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Chapter 1

Introduction

1.1 Problem

The Categorical Approach to Quantum Information [Abramsky and Coecke, 2004] heavily relies on so-called

†-Frobenius algebras to represent Quantum Observables. One often wishes to work with several interacting

observables. This can be achieved by specifying rules of interaction between the corresponding Frobenius

algebras [?]. Furthermore, Frobenius algebras themselves consists of a monoid and a comonoid that interact

via the Frobenius condition. There is an abundance of examples in mathematics, physics and computer science

where simple theories are composed to give rise to more complicated ones.

To understand compositionality formally, one needs a formal system where a theory - or more precisely its

specification - is a formal mathematical object and where one can specify interaction between two theories using

tools of the this system. Universal algebra studies algebraic specifications as formal constructs. Categorical

Universal Algebra (CUA) is its modern manifestation. In Categorical Universal Algebra, the specifications of

a theory are usually expressed as either a category, a multi-category or a monad. One also has methods for

expressing the models of a theory - the concrete examples of the formal theory - and for combining theories.

For example, to specify the theory of groups, we create some structure G that captures the specifications of

the theory. G contains information about the operations of the theory and its axioms. Concrete groups, such

as Z7, for example, are objects in Set that are derived from G.

The most studied tool of CUA is the monad. A monad is a functor with additional data that captures

specifications of a theory by encoding the recipe for creating free models. The monadic approach to CUA

makes it easy to treat compositionality formally: Beck’s distributive laws are an elegant method for combining

monads. But the monadic approach also has several deficiencies. The first issue is that to specify a monad

for a particular theory, one has to understand how the free models of that theory are constructed. This

information is not always available. Second, a monad is a functor on a fixed base category. This means

that all the models of the monad will be objects in that category. The implications of this are best seen

via an example. Suppose that we wish to model the specifications for the theory of groups and then to

study the models in both Set and Top. To study groups in the category of sets we need to specify a monad

G : Set→ Set and to study groups in the category of topological spaces and continuous maps between them

- that is, to study topological groups - we need to specify a different monad G′ : Top → Top. But both

monads actually capture exactly the same operations and the same axioms.
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The Operadic/PRO approach to CUA uses categories with structure - monoidal, symmetric monoidal or

finite-product - to encode the specifications. The operations of the theory are encoded by morphisms in

these categories and the axioms become commutative diagrams. One can also approach Categorical Univer-

sal Algebra via the theory of Operads. There multi-categories encode specifications for theories that have

operations with multiple inputs, but only a single output. This approach decouples specifications from the

models: models are structure preserving (multi) functors from the theory to a category of choice. So, once

we have constructed a category G that encodes the theory of groups, the category of groups is equivalent to

the category of all structure-preserving functors from G to Set, while the category of topological groups is

equivalent to the category of all structure-preserving functors from G to Top. Since the morphisms of G are

exactly the operations of the theory of groups, G contains morphisms that encode the inverse, multiplication

and the unit. One can see these operations directly from the description of G. This makes it easier to build

a category or a an operad for a particular specification.

The shift from monads to categories with structure has has two issues. First, unlike monads, there are

no natural methods for combining categories. Thus this flexible framework does not naturally aid in the

development of a general theory of compositionality. Second, there are many variants of categories with

structure, each existing independently of the other ones. Operations in algebraic specifications have an arity.

These arities in two specifications can have very different types. For example, some operations accept lists of

elements, other accept finite sets while others accept infinite sets. Generally there is a different variant of a

given CUA tool for each arity type. For example, plain operads capture theories that have linear arities. To

model specifications for theories with linear symmetric arities, one has to use symmetric operads. Lawvere

theories are designed to model theories with Cartesian arities.

Fortunately it was recently observed that both these problems can be solved by expressing tools of the

Operadic/PRO approach as internal monads in the bicategory of profunctors. Two approaches have been

proposed. The “Cambridge” approach, pioneered by Hyland (cf. [Hyland, 2010]), develops a framework

in which the notion of type is a precise mathematical object. Then one can construct a profunctor-based

framework where theories of a particular type are internal monads. In the second approach (cf. [Lack, 2004]),

Lack shows that PRO-based structures are internal monads in a variant of Prof. Since both PROs and

Operads are expressed as monads inside bicategories, they can be combined using internal distributive laws in

these bicategories.

In Lack’s work, one can express all theories with linear arities. That is, PROs, PROPs, PROBs and Lawvere

theories. Regrettably, his framework does not accommodate more elaborate arities. On the other hand,

Hyland’s framework gives a generous definition of type that captures all the linear examples but is not limited

to them. In this work, we mainly focus on extending Hyland’s framework, but we often draw parallels with

Lack’s approach.

Hyland’s framework draws its strength from its ability to express operads of any type T . It can do this

because the notion of type is itself a formal mathematical object. The type T is actually a 2-monad on Cat

that distributes over the presheaf monad P : Cat→ Cat. Because of this distributivity, the monad T can be

extended to the Kleisli bicategory of P , which happens to be the bicategory of profunctors. This extension

gives rise to a new monad T̃ : Prof → Prof. Theories of type T are internal monads in kl(T̃ ). The dependence

of kl(T̃ ) on the type T allows to express a theory of any type in this framework.

Hyland’s approach, creates, for each T , a framework kl(T̃ ) in which theories of type T can be expressed.

The only issue we have with it is that these frameworks are independent of each other. Given a type S and

a type T , we express theories of type S as monads in kl(S̃) and theories of type T as monads in kl(T̃ ). In
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practice, S and T are often related. For example, the monad that corresponds to linear arities is a sub-monad

of the monad that corresponds to symmetric linear arities. This indicates that there should be a relationship

between theories - expressed as internal monads - with linear arities and symmetric linear arities.

In this thesis we extend Hyland’s approach to take relationships between types into account. In particular

we show that (a) a relationship between types is itself a formal mathematical object, (b) any relationship

between types gives rise to a relationship between theories of these types. In other words, we construct a

passage kl(S̃) → kl(T̃ ) from a relationship S → T . This passage sends theories to theories and distributive

laws to distributive laws.

1.2 Outline

We now briefly describe each chapter in this work. Chapters 7, 8 and 9 are the main research chapters.

Chapter 2 gives a single-dimensional overview of the main results of the thesis. Its purpose is to give the

reader an easy-to-follow intuitive view of the whole work, without all the technical details that are needed in

the full 2-dimensional treatment. We introduce binary theories, which are toy theories where for each arity a

there either exists an operation of arity a, or there are no such operations. Binary theories cannot actually

specify what the operations are. While binary theories in themselves are not very useful, they do serve as

a good introduction to Operads and to the idea of capturing types by using monads. We also show how

relationships between types give rise to relationships between binary theories of these types.

Chapter 3 is an introduction to Categorical Universal Algebra. The chapter begins with a general discussion of

theories. It then introduces three flavours of operads - plain, symmetric and Cartesian - and shows how these

tools can express theories of the corresponding types. In particular, we give examples of concrete operads and

their models. We discuss equivariance for symmetric operads in some detail. This is a fairly technical issue

that complicates the definition of operads. In the abstract framework of Chapter 6, equivariance is hidden

deep inside the definition, making operads more accessible. We also discuss PROs, PROPs and Lawvere

Theories. There again we provide many examples to illustrate these concepts. We pay particular attention to

Lawvere theories, where we go beyond the definition and state several important facts about these structures.

The Cartesian structure of Lawvere theories makes them especially attractive for CUA. We finish with a

comparison of these structures.

Chapter 4 introduces 2-Category Theory. We will need 2-Category Theory to construct a framework in

which the tools of Chapter 3 can be efficiently expressed, combined and studied. We start with the familiar

definitions of a 2-category and a bicategory and then provide impotent examples of each. Here we first define

the bicategory Prof which is the basis for most of the constructions in this thesis. Once we understood

2-categories, we need to understand how thy can be compared and related. This is done via 2-functors. After

the main technical definition we list important examples that we will carry through the rest of the work.

2-natural transformations and modifications are also defined. As we have done before, we give important

examples of both constructs. The chapter concludes with a brief discussion of adjointness for 2-categories

and monoidal 2-categories.

Chapter 5 deals with the theory of 2-monads and 2-distributive laws. In Chapter 4 we gave examples of

several 2-functors. In this chapter we show that these 2-functors actually are part of 2-monads on Cat.

Specifically, we study the monoidal category monad, the symmetric monoidal category monad, the Cartesian

category monad and the presheaf monad on Cat. We discuss Kleisli bicategories and show that the Klesili
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bicategory of P is equivalent to Prof. The second part of the chapter focuses on 2-distributive laws. We

begin with the simpler case when we distribute a functor over a monad. We note that Beck’s Theorem for

distributive laws lifts from single to 2-dimensional monad theory. To make the abstract theory more accessible,

we present the 2-distributive law of the monoidal category functor over the presheaf monad. Monads can

also be distribute over monads. We briefly skim over the general theory, and jump straight into an analysis of

our main examples. We show that the monoidal category monad, the symmetric monoidal category monad

and the Cartesian category monad all distribute over the presheaf monad. We give explicit formulas for the

distributive laws and then compute the formulas for the actions of the extensions on profunctors.

Chapter 6 combines ideas developed in Chapters 3, 4 and 5. It shows how the 2-categorical tools of Chapters

5 and 6 give rise to a framework which allows for an elegant expression of the CUA tools of Chapter 3.

The tools of Chapter 3 are either categories with structure or multi-categories with structure. Keeping this

in mind, we begin by recalling that categories are internal monads in the bicategory of Spans. We then

extend this result to show that profunctors can be used to add new categorical structure to an existing

category. This observation is essential for understanding why PROs and PROPs can be viewed as monads

in Prof(Mon). The compositional structure of multicategories is complicated. The fact that each morphism

has several inputs leads to a tree-like composition structure that cannot be easily described in Prof. This is

where the theory of Kleisli bicategories of Chapter 5 comes in. Internal monads inside Kleisli bicategories are

exactly multicategories. This fact allows us to express operads, symmetric operads and Cartesian operads as

monads in certain bicategories. We provide detailed proofs. While the results were known, the author has

not seen them or their proofs anywhere else in literature. Finally, we give examples of concrete Operadic- and

PRO/PROP theories. We also explore the idea of using internal distributive laws for combining theories and

provide some important examples.

Chapter 7 is the first research chapter of the thesis. It formally develops a theory of extensions. To do

this, we define two monoidal bicategories. The first one, DLP , consists of distributive laws over P , 2-natural

transformations that also distribute over P and modifications that interact with P in a coherent manner.

Monads in DLP are types of theories and monad morphisms in DLP are relationships between such types.

The second monoidal bicategory is the bicategory of extensions: ExtP . Its 0-cells are functors on a bicategory

K that can be extended to kl(P ); 1-cells are 2-natural transformations that can be extended and 2-cells are

extendible modifications. We define two 2-functors ˜(−) : DLP → ExtP and d : ExtP → DLP . The first major

contribution of this thesis is the pair ˜(−) and d forms a monoidal equivalence of 2-categories. We obtain two

important corollaries from this. The first one states that distributive laws of monads over P are mapped to

internal monoids in the monoidal bicategory Ext(P ). The second corollary shows that monoid morphisms in

DLP map to monoid morphism in ExtP . Combined these corollaries give us a way of extending not only types

S : Cat→ Cat, but also relationships between types.

Chapter 8 is the second research chapter of the thesis. In this chapter we prove two theorems. The first

theorem shows that any monad morphism α : S → T between two 2-monads gives rise to a 2-functor

kl(S) → kl(T ) between the associated Kleisli bicategories. 2-functors preserve internal monads and internal

distributive laws. Thus, combined with the results of Chapter 7, this theorem shows how to build relationships

between theories from a relationship between types. The second theorem explores a relationship in the other

direction. When P is the presheaf monad, one can explore the duality kl(P ) = Prof to see that every

component iX of a 2-natural transformation i : S → T can be mapped to two profunctors: (iX)∗ and (iX)∗.

Chapter 7 deals with (iX)∗. In some cases (iX)∗ is also a 2-natural transformation, even a monad morphisms

(e.g. for some inclusions of 2-monads). In that case we obtain a 2-functor kl(T ) → kl(S). The second
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theorem shows that under mild coherence conditions the functors obtained from i form a lax 2-adjunction.

When i is the inclusion of one type into another, the results of this Chapter have a familiar interpretation:

the functor obtained from i∗ gives rise to a 2-functor that creates theories of type T from theories of type S

freely. The functor obtained from i∗ is the forgetful functor. It sends theories of type T to theories of type S

by forgetting some of the arity structure.

Chapter 9 applies the theory developed in Chapters 7 and 8 to important CUA examples. First we examine

the monad morphism i : M → S that is at each component just the inclusion of a free monoidal category into

a free symmetric monoidal category. We show in great detail that the inclusion satisfies the various coherence

conditions needed for the application of Theorem 1 of Chapter 8. This gives a 2-functor from kl(M) to kl(S)

that shows how to build symmetric operads from plain ones freely. This 2-functor also sends distributive

laws between operads to distributive laws between the associated free symmetric operads. We generate an

explicit formula for this functor. Theorem 2 also applies to i. Thus a left-adjoint J ` I : kl(M) → kl(S)

also exists. We perform the same analysis on the inclusion j : S ↪→ F of symmetric monoidal categories into

Finite-product categories. The inclusion also gives a lax-adjoint pair. The latter pair shows how to construct

Lawvere theories freely from symmetric operads. Crucially, it also shows that distributive laws between the

symmetric operads are mapped to distributive laws between the associated free Lawvere theories.

Chapter 10 is the conclusion chapter. In this Chapter we give a summary of our main results and briefly

explore several new research questions in the field.
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Chapter 2

Single dimensional overview

The main results of this thesis are formulated in the language of 2-Dimensional Category Theory. But before

delving into all the technical machinery that accompanies higher dimensions, we explore single dimensional

analogues of these results. The purpose of this is to provide the reader with a simple high-level overview of

the main tools we employ and our main contributions. We note that in this simplified environment many

results appear trivial, but consequently they aid in developing an intuition for the work as a whole.

We begin by defining single dimensional analogues of operads (see Chapter 2). We call these tools binary

theories. We then develop a framework in which we can discuss binary theories of various types, emphasising

that the notions of ‘type’ is a mathematical object in itself.

We conclude this chapter with an analysis of how relationships between types lead to relationships between

theories of these types. This last part is the main contribution of the thesis and is covered in full detail in

Chapters 7, 8 and 9.

2.1 Binary Theories

A binary theory models the scenario where for each arity, there is at most one operation. We model this by

defining a theory to be a function t with codomain 2 = {0, 1}. We interpret t(x) = 1 to mean that there

exists an operation of arity x. t(x) = 0 means that there is not such operation.

There is a definition of a binary theory for many different types of arities. We begin with the simplest case:

when the arities are linear.

A linear binary theory consists of a function t : N → {0, 1}, such that t(1) = 1 and for each k ∈
N, n1, . . . , nk ∈ N

(
t(k) = 1 and ∀ 1 ≤ i ≤ k t(ni) = 1

)
=⇒ t(n1 + . . .+ nk) = 1. (2.1)

The requirement t(1) = 1 says that the theory always contains the identity element. The second condition

makes the theory compositional: k operations of arities ni can be “plugged into” an operation of arity k to

produce a new operation of arity
∑
ki.
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Concretely, linear binary theories are subsets of N with certain properties. The subset {1} ⊆ N is the simplest

binary theory. The subset {1 + 2k | k ≥ 0} ⊆ N is a linear binary theory generated by a single operation of

arity 3.

We can also study binary theories whose types are lists with polarity. This feature is modelled by adding an

indication ‘−’ or ‘+’ to each arity to indicate the polarity of the list. Formally, these theories are functions

t : Z→ 2 that satisfies Equation 2.1 and t(1) = 1.

2.2 Monads

The central mathematical object in this thesis will be the monad. A monad on a category C consists of an

endofunctor T : C → C and natural transformations m : T 2 → T and u : 1C → T making

T 3 mT //

Tm
��

T 2

m

��

T
uT // T 2

m

��

T
Tuoo

T 2
m
// T T

commute.

We recall important examples of monads.

Example 2.1. The monoid monad M : Set→ Set sends every object to the monoid MX = (MX, ∗, e).
The set MX consists of all the words on the alphabet X,

[x1, . . . xn] ∗ [y1, . . . ym] = [x1, . . . , xn, y1, . . . ym].

and e = [], is the empty word.

The multiplication on m : M2X →MX sends a list of words

[
[x11, . . . x1n1 ], . . . , [xk1, . . . , xknk ]

]
to the word formed by removing the inner brackets: [x11, . . . xknk ]. The unit u : X → MX sends each

element x to the single letter word [x] ∈MX.

Example 2.2. The powerset monad on Set sends every set X to its powerset PX. Multiplication is

given by

mX : PPX → PX, A →
⋃
A

and the unit sends every x ∈ X to the singleton {x} ∈ PX.

Monads provide concise semantics for various mathematical and informatic constructs. For example the

monoid monad encodes all the information needed to recover the category of monoids and monoid homomor-

phisms. Each monad gives rise to two categories of algebras: its category of Eilenberg-Moore Algebras and

its Kliesli category.
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The Eilenberg-Moore category of a monad T on C, written CT , has as objects C-morphisms h : TX → X

such that

T 2X
Th //

mX

��

TX

h

��

X
uX // TX

h

��
TX

h
// X X

(2.2)

These objects are called the algebras of T. A homomorphism of algebras is a C-morphism f : X → Y such

that

TX
Tf //

h
��

TY

k
��

X
f // Y

commutes. Composition and units are imported from C.

The Kliesli category, denoted CT , has the same objects as C; the morphisms are given by CT (X,Y ) =

C(X,TY ). The identity on X is the component uX of the unit natural transformation. Given morphisms

ϕ : X → Y and ψ : Y → Z, we compose them in CT by taking the following composite in C

X
ϕ // TY

Tψ // T 2Z
mZ // TZ.

Example 2.3. The category SetM of Eilenberg-Moore algebras for the monoid monad is isomorphic the

category Mon on monoids and monoid homomorphisms. (cf. Example 20.5(2) of [Adamek et al., 1990]).

Example 2.4. P -algebras are complete lattices. The algebra mapping h : PX → X equips each subset

of X with a choice of supremum in X.

Example 2.5. The Kleisli category of P is the category of sets and relations. Indeed, kl(P )(X,Y ) =

Set(X,PY ) ' Rel(X,Y ). There are two important identity-on-objects functors from Set to Rel.

(−)∗ : Set→ Rel, (f : X → Y ) 7→ (f∗ : X → Y ), x(f∗)y ⇐⇒ f(x) = y

and

(−)∗ : Setop → Rel, (f : X → Y ) 7→ (f∗ : Y → X), y(f∗)x ⇐⇒ f(x) = y

We will often compare monads. Let (T,m, u) be a monad on C and (S, n, v) a monad on D. A morphism of

monads from (T,m, u) to (S, n, v) is a pair (A, a) with A : C → D a functor and a : SA → AT a natural

transformation satisfying

A
uA //

Av !!

SA

a

��

SSA

nA
��

Sa // SAT
aT // ATT

Am
��

AT SA
a

// AT.

Proposition 2.6. Let (A, a) : (T,m, u) → (S, n, v) be a morphism of monads. Then there is a functor

Â : CT → DS sending every T -algebra h : TX → X to the S-algebra Âh := SAX
aX // ATX

Ah // AX

11



and an algebra homomorphism f : (X,h)→ (Y, k) to Af . Furthermore, the following diagram commutes:

CT

U

��

Â // DS

U

��
C

A
// D.

Proof. Âh is indeed an algebra:

Âh ·mAX = Ah · aX ·mAX = Ah ·AnX · aTX · SaX
= Ah ·ATh · aTX · SaX
= Ah · aX · SAh · SaX = Âh · SÂh.

Similarly one checks that Âf is an algebra homomorphism.

The commutativity of the diagram is immediate from the definition of Â as is its functoriality.

The functor Â in the proposition is called the lift of A along the forgetful functor U .

The reader may have noticed that we have made an explicit choice in the direction of the natural transformation

a in the definition of a monad morphism. Nothing is stopping us from choosing the natural transformation to

go in the other direction: b : AT → SA. And we make this choice in the following definition. Let (T,m, u)

be a monad on C and (S, n, v) a monad on D. A opmorphism of monads from (T,m, u) to (S, n, v) is is a

pair (A, b) with A : C → D a functor and b : AT → SA a natural transformation satisfying

A

uA !!

Av // AT

b
��

ATT

Am
��

bT // SAT
Sb // SSA

nA
��

SA AT
b

// SA.

Proposition 2.7. Let (A, b) : (T,m, u) → (S, n, v) be a opmorphism of monads. Then there is a functor

Ã : CT → DS that coincides with A on objects. On morphisms

Ã( X
ϕ // TY ) = AX

Aϕ // ATY
bY // SAY .

Furthermore, the following diagram commutes:

C

(−)∗
��

A // D

(−)∗
��

CT
Ã

// DS .
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Proof. We verify that Ã is functorial. For ψ : X −→7 Y and ϕ : Y −→7 Z we have

Ãψ · Ãϕ = nAZ · SbZ · SAϕ · bY ·Aψ

= nAZ · SbZ · bTZ ·ATϕ ·Aψ

= bZ ·AmZ ·A(Tϕ · ψ) = Ã(ϕ · ψ).

Preservation of identities is immediate from the triangle in the definition of a opmorphism of monads.

It remains to verify that the square in the Proposition commutes. All four functors are identity-on-objects.

On morphisms,

(Ã · (−)∗)f = Ã( X
f // Y

vY // TY )

= AX
Af // AY

AvY // ATY
bY // SAY

= AX
Af // AY

uAY // SAY = (Af)∗.

We call Ã the extension of A.

Example 2.8. The pair (1C , u) where u is the unit of the monad (T,m, u), is a morphism of monads

(1C , 1, 1)→ (T,m, u). The monad morphism axioms follow from the monad axioms for T .

Example 2.9. Let M and G be the monoid and group monads on Set, respectively. Then (1Set, i), with

iX : MX → GX the inclusion, is a morphism of monads from G to M . It induces a functor

I : Grp = SetG → SetM = Mon

that sends

(GX → X) 7→ (MX → GX → X),

so that I just forgets the inverses of X.

2.3 Distributive Laws

Given two monads T, S : C → C in general ST is no longer a monad. For example, there is no canonical way

to define the multiplication

STST → ST.

A natural transformation TS → ST , would provide a candidate for multiplication

STST → SSTT → ST.

A distributive law is such a natural transformation, which satisfies the right conditions for the resulting

morphisms to become a multiplication. More precisely a distributive law between S and T is a natural
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transformation

l : TS → ST

making

T
TηS

~~

ηST

  

TSS

TµS
��

lS // STS
Sl // SST

µST

��
TS

l // ST TS
l // ST

S

ηTS

``

SηT

>>

TTS

µTS

OO

Tl
// TST

lT
// STT

SµT

OO

(2.3)

commute.

A distributive law gives rise to the composite monad

(ST, ηST · ηT , SµT · µSTT · SlT ).

There is also a notion of a distributive law between a monad (T,m, u) and a functor S. In this case, we only

require the bottom rectangle and triangle of 2.3 to commute. Another view point on such distributive laws is

afforded by the notion of monad morphisms.

Proposition 2.10. A distributive law between a monad (T,m, u) and a functor S is a natural transformation

λ : TS → ST such that (S, λ) : (T,m, u)→ (T,m, u) is a morphism of monads.

Example 2.11. The canonical example of a distributive law is the distributivity of multiplication over

addition in a ring: x · (y+ z) = x · y+x · z. This simple interaction between two algebraic structures can

be reconstructed from a distributive law of the monad for Abelian groups, A, over the monoid monad

M . The assignment

(x1 + . . .+ xn) · (y1 + . . .+ yn′) · . . . · (z1 + . . .+ zn′′)

7→ x1 · y1 · . . . · z1 + x1 · y1 · . . . · z2 + . . .+ xn · yn · . . . · zn

defines the component λX of the distributive law λ : MA→ AM . This distributive law turns AM into

a monad whose algebras are rings.

Example 2.12. Another example, and one that will reappear throughout this thesis, is the distributivity

of the monoid monad over the powerset monad. The X component of the distributive law, λX : MPX →
PMX is given by

[A1, . . . An] 7→ {[a1, . . . an] | ai ∈ Ai}. (2.4)

The importance of this particular distributive law compels us to verify that it indeed satisfies the axioms.

Proposition 2.13. The assignment in (2.4) defines a distributive law.

Proof. We start by verifying that, with T replaced by M and S replaced by P , the upper rectangle of 2.3

commutes. The upper-right passage sends
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[A1, . . . ,An] 7→ {[A1, . . . , An] | ∀i = 1 . . . n Ai ∈ Ai}

7→ {PλX([A1, . . . , An]) | Ai ∈ Ai}

= {{[a1, . . . , an]} | ai ∈ Ai} | Ai ∈ Ai}

7→
⋃

Ai∈Ai

{
{[a1, . . . , an] | ai ∈ Ai

}
= {[a1, . . . , an] | ∀i∃Ai ∈ Ai such that ai ∈ Ai}.

and this coincides with the bottom-passage:

[A1, . . . , An] 7→ [
⋃
A1, . . . ,

⋃
An]

7→ {[a1, . . . , an] | ai ∈
⋃
i

Ai}.

The bottom rectangle of 2.3 also commutes. Both passages send
[
[A11, . . . , A1n1

], . . . , [Am1, . . . , Amnm ]
]

to {[a11, . . . , a1n1
, . . . , am1, . . . , amnm ] | aij ∈ Aij}.

The commutativity of the triangles is an easy exercise.

Distributive laws allow us not only to form the composite monad ST , but also to lift T to the Eilenberg-Moore

category of S, and to extend T to the Kliesli category of S. In fact, all those concepts are equivalent.

Theorem 2.14 (Beck). Let (T,m, u) and (S, n, v) be monads on a category C. There is a one-to-one

correspondence between the following concepts:

1. A distributive law λ : TS → ST ;

2. A multiplication m : STST → ST such that (ST,m, uSuT ) is a monad, the natural transformations

S
SuT // ST T

uSToo

are monad morphisms and the middle unitary law

ST
SuTuST

{{
STST

m
// ST

holds;

3. Liftings T̂ of T to CS ;

4. Extensions S̃ of S to CT .

Proof. We sketch the proof of (1)⇐⇒ (3) and refer the reader to [Beck, 1969] for the rest.
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(1) =⇒ (3): Define T̃ ( SX
h // X ) = STX

λX // TSX
Th // TX . The image of h under T an

S-algebra since the diagram below commutes.

S2TX

(1)mTX

��

SλX // STSX

λSX
��

(2)

STh // STX

λX

��
TS2 TSh //

TmX
��

(3)

TSX

Th

��
STX

λX

// TSX
Th
// STX

Indeed, (1) follows from one of the axioms for a distributive law, (2) follows from the naturality of λ and (3)

commutes since h is an S-algebra.

On morphisms T̃ = T · U , with U : CT → C the forgetful functor. The naturality of λ guarantees that this

assignment sends algebra morphisms to algebra morphisms. The definition of T̃ immediately implies that is

it in fact a lift.

(3) =⇒ (1): Define λ to be the composite

ST
STv // STS = STUF = SUT̃F = UFUT̃F

UεT̃F // UT̃F = TUF = TS .

The axioms are easy to check.

The distributive law in (2.4) allows us to extend M to the Kliesli category of P , i.e. to Rel. Given a relation

r : X → PY , Mr is given by

M̃(r)([x1, . . . , xn]) = {[y1, . . . yn] | x1ry1, . . . , xnryn}.

We can also lift P to the SetM :

P̂ ( MX
h // X ) = PMX

λX // MPX
Ph // PX .

P̂ (h) equips PX with the structure of a monoid; given A,B ⊆ X

A ∗B = P̂ (h)([A,B])

= Ph · λX([A,B])

= Ph({[a, b] | a ∈ A, b ∈ B}

= {h([a, b]) | a ∈ A, b ∈ B}

= {a ∗ b | a ∈ A, b ∈ B}.

The lift P̂ is now a monad on Mon. Its algebras are monoids that come equipped with complete lattice

structure which satisfies ∨
(A ∗B) =

∨
A ∗

∨
B.

The above arguments work equality well when M is replaced by the monad for commutative monoids. In that

case the algebras for the lift P̃ are the so-called commutative quantales. That is, complete lattices (X,
∨

)
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with a commutative monoid structure ∗ such that

x ∗
∨
a∈A

a =
∨
a∈A

x ∗ a.

2.4 Monads in Kleisli 2-categories

The category Rel is Ord-enriched. This equips it with 2-categorical structure in which the 2-cells are given

by set-inclusion. For any monad S : Rel→ Rel, the Kleisli category kl(S) inherits the 2-categorical structure

from Rel. We can thus study monads in such Kleisli categories (see Chapter 6 for more details on internal

Category Theory).

We are particularly interested in exploring such monads inside the Kleisli 2-category kl(M̃) of the extension

of the monoid monad to Rel. A monad on 1 in kl(M̃) consists of a relation r : 1 −→7 M1 = N with

r ∗ r ⊆ r and (1X)∗ ⊆ r. (2.5)

Equivalently, such a relation is a function

r : N→ {0, 1}.

The second condition in Equation 2.5 implies that r(1) = 1.

The first condition is subtler. The composite r ∗ r in kl(M̃) equals to the following composite in Rel

1 �r // N �M̃r // MN �µ1∗ // N .

So r ∗ r(n) = 1 if and only if

• there exists k ∈ N such that r(k) = 1 and

• there exists n1, . . . ns ∈ N such that [n1, . . . ns](M̃r)k and

• [k1, . . . , kr](µ1)∗n.

The last condition holds if, and only if, k1 + . . .+ kr = n. The second condition implies that s = k. Hence

r ∗ r ⊆ r is the same as: for all k ∈ N, n1, . . . , nk ∈ N

r(k) = 1 and ∀ 1 ≤ i ≤ k r(ni) = 1 =⇒ r(n) = r(n1 + . . .+ nk) = 1.

We thus proved

Proposition 2.15. Monads on 1 in kl(M̃) are exactly linear binary theories.

The only thing that makes M special here is the fact that it distributes over P . In general, whenever T is

a monad on Set that distributes over P , we define a binary theory of type T as an internal monad in the

2-category kl(T̃ ). So the type of our theory is encapsulated in the Set-monad T .

Example 2.16. Consider the Abelian group monad A = (A,m, u) on Set. It too distributes over the

powerset monad. The distributive law λ : AP → PA is given by

[−Y1, . . . ,−Yn, Y ′1 , . . . , Y ′m] 7→ {[−y1, . . . ,−yn, y′1, . . . , y′m] | yi ∈ Yi, y′j ∈ Y ′j }.
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Thus we can extend A to Ã : Rel→ Rel. Using the reasoning we used for M , we can compute the action

of Ã on a relation r:

[−x1, . . . ,−xk, x′1, . . . , x′k′ ]Ãr[−y1, . . .− yk, y′1, . . . y′k′ ] ⇐⇒ ∀i, j xiryi and x′jry
′
j .

Theories of type A are monads in the 2-category kl(Ã). The arities of these theories are more expressive

than arities of simple linear theories. The lists that act as inputs into our operations have two kinds

of elements: negative and positive. Composition of operations now has to be mindful of the arities of

operations.

2.5 Comparing Types of Theories

Fix two monads S and T and suppose that both distribute over P via distributive laws λ and ρ; in other

words, each one corresponds to a type. Suppose that there is a monad morphism α : S → T . Can we then

construct a relationship between kl(S̃) and kl(T̃ ) that assigns monads to monads?

Simply a functor kl(S̃) → kl(T̃ ) will not suffice, since it does not have to send internal monads to internal

monads. What we want is a 2-functor (see Chapter 4 for a detailed definition). 2-functors A : Rel→ Rel are

nothing but functors that preserve the order of hom-sets. That is

r ⊆ s =⇒ Ar ⊆ As

Its easy to see that such 2-functors preserve monads. Indeed,

r ∗ r ⊆ r =⇒ Ar ∗Ar = A(r ∗ r) ⊆ Ar.

We shall build the functor A in two steps. First, we will show that when the monad morphism α is compatible

with the distributive laws λ and ρ, it too can be extended to

α̃ : S̃ → T̃ .

Second, we show that post-composing morphism with this extension

(X −→7 SY ) 7→ (X −→7 SY −→7 TY )

gives rise to the desired 2-functor. All this is made precise in the following two theorems:

Theorem 2.17 (Akhvlediani). Let T, S, P be monads on Set and let

λ : TP → PT and ρ : SP → PS

be distributive laws. Let α : S → T be a natural transformation such that

λ · αP = Pα · ρ (2.6)

Then the formula

α̃X := (αX)∗ = SX
αX // TX

uTX // PTX = SX −→7 TX.
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gives rise to a natural transformation α̃ : S̃ → T̃ . α̃ is a monad morphism whenever α is.

Theorem 2.18 (Akhvlediani). Let S̃ and T̃ be monads on Rel and α̃ : S̃ → T̃ be a monads morphism. Then

the assignment

ϕ 7→ αY · ϕ

defines a 2-functor

A : kl(S̃)→ kl(T̃ ).

We prove those theorems in chapters 7 and 8.

These two theorems can now be used to understand how the relationship between monoids and groups gives

rise to a relationship between theories of type M and theories of type A. First, observe that the inclusion of

a free monoid on X into the free group on X gives rise to a monad morphism

ι : M → A.

Naturality of ι is trivial. Since in both monads the multiplication is just concatenation of lists, ι is also a

monad morphism. It is also easy to verify that Equation 2.6 holds for ι. Indeed, given [Y1, . . . , Yn] ∈MPX,

the passages

[Y1, . . . , Yn] � ιPX // [Y1, . . . , Yn] � ρX // {[y1, . . . yn] | yi ∈ Yi}

and

[Y1, . . . , Yn] � λX // {[y1, . . . yn] | yi ∈ Yi} � PiX // {[y1, . . . yn] | yi ∈ Yi}

yield the same result.

Thus we can extend ι to ι̃ : M̃ → Ã. This extension is again a morphisms of monads. Thus, by Theorem

2.18 we obtain a 2-functor

I : kl(M̃)→ kl(Ã).

This 2-functor sends an M -theory ϕ : X −→7 MX to an A-theory X �ϕ // MX �ι∗ // AX . A quick look

at the formula shows that the an operation in the new theory, Iϕ, exists if, and only if, it exists in the old

theory ϕ.

Unfortunately things cannot get much more interesting than this for relational theories. The problem is that

we cannot say anything about the operations in the theory, all we know is that either there is an operations

of a certain arity or there is no such operation. We shall see throughout the thesis that when we take more

complex theories into account, in particular ones in which we can specify the operations explicitly, we will get

very interesting relationships between theories.

The category Rel is a dagger category. Simply put, this just means that every relations has a converse defined

by r◦(x, y) := r(y, x). Thus for every morphism between sets there are two canonical ways of making it into

a relation. The first one is to consider its graph, and the second the converse of that graph.

So far, we have focused on the graph of ι : M → A. But if its converse, denoted i∗ : Ã → M̃ , is also a

monad morphism, we shall get, by Theorem 2.18, a 2-functor from kl(Ã)→ kl(M̃).
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We directly check that ι∗ is a natural transformation. Both passages in

AX
�ι
∗
X //

_Ãr
��

MX

_M̃r
��

AY �
ι∗Y

// MY

.

relate a list l in AX to a list l′ in MY precisely when the length of both lists is the same, l does not have

any negative entries, and for all xi ∈ l, yi ∈ l′, xiryi.

ι∗ is also a monad morphism. This too can be directly checked and follows an argument similar to the one

above.

We thus get a 2-functor

J : kl(Ã)→ kl(M̃);

this functor sends anA-theory ψ : X −→7 AX to theM -theory X �ψ // AX �ι
∗
X // MX . Jψ([x1, . . . xn], x) =

1 provided that exist k ≥ 0 and y1, . . . , yk ∈ X such that

ψ([−y1, . . . ,−yk, x1, . . . , xn], x) = 1.

That is, the 2-functor J forgets the negative parts of the arities of each operation of ψ. It almost acts as a

projection operator on each operations.

The two embeddings of Set into Rel create adjoints pairs

ι∗ a ι∗

in the later 2-category. Explicitly,

ι∗ · ι∗ ⊆ (1AX)∗ and (1MX)∗ ⊆ ι∗ · ι∗.

This relationship suggests that the 2-functors I and J are not entirely unrelated.

Let F,G : Rel → Rel be two 2-functors. We say that F is locally left adjoint to G provided that for every

two sets X and Y there is an adjunction

Rel(FX, Y )
..

> Rel(X,GY )nn

Theorem 2.19. J is locally left adjoint to I.

Proof. Since both functors are identity on objects, we just need to show that there is an adjunction

IX,Y a JX,Y : kl(Ã)(X,Y )→ kl(M̃)(X,Y ).

This amounts to showing that for any r : X −→7 AY and s : X −→7 MY we have

Is ⊆ r ⇐⇒ s ⊆ Jr.
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or, equivalently,

i∗ · s ⊆ r ⇐⇒ s ⊆ i∗ · r

For =⇒ ,

s = 1 · s ⊆ ι∗ · ι∗ · s ⊆ ι∗ · r.

The converse is similar.

Thus a monad morphism α : S → T that suitably interact with the distributive laws λ and ρ always gives

a passage from theories of types S to theories of types T . Further, when α∗ is a monad morphism, it also

gives rise to a functor in the other direction. The two functors form an adjoint pair. In particular, when

dealing with inclusions of monads, this adjoint pair can be interpreted as forgetting structure and putting free

structure on a theory.

In the rest of this work we develop an analogue of the above theory for 2-categories. In particular, we examine

2-monads on Cat and their extensions to the category of profunctors. We shall see that internal monads

in Kleisli bicategories of such extensions can describe many flavours of theories: plain operads, operads and

Lawvere theories.

We then show that 2-monad morphisms that interact nicely with the 2-distributive laws can also be extended.

These extensions allow us to build functors between the Kleisli bicategories where our theories live. We also

show that, when certain conditions hold, the resulting functors form so-called lax 2-adjunctions.
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Chapter 3

Categorical Universal Algebra

In Universal Algebra the formal specifications of a particular construct themselves become mathematical

objects which can be investigated. Universal Algebra became an important part of modern mathematical

landscape with the publication of A Treatise on Universal Algebra in 1898. Since then the field saw numerous

advances and breakthroughs. One of those was the use of Category Theory as the formal mathematical system

for describing specifications of various theories.

Peter May’s theory of operads, initially introduced to tackle issues in algebraic topology, turned out to be

very useful in specifying the semantics for higher dimensional categories [Leinster, 2003]. In parallel, Mc

Lane and Adams developed PROs and PROPs which are special types of categories that contain all the data

needed to describe algebraic gadgets in monoidal and symmetric monoidal categories. The field reached full

maturity with Lawvere’s discovery of finite product theories, or more colloquially, Lawvere theories. Like

PROPs and PROs these are special types of categories which model algebraic specifications for some of the

most commonly encountered algebraic structures. Their models live in finite-product categories.

In this chapter we begin with a general discussion of theories. We then give a brief introduction to operads.

Following this, we explore PROPs and PROs. We conclude with Lawvere Theories. We also highlight the

similarities and differences between all these tools.

3.1 Theories - an overview

For us a theory is a formal specification which consists of operations of certain arities, ways of combining

these operations and a methods for specifying equations between the combined operations. For example, the

specification for the theory of monoids involves operations of linear arities, e.g. operations that accept a finite

list of inputs and produce a single output. Multiplications m : X ×X → X is one such operation; it accepts

tuples of elements of X and returns a single element of X. The multiplicative identity e : {∗} → X is an

operations of arity 0. This multiplicative identity can be combined with the multiplication

X ' X × {∗} 1×e // X ×X m // X

One equation in the theory of monoids says that this expression equals to the operation identity idX : X → X.
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Note that in the above specification we do not concern ourselves with what X is. That is, X here does not

play the role of the carrier set for the monoid, but rather acts as a dummy variable that is used to specify the

domain and codomain of operations.

Concrete monoids are called models of the above theory. Each model consists of the underlying set of the

monoid and a concrete implementation for each operation in the specification such that the equations between

the operations in the specification are also satisfied for those implementations.

Category Theory provides us with tools that allow for an elegant expression of both the specification of a

theory and its category of models.The idea is to package the specifications of a theory into a category. The

objects of this category play the role of X in the above specification, that is, they act as dummy variables. The

morphisms of this category act as the operations of the theory. Equations are specified by equality between

the morphisms in the category. Finally, the idea of arity is captured by adding some structure to this category.

For example, to model arities of type list, we add monoidal structure to our category.

Given a category G which represents a particular theory, the models of this theory (in the category of sets and

functions) are structure preserving functors

G → Set.

This summarises the main ideas behind Categorical Universal Algebra. The implementation of these ideas is

not trivial. First, there are several variants of structures for capturing algebra syntax. On one hand, there

are operads. They model operations with multiple inputs and a single output. Operads themselves come in

many flavours: plain, symmetric and coloured, to name a few. There are also versions of operads based on

finite product structure.

There exist gadgets for capturing syntax of theories whose operations have multiple inputs and multiple

outputs. They also come in several variants. The simplest are PROs, which are special kind of monoidal

categories. PROPs are symmetric variant of PROs and Lawvere Theories are their finite-product counterpart.

3.2 Operads

The name operads first appeared in May’s The Geometry of Iterated Loop Spaces []. May uses operads in the

category of topological spaces as a tool for dealing with iterated loop spaces. But while May introduced the

name, Operad appears as early as 1898 in Whitehead’s A Treatise on Universal Algebra. They next reappear

in Lazar’s work in the 50’s. By the late 60’s Operads and PROPs were widely studied in the algebraic and

topological communities, as witnessed by the 1967 seminar on PROPs organised by Mc Lane.

At these early stages much of the the focus was on symmetric and plain operads. Later developments in

Categorical Universal Algebra, most notably the discovery of Lawvere theories, let to a greater variety of

operads. Here we cover the most important variants, beginning with the simplest one: plain operads.

3.2.1 Plain operads

A non-symmetric operad or a plain operad consists of

• For each n ∈ N, a set A(n) of operations of arity n, which we visualise as

• The identity operation id ∈ A(1).
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Diagram 3.1: An operation of arity n

• For k, n1, . . . , nk ∈ N a composition operation

A(n)×A(k1)× . . .×A(kn)
κ−→ A(k1 + . . .+ kn)

which we visualise as

7→

Diagram 3.2: Operad composition

• Composition is associative and the identity acts as the unit for the composition:

↗ ↘

↘ ↗

Diagram 3.3: Associativity of operad composition

Note that there are more general definitions of operads, where the elements of the sequence A(k) are not

sets, but objects in an arbitrary monoidal category. Indeed, May’s original definition [May, 1972] took A(k)

to be topological spaces. In our approach, we will be content with taking A(k) to be sets, so that, using

standard terminology, our operads are operads in the monoidal category (Set,×, {∗}).

Given two plain operads A and B, a morphism of plain operads consists of

• for each n ∈ N a function fn : A(n)→ B(n);
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• such that f1(id) = id ∈ B(1)

• and composition is preserved:

A(k)×A(n1)× . . .×A(nk)
κ //

fk×fn1
×...×fnk

��

A(n1 + . . .+ nk)

f∑nk

��
B(k)×B(n1)× . . .×B(nk)

κ // B(n1 + . . .+ nk)

Plain operads and their morphisms form a category.

Example 3.1. The simplest plain operad E is given by

E(1) = {∗} and E(n) = ∅, ∀n 6= 1.

It provides specifications for the theory that does not contain any non-trivial operations.

Example 3.2. Define an operad S by S(n) = {∗}, ∀n ≥ 1 and S(0) = ∅. Since the singleton is terminal

in Set, composition and the unit are defined in the obvious way. S is called the operad for semi-groups.

Example 3.3. Any object x in a monoidal category C gives rise to a plain operad End(x) by setting

End(x)(n) = C(x⊗n, x).

Composition

End(x)(k)× End(x)(n1)× . . .× End(x)(nk)→ End(x)(n1 + . . .+ nk)

is given by

(f, g1, . . . , gk) 7→ f · (g1 ⊗ . . .⊗ gk).

This operad is called the endomorphism operad of x.

Let C be a monoidal category and x ∈ obC be an object. Let A be an operad. An A-algebra structure on x

is a morphism of operads

A→ End(x).

Example 3.4. A semi-group structure on a set X is equivalent to a operad morphism s : S → End(X).

Indeed, such an operad morphism picks a function

m := s(2)(∗) ∈ Set(X ×X,X).

that acts as the multiplication of the semi-group since

m · (1×m) = m · (m× 1) (3.1)

Indeed, the left-hand-side is the image of

End(X)(2)×
(
End(X)(1)× End(X)(2)

) κ→ End(X)(3),
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while the right-hand-side is the image of

End(X)(2)×
(
End(X)(2)× End(X)(1)

) κ→ End(X)(3).

Since s is a morphism of operads, the following diagram commutes

S(2)×
(
S(1)× S(2)

) κ //

s

��

S(3)

s3

��

S(2)×
(
S(2)× S(1)

)κoo

s

��
End(X)(2)×

(
End(X)(1)× End(X)(2)

)
κ
// End(X)(3) End(X)(2)×

(
End(X)(2)× End(X)(1)

)
κ
oo

showing that both sides of Equation 3.1 equal s3 · κ(∗).

Example 3.5. For a plain operad A and an object x of a monoidal category C, the Schur functor

SA(x) :=
∐
n≥1

A(n)⊗ x⊗n

gives the formula for an A-algebra on x. See [Markl et al., 2007] for a detailed treatment.

Taking C = (Set,×, {∗}), a typical element of SA(X) is

(ϕ, x1, . . . , xn)

with ϕ ∈ A(n) and xi ∈ X. But this is just another way of formally writing down ϕ(x1, . . . , xn).

The Schur functor gives the free A-algebra on x.

3.2.2 Symmetric operads

A symmetric operad consists of a plain operad A equipped, for each n ∈ N, with right actions of symmetric

groups

γn : A(n)× Sn → A(n).

These actions specify the interaction of each operation with symmetry. We visualise the actions as follows

α β7→

∈ Sn ∈ A(n)

......

Diagram 3.4: Action of Sn on the operations in A(n)

Composition needs to be compatible with the actions of the symmetric groups. This condition is called

equivariance and it is not entirely trivial. Let n1, . . . , nk be a list of natural numbers that add-up to m. Any
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such list induces a mapping

sn1,...,nk : Sk → S∑k
i=1 ni

= Sm, σ̄ := sn1,...,nk(σ) (3.2)

where σ̄ permutes the list n1, . . . , nk by permuting the indices. This is best illustrated with an example:

sn1,...,nk allows us to define the passage

7→

σ σ̄

Diagram 3.5: Example application of sn1,...,nk to σ

Σ = Σ(σ,n1,...,nk) : Sk ×
k∏
i=1

A(ni)→
k∏
i=1

A(nσ(i))× Sm (3.3)

by sending (
σ, (x1, . . . , xk)

)
7→
(
(xσ(1), . . . , xσ(k)), σ̄

)
We say that equivariance holds for A provided that the following diagram commutes for all k, n1, . . . , nk,

m =
∑k
i=0 ni

A(k)× Sk ×
∏k
i=1A(ni)

1×Σ //

γk×1

��

A(n)×
∏k
i=1A(ni)× Sm

κ×1

��
A(m)× Sm

γm

��
A(k)×

∏k
i=1A(ni) κ

// A(m)

(3.4)

This is visualised in Diagram 3.6.

Example 3.6. Define an operad C whose underlying plain operad is the operad S of Example 3.2. The

actions of the symmetric groups are trivial, which gives the commutativity of operations:

7→

We call this operad the operad for commutative semi-groups.

Example 3.7. Any object x in a symmetric monoidal category C gives rise to an operad End(x) by

setting

End(x)(n) = C(x⊗n, x).
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α

β

γ

β

α

γ

δ

δ

α

β δ

γ

α

δ

γ

β

β

α

γ δ

↗

↘

↘

→
=

α

β

γ→ δ

Diagram 3.6: Equivariance

The composition and unit are the same as for the plain case (cf. Example 3.3). Actions of symmetric

groups

C(x⊗n, x)× Sn → C(x⊗n, x)

are defined by identifying each σ ∈ Sn with the corresponding symmetry isomorphism σ′ : x⊗n → x⊗n

in C and sending the pair (σ, ϕ) to the composite ϕ · σ′.

A morphism of symmetric operads, α : A → B is a morphism of the underlying plain operads with the

additional property that the actions of the symmetric groups are preserved, that is for each n ∈ N,

A(n)× Sn
γn //

αn×1

��

A(n)

αn

��
B(n)× Sn

γ′n

// B(n)

commutes.

Let x be an object in a symmetric monoidal category C and let A be an operad. An A-algebra on x is a

morphism of symmetric operads

A→ End(x)

Example 3.8. Giving a set X the structure of a commutative semi-group is exactly the same as giving

a morphism of operads C → End(X). Given such a morphism c : C → End(X), we obtain an associative

multiplication as in Example 3.4. m is commutative because the square

C(2)× S2
γ2 //

c2×1

��

C(2)

c2

��
End(X)(2)× S2

γ′2

// End(X)(2)

commutes. Indeed, the bottom arrow sends (m,σ) to the composite (m · σ) in Set and this composite
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equals m = c2(∗).

3.2.3 Coloured operads

So far we have focused on operads where the inputs and outputs of every operations were of the same type.

There are instances when we wish to distinguish the types of inputs and outputs from each other. The simplest

examples arise in computing when functions can input different types of arguments (strings, integers, floats,

etc) and output other types.

Coloured operads provide semantics for describing such operations. A plain coloured operad or a multicategory

consists of the following ingredients

• A class X of objects (also called colours);

• for each x ∈ X, and a list [x1, . . . , xn] of X objects, a set

A([x1, . . . , xn], x)

of operations from [x1, . . . , xn] to x;

• for each x ∈ X an element id ∈ A([x], x);

• for each list [x1, . . . , xn], x ∈ X and lists [y11, . . . , y1k1 ], . . . [yn1, . . . , ynkn ] a composition operation

A([x1, . . . , xn], x)×
(
A([y11, . . . , y1k1 ], x1)× . . .×A([yn1, . . . , ynkn ], xn)

)
→ A([y11, . . . , ynkn ], x)

such that composition is associative and is compatible with the unit.

Adding actions of symmetries, as was done Section 3.2.2 for plain operads, produces symmetric coloured

operads, or symmetric multicategories.

We visualise operations of coloured operads as follows.

A coloured operad with a single colour is just a regular operad.

3.2.4 Other types of operads

While symmetric operads are the most studied type, important variants do exist. In braided operads, for

example, the actions of symmetric groups Sn are replaced by the action of braid groups Bn.

We can also replace groups by homsets. So, for example, the action of the symmetric group Sn can be

replaced

A(n)× P(n, n)→ A(n)

where P is the skeletal category of finite sets and bijections. In this setting, the axioms of groups actions are

equivalent to compatibility with composition and the identity. More generally, let A be a monoidal category
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whose objects are the natural numbers. Then an operad of type A -or an A-operad - is an operad A equipped,

for each n, k ∈ N, with a function

αn,k : A(k)×A(n, k)→ A(n)

such that for all n, k,m ∈ N, the following diagrams commute

A(k)×A(n, k)×A(m,n)
1×◦ //

α×1

��

A(k)×A(m, k)

α

��

A(k)
1×id //

1 &&

A(k)×A(k, k)

α

��
A(n)×A(m,n)

α
// A(m) A(k),

In order to define equivariance, we also need a passage

Γ : A(n, k)×
n∏
i=1

A(ki)→
n∏
i=1

A(ki)×A(

n∑
i=1

ki,m
′) (3.5)

for some m′. We can then define equivariance as we have done in diagram 3.4. Although, in practice it is

rather difficult to obtain such a passage.

Example 3.9. It turns out that when A = Fop is the opposite of the skeletal category of finite sets, there

is a sensible way to define the mapping in 3.5. Note that Fop consist of symmetries, copying operations

and delete operations. We define Γ on symmetries to equal Σ of 3.3. On deletion operations Γ is given

by

7→

Diagram 3.7: The action of Γ on deletions

and on copying operations it is given by

7→

Diagram 3.8: The action of Γ on copy operations

So Γ copies and deleted operations of A-operations.

A Cartesian operad is an operad of type Fop. Since Fop is the free finite-product category on 1, the

actions

A(k)× Fop(n, k)→ A(n)

specify how the operations in A interact with finite product structure.
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Since finite product structure allows us to copy and delete inputs, Cartesian operads allows us to specify

the axioms for the theory of groups. Let G be the Cartesian operad for groups. Then the fact that every

element has an inverse is captured by the equation

7→m

i

(here i : 1→ 1 is the inverse operation and m : 2→ 1 is the multiplication.)

We treat Cartesian operads formally in Section 6.2.3 of Chapter 6. For now, we hope that this brief

introduction conveyed both the importance of Cartesian operads and the difficultly in with attempting

to define them naively.

3.3 PROs, PROPs and PROBs

Operads model theories with multiple inputs and a single output. This constraint means that specifications

for several important algebraic structures cannot encoded by an operad. A bialgebra is a classic example of

such a structure. Bialgebras are equipped with both a multiplication and a comultiplication, and the latter

cannot be expressed in an operad.

PROPs and their variants are a generalisation of operads which can express algebraic operations with multiple

inputs and multiple outputs. In this section we study PROs, PROPs and Lawvere theories. These correspond

to plain, symmetric and Cartesian operads.

3.3.1 PROs

A PROduct category or simply a PRO is a strict monoidal category T = (T,⊗, I) with obT = N, ⊗ = +

and I = 0. The free monoidal category on a single object is a PRO; its objects are the natural numbers and

the only morphisms are the equalities. We denote this category by N. The simplicial category, ∆, (see [?]) is

a classic example of a PRO. For each n ∈ ob∆, write

[n] = {0 < 1 < . . . < n− 1}

and set

∆(n,m) = {f : [n]→ [m] | f monotone }.

∆ has two subcategories ∆m and ∆e whose morphisms are the monomorphisms in ∆ and the epimorphisms

in ∆, respectively. These subcategories are themselves PROs.

Any object A is a monoidal category C induces a PRO 〈A,A〉; the hom-sets are given by

End(A)(n,m) = C(A⊗n, A⊗m).

Composition and the tensor are inherited from C.

A morphism of PROs from T to S is a strict monoidal identity-on-objects functor H : T→ S.
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The main interest in PROs stems from their ability to describe algebraic gadgets. An algebra of a PRO T in

a monoidal category C, or a T-algebra in C, is a strict monoidal functor

F : T→ C.

Since F is strict monoidal, its image on obT is completely determined by F1. For a given object A ∈ obC a

T-algebras structure on A is an T-algebra F with F1 = A.

Alternatively, we can define an T-algebra structure on an object A to be a morphism of PROs

T→ End(A).

Given two algebras F and G a morphism of T-algebras is a monoidal natural transformation

α : F → G.

Such α are completely determined by their component at 1: αn = α1+...+1 = α1 ⊗ . . .⊗ α1.

T-algebras in C and T-algebra morphisms form a category T-Alg.

Example 3.10. N-algebras in C are just the objects of C. This is not surprising because N does

not contain any information - it has no non-trivial morphisms. N-algebra morphisms are then just the

morphisms of C and so N-Alg ' C.

Example 3.11. ∆-algebras are more interesting. Since 1 ∈ ∆ is the terminal object, there are unique

morphisms

m : 2→ 1 and u : 0→ 1

in ∆, and

3
m+1 //

1+m

��

2

m

��

1
1+u //

1 ��

2

m

��

1
u+1oo

1��
2

m
// 1 1

(3.6)

commute; thus (1,m, u) is a monoid in ∆. A ∆-algebra F : ∆ → C preserves the above diagrams and

hence ∆-algebras give rise to monoids (A := F1, µ := Fm, η := Fu) in C. Conversely, a given monoid

(A,µ, η) in C defines a ∆-algebra FA. Obviously FA1 := A, FAm := µ and FAu := η. In fact, these

three assignments determine FA on all of ∆. Indeed, since FA is strict monoidal, it is fully determined

on ob∆. Let mk : k → 1 denote the only such morphism (m0 = u,m1 = 1,m2 = m). Since 1 is terminal

mk = m · (mk−1 + 1).

for any k > 0. Thus, the definition of FA extends to all morphisms of the form mk by induction. Since

any f : n→ r in ∆ can be written as

f = m|f
−1(0)| + . . .+m|f

−1(r−1)|.

FA extends to all of ∆. Monoid morphisms f : A→ B in C give rise to monoidal natural transformation
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Ff : FA → FB defined by

(Ff )n := f⊗n.

And monoidal natural transformation α : F → G defines monoid morphisms α1 : F1→ G1 in C. Indeed,

preservation of multiplication follows from naturality

F2
α1+α1 //

m

��

G2

m

��
F1

α1

// G1.

In fact there is a functor

F(−) : Mon(C)→ ∆-Alg

from the category of monoids in C and their homomorphisms to the category of ∆-algebras and their

morphisms sending monoids to ∆-algebras and a functor

(−)1 : ∆-Alg→ Mon(C)

sending ∆-algebras to monoids. These functors form an isomorphism of categories. Writing Cat(1,Mon(C))
for Mon(C) allows for a succinct expression of this fact:

MonCat(∆, C) ' Cat(1,Mon(C)).

From this perspective, ∆ can be thought of as the free strict monoidal category containing a monoid

object.

Example 3.12. ∆op-algebras in C are precisely the comonoids in C. ∆op-algebra homomorphisms in C
are the comonoid homomorphisms in C. The details are dual to those in Example 3.11.

Example 3.13. Using the techniques developed in (2), one can show that ∆e-algebras are the semi-

groups in C and the ∆m-algebras are the I-pointed objects in C. (A is an I-pointed object provided that

it is equipped with a morphism α : I → A).

3.3.2 PROPs

A PROduct and Permutation category or PROP is a symmetric monoidal category T = (T,⊗, I) with

obT = N, ⊗ = + and I = 0. Thus a PROP is nothing but a symmetric PRO. The simplest PROP is one

without any structure, that is, just the free symmetric monoidal category on a single object category; we

denote it by P. Explicitly, for any n,m ∈ N,

P(n,m) =

{
S(n), if n = m;

∅, else,

(S(n) is the symmetric group with n elements).
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P is certainly a PRO. A P-algebra Ã : P → C in a monoidal category C assigns the non-trivial permutation

1 + 1→ 1 + 1 to some morphism A⊗A→ A⊗A that we shall call the symmetry isomorphism of A. If we

let C = T be a PRO, we obtain the following result:

Lemma 3.14. A PROP T is a PRO T with a given strict monoidal identity-on-objects functor

J : P→ T.

The skeletal category of finite sets and functions, F, is also a PROP.

PROPs are important because, through their algebras, they describe algebraic gadgets in the symmetric

monoidal setting. An algebra of a PROP T in a symmetric monoidal category C, or simply a T-algebra in C,

is a strict monoidal functor

F : T→ C.

Given two such algebras, a morphism of T-algebras is a monoidal natural transformation α : F → G. We

denote the category of T-algebras and their morphisms by T-Alg.

Example 3.15. The category of P-algebras in C is just C itself.

Example 3.16. The “combinatorial” structure of F resembles that of ∆. The fact that 1 is terminal

gives rise to m : 2 → 1 and u : 0 → 1. The diagrams of equation (3.6) still commute. But F has more

morphisms than ∆ – there are two morphisms from 2→ 2. We call the non-identity one s : 2→ 2, and

this morphism interacts with the multiplication via

2

m
��

s // 2

m
��

1

The commutative diagrams of (3.6) along with the diagram above show that (1,m, u) is a commutative

monoid in F. Hence any F-algebra G gives rise to a commutative monoid (G1, Gm,Gu) in C. As in (2)

of Examples 3.10, there is an isomorphism

SymMonCat(F, C) ' Cat(1,CommMon(C)), (3.7)

where SymMonCat is the 2-category of symmetric monoidal categories and CommMon(C) is the category

of all the commutative monoids in C and monoid homomorphisms between them. Equation (3.7) shows

that F plays a role very similar to ∆ - it is the free symmetric monoidal category on 1 that contains a

commutative monoid.

Example 3.17. Fop-algebras in C are precisely the cocommutative comonoids and their homomorphisms.

3.3.3 PROs vs. Operads

PROs, PROPs and Operads are not unrelated. Every plain operad gives rise to a PRO, but there are PROs

that are not induced by plain operads. There are analogous results for PROPs and symmetric operads.
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Let S be an operad. We build a PRO S′ by setting

S′(n, 1) = S(n)

and building operations in S′(n, k) by tensoring and composing morphisms from S′(r, 1) for various r. We

can similarly construct a morphisms of PROs from a morphisms of operads. This gives a functor

I : POp→ PRO

from the category of plain operads to the category of PROs. Similarly, each symmetric operad gives rise to a

PROP. So we also have

J : Op→ PROP

Since every PROP is a PRO and every operad is a plain operad, we end up with the following commutative

square:

POp
I // PRO

Op
J
//?�

OO

PROP
?�

OO

An example of a PRO that is not given by an operad is the PRO for comonoids. The comultiplication δ : 1→ 2

cannot be represented by an operad.

3.4 Lawvere Theories

Lawvere theories can be thought of as Cartesian PROPs. They model an extensive class of algebraic structures

and have many fascinating properties. As a result, they are the most studied of all structures in Categorical

Universal Algebra.

3.4.1 Definitions and examples

A Lawvere Theory is a category L with a countable set of objects {A0, A1, A2, . . .} such that An ' (A1)n,

i.e. each An is the n’th power of A1.

Example 3.18. The simplest Lawvere theory is the free finite product category on the one-object

category 1, Fop. category of finite sets and all morphisms between them.

Any Lawvere theory will contain Fop as a subcategory. In fact, we have

Proposition 3.19. There is a one-to-one correspondence between Lawvere theories  L and identity-on-object

finite-product-preserving functors Fop → C.

A model or an algebra of a Lawvere theory L in a finite product category C is a product preserving functor

F : L → C. A morphism of models is a natural transformation between such functors. This data arranges

itself naturally into a category Mod(L, C).
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Example 3.20. Let C be a category with finite products. A finite product preserving functorX : Fop → C
gives a choice of an object x := X1 in C. And any object in x ∈ C gives rise to such a functor. Set

X0 = >, the terminal object, X1 = x and Xn = xn. On morphisms the projections in Fop are mapped

to projections in C. A morphism of models α : X → Y in Mod(Fop, C) gives a morphism α1 : x → y in

C. Any morphism f : x→ y gives rise to a natural transformation f : X → Y by setting fn := fn. Thus

we proved

Mod(Fop, C) ' C.

Example 3.21. Let M be the full subcategory of Mon with objects all free monoids on finite sets. Then

Mop is the Lawvere theory for monoids: Mod(Mop,Set) ' Mon. To see that M is indeed is a Lawvere

theory, we need to exhibit an indentity-on-objects functor F→M. But F can be viewed as a subcategory

of M, namely F ' F (F) ↪→M, with F the restriction of the free monoid functor F : Set→ Mon.

Let X : Mop → Set be a product preserving functor. We write n for the free monoid on n generators.

Then X gives a set x := X1. In M there is a morphism k : 1 → 2 which is determined by sending the

generator ∗ of 1 to the sum of generators of 2 = 〈a, b〉. That is

k(∗) = a+ b

with a, b the generators of 2. We also note the existence of the constant map v : 1 → 0. One can now

check that the following diagrams in M commute in F:

1 2
v+1oo 1+v // 1 1

k //

k

��

2

k+1

��
1

k

OO

2
1+k
// 3

For example, in the rectangle the passages send ∗ to (x + y) + z and x + (y + z) which are equal in 3.

Thus (1, k, v) is a comonoid in M and hence a monoid (1,m = kop, u = vop) in Mop. The functoriality of

X, along with the fact that it preserves finite products, makes (x,X(m), X(u)) a monoid in Set.

Conversely, given a monoid (x, µ, η) (in Set) one defines a functor X : Mop → Set by setting Xn = xn.

There are two types of morphism in M, injections, which send generators to generators, and structure

morphisms, like m above, which exploit the fact that generators can be combined using the monoid

structure of each n. Each injection in M corresponds to a projection in the finite product structure of

Mop. X sends these to the corresponding projections Xn → X in Set. For each n there is exactly one

morphism mn : n→ 1 in Mop, where m2 = m. We define

Xm0 = η, Xm2 = µ, Xmn = µ · (Xmn−1 × 1x)

Associativity and unit laws of (x, µ, η) guarantee that X is well defined. This completely determines

X on the rest of the morphism of Mop since these are all built from the m′ns and the finite product

structure.

Note that Set can be replaced by any category with finite products. Then the same argument shows

that Mod(Mop, C) ' Mon(C), where Mon(C) is the category of internal monoids in the monoidal category
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(C,×,>).

A morphism of Lawvere theories or an algebraic functor is a identity-on-objects finite-product-preserving

functor F : L → L′. For example, the inclusion Fop ↪→ Mop is a morphism of Lawvere theories. Lawvere

theories and morphisms between them form the category Law.

For a fixed category C with finite products, there is a functor

Mod(−, C) : Lawop → Cat

where, for an algebraic functor F : L → L′ and and L′-model G : L′ → C one sets Mod(F, C)(G) = G · F .

The inclusion Fop ↪→ L gives rise to

U : Mod(L, C)→ Mod(Fop, C) ' C.

When C = Set, U sends each model X : L→ Set to its underlying set, X1. We call U the forgetful functor.

When the category C is sufficiently nice, in particular cocomplete, U has a left-adjoint F : C → Mod(L, C).

We record this below:

Theorem 3.22. Let L be a Lawvere theory. Then the forgetful functor U : Mod(L, C)→ C has a left adjoint

F : C → Mod(L, C). F is computed as the left Kan extension of the functor X : Fop → C, 1 7→ X along

the inclusion Fop ↪→ L.

Example 3.23. The forgetful functor Mod(Mop,Set) ' Mod → Set has a left adjoint F : Set → Mon.

The underlying set of the free monoid on a set X is given by the formula

FX(1) =

∫ m∈Fop

X(m)×Mop(1,m)

'
∐

m∈Fop

Xm ×Mop(1,m)/ ∼

Comparing the above formula to the equation for the Schur functor of Example 3.5, we see that the free

model of a Lawvere theory and the free algebra for an operad are based on the same underlying idea.

3.4.2 Combining Lawvere Theories

Since a Lawvere theory is a special kind of category, we can combine two of them by combining the underlying

categories. One natural method for combining theories, is by studying limits and colimits in the category Law.

It turns out that the category Law is complete and cocomplete. This allows us to define the sum of Lawvere

theories L and L′ to be their coproduct in the category Law. One thinks about L + L′ models as models

in which both the L-structure and the L′-structure are imposed on an object, but these structures do not

interact with each other. This intuition follows from the fact that in Set a finite-product-preserving functor

X : L+ L′ → Set
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is the same are two finite-product-preserving functors

Y : L→ Set and Y ′ : L′ → Set.

Lawvere theories can also be combined via their tensor product. We think of the tensor product as the theory

that contains the operations of both L and L′, and which imposes commutativity of the operations of L over

the operations of L′. This can be made precise as follows: the Lawvere theory L⊗ L′ has as morphisms the

disjoint union of the sets of morphisms of L and of L′. All commutative diagrams in L and L′ also commute

in L ⊗ L′. In addition to these, for any f : n → m in L and f ′ : n′ → m′ in L′ all the following diagrams

commute

n× n′
n×f ′ //

f×n′

��

n×m′

f×m′

��
m× n′

m×f ′
// m×m′

The last condition is the commutativity of the operations of L over the operations of L′. It has a very clear

string-diagrammatic description.

=

f ′

f

f ′

f ′

f

f

f

The tensor product has the following useful property

Theorem 3.24. Let L and L′ be Lawvere theories. The the following categories are equivalent:

1. The category of L-models in Mod(L′,Set);

2. The category of L′-models in Mod(L,Set);

3. The category Mod(L⊗ L′,Set).

The above two methods for combining Lawvere theories are somewhat limited. To wit, these methods do not

allow us to specify any “custom” equations between the operations of the two Lawvere theories. Later in this

thesis we shall see that this situation can be remedied by using internal distributive laws.

3.4.3 Lawvere Theories vs Cartesian operads

In Section 3.2.4, we briefly examined the idea of Cartesian operad. As with PROs and PROPs, each Cartesian

operads A gives rise to a Lawvere theory A′ by setting A′(k, 1) = A(k) (see Section 3.3.3). But the Cartesian

structure of Lawvere Theories can be used to show that the two concepts are equivalent.

The idea behind this is easy to understand. Suppose we are given a Lawvere Theory A′ and an operation

v ∈ A′(2, 2). Since A′ has finite products, we can post-compose v with the projections. To obtain operations

p1 · v : 2→ 1 and p2 · v : 2→ 1 and we have the identiry

v = (p1 · v)× (p2 · v)
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Hence, setting Λ(k) = A′(k, 1) gives us a Cartesian operad such that the Lawvere theory associated to it -

Λ′ - is exactly the A′ we started with.

We record this in the following Theorem:

Proposition 3.25 (Hyland). The category of Cartesian operads is equivalent to Law.

The formal proof is given in [Cheng, 2011] and relies on a results we prove later in this thesis.

3.4.4 Lawvere Theories vs monads

Our treatment of Categorical Universal Algebra emphasises the use of categories with structure rather than

monads for capturing the syntax of theories. And while we shall not use monads for Universal Algebraic

purposes in this work, we still feel that we need to point out the connections and differences between the

monadic and the Lawvere theoretic approaches.

There is a monad and a Lawvere theory for the theory of monoids: Example 2.3 shows that M -algebras

are equivalent to Mon and Example 3.21 shows that the category Mod(Mop,Set) is equivalent to Mon. In

general, not every monad has an associated Lawvere theory whose category of models is equivalent to the

category of algebras of the monad. But in the case the monad (T,m, u) is finitary, that is, if it preserves

filtered colimits, there indeed is a correspondence. We record this in a theorem.

Theorem 3.26. There is a one-to-one correspondence between finitary monads (T,m.u) on Set and Lawvere

theories L. If T and L are matched under this correspondence then

Mod(L,Set) ' SetT .

Example 3.27. Counter-example The powerset monad P : Set→ Set is an example of a monad that is

not finitary. The set of reals can be written as

R =
⋃

A⊆fR
A,

where ⊆f means “finite subset”. The above expression is a filtered colimit of the diagram PR ↪→ Set,

where we view the poset PR as a (filtered) category and the diagram sends inclusions to inclusions. But

P does not preserve this filtered colimit. Indeed, R ∈ PR, while

R ∈
⋃

A⊆fR
PA =⇒ ∃A ⊆f R such that R ⊆ A,

producing the desired contradiction.

Example 3.28. Counter-example One can prove that the category of algebras of the ultrafilter monad

β on Set is isomorphic to the category of compact Hausdoff spaces and continuous mappings between

them. But CompHaus cannot be presented as Mod(L,Set) for any Lawvere theory L, since β does not

preserve filtered colimits.

While monads provide semantics for more structures (e.g. powerset, ultrafilter monads), the algebras of each

monad live over a fixed category - the domain and codomain of the functor of the monad. Lawvere theories,
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on the other hand, describe a more limited class of structures, but are free in the choice of the category over

which these structure will live. In other words, the so-called base category does not appear in the description

of the Lawvere theory.

Another important difference is in our ability to combine Lawvere theories and monads. The notion of

Distributive Law is much more flexible than that of sum and tensor product of Lawvere theories. But there

are no canonical distributive laws between two monads, whereas there are always at least two ways to combine

Lawvere theories.

In later chapters we shall see that Lawvere theories can be seen as internal monads in certain bicategories.

As such, Lawvere theories can be combined using internal distributive laws between these monads.

3.5 Concluding remarks

In this section we have explored various tools for capturing the syntax of algebraic theories of different types.

All the tools we describe are clearly similar, yet all of them have to be treated as separate constructs, since,

at least formally, they are different mathematical objects. We hope that the reader is as convinced as us

that there is a need for a more general theory to capture all the flavours of the tools employed in Categorical

Universal Algebra. Perhaps this is a sign that the Categorical Universal Algebra has reached a critical point

in its development. The point where a new theory becomes broad enough to require tools for self-analysis.

One of the aims of this work is to develop such tools for operad-based Categorical Universal Algebra. We shall

see that operads of all kinds are in fact special cases of a very general construction. In fact, we shall show

that even the notion of ‘type’ or ‘kind’ of operad is a formal mathematical object. To make all this precise,

we need to use the language of 2-categories and 2-monads which is covered in detail in the next chapters.
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Chapter 4

A 2-Categorical Primer

We wish to build a framework where we can express the algebraic gadgets of the previous chapter. In Chapter

1 we saw that binary theories can be modelled by a function t : N→ 2. To model operads, we need to replace

2 by Set. This is equivalent to categorifying the results of the first chapter. Hence instead of working with

categories and functors, we wish to work with 2-categories, 2-functors, 2-natural transformations etc.

This chapter introduces the basic constructs of 2-Category Theory. We already saw higher categories in

action in Chapter 2 in the Ord-enriched category Rel. Another familiar example arises when we package the

important ingredients of single-dimensional category theory together. The end result is the 2-category Cat

which consists of categories, functors and natural transformations.

The original definition of a strict 2-category first appeared in [Ehresmann, 1965]. Cat is presented as an

example of a 2-category in [Gray, 1974]. [Bénabou, 1967] introduces bicategories, which are a more general type

of 2-categories where associativity and the unit law for composition is defined up to a coherent isomorphism.

Bicategories arise more often in practice than strict 2-categories. For example, every weak monoidal category

is a single-object bicategory. The bicategory Prof of profunctors is the categorification of the category of sets

and relations. It is important for describing various algebraic structures. It too is a weak 2-category.

We will begin this chapter with the definitions of strong and weak 2-categories, along with several important

examples of each. We will then define 2-functors and provide examples which will be used later in the thesis.

We also define 2-natural transformations and modifications. We end the chapter with a discussion of monoidal

2-categories, thus combining all the basic ingredients of 2-category theory into a single - higher-dimensional -

structure. We also briefly discuss the graphical calculus for monoidal 2-categories which we shall use in proofs

in later chapters.

4.1 Basic 2-categorical ingredients

4.1.1 2-categories

A strict 2-category can be thought of as a category in which the hom-sets are no longer simply sets, but

are themselves categories. More succinctly, a strict 2-category is a CAT-enriched category. Let K be a strict
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2-category. We call the objects of K 0-cells. For any two 0-cells X and Y of K, we call the objects of the

category K(X,Y ) 1-cells and the morphisms of this category 2-cells.

Let X,Y, Z be 0-cells in K. There is a functor

◦ = ◦X,Y,Z : K(Y,Z)×K(X,Y )→ K(X,Z).

which we call the horizontal composition in K. In a strict 2-category this composition is strictly associative.

Often, one wishes to avoid this strictness. When one is working with four objects X,Y, Z,W there are two

passages from K(Z,W )×K(Y,Z)×K(X,Y )→ K(X,W ). Namely

◦X,Z,W ·
(
1hom(Z,W ) × ◦X,Y,Z

)
and

◦X,Y,W ·
(
◦Y,Z,W ×1hom(X,Y )

)
.

In the strict case these two functors are the same. But since these are functors, equality is only one way of

comparing them. One can also ask if there is a natural isomorphism between these functors. And the latter

type of comparison gives rise to the idea of a weak 2-category or a bicategory.

More precisely, a 2-category K (also a weak 2-category or a bicategory) consists of the following ingredients:

1. A class of 0-cells, denoted X,Y, Z, . . .. The elements of this class are also called the objects of K;

2. for each pair of objects X,Y ∈ K a category K(X,Y ) = hom(X,Y ), whose objects are called the

1-cells of K (also the morphisms) of K. The morphisms of K(X,Y ) are called the 2-cells of K;

3. for each object X ∈ K a functor iX : 1→ K(X,X) called the identity 1-cell on X;

4. for any triple X,Y, Z ∈ K a functor

◦ = ◦X,Y,Z : K(Y,Z)×K(X,Y )→ K(X,Z).

called horizontal composition.

5. For each X,Y ∈ K natural isomorphisms

lX,Y : ◦X,X,Y · (1K(X,Y ) × iX)→ 1K(X,Y )

and

rX,Y : ◦X,X,Y · (1K(X,Y ) × iX)→ 1K(X,Y );

6. for each X,Y, Z,W ∈ K natural isomorphisms

αX,Y,Z,W : ◦X,Z,W · (1K(Z,W ) × ◦X,Y,Z)→ ◦X,Y,Z · (◦Y,Z,W × 1K(X,Y ))

such that the well known pentagon and triangle diagrams commute. See [Bénabou, 1967] for the

original definition and [Lack, 2007] for a modern treatment.

Example 4.1. A single object 2-category K is a monoidal category K := K(∗, ∗). The 1-cells in K
become the objects of K and the two cells the morphisms. Horizontal composition gives the monoidal
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tensor.

Example 4.2. Cat is a strict 2-category.

Example 4.3. Let C be any category with pullbacks. We define the bicategory Span(C) of spans

in C by taking the object of C to be the 0-cells, a 1-cell from X to Y is a span, i.e., it is a triple

(E, f : E → X, g : E → Y ) with E ∈ obC and f, g C-morphisms. We usually depict spans as follows

X Y

E

f
__

g
??

A 2-cell from (E, f, g) to (E′, f ′, g′) is a C-morphism α : E → E′ making the following two triangles

commute

E
f

��
g

��
α

��

X Y

E′
f ′

__

g′

??

(4.1)

We write E for the 1-cell (E, f, g) when this does not create confusion.

1-cells compose by pullback: given E : X → Y and E′ : Y → Z the composite E′ · E : X → Z is given

by the following diagram

X Y Z

E

__ ??

E′

__ ??

E′ · E

__ ??

where the square in the middle is a pullback. The identity 1-cell on X is just (X, 1X , 1X) : X → X. 2-cells

are composed in the obvious way. We shall use ⊗ to denote composition of 1-cells, i.e. E′⊗E := E′ ·E.

Example 4.4. A thin 2-category is another name for an Ord-enriched category. Here each hom-set has

a preorder on it. Thus there is at most one 2-cell between any two 1-cells, justifying the name ’thin’.

For example, Rel is a thin 2-category. The two cells are given by

r → s ⇐⇒ r ⊆ s.

Ord is also a thin category; the order on hom-sets is defined pointwise: f ≤ g ⇐⇒ ∀x ∈ X, f(x) ≤ g(x).

Example 4.5. The bicategory Prof is an important example of weak a 2-category. The objects of Prof

are categories. Morphisms X → Y are given by functors

Y op ×X → Set.
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and 2-cells are natural transformations between such morphisms. I.e.

Prof(X,Y ) = Cat(Y op ×X,Set).

We typically write X −→7 Y for a profunctor from X to Y .

Given two profunctors ϕ : X −→7 Y and ψ : Y −→7 Z, the composite ψ · ϕ : X −→7 Z is given by the coend

formula1

ψ · ϕ(z, x) =

∫ y∈Y
ψ(z, y)× ϕ(y, x)

'
∐
y∈Y

ψ(z, y)× ϕ(y, x)
/
∼ (4.2)

where the relation ∼ is defined by saying that the pair (f, g) ∈ ψ(z, y)×ϕ(y, x) is equivalent to (f ′, g′) ∈
ψ(z, y′)× ϕ(y′, x) if, and only if, there exists an h : y → y′ in Y such that

ψ(z, h)(f) = f ′ and ϕ(h, g′) = g.

The author finds it helpful to think of a profunctor f : X −→7 Y as a method of assigning morphisms to

pairs (x ∈ X, y ∈ Y ). Then the equivalence relation in 4.2 provides a way of composing such morphisms

over the morphisms of Y . We shall come back to this view of profunctors in Chapter 6 when we study

various monads in Prof. One can also think of profunctors are generalised relations. Every set X is a

2-enriched category. A relation is a function

Xop ×X = X ×X → 2.

Hence profunctors and functors are related in the way relations and functions are.

The unit for horizontal composition is 1X : X −→7 X is

X(−,−) : Xop ×X → Set.

For ϕ : X −→7 Y one easily computes

ϕ · 1x(y, x) =

∫ x′∈X
ϕ(y, x′)×X(x′, x)

' ϕ(y, x)

by the Yoneda Lemma.

Since composite profunctors are defined via a coend, the expression ψ·ϕ is unique only up to isomorphism.

This makes Prof our first example of a non-strict 2-category.

1Coends are universal di-natural transformations. See Chapter IX in [Mac Lane, 1998] for a detailed treatment.
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4.1.2 Pasting diagrams

We shall often use pasting diagrams to describe composites of 2-cells in a 2-category. Let K be a 2-category

and let

X

f
&&

g

88�� α Y

be a 2-cell in K. One can whisker α on the left and on the right to form 2-cells

h ◦ α := X
h // X

f
&&

g

88�� α Y and α ◦ h′ := X

f
&&

g

88�� α Y
h′ // Y

We can now compose two cells such as the ones above both horizontally and vertically to form pasting

diagrams. For example, the diagram

X
f //

g
  
⇓α

Y

h

  
⇓β

Z
s

//
t

??

W

(4.3)

stands for the vertical composition of

X

f

!!⇓α

g
// Z

t
// Y

h
// W and X

g // Z
t //

s

==
⇓β
Y

h // W (4.4)

Note that in writing

X
g // Z

t // Y
h // W

we have made an explicit choice for the bracketing of this composite. Thus to compose the 2-cells of 4.4 we

need to introduce an associativity isomorphism h ◦ (t ◦ g) =⇒ (h ◦ t) ◦ g. But, as is often done in practice,

we shall ignore the structure of the underlying 2-category K in our pasting diagrams.

Pasting diagrams can be written in many forms. For example, the diagram of 4.3 can be written as

h ◦ f α◦h // h ◦ t ◦ g
g◦s // g ◦ s

equivalently, this data cane written graphically as

W W

f g

X X

h

g

W

X

h s

t

α β

Y
Z

Y

Z

Note that the graphical depiction also captures the 0-cells as strings feeding in and out of the 1-cells. The
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latter representation of pasting diagrams allows us to think of 2-cells as rewrites of diagrams. We shall come

back to this view often throughout this work.

4.1.3 2-functors

Let K and M be 2-categories. A 2-functor

F : K →M

consists of the following data

1. a mapping F from the 0-cells of K to the 0-cells of M;

2. for any two objects X,Y ∈ K a functor

FX,Y : K(X,Y )→M(FX,FY );

3. for each 0-cell X ∈ K an invertible 2-cell in M

F (id)X : 1FX → FX,X(1X);

4. for any pair of composable 1-cells X
f // Y

g // Z ∈ K an invertible 2-cell in M

F (g, f) : FY,Z(g) · FX,Y (f)→ FX,Z(g · f)

such that F (f, g) is natural in both f and g;

5. such that for any three 1-cells f : X → Y , g : Y → Z and h : Z →W in K

F1Y · Ff
F (1Y )−1

//

F (1Y ,f)

��

1FY · Ff

lFX,FY

��

Fg · F1Y
Fg·F (1Y )−1

//

F (g,1Y )

��

Fg · 1FY
rFY,FZ

��
F (1Y · f)

F (lX,Y )
// Ff F (g · 1Y )

F (rY,Z)
// Fg

and

F (h) ·
(
F (g) · F (f)

)
1·F (g,f)

��

α //
(
F (h) · F (g)

)
· F (f)

F (h,g)·1
��

F (h) · F (g · f)

F (h,g·f)

��

F (h · g) · F (f)

F (h·g),f)

��
F
(
h · (g · f)

)
Fα

// F
(
(h · g) · f

)
One can relax the definition of a 2-functor by removing the requirement that the morphisms F (g, f) and

F (id)X are isomorphisms. In this case we call F a lax functor. If the directions of these morphisms are

reversed, F becomes an op-lax functor.
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Lets examine what it means for F (g, f) to be natural in both f and g. The two passages

K(Y,Z)×K(X,Y )
◦ //

F×F
��

K(X,Z)

F

��
M(FY, FZ)×M(FX,FY )

◦ //M(FX,FZ)

are both functors. The bottom-left passage sends a pair (g, f) to FY,Z(g) ·FX,Y (f) and the top-right passage

sends it to FX,Z(g ·f). So, naturality amounts to saying that for any pair of 2-cells α : f → f ′ and β : g → g′

in K, the following diagram commutes

FY,Z(g) · FX,Y (f)

FY,Z(β)◦FX,Y (α)

��

F (g,f) // FX,Z(g · f)

FX,Z(β◦α)

��
FY,Z(g′) · FX,Y (f ′)

F (g′,f ′)

// FX,Z(g′ · f ′)

Thus naturality in condition (4) of the definition ensures that composition and functoriality take the 2-

dimensional structures of K and M into account.

Example 4.6. Our first example is the categorification of the underlying functor of the monoid monad.

We define a 2-functor M : Cat→ Cat as follows.

1. On 0-cells, i.e. on categories, M(C) is the free monoidal category on C. That is,

obM(C) = {A1 ⊗ . . .⊗An | Ai ∈ obC}.

When m = n,

M(C)(A1 ⊗ . . .⊗An, B1 ⊗ . . .⊗Bm) = {fi ⊗ . . .⊗ fn | fi ∈ C(Ai, Bi)},

and is ∅ otherwise.

2. For any two categories C and D we define

MC,D : Cat(C,D)→ Cat(M(C),M(D)),

by, for any F : C → D, setting

M(F )(A1 ⊗ . . .⊗An) = F (A1)⊗ . . .⊗ F (An),

and similarly on morphisms. For a natural transformation α : F → G we (are forced to) set

(Mα)A1⊗...⊗An = αA1
⊗ . . .⊗ αAn .
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3. For any category C the 2-cell

M(1C)(X1 ⊗ . . .⊗Xn) = 1C(X1)⊗ . . .⊗ 1C(Xn)

= X1 ⊗ . . .⊗Xn

= 1M(C)X1 ⊗ . . .⊗Xn.

Thus the isomorphism in condition (3) is actually an equality.

4. Let F : C → D and G : D → E be functors.

MD,E(G) ·MC,D(F )(X1 ⊗ . . .⊗Xn) = MD,E(G)(FX1 ⊗ . . .⊗ FXn)

= GFX1 ⊗ . . .⊗GFXn

= MC,E(G · F )(X1 ⊗ . . .⊗Xn)

and similarly on morphisms. So, again, the natural isomorphism of condition (4) is a strict equality.

Functors such as M in which the isomorphisms of conditions (3) and condition (4) are equalities, are called

strict 2-functors.

Example 4.7. Similarly, the symmetric monoidal category functor S : Cat→ Cat sends every category

C to the free symmetric monoidal category on C.

Example 4.8. Another important example is the finite product functor F : Cat → Cat. F sends a

category C to the free finite product category on C.

Example 4.9. There is a 2-functor

(−)∗ : Cat→ Prof

which is identity on objects and send every functor F : C → D to the profunctor

F∗ := D(−, F (−)) : Dop × C → Set.

There is a 2-functor

(−)∗ : Catop → Prof

that is identity on objects and sends every functor F : C → D in Cat to the profunctor

F ∗ := D(F (−),−) : Cop ×D → Set.

Example 4.10. The presheaf functor

P : Cat→ CAT

sends every category C to its colimit cocompletion PC = Ĉ := SetC
op

. Let F : C → D be a functor and

G : Cop → Set a presheaf. Define the preshaef PF (G) : Dop → Set as the left Kan extension of G along
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F op: PF (G) := LanF op(G).

Cop

G ""

F op
//

k⇒

Dop

PF (G)||
Set

We express the action of PF (G) on an object X of D via the standard coend formula

PF (G)(X) =

∫ Y ∈C
G(Y )×D(X,FY ).

Let α : F → H be a natural transformation. We define Pα : PF → PH at every presheaf G ∈ PC by

exploiting the universal property of left Kan extensions. Consider the following composite

G k // PH(G) ·Hop 1·αop
// PH(G) · F op;

it allows us to derive, via the universal property, a unique natural transformation

PαG : PF (G)→ PH(G).

Having defined the action of P on 0-, 1- and 2-cells of Cat we proceed by verifying if functoriality. Fix

categories C and D. Then

PC,D : Cat(C,D)→ CAT(C,D)

defines a functor. Indeed, given

1F : F → F

for any G : Cop → Set we have

G

k $$

k // PF (G) · F op 1 // PF (G) · F op

PF (G) · F op

1PF (G)·F op

77

showing

(P1F )G = (1PF )G

by the unicity of the above factorisation.

Similarly, given two natural transformations

F
α // H

β // G ,

we have

P (α)G · P (β)G = P (α · β)G

We finish by exhibiting the invertible 2-cells

P (idC) : 1P (C)
'→ P (1C)
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and

P (H,F ) : P (H) · P (F )
'→ P (H · F ),

for F : C → D, H : D → E .

The first isomorphism follows from the Yoneda Lemma: for every G and every X

G(X) =

∫ Y ∈Cop

G(Y )× C(X,Y ).

The second one follows is given by the following identities

P (H)
(
P (F )(G)

)
(X) =

∫ Z∈D
P (F )(G)(Z)× E(X,H(Z))

'
∫ Z∈D (∫ Y ∈C

G(Y )×D(Z,F (Y ))
)
× E(X,H(Z))

'
∫ Y ∈C

G(Y )×
∫ Z∈D

D(Z,F (Y ))× E(X,H(Z))

'
∫ Y ∈C

G(Y )× E(X,H(F (Y )))

= P (H · F )(G)(X).

4.1.4 2-natural transformations

Let F and G be two 2-functors K → M. A 2-natural transformation (also pseudo-natural transformation)

consists of the following data

1. for each 0-cell X of K a 1-cell

αX : FX → GX

in M.

2. for each 1-cell f : X → Y in K an invertible 2-cell

FX

�� αfαX

��

Ff // GY

αY

��
GX

Gf
// GY

such that the following coherence conditions are satisfied:
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1. for any f : X → Y and g : Y → Z in K

FY
Fg

""
αY

��

FY
Fg

""
FX

�� αf

Ff
;;

αX

��

~� αg

FZ

αZ

��

=

FX

⇓ αg·f

��
Ff

;;

F (g·f) //

αX

��

FZ

αZ

��

GY
Gg

""
GX

��

Gf
;;

G(g·f)
// GZ GX

G(g·f)
// GZ

(4.5)

2. for every 0-cell X of K

FX

' ⇓ α1

αX //

1FX

$$
F1X
��

GX

' 1GX

zz
G1X
��

=
FX

'

αX //

1FX
��

αX

''

GX

1GX
��

'

FX
αX

// GX FX
αX

// GX

(4.6)

3. for any two cell

X

f
&&

g

88�� γ Y

in K

FX

⇓

⇓ Fγ

Ff

��

Fg
//

αX

��

FY

=αY

��

FX

⇓

Ff //

αX

��

FY

αY

��
GX

Gg
// GY GX

Gf //
⇓ Gγ

Gg

DDGY

(4.7)

Example 4.11. There is a strict 2-natural transformation, j, from the symmetric monoidal category

functor, S, to the finite-product category functor, F . At each category X,

jX : SX ↪→ FX

is the functor that sends formal tensors to formal products:

jX(x1 ⊗ . . .⊗ xn) = x1 × . . .× xn

Example 4.12. The Yoneda embedding, y : 1Cat → P is a 2-natural transformation. At each category

yX : X → PX, sends x ∈ X to hom(−, x).
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The pseudo-naturality

X
f //

yX
��

⇓

Y

yY
��

PX
Pf
// PY

can be derived from the Density formula for presheaves:

(Pf · yX(x))(y) =

∫ x′∈X
yX(x, x′)× homY (y, f(x′))

'
∫ x′∈X

homY (y, f(x′))× homX(x′, x)

' homY (y, f(x))

=
(

yY · f(x)
)
(y)

4.1.5 Modifications

Let α, β : F → G be two 2-natural transformations between 2-functors F and G. A modification γ : α→ β

consists of a collection of 2-cells

{γX : αX → βX | X ∈ obK}

such that for every 1-cell f : X → Y in K

FX

⇓

αX //

Ff

��

GX

Gf

��
=

FX
⇓γX

⇓

βX

//

αX

��

Ff

��

GX

Gf

��
FY

⇓γY

αY //

βY

DDGY FY
βY

// GY

Example 4.13. There are two strict 2-natural transformations

u, κ : 1Cat → F

given by

uX : X → FX which sends x 7→ x and κX : X → FX which sends x 7→ x× x.

Note that for every category X, the components uX and κX are functors. We can define a modification

∆ : u→ κ. For every category X, the natural transformation

∆X : uX → κX

is defined taking (∆X)x : x → x × x to be the diagonal in FX. The naturality of ∆X in x follows
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from the universal property of the product x × x in FX. It remains to show that ∆ is a modification.

Since our 2-natural transformations are strict, the condition reduces to showing that for every functor

f : X → Y

X
f // Y

uY

��

κY

EE⇓ ∆Y FY = X

uX

��

κX

EE⇓∆X FX
Ff // FY

and both sides of the equation equal (∆Y )f(x).

4.2 Relationships between 2-categories

In this section we define 2-adjunctions and 2-equivalences. These concepts capture important relationships

between two categories and shall be used to this end in upcoming chapters.

4.2.1 Biequivalence

We say that two 2-categories K and K′ are biequivalent or 2-equivalent provided that there exist 2-functors

F : K → K′ and G : K′ → K

and 2-natural transformations i : G · F → 1K and j : F · G → 1K′ which are themselves equivalences in

the 2-categories End(K) and End(K′). This means, for example for i, that there exists another 2-natural

transformation i′ : 1K → G · F and an invertible modifications

ξ : i · i′ → 11K and ξ′ : i′ · i→ 1G·F .

See [Schreiber, 2011] for more details. We shall give examples of biequivalent 2-categories later in the thesis.

4.2.2 2-Adjunctions

There are several types of adjunctions between 2-categories. We begin with lax 2-adjunctions. Let K and M
be 2-categories, let F : K → M and G : M → K be 2-functors. Wa say that F is left lax 2-adjoint to G

provided that for all 0-cells X ∈ K and Y ∈M there exist adjunctions

M(FX, Y )
fX,Y ..
⊥ K(X,GY )

gX,Y
nn (4.8)

2-natural is X and Y . The last condition means that the functors fX,Y and gX,Y are components of 2-natural

transformations f−,Y , fX,−, g−,Y , gX,−.

We can strengthen condition 4.8 and ask for that for the functors fX,Y and gX,Y to form an equivalence.

The resulting relationship between F and G is called a pseudo-adjunciton. Of course, fX,Y and gX,Y still

have to be natural in X and Y .
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An example of a important pseudo-adjunction is given in Example 5.5. Lax 2-adjunctions play a central role

in Theorem ?? and in its applications in Chapter ??

4.3 Monoidal 2-categories

2-categories, 2-functors, 2-natural transformations and modifications form a so-called tricategory (See Section

6.3 in [Gurski, 2007]). A monoidal bicategory is a single object tricategory. That is, it is a 2-category K
equipped with a 2-functor

⊗ : K ×K → K

and a 0-cell I ∈ K acting as a unit for ⊗. The complete definition is complex and can be found in [Gordon

et al., 1995]. We use monoidal bicategories mainly to organise data in our constructions and for these purposes

we do not need the full details of the formal definition.

We shall rely on the fact that given any 2-categories K andM, the bicategory BiCat(K,M) is (triequivalent

to) a semi-strict monoidal 2-category [Gurski, 2007]. Recall from [Street, 2003] that such bicategories admit a

graphical calculus. In that paper, Street depics 2-cells in a monoidal bicategory K as surfaces in 3-dimensional

Euclidian space. We cut his surfaces into 2-dimensional slices and depict 2-cells as rewrites between these

slices. We give details below.

Let K be a monoidal 2-category K. Since K is in particular a 2-category, we can use pasting diagrams to

represent data in K. In particular, we still depict any 2-cell as

S

α
&&

β

88�� γ T

or, equivalently, as

T T

α β

S S

γ

in our graphical calculus.

Tensor products are depicted by placing diagrams for components of the tensor side-by-side. For example,

the pasting diagram

S′ ⊗ S′′
α′⊗α′′ ,,

β′⊗β′′
44�� γ T ′ ⊗ T ′′

translates to

T ′ T ′′

α′ β′′

S′ S′′S′′

T ′′

α′′

S′

β′

T ′

γ
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Horizontal composites of 1-cells are represented by stacking to boxes corresponding to these cells on top of

each other. For example, the pasting diagram

S′ ⊗ S a //

d

<<
⇓γ
T

b // W

is represented by

W W

b
dT

S

γ

α

S′ S S′

Now that we are familiar with the basic constructs, we establish some simple rules for manipulating this

graphical representation.

Proposition 4.14. Suppose we are give two 2-cells in BiCat(K,M):

S

α
&&

β

88�� γ T S′
α′ ''

β′
88�� γ
′ T ′

then

S′ T ′

βγ ⊗ 1 1⊗ γ′α′S′ T ′ S′ T ′

S Tβ β′

α α′

S′ T ′S T
T S

β′ γ ⊗ 11⊗ γ′
α

S T

Proof. In any monoidal bicategory both passages are equal to

γ ⊗ γ′ : α⊗ β → α′ ⊗ β′

Modifications can be viewed as processes that transform or rewrite one diagram into another. The above

proposition says that when it comes to independent rewrites, the order of executing does not make any

difference.

Proposition 4.15. Suppose we are given a 1-cell

S
α // T
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and a 2-cell

S′
β
''

β′
88�� γ
′ T ′

K. Then

T ′

α
Nat. 1⊗ γ′

T T ′ β T ′

Sβ α
α β′

T ′S
S′ S

β′ Nat1⊗ γ′
α

S

T

S′

T

S′

T

S′

Proof. This follows directly from the naturality condition on the pseudo-naturality of α.

The above Proposition says that first reordering the boxes and then applying the rewrite is the same process

as first rewriting and then reordering the boxes.

The above two propositions will prove instrumental in verifying complex coherence conditions in the next

chapters.
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Chapter 5

2-monad theory

In this Chapter we continue exploring the 2-categorical machinery we need to study the algebraic gadgets

of Chapter 3. Recall from Chapter 2 that we used monads on Set and distributive laws between them to

formulate a framework where we defined binary theories of various types. To do this for more interesting

theories, we need to categorify that setting. This requires to shift from Set-monads to 2-monads on Cat and

2-distributive laws between them.

We begin the chapter with a definition of a 2-monad. A 2-monad consist of a 2-functor T along with 2-natural

transformations m : T 2 → T and u : 1→ T such that the monad axioms hold up to coherent isomorphisms.

In our treatment, we attempt to create an intuitive feeling for the meaning of these coherence conditions.

To do this, we formulate coherence using the graphical language developed in the previous chapter. We also

analyse various strict and weak 2-monads on Cat. In particular we categorify both the monoid monad M and

the powerset monad P of Chapter 2.

M can be categorifyed in many ways. The easiest is via the free monoidal category construction. In this

construction the we do not add any new morphisms to the image MX. A more enticing option is to add

symmetry morphisms to the mix. This gives rise to the symmetric monoidal category monad. Finally, we

can freely add finite product structure creating the finite-product category monad. We shall see in the next

chapter that these three monads will help us to define plain, symmetric and Cartesian operads.

In Chapter 2 we saw that binary theories are internal monads in Kleisli categories. For 2-monads we need the

notion of a Kleisli bicategory. We present the definition given of [Cheng et al., 2004] and list some properties

of this construction.

Having understood 2-monads, we move to 2-distributive laws. Again, our focus is on the examples. We show

that the monoidal, symmetric monoidal and Cartesian category monads distribute over the presheaf monad

and explicitly derive the formulas for these distributive laws. Using a 2-categorical version of Beck’s Theorem,

we obtain extensions of all our examples to Prof. We conclude the chapter with an analysis of the actions of

these extensions on a given profunctor.

2-monads are a fairly modern development. Kelly’s work on enriched category theory [Kelly, 1982] can be

specialised to give Cat-enriched monad theory. This gives the theory of strict 2-monads and strict algebras.

In [Blackwell et al., 1989], the authors develop the theory of weak 2-monads which we use here. The

Kleisli bicategory construction we use was developed in [Cheng et al., 2004]. 2-distributive laws were defined
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in [Marmolejo, 1999]. Beck’s Theorem for 2-monads and 2-distributive laws is proved in [Cheng et al., 2004].

5.1 2-monads

Let K be a 2-category. A 2-monad on K is a 6-tuple (S,m, u, τ, λ, ρ) where S : K → K is a 2-functor,

m : S2 → S and u : 1K → S are 2-natural transformations and τ , λ and ρ are invertible modifications

S3 mS //

Sm
��
⇓τ

S2

m

��
S2 m // S

and

S
Su //

1S   

ρ⇒

S2

m

��

S
λ⇐

uSoo

1S~~
S

subjects to the following coherence axioms

S4 S3

S3 S2

S3

S2 S

S2m //

mS2

��
Sm //

m

��

SmS

��

Sm

��

mS

��
mS

��
m

//

Sτ
��

τ
��

τS��

=

S4 S3

S2

mm��

S3

S2 S

S2

τ � 

S2m //

mS

��

m

��

mS2

��
Sm //

m

��

Sm

��

mS

��
m //

τ��

S2

S3 S2

S2 S

1S2

""

1S2

��

m

��

Sm

��

SuS

��
mS //

m
//

τ
��

Sρ��

λS��

= S2 S
m //

We say that a 2-monad is strict when the modifications τ , λ and ρ are equalities.

Since all the data for a 2-monad S : K → K lives in the monoidal bicategory End(K) we can represent this

data using graphical calculus 4.3. We write m : S2 → S and u : 1K → S as

m = u =
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the graphical representation gives rise to an intuitive understanding the coherence conditions:

and

We give several examples of 2-monads that we shall encounter later in the thesis.

Example 5.1. Let M be the 2-functor of Example 4.6. M is part of a 2-monad (M,m, u,=,=,=); we

shall use M to highlight some of the hidden technical issues in the definition of a 2-monad.

The multiplication is given by the 1-cell mC : MMC →MC in Cat. That is, for every C, mC is a functor.

Let

(x11 ⊗ . . .⊗ x1n1
)⊗ . . .⊗ (xk1 ⊗ . . .⊗ xknk)

be an object of MMC. The functor mC sends it to

x11 ⊗ . . .⊗ x1n1
⊗ . . .⊗ xk1 ⊗ . . .⊗ xknk

in MC. That is, mC just concatenates the inner brackets. Its action on morphisms of MMC is exactly

the same. Functoriality of mC amount to saying that the concatenation operation is compatible with

composition of morphisms - a condition that can be easily checked.

For any functor F : C → D the following diagram commutes strictly

MMC mC //

MMF
��

MC

MF
��

MMD
mD

// MD

This makes m a strict 2-natural transformation.

The unit of the monad is given by the collection uC : C → MC. It sends X
f // Y ∈ C to

(X)
(f) // (Y ) ∈MC. One can easily check that it too is a strict 2-natural transformation.

All the modifications in the definition of M are equalities. For example, it is clear that

=C : mC ·MmC → mC ·mMC
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is an equality because the order of removal of inner brackets of a list l ∈ M3C does not affect the final

outcome. An isomorphic argument shows that the other two modifications are also equalities.

M = (M,n, u,=,=,=) is called the monoidal category monad.

Example 5.2. The symmetric monoidal category monad, S : Cat→ Cat sends each category to the free

symmetric monoidal category on it (cf. Example 4.7). The multiplication m : S2 → S again removed

the inner bracket between objects, but some care needs to be taken with regards to the morphisms.

For any category C, the category SC contains two types of morphisms. The first type is just a list

of morphisms of C. The second type consists of symmetries introduced by the free construction. Let

f : l1 ⊗ l2 ⊗ . . .⊗ ln → l′1 ⊗ l′2 ⊗ . . .⊗ l′n ∈ SSC be a morphism. If f = f1 ⊗ f2 ⊗ . . .⊗ fn, with each fi a

morphism of SC, set mC(f) to be a list of morphisms obtained by removing all the inner brackets of f .

f might also be a symmetry freely introduced in the construction of SSC from SC. Then the action of

mC os a two step process: first the mapping of Equation 3.2 is applied to the symmetry f , and then the

result is embedded into SC
(
mC(l1 ⊗ l2 ⊗ . . .⊗ ln),mC(

′
1⊗l′2 ⊗ . . .⊗ l′n)

)
. Diagram 3.4 shows exactly how

this process works.

The unit is defined as for the monoidal category monad (Example 5.1). All the modifications are

equalities, making S a strict monad.

Example 5.3. The finite product category monad, F : Cat → Cat, sends each category X to the free

category with finite products on X (cf. Example 4.8). As in the previous example, FFC contains two

types of morphisms: formal products of FC morphisms and new structural morphisms introduced by

applying F to FC. mC removed the inner bracket (if they exist) of formal products of FC-morphisms.

I.e.

∆× (f × g)× δ mC7→ ∆× f × g × δ.

We illustrate mC ’s actions on finite-product structure of FFC with an example. Let l = (x1 × x2 × x3)

be a single-element list in FFC. Then there there exists a morphism

∆ : l→ l × l ∈ FFC

then mC ’s of ∆ action can be visualised as follows:

7→l

l

l

x2
x3

x1
x3

x1
x2

x2

x1

x3

The unit sends x to the single-elements list (x) ∈ FC.

This monad is also strict.

Example 5.4. Recall the presheaf functor P of Example 4.10. Following Section 7 in [Curien, 2008], we

restrict the codomain of P to Cat obtaining a new functor to which we shall refer again as the presheaf
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functor. This new P can made into a monad. The unit of P is given by the Yoneda embedding

uC : C → PC, X 7→ C(−, X).

Its multiplication, m : P 2 → P , is given by the following left Kan extension

PC

1PC ""

uPC // PPC

mC{{
PC

which can be translated to an explicit formula for any F : (PC)op → Set

mC(F) =

∫ F∈PC
F × PPC(F , uPC(F ))

'
∫ F∈PC

F ×F(F ).

P is not a strict 2-monad. For example, the isomorphism λC is derived from the density formula for

presheafs:

mC(PC(−,G)(X) =

∫ f∈PC
PC(f,G)× f(X) ' G(X).

Example 5.5. It was shown in Corollary 3.3 of [Cheng et al., 2004] that any 2-monad P induces a

psudo-adjunction
˜(−) a G : kl(P )→ K

One can show that the right adjoint, G, is given by

• On 0-cells GX = PX.

• on 1-cells and 2-cells by

G( X

ϕ
&&

ψ

88�� ξ Y ) = PX

Pϕ **

Pψ

66�� ξ P 2Y
mY // PY ;

The unit of this adjunction is given by

ηX : X → PX = GX∗ = X
uX // PX ∈ K

and the counit is

εX : PX −→7 X = 1PX : PX −→7 X1.

The adjunction laws translate to the following equations

X
(uX)∗� // PX

1PX� // X ' X
uX� // X (5.1)

1We abuse notation and write 1PX both for the functor PX → PX and for the profunctor PX −→7 X
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and

PX
uPX // P 2X

P (1PX)// P 2X
mX // PX ' PX

1PX // PX (5.2)

with additional coherence conditions which we ignore at this point.

5.2 2-monad morphisms

Let S = (S,m, u, τ, λ, ρ) and (T,m, u, τ ′, λ′, ρ′) be two 2-monads on a bicategory K. A 2-monad morphism

is a triple (α, αm, αu) where α : S → T is a pseudo-natural transformation and αm and αu are invertible

modifications

S2

⇓αm

Sα //

m

��

ST
αT // T 2

m′

��

1K
⇓αu

u //

u′

""

S

α

��
S

α
// S T

such that the following coherence conditions hold:

S3

Sm
��

S2α //

mS

~~
⇓τ

S2T
SαT //

⇓Sαm

ST 2

Sm

��

αT 2
//

'

T 3

Tm
��

S3

mS
��

S2α //

'

S2T
SαT //

mT

��

ST 2 αT 2
//

⇓αmT

T 3

mT
��

Tm

  
⇓τ ′S2

m
  

S2 Sα //

m

��
⇓αm

ST
αT // T 2

m

��

= S2

m

��

Sα //

⇓αm

TS
αT // T 2

m

��

T 2

m
}}

S
α

// T S
α

// T

S2 Sα //

m

��
⇓ρ ⇓αm

ST
αT // T 2

m

��

S2 Sα //

'

ST
αT // T 2

m

  
⇓ρ′

S

Su

>>

id
// S

α
// T S

Su

OO

α
//

Su

==
⇓Sαu

T

Tu

OO

id
// T

and

S2 Sα //

m

��
⇓λ ⇓αm

ST
αT // T 2

m

��

S2 Sα //

'

ST
αT // T 2

m

  
⇓λ′

S

uS

>>

id
// S

α
// T S

uS

OO

α
// T

⇑αuT
uT

OO

uT

aa

id
// T

Example 5.6. Consider the monoidal category monad M : Cat → Cat and the symmetric monoidal

category monad S : Cat→ Cat of the previous section. There is a monad morphism

i : M → S

given by setting, for every category C, the functor iC to be the inclusion MC ↪→ SC.

62



We verify the existence of the required modifications. The diagram

M2 Mi //

m

��

MS
iS // S2

m′

��
M

i
// S

strictly commutes since the process of removing inner brackets commutes with set inclusion.

The commutativity of

1Cat
u //

u′

##

M

i

��
S

is also clear.

Example 5.7. The inclusions of symmetric monoidal categories into finite product categories gives rise

to a monad morphism. The argument is identical to the one given in Example 5.6.

5.3 2-algebras

As with single-dimensional monads, 2-monads also have algebras. An algebra for a 2-monad is defined similarly

to an algebra for a monad, expect that the equalities in Equations 2.2 are replaced by invertible modifications

that are subject to coherence conditions. A similar story repeats for morphisms of algebras. This data forms

a bicategory. We refer the reader to Section 2.4 of [Tanaka, 2005] for a detailed definition.

We shall often talk about monads whose bicategory of algebras consists particular categories with structure.

For example, the bicategory of algebras for the monoid monad of Example 5.1 consist of all monoidal categories

and monoidal functors. Similarly, the 2-categpory of all symmetric categories and symmetric monoidal functors

is the category of algebras for the monad S of Example 5.2.

5.4 Kleisli bicategories

Let P : K → K be a 2-monad on a bicategory K. The Kleisli bicategory of P , written klP is defined as

follows. Its objects are just the objects of K:

ob(kl(P )) = obK

For any two X,Y ∈ ob(kl(P )) we put

kl(P )(X,Y ) = K(X,PY ),

with composition

◦X,Y,Z : K(X,PY )×K(Y, PZ)→ K(X,PZ)
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given by

( X
ϕ // PY ) ◦ ( Y

ψ // PZ ) = X
ϕ // PY

Pψ // PPZ
mZ // PZ .

It is clear that this composition is a functor. The unit is given by the unit of the monad P .

Given any ϕ : X → Y in kl(P ), the isomorphism ϕ ◦ 1X ' ϕ is given by

X

⇓

uX //

ϕ !!

PX
Pϕ // P 2Y

mY // PY

PY

uPY

;;

⇓

1PY

>>

the isomorphism 1Y ◦ ϕ ' ϕ is given by

X
ϕ // PY

PuY //

⇓

1PY ++

P 2Y

mY

��
PY

and with ζ : Z → PW , ζ ◦ (ψ ◦ ϕ) ' (ζ ◦ ψ) ◦ ϕ is given by

X
ϕ // PY

Pψ // P 2Z
mZ //

P 2ζ **

PZ

⇓

Pζ // P 2W

⇓

mW // PW

P 3W
PmZ

00

mPW

::

P 2W
mW

GG

Example 5.8. We investigate the Kleisli bicategory of the Presheaf monad (Example 5.4). The objects

of kl(P ) are categories. The morphisms are functors

X → PY = SetY
op

which, since Cat is Cartesian closed, are equivalent to functors

Y op ×X → Set;

explicitly, the equivalence is given by

ϕ(x)(y = ϕ(y)(x)
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Let X
ϕ // Y

ψ // Z be morphisms in kl(P ). Their composition is

ψ · ϕ(x)(z) = mZ · Pψ · φ(x)(z)

= mZ

(
Pψ(ϕ(x))

)
(y)

' mZ

(∫ y∈Y
PZ(−, ψ(y))× ϕ(x)(y)

)
(z)

'
∫ G∈PZ ∫ y∈Y

PZ(G,ψ(y))× ϕ(x)(y)×G(z)

'
∫ y∈Y

ϕ(x)(y)×
∫ G∈PZ

G(z)× PZ(G,ψ(y))

'
∫ y∈Y

ϕ(x)(y)× ψ(y)(z).

The composition we computed above is exactly the composition of ψ with φ when we view them as

profunctors via the above identification. From this we conclude that the categories kl(P ) and Prof (see

Example 4.5) are biequivalent.

5.5 2-distributive laws

Given two 2-monads, S and T , we can compose their underlying 2-functors. A 2-distributive law allows

us to create a monad structure on the composite 2-functor ST . 2-distributive laws are substantially more

complicated than their 1-dimensional cousins. Because of this, we shall study them in stages. We begin with

a discussion a distributive law of a 2-functor over a monad. The full definition of a 2-distributive law is given

only after we understood this simpler scenario in some detail.

5.5.1 Distributing functors over monads

Let (P,m, u) be a monad on a 2-category K and let S be a 2-functor on K. A 2-distributive law (also

pseudodistributive law) of S over P is a triple (δ, δm, δu) where

δ : SP → PS

is a 2-natural transformation and

SP 2

Sm

��

δP //

⇓δm

PSP
Pδ // P 2S

mS

��

S

⇓δuSu

��

uS

""
SP

δ
// PS SP

δ
// PS

are invertible modification subject to the following three coherence conditions
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SP 3

SmP
��

δP 2
//

SPm

{{
Sτ

PSP 2 PδP //

⇓δmP

P 2SP

mSP

��

P 2δ //

nat.

P 3S

mPS
��

SP 3

SPm
��

δP 2
//

nat.

PSP 2 PδP //

PSm

��

P 2SP
P 2δ //

⇓δm

P 3S

PmS
��

mPS

##
⇓τSSP 2

Sm ##

SP 2 δP //

Sm

��
⇓δm

PSP
Pδ // P 2S

mS

��

= SP 2

Sm

��

δP //

⇓δm

PSP
Pδ // P 2S

mS

��

P 2S

mS{{
SP

δ
// PS SP

δ
// PS

SP 2 δP //

Sm

��
⇓Sρ ⇓δm

PSP
Pδ // P 2S

mS

��

SP 2 δP //

nat.

PSP
Pδ // P 2S

mS

""
⇓ρS

SP

SuP

<<

id
// SP

δ
// PS SP

SuP

OO

δ
//

uSP

;;
⇓δuP

PS

uPS

OO

id
// PS

and

SP 2 δP //

Sm

��
⇓Sλ ⇓δm

PSP
Pδ // P 2S

mS

��

SP 2 δP //

nat.

PSP
Pδ // P 2S

mS

""
⇓λS

SP

SPu

<<

id
// SP

δ
// PS SP

SPu

OO

δ
// PS

⇑Pδu
PuS

OO

PSu

cc

id
// PS

Example 5.9. The free monoidal category functor of Example 4.6 distributes over the presheaf monad

of Example 5.4. For any category X the functors

λX : MPX → PMX, f1 ⊗ . . .⊗ fn 7→ f1(−)× . . .× fn(−)

defines a 2-distributive law.

Distributive laws allow us to extend the endofunctor S to the Kleisli category of P . More precisely, we call

the 2-functor S̃ as extension of a 2-functor S when

kl(P )
S̃ // kl(P )

K

(−)∗

OO

S
// K

(−)∗

OO

commutes.

The relationship between extensions and distributive laws is captured by the following theorem

Theorem 5.10. Given a 2-monad P a 2-functor S on a 2-category K the following a equivalent:

1. a 2-distributive law (λ, λm, λu) : SP → PS

2. an extension S̃ of S to kl(P ).

The proof can be found in [Cheng et al., 2004]; we provide a sketch of the proof in Theorem 7.4.

The extension S̃ can be easily described. Since its an extension, it equals S on 0-cells. A 1-cell ϕ : X → Y

in kl(P ) is the same as a 1-cell ϕ : X → PY in K. Set

S̃(ϕ) = SX
Sϕ // SPY

δY // PSY
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which is a 1-cell from SX to SY in kl(P ).

Example 5.11. The distributive law of Example 5.9 gives rise to a 2-functor M̃ : Prof → Prof that

equals M on categories and is defined by

M̃(ϕ)(y1 ⊗ . . .⊗ ym, x1 ⊗ . . .⊗ xn) =

ϕ(y1, x1)× . . .× ϕ(yn, xn), if n = m;

∅, else,

for any profunctor ϕ : X −→7 Y .

One can also define a distributive law of a monad P over a functor S. This definition is identical to ours,

with the roles of P and S reversed. That is, it is given by a 2-natural transformation

λ : PS → SP.

and two modifications that satisfy three coherence conditions. Full details can be found in Chapter 5 of

[Tanaka, 2005].

5.5.2 Distributing monads over monads

Let (S,m, u) and (P, µ, η) be monad on a 2-category K. A 2-distributive law of S over P is a a 5-tuple

(λ, λm, λu, λµ, λη) where

λ : SP → PS

is a 2-natural transformation and λµ, λη, λm and λu, are invertible modifications

SP 2

⇓λµSµ

��

λP // PSP
Pλ // P 2S

µS

��

S

⇓ληSη

��

ηS

""
SP

λ
// PS SP

λ
// PS

S2P

⇓λmmP

��

Sλ // SPS
λS // PS2

Pm

��

P

⇓λuuP

��

Pu

""
SP

λ
// PS SP

λ
// PS

subject to ten coherence condition given in Chapter 7 of [Tanaka, 2005].

It took some time to precisely identify the coherence condition for 2-distributive laws of monads over monads.

The first attempt was made in [Marmolejo, 1999] where nine coherence conditions we presented. In [Tanaka,

2005] Tanaka added an addition coherence condition to the list. But three years later, [Marmolejo and Wood,

2008] showed that Tanaka’s condition is in fact derivable from that original nine. Interestingly, the same work

showed that one of the nine conditions is derivable from the other eight. Thus the minimal definition for a

2-distributive involved eight coherence conditions; those can be found in the original paper [Marmolejo and

Wood, 2008] or in the survey [Gambino, 2009].

Example 5.12. The 2-distributive law of Example 5.9 is actually a 2-distributive law of the 2-monad

M (cf. 5.1) over the 2-monad P (cf. Example 5.4).
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The formula

f1 ⊗ . . .⊗ fn 7→ f1(−)× . . .× fn(−)

follows from abstract considerations. Let (X,⊗, I) be a monoidal category. Then there is a monoidal

tensor product on PX given by the Day convolution which, given profunctors F,G : Xop → Set, is

defined by

F ∗G =

∫ x,y∈X
Fx×Gy ×X(−, x⊗ y).

Is is well know that this tensor product along with unit J = ηX(I), makes (PX, ∗, J) a monoidal closed

category.

Since MX is the free monoidal category on X, it possesses the the following universal property: for any

strict monoidal category Y , and a functor H : X → Y , there is a unique strict monoidal functor Ĥ that

makes

X
uX //

H ""

MX

Ĥ
��
Y

commute. In particular, consider the situation

PX
uPX //

PuX $$

MPX

λX
��

PMX

We can now compute the formula for λX . For the sake of clarity, we consider the action of λX on only

two presheaves f and g. We write [x] for the list x1 ⊗ . . .⊗ xn and similarly write [y] and [z] for lists of

objects of X.

λX(f ⊗ g)([x]) = λX(uPX(f)⊗ uPX(g))([x])

'
(
PuX(f) ∗ PuX(g)

)
([x])

'
∫ [y],[z]∈MX

PuX(f)([y])× PuX(g)([z])×MX([x], [y]⊗ [z])

'
∫ [y],[z] (∫ a∈X

f(a)×MX([y], a)×
∫ b∈X

g(b)×MX([z], b)
)
×MX([x], [y]⊗ [z])

'
∫ a,b∈X

f(a)× g(b)×
(∫ [y],[z]

MX([x], [y]⊗ [z])×MX([y], a)×MX([z], b)
)

'
∫ a,b∈X

f(a)× g(b)×MX([x], a⊗ b)

=

f(x1)× g(x2), if x = x1 ⊗ x2;

∅, else,

The last isomorphism holds because MX([y], a) ×MX([z], b) ' MX([y] ⊗ [z], a ⊗ b) and the coend is

taken over [y]⊗ [z]

Example 5.13. The Symmetric Monoidal Category monad S of Example 5.2 and the Finite Product

Category monad F of Example 5.3 also distribute over Presheaf monad P . The 2-distributive laws are
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almost identical to the one in the previous example. We record then here for completeness. We define

ρ : SP → PS by

ρX
(
f1 ⊗ . . .⊗ fn

)
(x1 ⊗ . . .⊗ xk) =

∫ x′1,...,x
′
n∈X

f1(x′1)× . . .× fn(x′n)× SX(x1 ⊗ . . .⊗ xk, x′1 ⊗ . . .⊗ x′n).

and ξ : FP → PF by

ξX
(
f1 ⊗ . . .⊗ fn

)
(x1 ⊗ . . .⊗ xk) =

∫ x′1,...,x
′
n∈X

f1(x′1)× . . .× fn(x′n)×FX(x1 ⊗ . . .⊗ xk, x′1 ⊗ . . .⊗ x′n).

The proof that the formulas we gave above are indeed 2-distributive laws can be found in [Curien, 2008].

That paper elegantly considers all there monads M , S and F at the same time and so provides a single proof

that works for all three constructions.

Let (S,m, u) and P be monads on K. An extension S̃ = (S̃, m̃, ũ) of S to kl(P ) is a monad the 2-functor,

the 2-natural transformations and the modifications are all extensions of the original data. (See Chapter ??

for precise definitions).

The following important Theorem relates liftings and extensions of monads with 2-distributive laws.

Theorem 5.14. Let S and P be 2-monads on a 2-category K. Then the following are equivalent:

1. a 2-distributive law λ : SP → PS;

2. an extension S̃ of S to the Kleisli bicategory of P ;

3. a lifting of P to the bicategory of P -algebras.

See [Cheng et al., 2004] for a proof. A detailed discussion of (1)⇐⇒ (3) can be found in [Tanaka, 2005].

Example 5.15. Examples 5.12 and 5.13 describe three distributive laws of monads over the presheaf

monad P . Hence by Theorem 5.14 the Monoidal Categories Monad, the Symmetric Monoidal Categories

monad and the Finite Product Categories monad can all be extended to kl(P ), i.e. to Prof..

Consequently, we obtain three 2-functors M̃ , S̃ and F̃ on the bicategory Prof. Let T ∈ {M,S, F} be one

of our 2-monads and δT ∈ λ, ρ, ξ be a corresponding 2-distributive law. The actions of the extension T̃

on a profunctor ϕ : X → PY is given by

TX
Tϕ // TPY

δT // PTY

This allows us to derive explicit formulas for the tree extensions. Let ϕ : X −→7 Y be a profunctor then

•
M̃ϕ(y1 ⊗ . . .⊗ yn, x1 ⊗ . . .⊗ xn) = ϕ(y1, x1)× . . .× ϕ(yn, xn)

•

S̃ϕ(y1⊗. . .⊗yn, x1⊗. . .⊗xn) =

∫ y′1,...,y
′
n∈Y

ϕ(y′1, x1)×. . .×ϕ(y′n, xn)×SX(y1⊗. . .⊗yn, y′1⊗. . .⊗y′n)
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•

F̃ϕ(y1⊗. . .⊗yp, x1⊗. . .⊗xn) =

∫ y′1,...,y
′
n∈Y

ϕ(y′1, x1)×. . .×ϕ(y′n, xn)×PX(y1⊗. . .⊗yp, y′1⊗. . .⊗y′n)

In the next Chapter we shall see that we monads in the Kleisli bicategories of M̃ , S̃ and F̃ are operads,

symmetric operads and Lawvere theories, respectively.
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Chapter 6

Internal Category Theory

The aim of this chapter is to show how the 2-categorical tools we developed in Chapters 4 and 5 can be used

to define a setting that makes it easy to formulate and combine various gadgets from categorical universal

algebra. The monad again plays a central role. But instead of studying monads on a 2-category K, we now

study monads inside K. Monads in different K correspond to various familiar constructions.

In the first example we show that a category is a monad in the bicategory of Spans (cf. [Rosebrugh and Wood,

2002]). Next we study monads in Prof. There internal monads add a new categorical structure to a category

X in a way that interacts nicely with the existing structure of X. We follow [Lack, 2004] and show that this

view allows us to define PROs, PROPs and Lawvere theories as monads in a bicategory Prof(Mon) of internal

profunctors in Mon.

Operadic theories are more difficult to define because their tree-like composition does not naturality fit into a

simple categorical framework. [Hyland, 2010] showed that operatic composition can be recovered by working

in certain Kleisli bicategories. We focus on three particularly important examples. The first one studies

monads in kl(M̃), where M̃ is the extension of the monoidal category monad from Cat to Prof. We show

that monads on 1 in that bicategory are precisely non-symmetric operads. Symmetric operads turn out to be

monads on 1 in the Kleisli bicategory kl(S̃), where S is the symmetric-monoidal category monad on Cat and

S̃ is its extension to Prof. Finally, monads on 1 in kl(F̃ ) are Cartesian operads. Here F is the finite product

category monad on Cat.

We also give several examples of concrete theories. In particular, we describe the theory for commutative

semi-groups in symmetric monoidal categories as a monad on 1 in kl(S̃).

Distributive laws can also be internalised. Such internal distributive laws give a new method for composing

structure. This ability is one of the primary reasons for representing familiar structures as monads inside

bicategories. We explore the ability to compose categories, compose PROs, PROPs and Lawvere theories.

We finish with a discussion of a concrete distributive law between the concrete operadic theories we defined

earlier in the chapter.
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6.1 Monads in 2-categories

Let K be a 2-category. A monad in K is a 1-cell s : X → X equipped with 2-cells m : s2 → s and u : 1X → s

such that m and u satisfy the now familiar condition for a monad (cf. Section 2.2).

Example 6.1. Single-dimensional monads are monads in the 2-category Cat.

Example 6.2. A monad in Span(Set) consists of a set X, an endo-1-cell

X X

E

d
__

c
??

and 2-cells κ : E ×X E → E and ι : X → E that satisfy the associativity and unit axioms.

Let X be a set. The category Mon(Span(Set))(X,X) of monads on X in Span(Set) and monad morphisms

between them is isomorphic to the subcategory CatX of Cat - viewed as a 1-category - consisting of

all the categories C with obC = X and identity-on-objects functors between them. See Appendix B

in [Akhvlediani, 2009] for a proof.

Example 6.3. We can represent strict monoidal categories as internal monads in a bicategory Span(Mon)

of spans internal to the category Mon. Briefly, the category Span(Mon) is the same as Span, but the

0-cells are monoids and 1-cells are pairs of monoid homomorphisms. More detail can found in [Lack,

2004].

Example 6.4. Monads in Prof describe many interesting structures. First consider a monad

t : X −→7 X

over a discrete category X. Since Span is equivalent to a full subcategory of Prof with 0-cells discrete

categories, the monad t is equivalent to a category whose class of objects is X.

When X is not discrete, the monad t : X → X can again be thought of as a new category structure on

X, but one that interacts nicely with the existing morphisms in X. We investigate this idea further in

the discussion bellow.

Imagine that you wish to add new morphisms to an existing category X and that we wish the new

morphisms to compose with each other and with the existing morphisms on X. The first task in this

endeavour is to assign every pair x, x′ ∈ obX a new set of morphisms t(x, x′) which contains X(x, x′).

We denote X-morphisms with English letters f, g, h, . . . and t-morphisms that are not in X with Greek

letters ϕ,ψ, ξ, . . ..

We wish to compose existing morphisms in X with the new morphisms from t. For this we need maps

t(x, x′)×X(x′, x′′)→ t(x, x′′) and X(x, x′)× t(x′, x′′)→ t(x, x′′). (6.1)

that respect the composition in X. Such maps are given by a functor t : Xop ×X → Set. Indeed, one

can verify the functor t(x,−) gives the left map in Equation 6.1 and t(−, x′′) gives the right one. Let
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f : x→ x′, ϕ ∈ t(x′, x′′), and g : x′′ → x′′′. Define

ϕ ∗ f := t(f, x′′)(ϕ) ∈ t(x, x′′) and g ∗ ϕ := t(x′, g)(ϕ) ∈ t(x′, x′′′).

The functoriality of t also gives rise to the identities

f ∗ g = f · g and 1x′ ∗ f = f = f ∗ 1x

which indicate the compatibility of the operations · and ∗.

We determined that t : X −→7 X is a profunctor. We further suppose that it is a monad. Then the unit

of the monad

X(x, x′)→ t(x, x′)

ensures that all the original morphisms of X are contained in the new morphism family t.

The composition of t-morphisms is given by the multiplication of the monad. So, for any pair of com-

posible morphisms ϕ : x→ y and ψ : y → x′ in t, the multiplication produces the composite ψ�ϕ. The

equivalence relation in profunctor composition gives rise to important identities for this multiplication.

The multiplication of t takes the form∫ y∈X
t(x, y)× t(y, x′) �→ t(x, x′) (6.2)

Let ϕ : x→ y, ψ : y′ → x′ and f : y → f ′ be given. Then there are two ways to compose this data. We

can first form ψ ∗ f and then compose it with ϕ. This gives

(ψ ∗ f)�ϕ

Or we can form f ∗ ϕ and then compose that with ψ:

ψ�(f ∗ ϕ)

But since the pairs (ϕ, (ψ ∗ f)) and ((f ∗ ϕ), ψ) are equal in the coend of 6.2 they are mapped to the

same composite by �.

As a consequence of the unit law for the monad t, for every f : x→ x′, ϕ : x′ → x′′ and g : x′′ → x′′′,

ϕ�f = ϕ ∗ f and g�ϕ = g ∗ ϕ.

This hypothetical scenario is actually very useful in practical situations, in so far as these exist in

Category Theory. Let X = S1 be the free symmetric monoidal category on a single object category. The

only morphisms in X are the symmetries. A monad t : X −→7 X in Prof gives a way of adding additional

morphisms to the symmetric monoidal “base”. The new morphisms will seamlessly interact with the

symmetry morphisms of X.

This approach is not perfect. The issue is that while t-morphisms compose with symmetries, they are

oblivious to the monoidal structure of X. For example, viewed as a functor, t : Xop ×X → Set ignores

the monoidal structure of X. To remedy this, we can take internal monads in the bicategory Prof(Mon)

rather than in Prof. The former bicategory is called the bicategory of internal profunctors in Mon.
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Basically, the idea is to make sure that X is a monoidal and that t preserves its monoidal structure.

This approach was been explored in [Lack, 2004] where the reader can find further details.

The reliance of Prof(Mon) on Mon limits this setting. The problem is that there is no way to specify

interaction of t-morphisms with the structure of X, if this structure is not monoidal. In the next section

we present a framework that addresses this issue.

Example 6.5. In Example 6.4 we saw that monads in Prof and in Prof(Mon) are useful for appending

additional morphisms to categories. And so the class of all monads t : X −→7 X models the class of

categories that contains a subcategory X. Going back to Chapter 3, we see that PROs, PROPs, PROBs

and Lawvere Theories can all be modelled as monads on suitable categories in Prof(Mon). [Lack, 2004]

studies the implications of this for PROs and PROPs. [Akhvlediani, 2009] observes that PROBs can also

be studied in that setting. [Akhvlediani, 2010] shows that Lawvere theories can also be viewed as monads

and studies how these monads can be composed.

6.2 Monads in Kleisli bicategories

In in Example 5.15 of Chapter 5 we showed that the 2-monads M , S and F extend to the bicategory kl(P ).

This means that we can construct their Kleisli bicategories. In this section we study internal monads in these

Kleisli bicategories. We shall see that these internal monads provide us with tools to model multicategories of

various types. In particular, we shall see that plain, symmetric and Cartesian operads, as well as their coloured

counterparts, can all be modelled elegantly in this setting.

6.2.1 Monads in kl(M̃)

We begin with the following important proposition.

Proposition 6.6 (Hyland). There is a one-to-one correspondence between monads

t : 1 −→7 1

in kl(M̃) and plain operads.

Sketch of proof. Lets begin with a plain operad A. We wish to construct a monad t : 1 −→7 1 in kl(M̃).

Define a functor

t : M1op × 1→ Set

by t(n, 1) = A(n) for all n ∈ N. Since 1 does not contain any non-trivial morphisms, this definition indeed

gives a functor.

The unit of the monad is given by the natural transformation

u1 : N(1, 1)→ t(1, 1) id1 7→ idA

To understand how to define the multiplication, we first compute the composite of t with itself in kl(M̃):

t2 = 1 �t // M1 �̃Mt // MM1 �̃m1 // M1
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which evaluates to

m1 · M̃t · t(n, 1) =

∫ k∈M1

t(k, 1)× M̃t · m̃1(n, k)

=

∫ k∈M1

t(k, 1)×
∫ r1⊗...⊗rp∈MM1

m̃1(n, r1 ⊗ . . .⊗ rp)× M̃t(r1 ⊗ . . .⊗ rp, k)

'
∫ k∈M1

t(k, 1)×
∫ r1⊗...⊗rp∈MM1

M1(n,

p∑
i=1

ri)× t(r1, 1)× . . .× t(rp, 1)︸ ︷︷ ︸
k times

'
∫ k∈M1

t(k, 1)×
∫ r1⊗...⊗rk∈MM1,

∑k
i=1 ri=n

t(r1, 1)× . . .× t(rk, 1)

=
∐
k∈M1

t(k, 1)×
∐

∑k
i=1 ri=n

t(r1, 1)× . . .× t(rk, 1)

The composition of A gives us a passage

t(k)× t(r1, 1)× . . .× t(rk, 1)→ t(

k∑
i=0

ri)

which gives us a morphism t2(n, 1) → t(n, 1) by the universal property of coproducts. The associativity of

multiplication and the unit law hold because of the corresponding axioms for A.

Conversely, given a monad t, we set A(n) := t(n, 1). Multiplication for A is then given by

A(k)×A(r1)× . . .×A(rk) ↪→
∐
k∈M1

A(k)×
∐

∑k
i=1 ri=n

A(r1)× . . .×A(rk)→ A(n)

The unit for A is given by the unit of t. Associativity and the unit law hold because the their counterparts

for t.

If we can replace 1 by any category X, we obtain a correspondence between coloured plain operads or plain

multicategories (cf. Section 3.2.3 of Chapter 3). We record this fact

Proposition 6.7. There is a one-to-one correspondence between multicategories and monads in kl(M̃) on

discrete X.

Sketch of Proof. Let B be a multicategory with a class of objects X. We construct a monad t : X −→7 X in

kl(M̃) from B. First note that t needs to assign a list of objects x1 ⊗ . . .⊗ xn, x a set of morphisms. We do

this by setting t to be a functor

MXop ×X → Set, t(x1 ⊗ . . .⊗ xn, x) = B(x1 ⊗ . . .⊗ xn, x).

Functoriality is trivial since X is discrete. We explain how to define the multiplication for t

t2 = X �t // MX �M̃t // MMX �̃mX // MX
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Let l = x1 ⊗ . . .⊗ xn ∈MX and let x ∈ S

t2(l, x) =

∫ l′∈MX

t(l′, x)× m̃X · M̃t(l, l′)

'
∫ l′=x′1⊗...⊗x′n∈MX

t(l′, x)×
∫ s1⊗...⊗sn∈MMX

M̃t(s1 ⊗ . . .⊗ sn, l′)× m̃X(l, s1 ⊗ . . .⊗ sn)

'
∫ l′∈MX

t(l′, x)×
∫ s1⊗...⊗sn∈MMX

M̃t(s1 ⊗ . . .⊗ sn, l′)×MX(l,mX(s1 ⊗ . . .⊗ sn))︸ ︷︷ ︸
6=∅ ⇐⇒ s1⊗...⊗sn partitions l

'
∫ l′∈MX

t(l′, x)×
∫ s1⊗...⊗sn partitions l

t(s1, x
′
1)× . . .× t(sn, x′n)

=
∐

l′∈MX

t(l′, x)×
∐

s1⊗...⊗sn partitions l

t(s1, x
′
1)× . . .× t(sn, x′n).

For every partition s1⊗ . . .⊗ sn of l,every x ∈ X and every list l′ = x′1⊗ . . .⊗x′n the multicategory B gives

a passage

t(l′, x)× t(s1, x
′
1)× . . .× t(sn, x′n)→ t(l, x).

and hence we also obtain a passage t2(l, x)→ t(l, x).

The rest of the proof is similar to the proof of Proposition 6.6.

Finally, we can consider the case where X is not discrete. The a monad t : X −→7 X in kl(M̃) again gives

a multicategory, but one equipped by right actions of X-morphisms and left actions of MX-morphisms. We

analyse this scenario in the Example below.

Example 6.8. Suppose that X is a non-discrete category and let t : X −→7 X be a monad on X in

kl(M̃). We think of

t(x1 ⊗ . . .⊗ xn, x)

as a set of t-morphisms from x1 ⊗ . . .⊗ xn to x (see Example 6.4 for more on this interpretation). Then

the isomorphisms ∫ x′∈X
t(x1 ⊗ . . .⊗ xn, x′)×X(x′, x)

λ→ t(x1 ⊗ . . .⊗ xn, x)

and∫ x′1⊗...⊗x′n∈MX

MX(x1 ⊗ . . .⊗ xn, x′1 ⊗ . . .⊗ x′n)× t(x′1 ⊗ . . .⊗ x′n, x′)
ρ→ t(x1 ⊗ . . .⊗ xn, x)

form left- and right-actions on the class of t-morphisms. For example, given ϕ ∈ t(x1 ⊗ . . .⊗ xn, x′) and

f : x′ → x in X,

λ(ψ, f) = t(x1 ⊗ . . .⊗ xn, f)(ϕ) =: f ∗ ϕ

Similarly, ρ lets us define ϕ ∗ (f1, . . . , fn).

Following the arguments given in Example 6.4 we can show that the multiplication m of the monad t

allows to compose t morphisms via

(ϕ1 ⊗ . . .⊗ ϕn)�ϕ := m(ϕ1 ⊗ . . .⊗ ϕn, ϕ)
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�, ∗ and · are compatible. For example

(f1 ⊗ . . .⊗ fn)�ϕ = (f1 ⊗ . . .⊗ fn) ∗ ϕ,

(f)�g = (f) ∗ g = f · g.

While monads on non-discrete X provide the most flexible framework for defining theories, they do not

correspond to any standard notion from Categorical Universal Algebra. Consequently, we shall mainly

focus on the discrete case in the remainder of this work.

6.2.2 Monads in kl(S̃)

Following the plain case, we begin with a proposition.

Proposition 6.9 (Hyland). There is a one-to-one correspondence between monads t : 1 −→7 1 in kl(S̃) and

symmetric operads.

Sketch of Proof. The corresponded between monads t and operads A is given in Proposition 6.6. Here we

explain how the monads gives rise to the actions of the symmetric groups and to equivariance. Let t be given.

We produce the action

ρk : t(k, 1)× Sk → t(k, 1),

from

t(k, 1)× Sk = t(k, 1)× S1(k, k)

↪→
∫ k′∈S1

t(k′, 1)× S1(k, k′)
'→ t(k, 1).

Explicitly,

ρk(ϕ, σ) = t(σ, 1)(ϕ)

The functoriality of t(−, 1) implies the axioms of a group actions.
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To understand equivariance, we need to compute t2.

t2(m, 1) = m̃1 · S̃t · t(m, 1)

'
∫ n∈S1

t(n, 1)×
∫ k1⊗...⊗kn∈SS1

S̃t(k1 ⊗ . . .⊗ kn, k)× m̃1(m, k1 ⊗ . . .⊗ kn)

'
∫ n∈S1

t(n, 1)×
∫ k1⊗...⊗kn∈SS1 ∫ k′1,...,k

′
n∈S1

t(k′1, 1)× . . .× t(k′n, 1)×

SS1(k1 ⊗ . . .⊗ kn, k′1 ⊗ . . .⊗ k′n)× S1(m,m1(k1 ⊗ . . .⊗ kn))

'
∫ n∈S1

t(n, 1)×
∫ k′1,...,k

′
n∈S1 ∫ k1⊗...⊗kn∈SS1

t(k′1, 1)× . . .× t(k′n, 1)×

SS1(k1 ⊗ . . .⊗ kn, k′1 ⊗ . . .⊗ k′n)× S1(m,m1(k1 ⊗ . . .⊗ kn))

'
∫ n∈S1

t(n, 1)×
∫ k′1,...,k

′
n∈S1

t(k′1, 1)× . . .× t(k′n, 1)× S1(m,

n∑
i=1

ki)

'
∫ n∈S1

t(n, 1)×
∫ k′1+...+k′n=m

t(k′1, 1)× . . .× t(k′n, 1)× S1(m,m)

Let x ∈ t(n, 1),
(
(x1, . . . , xn), s

)
∈ m̃1 · S̃t(m,n) and σ ∈ S1(n, n). We claim that equivariance follows from

the fact that in t2(m, 1) the following are equal

(
t(σ, 1)(x), ((x1, . . . , xn), s)

)
=
(
x, m̃1 · S̃t(m,σ)((x1, . . . , xn), s)

)
(6.3)

Indeed it is easy to see that the left-hand-side of Equation 6.3 is corresponds to the lower-left passage of

diagram 3.4. And since action m̃1 · S̃t(m,σ)((x1, . . . , xn), s) corresponds to first permuting the operations

xi and then precomposing them with the permutation σ, the RHS corresponds to the upper-right passage of

that diagram.

As in the previous section we have

Proposition 6.10. The is a one-to-one correspondence between symmetric multicategories and monads in

kl(S̃) on discrete X.

The proof is analogous to the proof of Proposition 6.7.

When X is not discrete, something interesting happens. The class of morphisms introduced by t interacts

nicely not only with the symmetries of SX but also with the non-identity morphisms of X. The two inter-

actions are very different. The interaction with symmetries is a derivative of the setting kl(S̃) and is entirely

independent of X, while the interaction with the morphisms of X follows the pattern described in Example

6.8 and depends only on X itself.

6.2.3 Monads in kl(F̃ )

In this section we are finally able to precisely define Cartesian Operads (cf. Example 3.9). We shall show that

all the properties we sketched in Example 3.9 can be derived from the this formal definition.

Definition 6.11. A Cartesian operad is a monad t : 1 −→7 1 in kl(F̃ ).
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Let t be a Cartesian operad. Then, since M1 ↪→ F1, t is an operad. As a profunctor t is given by

t : Fop × 1→ Set

We interpret t(n, 1) as the set of operations of arity n. Right actions of finite-product structure on the

operations of t are given by the isomorphisms

t(k, 1)× F1(n, k) ↪→
∫ k∈F1

t(k, 1)× F1(n, k) ' t(n, 1)

which explicitly send the pair

(x ∈ t(k, 1), ϕ : n→ k) 7→ t(ϕ, 1)(x) ∈ t(n, 1)

Action axioms follow immediately from the functoriality of t(−, 1).

We can compute

t2(m, 1) =

∫ n∈F1

t(n, 1)×
∫ k1,...,kn∈F1

t(k1, 1)× . . .× t(kr, 1)× F1(m,

n∑
i=0

ki)

=

∫ n∈F1

t(n, 1)× (m̃1 · F̃ t)(m,n)

Note that the Cartesian analogue of equivariance follows from the fact that for operations x ∈ t(n′, 1),

xi ∈ t(k1, 1), i = 1, . . . , n and morphisms ψ ∈ F1(m,
∑n
i=0 ki) and ϕ ∈ F1(n, n′),

(
t(ϕ, 1)(x), (ψ, x1, x1, . . . , xn)

)
=
(
(x, m̃1 · F̃ t(m,ϕ)(ψ, x1, . . . , xn)

)
(6.4)

To illustrate this point, we examine the situation when ϕ = κ : 1→ 1× 1 is the copying operation. Assume,

for the sake of clarity, that m = 3 = 1 × 1 × 1 and ψ = id3. Let x0 ∈ t(3, 1) = F̃ t([3], 1)1; we wish to

understand the expression

F̃ t(3, κ)(x0) := F̃ t(3, κ)(id3, [x0]) ∈ F̃ t([3], 2)

Recall from Chapter 5 that

F̃ t = F1
Ft // FPF1

ξF1 // PF 21 .

and that this composite works as follows

1
κ // 1× 1 7→ t(−, 1)

Ft(κ) // t(−, 1)× t(−, 1)

7→
∫ n∈F1

t(n, 1)× F 1(−, n)
F̃ t(κ) //

∫ n1,n2∈F1
t(n1, 1)× t(n2, 1)× F 21(−, n1× n2)

where the natural transformation F̃ t(κ) is given by

F̃ t(κ)k1×...×kp
(
(x, π : k1 × . . .× kn → n)

)
=
(
(x, x), (k1 × . . .× kp

π→ n
κn→ n× n)

)
(here κn is derived from κ as described in Example 3.9 of Chapter 3.)

1We write [m] for the singleton list containing m
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Thus F̃ t(3, κ)(x0) =
(
(x0, x0), κ3) and this passage is visualised in Diagram 6.1.

7→x0

x0

x0
κ κ3

Diagram 6.1: The actions of F̃ t(3, κ)

With ϕ = κ, we can now visualise the equality in Equation 6.4 in Diagram 6.2. Note that this diagram is

=x0

x0

x0

κ κ3

x x

Diagram 6.2: The equality of equation 6.4

identical to Diagram 3.8 of Chapter 3.

Similar equations can be derived for more general ϕ ∈ F1.

Thus equivariance - which is the most complicated component in the definition of a Cartesian operad - can

be derived from our setting. Indeed, its complex combinatorial nature is elegantly captured by F̃ t.

6.3 Concrete theories in kl(T̃ )

We saw that when the 2-monad T distributes over the presheaf monad, theories of type T can can be expressed

as monads in kl(T̃ ). In this section we look at concrete example of such theories.

Example 6.12. We give the theory for commutative semi-groups in symmetric monoidal categories.

Thus our aim is to define a monad

t : 1 −→7 1 ∈ kl(S̃).

This is equivalent to giving a functor t : S1op × 1→ Set, which we define by

t(n, 1) = {n} if n > 0, and t(0, 1) = ∅.

We interpret the single element in t(n, 1) as the single operation of arity n. So, for example, the element

2 ∈ t(2, 1)

is the multiplication of our theory.
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Next we need to define the action of t on symmetries σ : n → n ∈ S1. Since, t(n, 1) is a singleton, we

are forced to set t(σ, 1) to identity. This makes our semi-group commutative.

There is little choice for the multiplication

m : t2 → t

m(n, 1) sends each element of t2(n, 1) to the single element of t(1).

Example 6.13. A pointed set is a set X together with a chosen element x0 ∈ X. We can represent the

theory of pointed sets as a monad on

s : 1 −→7 1

in kl(S̃).

As a functor, s : S1op × 1→ Set sends each n ≥ 2 to the empty set and,

s(0, 1) = {0} and s(1, 1) = {1}.

The definition of s on symmetries is self-evident. To define the multiplication, we note that

s2(n, 1) = ∅, if n ≥ 2,

and if case n = 0 or n = 1, s2(n, 1) ' s(n, 1), which gives the multiplication.

Example 6.14. Let X be a symmetric monoidal category and let x0 ∈ X be an object of X. We define

the theory of morphisms on x0 to be an arrow

x0 : 1 −→7 1

in kl(S̃) given as a functor by x0(n, 1) = X(x⊗n0 , x0). The multiplications and unit are given by the

compositions and identity in X. This theory corresponds to the endomorphisms operad of Example 3.7.

The above example allows us to define models of theories. Recall from Chapter 3 that a model on an object

x ∈ X of an operad A is a morphism of operads A→ End(x). The same idea can be used to define models

of monads t : 1 −→7 1 in kl(T̃ ). Given a T -category X and an object x0 ∈ X, a model of t on x is a monad

morphism

α : t→ x0.

where x0 is the monad of Example 6.14.

Example 6.15. Let t be the theory of Example 6.12. Let X be a symmetric monoidal category and let

x0 be any object in X. Write x0 for the monad on 1 induced by x0. Then a monad morphism

α : t→ x0

gives, for every n ∈ S1,

αn : t(n, 1)→ x0(n, 1) = X(x⊗n0 , x0)
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the concrete implementation in X of all operations of arity n. The fact that α is a monad morphism,

means that all the axioms of the theory t hold also hold for these concrete implementations in X.

6.4 Distributive Laws in 2-categories

One advantage of the internal monadic view of operads and categories is that it comes with a tool for

combining these structures. We already noted that given any two monads, a distributive law specifies a

method for creating the composite of these monads. Hence (internal) distributive laws give us a single

mechanism for combining categories, PROPs, PROs, Lawvere theories and operads of various types.

Let s = (s, µs, ηs) and t = (t, µt, ηt) be monads in a bicategory K. An internal distributive law of s over t is

a 2-cell

λ : s · t→ t · s

such that

t
tηs

��

ηst

��

tss

tµs

��

λs // sts
sλ // sst

µst

��
ts

λ // st ts // st

s

ηts

__

sηt

??

tts

µts

OO

tλ
// tst

λt
// stt

sµt

OO

Example 6.16. Let C and C′ be categories with obC = X = obC′. Then C and C′ are monads on X in

Span - we again write C and C′ for those monads. We write C ⊗ C′ for the span C ×X C′. A distributive

law between C and C′ is a 2-cell

l : C ⊗ C′ → C′ ⊗ C.

This distributive law l sends pairs of compossible morphisms to pairs of compossible morphisms. Given

a pair of compossible morphisms (f, g) ∈ C ⊗ C′ we write

l(f, g) = (gC′f, gCf)

and denote the domain of gC′f and the codomain of gCf by glf . This allows to capture l diagrammatically

A
f∈C′ //

gCf

��

B=
l

~~
g∈C
��

glf
gC′f

// C

(Note that the above is not a commutative diagram, but only a depiction of l).

The defining conditions for a distributive law translate into preservation of the unit and composition of

C and C′. The above notations allows us to capture this precisely as,

fC1A = f, fC′1A = 1B , fl1A = B.,
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(1B)Cf = 1A, (1B)C′f = f, (1B)lf = A,

for the interaction with the units and

hC′(k · f) = hC′k · (hCk)C′f

hC(k · f) = (hCk)Cf (6.5)

(hCk)lf = hl(k · f)

and

(h · g)C′f = hC′(gC′f),

(h · g)Cf = hC(gC′f) · gCf, (6.6)

(h · g)lf = hl(gC′f),

for the interaction with composition. See [Akhvlediani, 2009] for full details.

Example 6.17. One can similarly define a distributive law between PROs. We saw in Example ?? that

PROs are monads in Span(Mon). Hence a distributive law between PROs is a distributive law between

the associated monads in this 2-category. Its easy to spell this out in detail: such distributive law amount

to giving a distributive law between the underlying categories, such that the function l of Example ??

preserves the tensor product. More precisely, given PROs S and T, a distributive law between then is a

2-cell

L : S→ T

in Span(Mon), such that l is distributive law of the underlying categories S and T and for any pairs of

composible morphisms (g, f), (g′, f ′) ∈ T⊗ S

g ⊗ g′Sf ⊗ f ′ = gSf ⊗ g′Sf ′

g ⊗ g′Tf ⊗ f ′ = gTf ⊗ g′Tf ′

g ⊗ g′lf ⊗ f ′ = glf ⊗ g′lf ′

Example 6.18. PROPs are monads in Prof(Mon) (cf. Example 6.5). A distributive law between

PROPs is a distributive law between the underlying PROs such that whenever there exists π ∈ P making

the upper-right triangles in the following diagram commute, there exist a π′ ∈ P making the lower-left

triangles commute

·

τ ′

zz

·

σ′ ..

τ ′Tσ
′

��

σ //

τTσ

��

·

π

@@

τ

��

A
l

��
·

π′��

τSσ
// ·

τ ′Sσ
′nn·
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See Theorem 6 of [Akhvlediani, 2009] for a proof.

Example 6.19. In [Akhvlediani, 2010], the author showed that Lawvere theories can be viewed as

monads over Fop in Prof(Mon). As such, those Lawvere theories can be composed to produce a new

monad on Fop. It turns out that this new monad is also a Lawvere theory. Consult the slides in the

reference for a complete proof.

Example 6.20. In Examples 6.12 and 6.13 we defined the theory for commutative semi-groups, t and

the theory for pointed sets s. We now show that those theories can be combined with a distributive law

to produce the theory of commutative monads.

The distributive law is a 2-cell in kl(S̃)

λ : t · s→ s · t.

To understand λ, we first compute its domain and codomain: the domain is

t · s(n, 1) =

∫ k∈S1

t(k, 1)×
∫ k′1+...+k′r=n

s(k′1)× . . .× s(k′r)× S1(n, n);

and codomain is given by

s · t(n, 1) =

∫ k∈P
s(k, 1)×

∫ k′1+...+k′k=n

t(k′1)× . . .× t(k′k)× S1(n, n)

' s(0)
∐

s(1)× t(n)× S1(n, n).

The action of λn can now be seen as

7→ and 7→

The distributive law λ turns the composite 1-cell s · t into a monad with multiplication given by

(s · t) · (s · t)→ (t · t) · (s · s)→ s · t

Its operations are given by

s · t(n, 1) = {n}, for all n ∈ S1.

The distributive law λ transforms the 0-arity operation 0 ∈ s · t(0) into the unit for the multiplication

2 ∈ s · t(2), making the composite monad the theory for commutative monoids, as desired.

6.5 Preservation of Internal Structure

We briefly note that internal structures in 2-categories are preserved by 2-functors. We shall use these facts

in Chapter ?? to construct theories of one type from theories of another type.

Proposition 6.21. Let T : K →M be a 2-functor between 2-categories. Then T preserves internal monads.
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Proposition 6.22. A 2-functor T : K →M preserves internal distributive laws.

Both these results are well known and their proofs are straightforward.
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Chapter 7

Extensions to kl(P )

In the previous chapter we saw that the tools of Categorical Universal Algebra can be viewed as monads in

various bicategories. In particular, operads of various types are monads in Kleisli bicategories of extensions

of Cat-monads. We also saw that the notions of type is captured by a Cat monads that distribute over the

presheaf monad.

The aim of the next three chapters is the understand how relationships between types lead to relationships

between theories of these types. To do this, we need to understand now only how monads distribute over the

presheaf monad P , but how 2-natural transformation and modifications distribute. We do this in this chapter.

More precisely, in this chapter we construct two monoidal bicategories, DLP and ExtP . The former consists

of 2-functors, 2-natural transformations and modifications that distributive over P . The latter consists of

extensions of 2-functors, 2-natural transformations and modifications to kl(P ).

We show that both DLP and ExtP are monoidal bicategories. Furthermore, we show that there is a monoidal

biequivalence between them. While this result is easy to state, its proof is fairly involved. The proof was

broken down into manageable components. First we explain how the 0-, 1- and 2-cells of DLP map to

the corresponding structures in ExtP . We prove in full detail that our constructions indeed end-up in ExtP .

Certain coherence conditions are verified with particular care. We also explain how ExtP maps back into DLP ,

albeit with less detail. We prove 2-functoriality of both passages and show that they preserve the monoidal

structure.

The chapter ends with two important corollaries. The first one states that if S is a monad that distributes

over P , then its extension to kl(P ) is also a monad. The second one shows that when α is a monad morphism

that distributes over P , then its extension is also a monad morphism. We shall use these two corollaries in the

next chapter to construct a 2-functor between kl(S̃) and kl(T̃ ) that will send theories of type S to theories

of type T .

The monoidal biequivalence we construct should we thought of as a categorification of Beck’s Theorem [Beck,

1969]. This categorification was started in [Tanaka, 2005]. There Tanaka showed that there is a very similar

biequivalence between a 2-category dual to DLP and a 2-category of lifts of 2-functors to the category of

algebras of the monad P . Thus Tanaka’s thesis categorified one half of Beck’s Theorem. In this chapter we

categorify the other half.
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7.1 The monoidal 2-category of distributive laws

Let K be a 2-category and P be a 2-monad on K. We define the 2-category DLP of distributive laws over P

as follows

• 0-cells are pairs (T, λ) with T : K → K an 2-functor and λ : TP → PT a 2-distributive law.

• 1-cells are pairs

(α, α∗) : (T, λ)→ (S, ρ)

where α : T → S is a 2-natural transformation and α∗ is a modification

SP
ρ //

⇓α∗αP
��

PS

Pα
��

TP
λ
// PT

satisfying the following coherence conditions:

SP 2

⇓

⇓α∗P

ρP //

αP 2 ##
Sµ

��

PSP

⇓Pα∗

Pρ //

PαP

##

P 2S

P 2α

##

SP 2

⇓Sµ

��

ρP // PSP
Pρ // P 2S

⇓

µS

��

P 2α

##
TP 2

⇓Tµ

��

λP // PTP
Pλ // P 2T

µT

��

= P 2T

µT

��

SP

αP ##

SP

⇓α∗
αP ##

ρ // PS
Pα

##
TP

λ
// PT TP

λ
// PT

(7.1)

and

SP
ρ

""
⇓

SP

⇓α∗

ρ

""
αP

��

S

⇓α

��

Sη
==

ηS // PS

Pα

��

S

⇓

Sη
==

α

��

PS

Pα

��

TP

⇓ λ

""
T

ηT
// PT T

Tη
==

ηT
// PT

We visualise α∗ as a rewrite as follows

These coherence conditions have an intuitive graphical interpretation: the first one translates to

87



and the second translates to

• 2-cells are modifications ξ : α→ β such that

SP

⇓ ⇓

ρ //

αP
��

βP

��

PS

=Pβ

��

SP

⇓

ρ //

αP
��

PS

Pα
��

Pβ

��
⇓

TP
λ

// PT TP
λ

// PT

(7.2)

This condition can be seen as requiring that any rewrite in DLP is compatible with rewrites of the form

α∗. Visually:

α

α

β

β

α∗

Pξ ξP

β∗
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Proposition 7.1. The data in the definition of DLP forms a 2-category.

Proof. We define vertical and horizontal composition. For 1-cells

(S, ρ)
(α,α∗) // (T, λ)

(β,β∗) // (W, δ)

we set (β, β∗) ∗ (α, α∗) := (β · α, (β · α)∗) where (β · α)∗ is given by

SP

⇓

ρ //

αP
��

PS

Pα
��

TP

⇓

λ //

βP

��

PT

Pβ

��
WP

δ // PW

Horizontal and vertical composition of 2-cells is given by standard composition of modifications.

Furthermore, DLP has the structure of a monoidal 2-category. We describe the structure of the tensor on 0-,

1- and 2-cells.

• Given two 0-cells (S, ρ) and (T, λ), we define

(S, ρ)⊗ (T, λ) := (S · T, ρ⊗ λ)

where the distributive law ρ⊗ λ : STP → PTS is given by the composite

ρ⊗ λ := STP
Sλ // SPT

ρT // PTS

the modifications for ρ⊗ λ are given by

and

The fact the ρ⊗ λ is a 2-distributive law follows from the dual of Proposition 6.9 [Tanaka, 2005]

• Given 1-cells (α, α∗) : (S, ρ) → (T, λ) and (β, β∗) : (S′, ρ′) → (T,′ λ′) in DLP , we define α ⊗ β to be
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the horizontal composite of these 2-natural transformations. For definiteness, we set

α⊗ β := SS′
αS′ // TS′

Tβ // T ′S′

and set (α⊗ β)∗ to

β

α
β

α α
β

α

β

α
β

• The tensor product of 2-cells in DLP is given by the standard tensor product of modifications.

It turns out that the above definition gives rise to a 2-functor

⊗ : DLP × DLP → DLP .

As a consequence we have

Theorem 7.2. The 2-category DLP is a monoidal 2-category.

7.2 The monoidal 2-category of extensions

In this section we make the idea of an extension precise. We begin by fixing a 2-functor P on a 2-category K.

The 2-category ExtP of all functors that can be extended from K to kl(P ) consist of the following ingredients

• 0-cells are are pairs of 2-functors (S, S̃) with S : K → K and S̃ : kl(P )→ kl(P ) such that the following

square commutes

kl(P )
S̃ // kl(P )

K
S

//

(−)∗

OO

K

(−)∗

OO

• 1-cells are pairs of 2-natural transformations

(α, α̃) : (S, S̃)→ (T, T̃ )

where α : S → T and α̃ : S̃ → T̃ such that

K
S
&&

T

88�� α K
(−)∗ // kl(P ) = K

(−)∗ // kl(P )

S̃ **

T̃

44�� α̃ kl(P )

That is, for every X

α̃X = (αX)∗.
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• 2-cells are pairs of modifications (ξ, ξ̃) : (α, α̃)→ (β, β̃) with ξ : α→ β and ξ̃ : α̃→ β̃ satisfying

(−)∗ · S

(−)∗·α
((

(−)∗·β

66
⇓ (−)∗·ξ (−)∗ · T = S̃ · (−)∗

α̃·(−)∗

))

β̃·(−)∗

66
⇓ ξ̃·(−)∗ T̃ · (−)∗

It is easy to check that ExtP is a 2-category. It turns out that it is in fact a monoidal 2-category. We describe

the tensor product on 0-, 1- an 2-cells:

• Given two 0-cells (S, S̃) and (T, T̃ ) we define

(S, S̃)⊗ (T, T̃ ) = (S · T, S̃ · T̃ ).

In other words, S̃ · T = S̃ · T̃ .

• On 1-cells, we have

(α, α̃)⊗ (β, β̃) = (α⊗ β, α̃⊗ β̃)

with the ⊗ on the right coming from End(K) and End(kl(P )).

• The tensor on 2-cells is also inherited from End(K) and End(kl(P )).

From arguments dual to the ones give in Proposition 6.7 in [Tanaka, 2005], we have

Theorem 7.3. The 2-category ExtP is a monoidal 2-category.

7.3 From 2-distributive laws to extensions

7.3.1 0-cells

It is well known that an 2-distributive law ρ : SP → PS gives rise to an extension of S to S̃. Here we only

sketch how this process works. For a complete proof see [Cheng et al., 2004].

Theorem 7.4. Let (S, ρ) be a 0-cell in DLP . Define S̃ : kl(P )→ kl(P ) by

• S̃ = S, on 0-cells;

•

S̃( X

ϕ
))

ψ

77�� ξ PY ) = SX

Sϕ **

Sψ

66��Sξ SPY
ρY // PSY,

on 1- and 2-cells;

Then (S, S̃) is a 0-cell in ExtP .

Proof. The preservation of the unit uX : X → PX = X −→7 X of kl(P ) by S̃ follows from the isomorphism

ρX · uX ' uSX .
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Next, let ϕ : X −→7 Y and ψ : Y −→7 Z be composible 1-cells in kl(P ). Consider the following diagram

SX
Sϕ // SPY

SPψ $$

ρY // PSY

⇓

Pψ // PSPZ

⇓

PρZ // P 2SZ
mSZ // PSZ

SP 2Z

ρPZ

99

SmZ

// SPZ

ρZ

::

The top row is the composite S̃(ψ) · S̃(ϕ) and the bottom row is S̃(ψ ·ϕ) and the diagram exhibits the desired

isomorphism.

7.3.2 1-cells

Theorem 7.5. Let (α, α∗) : (S, ρ)→ (T, λ) be a 1-cells in DLP . Define

α̃X = SX
αX // TX

uTX // PTX .

Then (α, α̃) is a 1-cell in ExtP .

Proof. The proof can be divided into three parts

1. Definition of α̃ and its pseudo-naturality.

2. Show that the pseudo-naturaity is natural.

3. Show that the necessary coherence conditions hold.

(1) For every 0-cell X in K we define a 1-cell

βX := SX
αX // TX

uTX // PTX.

The βX ’s will form our pseudo-natural transformation α̃.

We proceed to define the pseudo-naturality for β. At each 1-cell ϕ : X → Y in kl(P ) the pseudo-naturality

2-cell

βX,Yϕ : T̃ϕ · βX → βY · S̃ϕ

is given by the following pasting diagram

SX

⇓ uSX,SPYTϕ

⇓ uSX,TXαX

Sϕ

%%

uSX

!!

αX // TX
uTX // PTX

PTϕ //

⇓ PαX,Yϕ

PTPY

⇓ Pα∗

PλY // P 2TY

⇓ rTY

mTY // PTY

PSX

PαX

;;

PSϕ // PSPY

⇓ uSPY,PSYρY

PαPY

;;

PρY // P 2SY

⇓ uPSY,PTYPαY

P 2αY

;;

⇓ l−1
TY

SPY

uSPY

;;

ρY
// PSY

uPSY

;;

PαY

// PTY

uPTY

DD

PuTY

//

1PTY

;;

P 2TY

mTY

EE

(7.3)
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Note that the top row of the diagram is the composition T̃ϕ ·βX in K. The bottom row is βY · S̃ϕ expressed

as a composition of K morphisms. We also note that from hereon we shall include less detail in our pasting

diagrams. In particular, we shall omit labels on certain 2-cells.

(2) Next, we need to show that for all 0-cells X,Y in K, the pseudo-naturality morphism βX,Yϕ is natural in

ϕ. To do this we need to verify that for each 2-cell

X

ϕ
&&

ψ

88�� γ Y

the following diagram commutes:

T̃ϕ · βX
βX,Yϕ //

S̃(γ)·βX
��

βY · S̃ϕ

βY ·T̃ (γ)
��

T̃ψ · βX
βX,Yψ

// βY · S̃ψ

In the following diagram, the 2-cells should be understood to be the composite 2-cells formed by pasting

together the relevant 2-cells from diagram 7.7.

SX

��

��

Sψ

**

uTX
%%

αX // TX

��

uTX // PTX

PTϕ
++

PTψ

33�� S̃(γ) PTPY

��

PλY // P 2TY
mTY // PTY

PSX

PαX

88

PTψ // PSPY

PαPY

88

SPY

uSPY

88

ρY
// PSY

PαY

// PTY
PuTY

// P 2TY

mTY

AA (7.4)

this diagram equal to

SX

��

��

Sψ

**

uTX
$$

αX // TX

��

uTX // PTX
PTϕ // PTPY

��

PλY // P 2TY
mTY // PTY

PSX

PαX

99

PSϕ
++

PSψ

44�� S̃(γ) PSPY

PαPY

88

SPY

uSPY

99

ρY
// PSY

PαY

// PTY
PuTY

// P 2TY

mTY

BB (7.5)
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by the naturality of αX,PY in ϕ. The last 2-cell is the same as

SX

��

��

Sϕ

��
Sψ

..

uTX

$$

αX //

w�
S̃(γ)

TX

��

uTX // PTX
PTϕ // PTPY

��

PλY // P 2TY
mTY // PTY

PSX

PαX

99

PTψ // PSPY

PαPY

88

SPY

uSPY

99

ρY
// PSY

PαY

// PTY
PuTY

// P 2TY

mTY

BB (7.6)

by the naturality of uTX,TPY . This concludes the proof of the naturality of βX,Y .

(3) Finally, we need to verify that the coherence conditions for pseudo-natural transformations hold. We begin

with the simpler of the two: we wish to prove that

SX
βX //

⇓ βX,XidX
S(idX)

��

TX

T (idX)

��
SX

βX

// TX

is the same as the 2-cell idβX . Actually, since K is a bicategory, the exact equality we wish to prove is

βX
' // idTX · βX

' // T̃ (idX) · βX
βX,XidX // βX · T̃ (idX)

' // βX · idTX
' // βX

equals

βX
idβX // βX
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The pasting diagram in K for the top 2-cell is given below

SX

��

��

SuX

%%

uSX

55

uSX

!!

αX //

αX

++

TX

��

uTX // PTX

��

PTuX //

PuTX

((

1PTX

$$
PTPX

��

��

PλX // P 2TX
mTX // PTX

PSX

��

PαX

;;

PTuX // PSPX

��

PαPX

;;

PρX // P 2SX

P 2αX

;;

SPX

uSPX

;;

ρX
// PSX

uPSX

;;

PαX

// PTX

uPTX

DD

PuTX

//

1PTX

;;

1PTX

QQ

P 2TX

mTX

EE

TX

uTX

55

(7.7)

To show that the above pasting diagram indeed equal to the identity, we need to prove the commutativity of

the following diagram given in the graphical language.
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2

Id 1

3 4
Comp.

5

6

We simplify the problem by breaking down the outer diagram into smaller diagrams and prove commutativity

for them.

1. This commutativity of this diagram follows from Proposition 4.15.

2. Follows from the coherence conditions for α and several applications of Proposition 4.15.

3. Follow from Proposition 4.15.

4. The vertical arrow is just a composite all the other rewrites.

5. This follows from Proposition 8.1 in [Marmolejo, 1997].

6. Follows from Proposition 4.14.

Finally, to complete the proof, we need to prove the second coherence condition for pseudo-natural transfor-
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mations, i.e to show the following equality in kl(P )

SX

⇓

⇓

βX� //

S̃ϕ_

��
T̃ (ψ·ϕ)_

&&

TX

T̃ϕ_

��

SX

⇓

βX� //

S̃(ψ·ϕ)_

��

TX

⇓T̃ (ψ·ϕ)_

��

T̃ϕ
x

��
SY

⇓

βY� //

T̃ (ψ)_

��

TY

T̃ (ψ)_

��

= TY

T̃ (ψ)

F

xx
SZ

βZ

� // TZ SZ
βZ

� // TZ

As before, we begin by writing the pasting diagram for each one of the above 2-cells in K. We begin with

the left-hand side:
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S
X

α
X
//

η
S
X

��
T
ϕ

��

T
X

η
T
X
// P
T
X

P
T
ϕ
// P
T
P
Y

P
T
P
ψ

��

T
λ
Y
// P

2
T
Y

P
2
T
ψ

��

µ
T
Y
// P
T
Y

P
T
ψ
// P
T
P
Z

P
λ
Z
// P

2
T
Z

µ
T
Z

// P
T
Z

P
S
X

P
T
ϕ
//

P
α
X

EE

P
S
P
YP
α
P
Y

DD

P
T
P
ψ ��

P
T
P

2
Z

P
λ
P
Z
//

P
T
µ
Z

��

P
2
T
P
Z
P

2
λ
Z
//

µ
T
P
Z

CC

P
3
T
Z

P
µ
T
Z

//

µ
T
P
Z

DD

P
2
T
Z

µ
T
Z

;;

P
2
T
Z

µ
T
Z

EE

S
P
Yη
S
P
Y

EE

T
P
ψ

��

P
S
P

2
Z

P
α
P

2
Y

CC

P
T
µ
Z

��

P
T
P
Z

P
λ
Z

77

S
P

2
Z

η
S
P

2
Z

DD

S
µ
Z

��

P
S
P
ZP
α
P
Z

CC

P
ρ
Z
// P

2
S
Z

P
2
α
Z

??

P
T
Z

η
P
T
Z

DD

P
η
T
Z

??

S
P
Z

η
S
P
Z

CC

ρ
Z

// P
S
Z

η
P
S
Z

CC P
α
Z

::

(7
.8

)
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S
X

α
X
//

η
S
X

��
S
ϕ

��

T
X

η
T
X
// P
T
X

P
T
ϕ
// P
T
P
Y

P
λ
Y
// P

2
T
Y

µ
T
Y
// P
T
Y

P
T
ψ
// P
T
P
Z

P
λ
Z
// P

2
T
Z

µ
T
Z

// P
T
Z

P
S
X

P
T
ϕ
//

P
α
X

AA

P
S
P
Y

P
λ
Y
//

P
α
P
Y

AA

P
2
S
YP

2
α
Y

@@

S
P
Y

η
S
P
Y

AA

ρ
Y
//

T
P
ψ

��

P
S
Y

P
α
Y
//

η
P
T
Y

AA

P
η
S
Y

��
P
T
ψ

��

P
T
Y

P
η
T
Y
//

η
P
T
Y

HH

1
P
T
Y

@@

P
2
T
Y

P
2
T
ψ
//

µ
T
Y

GG

P
2
T
P
Z

P
2
λ
Z
//

µ
T
P
Z

GG

P
2
P
T
Z

P
µ
T
Z
//

µ
P
T
Z

HH

P
2
T
Z

µ
T
Z

BB

P
2
S
Y

P
2
T
ψ
//

P
2
α
Y

@@

P
2
S
P
Z

P
2
ρ
Z
//

P
2
α
P
Z

@@

P
3
S
Z

P
3
α
Z

@@

P
2
T
Z

µ
T
Z

KK

S
P

2
Z

ρ
P
Z
// S
µ
Z

&&

P
S
P
Z

P
ρ
Z
//

P
η
S
P
Z

@@

P
2
S
Z

P
2
α
Z
//

P
η
P
S
Z

@@

µ
S
Z

��

P
2
T
Z

P
2
η
T
Z
//

P
η
P
T
Z

GG

µ
T
Z

��

P
3
T
ZP
µ
T
Z

HH

µ
P
T
Z

88

S
P
Z

ρ
Z

// P
S
Z

P
α
Z

// P
T
Z

P
η
T
Z

AA

(7
.9

)

We wish to apply graphical reasoning to show the equality of these two diagrams. But this cannot be

done directly, since 1-cells like Tψ for example do not live in BiCat(K,K). Thus our goal is to divide the

diagrams into two parts. One part living in K and the other a component at a 0-cell Z of a diagram living

in BiCat(K,K). Diagrams 7.8 and 7.9 are already divided into two parts. All the cells on the left side of the
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dotted line constitute the first part. Cells on the right of the diagrams make up the second part.

We observe that the following sub-diagram of diagram 7.9

PTPY
PλY // P 2TY

µTY // PTY
PTψ // PTPZ

PSPY
PλY //

PαPY

99

P 2SY

P 2αY

99

SPY

ηSPY

::

ρY //

TPψ

��

PSY
PαY //

ηPTY

99

PηSY

%%

PTψ

��

PTY
PηTY //

ηPTY

BB

1PTY

99

P 2TY
P 2Tψ //

µTY

BB

P 2TPZ

µTPZ

BB

P 2SY
P 2Tψ //

P 2αY

99

P 2SPZ

P 2αPZ

99

SP 2Z
ρPZ // PSPZ

PηSPZ

99

(7.10)

equals to

PTPY

PTPψ

  

TλY // P 2TY

P 2Tψ

((

µTY // PTY
PTψ // PTPZ

PSPY

PαPY

>>

PTPψ

  

PTP 2Z PλPZ

//
P 2TPZ

µTPZ

99

SPY

ηSPY

??

TPψ

��

PSP 2Z

PαPY

>>

PρPZ // P 2SPZ

PαPZ

66

PTPZ
PηTPZ //

ηPTPZ

>>

1PTPZ

DD

P 2TPZ

muTPZ

KK

SP 2Z

ηSP2Z

>>

ρPZ
// PSPZ

PηSPZ

//

ηPSPZ

>>

PαPZ

;;

P 2SPZ

P 2αPZ

66

(7.11)

because all the 2-cells outside the dotted region are modifications. The equality follows after we apply the

modification condition six times.

Thus we showed that diagram 7.9 equals to
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S
X

α
X
//

η
S
X

��
S
ϕ

��

T
X

η
T
X
// P
T
X

P
T
ϕ
// P
T
P
Y

P
T
P
ψ

��

P
λ
Y
// P

2
T
Y

P
2
T
ψ

&&

µ
T
Y
// P
T
Y

P
T
ψ

// P
T
P
Z

P
λ
Z
// P

2
T
Z

µ
T
Z

// P
T
Z

P
S
X

P
T
ϕ
//

P
α
X

AA

P
S
P
YP
α
P
Y

@@

P
T
P
ψ

��

P
T
P

2
Z

P
λ
P
Z

// P
2
T
P
Z

µ
T
P
Z

88

S
P
Y

η
S
P
Y

AA

T
P
ψ

��

P
S
P

2
Z

P
α
P

2
Z

@@

P
ρ
P
Z
// P

2
S
P
Z

P
2
α
P
Z

88

P
T
P
Z

P
η
T
P
Z
//

η
P
T
P
Z

@@
1
P
T
P
Z

::

P
2
T
P
Z

µ
T
P
Z

@@

P
2
λ
Z
// P

2
P
T
Z

P
µ
T
Z
//

µ
P
T
Z

HH

P
2
T
Z

µ
T
Z

>>

S
P

2
Zη
S
P

2
Z

@@

ρ
P
Z
// S
µ
Z

��

P
S
P
Z

P
η
S
P
Z
//

η
P
S
P
Z

@@

P
2
α
P
Z

88

P
λ
Z

��

P
2
S
P
Z

P
2
λ
Z
//

P
2
α
P
Z

88

P
3
S
Z

P
3
α
Z

88

P
2
T
Z

µ
T
Z

CC

P
2
S
Z

P
2
α
Z
//

P
η
P
S
Z

@@

µ
S
Z

��

P
2
T
Z

P
2
η
T
Z
//

P
η
P
T
Z

@@

µ
T
Z

��

P
3
T
Z

P
µ
T
Z

@@

µ
P
T
Z

88

S
P
Z

ρ
Z

// P
S
Z

P
α
Z

// P
T
Z

P
η
T
Z

@@

(7
.1

2)

101



Now observe that sub-diagrams left of the dotted line of both diagram 7.12 and diagram 7.8 are equal.

We proceed with the proof by using graphical reasoning to prove the equality of the sub-diagrams to the right

of the dotted line.

The following diagram contains the 2-cell of diagram 7.8 as the bottom-left passage.

And the following diagram contains the 2-cell of digram 7.12 as the bottom-left passage.
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We finish the proof by noting that all the inner rectangles in that make-up both diagrams commute and the

upper-right passages of these diagrams are equal.

7.3.3 2-cells

Theorem 7.6. Let ξ : (α, α∗)→ (β, β∗) be a 2-cell in DLP . Set

ξ̃ = SX

α
))

β

66�� ξ TX
u // PTX .

Then the pair (ξ, ξ̃) is a 2-cell in ExtP .

Proof. We only need to verify the following identity.

SX

S̃ϕ
��

αX ))

βX

66��ζX TX

T̃ϕ
��

= SX
αX //

S̃ϕ
��

TX

T̃ϕ
��

SY
βY

// TY SY

αX
))

βX

66��ζX TY

The left-hand-side equals:

SX

(1)

Sϕ

%%

uSX

!!

αX
**

βX

44��ζX TX
uTX // PTX

(2)

PTϕ // PTPY

(3)

PλY // P 2TY
mTY // PTY

PSX

PβX

77 AA

PTϕ // PSPY

PβPY

77 @@

PρY // P 2SY

(4)

P 2βY

77 @@

SPY

uSPY

;;

ρY
// PSY

uPSY

;;

PβY
,,
22 PTY

uPTY

DD

PuTY

//

1PTY

;;

P 2TY

mTY

EE

We visualise the transformation of this diagram into the right-hand-side of the modification condition via four

rewrites, which are depicted on the above diagram with dotted lines. The fact that pre- and post- rewrite

diagrams are equal follows from the following observations. (1) and (4) follow from the naturality of u. (2)

is the modification condition for ζ and (3) is a consequence of equation ??.

7.3.4 Functoriality

We defined ˜(−) on 0-, 1- and 2-cells of DLP . In this section we show that these assignments define a 2-functor

˜(−) : DLP → ExtP .
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Proposition 7.7. Let (α, α∗) : (S, ρ) → (T, λ), (β, β∗) : (T, λ) → (W, ζ) be 1-cells in DLP . Then there

exists an invertible isomorphism

β̃ · α = β̃ · α̃

Proof. The result immediately follows from the monad structure of P and the following picture

α

β

α

β
'

Proposition 7.8. ˜(−) preserves vertical and horizontal composition of 2-cells in DLP .

Proof. Since ˜(−) acts on 2-cells by whiskering, this is a consequence the 2-functoriality of (−)∗.

Thus we have proved

Theorem 7.9. ˜(−) : DLP → ExtP is a 2-functor.

Furthermore, ˜(−) preserves the monoidal structure of DLP .

Proposition 7.10. Let (S, ρ) and (T, λ) be 0-cells in DLP . Then

S̃ ⊗ T̃ = S̃ ⊗ T

Proof. Those functors are clearly equal on 0-cells. On 1- and 2-cells

S̃ ⊗ T̃ (ϕ : X → PY ) = S̃ · T̃ (ϕ : X → PY )

= S̃( TX
Tϕ // TPY

ρY // PTY )

= STX
STϕ // TPY

SρY // SPTY
λTY // PSTY

= S̃ ⊗ T (ϕ : X → PY )

Proposition 7.11. Let (α, α∗) : (S, ρ) → (S′, ρ′) and (β, β∗) : (T, λ) → (T ′, λ′) be 1-cells in DLP . Then

there a natural isomorphism

γα,β : α̃⊗ β̃ → α̃⊗ β

Proof. The modification γα,β is given by

α

β β

α

105



Naturality of γ is α means that for every 2-cell ξ : α→ α′ in DLP , the following diagram commutes:

α

β

β

α α′

α′

β

β

ξ̃ ⊗ β

ξ̃ ⊗ β̃

This diagram commutes because all the rewrites that constitute γα,β are also natural.

Proposition 7.12. Let ξ and ξ′ be 2-cells in DLP . Then

ξ̃ ⊗ ξ′ = ξ̃ ⊗ ξ̃′

Proof. This follows from one application of the naturally of γ in α and one applications of its naturally in β.

(See the proof of Proposition 7.11 for the definition of γ).

Putting all our results together, we conclude

Theorem 7.13. ˜(−) : DLP → ExtP is a monoidal 2-functor.

7.4 From extensions to 2-distributive laws

In this section we describe the passage from the 2-category ExtP to DLP .

We note that the results of this subsection are not used in the rest of this thesis; we add them here for

completeness. We also note that for this reason we omitted many details from the proofs of our claims.

7.4.1 0-cells

Since the equivalence of 2-distributive laws and extensions is well known, we only sketch the proof of the

following result.

Theorem 7.14. Let (S, S̃) be a 0-cell in ExtP . Define a 2-natural transformation

ρ = SP
S̃1P // PS

Then the pair (S, ρ) is a 0-cell in DLP .
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Note that here 1P : P → P is viewed as a 1-cell P −→7 1 in kl(P ). Then S̃(1P ) : SP −→7 S in kl(P ) and

hence is a 1-cell SP → PS in K.

Sketch of proof. We begin by showing how to construct the pseudo-naturality of S̃(1P ). Let f : X → Y be

a morphism in K. We want to show the existence of the following isomorphism

SPX

⇓

S̃(1P )X //

SPf

��

PSX

PSf

��
SPY

S̃(1P )Y

// PSY

Lets begin with examining the right-hand-side.

PSf · S̃(1P )X ' SPX
S̃(1P )X // SX

(Sf)∗ // SY

' SPX
S̃(1P )X // SX

S̃(f∗) // SY

' SPX
S̃(f∗·1P )X // SY

where the first isomorphism holds since the last two terms of the composite SPX
S̃(1P )X // SX

(Sf)∗ // SY

in K are isomorphic to the identity.

Finally, note that the (f∗ · 1P )X = (f∗ · 1PX) ' Pf . In detail,

PX

⇓

Pf

<<
1PX //// PX

Pf // PY
⇓

1PY

::
uPY // P 2Y

mY // PY

So, we showed that

PSf · S̃(1P )X ' S̃(Pf).

Next we look at the left-hand-side. Lemma 7.21 gives us

PX
Pf // Y ' PX

Pf∗ // PY
1PY // Y

hence

S̃(Pf) ' S̃(1PY · Pf∗)

' S̃(1PY ) · S̃(Pf∗)

' S̃(1PY ) · S(Pf)∗.
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And the last line is isomorphic to the left-hand-side:

SPX
SPf // SPY

S̃(1PY ) ''

uSPY // PSPY

⇓

PS̃(1PY ) // P 2SPY

⇓

mSPY // PSPY

PSPY

uPSPY

77

1PSPY

99

The next step is to show that S̃(1P ) is a 2-distributive law. We begin with exhibiting the following isomorphism

SP 2

⇓

S̃(1P )P //

Sm

��

PSP
PS̃(1P ) // P 2S

mS

��
SP

S̃(1P )

// PS

We again analyse the right- and left-hand sides, beginning with the former.

Note

mSX · PS̃(1P )X · S̃(1P )PX ' SP 2X
S̃(1P2X) // SPX

S̃(1PX) // SX

' S̃( P 2X
1P2X // PX

1PX // X )

' S̃(mX)

where the last isomorphism follows by computing the composite in K.

Now invoke Lemma 7.21 to see that

P 2X
mX // X ' P 2X

(mX)∗ // PX
1PX // X .

Hence

S̃(mX) ' S̃(1PX · (mX)∗)

' S̃(1PX) · S̃((mX)∗)

' S̃(1PX) · (SmX)∗.

We compute the composite on the last line in K:

SP 2X
Sm // SPX

uSPX //

S̃(1PX) ''

PSPX

⇓

PS̃(1PX) // P 2SX

⇓

mSX // PSX

PSX

uPSX

77

1PSX

<<

which gives the left-hand-side.
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Finally, we exhibit the isomorphism

S

uS   

Su // SP

S̃(1P )
��

PS

S̃(1P ) · Su ' S̃(1P ) · S(u)∗

' S̃(1P · u∗)

' S̃(u) ' uS

7.4.2 1-cells

Theorem 7.15. Let (α, α̃) be a 1-cell in ExtP . Then there exists

α∗ : Pα · S̃1P → T̃1P · αP

making (α, α∗) a 1-cell in DLP .

Proof. We produce α∗ via the following diagram

SP

(1)

αP

��

S̃1P //

α̃P

##

PS

Pα̃

||
Pα

��
PTP

PT̃1P // P 2T

mT

##

P 2T

mT

��

PT
uPToo

1PT

��

PT

uPT

<<

1PT

++
TP

T̃1P

//

uTP

DD

T̃1P

55

PT

where the 2-cell (1) is given by the pseudo-naturality of α̃.

7.4.3 2-cells

Theorem 7.16. Let (ξ, ξ̃) : (α, α̃)→ (β, β̃) be a 2-cell in ExtP . Then ξ : α→ β is a 2-cell in DLP .

Proof. We need to show

SP

βP

��
αP
��
ξP
=⇒

S̃1P // PS

Pβ

��
TP

T̃1P

// PT

= SP
S̃1P //

αP
��

PS

Pβ

��
Pα
��
Pξ
=⇒

TP
T̃1P

// PT
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We know from condition 7.2 that

ξ̃ = uT ∗ ξ;

i.e. ξ̃ acts by whiskering. Thus the fact that ξ̃ is a modification translates to

SP

αP

��

S̃1P //

α̃P

��

PS

Pα̃

��

Pβ

��

Pα

��

Pξ
=⇒

PTP
PT̃1P // P 2T

mT

��

P 2T

mT

��

PT
uPToo

1PT

��

PT

uPT

GG

1PT

%%
TP

T̃1P

//

KK

uTP

KK

T̃1P

==

PT

= SP

αP

��

βP

��

ξP
=⇒

S̃1P //

β̃P

��

PS

Pβ̃

��

Pβ

��
PTP

PT̃1P // P 2T

mT

��

P 2T

mT

��

PT
uPToo

1PT

��

PT

uPT

GG

1PT

%%
TP

T̃1P

//

KK

uTP

KK

T̃1P

==

PT

which is exactly the desired equality.

7.4.4 Functoriality

In this section we show that the above constructions on 0-, 1-, and 2-cells define a 2-functor

d : ExtP → DLP .

Proposition 7.17. Let α = (α, α̃) : (S, S̃) → (T, T̃ ) and β = (β, β̃) : (T, T̃ ) → (W, W̃ ) be composible

1-cells in ExtP . Then there is a natural isomorphism

d(β · α) ' d(β) · d(α). (7.13)

Proof. Consider the following diagram

SP

αP

��
⇓

(β·α)P

!!

S̃1P // PS

Pα

��
P (β·α)

}}

TP

⇓βP

��

T̃1P // PT

Pβ

��
WP

W̃1P

// PW

The left-hand-side of Equation 7.13 is obtained by composing the inner rectangle. The right-hand-side, by

composing the outer rectangle. Clearly, the two passages are indeed isomorphic.
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Coherence follows from the coherence of the monad P .

d sends a 2-cell (ξ, ξ̃) in ExtP to ξ. Hence vertical and horizontal composition of 2-cells is preserved on the

nose.

Putting these results together, we get

Theorem 7.18. d : ExtP → DLP is a 2-functor.

Furthermore, d preserves the monoidal structure of ExtP . We begin with 0-cells.

Proposition 7.19. Let (S, S̃) and (T, T̃ ) be 0-cells in ExtP . Then

S̃T̃ (1PX) ' S̃(1PTX) · S(T̃ (1PX)).

We shall need several facts to complete the proof. Recall from Chapter 5 that there is an adjunction

(−)∗ a G : kl(P )→ K

Lemma 7.20. For any X
ϕ� // Y in kl(P ),

X
ϕ∗� // PY ' X

ϕ� // Y
(uY )∗� // PX

Proof. The right-hand-side is the top line in

X
ϕ // PY

PuY

""

P ((uY )∗) //

1PY

��

P 3Y
mPY // P 2Y

P 2Y

PuP2Y

;;

1P2Y

55

PY

uPY

;;

and the left-hand-side is the bottom line.

Lemma 7.21. For any ϕ : X −→7 Y in kl(P ),

X
ϕ∗� // PY

1PY� // Y ' X
ϕ� // Y

Proof. Consider the diagram

X
ϕ∗� //

ϕ
�
  

ϕ
�

HH

(1)

PY

(2)

1PY� // Y

Y

(uY )∗

;
==

uY

-

CC

The isomorphism (1) comes from Lemma 7.20. Isomorphisms (2) comes from Equation 5.1 in chapter ??.
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We can now take ϕ = T̃ (1PX) in the previous Lemma to obtain the isomorphism

TPX

(
T̃ (1PX)

)
∗� // PTX

1PTX� // TX ' TPX
T̃ (1PX)� // TX (7.14)

Finally, we prove Proposition 7.19

Proof of Proposition 7.19. Apply S̃ to equation 7.14

S̃T̃ (1PX) ' S̃(1PTX) · S̃(T̃ (1PX)∗)

= S̃(1PTX) ·
(
S(T̃ (1PX))

)
∗.

Finally, notice the isomorphism

STPX
S(T̃ (1PX)) // SPTS

uSPTX //

S̃(1PTX) ((

PSPTX

⇓

PS̃(1PTX) // P 2STX

⇓

mSTX // PSTX

PSTX

uPSTX

55

1PSTX

66

We move on to study the preservation of the tensor on 1-cells.

Proposition 7.22. Let (α, α̃) : (S, S̃)→ (T, T̃ ) and (β, β̃) : (R, R̃)→ (W, W̃ ) be 1-cells in ExtP . Then

d
(
(α, α̃)⊗ (β, β̃)

)
= d

(
(α⊗ β, α̃⊗ β̃

)
= (α⊗ β, (α⊗ β)∗)

Sketch of proof. Both the right and the left hand side are modifications of the form

P (α⊗ β) · S̃T̃ (1P )→ T̃ W̃ (1P ) · (α⊗ β)P.

Both are created by tensoring and composing structural 2-cells for the monad P , the distributive laws S̃(1P ),

T̃ (1P ), R̃(1P ), R̃(1P ) and 1-cell d(α, α̃), d(β, β̃) in DLP . The coherence axioms for all those structures

show that any two such passages from the same domain and codomain must be equal, leading to the desired

conclusion.

Finally,

Proposition 7.23. d preserves the tensor on 2-cells.

Proof. This is clear, since d sends a pair (ξ, ξ̃) to ξ.

Thus we conclude

Theorem 7.24. d is a monoidal 2-functor.
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7.5 The equivalence

In this section we show that the monoidal 2-functors d : ExtP → DLP and ˜(−) : DLP → ExtP form an

equivalence of 2-categories.

Theorem 7.25. The pair d : ExtP → DLP and ˜(−) : DLP → ExtP forms an equivalence of 2-categories.

Proof. We exhibit two 2-natural isomorphism

η : 1DLP → d · ˜(−)

and

ε : ˜(−) · d→ 1ExtP

Let (S, ρ) ∈ DLP . First note that S̃(1P ) = ρ. Indeed,

S̃(1P ) = SP
1P // SP

ρ // PS .

Thus, we can set

ηρ = (1S , id) : (S, ρ)→ (S, S̃(1P ))

Clearly η is a 2-natural isomorphism.

It remains to define ε. Take (S, S̃) in ExtP , write (S, Ṡ) := d̃(S, S̃) and set

εS̃ = (1S , uS).

Clearly, this is an isomorphism and uS is a lifting of 1S . We just need to show that uS is indeed a 2-natural

transformation from Ṡ to S̃. I.e. we need to show that for every ϕ : X −→7 Y in kl(P )

SX

Ṡϕ

��

Sϕ

��

uSX� // SX

S̃ϕ_

��

SPY

S̃(1PY )_
��

SY
uSY

� // SY

commutes. But this amounts to showing that the following are isomorphic:

S̃(1PY ) · Sϕ ' S̃(ϕ).

The latter isomorphism is easily derived from Lemma 7.21 as follows

S̃ϕ ' S̃(1PY · ϕ∗)

' S̃ · S̃(ϕ∗)

' S̃(1PY ) · (Sϕ)∗

' S̃(1PY ) · Sϕ.
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7.6 Extensions of monads

In the previous section we showed that

˜(−) : ExtP → End(kl(P ))

is a monoidal 2-functor. We know that any strong monoidal functor

M : X → Y

from a monoidal category X to a monoidal category Y preserves “monoidal” structures in X, such as for

example monoids. Similarly, a weak monoidal functor preserves such structure up to isomorphisms. For

example, given a monoid x⊗ x→ x ∈ X, we set

m′ : Mx⊗Mx 'M(x⊗ x)
Mm // Mx

These results can be categorified. monoidal 2-functors send pseudomonoids to pseudomonoids and pseu-

domonoid morphism to pseudomonoid morphisms. The interested reader can find more details on these facts

in [McCrudden, 2000], with an accessible treatment of pseudomonoids in [Houston, 2008].

Might need a better

reference here. Ask

Bob

Might need a better

reference here. Ask

Bob

Further note that distributive laws of monads over monads are monads in DLP . More details on can be found

in [Tanaka, 2005].

We translate these results into a Theorem.

Theorem 7.26. The functor ˜(−) : DLP → ExtP sends distributive laws of monads over monads to monads

in Ext.

Furthermore,

Theorem 7.27. Let (M,λ) and (S, ρ) be monoids in DLP and let (α, α∗) : (M,λ) → (S, ρ) be a monoid

morphism. Then

α̃ : M̃ → S̃

is a monoid morphism in ExtP .
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Chapter 8

Functors between Kleisli bicategories

In this chapter we prove two theorems. The first one shows that every 2-monad morphism between two

2-monads gives rise to a 2-functor between the Kleisli bicategories of these monads. When combined with

results from Chapter 7, this theorem shows that certain 2-natural transformation between types of theories

give rise to functors between categories of theories of these types. More precisely, every monad morphism

i : S → T in DLP gives rise to a 2-functor

I : kl(S̃)→ kl(T̃ )

For the second theorem, we fix P to be the presheaf monad on Cat. Now suppose we are given a 1-cell

i : S → T in DLP . At each category X, the component iX gives rise to two morphisms in Prof:

(iX)∗ : SX −→7 TX and (iX)∗ : TX −→7 SX

In Chapter 7 we proved that the collection {(iX)∗ |X ∈ Cat } is actually a 2-natural transformation. We

suppose that i∗ = {(iX)∗ | X ∈ Cat} is also a 2-natural transformation. In fact we assume that it is a monad

morphism. This allows us to apply the first Theorem of this chapter to i∗ : T̃ → S̃ to create a 2-functor

J : kl(T̃ )→ kl(S̃).

The aim of the second Theorem is to study the relationship between I and J . We show that the adjunction

(iX)∗ a (iX)∗ generates a lax-adjunction between I and J .

8.1 Theorem 1

As we mentioned, the first theorem in this chapter shows that 2-monad morphisms give rise to 2-functors

between the Kleisli categories of these monads.

Theorem 8.1. Let K be a bicategory. Let S, T : K → K be pseudo-monads. Let (α, ᾱ, α̂) : S → T be a

pseudo-monad morphism. Then the assignment

A : kl(S)→ kl(T )
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given by

A( X
ϕ // SY ) = X

ϕ // SY
αY // TY

gives rise to a pseudo-functor.

Proof. A is identity on 0-cells and is given on 2-cells by whiskering.

For any X,Y , A : kl(S)(X,Y ) → kl(T )(X,Y ) is a functor. Indeed, given 2-cells δ : ϕ → ψ, γ : ψ → ξ we

have

A(γ · δ) = (γ · δ) ∗ 1αY

= (γ · δ) ∗ (1αY · 1αY )

= (γ ∗ 1αY ) · (δ ∗ 1αY )

= Aγ ·Aδ.

Next, given 1-cells ϕ : X → Y, ψ : Y → Z in kl(S), we define the isomorphism

hϕ,ψ : Aϕ ·Aψ ' A(ϕ · ψ)

as the following composite 2-cell in K:

X
ϕ // SY

αY //

Sψ **

TY
Tψ // TSZ

TαZ // TTZ
mZ // TZ

SSZ
SαZ

//
αSZ

;;

mZ ,,

STZ

αTZ

::

SZ

αZ

HH

The naturality of h in both ϕ and ψ amounts to the commutativity of

Aψ ·Aϕ hϕ,ψ //

Aδ∗Aγ
��

A(ψ · ϕ)

A(δ∗γ)

��
Aψ′ ·Aϕ′

hϕ
′,ψ′

// A(ψ′ · ϕ′)

in kl(T ).

This commutativity is equivalent to showing the equality of

X

ϕ

((
⇓γ

ϕ′

66 SY
αY //

Sψ′ --

TY

Tψ
**

⇓Tδ

Tψ′

55 TSZ
TαZ // TTZ

mZ // TZ

SSZ
SαZ

//αSZ

@@

mZ ..

STZ

αTZ

77

SZ

αZ

AA
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and

X

ϕ

((
⇓γ

ϕ′

66 SY
αY //
Sψ

  
⇓Sδ

Sψ′ //

TY
Tψ // TSZ

TαZ // TTZ
mZ // TZ

SSZ
SαZ

//αSZ

@@

mZ ..

STZ

αTZ

77

SZ

αZ

AA

which follows from the naturality of ᾱ.

The 2-cell h̄ is given, at each component, by

X
uX //

uX !!
⇓āX

TX

SX

αX

<<

It now remains to check coherence. We begin with the simpler task of checking the commutativity of the

following two diagrams

idAX ∗Aϕ
δϕ //

h̄X×1

��

Aϕ Aϕ ∗ idAY
ρϕ //

1×h̄Y
��

Aϕ

A(idX) ∗Aϕ
h
// A(idX ∗ ϕ)

A(λϕ)

OO

Aϕ ∗A(idY )
h
// A(ϕ ∗ idY )

A(ρϕ)

OO (8.1)

where λ and ρ are part of the 2-categorical structure of kl(S̃).

For the left-hand diagram we need to establish the equality of

X
uX //

uX !!

ϕ

((

TX
Tϕ // TSY

TαY // TTY
mY // TY

SX
Tϕ
//

αX

;;

SSY

mY $$

TαY

//
αSY

::

STY

αTY

::

SY

uY

;;

1SY
// SY

αY

HH (8.2)

and

X
uX //

ϕ ++

TX
Tϕ // TSY

TαY // TTY
mY // TY

SY

uSY

;;

αY
// TY

uTY

::

1TY

@@
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Note that since h̄ is a modification, diagram 8.2 quails

X
uX //

ϕ ++

TX
Tϕ // TSY

TαY // TTY
mY // TY

SY

1TY 00

uSY

55

uSY
// SSY

mY $$

αSY

::

SαY

// STY

αTY

::

SY

αY

HH

Finally note the the diagrams are equal because the sub-diagrams that originate at SY are equal:

For the right square in 8.1 we need to show that

X
ϕ // SY

1SY

**

αY //

SuY ##

TY
TuY //

TuY $$

TTY
mY // TY

SSY

mY

##

SαY $$

αSY
// TSY

TαY

::

STY

αTY

DD

SY

αY

JJ

is the same as

X
ϕ // SY

αY // TY
TuY //

1TY

::TTY
mY // TY

This easily follows from coherence for α (cf. diagram ??). insert referenceinsert reference

It remains to show the coherence for h which amounts to showing that for

X
ϕ // Y

ψ // Z
ξ // W ∈ kl(S̃)
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the following diagram commutes

Aξ ∗ (Aψ ∗Aϕ)
' //

1×h
��

(Aξ ∗Aψ) ∗Aϕ

h×1
��

Aξ ∗ (A(ψ ∗ ϕ))

h
��

A(ξ ∗ ψ) ∗Aϕ

h
��

A(ξ ∗ (ψ ∗ ϕ)) '
// A((ξ ∗ ψ) ∗ ϕ)

in kl(T ).

We begin by writing down the pasting diagrams in K for both passages. First the upper-right passage:

X
ϕ // SY

αY //

Sψ ""

TY
Tψ // TSZ

TαZ //

TSξ

��

TTZ
mZ //

T 2ξ %%

TZ
Tξ // TSW

TαW // TTW
mW // TW

SSZ

αSZ

;;

SSξ ##

T 2SW

T 2αW

%%

mTW

99

S3W

SmW $$

αS2W

// TS2W
TSαW

//

TαSW

99

TmW %%

TSTW
TαTW

// T 3W
TmW

//

mTW

CC

TTW

mW

>>

S2W
αSW

//

SαW
22

mW
00

TSW TαW

::

STW

αTW

CC

SW

αW

LL

(8.3)

followed by the lower-left passage

X
ϕ // SY

αY //

Sψ ##

TY
Tψ // TSY

TαZ // TTZ
mZ // TZ

Tξ // TSW
TαW // TTW

mW // TW

SSZ

αSZ

::

SαZ

//

mZ ##

S2ξ

""

STZ

αTZ

::

⇓a

SZ
Sξ
//

αZ

::

S2W

mW $$

TαZ

//

αSW

::

STW

αTW

::

S3W

TmW ##

mTW

;;

SW

αW

DD

S2W
mW

GG

(8.4)
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Since a is a modification, the above diagram equals

X
ϕ // SY

αY //

Sψ ""

TY
Tψ // TSY

TαZ //

TSξ

$$

TTZ
mZ //

T 2ξ

%%

TZ
Tξ // TSW

TαW // TTW
mW // TW

SSZ

αTZ

;;

T 2ξ

""

TS2W
TαSW

// T 2SW

mTW

::

STSW

αTSW

99

S3W

TmW ,,

αS2W

CC

SαSW

::

mSW
// S2W

mW ..

αSW

GG

SαW

// STW

αTW

GG

S2W
TmW

11 SW

αW

JJ

(8.5)

Note that the sub-diagram to the left of the dashed line in diagram 8.3 and diagram 8.5 are equal. To

complete the proof, we show that the sub-diagrams to the right of the dashed line are also equal. In the

graphical proof below, the top row corresponds to the sub-diagram of 8.5 and the bottom passage corresponds

to the sub-diagram of 8.3.

The equality of the two passages in the diagram follows from coherence conditions for α and the monads S

and T . The details can be filled in by breaking the above diagram into regions corresponding to coherence

equations for the relevant structures.

Recalling Propositions 6.21 and 6.22, we obtain the following important corollaries.

Corollary 8.2. Let i : S → T be a 1-cell in DLP . Let I : kl(S̃) → kl(T̃ ) be the 2-functor obtained by

extending i to i∗ (cf. Chapter 7) and then applying Theorem 8.1. Then I sends theories of type S to theories

of type T sends internal distributive laws between theories of type S to internal distributive laws between

theories of type T .
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8.2 Theorem 2

In this section we assume that P is the presheaf monad on Cat. Let i : S → T be a monad morphism in DLP .

Then, by Chapter 7, we can extend i to a monad morphism i∗ : S̃ → T̃ . We can also apply (−)∗ to every

component iX : SX → TX of i. This gives rise to an X-indexed family of profunctors i∗ : SX → TX. Lets

assume that this family is also a monad morphism. Then via Theorem 8.1 i∗ and i∗ give rise to 2-functors

kl(S̃)

I∗ **
kl(T̃ )

I∗
jj

The second theorem of this chapter shows that these functors form a lax-2-adjunction.

Theorem 8.3. Let α : S → T be a monad morphism in DLP . Suppose that α∗ : T̃ → S̃ is also a monad

morphism. Further suppose that α∗ and α∗ satisfy the following coherence conditions:

• for every ψ : y → x in Prof,

Ty
�(αy)∗ //

�
1   

Sy
�S̃ψ //

_(αy)∗

��

Sx

_(αx)∗

��

Ty

_T̃ψ

��

�(αy)∗ // Sy

_S̃ψ
��

Ty
�

T̃ψ

// Tx = Tx

�
1 !!

�(αx)∗ // Sx

_(αx)∗

��
Tx

(8.6)

• for every category y,

y
�uy //

�
uy --

Sy

1Sy

��
_(αy)∗

��

y
�uy //

�
uy --

Sy

Ty
�

(αy)∗
// Sy

=

Ty

_(αy)∗

OO (8.7)

• for every category x,

T 2Sx �T̃ 2(αx)∗ //


1 &&

T 3x �mTx //

_T̃ 2(αx)∗

��

T 2x

_T̃ (αx)∗

��

T 2Sx

_mSx

��

�T̃ (αx)∗ // T 3x

_mTx
��

T 3x
�

mSx
// TSx = TSx

�T̃ (αx)∗ //


1 &&

T 2x

_T̃ (αx)∗

��
TSx

(8.8)
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• for every category x,

T 2x �((αx)∗)2 //

_mx

��

S2x

_mx
��

T 2x �((αx)∗)2 //

�
1 %%

S2x

_((αx)∗)
2

��

�mx // Sx

_(αx)∗

��
Tx

�(αx)∗ //

_1

��

Sx

2
(αx)∗yy

= T 2x
�

mx
// Tx

Tx

(8.9)

Then the functors

kl(S̃)

A∗ **
kl(T̃ )

A∗
jj

form a lax 2-adjunction.

Proof. Let x ∈ kl(S̃) and y ∈ kl(T̃ ). We wish to show an equivalence of categories

kl(S̃)(A∗y, x) ' kl(T̃ )(y,A∗x)

Since A∗ and A∗ are both identity-on-objects, this is the same as showing the equivalence

kl(S̃)(y, x) ' kl(T̃ )(y, x)

Define functors

fy,x(y
ψ

−→7 Sx) = y
�ψ // Sx �(αX)∗ // Tx

and

gy,x( y �ψ′ // Tx ) = y �ψ′ // Tx �(αX)∗ // Sx

By the first theorem in this section, both fy,x and gy,x are functors.

Consider

y �ψ // Sx → y �ψ // Sx �(αX)∗ // Tx �(αX)∗ // SX

= gy,x( y �ψ // Sx �(αX)∗ // Tx )

= gy,x · fy,x( y �ψ // Sx ).

where the 2-cell in the first line comes from the internal adjunction (αX)∗ a (αX)∗ is Prof. Similarly, there

is a 2-cell

fy,x · gy,x( y �ψ′ // Tx )→ ( y �ψ′ // Tx )

Thus

fy,x a gy,x

To complete the proof, we need to show that f and g are both lax-natural in x and y. We show the

lax-naturality of f in y in full detail; the proofs for the other cases are similar.
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For every y′ �ϕ // Ty in kl(T̃ ), we need to construct the following 2-cell in Cat

kl(S̃)(y, x)

fy,x
��

kl(S̃)(A∗ϕ,x) //

⇓

kl(S̃)(y′, x)

fy′,x
��

kl(T̃ )(y, x)
kl(T̃ )(ϕ,x)

// kl(T̃ )(y′, x)

Taking ψ : y −→7 Sx in kl(S̃)(y, x), we see that the lower-left passage evaluates to

kl(T̃ )(ϕ, x) · fy,x(ψ) = y′
�ϕ // Ty �T̃ψ // TSx �T̃ (αx)∗// T 2x

�mx // Tx

while the upper-right passage evaluates to

fy′,x · kl(S̃)(A∗ϕ, x)(ψ) = y′ �A∗ϕ // Sy �S̃ψ // S2x �mX // Sx �(αx)∗ // Tx

= y′ �ϕ // Ty �(αy)∗ // Sy �S̃ψ // S2x �mX // Sx �(αx)∗ // Tx

The desired 2-cell is constructed by composing the 2-cells in the following diagram

Ty

�
T̃ψ %%

�(αy)∗ // Sy

⇓(1)

�S̃ψ // S2x

⇓(3) �
(αx)2∗

%%

�mx // Sx

⇓(2)

�(αx)∗ // Tx

TSx �
T̃ (αx)∗

//

2(αSx)∗
99

T 2x

3
mx

99

where (1) is the 2-naturality of α∗, (2) is given by the fact that α∗ is a monad morphism and (3) follows

from the following calculation

(αx)2
∗ · (αSx)∗ = TSx

�
1TSx

AA
�(αSx)∗ // SSx

⇓

�(αSx)∗ // TSx �T̃ (αx)∗// TTx

We check coherence conditions for this 2-cell. Diagram 4.6 of Chapter 4 translates to the requirement that

the 2-cell below equals the identity ( for simplicity we omit the 2-cell labels.
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Sx

�
(αx)∗

��

Sx

+1Sx

55

�
uSx

""
y

�
ψ

++

�uy //

.ψ
77

-ψ
..

�
uy

��

Sy
�S̃ψ // S2x

J
mx

DD

�
(αSx)∗

""
Ty

�
T̃ψ

//

=(αy)∗
>>

TSx
�

1TSX
//

_(αSx)∗

OO

TSx

�
T̃ (αx)∗

""

Tx

T 2x

/mx

77

Sx �
(αx)∗

//

JuSx

EE

Tx

8uTx

;; 3
1Tx

CC

We apply our Equation 8.6 to the dotted part to get

Sx

�
(αx)∗

��

Sx

,1Sx

55

�
uSx

!!
y

�
ψ

++

�uy //

.ψ
77

-ψ
..

�
uy

��

Sy

(1) �
(αy)∗

!!

�S̃ψ // S2x

J
mx

EE

�
(αSx)∗

""
Ty �

1Ty
//

=(αy)∗
>>

Ty �
T̃ψ

// TSx

�
T̃ (αx)∗

""

Tx

T 2x

/mx

77

Sx
�

(αx)∗

//

KuSx

EE

Tx

8uTx

;; 3
1Tx

CC

(8.10)

We now focus of the diagram inside the dotted region. We show that it equals to the identity. Note that by

Equation 8.7, we can remove the triangle (1). Note that the resulting diagram equals to the left-hand-side of

the following equation

y �ψ //

uy

��
_uy

��

Sx

_uSX

��
a⇐ a−1

⇐
_uSx

||

_(αSx)∗·uSx

tt

y �ψ //

_uy

��

Sx

_uSx

��

_(αSx)∗·uSx

||

a−1
⇐Sy �S̃ψ //

_(αy)∗

��

S2x

_(αSx)∗

��

=

Ty �
T̃ψ

// TSx Ty �
T̃ψ

// TSx

where the equality follows since 2-natural transformations compose. Replacing the dotted region with the

124



above equality, we obtain the left-hand-side of

Sx
�uSx --

�
uSx

((

S2x
�
(αSx)∗

��

S2x
�
(αSx)∗

��
y

�uy //

?ψ
44

�
ψ **

Ty
�T̃ψ // TSx = y

�ψ // Sx �
uSx

//

;uSx
44

TSx

Sx
,
uSx

BB

where the quality holds since the bottom two 2-cells of the left-hand-side cancel each other out. All these

reductions turn diagram 8.10 into

Sx

�
(αx)∗

��

y


ψ

&&

.ψ
..

⇓(3)

S2x

_mx

OO

_(αSx)∗

��
⇓(2)

Sx

H1Sx

DD

�uSx //

�
(αx)∗

��

/uSx

77

TSx

�
T̃ (αx)∗

##

Tx

T 2x

/mx

77

Tx

8uTx

;;
2
1Tx

BB

(8.11)

By coherence for 2-monad morphisms, the dotted region equals

S2x �(αSx)∗//

_mx
��

TSx �T̃ (αx)∗ // T 2x

_mx
��

Sx

:uSx

<<

�
1Sx
// Sx �

(αx)∗

// Tx

which is the inverse of the composite 2-cell (3)+ (2). This turns diagram 8.11 into

y �ψ // Sx �uSx //

�1Sx

��

�
1Sx

@@S2 �mx // Sx �(αx)∗ // Tx = y �ψ // Sx �(αx)∗ // Tx

as required.

What about the third

condition for coherence

of 2-nat. isos?

What about the third

condition for coherence

of 2-nat. isos?

We shift focus to diagram ?? of Chapter 4. Suppose that γ : y′′ −→7 Ty′ and β : y′ −→7 Ty are given. Then

125



we wish to prove the following equality

kl(S̃)(y′, x)
kl(S̃)(A∗γ,x)

!!
kl(S̃)(y, x)

kl(S̃)(A∗β,x)//

fy,x
��

kl(S̃)(y′, x)
kl(S̃)(A∗γ,x)//

fy′,x
��

kl(S̃)(y′′, x)

fy′′,x
��

=

kl(S̃)(y, x)

kl(S̃)(A∗β,x) 33

kl(S̃)(A∗(β·γ,x) //

fy,x
��

kl(S̃)(y′′, x)

fy′′,x
��

kl(T̃ )(y, x)
kl(T̃ )(β,x) //

kl(T̃ )(β·γ,x)

::
kl(T̃ )(y′, x)

kl(T̃ )(γ,x) // kl(T̃ )(y′′, x) kl(T̃ )(y, x)
kl(T̃ )(β·γ,x)

// kl(T̃ )(y′′, x)

(8.12)

Fix ψ :∈ kl(S̃)(y, x). Then the 2-cells give by the left-hand-side sends is

Sy′
�S̃β // STy �S̃(αy)∗ // S2y

�˜(−)S2ψ // S3x
�S̃mx // S2x

�mx //

�
(αx)2∗

  

Sx

~
(αx)∗

��
y′′ �γ // Ty′ �T̃ β //

?(αy)∗
55

T 2y �T̃ (αy)∗ //

<(αTy)∗
>>

�
T̃ 2ψ !!

qmy

$$

TSy �T̃ S̃ψ //

:(αSy)∗
==

TS2x �T̃mx //

;(αS2x)∗

==

�
T̃ (αx)2∗

!!

TSx �T̃ (αx)∗ //

=(αSx)∗

>>

T 2x �mx // Tx

T 2Sx
�

T̃ 2(αx)∗

//

:T̃ (αSx)∗

<<

T 3x

.
T̃mx

66

Ty �
T̃ψ

// TSx

N
T̃ (αx)∗

OO

We first expand the two dashed triangles

Sy′ �S̃β // STy �S̃(αy)∗ // S2y �˜(−)S2ψ // S3x �S̃mx // S2x �mx //

�
(αSx)∗

$$

Sx

t(αx)∗

��

TSx

�
T̃ (αx)∗

$$
y′′ �γ // Ty′ �T̃ β //

J(αy)∗

77

T 2y �T̃ (αy)∗ //

H(αTy)∗

CC

v
T̃ 2ψ

��omy

!!

TSy �T̃ S̃ψ //

F(αSy)∗

BB

TS2x �T̃mx //

F(αS2x)∗

BB



T̃ (αSx)∗

%%

TSx �T̃ (αx)∗ //

G(αSx)∗

CC

*1TSx

55

T 2x �mx // Tx

T 2Sx



T̃ (αx)∗

$$
T 2Sx

�
T̃ 2(αx)∗

//

FT̃ (αSx)∗

BB

)1T2Sx

44

T 3x

6
T̃mx

::

Ty �
T̃ψ

// TSx

B
T̃ (αx)∗

II

(8.13)
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We can deduce the

TSx

2(αSx)∗

xx
_1

��
�
T̃ (αx)∗

&&

TSx

2(αSx)∗

xx
_1

��
�
T̃ (αx)∗

%%
S2x

�
(αSx)∗

//

_mx

��

TSx
�

T̃ (αx)∗

// T 2x

_mx
��

=

S2x

_mx

��

TSx
�

(αSx)∗
oo T 2�

T̃ (αx)∗
oo

_mx
��

Sx �
(αx)∗

// Tx Sx Tx�(αx)∗oo

Tx


(αx)∗

ff
1
1

88

(8.14)

from equation 8.9. Using this identity, we see that the dashed region in diagram 8.13 equals

T 2Sx
6T̃ (αSx)∗

��

�
T̃ 2(αx)∗

��
_1
��

S3x

_S̃mx

��

KmSx

��

9S̃mx

��

TS2x
�(αS2x)∗oo

_T̃mx
��

T 2Sx
�

T̃ (αSx)∗
oo T 3x

_T̃mx

��

�
T̃ (αx)∗
oo

TSx

*(αSx)∗

tt

_1

��
S2x

�
mx 00

S2x

�
mx ++

S2x

_mx

��

TSx�
(αSx)∗

oo T 2x

�
T̃ (αx)∗

ii

�
T̃ (αx)∗

oo

_mx
��

Sx

�
(αx)∗ ..

Tx
�

(αx)∗
oo

Tx

*
1

;;

(Note that the two new 2-cells on the left are inverses to each other). Since the triangle in the middle is the

identity, we can apply coherence for 2-monad morphisms to end up with

T 2Sx
4T̃ (αSx)∗

��

	
T̃ 2(αx)∗

��
_1
��

S3x

_mSx

��

7S̃mx





TS2x
�(αS2x)∗oo T 2Sx

�
T̃ (αSx)∗
oo

_mSx

��

T 3x

_mTx
��

�
T̃ (αx)∗
oo

�
T̃mx

��
S2x

�
mx //

S2x

_mx

��

TSx�
(αSx)∗

oo T 2x�
T̃ (αx)∗
oo

_mx
��

T 2x

6
mxooSx

�
(αx)∗ ..

Tx�
(αx)∗

oo

Tx

)
1

::
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We plug this result into diagram 8.13 to obtain

S2x �
mx

��
Sy′ �S̃β // STy �S̃(αy)∗ // S2y �˜(−)S2ψ // S3x �mSx //

5S̃mx //

S2x �mx // Sx �(αx)∗ // Tx

t1

��

TSx

_(αSx)∗

OO

y′′
�γ // Ty′ �T̃ β //

J(αy)∗

77

T 2y
�T̃ (αy)∗ //

H(αTy)∗

CC

v
T̃ 2ψ

��omy

!!

TSy
�T̃ S̃ψ //

F(αSy)∗

BB

TS2x

F(αS2x)∗

BB

T 2x
�mx //

�
T̃ (αx)∗

dd

⇓a

Tx

�
(αx)∗

cc

T 2Sx



T̃ (αSx)∗

ee
GmSx

CC

T 2Sx �
T̃ 2(αx)∗

//

FT̃ (αSx)∗

BB

)1T2Sx

44



%%

T 3x

I
mTx

DD



T̃ 2(αx)∗

dd

�
mTx

##

�T̃mx // T 2x

J
mx

EE

Ty �
T̃ψ

// TSx �
T̃ (αx)∗

// T 2x

C
mx

PP

⇓a−1

(8.15)

First, observe that the 2-cells a and a−1 cancel each other out. We then apply equation 8.8 to the dashed

region to obtain

TSx

�
T̃ (αx)∗

##

�1 //

⇓a

TSx

T 2Sx

6mSx
33

�
T̃ 2(αx)∗

##

umSx

&&

T 2x

8
T̃ (αx)∗

;;

= T 2Sx �mSx // TSx

�
T̃ (αx)∗ ""

�1 // TSx

T 3x

8mTx

<<

⇓a−1

T 2x

8
T̃ (αx)∗

<<

TSx

J
T̃ (αx)∗

NN
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This leads to

S2x �
mx

��
Sy′ �S̃β // STy �S̃(αy)∗ // S2y �˜(−)S2ψ // S3x �mSx //

6S̃mx //

S2x �mx // Sx �(αx)∗ // Tx

TSx

_(αSx)∗

OO

y′′
�γ // Ty′ �T̃ β //

J(αy)∗

44

T 2y
�T̃ (αy)∗ //

H(αTy)∗

CC

	
T̃ 2ψ $$

pmy

##

TSy
�T̃ S̃ψ //

F(αSy)∗

BB

TS2x

H
(αS2x)∗

CC

T 2Sx

4
T̃ (αSx)∗

99

�
mSx

// TSx

61

::

�
T̃ (αx)∗

// T 2x
�mx //

_T̃ (αx)∗

OO

Tx

_(αx)∗

OO

R
1

RR

Ty

B
T̃ψ

OO

(8.16)

We apply the equation 8.9 to the dashed region transforming it to

TSx

_1

��

8T̃ (αx)∗

��
T 2x

�T̃ (αx)∗//

�
1 11

TSx
�(αSx)∗ //

�
1 ##

S2x
�mx //

_(αSx)∗
��

Sx

_(αx)∗

��

TSx
�(αSx)∗ //

�
1 ##

S2x
�mx //

_(αSx)∗
��

Sx

_(αx)∗

��

TSx

_T̃ (αx)∗
��

= TSx

_T̃ (αx)∗
��

T 2x �
mx

// Tx T 2x �
mx

// Tx

with equality holding by one of the triangle identities. Diagram 8.16 becomes

S2x �
mx

��
Sy′ �S̃β // STy �S̃(αy)∗ // S2y �˜(−)S2ψ // S3x �mSx //

6S̃mx //

S2x �mx //

_(αSx)∗

��

Sx

_(αx)∗

��

y′′
�γ // Ty′ �T̃ β //

G(αy)∗

66

T 2y
�T̃ (αy)∗ //

E(αTy)∗

BB

	
T̃ 2ψ $$

�
my

//

TSy
�T̃ S̃ψ //

C(αSy)∗

AA

TS2x

D
(αS2x)∗

BB

⇓a

TSx

_T̃ (αx)∗��
T 2Sx

4
T̃ (αSx)∗

99

�
mSx

// TSx

6
1

::

�
T̃ (αx)∗

//

O(αSx)∗

GG

T 2x
�mx // Tx

Ty

D
T̃ψ

OO

(8.17)
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Since the 2-cell a is a modification, we transform the above diagram into

S2x �
mx

��
Sy′ �S̃β // STy �S̃(αy)∗ // S2y �S̃2ψ //

_my
��

S3x �mSx //

6S̃mx //

S2x �mx //

_(αSx)∗

��

Sx

_(αx)∗

��

Sy

+S̃ψ

55

y′′
�γ // Ty′ �T̃ β //

J(αy)∗

77

T 2y
�my //

H(αTy)∗

DD

	
T̃ 2ψ $$

�
my

//

Ty

�
T̃ψ

##

_(αy)∗

OO

TSx

_T̃ (αx)∗��
T 2Sx

�
mSx

//

⇓a

⇓a−1

TSx

6
1

::

�
T̃ (αx)∗

//

P(αSx)∗

HH

T 2x
�mx // Tx

Ty

F
T̃ψ

PP

(8.18)

We cancel a and a−1 and transform the diagram to get

Sy′ �S̃β // STy �S̃(αy)∗ // S2y �S̃2ψ //

x
my

��

S3x �S̃mx //

xmSx

��

S2x

wmx

��
y′′ �γ // Ty′ �T̃ β //

G(αy)∗

66

T 2y �my //

F(αTy)∗

CC

Ty

�
T̃ψ

00

�(αy)∗ // Sy �S̃ψ // S2x

�
(αx)2∗

##

�mx // Sx �
(αx)∗

��
TSx �

T̃ (αx)∗

//

6(αSx)∗
;;

T 2x �mx // Tx

(8.19)

which equals the right-hand-side of equation 8.12.
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Chapter 9

Examples

This is the final research chapter of this thesis. It connects the general theory developed in Chapters 7 and 8

with the ideas of Categorical Universal Algebra we have explored in Chapters 2 and 6. In particular we show

that monad morphisms between monads S and M and F give rise to a lax adjunction between the Kleisli

bicategories of these monads. This in turn creates adjunctions betweens theories of one type and theories of

another type.

Here we study two such relationships. First we show that the inclusion of monoidal categories into symmetric

monoidal categories gives rise to an adjunction between (coloured) plain operads and (coloured) symmetric

operads. This adjunction shows how to construct the free symmetric operad on a given plain operad.

The second example studies how the inclusion of symmetric monoidal categories into finite-product categories

gives rise to an adjunction between symmetric operads and Lawvere theories.

To show these two results we have to verify many technical conditions. We begin by formally checking every

condition and steadily decrease the level of detail as the chapter progresses.

9.1 Example 1: i : M ↪→ S

We perform our analysis in stages. We check that i is a 1-cell in DLP and then verify that it further is a

monad morphism there. This allows us to apply Theorem ?? to i. Next, to apply Theorem ?? we first check

that i∗ : S̃ → M̃ is a monad morphism and that it satisfies the hypothesis of the Theorem. We finally apply

Theorem ?? to the pair i∗, i∗.

9.1.1 i : M ↪→ S is a 1-cell in DLP

In this section we show that, in excruciating detail, that the 2-natural transformation

i : M → S, iX : MX ↪→ SX
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is a 1-cell in DLP . We begin by defining the modification i∗

MP
λ //

⇓i∗iP
��

PM

Pi
��

SP
ρ
// PS

For any category X, the top-right in passage of the diagram is given by

f1 ⊗ . . .⊗ fn 7→ f1(−)× . . .× fn(−)

7→
∫ x1⊗...⊗xn∈MX

f1(x1)× . . .× fn(xn)× SX(−, iX(x1 ⊗ . . .⊗ xn)).

while the bottom-left passage equates to

ρ(f1 ⊗ . . .⊗ fn) =

∫ x1,...,xn∈X
f1(x1)× . . .× fn(xn)× SX(−, x1 ⊗ . . .⊗ xn).

Since taking the coend over all x1 ⊗ . . .⊗ xn ∈MX is the same as taking a coend over all x1, . . . , xn ∈ X,

the two passages are isomorphic. The isomorphism i∗X is given by

((a1, . . . , an), t : y1 ⊗ . . .⊗ yn 7→ x1 ⊗ . . .⊗ xn)→ ((a1, . . . , an), t). (9.1)

It now remains to show that i∗ satisfies the coherence conditions of Equation 7.1. Since the left parallelogram

of that equation is a strict, we actually have to ensure that the following equality holds:

MP 2

⇓i∗P

λP //

iP 2

��

PMP

⇓Pi∗

Pλ //

PiP

��

P 2M

P 2i
��

=

MP 2

⇓λµMµ

��

λP // PMP
Pλ // P 2M

µM

��

P 2i

&&

⇓µi

SP 2

⇓ρµSµ

��

ρP // PSP
Pρ // P 2S

µS

��

P 2S

µS

��

MP

⇓i∗
iP ''

λ // PM
Pi

&&
P

λ
// PS SP

ρ
// PS

(9.2)

We approach this task in several stages. First, we provide a detailed analysis for all five 2-cells above. Then

we shall examine how these 2-cells act on the functors that make up the boundary of the diagrams.

• i∗P

MP 2 λP //

⇓i∗PiP 2

��

PMP

PiP

��
SP 2

ρP
// PSP
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The 2-cell is a natural transformation that evaluates to∫ f1⊗...⊗fn∈MPX

F1(f1)× . . .× Fn(fn)× SPX(−, iP (f1 ⊗ . . .⊗ fn))

→
∫ f1,...,fn∈PX

F1(f1)× . . .× Fn(fn)× SPX(−, f1 ⊗ . . .⊗ fn).

• Pi∗

We compute

Pi∗ : P (Pi · λ)→ P (ρ · iP )

as follows: for any G ∈ PMPX, we have

P (Pi · λ)(G) =

∫ f1⊗...⊗fn∈MPX

G(f1 ⊗ . . .⊗ fn)× PSX(−, P i · λ(f1 ⊗ . . .⊗ fn))

→
∫ f1⊗...⊗fn∈MPX

G(f1 ⊗ . . .⊗ fn)× PSX(−, ρ · iP (f1 ⊗ . . .⊗ fn))

= P (ρ · iP )(G)

Thus Pi∗ sends

(g ∈ G(f1 ⊗ . . .⊗ fn), γ ∈ PSX(K,Pi · λ(f1 ⊗ . . .⊗ fn)) 7→ (g, i∗ · γ)

• λµ

The following Lemma will greatly help us.

Lemma 9.1. For any presheaf h ∈ PX, we have the following isomorphism∫ f∈PX
PX(f, h)× f(x) ' h(x)

Proof. The proof follows easily from the Yoneda Lemma:∫ f∈PX
PX(f, h)× f(x) '

∫ f∈PX
PX(f, h)× PX(y(x), f) ' h(x).

For our purposes it is important to note that any tuple (γ : f → h, a) ∈
∫ f∈PX

PX(f, h)× f(x), is always

equivalent to (idh, γx(a)) and so the above isomorphism sends (γ, a) to γx(a) ∈ h(x).

Given a category X, we have

µMX · PλX · λPX(F1 ⊗ . . .⊗ Fn) = µMX(PλX
(
F1(−)× . . .× Fn(−)

)
)

= µMX

( ∫ f1⊗...⊗fn∈MPX

F1(f1)× . . .× Fn(fn)× PMX(−, f1(−)× . . .× fn(−))
)

=

∫ G∈PMX ∫ f1⊗...⊗fn∈MPX

F1(f1)× . . .× Fn(fn)× PMX(G, f1(−)× . . .× fn(−))×G(−).
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An application of the Lemma shows that the above presheaf is isomorphic to∫ f1⊗...⊗fn∈MPX

F1(f1)× . . .× Fn(fn)× f1(−)× . . .× fn(−)

On the other hand, the bottom-right passage in the diagram evaluates to

λX ·MµX(F1 ⊗ . . .⊗ Fn) = λX(µX(F1)⊗ . . .⊗ µX(Fn))

= µX(F1)(−)× . . .× µX(Fn)(−)

=

∫ f1∈PX
F1(f1)× f1(−)× . . .×

∫ fn∈PX
Fn(fn)× fn(−)

Now pick a tuple x1, . . . , xn ∈ X. A typical element in µMX · PλX · λPX(F1 ⊗ . . .⊗ Fn)(x1 ⊗ . . .⊗ xn) is

of the form

T = ((a1, . . . , an), γ, y), γ : G→ f1(−)× . . .× fn(−), y ∈ G(x1 ⊗ . . .⊗ xn).

and suppose that

γx1⊗...⊗xn(y) = (z1, . . . , zn), with each zi ∈ fi(xi).

then the natural transformation (λµ)X sends T to the element

(a1, z1, . . . , an, zn) ∈ λX ·MµX(F1 ⊗ . . .⊗ Fn)(x1 ⊗ . . .⊗ xn)

• ρµ

Since the calculation of ρµ is similar to that of λµ, we omit some details.

µSX · Pρ · ρP (F1 ⊗ . . .⊗ Fn)

=

∫ G∈PSX ∫ f1⊗...⊗fn∈SPX
ρ(F1 ⊗ . . .⊗ Fn)(f1 ⊗ . . .⊗ fn)× PSX(G, ρ(f1 ⊗ . . .⊗ fn))×G(−)

'
∫ f1⊗...⊗fn∈SPX

ρ(F1 ⊗ . . .⊗ Fn)(f1 ⊗ . . .⊗ fn)× ρ(f1 ⊗ . . .⊗ fn)(−)

=

∫ f1⊗...⊗fn∈SPX (∫ g1,...,gn∈PX
F1(g1)× . . .× Fn(gn)× SPX(f1 ⊗ . . .⊗ fn, g1 ⊗ . . .⊗ gn)

)
× ρ(f1 ⊗ . . .⊗ fn)(−)

'
∫ g1,...,gn∈PX

F1(g1)× . . .× Fn(gn)× ρ(g1 ⊗ . . .⊗ gn)(−)

=

∫ g1,...,gn∈PX
F1(g1)× . . .× Fn(gn)×

∫ x1,...,xn∈X
g1(x1)× . . .× gn(xn)× SX(−, x1 ⊗ . . .⊗ xn).

The last isomorphisms in the above calculation is derive from the fact that every presheaf is a colimit of

representables. Explicitly, the isomorphism∫ f1⊗...⊗fn∈SPX
SPX(f1⊗. . .⊗fn, g1⊗. . .⊗gn)×ρ(f1⊗. . .⊗fn)(y1⊗. . .⊗yn) ' ρ(g1⊗. . .⊗gn)(y1⊗. . .⊗yn)
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sends the tuple (σ, (a1, . . . , an)) to ρ(σ)y1⊗...⊗yn(a1, . . . , an). Diving deeper, we observe that σ can be

represented as

σ = t1 ⊗ . . .⊗ tm

where each ti is either a natural transformation ti : fk → gk or it permutes fk and fk+1. Let (a1, . . . , an) ∈
f1(y1)× . . .× fn(yn). Then

ρ(σ)y1⊗...⊗yn(a1, . . . , an) = (b1, . . . , bn)

where bk = (ti)y1,...,yn(a) if ti a natural transformation or bk = ak−1 and bk−1 = ak, if ti is a permutation.

The bottom-right passage for the 2-cell ρµ evaluates to

ρ · SµX(F1 ⊗ . . .⊗ Fn) = ρ(µX(F1)(−)× . . .× µX(Fn)(−))

=

∫ x1,...,xn∈X
µX(F1)(x1)× . . .× µX(Fn)(xn)× SX(−, x1 ⊗ . . .⊗ xn)

=

∫ x1,...,xn∈X ∫ g1∈PX
F1(g1)× g1(x1)× . . .×

∫ gn∈PX
Fn(gn)× gn(xn)× SX(−, x1 ⊗ . . .⊗ xn).

A typical element in µSX · Pρ · ρP (F1 ⊗ . . .⊗ Fn)(y1 ⊗ . . .⊗ yn) is of the form

((a1, . . . , an), σ, γ, y)

where ai ∈ Fi(gi), σ ∈ SPX(f1 ⊗ . . . ⊗ fn, g1 ⊗ . . . ⊗ gn), γ is a natural transformation from G to

ρ(f1 ⊗ . . .⊗ fn) where we write

γy1⊗...⊗yn(y) = (z1, . . . , zn, t) ∈ f1(x1)× . . .× fn(xn)× SX(y1 ⊗ . . .⊗ yn, x1 ⊗ . . .⊗ xn)

and y ∈ G(y1 ⊗ . . .⊗ yn).

The first isomorphism sends this element to

(
(a1, . . . , an), σ, (z1, . . . , zn, t)

)
;

the second isomorphisms sends it to

(
(a1, . . . , an), ρ(σ)y1⊗...⊗yn(z1, . . . , zn), t

)
=
(
(a1, . . . , an), (w1, . . . , wn), t

)
and finally, the in the last step we send this b-tuple to

(
(a1, w1), . . . , (an, wn), t

)
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• µi

Let G : PMXop → Set. Then the 2-cell is given by the passage

µSX · P 2iX(G) = µSX
( ∫ g∈PMX

G(g)× PSX(−, P i(g))
)

= µSX
( ∫ g∈PMX

G(g)× PSX(−,
∫ x1⊗...⊗xn∈MX

g(x1 ⊗ . . .⊗ xn)× SX(−, x1 ⊗ . . .⊗ xn))
)

=

∫ H∈PSX (∫ g∈PMX

G(g)× PSX(H,

∫ x1⊗...⊗xn∈MX

g(x1 ⊗ . . .⊗ xn)× SX(−, x1 ⊗ . . .⊗ xn))
)
×H(−)

→
∫ g∈PMX

G(g)×
∫ x1⊗...⊗xn∈MX

g(x1 ⊗ . . .⊗ xn)× SX(−, x1 ⊗ . . .⊗ xn)

'
∫ x1⊗...⊗xn ∈MX ∫ g∈PMX

G(g)× g(x1 ⊗ . . .⊗ xn)× SX(−, x1 ⊗ . . .⊗ xn)

= PiX · µMX(G).

Fix y1⊗ . . .⊗ yn ∈MX, H ∈ PSX and g ∈ PMX. The a typical element in µSX ·P 2iX(G)(y1⊗ . . .⊗ yn)

is (x, γ, y) with x ∈ G(g), γ : H →
∫ x1⊗...⊗xn∈MX

g(x1 ⊗ . . . ⊗ xn) × SX(−, x1 ⊗ . . . ⊗ xn) a natural

transformation and y ∈ H(y1 ⊗ . . .⊗ yn). The passage sends

(x, γ, y) 7→ (x, γy1⊗...⊗yn(y)).

Showing the equality

Now that we fully understand how each 2-cell in Equation 9.2, we can finally show the desired equality.

We begin with the left-hand Diagram of 9.2. The composite 2-cell evaluates to to

µSX · P 2iX · PλX · λPX(F1 ⊗ . . .⊗ Fn)

=

∫ H∈PSX (∫ G∈PMX

PλX · λPX(F1 ⊗ . . .⊗ Fn)(G)

× PSX(H,

∫ x1⊗...⊗xn∈MX

G(x1 ⊗ . . .⊗ xn)× SX(−, x1 ⊗ . . .⊗ xn))
)
×H(−)

=

∫ H∈PSX (∫ G∈PMX ∫ f1⊗...⊗fn∈MPX

F1(f1)× . . .× Fn(fn)× PMX(G, f1(−)× . . .× fn(−))

× PSX(H,

∫ x1⊗...⊗xn∈MX

G(x1 ⊗ . . .⊗ xn)× SX(−, x1 ⊗ . . .⊗ xn))
)
×H(−)

→
∫ x1⊗...⊗xn∈MX ∫ G∈PMX ∫ f1⊗...⊗fn∈MPX

F1(f1)× . . .× Fn(fn)×

PMX(G, f1(−)× . . .× fn(−))×G(x1 ⊗ . . .⊗ xn)× SX(−, x1 ⊗ . . .⊗ xn)

→
∫ x1⊗...⊗xn∈MX (∫ f1∈PX

F1(f1)× f1(−)× . . .×
∫ fn∈PX

Fn(fn)× fn(−)
)
× SX(−, x1 ⊗ . . .⊗ xn)

→
∫ x1,...,xn∈X (∫ f1∈PX

F1(f1)× f1(−)× . . .×
∫ fn∈PX

Fn(fn)× fn(−)
)
× SX(−, x1 ⊗ . . .⊗ xn)
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Concretely, we stat by fixing H,G and f1⊗ . . .⊗fn. Then a typical element of µSX ·P 2iX ·PλX ·λPX(F1⊗
. . .⊗ Fn)(y1 ⊗ . . .⊗ yn) is the n-tuple

(
(a1, . . . , an), γ,Γ, y

)
where

• (a1, . . . , an) ∈ F1(f1)× . . .× Fn(fn);

• y ∈ H(y1 ⊗ . . .⊗ yn);

• Γ : H →
∫ x1⊗...⊗xn∈MX

G(x1 ⊗ . . .⊗ xn)× SX(−, x1 ⊗ . . .⊗ xn); we write

Γy1⊗...⊗yn(y) = (x ∈ G(x1 ⊗ . . .⊗ xn), t : y1 ⊗ . . .⊗ yn → x1 ⊗ . . .⊗ xn).

for some x1 ⊗ . . .⊗ xn.

• γ : G→ f1(−)× . . .× fn(−) with

γx1⊗...⊗xn(x) = (z1, . . . , zn) ∈ f1(x1)× . . .× fn(xn)

The 2-cell acts as follows:

(
(a1, . . . , an), γ,Γ, y

) µi7−→
(
(a1, . . . , an), γ, x, t

)
λµ7−→
(
(a1, z1), . . . , (an, zn), t

)
i∗7−→
(
(a1, z1), . . . , (an, zn), t

)
.
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Next, lets examine what happen in the left Diagram of 9.2.

µSX · P 2iX · PλX · λPX(F1 ⊗ . . .⊗ Fn)

= µSX

(∫ G∈PMX ∫ f1⊗...⊗fn∈MPX

F1(f1)× . . .× Fn(fn)× PMX(G, f1(−)× . . .× fn(−))

× PSX(H,

∫ x1⊗...⊗xn∈MX

G(x1 ⊗ . . .⊗ xn)× SX(−, x1 ⊗ . . .⊗ xn))
)

r−→ µSX

(∫ f1⊗...⊗fn∈MPX

F1(f1)× . . .× Fn(fn)

× PSX(H,

∫ x1⊗...⊗xn∈MX

f1(x1)× . . .× fn(xn)× SX(−, x1 ⊗ . . .⊗ xn))
)

= µSX

(∫ f1⊗...⊗fn∈MPX

F1(f1)× . . .× Fn(fn)× PSX
(
−, P iX · λX(f1 ⊗ . . .⊗ fn)

))
→ µSX

(∫ f1⊗...⊗fn∈MPX

F1(f1)× . . .× Fn(fn)× PSX
(
−, ρ(f1 ⊗ . . .⊗ fn)

))
l−→ µSX

(∫ g1⊗...⊗gn∈SPX ∫ f1⊗...⊗fn∈MPX

F1(f1)× . . .× Fn(fn)

× SPX(g1 ⊗ . . .⊗ gn, f1 ⊗ . . .⊗ fn)× PSX
(
−, ρ(g1 ⊗ . . .⊗ gn)

))
→ µSX

(∫ g1⊗...⊗gn∈SPX ∫ f1,...,fn∈PX
F1(f1)× . . .× Fn(fn)

× SPX(g1 ⊗ . . .⊗ gnf1 ⊗ . . .⊗ fn)× PSX(−, ρ(g1 ⊗ . . .⊗ gn))
)

=

∫ G∈PSX (∫ g1⊗...⊗gn∈SPX ∫ f1,...,fn∈PX
F1(f1)× . . .× Fn(fn)

× SPX(g1 ⊗ . . .⊗ gnf1 ⊗ . . .⊗ fn)× PSX(G, ρ(g1 ⊗ . . .⊗ gn))
)
×G(−)

→
∫ x1,...,xn∈X ∫ g1∈PX

F1(g1)× g1(x1)× . . .×
∫ gn∈PX

Fn(gn)× gn(xn)× SX(−, ρ(x1 ⊗ . . .⊗ xn)).

(r : P 2i · Pλ→ P (Pi · λ) and l : P (ρ · iP )→ Pρ · PiP are the standard isomorphisms).

This time the mapping acts as follows:

(
(a1, . . . , an), γ,Γ, y

) r7−→
(
(a1, . . . , an), γ′, y

)
Pi∗7−→

(
(a1, . . . , an), (i∗ · γ′), y

)
l7−→
(
(a1, . . . , an), idf1⊗...⊗fn , (i

∗ · γ′), y
)

i∗P7−→
(
(a1, . . . , an), idf1⊗...⊗fn , (i

∗ · γ′), y
)

ρµ7−→
(
(a1, z1), . . . , (an, zn), t

)
where γ′y1⊗...⊗yn =

(
γx1⊗...⊗xn · π1(Γy1⊗...⊗yn), π2(Γy1⊗...⊗yn)

)
. In particular,

γ′y1⊗...⊗yn(y) =
(
(z1, . . . , zn), t

)
Thus we have proved that the two composite 2-cells in Diagram 9.2 are indeed equal.
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It remains to show the following equality

MPX

⇓(1)
λX

%%

MPX

⇓(4)

λX

%%
iPX

��

MX

⇓(2)

MηX

::

ηMX //

iX

��

PMX

PiX

��

=

MX

⇓(3)

iX

��

MηX

::

PMX

PiX

��

SPX

⇓(5)
ρX

%%
SX

ηSX
// PSX DX

ηSX
//

SηX

::

PSX

which we do in less detail than above.

The left-hand-side gives

PiX · λX ·MηX(x1 ⊗ . . .⊗ xn) =

∫ y1⊗...⊗yn∈MX

X(y1, x1)× . . .×X(yn, xn)× SX(−, y1 ⊗ . . .⊗ yn)

1→
∫ y1⊗...⊗yn∈MX

MX(y1 ⊗ . . .⊗ yn, x1 ⊗ . . .⊗ xn)× SX(−, y1 ⊗ . . .⊗ yn)

= SX(−, x1 ⊗ . . .⊗ xn)

2
= ηSX · iX(x1 ⊗ . . .⊗ xn).

Let (f1, . . . , fn, σ) ∈ X(y1, x1)× . . .×X(yn, xn)×SX(z1⊗ . . .⊗zn, y1⊗ . . .⊗yn). Then the above passage

sends it to

(f1, . . . , fn, σ) 7→ (f1 ⊗ . . .⊗ fn, σ) 7→ σ · f1 ⊗ . . .⊗ fn

Right-hand-side computes to

PiX · λX ·MηX(x1 ⊗ . . .⊗ xn) =

∫ y1⊗...⊗yn∈MX

X(y1, x1)× . . .×X(yn, xn)× SX(−, y1 ⊗ . . .⊗ yn)

4,3→
∫ y1,...,yn∈X

X(y1, x1)× . . .×X(yn, xn)× SX(−, y1 ⊗ . . .⊗ yn)

→ SX(−, x1 ⊗ . . .⊗ xn);

it sends (f1, . . . , fn, σ) to σ · f1 ⊗ . . .⊗ fn.

Thus the two 2-cells are equals and our proof is complete.

9.1.2 ĩX : M̃X ↪→ S̃X is a monad morphism.

i : S → M is a monad morphism. Since both λ and ρ are 2-distributive laws of monads over monads, the

triples ((M,λ),m, u) and ((S, ρ),m, u) are monads in DLP . It turns out that (i, i∗) is a monad morphism
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between these monads. To prove this, we need to show that the identity 2-cell

M2X
i2X //

mX

��

S2X

mX

��
MX

iX
// SX

is a 2-cell in DLP . This amounts to proving that the following two 2-cells are equal

M2PX

i2PX

zz

λ2
X //

mPX

��

PM2X

=

PmX

��

M2PX
λ2
X //

iP 2
X

��

PM2X

PmX

$$

Pi2X

��
S2PX

mPX

$$

MPX

iPX

��

λX // PMX

PiX

��

S2PX
ρ2X //

mPX

��

PS2X

PmX

��

PMX

PiX

zz
SPX

ρX
// PSX SPX

ρX
// PSX

(9.3)

Instead of proving this equality directly, we shall simplify it significantly by exploiting the following Proposition.

Proposition 9.2. Let K be a strict 2-category. Write f ′ for the right adjoint of the 1-cell f . Then, provided

that all the right adjoints below exist, we have

A

f

��⇓α

⇓β

h

GGg
// B = A

k

��⇓α′

⇓β′

s

GGt
// B

if, and only if,

A

1A

��⇓b

⇓a

f ′·h

HHg′·h
// A = A

1A

��⇓b′

⇓a′

k′·s

HHt′·s
// A (9.4)

Proof. The proof follows easily from the observation that the string diagram for Equation 9.4 is

α

β

B

A

=

f ′h k′
B

α′

A
β′

s

We want apply the proposition to Diagram 9.3. To do that, we first note that for any functor f : X → Y ,
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Pf always has a right adjoint κf given by

κf : PY → PX, ϕ 7→ ϕ · fop.

Thus to prove the equality in 9.3 it suffices to show the equality of the outer diagrams in

M2PX
λ2
X //

mPX

��

PM2X

=

PmX

��

M2PX
λ2
X //

iP 2
X

��

PM2X

PmX
''

Pi2X

��
MPX

iPX

��

λX // PMX

κmX

XX

PiX

��

S2PX
ρ2X //

mPX

��

PS2X

PmX

��

κ
i2
X

XX

PMX

PiX

}}

κmX

jj

SPX
ρX

// PSX

κiX

XX

SPX
ρX

// PSX

κmX

XX

κiX

FF

Further, note that the left-hand-side of both diagrams is equal and

κmX · κiX = κmX · κi2X .

Hence we need to exhibit the much simpler equality:

M2PX

⇓(1)

λ2
X //

mPX

��

PM2X

=

M2PX

⇓(3)

λ2
X //

iP 2
X

��

PM2X

MPX

⇓(2)iPX
��

λX // PMX

κmX

OO

S2PX

⇓(4)

ρ2X //

mPX

��

PS2X

κmX

OO

SPX
ρX

// PSX

κiX

OO

SPX
ρX

// PSX

κiX

OO

We begin with an analysis of the left-hand-side. For readability, we write (fn1 ) := f1 ⊗ . . .⊗ fn.

The top passage is given by

(fk11 )⊗ . . .⊗ (fkn1 )
MλX7→ (fk11 )(−)× . . .× (fkn1 )(−)

λMX7→
(
f1(−)× . . .× fk1(−)

)
× . . .×

(
f1(−)× . . .× fkn(−)

)
(9.5)
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the bottom passage sends

(fk11 )⊗ . . .⊗ (fkn1 )
MPX7→ f11 ⊗ . . .⊗ f1k1 ⊗ . . .⊗ fn1 ⊗ . . .⊗ fnkn
iPX7→ f11 ⊗ . . .⊗ f1k1 ⊗ . . .⊗ fn1 ⊗ . . .⊗ fnkn
ρX7→
∫ x11,...,xnnk∈X

f11(x11)× . . .× fnnk(xnnk)× SX(−, x11 ⊗ . . .⊗ xnkn)

κiX7→
∫ x11,...,xnnk∈X

f11(x11)× . . .× fnnk(xnnk)× SX(iX(−), x11 ⊗ . . .⊗ xnkn)

κiX7→
∫ x11,...,xnnk∈X

f11(x11)× . . .× fnnk(xnnk)× SX(mX(−), x11 ⊗ . . .⊗ xnkn)

(9.6)

It is not difficult to see that (1) just removes the inner bracketing from the expression in 9.5 and (2) embeds

this expression into 9.6. A similar story repeats itself on the right-hand-side: (3) is an embedding and (4)

removes brackets. Hence the two passages are indeed equal.

9.1.3 Applying Theorem 1 to i

In the previous two sections we showed that i : M ↪→ S is a monad morphism in DLP . Thus by Chapter 7 it

can be extended to a monad morphism

i∗ : M̃ → S̃.

Applying Theorem 8.1 of Chapter 8 we see that there is a 2-functor

I : kl(M̃)→ kl(S̃).

Since this is a 2-functor it sends monads to monads and distributive laws to distributive laws (cf. Chapter 6).

Let ϕ : 1 −→7 1 be a monad in kl(M̃). Then

I(ϕ) = 1
ϕ // M1

(i1)∗ // S1

=

∫ n∈N
ϕ(n, 1)× S1(−, n) (9.7)

Operations of arity n in I(ϕ) consist of operations of arity n in ϕ precomposed with symmetries. In other

words, I freely adds symmetry to all the operations of ϕ. We visualise these operations as follows:

...

The big question is how does can we compose these new operations? Composition given by

I(ϕ) · I(ϕ)
'→ I(ϕ · ϕ)→ I(ϕ)
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We compute

I(ϕ) · I(ϕ)(n) =
(
m1 · S̃(i1)∗ · S̃ϕ · (i1)∗ · ϕ

)
(r)

'
∫ n′∈M1 ∫ n∈S1 ∫ k1⊗...⊗kn∈SM1 ∫ ∑

k′i=n

ϕ(n′)× S1(n, n′)× S̃ϕ(k1 ⊗ . . .⊗ kn, n)×
r∏
1

S1(k′i, ki)

which should be interpreted as

...

...

Distiribute

⇐⇒

...

...

...
...

...
...

...

To compose the above operation with the rules we have, we need to distribute the operations in S̃(ϕ) over

the symmetries. To understand how this is done, we need to carefully examine the isomorphism I(ϕ) ·I(ϕ)
'→

I(ϕ · ϕ). This isomorphism is given by the 2-cell (cf. Theorem 8.1)

1
�ϕ // M1

�(i1)∗ //

�
M̃ϕ **

S1
�S̃ϕ //

⇓a

SM1
�S̃(i1)∗ // S21

�m1 // S1

M21 �
M̃(i1)∗

//

7
(iM1)∗

;;

�
m1 ++

MS1

8
(iS1)∗

;;

M1

9
(i1)∗

II

Distributivity is achieved by the 2-cell a which is explicitly given by the following isomorphism∫ n∈S1

S̃ϕ(k′1 ⊗ . . .⊗ k′n, n)× S1(n, n′)→ S̃ϕ(k′1 ⊗ . . .⊗ k′n, n′);

Fix n ∈ S1. A typical element of the left-hand-side above is the triple

((
(x1, . . . , xn), τ

)
, σ
)
,

where τ : k′1 ⊗ . . . ⊗ k′n → k1 ⊗ . . . ⊗ kn is a symmetry isomorphism, as is σ : n → n′. To get to the

right-hand-side, we send this triple to

S̃ϕ(k′1 ⊗ . . .⊗ k′n, σ)
(
(x1, . . . , xn), τ

)
=
(
(xσ(1), . . . , xσ(n)), τ

′)

with

τ ′ := k′1 ⊗ . . .⊗ k′n
τ // k1 ⊗ . . .⊗ kn // kσ(1) ⊗ . . .⊗ kσ(n) .

This process is visualised in the following figure:
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...

...

x1

x2...

...

7→

x1

x2

The main point is that the operations of the new theory I(ϕ) are composed exactly like the operation of

the original theory ϕ. The only difference is that in I(ϕ) we first need to distributive the operations over

symmetries in order to be able to exploit the composition in ϕ. Once we distributed, we know exactly how to

compose both the operations of ϕ and the symmetries.

9.1.4 Applying Theorem 2 to i

In this section we try to explain why Theorem 2 applies to i : M ↪→ S. Doing so involves performing numerous

technical calculations with coends. Since coend manipulation methods were explored in detail in the previous

section, the proofs in this section are of a more conceptual nature. They explain why our arguments are

correct, but do not show this correctness in full detail. We hope the reader will welcome this refreshing

change.

The first assumption we make is that all our categories are discrete. This hypothesis does not specialise our

arguments because they rely on taking coends of MX and SX and so if X were not discrete, the non-trivial

morphisms of X would be quotiented out by the coend.

To show applicability of Theorem 2 we need to first show that the family (iX)∗ defines a 2-monad morphism.

This will involve building several 2-cells and verifying coherence for them. Doing this requires us to show

how these 2-cells act on elements of coends. To simplify our discussion, we shall use graphical notation to

both define the elements of the coends and to define how our 2-cells will act on these elements. We begin by

illustrating this with a detailed example.

Our first task is to show that the family (iX)∗ is a 2-natural transformation. To this end, we need, for every

profunctor ϕ : x −→7 y, to construct the 2-cell

Sx �S̃ϕ //

_(ix)∗

��
⇓ιϕ

Sy

_(iy)∗

��
Mx

�
M̃ϕ

// My

(9.8)

The first step in this construction is to evaluate the top-right and the bottom-left passages in the diagram.

For example, the top right passage evaluated to

((iy)∗·S̃ϕ)(a1⊗. . .⊗an, b1⊗. . .⊗bn) =

∫ c1⊗...⊗cn∈Sy
Sy(a1⊗. . .⊗an, c1⊗. . .⊗cn)×S̃ϕ(c1⊗. . .⊗cn, b1⊗. . .⊗bn)

(9.9)

instead of dealing with this expression directly, we pick a typical element in the right-hand-side of 9.9:
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...

αn

α1

αn−1

a1

a2

an

bn−1

b1

bn

...

where for every i, αi ∈ ϕ(ai, bi). We can similarly represent the left-hand-side:

bn−1

b1

bn

αn

αn−1

an

a1

...

a2

α1

The 2-cell of diagram 9.8 is given by sliding the boxes from right to left in the above diagrams.

The graphical view makes it easy to verify that coherence holds. We check that for profunctors ϕ : x −→7 y

and ψ : y −→7 z

Sy

�
S̃ψ

##
_(iy)∗

��

Sy

�
S̃ψ

##
⇓v

Sx

6S̃ϕ
;;

_(ix)∗

��

⇓ιϕ

Sz

_(iz)∗

��

=

Sx

⇓ιψ·ϕ

7S̃ϕ
;;

�S̃(ψ·ϕ) //

_(ix)∗

��

Sz

_αZ

��

My

�
M̃ψ

##

⇓ιψ

=

Mx

6M̃ϕ
;;

�
M̃(ψ·ϕ)

// Mz Mx �
M̃(ψ·ϕ)

// Mz

which follows from the following equality

α1

α2
...

αn

...

βr

β1

βn

...

βr

...

β1

βn

αn
...

α2

α1

...

α2

βrα1

β1

...

αn

βn

...

βn

βr

β1
...

...
...

αn

α2

α1

7→

7→

↓↓

ιψ

ιϕ

ιψ·ϕ

v

The other two conditions for 2-natural transformations follows by similar arguments.

Next, we show that i∗ is a monad morphism. The 2-cell

S2x �(iSx)∗//

_mx

��

MSx �M̃(ix)∗ // M2x

_mx
��

Sx �
(ix)∗

// Mx

is given by sending
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...

...

...

...

...

...

...

mx M̃(ix)∗ (iSx)∗

a1

an bn

b1

to its composite in Sx(a1 ⊗ . . .⊗ an, b1 ⊗ . . .⊗ bn). (Note that we used short vertical arrows in the diagram

to denote the partitions of the lists a1 ⊗ . . .⊗ an and b1 ⊗ . . .⊗ bn i.e. lists of short arrows denote elements

of S2x and M2x).

One can show that the coherence diagrams (cf. Equations ??) hold. For example, a typical element of the

the top-right passage consists of several types of permutations (permutations between objects of x, objects of

Mx etc). We know that each 2-cell that makes up the both the right- and the left-hand side either composes

permutations or regroups the permuted terms. Since permutations compose uniquely, both passages send the

input data to the same permutation and are hence equal.

The second structural 2-cell

x

�
ux !!

�ux // Sx

_(ix)∗

��
Mx

is strict since both passages in the above diagram evaluate to

ux(a, b) = X(a, b) = (ix)∗ · ux(a, b).

We conclude

Proposition 9.3. The family (ix)∗ forms a monad morphism i∗ : S̃ → M̃ .

Hence by Theorem ??, i∗ gives rise to a 2-functor

J : kl(S̃)→ kl(M̃).

Let ϕ : 1 −→7 1 be a monad in kl(S̃) we compute

J(ϕ)(n, 1) =

∫ m∈S1

ϕ(m, 1)× S1(n,m) ' ϕ(i1(n), 1).

We see that J(ϕ) forgets the action of ϕ on the symmetries.

Our next goal is to make the forgetful-free relationship between I and J precise. To do this, we will apply

Theorem 8.3 to i. We check that the pair i∗, i
∗ satisfied conditions 8.6 and 8.7. The other two conditions

are can be proved similarly, albeit using slightly more elaborate calculations.

We represent condition 8.6 graphically. The left-hand-side sends
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α1

α2
...

αn

...

αn

...

α2

α1

...
7→

...
...

︷ ︸︸ ︷
composite

with the rightmost symmetry a compose in S1(x1 ⊗ . . .⊗ xn, y1 ⊗ . . .⊗ yn). The right-hand-side sends

α1

α2
...

αn

... ... ...
7→

...

︷ ︸︸ ︷
composite

αn

α1

...

α2

And these two morphisms are equal in S1(x1 ⊗ . . .⊗ xn, y1 ⊗ . . .⊗ yn).

Condition 8.7 is easier. Both diagrams just embed y(y0, y1) into {∗} × y(y0, y1).

Hence the Theorem allows to conclude the theres exists a lax 2-adjunction J a I and hence in particular an

adjunction

J1,1 a I1,1 : kl(M̃)(1, 1)→ kl(S̃)(1, 1)

that allows us to construct symmetric operads from plain ones and to view symmetric operads as plain ones

by forgetting the action of symmetries.

9.2 Example 2: j : S ↪→ F

In this section we show that the inclusion of symmetric monoidal categories into finite-product categories

induces a lax 2-adjunction

kl(S̃)(1, 1)
..

> kl(F̃ )(1, 1)nn

We do this in several steps. First we explain why j is a 1-cell in DLP . Then we show that j is a monad

morphism in DLP . These two results allows us to apply Theorem 8.1 to j to produce a 2-functor

K : kl(S̃)→ kl(F̃ ).

Next we show that j∗ : F̃ → S̃ is also a monad morphism. Applying Theorem 8.1 for the second time, we

obtain a 2-functor in the other direction

K ′ : kl(F̃ )→ kl(S̃).

We then verify that j∗ and j∗ satisfy the conditions of Theorem ??, giving us the desired result.

Note that most of the work was already done in the previous section for i : M ↪→ S. The arguments given

there are isomorphic to the arguments we need to give for j. Here we construct the main ingredients needed

for the formal proofs, and then refer the reader to Sections 9.1.1 – 9.1.4 for details on how to implement

them.
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To show that j is a 1-cell in DLP we need to construct the 2-cell

SP

⇓ĵ

ρ //

jP

��

PS

Pj

��
FP

ξ
// PF

We evaluate both passages in the diagram. The top-right passage is given by

f1 ⊗ . . .⊗ fn 7→
∫ x1,...,xn∈X

f1(x1)× . . .× fn(xn)× SX(−, x1 ⊗ . . .⊗ xn)

7→
∫ y1,...,yp∈SX ∫ x1,...,xn∈X

f1(x1)× . . .× fn(xn)× SX(y1 ⊗ . . .⊗ yp, x1 ⊗ . . .⊗ xn)

FX(−, y1 × . . .× yp)

'
∫ x1,...,xn∈X

f1(x1)× . . .× fn(xn)× FX(−, x1 × . . .× xn) (9.10)

while the bottom-left passage computes to

f1 ⊗ . . .⊗ fn 7→ f1(−)× . . .× fn(−)

7→
∫ x1,...,xn∈X

f1(x1)× . . .× fn(xn)× FX(−, x1 × . . .× xn) (9.11)

Hence ĵ, much like i∗ of Section 9.1.1, sends elements of 9.10 to themselves in 9.11. Because of this,

showing coherence for ĵ is almost identical to showing coherence for i∗. The only difference is that the

actions of symmetries is replaced by actions of finite-product structure, but this does not alter the nature of

the argument.

An argument identical to the one given in Section 9.1.2 shows that (j, ĵ) is in fact a monad morphism in

DLP . Hence j∗ : S̃ → F̃ is also a monad morphism and Theorem ?? can be invoked to produce a 2-functor

K : kl(S̃)→ kl(F̃ ). In particular, K sends monads in t : 1 −→7 1 in kl(S̃) to monads K(t) : 1 −→7 1 in kl(F̃ ).

We compute

K(t)(n, 1) =

∫ k∈S1

t(k, 1)× F1(n, k)

While the above formula is structurally very similar to Equation 9.7, there is one key difference. The above

coend is taken over all k ∈ S1 and hence the symmetries in t(k, 1) and the symmetries in F1(n, k) are

identified. This feature is essential for the formula to make sense. Hence K(t) consists off all the operations

of t to which we formally adjoin finite-product structure, but in a way that identifies the symmetries of the

finite product structure with the existing symmetries of t.

Furthermore it turns out that j∗ : F̃ → S̃ is also a monad morphism. The definition of the 2-cell

FX

⇓

�F̃ϕ //

_(jx)∗

��

Fy

_(jy)∗

��
Sx

�
S̃ϕ

// Sy

can be derived from
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7→

Arguments similar to the ones gives in Section 9.1.4 can be used to show that j∗ : F̃ → S̃ is indeed a monad

morphism. By Theorem ?? this gives rise to a 2-functor

K ′ : kl(F̃ )→ kl(S̃).

Given a monad t : 1 −→7 1 in kl(F̃ ), we compute

K ′(t)(n, 1) =

∫ k∈F1

t(k, 1)× F1(i(n), k) ' t(i(n), 1)

One can give a nice interpretation to the formulas for K ′(t): it is the theory that contains all the operations

of t, but forgets some actions of finite-product structure on these operations. Crucially, the actions of the

symmetries are not forgotten, while the actions of copying and deletion operations are. Thus K(t′) is indeed

a monad in kl(S̃).

A graphical argument, akin to the one given in Section 9.1.4, shows that j∗ and j∗ satisfy the conditions the

Theorem ?? and this allows us to conclude that there exists a lax 2-adjunction

K ′ a K : kl(S̃)→ kl(F̃ ),

as promised.
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Chapter 10

Conclusions and future work

10.1 Summary

Let us review the main results of this work. We began with an introduction to Categorical Universal Algebra.

This field uses various categories and category-like structures to capture the syntax of algebraic theories. We

saw two main variants. PROs, PROPs and Lawvere theories are categories whose morphisms fall into two

groups. The structure morphisms of the category - such as symmetries or finite product structure - and the

morphisms that encode the specifications of the theory. The second variant was operad-based theories. These

model specifications in which the operations have many inputs, but only a single output. We encountered

many types of operads. Specifically monoidal, symmetric monoidal and Cartesian operads. We concluded

that there is a need for a setting in which will allow us to formulate and analyse theories in general, without

worrying about the complications associated with types.

In Chapters 4 and 5 we developed the 2-categorical foundations for such a framework. All the main definitions

were accompanied by numerous examples. Of particular importance were the Cat-monads M , S, F and P .

The first three turn a category X into the free monoidal category MX, the free symmetric monoidal category

SX and the free finite product category FX. P is the presheaf monad and is the categorification of the

powerset monad on Set. One of the the most important facts about it is that its Kleisli bicategory is equivalent

the the bicategory Prof of profunctors.

2-distributive laws consist of a 2-natural transformation λ : TP → PT . Through Beck’s Theorem, they

provide us with a way of extending T to the Kleisli bicategory of P and lifting P to the category of T -

algebras. We showed that M , S and F all distribute over P and hence extend to Prof. Finally, we described

the formulas for these extensions.

Chapter 6 showed how the bicategory of profunctors, and its variations, can be used to formulate constructions

from Categorical Universal Algebra. We began with a simple, well-know, example: categories are monads in

Span. From there we studied monads in Prof. It turned out that a monad on X in Prof adds categorical

structure to X in a way that makes that structure compatible with the existing structure of X. We observed

that this view point is useful for defining PROPs and Lawvere theories because it allows one to separate the

structural morphisms of the type from the operations of the theory that one wishes to encode. The monoidal

structure of PROPs led to us to work in Prof(Mon) instead of Prof.
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Because operads model theories with multiple inputs, but only a single output, they no longer can be mod-

elled as morphisms in a monoidal category. Instead they are morphisms in muticategories. Hom-sets of

multicategories are functors

hom : TX ×X → Set

with T some monad on Cat. We observed that this is the same as a 1-cell in the Kleisli bicategory kl(T̃ )

with T̃ an extension of T to Prof. Our running examples - M , S and F - can all be extended to Prof. This

allowed us to study monads in kl(M̃), kl(S̃) and kl(F̃ ). We showed that monads on 1 in these bicategories

correspond to plain, symmetric and Cartesian operads. The Author learned about the last set of results from

Martin Hyland, but has not seen them in literature. He hopes that by clearly documenting them in this work,

he will aid in their public recognition.

We also discussed distributive laws between monads inside Kleisli bicategories. By viewing theories as monads,

we get a compositional tool for free. We showed interesting examples of distributive laws in Prof. Through

these laws one obtains a particularly simple description of the PROPs for bialgebras and Frobenius algebras.

We also gave an example of a distributive law between the theory for semi-groups and the theory for pointed

sets in kl(S̃).

Chapters 7, 8 and 9 contain the original results of this work. The aim of these chapters is to show that

relationships between types leads to relationships between theories of these types. Restating this formally, we

wish to begin with a monad morphism

α : S → T

from a types S to a type T and from it to construct a 2-functor

A : kl(S̃)→ kl(T̃ ).

This is done in two steps. First we wish to extend the monad morphism α : S → T to a monad morphism

α̃ : S̃ → T̃ and then show that post-composing with this extension is 2-functorial.

Chapter 7 began as a single theorem that showed that certain α’s can indeed be extended. But the author

quickly realised that it is worthwhile to explore the theory of extensions in general, rather than focusing only

on a single aspect of it. This led to the creation of two monoidal bicategories, DLP and ExtP . The first one

contains 2-functors, 2-natural transformations and modifications that distribute over P . The second contains

the all 2-functors, 2-natural transformations and modifications that can be extended to kl(P ). Chapter 7

carefully builds an equivalence between these two bicategories. The resulting formal theory is independent

from the application we use it for. Indeed, Chapter 7 is self-contained a result in 2-monad theory. It

complements the work of Tanaka who showed in [Tanaka, 2005] that a similar equivalence holds between a

bicategory dual to DLP and the 2-category of lifts of 2-functors, 2-natural transformations and modifications

to the bicategory of algebras of P .

Chapter 8 brings us closer to Categorical Universal Algebra, although the two Theorems that we prove there

are again self-contained. The first theorem shows that any monad morphism α : S → T gives rise to a

2-functor A : kl(S̃)→ kl(T ). We can combine this result with the results of Chapter 7 to see that any monad

morphism α : S → T that is also a 1-cell in DLP gives rise to such a 2-functor. This 2-functor sends theories

of type S to theories of type T . This holds true for any P , not just the presheaf monad. When P is the

presheaf monad something more exciting happens. Any functor f gives rise to two profunctors: f∗ and f∗.
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Hence any 1-cell α : S → T in DLP gives rise to two collections

{(aX)∗ | X ∈ Cat} and {(aX)∗ | X ∈ Cat}

We know that the one on the left is a 2-natural transformation. If we assume that the one on the right is a

monad morphism, then by the first Theorem of Chapter 8, we obtain a functor J : kl(T̃ )→ kl(S̃).

Because of f∗ a f∗ we expect the two functors A and J to be related. Theorem 2 of Chapter 8 makes this

relationship explicit. It states that when the units and co-units of the family of adjunctions (αy)∗ a (αy)∗

satisfy some coherence conditions, J and A form a lax 2-adjunction.

In Chapter 9 we apply the results of Chapters 7 and 8 to the inclusions M ↪→ S and S ↪→ F . This requires

us to check numerous technical conditions, but once we overcome this hurdle, we show that the inclusions

produce adjunctions

kl(M̃)(X,X)
..

> kl(S̃)(X,X)nn and kl(S̃)(X,X)
..

> kl(F̃ )(X,X).nn

The first adjunction specifies how to create free symmetric operads from a given plain operad and how to

forget the symmetric structure of a symmetric operad. The second one does the same for symmetric operads

and Lawvere theories. Furthermore, the 2-functors that make up the lax 2-adjunction give a recipe for creating

a free distributive law between Lawvere theories from a given distributive laws between symmetric operads

and this last corollary was one of the initial motivations for pursuing the research program in this thesis.

10.2 Future work

This thesis developed a method for extending relationships between types to relationships between theories

of these types. While this method works well, we believe that it can be greatly enhanced with further

investigation. The main deficiency of the current approach can be seen in Chapter 9. To apply our results

to the monad morphism i : M ↪→ S, we had to verify numerous non-trivial technical conditions. We believe

that things should be simpler. To this end, we propose the following research programme:

• Identify a class of monad morphisms i : S → T that can be extended to ĩ : S̃ → T̃ . We suspect

that inclusions, such as the examples we explored in Chapter 9, can always be extended. We suspect

that a careful analysis of the arguments used to show that i : M ↪→ S in a 1-cell in DLP will help

identify the essential ingredients needed for a monad morphisms to be extendible.

• Identify which i : S → T are such that i∗ : T → S is a natural transformation. Based on our

limited class of examples, inclusions might be a good candidate to investigate first. We also suspect

that the monads S and T need to possess some nice properties for i∗ to be a 2-natural transformation.

We think that this question is the most important theoretical questions that is left unexplored in this

thesis.

The thesis also opens the door to many new questions in Categorical Universal Algebra.

• How do PROs and PROPs fit in? PROs and PROPs provide a simple semantics for capturing the

syntax of algebraic theories. Yet they do not fit into our Kleisli bicategorical framework. The problem

is that a 1-cell in kl(T ) has the form X −→7 TY , while to model several outputs, we would need

to work with a 1-cell TX −→7 TY . There are several ways to accomplish this. One is to define a
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monad R : kl(T ) → kl(T ) and then study its co-Kleisli category. There a typical one cell will have

the form RX −→7 TY . To model PROPs we then need to extend the 2-monad S̃ : Prof → Prof to
˜̃S : kl(S̃) → kl(S̃). For this we need yet another 2-distributive law. Richard Garner’s Thesis [Garner,

2006] defines polycategories as monads in a two-sided Kleisli bicategory. This bicategory is obtained

from a 2-distributive law of a 2-monad T on Prof over the extension S̃ : Prof → Prof. The idea that

multi-categories are monads in kl(S̃) serves as a foundation for Garner’s work. Because of this, the

tools and ideas developed in this thesis can be imported to his two-sided setting.

• Comparison with the Prof(Mon) setting. [Lack, 2004] develops an elegant setting for composing

PROs and PROPs. In [Akhvlediani, 2010] the author shows that Lawvere theories and so-called PROBs

can also be composed in Prof(Mon). We believe that it is important to understand how the Kleisli

bicategory framework compares to the Prof(Mon) setting. For example, one advantage of the latter is

that it captures theories with multiple outputs and provides explicit formulas for describing important

distributive laws between them. Can such distributive laws be described in the Kleisli setting? Or,

more realistically, can they be described in the two-sided Kleisli setting ala Garner? Certainly the Kleisli

setting has more expressing power, since it is not restricted to theories with linear arities. But when it

comes to linear arities, are the expressive powers of the two setting compatible?

• Examples. We have presented an abstract high-level setting. It is a prototype of the theory we wish

to eventually develop. But to develop it, we need to test it out with examples. There are two things

we wish to have more examples of. First, we would like to see more theories expressed as monads in

kl(T̃ ). In particular, it would be interesting to see whether there are familiar categorical constructions

that happen to be monads in kl(T̃ ). This is certainly the case with PROPs and PROs where familiar

categories happen to capture the syntax of well-known algebraic structures. Second, we would like

to have more examples of types. At this point we only have three running examples: M , S and F .

This make it difficult to see the full expressive power of the Kleisli bicategory setting. We believe that

finite products can be replaced with more elaborate limits to produce types that were previously not

studied. Ideally, both new theories and new types will come from an exciting demand in computer

science to model parts of programming languages using algebraic specifications. For example, monadic

effect in functional programming languages, such as Haskel, can be modelled using a variant of Lawvere

theories (cf. [Hyland and Power, 2006]). Representing such concrete Lawvere theories as monads in a

Kleisli bicategory would not only give us insight into our theory, but would also give rise to a coveted

(cf. [Hyland et al., 2002]) method for combining such computational effects.

• Incorporating other approaches to Universal Algebra. Categorical Universal Algebra contains more

tools than we could explore in this thesis. Sketches are effectively used to describe algebraic structure

in Computer Science [Barr and Wells, 1985]. Briefly, a sketch is a category with a chosen set of limit

cones and colimit cocones. Models of a sketch are functors out of the sketch that map cones and

cocones to limits and colimits in the codomain. Since sketches are categories with extra structure,

they too should be expressible in a variant of the bicategory of profunctors. There exist many different

types of sketches. Finite product sketches are discussed in [Barr and Wells, 1985] and [Barr and Wells,

1993]; symmetric monoidal sketches and monoidal sketches are covered in [Hyland and Power, 2000].

The Kleisli bicategory framework should allow all these flavours to be expressed in a single setting.

Furthermore, expressing sketches, PROs and operads using the same language will make it easier to

analyse the expressive power of each and to compare the strengths and weaknesses of these tools.

• Applications to Categorical Quantum Mechanics. [Abramsky and Coecke, 2004] developed category
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theoretic semantics for some quantum informatics protocols, most notably Quantum Teleportation. The

research program initiated by that paper led to many fascinating results that advanced our understanding

of both Category Theory and Quantum Foundations. Many of these results rely on a representation

of quantum observables as so-called †-Frobenius Algebras [Coecke and Pavlovic, 2007]. Furthermore,

interacting observables can be expressed as two †-Frobenius algebras that satisfy the axioms of [Coecke

and Duncan, 2008]. Since the PROP for Frobenius algebras can be expressed as a monad in Prof it

can be combined with other PROPs in that setting. This opens interesting possibilities for semantics

of quantum information. First, distributive laws in Prof can suggest new ways of combining Frobenius

algebras. It would be interesting to see if the resulting structures are meaningful in physics. Furthermore,

PROPs for Frobenius algebras can be combined with other PROPs. Through such combinations, one

can create semantics for rather complicated systems. Finally, because both Lawvere theories and PROPs

can be expressed as monads in Prof, they can, modulo some technical details, be combined with each

other. This could lead to category theoretic semantics for a systems in which classical and quantum

protocols interact.
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