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Abstract

The study of causal order in Quantum Theory has recently led to the consideration of phys-

ical scenarios in which the causal order between events is not well-defined in a classical way, a

phenomenon called indefinite causal order. Yet, a proper understanding of the range and classi-

fication of the ensemble of such scenarios, as well as of their general features, is still lacking. In

this report we present steps forward towards a better and more intuitive classification of these

possible scenarios. We develop a new and more intuitive framework in which to present these

scenarios based on the use of diagrammatic techniques, framing them as supermaps. We present

some of the current definitions, theorems, examples and open questions related to them in this

framework. We use this framework and techniques from the field of quantum causal structures to

prove a theorem on the decomposition of bipartite unitary supermaps, which establishes a direct

link between their classification and the classification of quantum channels obeying a specific con-

dition. Based on this result, we present a conjecture about the general form of bipartite unitary

supermaps and prove it in a special case.
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1 Introduction

In recent years, the study of causality and causal structures in Quantum Theory has been a growing

line of research in Quantum Information (QI). In particular, substantial interest has been generated

by the idea, advocated in two seminal papers [1, 2], that quantum theory may allow for scenarios

in which naive concepts of a pre-existing and well-defined causal structure break down in some way,

and are replaced with a more exotic (yet arguably physical) causal structure featuring some typically

quantum effects. Such structures have been grouped under the umbrella term of ”indefinite causal

order”.

The need to study indefinite causal order appeared in two different research contexts. In the first

one, illustrated by [1], the emphasis was put on the treatment of Quantum Theory as a theory of

computation. Such a perspective entails the necessity to consider its higher-order transformations,

which, in this case, are maps on quantum channels, called supermaps. A specific supermap (the

quantum SWITCH) was then displayed as a paradigmatic example of the clash between the existence

of such higher-order computations and the notion that every possible quantum computation can be

realised in one of the most popular models of quantum computation, the quantum circuit model [3].

The other context, illustrated by [2], put the emphasis on an operational account of the correlations

between local observers obeying the laws of quantum physics. It was argued that these correlations

could, in their most general form, be described by a mathematical object, called a process matrix; and

an example of a process matrix (the OCB process) was displayed as a paradigmatic example of the

clash between the existence of process matrices and a naive notion of a definite causal order existing

independently to the actions of local agents.

This diversity in the considerations having led to the study of indefinite causal order is in parallel

with the diversity of the applications it has been considered for. One may want to consider it for

its applications to quantum computation and quantum technologies: it has been shown that its use

provides advantages over traditional quantum scenarios in some examples of computational [4, 5]

and communicational [6–8] tasks. At the same time, one could also consider it for its fundamental

implications, as a new physical phenomenon that quantum theory may give rise to. It has also been

argued that indefinite causal order could be a central component in a theory of quantum gravity [9].

The physical status of indefinite causal order is still unclear. Whereas the quantum SWITCH,

which has been shown to be an example of a weak form of indefinite causal order [10], has been

experimentally implemented in photonic systems [11–14], more exotic scenarios like the OCB process

still lack a physical interpretation, be it quantum gravitational or else. It is possible that both

mathematical formalisms encompassing indefinite causal order (supermaps and process matrices) allow

for scenarios which, although mathematically well-defined, are physically irrelevant.

More than that, even without considering physicality, the exact range of scenarios that these

formalisms allow for in the first place is very poorly known; proving general and powerful theorems

on the properties of all supermaps (or process matrices) - and therefore possibly on indefinite causal

order - is made difficult by their abstruseness as mathematical objects, as well as the fact that they

are still solely defined by ”good-behaviour conditions”, as opposed to intuitive structural properties.
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This is why most of the research on indefinite causal order so far has focused on specific examples,

such as the quantum SWITCH or the OCB process, acting as toy models.

Supermaps acting on one input channel are an example of a case in which a suitable general

form has been found [15]. Our aim during this project has been to find the general form of unitary1

bipartite supermaps. Proving such a form would be a major step forward in our understanding of

unitary bipartite supermaps: it would give us an idea of the extent and nature of their non-classicality;

it would allow us to prove general theorems about them more easily; and it could pave the way to a

better understanding of their physical status.

To help us in this task, we used the powerful tools recently developed in a diagrammatic reformu-

lation of Quantum Theory [16]. As we shall see, these diagrammatic techniques are particularly well

adapted to the study of causal structures, in which the wiring between events is of crucial importance.

Building on them, we provided a new formalism for supermaps, equivalent to both the usual formalism

of supermaps and the process matrix formalism2; we found this new formalism to be better suited to

the study of supermaps. We also made use of some of the tools provided by the recently developed

field of Quantum Causal Models [17,18].

Using these tools, we made significant progress towards finding a general form of bipartite unitary

supermaps, by exhibiting some of their inner wirings, and reducing the problem of their classification to

that of the classification of unitary channels satisfying a specific condition, which we call the no-bridge

condition, and which is arguably easier to solve. However, we haven’t reached yet the general form

we have been looking for. In particular, we have not been able to prove yet our main conjecture: that

all bipartite unitary supermaps are either causally-ordered, or a variation of the quantum SWITCH.

We were however able to prove it in a specific case.

The structure of this report will be as follows. In Section 2, we will provide a short introduction to

the objects and techniques of the diagrammatic framework for Quantum Theory, in order to lay down

the tools we will use, and we will present the representation that it entails for quantum states and

channels (which we call the double state representation) and its relations with two other formalisms

for quantum theory: the density matrix representation, and the Choi-Jamio lkowski representation. In

Section 3, we will very quickly present the language and tools of Quantum Causal Models. In Section

4, we will provide a definition of supermaps and present the main examples, theorems, applications

and open questions which relate to them; this will also be the occasion to define all these results in a

new formalism, based on the double state representation. Finally, in Section 5, we will lean on these

developments to present the main results which we obtained during the course of this project, and

discuss their significance.

1Unitary supermaps can be conceived as a generalisation of unitary quantum channels; their precise definition, as

well as the motivation for considering them, will be presented later on.
2We will not in general provide the proofs of the equivalence between our formalism and the two traditional ones;

although straightforward, they are rather tedious and would bring this report well over its size limit.
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2 An introduction to the diagrammatic framework for Quan-

tum Theory

2.1 Linear maps

In this report, we will use the diagrammatic language recently developed by Bob Coecke, Aleks

Kissinger and coworkers as a new framework for quantum theory. A standard reference on the subject

is [16]. We will here provide the reader with a quick recap of its objects and techniques, which should

be sufficient to make the rest of this report understandable.

This framework frames quantum theory as a process theory, in which the emphasis is put on the

processes that compose the theory, rather than on its states. Its core elements will therefore be

processes (represented by boxes), having a certain number of inputs (represented by wires connected

to the lower side of the box) and of outputs (represented by wires connected to the upper side of

the box). Each wire has a given system-type, corresponding to the kind of thing it conveys; it is

represented by a name written next to the corresponding wire. Examples of processes are:

f

A

B

,
g

W

Y

X

, ,
φ

π , λ

H

J

. (1)

The three last examples showcase some important types of processes, which are graphically em-

phasised by their specific forms. Processes without any inputs (but with any number of outputs),

such as φ, are called states. Processes without any outputs (but with any number of intputs), such as

π, are called effects. Finally, processes without any outputs or inputs (i.e. processes which are both

states and effects), such as λ, are called numbers.

A process theory is to a large extent characterised by the way it allows to compose processes

together. The process theories which will be of interest to us will be so-called Strict Symmetric

Monoidal Categories (SSMC), which allow for sequential and parallel compositions between processes.

Parallel composition ⊗3 corresponds to our usual understanding of two things happening in parallel

without interfering with each other; sequential composition ◦ corresponds to one thing happening after

another. A process g can be sequentially composed with another process f only if the system-types

of g’s input and f ’s output match. SSMCs are graphically represented by circuit diagrams, in which

two boxes being wired together corresponds to sequential composition (with information always going

from the lower box to the upper one), and two boxes being placed next to each other horizontally

corresponds to parallel composition. An example of a circuit diagram is:

3Note that, despite the same symbol being used, ⊗ here does not necessarily represent the usual tensor product.
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ψ

g

h

E

C D

A B

(2)

A feature of circuit diagrams is that they only allow for information to flow in a single direction:

they do not feature wires being bent in the other direction. Adding this possibility leads to string

diagrams, such as:

f

π

AA

C C

B

D

(3)

Process theories which make sense of string diagrams do so by introducing, for each system-type A,

a bipartite state, the cup
AA

, and a bipartite effect, the cap A A, which satisfy suitable

axioms. The cup and the cap can then be used to turn inputs into outputs and outputs into inputs.

Let us now draw a process f from A to B with an uneven shape,

f

A

B

. Process theories

which admit string diagrams allow to define an involution among processes, called the transposition.

The transposed process of f is a process from B to A, written:

f

A

BA

B

:=

A

B

f (4)

We see that graphically, transposition is represented by a 180◦ rotation. Moreover, one may

also add another involution to the process theory , called the adjunction, represented by a vertical
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reflection. The composition of transposition and adjunction is then another involution, called the

conjugation, represented by a horizontal reflection. The axioms satisfied by transposition, adjunction

and conjugation ensure that graphical reasoning is natural for them.

f

A

B

adjoint7−−−−→ f , f

A

B

conjugate7−−−−−−→ f

A

B

B

A

(5)

Dagger Compact Closed Categories, which are specific cases of SSMCs, are specific process theories

which admit string diagrams as well as adjoints. From the introduction of adjoints, one can define

isometries as the processes U which satisfy

U

A

B

U

A

=

A

A

. (6)

A unitary is then an isometry whose adjoint is an isometry as well. It will also be useful to define

⊗-positivity: a process f of type A⊗A→ B ⊗B is ⊗-positive if it can be decomposed as

B B

A A

f = g g

XB B

A A

. (7)

One can also define an orthonormal basis (ONB) for a given system-type A as a family {ψi}i of

states of A satisfying:
∀i ,

f

A

B

ψi

g

A

B

ψi

=


=⇒ f

A

B

g

A

B

= , (8a)

∀i, j,

ψi

ψj

A = δij . (8b)
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Finally, one can introduce sums of processes. Only processes with the same inputs’ and outputs’

system-types can be summed together. One requires of sums to be commutative, to distribute over the

adjoint, and to distribute over diagrams (which essentially implies that all the processes considered

are linear). Then, given ONBs {ψi}i and {φj}j for system-types A and B respectively, any process f

from A to B can be characterised by its matrix form in these bases:

f

A

B

=
∑
ij

fij

A

B

ψi

φj

, where fij =

ψi

φj

f

A

B

(9)

In a process theory admitting sums, for a given system-type A, all ONBs have the same size,

called the dimension of A. With all those ingredients, we can finally characterise a process theory for

(finite-dimensional) linear maps on the complex numbers:

Definition 1 The process theory of linear maps is the set of all processes described by string dia-

grams where:

• Each system-type has a finite ONB;

• There is at least one system-type of every dimension D ∈ N;

• Processes of the same type admit sums;

• The numbers are the complex numbers C.

As we can see, we have recovered a theory of linear maps on C in a way quite different from the

usual, set-theoretic one, which goes through the construction of Hilbert spaces. We can now build a

theory of quantum processes by building on this new point of view on linear maps.

2.2 Quantum processes

The next step in the way to quantum theory is to introduce doubling. This is a step equivalent

to the transition from vectors to density matrices in the usual construction of quantum theory; the

difference is that rather than turning a ket |ψ〉 into an operator formed by |ψ〉 and its adjoint bra,

|ψ〉 〈ψ|, it rather turns it into a bipartite ket formed by |ψ〉 and its conjugate ket, |ψ∗〉 |ψ〉. Doubling

allows to go from a process theory admitting string diagrams and adjoints to another process theory

admitting string diagrams and adjoints. It does so by taking as system-types of the doubled theory

the X := X ⊗X, where X is a system-type in the original theory, and by defining the double of any

process f in the original theory as:
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double

 f

A

B  := f̂

A

B

= f

A

B

f

B

A

(10)

As we see, a bold wire in the doubled theory can be understood as representing two single wires in

the original theory; and a bold, hatted process in the doubled theory represents the associated single

process parallely composed with its conjugate process in the original theory. One can show that the

doubled theory then naturally inherits the string diagrams structure, as well as adjoints, - but not

summation or ONBs -, from the original theory. The doubled theory one can get from linear maps

is called pure quantum maps. The latter still lacks our usual requirement that states should be

normalised and processes unitary, and it doesn’t allow yet for impure states.

The step which will bring us there is the definition of the discarding effect, which can be thought

of physically as the act of throwing away some subsystem and not caring about it anymore. The

discarding effect for any system-type A is defined at the single level as:

A
:=

AA
(11)

We see that discarding corresponds to the action of tracing-out in the usual density matrix picture.

The theory of quantum maps is the process theory obtained by adding discarding to pure quantum

maps; it admits string diagrams, adjoints, and sums. Discarding also serves to introduce the concept

of causality in quantum maps in the following way.

Definition 2 A process f from A to B in quantum maps is called causal if:

f

A

B

=
B

(12)

In pure quantum maps, causal states are the equivalent of normalised states in the usual

presentation of quantum theory, and causal processes are the equivalent of isometries. In pure

quantum maps, causal states are the equivalent of process matrices, and causal processes are the

equivalent of CPTP maps. Thus, the introduction of doubling, discarding and causality allowed us to

recover a new presentation of quantum theory.

Given that this report will be dealing with causal order, it is worth noting that causality, as its

name suggests, is the core element in any consideration on causal order in quantum theory. Indeed, it

can be understood as the requirement that there is no signalling from the future to the past. Imagine
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that at some point in a quantum process, a subsystem K is produced which will not later be measured

or made to interact with other subsystems (i.e., K is essentially discarded). Causality then ensures

that whatever action is realised on K after it has ceased interacting with the other subsystems will

have no influence on those other subsystems.

2.3 Relations between some representations for states and channels in

quantum theory

As we have seen, the representation we have introduced, which we shall call the doubled state (DS)

representation, is equivalent to the usual representation, which we shall call the density matrix (DM)

representation; furthermore, as we shall see, there exists a third representation for maps, which stems

from the Choi-Jamio lkowski isomorphism, and which we shall therefore call the Choi-Jamio lkowski

(CJ) representation. All these representations essentially differ in what they deem to be inputs and

outputs at the tensorial level, and although the transformations between them might look trivial, one

can easily get confused when incautiously jumping from one to another. As most of our study will

involve dealing with higher-order maps, such as maps on maps, it will be all the more important for

us to properly deal with those different representations. Fortunately, the diagrammatic language for

tensor calculus and adjoints provides us with a highly natural way to express those representations and

understand how they relate to one another. Here, the representation in which a quantity is expressed

will be denoted by the superscript DS, DM or CJ.

Let us consider a system A, with an associated Hilbert space HA of finite dimension. In the DM

representation, a state of A is represented by its density matrix ρDM ∈ Lin (HA); ρDM is positive with

trace 1, which is equivalent to saying that it can be purified, i.e. that there exists an auxiliary system

A′ and a normalised vector ψ ∈ HA′ ⊗HA such that

ρDM

A

A

=

ψ

A

A

ψ

A′ . (13)

We see that, even though it physically represents a state, ρDM is mathematically an operator. In

turn, in the DM representation, a physical channel from A to B will be represented by a (linear) super-

operator EDM ∈ Lin (Lin (HA)→ Lin (HB)). EDM is a Completely Positive Trace-Preserving (CPTP)

map, which is equivalent to saying that it possesses a Stinespring dilation, i.e. that there exist auxiliary

systems K and K ′, a normalised vector φ ∈ HK and a unitary U ∈ Unit (HK ⊗HA → HK′ ⊗HB)

such that
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B

B

A

A

EDM =

U

A

B

φ

K

U

A

B

φ

K

K ′ . (14)

In contrast, in the DS picture, the same physical state as in (13) is represented not by an operator,

but by a (doubled) state ρDS ∈ Lin
(
H⊗2A

)
. ρDS is ⊗-positive and causal, which is equivalent to saying

that there exist an auxiliary system A′ and a normalised vector ψ ∈ HA′ ⊗HA (which can be chosen

to be the same as in (13)) such that

ρDS

AA

=

ψ

A

ψ

A

A′ =

ψ̂

A′
A

, (15)

where the last expression makes use of doubling. Consequently, a channel is represented by an

operator EDS ∈ Lin
(
H⊗2A → H⊗2B

)
; EDS is ⊗-positive and causal, which is equivalent to saying it has

a Stinespring dilation, i.e. that there exist auxiliary systems K and K ′, a normalised vector φ ∈ HK

and a unitary U ∈ Unit (HK ⊗HA → HK′ ⊗HB) (all of which can be chosen to be the same as in

(14)) such that

EDS

AA

BB

=
U

A

B

φ

K

U

A

B

φ

K

K ′

= Û

K ′

A

φ

K

B

. (16)

Finally, there exists a third representation of a channel E , which can be recovered from its DM

representation EDM via the Choi-Jamio lkowski (CJ) isomorphism [19, 20]. The CJ isomorphism re-

lates completely positive maps in Lin (Lin (HA)→ Lin (HB)) to positive semi-definite operators in

Lin (HA ⊗HB). In particular it allows us to go from EDM, as defined in (14), to a representation

ECJ ∈ Lin (HA ⊗HB) given by4

4Here we shall follow the definition of the CJ isomorphism used in [2], which differs from the original one by a

transpose.
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ECJ

BA

BA

=

B

BA

A

EDM =

U

A B

φ

K

U

B

φ

K

K ′

A

. (17)

It is straightforward to see that ECJ corresponds to a (non normalised) state in the DM represen-

tation; this fact is known as the channel-state duality5. One may note that the CJ representation of

a physical state (which can be deduced from (17) by taking A to be a trivial system) is the same as

its DM representation,

∀ρ, ρCJ

A

A

= ρDM

A

A

. (18)

We can thus derive a set of formulas relating the different representations of a channel E :

B

B

A

A

EDM = EDS
A

A

B

B

= ECJ

B

A

B

A
; (19)

5It is worth noting that channel-state duality can be obtained in the DS representation as well: indeed, composing

(16) with a doubled cup yields an unnormalised state in the DS representation.
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EDS

AA

BB

=

B B

AA

EDM

= ECJ

B

A

B

A

; (20)

ECJ

BA

BA

=

B

BA

A

EDM = EDS

A

A B

B

. (21)

3 Quantum causal models

We will briefly present here a subject of active research whose methods and results will be useful to

us. The study of quantum causal models [17] aims to study the constraints imposed on multipartite

unitary channels by the assumption that they are compatible with a causal structure. Roughly

speaking, a causal structure can be understood as defining which inputs can have an effect on which

outputs through the unitary evolution. What will matter to us here are the consequences of the

requirement that a multipartite unitary channel satisfies one or more no-influence relations, defined

as the requirement that a specific input cannot have an effect on a specific output. In the DS formalism,

a no-influence relation on a multipartite unitary channel can be defined as follows.

Definition 3 [No-influence relation]

Let U ∈ Unit ((HA ⊗HB)→ (HC ⊗HD)) be a bipartite unitary6, whose associated unitary channel

is Û . Then Û is compatible with the no-influence relation

6Note that the Hilbert spaces here could be further decomposed into factor Hilbert spaces, which means that this

definition also holds for no-influence relations on multipartite channels.
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A9 D (22)

if there exists a quantum channel φ ∈ Lin
(
H⊗2C → H⊗2D

)
such that

ÛDS

A

C

B

D

= φDS

A
B

D

. (23)

The above constraint can be interpreted in the following way: if the output C is discarded, then the

input A may as well have been discarded right away, as it does not have any influence on the remaining

output, D. As shown in [21], this is equivalent to the fact that it is impossible to communicate to D

by varying the input state at A.

One of the central questions in the study of no-influence relations is whether the compatibility of

a unitary channel with one or several of them has consequences in terms of its possible compositional

decomposition. For example, it turns out that this is the case for a unitary compatible with a single

no-influence relation; it is proven in [22] that for the unitary quantum channel Û used in Definition

3, to be compatible with A9 D is equivalent to the fact that U can be decomposed as

U

A B

C D

=

V

A B

C D

W

X , (24)

where X is an auxiliary type and V and W are unitary operators. We see here that Û featuring no

influence from A to D is equivalent to U displaying a compositional structure in which there is no path

from A to D. Such a theorem is extremely appealing in that it allows to translate the causal structure

of a unitary channel into a straightforward diagrammatic form which it is easy and natural to work

with. Thus, one would like to have similar results for unitary channels satisfying several constraints,

that is, that such channels can be decomposed in a compositional form on which the no-influence

relations can directly be read.

It turns out that such a decomposition theorem exists in a few simple cases. In others, a more

intricate kind of decomposition is possible using the so-called dot formalism [17]; it is currently

unknown whether the dot formalism can accommodate all situations. An upcoming paper [18] provides

decompositions for a collection of simple cases.

4 Quantum supermaps

While quantum channels are physical operations which map quantum states to other quantum states,

quantum supermaps are physical operations which map quantum channels to other quantum channels.
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As such, they are prime examples of quantum higher-order transformations; more precisely, they

constitute second-order transformations. Understanding the full extent of what supermaps can be,

the kinds of advantages they would allow for, and whether they are all physically implementable, has

been an active subject of research in the past decade. Let us first present how supermaps can be

defined and some of the main results and examples which have been recently found in the field. This

presentation will also be an opportunity to introduce a new representation for supermaps (which is

just an extension of the DS representation introduced in section 2 for states and channels) and to

re-express these results in this representation.

Here we shall focus our study on deterministic supermaps.

4.1 Supermaps on a single operation

Supermaps which take as an input a single channel, and output a single channel, were the first to be

studied and are the best understood, with a 2008 paper [15] which both defined them, found their

general form, and proved their physical realisability. Let us present a definition of supermaps in the

DS picture; it is immediately equivalent to the definition in the DM picture given in [15].

Supermaps are defined to be linear, in order to remain consistent with a probabilistic interpretation

of quantum theory. Moreover, remember that a quantum channel from X to Y is defined to be a

suitable map not only on states of type X, but on states of type X ⊗X ′ for any auxiliary system X ′;

here we will proceed in the same way, asking for a supermap to yield a suitable transformation also on

channels possessing any ancillary input and output systems. Here we will use subscripts I and O to

respectively denote input and output types of channels, and ’ will be used to denote auxiliary types.

Definition 4 A monopartite supermap of type (AI → AO)→ (BI → BO) is a superoperator

WDS
AO AO

AI AI

BI BI

BO BO

∈ Lin
(
Lin

(
H⊗2AI

→ H⊗2AO

)
→ Lin

(
H⊗2BI

→ H⊗2BO

))
(25)

such that, for any auxiliary systems A′I , A
′
O and for any ⊗-positive and causal operator EDS ∈

Lin
((
HAI

⊗HA′
I

)⊗2 → (
HAO

⊗HA′
O

)⊗2)
,
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W [E ] DS

BIBI

BOBO

A′IA′I

A′OA′O

:=

AIAI

BO

WDS

AO AO

BO

BI BI

EDS

A′OA′O

A′I A′I

(26)

is a ⊗-positive and causal operator in Lin
((
HBI

⊗HA′
I

)⊗2 → (
HBO

⊗HA′
O

)⊗2)
. 7

[15] finds a suitable general form for such supermaps: they all arise from the application of a pre-

and a post-processing to the input channel. In an interesting contrast to what will come next, the

following theorem can be understood as a proof that all monopartite supermaps can be obtained by

inserting the input channel inside a quantum circuit.

Theorem 1 For any monopartite supermap WDS as defined in Definition 4, there exist

a type K and ⊗-positive causal operators ADS ∈ Lin
(
H⊗2BI

→ (HK ⊗HAI
)
⊗2
)

, BDS ∈

Lin
(

(HK ⊗HAO
)
⊗2 → H⊗2BO

)
such that

WDS
AO AO

AI AI

BI BI

BO BO

=

ADS

BIBI

AIAI

BDS

AOAO

BOBO

KK =

BDS

AO

K

BO

ADS

BI

AI

. (27)

Theorem 1 also provides a proof of the fact that any monopartite supermap is physically realisable,

as the form (27) just consists in pre- and post-processing. [23] shows a generalisation of this result in

the case of quantum combs.

7Note that the dashed lines in the diagram stand to denote that a wire is just passing through the box representing

an operator, without entering it.
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4.2 Multipartite supermaps

A more interesting and much more intricate case is that of supermaps which take several channels as

inputs, while still outputting a single channel. This case has been introduced twice in the literature,

from slightly different perspectives and with slightly different motivations.

In [1], bipartite supermaps were introduced8 from a computational perspective. One objective

was to ponder the existence of computational advantages provided by higher-order quantum transfor-

mations; another was to provide an example of a transformation which cannot be embedded in the

quantum circuit framework. The representation used to study those supermaps was as superoperators

acting on the CJ representations of input channels.

In [2], those same bipartite supermaps were introduced from an operational perspective. The

objective was to study the most general kinds of correlations which might exist between two observers

for which quantum theory is assumed to hold only locally, without any assumptions as to the existence

of a global causal order; this was in particular motivated by questions about the correlations which

could arise in a theory of quantum gravity. In line with this objective, [2] actually only studied

supermaps with a trivial output, that is, mapping two channels to scalars, as this was sufficient to

consider the correlations between the probabilities of given outcomes if those channels are taken to be

measurement operations; yet, the formalism developed for that purpose readily generalises to more

general supermaps - this was done in [24]. This formalism is based on so-called process matrices9,

which belong to the Hilbert-Schmidt dual of the operator space of the CJ representations of input

channels.

As we did in the case of monopartite supermaps, we will present here a third, equivalent repre-

sentation of bipartite supermaps, based on the DS representation of channels. Although we restrict

ourselves to two parties for simplicity, this definition readily generalises to supermaps acting on any

number of channels. Those two channels will be represented by the letters A and B, while the output

channel will be written as a channel from an input P (which can be thought of as a global past) to

an output F (global future). Here again, we will define supermaps to be suitable maps on channels

featuring ancillary systems.

Definition 5 A bipartite supermap of type ((AI → AO)⊗ (BI → BO)) → (P → F ) is a superop-

erator

8Strictly speaking, [1] considered the seemingly more general case of supermaps defined on non-signalling bipartite

channels; but, as proven by Theorem 2 in [1], the two kinds of supermaps are actually equivalent.
9This use of the word ”process” as a synonym to ”second-order transformation” should not be confused with its

use in the context of process theories, as introduced in Section 2. To avoid this confusion, we adopt the ”supermap”

terminology in this report.
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WDS
BO BO

BI BI

P

F

AOAO

AIAI

P

F

∈ Lin
(
Lin

((
H⊗2AI

⊗H⊗2BI

)
→
(
H⊗2AO

⊗H⊗2BO

))
→ Lin

(
H⊗2P → H⊗2F

))

(28)

such that, for any auxiliary systems A′I , A
′
O, B

′
I , B

′
O and for any ⊗-positive and causal operators

ADS ∈ Lin
((
HAI

⊗HA′
I

)⊗2 → (
HAO

⊗HA′
O

)⊗2)
, BDS ∈ Lin

((
HBI

⊗HB′
I

)⊗2 → (
HBO

⊗HB′
O

)⊗2)
,

W [A,B] DS

B′IB′I

B′OB′O

A′IA′I

A′OA′O F F

P P

:=

BIBI

F

WDS

BO BO

BDS

B′OF

P P

B′O

AOAO

ADS

A′O A′O

B′IB′I

AIAI

A′I A′I

(29)

is a ⊗-positive and causal operator in Lin
((
HP ⊗HA′

I
⊗HB′

I

)⊗2 → (
HF ⊗HA′

O
⊗HB′

O

)⊗2)
.

A first important result on bipartite supermaps, given by Theorem 1 in [1] and equation (4) in [2],

is that (in the DS picture) they are ⊗-positive:

Theorem 2 If WDS is a bipartite supermap, then it is ⊗-positive.

This means that we can re-express everything in the doubled process theory, which will make our

diagrams way less cumbersome.

Definition 6 [Equivalent to Definition 5] A bipartite supermap of type ((AI → AO)⊗ (BI → BO))→
(P → F ) is a ⊗-positive superoperator

WDS
BO

BI

P

F

AO

AI

∈ Lin
(
Lin

((
H⊗2AI

⊗H⊗2BI

)
→
(
H⊗2AO

⊗H⊗2BO

))
→ Lin

(
H⊗2P → H⊗2F

))
(30)
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such that, for any auxiliary systems A′I , A
′
O, B

′
I , B

′
O and for any ⊗-positive and causal operators

ADS ∈ Lin
((
HA′

I
⊗HAI

)⊗2 → (
HA′

O
⊗HAO

)⊗2)
, BDS ∈ Lin

((
HBI

⊗HB′
I

)⊗2 → (
HBO

⊗HB′
O

)⊗2)
,

W [A,B] DS

B′
I

B′
O

A′
I

A′
O F

P

:=

BI

WDS BDS

B′
OF

P

AO

ADS

A′
O

B′
I

AI

A′
I

BO

(31)

is a causal operator in Lin
((
HA′

I
⊗HP ⊗HB′

I

)⊗2 → (
HA′

O
⊗HF ⊗HB′

O

)⊗2)
.

The characterisation of bipartite supermaps given in Definition 6 is just a condition of good

behaviour; it would be interesting to turn it into more practical conditions, which would pave the way

towards a (still lacking) general form similar to (27). The Araùjo conditions, proven in [25] (equations

8 to 11), are a first step in this direction.

Theorem 3 (Araújo conditions) Let WDS be a ⊗-positive superoperator, as written in (30). Then

WDS is a bipartite supermap if and only if the four following conditions are satisfied:

WDS
BO

BI

P

AO

AI

F

=

BO

P

AO

; (32a)

WDS

P

AO

AI

F

BO

BI

=
1

|AO|
WDS

P

AO

AI

F

BO

BI

; (32b)
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WDS

P

BO

BI

F

AO

AI

=
1

|BO|
WDS

P

BO

BI

F

AO

AI

; (32c)

WDS
BO

BI

P

AO

AI

F

=
1

|AO|

BO

BI

WDS

P

AO

AI

F

+
1

|BO|

AO

AI

WDS

P

BO

BI

F

− 1

|AO| |BO|
AI

WDS

P

BO

BI

F

AO

.

(32d)

The Araújo conditions can be interpreted in terms of the inner causal structure of W . (32a) is just

global causality. (32b) and (32c) mean that W does not feature local loops, that is, a direct influence

of AO on AI or of BO on BI . (32d) corresponds to the absence of global loops, that is, an influence

of AO on AI going through the channel B, or reciprocally. We see that the condition for a supermap

to map causal channels to other causal channels is, at least in the bipartite case, directly related to

a simple physical requirement: that a given party’s output can never have a causal influence on this

party’s input, i.e. that there is no backwards in time signalling.

It will also be useful to define the quantum channel associated to a supermap.

Definition 7 (Associated quantum channel) If WDS is a bipartite supermap, its associated

quantum channel WDS is

WDS

AI

AO P

F BI

BO

:= WDS

BO

BI

P

F

AO

AI

. (33)

From Theorem 2 and (32a), we know that the associated quantum channel to any bipartite su-

permap is indeed a quantum channel10. This allows for the following definitions:

10Equivalently - and this is true for any number of parties - this can be seen as coming from the fact that the associated
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Definition 8 (Isometric and unitary supermaps) A bipartite supermap WDS is called unitary

(resp. isometric) if the quantum channel WDS is unitary (resp. an isometry).

The following result, proven in [24] (Theorem 2), relates the unitarity of a supermap to the fact

that it maps unitary channels to unitary channels.

Theorem 4 If WDS is a bipartite supermap, then WDS is a unitary supermap if and only if, for any

auxiliary systems A′I , A
′
O, B

′
I , B

′
O and for any unitary channels ADS ∈ Lin

((
HAI

⊗HA′
I

)⊗2 → (
HAO

⊗HA′
O

)⊗2)
,

BDS ∈ Lin
((
HBI

⊗HB′
I

)⊗2 → (
HBO

⊗HB′
O

)⊗2)
, W [A,B] is a unitary channel.

Moreover, if a supermap WDS is unitary, then one can talk about the single version of WDS, as

WDS is then just the parallel composition of a single superoperator with its conjugate. In this case,

in a slight abuse of notation, we will write W to denote the single superoperator, and ŴDS to denote

the quantum supermap obtained by doubling W .

4.3 Two paradigmatic examples of supermaps

As we saw, in the case of monopartite supermaps, Theorem 1 is a proof that all supermaps are

essentially trivial, in the sense that they do not defy any form of common sense as to what such

supermaps may look like. More specifically:

• They can be embedded in the quantum circuit framework;

• They do not challenge any notion of a partial order in the Universe, existing independently to

local agents’ operations.

These two features are precisely those which are questioned by some cases of multipartite su-

permaps. In particular, [1] and [2] are each centred around the introduction of an example of a

bipartite supermap which challenges those expectations. These two examples, called the quantum

SWITCH and the OCB process, grew to be paradigmatic in the study of supermaps; presenting them

will be an occasion to introduce some of the non-trivial features of such supermaps, as well as the

challenges which still limit our understanding of those.

4.3.1 The quantum SWITCH

The quantum SWITCH is an exemple of a bipartite supermap introduced in [1], which essentially

involves mapping input channels A and B to either A ◦ B or B ◦ A, with the choice between these

alternatives being coherently controlled by the state of an auxiliary qubit. The quantum SWITCH

can be rigorously defined in the following way:

Definition 9 (Quantum SWITCH) For a given p ∈ N, the quantum SWITCH in dimension

p is a unitary supermap ˆSW
DS

of type ((AI → AO)⊗ (BI → BO))→ ((Pc ⊗ Pt)→ (Fc ⊗ Ft)), where

channel is just the image of swap channels by the supermap.
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|Pc| = |Fc| = 2 and |Pt| = |Ft| = |AI | = |AO| = |BI | = |BO| = p, whose associated single superoperator

SW is defined on a basis {|0〉 , |1〉} of HPc
by:

SW

0

Pc Pt

Fc Ft

BO

BI

AO

AI

:=

0

Fc Ft

BO

BI

AO

AI

Pt

; (34a)

SW

1

Pc Pt

Fc Ft

BO

BI

AO

AI

:=

1

Fc Ft

BO

BI

AO

AI

Pt

. (34b)

It is easy to see that this is indeed a unitary supermap. As we can see, the quantum SWITCH

maps channels A and B to a channel in which the state of the control qubit Pc decides the order in

which the target system Pt will undergo channels A and B. Crucially, this control is coherent, which

means that for a control qubit prepared in the state |+〉 := 1√
2

(|0〉+ |1〉), the supermap becomes

SW

+

Pc Pt

Fc Ft

BO

BI

AO

AI

=
1√
2



0

Fc Ft

BO

BI

AO

AI

Pt

+

1

Fc Ft

BO

BI

AO

AI

Pt



, (35)

which can be interpreted as a situation in which the state of the control qubit is entangled with

the causal order between channels A and B. As discussed in [1], such a situation cannot be embedded
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in the quantum circuit model [3]: if the input operations A and B are considered to be physical black

boxes, then ˆSW [A,B] cannot be simulated by a quantum circuit using only one query to A and B.

In a broader sense, [10] shows that the quantum SWITCH is not causally separable, that is, it cannot

be decomposed as a mixture of supermaps featuring a definite causal order. The quantum SWITCH

has thus been considered as one of the prime examples of indefinite causal order.

As such, it has been a subject of thorough investigation to understand whether the use of the

quantum SWITCH provides computational and communicational advantages over the class of scenar-

ios displaying definite causal order, in a similar way to the fact that use of quantum resources and

channels provides computational and communicational advantages over the class of classical scenarios.

Many such advantages of the use of the quantum SWITCH have been found:

• it allows for perfect discrimination of some channels with a single query to these channels [4];

• a generalised, n-partite version of it allows to design an algorithm which solves a specific problem

with only O(n) queries to a black box, whereas the best known quantum algorithm with definite

causal order for this problem requires O(n2) queries [5];

• In the context of quantum Shannon theory, the quantum SWITCH can be used to turn two copies

of a completely depolarising channel into a classical channel with non-zero classical capacity [6],

to enhance the quantum capacity of a quantum channel [7], and even to turn two instances of

a channel with zero quantum capacity into a a channel with perfect quantum capacity [8]. The

attribution of these advantages to indefinite causal order as opposed to usual, causally-ordered

coherent control of quantum channels, however, has been challenged [26,27].

In parallel, experimental realisations of the quantum SWITCH in photonic systems have been

developed and shown to satisfy some definitions of indefinite causal order, with increasing degrees of

precision and sophistication [11–14].

4.3.2 The OCB process

The other paradigmatic example of a non-trivial bipartite supermap is the Oreshkov-Costa-Brukner

(OCB) process, introduced in [2], defined in the following way.

Definition 10 (OCB process) The OCB process is a supermap OCBDS of type ((AI → AO)⊗ (BI → BO))→
C, where |AI | = |AO| = |BI | = |BO| = 2, defined by11

11Note that the following sum does not in any way correspond to a mixture of supermaps, as the two last terms are

not proportional to supermaps.
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OCBDS

BO

BI

AO

AI

:=
1

4

BO

BI

AO

AI

+
1

4
√

2


1

2

BO

BI

AO

AI

σz

σz

+

BO

BI

AO

AI

σz

σz

σx


.

(36)

During the course of this project, another, more explicit form of the OCB process has been dis-

covered, which makes use of the ZX-calculus formalism described in [16]:

OCBDS

BO

BI

AO

AI

= 4(1−
√

2)
1

4

BO

BI

AO

AI

+2
√

2
1

2

BO

BI

AO

AI

+2
√

2
1

2

BO

BI

AO

AI

H

.

(37)

The form (37) and the rules of ZX-calculus make it easy to check that the OCB process satisfies

the Araújo conditions (32). One can also check with Matlab that it is ⊗-positive; it is thus indeed a

supermap.

ZX calculus also helps to easily compute from (37) the equations which illustrate the OCB process’

queer properties. Let us in particular consider how the OCB process maps two specific sets of channels:

1

2 OCBDS

BO

BIAI

AO

=

(
1− 1√

2

)
1

4

BI

AO

AI

+
1√
2

1

2

BI

AO

AI

; (38a)
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OCBDS

BO

AI

AO

H

B′
I

=

(
1− 1√

2

)
1

2

AO

AI

B′
I

+
1√
2

AI

B′
IAO

. (38b)

Let us comment on the physical significance on these two equations, by adopting the interpretation

according to which the input maps A and B can be related to free choices of channel implementation

by local agents, Alice and Bob. In both scenarios, Alice implements the same channel, a swap; but

Bob chooses either to carry on his input and feed noise to his output, or to perform a Hadamard gate

followed by a CNOT gate controlled by another qubit system he possesses. In the first case, the result

is a noisy decoherent channel from Alice to Bob, with classical capacity 1√
2
; in the second case, an

equivalent channel is obtained, with the difference that it is directed from Bob to Alice.

Suppose now that the causal structure between Alice and Bob is fixed, irrespectively of any choices

of channel implementation on their part, in a mixture of causally definite relations between them.

Then, Alice lies in the causal past of Bob with probability p, Alice and Bob are spacelike separated

with probability p′, and Bob lies in the causal past of Alice with probability 1−p−p′. The sum of the

probability for a channel from Alice to Bob to be implementable with the probability for a channel

from Bob to Alice to be implementable is therefore

P (A � B) + P (B � A) = 1− p′ ≤ 1 ; (39)

yet, as we saw, the OCB process yields

P (A � B) + P (B � A) =
1√
2

+
1√
2

=
√

2 > 1 . (40)

In that sense, the OCB process is incompatible with the existence of a fixed mixture of definite

causal structures existing between Alice and Bob independently of their choices of channel imple-

mentations. This was the core finding of [2], which made it even more striking by showing that the

existence of such a causal structure as the OCB process would allow some agents to perform better

at a given game than they would ever be able to if the Universe only featured (mixtures of) definite

causal order.

The discrepancy between (39) and (40), called a violation of a causal inequality, shares striking

features with the violation of realist locality by quantum theory, in both its concepts and its quantities.

It has been argued that, in the same way that violation of locality is an exclusive feature of quantum

effects, violation of causality could be an exclusive feature of quantum gravitational effects and that an

experimental finding of such a violation could be considered as an unmistakable signature of quantum

gravity.
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Following the terminology and definitions of [10], the OCB process is non-causal. It is interesting

to note that, in this same terminology, the quantum SWITCH is causal, but not causally separable. In

that sense, the OCB process features a stronger form of non-classicality than the quantum SWITCH,

and the latter can be thought of as an ”intermediate step” on the road to indefinite causal order;

for instance, it has been proven that it cannot be used to violate any causal inequalities [25]. This

intermediate status essentially stems from the fact that the quantum SWITCH becomes causally

separable once its control qubit is discarded.

The status of the OCB process as featuring a ”strong” violation of causality makes it a matter of

enquiry whether specific physical models (e.g. quantum gravitational ones) could be devised in which

such a process would arise. No such models have yet been proposed, either for the OCB process or

for any other non-causal supermaps (in the sense of [10]).

4.4 The purification postulate

Clarifying this uncertain physical status of non-causal supermaps (exemplified by the OCB process)

has been the motivation of a significant portion of subsequent work on indefinite causal order. Some

considered paths towards a clarified view on the matter have been to study the dynamics of supermaps

[28], their compositional rules [29,30], or their mathematical structure [10,25].

We will follow more thoroughly another path, introduced in [24]: considering the purifiability of

supermaps. We will introduce it here in a slightly different, yet equivalent way. Let us first define the

purification of a supermap from its associated quantum channel.

Definition 11 (Purification of a supermap) Let WDS be a bipartite supermap of type

((AI → AO)⊗ (BI → BO)) → (P → F ). Its associated quantum channel W DS then admits

a minimal Stinespring dilation, that is, auxiliary systems P ′, F ′, a unitary quantum channel

Wd
DS ∈ Lin

(
(HAI

⊗HP ⊗HP ′ ⊗HBI
)
⊗2 → (HAO

⊗HF ⊗HF ′ ⊗HBO
)
⊗2
)

and a pure quantum

state ψ̂ ∈ H⊗2P ′ such that

W DS

BI

BO

AI

AO F

P

= Wd
DS

BI

BO

AI

AO F

P

F ′

P ′

ψ̂

. (41)

The purification of W is then the ⊗-positive superoperator WDS
d defined by
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WDS
d

BO

BI

P

F

AO

AI

P ′

F ′

:= Wd
DS

BI

BOAO

F

P

F ′

P ′

AI

. (42)

The crucial point here is that, even though the purification of a supermap is a ⊗-positive super-

operator, it is not necessarily a supermap, i.e. it does not necessarily satisfy the Araújo conditions

(32). This motivates the following definition.

Definition 12 (Purifiable supermaps) A supermap W is purifiable if its purification Wd is itself

a supermap. In this case, Wd is a unitary supermap.

Not all supermaps are purifiable, and the OCB process again proves to be an example of this, with

the following theorem, proven in [24].

Theorem 5 The OCB process is not a purifiable supermap.

This is an interesting fact in itself. In the case of quantum channels, asking that they map quantum

states (possibly with ancillas) to quantum states is a sufficient requirement for them to be purifiable

- as proven by the existence of a Stinespring dilation for any quantum channel. We find here that the

same does not apply to supermaps12.

[24] argues that the physical existence of non-purifiable supermaps would be highly surprising.

If they were to exist, Theorem 4 would entail that, even under taking any dilation of the systems

considered, unitary channels can be mapped to a non-unitary channel. In particular, this induces a

form of intrinsic non-reversibilty in physics, which is in stark contrast with the reversible status of all

currently admitted fundamental physical theories. Moreover, reversibility has been a central axiom in

all recent informational reconstructions of quantum theory.

These considerations lead to the central postulate proposed in [24] to constrain physical supermaps.

Postulate 1 (Purification Postulate) A supermap is physical if and only if it is purifiable.

Note that any causally separable supermap is purifiable by Stinespring dilation. In addition, the

quantum SWITCH, being a unitary supermap, is trivially purifiable. It turns out that no examples

have yet been found of purifiable bipartite supermaps which are non-causal (in the sense of [10]),

which may indicate that, in the bipartite case, the purification postulate rules out any violation of

causal inequalities. Yet there exists a non-causal tripartite supermap, the Baumeler-Wolf process [31],

which is purifiable [24].

12An interesting possibility would be that a generalised Stinespring dilation theorem still holds for supermaps, but

that the purification of a bipartite supermap is to be defined as an n-partite unitary supermap which would reduce to

the bipartite supermap when it takes suitable unitary channels as all but two of its inputs.
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5 Towards a complete classification of bipartite unitary su-

permaps

5.1 Motivation and main conjecture

As can be seen in Section 4, most research on bipartite supermaps has been conducted by looking at

specific examples. This essentially comes from the fact that supermaps are defined by the fact that

they map channels to channels: this is a condition that tells us nothing about the general form of

supermaps which satisfy it. This makes the determination of the general properties of such channels

hard and dependent on the exhibition of specific counter-examples13. In contrast, finding the general

form of bipartite supermaps, in the same way that the general form of monopartite supermaps has

been found to be that of Theorem 1, would represent a substantial step forward, as:

• it would allow to prove general theorems about supermaps;

• it would allow to determine in all generality what the things are which can and cannot be

achieved with supermaps;

• it would provide a basis on which to define suitable classes of supermaps;

• it would help building a physical interpretation of supermaps.

The objective of this project is to move forward towards such a general form. Its results and state

of advancement on this path shall be described in this section.

We will here restrict ourselves to finding the general form of unitary bipartite supermaps. This is

motivated by two reasons:

• if one is to subscribe to the Purification Postulate, then it is sufficient to work on unitary

supermaps, as the form of any physical supermap can then be directly deduced from the form

of its purification, which is a unitary supermap;

• as we shall see, some of the crucial tools which we will use, such as quantum causal models or the

determination of relevant factor algebras, are only defined within unitary theories. In contrast,

it is considerably harder to draw results without being able to lean on the powerful structural

features of unitarity.

We will also restrict ourselves to supermaps where |AI | = |AO| = |BI | = |BO| and |P | = |F |. The

form of more general supermaps should be easily deducible from them.

13The Araújo conditions (32) are already a progress, because they can be interpreted as conditions on the quantum

channel associated to the supermap rather than on the supermap itself, and because they come with a simple circuital

interpretation (the absence of loops, i.e. no backwards in time signalling) which lends itself well to intuition. Yet the

form of the last and most important one, (32d), remains obscure and makes it hard to work with. This is directly

related to the fact that, whereas local loops are easy to spot, ruling out global loops proves to be trickier, as they could

only arise for a specific choice in one of the input channels. For example, to rule out a global loop from Alice to herself,

one has to check that it does not arise whatever the channel is that Bob implements.
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Moreover, our goal, which we have not reached yet, shall be to prove a specific conjecture about

this general form of bipartite unitary supermaps. Loosely speaking, this conjecture can be phrased as

follows.

Conjecture 1 (Main Conjecture) If W is a bipartite unitary supermap, then W is essentially

either trivial, or the quantum SWITCH.

Here and in what follows, by ”trivial” we shall mean ”causally ordered”14. A fully rigorous

statement of this conjecture will be presented later on.

This conjecture is motivated mainly by heuristic reasons, among which the impossibility to provide

any counter-example to it. We believe that even if this conjecture were to actually be false, this line

of research would still be of interest in order to come up with the specific counter-examples to it, and

to investigate the general structure of supermaps.

If this conjecture were to be proven true, it would directly follow that there are no non-causal

purifiable bipartite supermaps. It would also follow that there are essentially no other non-trivial

examples of unitary bipartite supermaps than the quantum SWITCH, and that the study of compu-

tational and communicational advantages provided by such supermaps can be reduced to the study

of the quantum SWITCH.

During the course of this project, we learned (without more details) that Ognyan Oreshkov ap-

parently found a proof of this result [32], even though it has not appeared yet in pre-publication.

5.2 A first step: inner wirings of a supermap

Our main objective should be to ”open the blackbox” that a supermap constitutes, and reveal its

inner wirings, with the help of our diagrammatic formalism. Our first step will do precisely this, and

allow us to prove that the problem of the form of suitable supermaps is equivalent to an arguably

more graspable problem on quantum channels.

An advantage of working with unitary supermaps will be that they are composed of a single

superoperator parallely composed with its conjugate, that is, any bipartite unitary supermap can be

written as

ŴDS = (W )
∗ ⊗W . (43)

where W is a single superoperator, that is, a map on single operators. It will thus be sufficient to

work in the single picture; we will limit our use of the double picture to the cases where we have to

introduce discarding.

Let us state the result of this first step15.

14Note that in the case of unitary supermaps, the class of causally separable supermaps is irrelevant as there is no

concept of mixture present here.
15Note that in the following, there will be slight abuses of notation on the labelling of income and outcome types

of some operators. This abuse is rendered harmless by the fact that the substituted types always have the same

dimension, and hence are isomorphic. Explicitly spelling out the corresponding isomorphisms in the diagrams would

create unnecessary clutter.
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Theorem 6 Let ŴDS be a bipartite superoperator of type ((AI → AO)⊗ (BI → BO)) → (P → F )),

with |AI | = |AO| = |BI | = |BO| = m and |P | = |F | = n.

ŴDS is a unitary supermap if and only if there exist

• types X, ÃI , ÃO and Y , with
∣∣∣ÃI

∣∣∣ =
∣∣∣ÃO

∣∣∣ = m, |X| = n−m and |Y | = n,

• unitaries K1 ∈ Unit
(
HP →

(
HÃI

⊗HX

))
, K2 ∈ Unit

((
HÃO

⊗HX

)
→ HF

)
, M ∈

Unit(
(
HAO

⊗HÃI
⊗HX

)
→ (HY ⊗HBI

),

such that W , the single version of Ŵ , can be written as

W

AO BO

BIAI

F

P

=

M

K2

M

K1

BI

AO

AI

BO

P

F

Y

ÃI X

ÃO
X

, (44)

and such that M satisfies the no-bridge condition presented next.

Definition 13 (no-bridge condition) Let M be a unitary operator as described in Theo-

rem 6. By conjugation, for any auxiliary types B′I , B′O, it maps any unitary operator B ∈
Unit

((
HBI

⊗HB′
I

)
→
(
HBO

⊗HB′
O

))
to a unitary operator Bc ∈ Unit(

(
HAO

⊗HÃI
⊗HX ⊗HB′

I

)
→
(
HÃO

⊗HAI
⊗HX ⊗HB′

O

)
) given by
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Bc

AO

ÃO

ÃI

AI X B′O

X B′I

:=

M

M

BI

BO

Y B

ÃO AI X B′O

AO ÃI X B′I

. (45)

The no-bridge condition is then stated as:

∀B,Bc is compatible with the no-influence relation AO 9 AI . (46)

We present a proof of this theorem in Appendix A.

Let us comment on the general form (44) that this theorem provides for any supermap; although

seemingly obscure, it is in fact of considerable interest in its ability to pinpoint the crucial structure in

a supermap. In particular, we will elaborate on the specific meanings and significances of the unitaries

K1, K2 and M .

Note first that if the second input channel B is simply chosen to be the identity channel (i.e. ”if

Bob does nothing”), then M and M† cancel each other out, and we are left with a supermap on the

first input channel only, with precisely the canonical form (27), where K1 and K2 respectively are the

pre- and post- processings. In particular, K1 then defines the factorisation of the past type P into

two factor types, ÃI and X, with ÃI being the factor affected by Alice’s operations (which maps it

to ÃO), and X being the factor on which Alice’s operations have no influence; K2 then maps ÃO and

X back together to the future F . To put it more simply, K1 and K2 define which parts of P and of

F Alice is acting on. Thus, K1 and K2 are to be understood as describing the localisation of Alice’s

operation in the absence of any operation on Bob’s part.

The conjugation M† ·M provided by the unitary M will then describe, on top of that, the causal

localisation of Bob with respect to Alice. It provides the mapping from the tensor product of types

AI (Alice’s input), AO, (Alice’s output), and X (what is not affected at all by Alice), to the tensor

product of types BI , on which Bob will act, and Y , on which Bob has no influence. In other words, M

tells us where Bob’s operations are located among Alice’s past, future, and elsewhere. It is therefore

the central element in W , the one which will determine its causal structure.

With this interpretation in mind, the no-bridge condition that we obtain on M gets a precise

meaning: the causal localisation of Bob’s actions must be such that, whatever channel he implements,

he cannot wire Alice’s future into her past. In other words, Bob cannot build a bridge back in time

for Alice. As we see, this is now the only constraint left for us to work on. Moreover, solving this

condition (i.e. finding all the unitaries M which satisfy it) is now a problem on the causal structure

of unitaries, rather than on that of superoperators.
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Let us also comment on the relation between the problem of finding solutions to the no-bridge

condition, and the study of no-influence relations in the literature, as described in Section 3. The

currently known theorems about quantum causal structure are results about the form of a given

operator satisfying some no-influence relations. In contrast, solving the no-bridge condition is about

finding the form of a factor Von Neumann subalgebra16 whose unitary elements all satisfy some

no-influence relations.

More generally, we want to emphasise that, irrespective of the technicalities involved, the general

philosophy of the research program presented here can be defined in a straightforward way: we want

to locate the central Von Neumann subalgebra corresponding to Bob’s operations. This is precisely

what the form (44), and in particular the definition of the unitary M , achieve. This program was

strongly inspired by the conceptual clarifications provided by two recent papers [33, 34]. We think

that Theorem 6 is a strong testimony to the power of this research program in the search for a

classification of bipartite unitary supermaps, as it can be understood as proving that the causal

structure of a bipartite unitary supermap can be characterised by the localisation of its ”second-input

subalgebra”, provided by M . Moreover, the question left for us to solve - finding the solutions to the

no-bridge condition - can be broadly phrased as: ”given a central Von Neumann subalgebra (Alice’s

operations), what are the central Von Neumann subalgebras which do not mess up its input/output

structure?”.

Let us look at some examples of unitaries M satisfying the no-bridge condition and at the causal

structure they entail, in order to improve our understanding of the physical significance of M . A first

possibility is that it wires AO into BI ,

M

AO ÃI X

Y BI

=

AO ÃI X

Y BI

N1 N2
, (47)

where N1 and N2 are unitaries. It is easy to see that such an M satisfies the no-bridge condition.

Moreover, one can then work out the form (44) of W and find that it reduces to

16i.e., a subalgebra on the algebra of operators which is stable under adjoints, and whose center is trivial.
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W

AO BO

BIAI

F

P

=

K2

N2

K1

BI

AO

AI

BO

P

F

X

ÃO

N2

, (48)

which allows us to conclude that M being of the form (47) corresponds to Bob being located in

Alice’s future. In a symmetric way, it is easy to see that the form

M

AO ÃI X

Y BI

=

AO ÃI X

Y BI

N1 N2
, (49)

which also satisfies the no-bridge condition, corresponds to Bob being located in Alice’s past.

Finally, one can get a combination of the two above scenarios controlled by an auxiliary state, as in17

M

AO ÃI X

Y BI

=

AO ÃI X

Y BI

N1 N2

SWAP

, (50)

which also satisfies the no-bridge condition, and can be seen to yield precisely the quantum

SWITCH.

Our objective is now to prove that those three possibilities are essentially the only solutions to the

no-bridge condition; this would immediately prove our main conjecture.

17In this example we take |X| = 2.
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Before we consider this, we will first prove an important theorem about the no-bridge condition:

it also forbids Bob’s operations to create a communication from ÃI to ÃO. This can be interpreted

as the fact that Bob’s operations cannot be used to bypass Alice’s operations.

Theorem 7 A unitary M providing a mapping B → Bc, as defined earlier, satisfies the no-bridge

condition if and only if

∀B,Bc is compatible with ÃI 9 ÃO . (51)

The proof is presented in Appendix B; it essentially comes from the fact that the subalgebra of

Bob’s operations is closed under adjoints.

5.3 A proof of our conjecture in a special case

Our conjecture is that a unitary bipartite supermap can either have a definite causal structure, or the

causal structure of the quantum SWITCH. Finding a completely general statement of it is challenging,

especially given the fact that the second-input subalgebra could be acting on elements of X as well.

A tentative formulation would be the following.

Conjecture 2 (Solutions to the no-bridge condition) Taking the previous definitions, M satis-

fies the no-bridge condition if and only if there exist

• types Xc, Xt, A1, A2, A3, with |A1| = |A2| = m, |Xc|+ |Xt| = n−m, |A3| = |Xt| ;

• unitary operators T ∈ Unit (HX → (HXc
⊗HXt

)), C− SWAP ∈ Unit((HAO
⊗HÃI

⊗HXc
) →

(HA1 ⊗ HA2 ⊗ HXc)), N1 ∈ Unit((HA2 ⊗ HXc → HA3) → HY , N2 ∈ Unit((HA1 ⊗ HXt) →
(HA3 ⊗HBI

));

such that

Y BI

AO ÃI X

M =

T

N1

C− SWAP

N2

Y BI

A3

XcA2

Xt

Xc

ÃIAO X

A1
, (52)

and with the C− SWAP denoting a generalised controlled SWAP; i.e., there exists a decomposition

of HXc
into orthogonal subspaces, HXc

= HXc1 ⊕HXc2, such that

34



∀ψ1 ∈ HXc1,
C− SWAP

ψ1

XC

AO ÃI

XCA2A1

= ψ1

AO ÃI

XCA2A1

; (53a)

∀ψ2 ∈ HXc2,
C− SWAP

ψ2

XC

AO ÃI

XCA2A1

= ψ2

AO ÃI

XCA2A1

. (53b)

If this conjecture were true, we see that the most general possibility would be that the second-input

subalgebra acts on a part of A2⊗Xt, where Xt is a part of X, and A2 is either AI or AO - the choice

between the two possibly being under coherent control by the other part of X (Xc). It is easy to see

that the most general form for a bipartite unitary supermap would then just be a generalisation of

the quantum SWITCH. Moreover, this form also embeds causally ordered scenarios, which correspond

to the cases when HXc
= HXc1 or HXc

= HXc2. It is therefore a rigorous formulation of the main

conjecture we presented in broader terms at the beginning of this section.

It is easy to see that the form (52) indeed satisfies the no-bridge condition. We have not yet been

able to prove the crucial reverse implication, i.e. that all solutions of the no-bridge condition can be

decomposed in the form (52). Yet, we were able to provide a first step in this direction, by proving

it in the case when X is trivial. In this case, we can actually even prove it in a slightly more general

way, in which one does not necessarily have |AI | = |BI |. Note that this scenario does not involve any

quantum SWITCH, as there is no auxiliary system to control it.

Theorem 8 Let M ∈ Unit((HAO
⊗HÃI

)→ (HY ⊗HBI
)), where |AI | = |AO| and |BI | = |BO|.

Then M satisfies the no-bridge condition if and only if:

• either

AO ÃI

Y BI

M =

AO ÃI

Y BI

M2

M1

,

• or

AO ÃI

Y BI

M =

AO ÃI

Y BI

M2

M1

,
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where M1 and M2 are unitary operators.footnoteNote that this theorem entails that if |AI | >
absBI , then there are no solutions to the no-bridge condition.

A proof of this theorem is presented in Appendix C.

Per this theorem, we see that if there is no environment X, the only possible causal localisations

for Bob’s operations are to be either before or after Alice.

Unfortunately, we have so far been unable to generalise this result to the case where X is non-

trivial. In particular, a crucial step in the proof of Theorem 8 is to make use of the decomposition

(67), the existence of which is proven by [18] to be implied by the existence of a set of no-influence

relations. Unfortunately, if we try to apply the same strategy to the case with non-trivial X, we

obtain a set of no-influence relations for which no corresponding decomposition has been found in the

literature yet.

6 Conclusion

During the course of this project, we developed a new framework for the study of supermaps, based

on diagrammatic techniques. This framework helped us to re-express the major current notions,

theorems and examples in the study of supermaps and indefinite causal order in a more manageable

and intuitive way. Moreover, using techniques coming from the recent research both on diagrammatic

quantum theory, quantum causal structures, and supermaps, we were able to provide steps forward

in the way to a general classification of bipartite unitary supermaps, and to a proof of our conjecture

that these all essentially come down to causally-ordered structures or to variations of the quantum

SWITCH, although some progress remains to be made in this direction.

Let us emphasise that it is well possible that this conjecture turns out to be false, and that there

actually exist bipartite unitary supermaps which entail a different causal structure. However, we

think working with this conjecture in mind would, in the case that it is false, still constitute the

best opportunity to find a counterexample to it, and therefore also make significant progress in our

understanding of supermaps.

The logical continuation of this project would be to further study the solutions of the no-bridge

condition in order to find a general form of bipartite unitary supermaps. One can think of three

possible ways to reach this objective:

• finding a more general version of the proof we found for Theorem 8;

• reducing the study of the no-bridge condition in general to that of the no-bridge condition with

a trivial X, in order to make use of the results of Theorem 8;

• going a completely different way.

Once a general form of bipartite unitary supermaps is found, this would open the way to a sig-

nificant amount of follow-up research. One could then make use of this form to prove general results

about bipartite supermaps, such as the extent of their computational and communicational powers,
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their physical status and implementability, and the definition of a rigorous operational framework

in which to embed them, for example a generalisation of the quantum circuit framework. Another

direction would be to try to lean on this result to find the form of non-unitary purifiable bipartite

supermaps, and of non-purifiable bipartite supermaps. Finally, this form could also be used to work

towards a general form of tripartite unitary supermaps, in the same way that the classification of

monopartite supermaps by Theorem 1 has been a core component in our proofs concerning the inner

structure of bipartite supermaps. Hopefully, such results could then provide the relevant intuition

and techniques to tackle the problem of general n-partite supermaps.
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Appendix A Proof of Theorem 6

Let us start with direct implication, and take a bipartite unitary supermap Ŵ as defined in Theorem

6.

By Theorem 1, we can find decompositions of the form (27) for two monopartite supermaps

obtained from Ŵ :18

W
AO

AI

F

P

BO

BI

=

K2

AO

X

F

K1

P

AI

; (54a)

W

AO

BO

BI

AI

F

P

=

L2

BO

Y

F

L1

P

BI

AI

AO

. (54b)

These decompositions are related by

L2

Y

F

L1

P

BI

AI

AO

= W

AO

BI

AI

F

P

=

K2

AO

X

F

K1

PAI

. (55)

One then has

18Note that as the monopartite supermaps considered are unitary, all the channels in their decomposition can be

taken to be unitary as well. This moreover allows us to work at the single level.

38



W

AO BO

BIAI

F

P

=

L2

BO

Y

F

L1

P

BI
AI

AO

=

L2

BO

Y

F

L1

P

BI
AI

AO

L1

L1

BO

Y

AO P

(56)

(55)
=

K2

Y

F

L1

P

BI
AI

AO

K1

L1

BO

AO P

X

=

K2

Y

F

M

BI
AI

AO

M

BO

ÃO X

K1

P

XÃI

, (57)

where in the last step we defined

Y BI

AO ÃI X

M :=

Y BI

AO ÃI X

L1

K1

P . (58)

Moreover, for a given unitary operation B as introduced in Definition 13, one has, once again by

Theorem 1,
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W
AO

BO

BI
AI

F

K2

ÃO X

P

K1

ÃI X

B

B′I

B′O

=

J2[B]

AO

X

ÃO

J1[B]

AI

X B′O

ÃI X B′I

, (59)

which implies that, for Bc defined as in (45),

Bc

AO

ÃO

ÃI

AI X B′O

X B′I

= W

AO

BO

BI

AI

F

K2

ÃO X

P

K1

ÃI X

B

B′I

B′O

=

J2[B]

AO

X

ÃO

J1[B]

AI F B′O

ÃI F B′I

, (60)

which directly implies the no-bridge condition.

Conversely, let us consider a superoperator Ŵ defined as in (44), with M satisfying the no-bridge

condition. Then for any B, the no-bridge condition implies that Bc is of the form (24), i.e.

40



M

M

BI

BO

Y B

ÃO AI X B′O

AO ÃI X B′I

=

J2[B]

AO

X

ÃO

J1[B]

AI F B′O

ÃI F B′I

. (61)

Therefore, for any A one has

BI

W B

B′OF

P

AO

A

A′O

B′I

AI

A′I

BO

=

J2[B]

AI

X

ÃO

J1[B]

AO

X

B′O

ÃI X

B′I

A

A′O

K2

F

K1

PA′I

. (62)

By doubling this, we see that any pair of unitary channels are indeed mapped to unitary channels.

One can see that general quantum channels are also mapped to quantum channels, by considering

their Stinespring dilations. Therefore, Ŵ is indeed a unitary supermap, which ends the proof.

Appendix B Proof of Theorem 7

Let us consider a unitaryM satisfying the no-bridge condition and a unitary B ∈ Unit
((
HBI

⊗HB′
I

)
→
(
HBO

⊗HB′
O

))
.

By applying the no-bridge condition to its adjoint B† and renaming some types19, we get that

19This is possible as long as we do replace a type by a type with the same dimension, which is the case here. This

could be formalised by introducing some isomorphisms, which we do not write here in order to avoid clutter.

41



Bc

AO

ÃO

ÃI

AI X B′O

X B′I

=

M

M

BI

BO

Y B

ÃO AI X B′O

AO ÃI X B′I

is compatible with ÃO 9 ÃI . (63)

Thus, it has the form (24), i.e.

M

M

BI

BO

Y B

ÃO AI X B′O

AO ÃI X B′I

=

H1

AO

X

ÃO

H2

AI F B′O

ÃI F B′I

; (64)

taking the adjoint, this equation becomes

M

M

BI

BO

Y B

ÃO AI X B′O

AO ÃI X B′I

=

H1

AO

X

ÃO

H2

AI F B′O

ÃI F B′I

; (65)

which implies that Bc is compatible with ÃI 9 ÃO. The reverse implication is proven in a

completely symmetric way.

Appendix C Proof of Theorem 8

Let us take such a unitary M , and define
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AO ÃI

BIÃO AI

BO

SWAPc :=

AO ÃI

Y

BI

M

ÃO AI

Y

BO

M

. (66)

Then SWAPc is compatible with AO 9 AI . Moreover, by Theorem 720, it is also compatible with

ÃI 9 ÃO. Finally, one can see from its form that it is compatible with BO 9 BI . [18] gives a form

for an operator compatible with this set of no-influence relations: there exists a decomposition

AO ÃI

BIÃO AI

BO

SWAPc =

AO ÃI

BIÃO AI

BO

K2 K4 K6

K1 K3 K5

, (67)

in which all operators are unitary. We will denote the types of intermediary wires by the path they

provide: for example, the type of the wire between K2 and K1 will be named ”AO → ÃO”, as it is the

wire connecting AO to ÃO, and so on. We do not writes these types on the diagrams to avoid clutter.

Considerations of dimensionality imply that
∣∣∣BO → ÃO

∣∣∣ = |AO → BI | and |BO → AI | =
∣∣∣ÃI → BI

∣∣∣.
Let us now suppose that |AO → BI | > 1 and

∣∣∣ÃI → BI

∣∣∣ > 1, and reach a contradiction.

Let us suppose that |AO → BI | ≤
∣∣∣ÃI → BI

∣∣∣; we can then define the unitary operator21

B

BI

BO

:=

K5

BI

B2

B1

K6

BO

, (68)

which yields

20Note that, as its proof does not depend on any consideration on dimension, this theorem is also valid when |AI | 6=
|BI |.

21Here B1 and B2 are arbitrary unitaries.
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AO ÃI

BI

M

ÃO AI

Y

BO

M

B =

AO ÃI

BI

M

ÃO AI

BO

M

B

M

M

=

AO ÃI

BIÃO AI

BO

B

SWAPc

SWAPc

(69)

=

AO ÃI BO

K2 K4 K6

K1 K3

BIÃO AI

K2 K4

K1 K3 K5

B2

B1
, (70)

in which the red path is a non-trivial (as |AO → BI | > 1 and
∣∣∣ÃI → BI

∣∣∣ > 1) path from AO to

AI , which contradicts the no-bridge condition. If we suppose that |AO → BI | ≥
∣∣∣ÃI → BI

∣∣∣, then we

can obtain a non-trivial path from ÃI to ÃO, and thus a contradiction, in the same way.

Therefore we have |AO → BI | = 1 or
∣∣∣ÃI → BI

∣∣∣ = 1. Let us take the case |AO → BI | = 1; then

the form (67) becomes

AO ÃI

Y

BI

M

ÃO AI

Y

BO

M

=

AO ÃI

BIÃO AI

BO

K7

K8

K9

. (71)

As we have
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AO ÃI

ÃO AI

K7

K8

K9

=

AO ÃI

Y

M

ÃO AI

M

BI =

AO ÃI

ÃO AI

, (72)

we get K7 = 1 and K9 = K†8 and this further simplifies to

AO ÃI

Y

BI

M

ÃO AI

Y

BO

M

=

AO ÃI

BIÃO AI

BO

K8

K8

. (73)

Bending some wires gives

Y

M̂

BI

AO ÃI

=

AO ÃI

Y BI

M

AOÃI

BI

M =

ÃI

K8

ÃI

K8

AO

BI BI

=

AO

K̂8

BI

ÃI

, (74)

i.e. M is compatible with AO 9 BI , which implies the form

AO ÃI

Y BI

M =

AO ÃI

Y BI

M2

M1

. (75)

In the case
∣∣∣ÃI → BI

∣∣∣ = 1, the same reasoning gives

AO ÃI

Y BI

M =

AO ÃI

Y BI

M2

M1

. (76)
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