
Quantum Processes and Computation
Assignment 1, Friday 14 Oct 2022

Exercises with answers and grading
Exercise 1 (3.4): We saw in the lecture that functions and relations are examples of process
theories. Give two other examples of a process theory. For each one answer the following questions:

1. What are the system-types?

2. What are the processes?

3. What does it mean to compose them sequentially or in parallel?

4. When should two processes be considered equal?

Hint: Note that a single process is not a process theory. In particular, almost any process theory
will have an infinite amount of system types (e.g. A, A b A, A b A b A, . . .). Also: Be creative!
You don’t have to restrict yourself to mathematics.
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Many correct answers, for instance

1. Cooking: types are food items and their combinations. Processes are cooking actions, like
chopping, baking, stirring, etc. Composition is just applying one process after another, or at
the same time (sequential and parallel). Two processes are equal if and only if they produce
the same output for every choice of ingredients.

2. Chemistry: types are chemicals, and processes are chemical reactions. Sequential composi-
tion is applying two chemical reactions one after another; parallel composition is applying
chemical reactions independently at the same time. Two chemical reactions from chemical A
to chemical B are the same if they produce the same chemicals from the same input through
the same stages, as their may be several different reactions transforming A into B.

3. Math: types are groups, processes are group homomorphisms. Sequential composition is usual
composition and parallel composition is cartesian product. Two processes are equal if their
composition yields the same group homomorphism.

Note that there is a difference between types and states. For instance in the example of cooking,
‘vegetable’ is a type, while for instance a ‘raw potato’ could be a state of vegatable. As an example
‘cooking’ is a process transforming vegetables into vegetables, and transforming the state ‘raw
potato’ into ‘cooked potato’.
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Exercise 2 (3.10): Read Section 3.1.3 about diagrams as diagram formulas. Draw the diagrams
corresponding to the following diagram formulas:

1. fC4

B1C2
gD3

C4

2. fA1

A1

3. gA1

B1
fB1

A1

4. 1A6

A1
1A5

A2
1A4

A3
.

Use the convention that inputs and outputs are numbered from left-to-right.
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Exercise 3 (3.12): Give the diagrammatic equations of a process ˚ taking two inputs and one
output that express the algebraic properties of being

1. associative: x ˚ py ˚ zq “ px ˚ yq ˚ z

2. commutative: x ˚ y “ y ˚ x

3. having a unit: there exists a process e (with no inputs) such that x ˚ e “ e ˚ x “ x

Note: x, y and z should not appear in your final diagrams. They are however useful in trying to
figure out what the diagrammatic equation should be.
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The diagrams corresponding to associativity, commutativity and having a unit e are respectively:

˚

˚

=

˚

˚

˚

=

˚ ˚

e

=

˚

e

= (2)

Distributivity can’t be represented easily, because the lefthandside px ` yq ˚ z has 3 inputs, while
px ˚ zq ` py ˚ zq has four inputs, 2 of them being equal (the z). This can be fixed by introducing a
‘copy’ operation.
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Exercise 4 (3.15): Using the copy operation:

cp :: n ÞÑ pn, nq

write down the diagram representing distributivity: px ` yq ˚ z “ px ˚ zq ` py ˚ zq)? Here, ` and
˚ are processes that take two inputs and and one output.
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˚

`

=

`

˚˚

cp
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Exercise 5 (3.30): First compute the values of the following functions, then give the commonly
used name of these functions:

paq :

NOT

NOT NOT

CNOT pbq : CNOT

CNOT

CNOT

where:

NOT ::

#

0 ÞÑ 1

1 ÞÑ 0
and CNOT ::

$

’

’

’

&

’

’

’

%

p0, 0q ÞÑ p0, 0q

p0, 1q ÞÑ p0, 1q

p1, 0q ÞÑ p1, 1q

p1, 1q ÞÑ p1, 0q
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These functions are defined in terms of how they map the elements of the set where they’re defined,
so it’s enough to calculate it by ”brute force”. For the first one, calculating pNOT b NOT q ˝

pCNOT q ˝ pNOT b Idq step by step:

p0, 0q ÞÑ p1, 0q ÞÑ p1, 1q ÞÑ p0, 0q (3)

p0, 1q ÞÑ p1, 1q ÞÑ p1, 0q ÞÑ p0, 1q (4)

p1, 0q ÞÑ p0, 0q ÞÑ p0, 0q ÞÑ p1, 1q (5)

p1, 1q ÞÑ p0, 1q ÞÑ p0, 1q ÞÑ p1, 0q (6)

Which is equal to CNOT. For the second one, calculating CNOT,SWAP,CNOT,SWAP,CNOT:

p0, 0q ÞÑ p0, 0q ÞÑ p0, 0q ÞÑ p0, 0q ÞÑ p0, 0q ÞÑ p0, 0q (7)

p0, 1q ÞÑ p0, 1q ÞÑ p1, 0q ÞÑ p1, 1q ÞÑ p1, 1q ÞÑ p1, 0q (8)

p1, 0q ÞÑ p1, 1q ÞÑ p1, 1q ÞÑ p1, 0q ÞÑ p0, 1q ÞÑ p0, 1q (9)

p1, 1q ÞÑ p1, 0q ÞÑ p0, 1q ÞÑ p0, 1q ÞÑ p1, 0q ÞÑ p1, 1q (10)

which is the SWAP map.
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Exercise 6 (3.31): Suppose A, B, C, and D are sets and P is a relation given by:

A “ ta1, a2, a3u

B “ B
C “ tred,greenu

D “ N

S

R T

A D

A

:“

B

A

P

B

CB

B C

A

A

Compute P first for R,S, T given by:

R ::

#

1 ÞÑ pa1, a1q

1 ÞÑ pa1, a2q
S ::

$

’

&

’

%

pa1, 5q ÞÑ p0, redq

pa1, 5q ÞÑ p1, redq

pa2, 6q ÞÑ p1,greenq

T ::

#

a1 ÞÑ 200

a3 ÞÑ 5



and then for R,S, T given by:

R ::

#

0 ÞÑ A ˆ ta2, a3u

1 ÞÑ A ˆ ta2, a3u
S ::

$

’

’

’

’

&

’

’

’

’

%

pa1, 0q ÞÑ B ˆ tred,greenu

pa1, 1q ÞÑ B ˆ tred,greenu

pa1, 2q ÞÑ B ˆ tred,greenu

...

T ::

$

’

&

’

%

a1 ÞÑ N
a2 ÞÑ N
a3 ÞÑ N

Hint: This exercise is in fact well-defined, and does not contain typos. Please read Section 3.3.3
if you are confused.
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The parallel composition of R and T is

$

’

’

’

&

’

’

’

%

p1, a1q ÞÑ pa1, a1, 200q

p1, a1q ÞÑ pa1, a2, 200q

p1, a3q ÞÑ pa1, a1, 5q

p1, a3q ÞÑ pa1, a2, 5q

(11)

The only output pair that matches S is pa1, 5q, so that the output is indeed

P ::

#

p1, a3q ÞÑ pa1, 0, redq

p1, a3q ÞÑ pa1, 1, redq
(12)

For the second case we note that S only relates elements where the first input is a1 while the
output of R connecting to S will always be a3, so P must be the empty relation: P “ H.
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Exercise 7 (3.38 & 3.40): Suppose that there is a zero process 0 : A Ñ B for all possible types
A and B (see Section 3.4.2).

(a) Show that the family of zero processes is unique. That is, show that if there exists another
family of zero processes 01 : A Ñ B for all types A,B such that 01 ˝ f “ 01 “ f ˝ 01 for all
processes f , then for all A,B, 0 : A Ñ B, and 01 : A Ñ B we have 0 “ 01.

(b) We call two processes f and g with the same inputs and outputs equal up to a number (written
f « g) if there exist non-zero numbers λ, µ such that λf “ µg. Suppose a process theory has
no zero divisors. That is, it satisfies the following property: λf “ 0 if and only if λ “ 0 or
f “ 0. Show that f « 0 if and only if f “ 0.
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Suppose 0 and 01 are zero processes. We have 0 ˝ 01 “ 01, but also 0 ˝ 01 “ 0. For the second one,
if f « 0, then there exists a λ ‰ 0 such that λf “ 0. Now, by the assumption that there are no
zero-divisors we have λ “ 0 or f “ 0. Since we know that λ ‰ 0, we must have f “ 0.
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