y,Z , α
−1
A,B,C]

λ(X,A) = [λX , λ
−1
A]

ρ(X,A) = [ρX , ρ
−1
A]

s(X,A),(Y,B) = [sX,Y , sB,A]

Lemma 6.4.0.8. When ⊗ is cartesian, LensC is isomorphic to CLC.

90

6.5 Generalising open games

We could, at this point, attempt to define a (generalised) open game G : (X,S) →
(Y,R) over a symmetric monoidal category C as

1. A set Σ of strategies;

2. A play function P : Σ→ Lens
(
(X,S), (Y,R)

)
; and

3. A best response function B : C(I,X)× C(Y,R)→ Rel(Σ).

Call such generalised open games interim open games (for they will not live long).

Sequential composition and tensor composition of interim open games could be de-

fined much as we did for concrete open games. The problems begin to arise when one

attempts to prove that this definition results in a symmetric monoidal category.

In proving that the associator was natural in CL, we used the fact that the

monoidal tensor in Set is cartesian. If the tensor of C is not cartesian, the local

context of G in G ⊗ (H⊗K) is different to the local context of G in (G ⊗H)⊗K. Let

G : (X1, S1)→ (Y1, R1)

H : (X2, S2)→ (Y2, R2)

K : (X3, S3)→ (Y3, R3)

be interim open games, p ∈ C(I,X1 ⊗X2 ⊗X3), k ∈ C(Y1 ⊗ Y2 ⊗ Y3, R1 ⊗ R2 ⊗ R3),

and (σ, τ, µ) ∈ ΣG × ΣH × ΣK. The local context of G in G ⊗ (H⊗K) is given by

p
X2 τv

µv
X3

Y2
k

Y3

Y1

R1

whilst the local context of G in (G ⊗H)⊗K is given by

p
X2 τv

p X3 µv

Y2
k

Y3

Y1

R1

.

91

In general, these morphisms are not the same. In the case where C is the Kleisli

category of the distribution monad (to be defined in chapter 6), the first morphism

contains information about correlations between the types X2 and X3 whilst the

second morphism does not. Consequently, the distinction between these two local

contexts for G is substantive. Fortunately, coend lenses also provide a solution to this

problem.

The high level approach for defining a category of generalised open games is to use

as few ‘deleting’ maps as possible. We do this by ‘hiding’ information in the bound

variable of a coend lens whenever we would otherwise delete it. A consequence of

this approach is that the correct definition of a ‘context’ for generalised open games

is quite abstract, but we will see this abstractness allows for more elegant proofs and,

in any case, disappears when dealing with the categories we are actually interested

in.

6.6 States, continuations, and contexts

In this section we define a generalised notion of context for open games. Observe that

a state [s, s′] ∈ LensC(I, (X,S)) has the form

s
X

s′
S

.

More verbosely, a state s ∈ LensC(I, (X,S)) is the equivalence class of a choice of

type A : C together with a state s : C(I, A⊗X) in C and an effect s′ : C(A⊗ S, I) in

C. We think of the state s as a history and we call the effect s′ a cohistory2.

An effect [e, e′] ∈ LensC((Y,R), I) has the form

eY

I I

e′ R

.

Concerning effects, we have the following result.

Lemma 6.6.0.1. C(Y,R) ∼= LensC((Y,R), I)

2Cohistories are not yet well understood. They make proofs easier, but vanish in categories which
make game theoretic sense.

92

Proof. The isomorphism i : C(Y,R)→ LensC((X,S), (Y,R)) is given by

i(f : Y → R) = [R, f, idR] = [Y, idY , f]

This result captures the idea that ‘effects in LensC are outcome functions in C.’
We can now define (generalised) contexts which consist in a coend over a state

in LensC (a history/cohistory pair) and an effect in LensC (an outcome function).

Contexts are therefore members of a iterated coend. This iterated coend turns out to

be a state in the iterated lens category LensLensC . From a purely technical standpoint,

using iterated lenses allows for elegant proofs. From a heuristics perspective, we will

see that the extra bound variable the iterated lens affords us enables us, in the case

C = Kl(D), to store information about correlations between variables where we would

otherwise have to take marginals.

Definition 6.6.0.2 (Context functor). 3 The context functor C : LensC ×Lensop
C →

Set is given by

C(Φ,Ψ) =

∫ Θ:LensC

LensC(I,Θ⊗ Φ)× LensC(Θ⊗Ψ, I)

= LensLensC(I, (Φ,Ψ))

Elements of C(Φ,Ψ) are called contexts.

As a context [p, k] ∈ C(Φ,Ψ) is just a state in LensLensC , it admits a graphical

representation as

p
Φ

k
Ψ

.

This is neat, and means many of the proofs in the rest of this chapter can be carried

out graphically.

3This particular form of the context functor is due to Guillaume Boisseau, and was communicated
to the author in person. It is a refinement of the original definition of a context for an open game,
which can be seen in 6.11, which is due to the author.

93

6.7 General open games

We have now arrived at a level of generality where we can define generalised open

games in a way that is obviously analogous to concrete open games. Given Φ,Ψ ∈
LensC, an open game consists in a set of strategy profiles, a family of lenses indexed

by the set of strategy profiles, and a best response function which takes a context as

input and returns a relation on strategy profiles.

Definition 6.7.0.1 (Open game). Let Φ,Ψ ∈ LensC. An open game G : Φ → Ψ

consists in

1. A set of strategy profiles Σ;

2. A play function P : Σ→ LensC(Φ,Ψ); and

3. A best response function B : C(Φ,Ψ)→ Rel(Σ).

The rationale here is much the same as it is with concrete open games. The play

function takes a strategy profile as input and returns a lens describing an open play of

the game. Best response takes a context as argument that provides the information

necessary for the game to make informed strategic decisions, and returns a relation

on strategies.

As with concrete open games, we define a notion of atomic open game.

Definition 6.7.0.2. An atomic open game a : Φ→ Ψ is an open game such that

1. Σa ⊆ LensC(Φ,Ψ);

2. For all l ∈ Σa, Pa(l) = l; and

3. For all contexts c ∈ C(Φ,Ψ), Ba(c) is constant.

Atomic open games are uniquely specified by a subset Σ ⊆ LensC(Φ,Ψ) and a

preference function ε : C(Φ,Ψ) → P(Σ). We refer to atomic open games simply as

atoms.

Example 6.7.0.3. The identity atom idΦ : Φ → Φ is given by Σ = {idΦ}, ε(c) =

{idΦ} for all c ∈ C(Φ,Ψ).

Example 6.7.0.4 (Computation). Let f : C(X, Y) and g : C(R, S) be morphisms in

C. Define the atom 〈f, g〉 : (X,S)→ (Y,R) by

1. Σ〈f,g〉 = {[f, g]}; and

2. B〈f,g〉(c) = {[f, g]} for all c ∈ C
(
(X,S), (Y,R)

)
.

94

6.7.1 Composing open games

The heuristic for sequential composition of general open games is much the same

as for concrete open games in 5.6.3. The only difference is that we are now using

coend lenses rather than concrete lenses, and contexts also are slightly different. Best

response of a sequential composite H◦G is still defined by forming local contexts for

G and H.

Definition 6.7.1.1 (Sequential composition of open games). Let G : Φ → Ψ and

H : Ψ→ Ξ be open games. Define H ◦ G : Φ→ Ξ by

1. ΣH◦G = ΣG × ΣH,

2. PH◦G(σ, τ) = PH(τ) ◦ PG(σ),

3. BH◦G[p, k](σ, τ) = BG[p, k ◦ PH(τ)](σ)× BH[PG(σ) ◦ p, k](τ).

Given a context [p, k] ∈ C(Φ,Ξ) represented by the diagram

p
Φ

k
Ψ

the local context for G given a strategy τ ∈ ΣH is given by

p
Φ τΨ

Ξ

k

and given a strategy σ ∈ ΣG the local context for H is given by

p
Φ

σ Ψ
k

Ξ
.

In this representation the process of taking a local context is non-arbitrary, and

obviously associative.

6.7.2 The tensor of open games

Again, the heuristic for defining the tensor of open games is much as it was for

concrete open games. We will first formalise the notion of ‘local context’ for tensored

general open games.

95

Definition 6.7.2.1 (Local contexts for tensor composition). Define the left local

context function

LΦ,Φ′,Ψ,Ψ′ : C(Φ⊗ Φ′,Ψ⊗Ψ′)× LensC(Φ
′,Ψ′)→ C(Φ,Ψ)

by

L([p, k], l) =

p l
Φ′

Φ

k

Ψ

Ψ′

.

Define the right local context function

RΦ,Φ′,Ψ,Ψ′ : C(Φ⊗ Φ′,Ψ⊗Ψ′)× LensC(Φ,Ψ)→ C(Φ′,Ψ′)

by

R([p, k], l) =
p l

Φ

Φ′

k
Ψ

Ψ′

.

We will usually suppress the subscripts of L and R as the types can be inferred

from context.

Definition 6.7.2.2 (Tensor composition of open games). Let G : Φ → Ψ and H :

Φ′ → Ψ′ be open games. Define G ⊗H : Φ⊗ Φ′ → Ψ⊗Ψ′ by

• ΣG⊗H = ΣG × ΣH;

• PG⊗H(σ, τ) = PG(σ)⊗ PH(τ) (in LensC);

• Define BG⊗H : C(Φ⊗ Φ′,Ψ⊗Ψ′)→ Rel(ΣG⊗H) by

BG⊗H(c)(σ, τ) = BG(L(c,PH(τ)))(σ)× BH(R(c,PG(σ)))(τ)

6.8 Equivalence of open games

As in 5.6.5, we need to quotient open games in order to obtain a category.

Definition 6.8.0.1 (Simulation of open games). Let G,H : Φ → Ψ be open games.

A simulation of open games α : G → H is a serial relation α : ΣG → ΣH such that,

for all σ, σ′ ∈ ΣG, τ ∈ ΣH, and c : C(Φ,Ψ), α(σ, τ) implies that

96

1. PG(σ) = PH(τ); and

2. σ′ ∈ BG(c)(σ)⇒ ∃τ ′ ∈ ΣH such that α(σ′, τ ′) and τ ′ ∈ BH(c)(τ).

Definition 6.8.0.2 (Equivalence of open games). Let G,H : Φ→ Ψ be open games.

G and H are equivalent, written G ∼ H, if there is a simulation α : G → H such that

the converse relation αc : H → G is also a simulation of open games. We say that

α is a bisimulation of open games and write [G] for the equivalence class of G under

this relation.

Lemma 6.8.0.3. Let G,G ′ : Φ → Ψ, H,H′ : Ψ → Ξ, and K,K′ : Φ′ → Ψ′ be open

games. Then

1. If G ∼ G ′ and H ∼ H′, then H ◦ G ∼ H′ ◦ G ′; and

2. If G ∼ G ′ and K ∼ K′, then G ⊗ K ∼ G ′ ⊗K′.

Demonstrating equivalence in the cases of interest will always be trivial, and so

we simply specify the witnessing relation between strategy sets.

6.9 The category of open games

That equivalences classes of open games form a category follows easily from the fact

that coend lenses form a category.

Lemma 6.9.0.1. Sequential composition of equivalence classes of open games is as-

sociative.

Proof. Suppose we have open games

Φ
G

Ψ
H

Ξ
K

Υ.

The equivalence between (K◦H)◦G and K◦ (H◦G) will be witnessed by the relation

β : ΣG × (ΣH × ΣK) � (ΣG × ΣH) × ΣK generated by (σ, (τ, µ))
β∼ ((σ, τ), µ). Let

σ ∈ ΣG, τ ∈ ΣH, and µ ∈ ΣK. Then P(K◦H)◦G)(σ, (τ, µ)) = PK◦(H◦G)((σ, τ), µ) by

97

associativity of composition in LensC. Let [p, k] ∈ C(Φ,Υ) be a context. Then

B(K◦H)◦G([p, k])(σ, (τ, µ))

= BG

([
p, k ◦ PK(µ) ◦ PH(τ)

])
(σ)

×
(

BH

([
PG(σ) ◦ p, k ◦ PK(µ)

])
(τ)× BK

([
PH(τ) ◦ PG(σ) ◦ p, k

])
(µ)

)
β∼
(

BG

([
p, k ◦ PK(µ) ◦ PH(τ)

])
(σ)× BH

([
PG(σ) ◦ p, k ◦ PK(µ)

])
(τ)

)
× BK

([
PH(τ) ◦ PG(σ) ◦ p, k

])
(µ)

= BK◦(H◦G)([p, k])((σ, τ), µ)

Theorem 6.9.0.2. If LensC exists, there exists a category GameC with object class

C × C and equivalence classes of open games as morphisms.

Proof. All that remains to be checked is that the identity computation defined in

6.7.0.3 is an identity morphism, and this follows from easy checks.

6.10 The symmetric monoidal structure of open

games

We now prove that ⊗ is functorial. The proof is a good demonstration of the utility

of coend diagrams. In the commutative squares in the following lemma, the top path

describes how local contexts are formed in, say, (H⊗H′) ◦ (G ⊗ G ′) and the bottom

path describes how local contexts are formed in (H◦G)⊗ (H′ ◦G ′). That the squares

commute follows by inspection of the appropriate coend diagrams.

Lemma 6.10.0.1. Suppose we have coend lenses

Φ Ψ Ξ

Φ′ Ψ′ Ξ′

l m

l′ m′

The following diagrams commute:

1.

98

C(Φ⊗ Φ′,Ξ⊗ Ξ′) C(Φ,Ξ)

C(Φ⊗ Φ′,Ψ⊗Ψ′) C(Φ,Ψ)

L(−, l′ ◦m′)

C(Φ⊗ Φ′,m⊗m′) C(Φ,m)

L(−, l′)

2.

C(Φ⊗ Φ′,Ξ⊗ Ξ′) C(Φ,Ξ)

C(Ψ⊗Ψ′,Ξ⊗ Ξ′) C(Ψ,Ξ)

L(−, l′ ◦m′)

C(l ⊗ l′,m⊗m′) C(l,Ξ)

L(−,m′)

3.

C(Φ⊗ Φ′,Ξ⊗ Ξ′) C(Φ′,Ξ′)

C(Φ⊗ Φ′,Ψ⊗Ψ′) C(Φ′,Ψ′)

R(−, l ◦m)

C(Φ⊗ Φ′,m⊗m′) C(Φ,m)

R(−, l)

4.

C(Φ⊗ Φ′,Ξ⊗ Ξ′) C(Φ′,Ξ′)

C(Ψ⊗Ψ′,Ξ⊗ Ξ′) C(Ψ′,Ξ′)

R(−, l ◦m)

C(l ⊗ l′,Ξ⊗ Ξ′) C(l′,Ξ′)

R(−,m)

Proof. The four squares are given respectively by the following equalities of coend

diagrams:

99

1.

p

l′Φ′ m′
Ψ′

Φ
Ξ′

m

Ψ

k
Ξ

Ξ′

=

p

l′Φ′
Φ

Ξ′
m′

m

Ψ

k
Ξ

Ξ′

2.

p

l′Φ′ m′
Ψ′

Φ

l
Ξ′

Ψ

k

Ξ

Ξ′

=

p l
Φ

l′Φ′ m′
Ψ′

Ψ
Ξ′

k

Ξ

3.

p l
Φ

m
Ψ

Φ′ m′Ψ

k

Ξ′

Ξ

=

p l
Φ

Φ′ m′Ξ′

k

Ξ′

m
Ψ Ξ

100

4.

p l
Φ

m
Ψ

Φ′ l′ Ψ′

k

Ξ′

Ξ

=

p l
Φ

m
Ψ

l′
Φ′

Ψ′

k

Ξ′

Functoriality of the tensor in GameC then follows easily.

Corollary 6.10.0.2. ⊗ : GameC ×GameC → GameC is a functor.

Proof. Suppose we have open games

Φ Ψ Ξ

Φ′ Ψ′ Ξ′

G H

G′ H′

Note that Σ(H◦G)⊗(H′◦G′) = (ΣG×ΣH)× (ΣG′×ΣH′) and Σ(H⊗H′)◦(G⊗G′) = (ΣG×ΣG′)×
(ΣH × ΣH′). The relation β : (ΣG × ΣH) × (ΣG′ × ΣH′) � (ΣG × ΣG′) × (ΣH × ΣH′)

witnessing the equivalence between (H ◦ G) ⊗ (H′ ◦ G ′) and (H ⊗ H′) ◦ (G ⊗ G ′) is

generated by ((σ, τ), (σ′, τ ′)
β∼ ((σ, σ′), (τ, τ ′)). LensC is symmetric monoidal and,

hence,

P(H◦G)⊗(H′⊗G′)((σ, τ), (σ′, τ ′)) = P(H⊗H′)◦(G⊗G)((σ, σ
′), (τ, τ ′)).

101

Using 6.10.0.1,

B(H◦G)⊗(H′◦G′)(c)
(
(σ, τ), (σ′, τ ′)

)
=

(
BG

(
C(Φ,PH(τ)) ◦ L(−,PH′(τ ′) ◦ PG′(σ

′))(c)
)

(σ)

× BH

(
C(PG(σ),Ξ) ◦ L(−,PH′(τ ′) ◦ PG′(σ

′))(c)
)

(τ)

)
×
(

BG′
(
C(Φ′,PH′(τ

′)) ◦ R(−,PH(τ) ◦ PH(σ))(c)
)

(σ′)

× BH′
(
C(PG′(σ

′),Ξ′) ◦ R(i,PH(τ) ◦ PH(σ))(c)
)

(τ ′)

)
β∼

(
BG

(
L(−,PG′(σ′)) ◦ C(Φ⊗ Φ′,PH(τ)⊗ PH′(τ

′))(c)
)

(σ)

× BG′
(
R(−,PG(σ)) ◦ C(Φ⊗ Φ′,PH(τ)⊗ PH′(τ

′))(c)
)

(σ′)

)
×
(

BH

(
L(−,PH′(τ ′)) ◦ C(PG(σ)⊗ PG′(σ

′),Ξ⊗ Ξ′)(c)
)

(τ)

× BH′
(
R(−,PH(τ)) ◦ C(PG(σ)⊗ PG′(σ

′),Ξ⊗ Ξ′)(c)
)

(τ ′)

)
= B(H⊗H′)◦(G⊗G′)(c)

(
(σ, σ′), (τ, τ ′)

)

Definition 6.10.0.3. The structural isomorphisms in GameC are given by

α(X,A),(Y,B),(Z,C) = 〈αX,Y,Z , α−1
A,B,C〉

ρ(X,A) = 〈ρX , ρ−1
A 〉

λ(X,A) = 〈λX , λ−1
A 〉

s(X,A),(Y,B) = 〈sX,Y , sB,Y 〉

Lemma 6.10.0.4. The structural isomorphisms are natural in GameC.

Proof. We show that the associator is natural. Naturality of the other structural

maps follow by similar arguments. Let Gi : Φi → Ψi for i ∈ {1, 2, 3}. Note that

Σα◦(G1⊗(G2⊗G3)) =
(
ΣG1 × (ΣG2 × ΣG3)

)
× {α} and Σ((G1⊗G2)⊗G3)◦α = {α} ×

(
(ΣG1 ×

ΣG2)×ΣG3

)
. The equivalence between α ◦

(
G1 ⊗ (G2 ⊗ G3)

)
and

(
(G1 ⊗ G2)⊗ G3

)
◦ α

will be witness by the relation generated by
(
(σ, (τ, µ)), α

) β∼
(
α, ((σ, τ), µ)

)
. Let

σ ∈ ΣG1 , τ ∈ ΣG2 , µ ∈ ΣG3 , and [p, k] ∈ C
(
(Φ1 ⊗ (Φ2 ⊗ Φ3)), ((Ψ1 ⊗ Ψ2) ⊗ Ψ3)

)
. We

102

note that the local context for G1 given this data is the same for both games. The

local context of G1 is given by

p
τ

Φ2

µ

Φ1 Ψ1

Φ3
k

Ψ2

Ψ3

in α ◦
(
G1 ⊗ (G2 ⊗ G3)

)
and by

p
τ

µ

Φ2

Φ3

Φ1 Ψ1

k
Ψ3

Ψ2

in
(
(G1 ⊗ G2) ⊗ G3

)
◦ α. This two morphisms are evidently equal. Similar diagrams

demonstrate that the local contexts for G2 and G3 are the same in both games also.

Theorem 6.10.0.5. GameC is symmetric monoidal.

Proof. All that remains to be shown is that the MacLane pentagon and triangle

axioms are satisfied, but this follows easily as the underlying category C is symmetric

monoidal.

6.11 Nice categories of open games

In this section we show how the notion of ‘cohistory’ collapses when the monoidal

unit I of the underlying monoidal category C is terminal. With cohistories gone, we

will see that GameC has a very natural game theoretic interpretation.

Lemma 6.11.0.1 ([Ril18]). If the monoidal unit of C is terminal, then LensC(I, (X,S)) ∼=
C(I,X).

The isomorphism i : C(I,X)→ LensC(I, (X,S)) is explicitly given by p 7→ [p, !s].

In a diagram,

p X 7→ p X S

103

Corollary 6.11.0.2. If the monoidal unit of C is terminal, then

C((X,S), (Y,R)) ∼= LensC((I, R), (X, Y))

Proof. Using 6.11.0.1 and the fact that C(Y,R) ∼= LensC
(
I, (Y,R)

)
(6.6.0.1),

C((X,S), (Y,R)) =

∫ (A,B)∈LensC
LensC(I, (A⊗X,B ⊗ S))× LensC((A⊗ Y,B ⊗R), I)

∼=
∫ A:C

C(I, A⊗X)× C(A⊗ Y,R)

= LensC((I, R), (X, Y))

Unpacking definitions, the isomorphism i : LensC((I, R), (X, Y))→ C((X,S), (Y,R))

is explicitly given by

[p : I → A⊗X, k : A⊗ Y → R] 7→
[
[p, !S], [k, idR]

]
.

In the case where the monoidal unit of C is terminal, the type of best response for

an open game G : (X,S)→ (Y,R) is equivalently

BG : LensC((I, R), (X, Y))→ Rel(ΣG).

We have seen that expressing contexts as states in the double lens category is a good

level of abstraction for categories of open games, allowing for elegant proofs with

pretty diagrams. From a game theoretic perspective, however, it will make more

sense to express contexts as equivalence classes [p, k,Θ] : LensC((I, R), (X, Y)). This

is because a state p : C(I,Θ⊗X) is easily seen to correspond to a history for an open

game and the function k : Θ⊗ Y → R acts like an outcome function. In this way, we

can specify a context for an open game in much the same way as we did for concrete

open games in chapter 5.

The coend diagram

p
X

k
Y

R

of a context [p, k] ∈ LensC((I, R), (X, Y)) neatly illustrates that a context is a game

state with a ‘hole’ in it. If we think of a game G : (X,S) → (Y,R) as a player in

a larger game, then p corresponds to the things that have happened in the game

104

before G gets to act; k corresponds to what will happen in the game after G acts;

and the gap in the diagram corresponds to the part of the game where G gets to

influence the outcome. Alternatively, a context is that which becomes a game once G
has decided which strategy to play, whereby playing that strategy will fill in the gap

in the context.

Given open games G : (X,S) → (Y,R), H : (Y,R) → (Z,Q), a context [p, k] ∈
LensC((I, R), (X,Z)), and strategies σ ∈ ΣG, τ ∈ ΣH, the local context for G in H◦G
is given by

p
X τvY

Z

k
Q

τu R

and the local context for H is given by

p

X
σv

Y
k

Z

Q

.

Given another open game K : (X ′, S ′) → (Y ′, R′), a context [p, k] ∈ LensC((I, R ⊗
R′), (X ⊗ X ′, Y ⊗ Y ′)), and a strategy µ ∈ ΣH, the local contexts for G and H in

G ⊗H are given by

p
X ′ µv

X

k
Y ′

Y

R

R′

and

p X σv

X ′

k
Y

Y ′

R

R′

respectively.

105

Chapter 7

Bayesian open games

In this chapter we descend from the abstraction of the previous chapter to analyse

open games over a particular category, namely the Kleisli category of the distribution

monad Kl(D). We will see that Kl(D) allows us to model various types of Bayesian

games as open games, vastly expanding the expressive capabilities of the open game

formalism.

7.1 Chapter Overview

In 7.2 we introduce some more well-known results about monoidal categories; in

7.3 we define the category of sets and random functions, the underlying category of

the category of Bayesian open games; 7.4 presents a brief introduction to classical

Bayesian games; 7.5 formally introduces Bayesian open games ; 7.6 defines Bayesian

agents, atomic Bayesian open games with a best response function that takes Bayesian

updating into account; 7.7 shows how the Bayesian games of classical game theory

can be modelled using Bayesian open games.

7.2 Commutative monads

Recall that a monad T over a monoidal category C is strong if it comes with a strength

natural transformation tA,B : A ⊗ TB → T (A ⊗ B) satisfying various coherence

conditions.

We have the following result guaranteeing the existence of a large class of coend

lens categories. We refer the reader to [Ril18] for a much more in-depth discussion of

the following result, and many more examples of when lens categories exist.

106

Theorem 7.2.0.1 ([Ril18]). If T is a strong monad over a category C, then

LensKl(T)

(
A,B

)
is a set for all A,B ∈ C.1.

Definition 7.2.0.2 (Commutative monad). Let T be a strong monad with strength

t over a monoidal category C. Define the costrength natural transformation t′A,B :

TA⊗B → T (A⊗B) to be the composite

TA⊗B
sTA,B

B ⊗ TA
tB,A

T (B ⊗ A)
T (sB,A)

T (A⊗B).

T is commutative if the diagram

TA⊗ TB
tTA,B

T (TA⊗B)
T (t′A,B)

T 2(A⊗B)

t′A,TB

T (A⊗ TB) T 2(A⊗B)
T (tA,B)

T (A⊗B)
µ

µ

commutes for all objects A and B in C.

If a monad is commutative then we get that its Kleisli category is symmetric

monoidal with the monoidal tensor ⊗ (on objects) and unit being the same as in the

underlying category C .

Lemma 7.2.0.3 ([PR97]). If T is a commutative monad over a symmetric monoidal

category C, then Kl(T) is symmetric monoidal.

Commutative monads over Set also come with canonical copy/delete comonoid

structures for every object. Copying cX : X → T (X ×X) is given by

X
∆

X ×X
η

T (X ×X)

and deleting dX : X → I is given by

X
! {?}

η
T ({?})

.

From this comonoid structure we obtain canonical projections

X ⊗ Y
id⊗ d

X ⊗ I
ρ

X

1In [Ril18], lenses over a Kleisli category are called effectful optics.

107

and

X ⊗ Y
d⊗ id

I ⊗ Y λ
Y .

Crucially, it is not guaranteed that the monoidal tensor of Kl(T) is cartesian. In

particular, the Kleisli category of the distribution monad defined in the next section

is not cartesian.

7.3 The category of sets and random functions

We now turn to the category of interest for this chapter.

The finitary distribution monad D : Set→ Set maps a set X to the set of finitely

supported probability distributions on X. We make use of finitary distributions to

keep things simpler, and because all the games we are interested in modelling have

finite sets of actions in any case.

Definition 7.3.0.1 (Finitary distribution monad). Define D : Set→ Set by

D(X) =
{
α : X → [0, 1]

∣∣∣ supp(X) < ℵ0,
∑

x∈supp(α)

α(x) = 1
}

where supp(α) is
{
x ∈ X

∣∣ α(x) 6= 0
}

, the support of α. D acts on morphisms by

D(f : X → Y)(α : D(X))(y) =
∑
f(x)=y

α(x).

The monad structure of D is given as follows. The unit is given by

ηX(x) = δx

where

δx(x
′) =

{
1 if x = x′

0 otherwise

and the extension f † : D(X)→ D(Y) of f : X → D(Y) is

f †(α) =
∑

x∈supp(α)

f(x)(y)

Lemma 7.3.0.2. D is a commutative monad.

Corollary 7.3.0.3. Kl(D) is symmetric monoidal with canonical copy/delete comonoids

and projection maps.

108

The monoidal tensor in Kl(D) is not cartesian.

Definition 7.3.0.4 (Copy/delete comonoid for Kl(D)). The copying map in Kl(D)

is given explicitly by cX : X → D(X ×X) where

c(x)(x1, x2) =

{
1 if x = x1 = x2

0 otherwise.

The monoidal unit of Kl(D) is terminal, and hence the deleting map dX : X →
D({?}) must be given by d(x)(?) = 1. As this map is unique, we refer to it as !.

Whenever we are working in Kl(D) we denote cX and !X by

X

X

X and X

respectively.

The canonical projections in Kl(D) correspond to taking marginals.

Definition 7.3.0.5 (Marginals). Let p : D(X × Y). The left marginal pX : D(X)

is given by pX(x) =
∑

y∈supp(p(x,−)) p(x, y). The right marginal pY : D(Y) is given

similarly by pY (y) =
∑

x∈supp(p(−,y)) p(x, y). As diagrams, these are given by

p

Y

X

and p

X

Y

respectively.

An important operation on probability distributions is Bayesian updating where

an agent has some prior distribution (initial belief), makes an observation, and then

updates their prior to a new posterior distribution.

Definition 7.3.0.6 (Update operator). Let X and A be sets. We think of A as a type

of values which an agent has a probabilistic belief about, and X as a type of values

that will be observed by an agent. Define the update operator UA : D(A × X) →
(X → D(A)) by

UA(p)(x)(ϑ) =
p(ϑ, x)∑

(ϑ′,x)∈supp(p) p(ϑ
′, x)

.

We also write p(ϑ|x) for UA(p)(x)(ϑ).

109

Lemma 7.3.0.7. The update operator is natural in A. That is, the following diagram

commutes for any f : A1 → A2:

D(A1 ×X)
UA1

X → D(A1)

D(f ×X)

D(A2 ×X)
UA2

X → D(A2)

◦D(f)

Proof. Let p ∈ D(A1 × X), x ∈ X,ϑ1 ∈ A1, and ϑ2 ∈ A2. The top of the square is

given by (
D(f) ◦ UA1

)
(p)(x)(ϑ2) =

∑
f(ϑ1)=ϑ2

UA1(p)(x)(ϑ1)

=

∑
f(ϑ1)=ϑ2

p(ϑ1, x)∑
ϑ′1∈supp(p(−,x)) p(ϑ

′
1, x)

. (?)

The bottom of the square is given by

UA2

(
D(f ×X)(p)

)
(x)(ϑ2) =

D(f ×X)(p)(ϑ2, x)∑
ϑ′2
D(f ×X)(p)(ϑ′2, x)

=

∑
f(ϑ1)=ϑ2

p(ϑ1, x)∑
ϑ′2

∑
f(ϑ′1)=ϑ′2

p(ϑ′1, x)
. (??)

The result follows, noting that the denominators of (?) and (??) are equal.

7.4 Bayesian games

In classical game theory, Bayesian games are games in which players have probabilistic

beliefs about the other players in the game. We first state the standard definition,

then discuss what it means.

Definition 7.4.0.1 (Bayesian game). A Bayesian game is a tuple (N,A,Θ, p, u)

where

1. N = {1, · · · , n} is a finite set of players,

2. A = A1 × · · · × An where Ai is a finite set of actions available to player i,

110

3. Θ = Θ1 × · · · ×Θn where Θi is the flavour space of player i,

4. p : Θ→ [0, 1] is a common prior over flavours;

5. u = (u1, · · · , un) where ui : A×Θ→ R is the outcome function for player i.

A pure strategy for player i is a function σi : Θi → Ai. A mixed strategy for player i

is a function si : Θi → D(Ai).

The sets N and A are self-explanatory. N specifies the number of players in the

game and Ai specifies the set of actions that player i can choose from. Each player i is

associated with a set Θi of flavours 2. The flavour space of a player might be something

like {good, evil}, {smart, dumb}, or {conservative, risk-taker, chaotic}. The common

prior p : Θ → [0, 1] describes the players’ probabilistic beliefs about which flavours

other players have been assigned. This information is strategically relevant as players’

outcomes are allowed to depend on their flavour and, consequently, which actions are

utility-maximising also depends on players’ flavours. In a playthrough of a Bayesian

game, we imagine that each player is assigned a flavour sampled from the common

prior; each player observes their own flavour and, using this information, updates

their belief about the distribution of the other players’ flavours; then each player

chooses an action in an attempt to maximise their outcome function.

Example 7.4.0.2 (Education game). The education game is a game of two players:

an employer e and an applicant a. The flavour space of the employer is the one-

element set {?}. We suppose that the applicant is talented with probability 1
10

and

untalented with probability 9
10

and that their flavour space is {t,∼ t} where t and

∼ t correspond to being talented and untalented respectively. The applicant makes

the choice either to attend university or to not attend university, represented by the

action set {u,∼ u}. We suppose that attending university incurs a greater cost if the

applicant is untalented. This cost is described by the function cost : {t,∼ t}×{u,∼ u}
given by

cost(t, u) = 1

cost(∼ t, u) = 3

cost(t,∼ u) = cost(∼ t,∼ u) = 0

The employer decides whether to the pay the applicant a high wage or a low wage

represented by the action set {2, 1}. The objective of the employer is to offer a high

2In the game theory literature, the flavour space is known as the type space, but we have chosen
the different term to prevent confusion with the types of category theory

111

wage only if the applicant is talented. We can represent this game as a Bayesian game

where

• N = {e, a};

• Ae = {2, l}, Aa = {u,∼ u};

• Θe = {?}, Θa = {t,∼ t};

• p : {?} × {t,∼ t} → [0, 1] is given by

p(?, x) =

{
1
10

if x = t
9
10

otherwise.

• The outcome function ua : {t,∼ t} × {u,∼ u} × {2, 1} → R for a is given

by ua(x, y, z) = z − cost(x, y) and the outcome function ue : {t,∼ t} × {u,∼
u} × {2, 1} → R is given by, for any y ∈ {u,∼ u},

ue(t, y, 2) = ue(∼ t, y, 1) = 1

ue(t, y, 1) = ue(∼ t, y, 2) = 0.

7.4.1 Epistemics in Bayesian games

In order to define a sensible solution concept for Bayesian games, we must first con-

sider that there exist multiple epistemic states of players in a Bayesian game. The

expected outcome of a choice can change as players learn more about the flavours in

a game. We are particularly interested in the following epistemic states.

1. ex post - the flavours of all the players are common knowledge;

2. ex interim - players know only their own flavour;

3. ex ante - no flavours are known whatsoever.

Each of these epistemic scenarios has a distinct associated expected outcome func-

tion.

Definition 7.4.1.1 (Ex post utility). The ex post expected utility of player i in a

Bayesian game (N,A,Θ, p, u) given a mixed strategy profile s = (s1, · · · , sn) and a

specification of flavours ϑ = (ϑ1, · · · , ϑn) is given by

epi(s, ϑ) =
∑
a∈A

(∏
j∈N

sj(ϑj)(aj)

)(
ui(a, ϑ)

)
.

112

Ex interim utility can be defined as a weighted sum of ex post utility functions.

Definition 7.4.1.2 (Ex interim utility). The ex interim expected utility of player i

with flavour ϑi ∈ Θi given a mixed strategy profile s = (s1, · · · , sn) is given by

eii(s, ϑi) =
∑

ϑ−i∈Θ−i

p(ϑ−i|ϑi)epi(s, ϑi, ϑ−i)

Similarly, ex ante utility can be defined as a weighted sum of ex interim utility or,

consequently, of ex post utility

Definition 7.4.1.3 (Ex ante utility). The ex ante expected utility of player i given

a mixed strategy profile (s1, · · · , sn) is given by

eai(s) =
∑
ϑ∈Θ

p(ϑ)epi(s, ϑ)

=
∑
ϑi∈Θi

p(ϑi)eii(s, ϑi)

We can then define Bayesian best response functions that pick out the most prof-

itable unilateral deviations from a mixed strategy profile s. We define this relative to

the ex ante utility function.

Definition 7.4.1.4 (Bayesian best response). Player i’s best responses to the mixed

strategy profile s−i are given by

Bi(s−i) = arg maxs′i∈Sieai(s
′
i, s−i)

Bayesian best response then yields a Bayesian solution concept by considering the

strategy profiles which are fixed points.

Definition 7.4.1.5 (Bayesian Nash equilibrium). A strategy profile s is a Bayesian

Nash equilibrium if ∀i ∈ N ,

si ∈ Bi(s−i).

7.5 Bayesian open games

Definition 7.5.0.1 (Bayesian open game). A Bayesian open game is a morphism in

GameKl(D). Explicitly, a Bayesian open game G : (X,S)→ (Y,R) is given by

1. A set of strategies Σ,

113

2. A play function

P : Σ→
∫ A:C (

X → D(A× Y)
)
×
(
(A×R)→ D(S)

)
,

3. A best response function

B : LensKl(D)((I, R), (X, Y))→ Rel(Σ)

We refer to atoms in the category of Bayesian open games as Bayesian atoms.

We unpack the definition of the play function to emphasize that, when we wish

to actually specify a Bayesian open game, it is usually easier to specify P(σ) as the

equivalence class of a pair of morphisms.

7.6 Bayesian agents

We will now define Bayesian agents which, as with concrete open games, have con-

stant best response functions. Bayesian agents capture the notion of rational agents

that

1. Have a correct prior about the various types in a game;

2. Update this prior based on an observation;

3. Attempt to maximise their expected utility given their updated prior.

Definition 7.6.0.1 (Bayesian agent). Let X, Y be sets. The Bayesian agent A(X,Y) :

(X, I)→ (Y,R) is the Bayesian atom given by

1. ΣA = X → D(Y),

2.

Pσ = [σ, !R] = σX Y R

3. The preference function ε : LensKl(D)((I,R), (X, Y))→ P(X → D(Y)) is given

by

εA([p, k]) =

{
σ : X → D(Y)

∣∣∣∣ ∀x ∈ supp(p),

σ(x) ∈ arg max
α∈D(Y)

(
E
[
k(UΘ(p)(x), α)

])}
114

Lemma 7.6.0.2. The preference function of a Bayesian agent is well-defined. That

is, it is independent of the choice of representative of the coend equivalence relation.

Proof. This result follows from the fact that Bayesian updating is natural in the

bound type of a coend lens (7.3.0.7).

In the next definition we formalise the idea that a player in a game might be

assigned a (game theoretic) type on which their utility function depends. We can do

this simply using a Bayesian agent and a copying computation.

Definition 7.6.0.3. Let A(X,Y) : (X, I) → (Y,R) be a Bayesian agent. Define

A∆
(X,Y) : (X, I)→ (X × Y,R) to be the Bayesian open game

X

A
Y

R

X

.

Lemma 7.6.0.4. A∆
(X,Y) is explicitly given, up to isomorphism, by

1. ΣA
(X,Y)∆

= X → D(Y);

2. PA∆
(X,Y)

: ΣA
(X,Y)∆

→ LensKl(D)

(
(X, I), (X × Y,R)

)
is given by

PA∆
(X,Y)

(σ) = X
σ Y

X
R ;

3. Let [p, k] ∈ LensKl(D)

(
(I,R), (X,X × Y)

)
. Best response is given, up to iso-

morphism, by BA
(X,Y)∆

([p, k])(σ) = BA(X,Y)
([p, k]′) where [p, k]′ is the context

given by

p

X

k

Y

R

.

Proof. This result follows from definition chasing, noting that A(X,Y) is the only

component with non-trivial strategy profile set.

Lemma 7.6.0.5. Let A(Xi,Yi) be Bayesian agents for i ∈ {1, · · · , n}. Then A∆n
=⊗n

i=1A∆
(Xi,Yi)

is explicitly given as follows.

115

1. ΣA∆n =
∏n

i=1(Xi → D(Yi));

2. The play function

PA∆n : ΣA∆n → LensKl(D)

((n∏
i=1

Xi, I
)
,
(n∏
i=1

(Xi × Yi),Rn
))

is given by

PAn◦ (σ1, · · · , σn) =

X1

σ1

σn

Xn

Y1

Yn

X1

Xn

...
...

R

R

...

3. Let [p, k] ∈ LensKl(D)

(
(I,Rn), (

∏
iXi,

∏
iXi × Yi)

)
. Best response

BA∆n ([p, k])(σ1, · · · , σn)

is given, up to isomorphism, by

n∏
i=1

{
σi : Xi → D(Yi)

∣∣∣∣ ∀xi ∈ supp(pσ−i),

σi(xi) ∈ arg max
αi∈D(Yi)

(
E
[
kσ−i

(
UA−i(pσ−i)(xi), αi

])}
where [pσ−i , kσ−i] is the context given by

p
Xi

Xi

Xn

σn

k

Yn

Xn

Yi

Xi

Yi

X1

σ1
Y1

X1
R

R

R

...

...

...

...

...

...

.

116

Proof. 1 and 2 follow easily from definitions. As for 3, we need to prove that the local

context for each A(Xi,Yi) is [pσ−i , kσ−i]. Note that the previous lemma 7.6.0.4 serves

as the base case (n = 1) for an induction argument. The result then follows easily by

considering that

BA∆n ([p, k])(σ1, · · · , σn) = BA∆
(X1,Y1)

([p, k]1)(σ1)× B⊗n
i=2A∆

(Xi,Yi)
([p, k]−1)(σ−1)

and applying the inductive hypothesis, where [p, k]−1 is the context

p X2

Xn

X1

σ1

k

Y1

X1

X2

Y2

Xn

Yn

R

R

R

...
...

...

7.7 Bayesian games as Bayesian open games

Given a Bayesian game G = (N,A,Θ, p, u), we can then model G with the Bayesian

open game
⊗n

i=1A∆
(Θi,Ai)

and applying the best response function to the context [p, k]

where k is the outcome function given by

k
(
(ϑ1, a1), · · · , (ϑn, an)

)
= δ(u1(ϑ1,a1),··· ,un(ϑn,an)).

7.7.1 Decisions under risk

In this section we introduce another type of situation involving a Bayesian agent that

can be modeled using Bayesian open games.

A decision problem under risk is a decision problem for which one can sensibly

assign probabilities to possible outcomes. A good example is roulette. When making

a bet in roulette, you can calculate the likelihood of success and also your expected

return on any bet. Decision problems under risk are generally represented by Bayesian

open games constructed from computations and precisely one Bayesian agent. A

117

simple subclass of decision problems under risk is represented by Bayesian open games

of form

p

X
A

Y
k

R

Z

in which an agent A attempts to maximise their outcome which is, in part, dependent

on the type Z which A does not observe.

We now give a fully worked out example of a Bayesian open game in which an

agent has a prior, makes an observation, updates their prior as a consequence of that

observation, and then makes a prediction based on their updated prior.

Example 7.7.1.1 (Biased coins). Suppose we give an agent A a biased coin which

lands on one side 75% of the time and the other side 25% of the time. It is not known

which side the coin is biased towards, but it is known that it is equally likely to be

biased towards heads as towards tails. A flips the coin whilst another identical coin

(i.e. another coin biased the same way) is flipped in secret. A observes her coin flip

and is then asked to predict which side up the secret coin landed. If she is correct she

receives an outcome of 1 with probability 1. If she is wrong she receives an outcome

of 0 with probability 1. The optimal strategy for A is to guess that the coin flipped

in secret will land the same way up as the coin she flipped. If, for instance, A’s coin

comes up heads, then there is a 75% chance that both coins are biased towards heads.

Consequently the coin flipped in secret is more likely to show heads. A symmetric

argument applied if A’s coin shows tails.

We can represent this game using the open game

p

{H,T}
A

{H,T}
k

R

{H,T}

where

p : D({H,T}2) =
1

2

(
9

16
(T, T) +

1

16
(H,H) +

3

16
(T,H) +

3

16
(H,T)

)
+

1

2

(
9

16
(H,H) +

1

16
(T, T) +

3

16
(H,T) +

3

16
(T,H)

)
=

5

16
(H,H) +

5

16
(T, T) +

3

16
(T,H) +

3

16
(H,T)

118

and

k : {H,T}2 → DR

(x, y) 7→

{
δ1 if x = y

δ0 otherwise.

Explicitly, the game is given by G := u ◦ (A ⊗ id{H,T}) ◦ p. Note that ΣG ∼= ΣA =

{H,T} → D({H,T}). Also note that there is precisely one context for G and, more-

over, as the best response functions for k, id{H,T}, and p are total, the best response

function for G is isomorphic to the constant relation

BA[p, k] =

{
σ : {H,T} → D({H,T})

∣∣∣∣ ∀x ∈ {H,T},
σ(x) ∈ arg maxα∈D({H,T})E[k(U{H,T}(p)(x), α)]

}
.

The updated prior U{H,T}(p)(H)(H) is given by

U{H,T}(p)(H)(H) =
p(H,H)∑

(ϑ,H)∈supp(p) p(ϑ,H)

=
5

8

and hence U{H,T}(p)(H)(T) = 3
8
. Similarly, U{H,T}(p)(T) = 5

8
T + 3

8
H. It follows that

arg maxα

(
E[k†(U{H,T}(p)(H), α)]

)
= {δH}

arg maxα

(
E[k†(U{H,T}(p)(T), α)]

)
= {δT}.

Hence BA[p, k] is a singleton set containing the strategy σ where σ(H) = δH and

σ(T) = δT , as expected.

We now sketch some examples of games that can be represented as Bayesian open

games.

Example 7.7.1.2 (Correlated equilibria). The battle of the sexes is a two-player

normal form game in which two players A and B attempt to coordinate with each

other. A and B agreed to meet in the evening, but neither can recall whether they

agreed to go to restaurant r or to restaurant s. A has a slight preference for r and B
has a slight preference for s, but failing to coordinate leads to the worst outcome for

both A and B. We model this with the outcome function u : {r, s}2 → R2 given by

u(r, r) = (3, 2)

u(r, s) = u(s, r) = (0, 0)

u(s, s) = (2, 3)

119

where the left and right projections are the outcomes for A and B respectively.

This game has two deterministic Nash equilibria where both players choose the same

restaurant, but these are both ‘unfair’ in the sense that one player receives a higher

payoff than the other. There is also a ‘fair’ Nash equilibria in mixed strategies, where

A and B choose their preferred restaurant with probability 3
5
, but in this equilibrium

the players miscoordinate a large proportion of the time.

Suppose now that there is a flip of a fair coin that both A and B observe before

choosing which restaurant to go to. Consider a kind of strategy profile where both

players choose r if the coin lands on heads, and both choose s if the coin lands on

tails. In this situation neither player has incentive to deviate from the option sug-

gested by the coin flip, both players receive the same expected outcome, and there is

no possibility of miscoordination. This strategy profile is said to be a correlated equi-

librium. Correlated equilibria were introduced as a generalisation of Nash equilibria

by Aumann in the paper [Aum87].

We can represent this game with the following Bayesian open game

p
{h, t}

A

B

k

{r, s}

R

{r, s}

R

where p : D({h, t}) is the fair coin flip; A and B are Bayesian agents (although there

is no non-trivial Bayesian updating in this game); and k : {r, s}2 → R2 is given by

k(r, r) = δ(3,2)

k(r, s) = k(s, r) = δ(0,0)

k(s, s) = δ(2,3)

The fixed points of the best response function for this Bayesian game are then the

correlated equilibria.

Example 7.7.1.3 (Signalling games). We now return to the education game intro-

duced in 7.4.0.2 and show how it can be described as a Bayesian open game. Recall

that the education game is between two players, an employer E and an applicant A. E
has to decide whether to offer A a high wage or a low wage (say E chooses wages from

the set of choices {2, 1}); and A has to decide whether to attend university or not

120

(represented by {u,∼ u}). A is talented with probably 1
10

, and attending university

incurs a greater cost if they are not talented. E wishes to pay A a high wage if and

only if A is talented, but cannot directly observe whether A is talented or not. They

can only infer A’s talent from their (correct) prior about the likelihood of A’s being

talented and from A’s decision where to attend university.

We can represent the education game as the following Bayesian open game.

p
{t,∼ t}

A

E

k

{u,∼ u}

R

{2, 1}

R

where p describes the probably that A is talented; A and E are Bayesian agents; and

k : {t,∼ t} × {u,∼ u} × {2, 1} → D(R2) is given by u ◦ ηR2 where u = (ua, ue) as

defined in 7.4.0.2.

Example 7.7.1.4 (Bayesian game with sequential play). We can also describe sit-

uations in which there is both sequential play and Bayesian updating. Consider the

following Bayesian open game where A and B are both Bayesian agents.

p
X1 A

Y1 B

X2

k

Y2

R2

R1

This describes a situation similar to a Bayesian game. Both players are assigned a

flavour with some probability (the types X1 and X2 are the flavour classes for A and

B respectively). The players observe their flavour and update their prior (that is, p)

before making a decision, but in this sequential case player B also gets to observe A’s

choice of move.

121

Chapter 8

Conclusion and further work

There is much work still to be done in the study of open games, and here we give a

list of some of the important work that is still outstanding.

8.1 Incomplete information

Whilst Bayesian open games greatly increase the expressive power of the open games

formalism, there are still classes of games to elude it.

1. Instances where there is an epistemic hierarchy. Bayesian open games accom-

modate instances where an agent has a correct prior, makes an observation,

and updates that prior. They do not account for more complex situations in

which, for instance, there are two agents A and B and A has beliefs about B’s

beliefs about A’s beliefs about ... and so on. In classical game theory, such

epistemic hierarchies are modelled using Harsanyi type spaces (introduced in

the paper [Har67]). As far as the author is aware, no attempt has yet been

made to incorporate Harsanyi type spaces into open games.

2. Games with no common prior. Due to the way sequential and tensor composi-

tion of open games are defined, it is not currently known how to model games

where different players have different priors at the start of the game.

3. Games with false priors. Similar to the previous point. Open games currently

do not capture games where players are mistaken in their beliefs.

8.2 Subgame perfection

The fixed points of the best response function of an open game correspond to Nash

equilibria. Subgame perfect Nash equilibria are, arguably, more relevant for games

122

involving sequential play. For a comprehensive compositional account of game theory,

there should exist a category of open games where the fixed points of best response

functions correspond to subgame perfect equilibria. This problem is hard because

open games have both sequential and simultaneous play. Intuitively it is not clear

what a subgame perfect Nash equilibrium would look like for games with simultane-

ous play. On a technical level, many of the best candidates for such a category turn

out to only be premonoidal categories for which the tensor is not a true bifunctor. In

particular, this means that the order in which a game is composed from its subcompo-

nents matters. Moreover, without a symmetric monoidal category, the diagrammatic

calculi of monoidal categories cannot be leveraged.

Some progress has been made towards a category of open games which computes

subgame perfect equilibria in the paper [GKLF18], but this progress is currently

restricted to a small subclass of open games.

8.3 Compact closure

The category of open games has counit games, but no corresponding unit games. A

question remains as to whether there exists a meaningful quotient of the category of

open games which is compact closed.

8.4 Higher categorical structure

That one has to take a quotient at all to form the category of open games suggests

a higher categorical structure for open games. That is, instead of taking a quotient,

we should consider morphisms between open games. The higher categorical structure

of open games has been studied in the papers [Hed18b] and [GKLF18], but there is

much work left to be done. In particular, the author believes that the appropriate

morphisms between open games are the simulations used in this thesis, but this idea

remains to be studied in any detail. An account of the higher categorical structure of

open games with simulations as morphisms between games would involve investigating

the allegorical structure of open games (the most influential introduction to allegories

is the book [FS90]).

123

8.5 Extensive form

Notable by its absence in Part II of this thesis is any mention of extensive form

games. A comprehensive translation of classical game theory to open game theory

must include a translation of extensive form games, yet open games are not well-

suited to describing games in extensive form. It is certainly possible, but an elegant

solution is yet to be found.

8.6 Concluding thoughts

Open games are an exciting area of active research, and there is clearly much inter-

esting and difficult work left to be done. In the author’s opinion, the greatest diffi-

culty that lies ahead is convincing the current practitioners of game theory (mainly

economists) of the benefits of adopting the open games formalism. This is certainly

some way off, but the readily-comprehensible string diagrams of monoidal category

theory offer some hope that open games may become more widely adopted, allowing

the finer details of the underlying category theory to be hidden from view.

The work in this thesis on Bayesian open games, together with the work on iterated

games in [GKLF18], contribute greatly to the comprehensiveness of open games.

Games of incomplete information and extensive form games are perhaps the remaining

important classes of games left to be modelled using open games.

The achievements of the second part of this thesis can be summarized as follows.

1. Various strategic situations involving Bayesian agents can now be represented

as open games. These include Bayesian games, decisions under risk, signalling

games, and Bayesian games with sequential play.

2. The above kinds of game are represented as distinct mathematical objects in

the classical game theory literature. Bayesian open games provide a unifying

framework, showing that various types of game can be seen as instances of open

games.

3. A compositional account has now been provided for games with Bayesian agents.

The future for open games looks promising, and the author is excited to see how

the field will develop in the future.

124

Bibliography

[Aum87] Robert J Aumann. Correlated equilibrium as an expression of Bayesian

rationality. Econometrica: Journal of the Econometric Society, pages

1–18, 1987.

[Awo10] Steve Awodey. Category theory. Oxford University Press, 2010.

[Bae06] John Baez. Quantum quandaries: a category-theoretic perspective. The

structural foundations of quantum gravity, pages 240–265, 2006.

[BBC+93] Charles H Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa,

Asher Peres, and William K Wootters. Teleporting an unknown quantum

state via dual classical and Einstein-Podolsky-Rosen channels. Physical

review letters, 70(13):1895, 1993.

[BCG+17] Joe Bolt, Bob Coecke, Fabrizio Genovese, Martha Lewis, Dan Marsden,

and Robin Piedeleu. Interacting conceptual spaces i: Grammatical com-

position of concepts. arXiv preprint arXiv:1703.08314, 2017.

[BCS07] Alexandru Baltag, Bob Coecke, and Mehrnoosh Sadrzadeh. Epistemic

actions as resources. Journal of Logic and Computation, 17(3):555–585,

2007.

[BP17] John C Baez and Blake S Pollard. A compositional framework for reaction

networks. Reviews in Mathematical Physics, 29(09):1750028, 2017.

[BS81] François Bancilhon and Nicolas Spyratos. Update semantics of relational

views. ACM Transactions on Database Systems (TODS), 6(4):557–575,

1981.

[BW85] M. Barr and C. Wells. Toposes, Triples and Theories. Springer, 1985.

[CK17] Bob Coecke and Aleks Kissinger. Picturing Quantum Processes. Cam-

bridge University Press, 2017.

125

[CS12] Bob Coecke and Robert W Spekkens. Picturing classical and quantum

Bayesian inference. Synthese, 186(3):651–696, 2012.

[EO10a] Martin Escardó and Paulo Oliva. Selection functions, bar recursion

and backward induction. Mathematical structures in computer science,

20(2):127–168, 2010.

[EO10b] Martin Escardó and Paulo Oliva. Sequential games and optimal strate-

gies. In Proceedings of the Royal Society of London A: Mathematical,

Physical and Engineering Sciences, page rspa20100471. The Royal Soci-

ety, 2010.

[EO14] Mart́ın Hötzel Escardó and Paulo Oliva. The Herbrand functional inter-

pretation of the double negation shift. CoRR, abs/1410.4353, 2014.

[EO15] Mart́ın Escardó and Paulo Oliva. Bar recursion and products of selection

functions. The Journal of Symbolic Logic, 80(1):1–28, 2015.

[Esc04] Mart́ın Escardó. Synthetic topology: of data types and classical spaces.

Electronic Notes in Theoretical Computer Science, 87:21–156, 2004.

[Esc07] Martin Escardo. Infinite sets that admit fast exhaustive search. In Logic

in Computer Science, 2007. LICS 2007. 22nd Annual IEEE Symposium

on, pages 443–452. IEEE, 2007.

[Esc08] Martin Escardo. Exhaustible sets in higher-type computation. arXiv

preprint arXiv:0808.0441, 2008.

[FS90] P.J. Freyd and A. Scedrov. Categories, Allegories. ISSN. Elsevier Science,

1990.

[GKLF18] Neil Ghani, Clemens Kupke, Alasdair Lambert, and Fredrik Nordvall

Forsberg. A compositional treatment of iterated open games. Theoretical

Computer Science, 741:48 – 57, 2018. An Observant Mind : Essays

Dedicated to Don Sannella on the Occasion of his 60th Birthday.

[Har67] John C Harsanyi. Games with incomplete information played by

“Bayesian” players, i–iii part i. the basic model. Management science,

14(3):159–182, 1967.

126

[Hed14] Jules Hedges. Monad transformers for backtracking search. arXiv preprint

arXiv:1406.2058, 2014.

[Hed15] Jules Hedges. The selection monad as a CPS transformation. arXiv

preprint arXiv:1503.06061, 2015.

[Hed16] Jules Hedges. Towards compositional game theory. PhD thesis, Queen

Mary University of London, 2016.

[Hed17] Jules Hedges. Coherence for lenses and open games. arXiv preprint

arXiv:1704.02230, 2017.

[Hed18a] Jules Hedges. Morphisms of open games. Electronic Notes in Theoretical

Computer Science, 341:151 – 177, 2018. Proceedings of the Thirty-Fourth

Conference on the Mathematical Foundations of Programming Semantics

(MFPS XXXIV).

[Hed18b] Jules Hedges. Morphisms of open games. Electronic Notes in Theoretical

Computer Science, 341:151 – 177, 2018. Proceedings of the Thirty-Fourth

Conference on the Mathematical Foundations of Programming Semantics

(MFPS XXXIV).

[HOS+17a] Jules Hedges, Paulo Oliva, Evguenia Shprits, Viktor Winschel, and

Philipp Zahn. Higher-order decision theory. In International Conference

on Algorithmic DecisionTheory, pages 241–254. Springer, 2017.

[HOS+17b] Jules Hedges, Paulo Oliva, Evguenia Shprits, Viktor Winschel, and

Philipp Zahn. Selection equilibria of higher-order games. In Interna-

tional Symposium on Practical Aspects of Declarative Languages, pages

136–151. Springer, 2017.

[Koc70] Anders Kock. Monads on symmetric monoidal closed categories. Archiv

der Mathematik, 21(1):1–10, 1970.

[KSPC13] Dimitri Kartsaklis, Mehrnoosh Sadrzadeh, Stephen Pulman, and Bob

Coecke. Reasoning about meaning in natural language with compact

closed categories and frobenius algebras. Logic and Algebraic Structures

in Quantum Computing, page 199, 2013.

[LB08] Kevin Leyton-Brown. Essentials of Game Theory: A Concise, Multidis-

ciplinary Introduction. Morgan and Claypool, 2008.

127

[Lei16] Tom Leinster. Basic category theory. arXiv preprint arXiv:1612.09375,

2016.

[Lor15] Fosco Loregian. This is the (co) end, my only (co) friend. arXiv preprint

arXiv:1501.02503, 2015.

[ML71] Saunders Mac Lane. Categories for the Working Mathematician.

Springer-Verlag New York, 1971.

[Mog91] Eugenio Moggi. Notions of computation and monads. Information and

computation, 93(1):55–92, 1991.

[Mos79] Andrzej Mostowski. On a generalization of quantifiers. Studies in Logic

and the Foundations of Mathematics, 93:311–335, 1979.

[MSZ13] Michael Maschler, Eilon Solan, and Shmuel Zamir. Game Theory. Cam-

bridge University Press, 2013.

[OP15] Paulo Oliva and Thomas Powell. A constructive interpretation of ram-

sey’s theorem via the product of selection functions. Mathematical struc-

tures in computer science, 25(8):1755–1778, 2015.

[PR97] John Power and Edmund Robinson. Premonoidal categories and no-

tions of computation. Mathematical Structures in Computer Science,

7(5):453–468, 1997.

[Ril18] Mitchell Riley. Categories of optics. arXiv:1809.00738v2, 2018.

[S+67] Norman E Steenrod et al. A convenient category of topological spaces.

Michigan Math. J, 14(2):133–152, 1967.

[Sel10] Peter Selinger. A survey of graphical languages for monoidal categories.

In New structures for physics, pages 289–355. Springer, 2010.

[Sel12] Peter Selinger. Finite dimensional hilbert spaces are complete for dagger

compact closed categories. arXiv preprint arXiv:1207.6972, 2012.

[VNM44] John Von Neumann and Oskar Morgenstern. Theory of games and eco-

nomic behavior. Princeton University Press, 1944.

128

	Introduction
	Compositionality
	Compositional game theory
	Compositional tools

	Category theory
	Game theory
	Structure of this thesis
	Contributions
	Notational conventions

	I Sequential games
	Sequential games
	Chapter overview
	Monads
	Quantifiers
	Selection functions
	Solution concepts
	Sequential games
	Strategies and subgame perfection
	Limitations

	Generalised selection functions
	Chapter overview
	Selection functions over a monad
	Nondeterminism in games
	Nondeterministic selection functions
	Nondeterministic sequential games
	Well-behaved selection functions
	Rational strategies for nondeterministic games
	Relation to subgame perfect Nash equilibria
	Finite length nondeterministic sequential games
	Dominating strategies
	Dominance free strategy profiles
	Subgame perfect dominance
	Dominance selection functions

	Conclusions and further work
	Dependent products
	Exotic monads

	II Open games
	Concrete open games
	Chapter overview
	Monoidal categories
	Diagrams for symmetric monoidal categories
	Comonoids

	Lenses
	The category of concrete lenses
	The monoidal structure of concrete lenses
	Concrete open games
	Agents
	Best response with concrete lenses
	Sequential composition of concrete open games
	Tensor composition for concrete open games
	Equivalence of open games
	The category of concrete open games
	Encoding functions as games

	Game theory with concrete open games
	Bimatrix games
	Deterministic sequential games as open games
	Nondeterministic sequential games as open games
	Normal form games

	Problems with open games

	General open games
	Chapter overview
	Generalising concrete lenses
	Co-wedges and Coends
	Coend lenses
	Generalising open games
	States, continuations, and contexts
	General open games
	Composing open games
	The tensor of open games

	Equivalence of open games
	The category of open games
	The symmetric monoidal structure of open games
	Nice categories of open games

	Bayesian open games
	Chapter Overview
	Commutative monads
	The category of sets and random functions
	Bayesian games
	Epistemics in Bayesian games

	Bayesian open games
	Bayesian agents
	Bayesian games as Bayesian open games
	Decisions under risk

	Conclusion and further work
	Incomplete information
	Subgame perfection
	Compact closure
	Higher categorical structure
	Extensive form
	Concluding thoughts

	Bibliography

