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Abstract

The recent years have seen a number of proposals for extending
statically typed languages by dynamics or generics. Most propos-
als — if not all — require significant extensions to the underlying
language. In this paper we show that this need not be the case. We
propose a particularly lightweight extension that supports both dy-
namics and generics. Furthermore, the two features are smoothly
integrated: dynamic values, for instance, can be passed to generic
functions. Our proposal makes do with a standard Hindley-Milner
type system augmented by existential types. Building upon these
ideas we have implemented a small library that is readily usable
both with Hugs and with the Glasgow Haskell compiler.
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D.3.3 [Programming Languages]: Language Constructs and Fea-
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General Terms

Languages
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1 Introduction

A desirable feature of programming languages issafety. Broadly
speaking, safe programming languages prevent untrapped errors at
run time [25]. Safety can be achieved either by static checking,
by dynamic checking, or by a combination of static and dynamic
checks. Each approach has its pros and cons.
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Dynamically typed languages, like Scheme and Java, preserve type
information until run time, enabling concise definitions of util-
ity functions (such asshow, ‘ ’, compare) using dynamic casts,
generic functions, or multimethods. However, type preservation in-
troduces space and run-time overhead that is left for the compiler
to optimize away. Also, with dynamic typing, many type errors that
could be caught at compile time are not detected until run time.

Statically typed languages, like Haskell and ML, are at the other ex-
treme. Typechecking occurs at compile time and type information
is discarded after compilation, so it is impossible to write functions
whose behaviour depends on run-time type information. As a re-
sult, utility and communication functions cannot be defined once
and for all. Instead, programmers must provide new versions of
them for each new data type. Their definitions are essentially de-
termined by type structure, but must be written out explicitly be-
cause this regular behaviour cannot be expressed using the Hindley-
Milner type system.

Previous approaches to supporting generic programming, type-
dependent optimizations, and dynamic casts within statically typed
languages include:

• explicit dynamic typing [21, 1], in which the language is aug-
mented with aDynamictype and atypecaseor castconstruct;

• polytypic programming [19, 5, 16], in which type-dependent
functions written in a language extension are translated to
pure polymorphic functions;

• ad-hoc polymorphism [31, 11] (i.e. Haskell’s type classes),
in which types are associated with classes that indicate the
presence of overloaded functions like ‘’;

• intensional polymorphism [14], in which type information is
preserved throughout compilation, so that run-time type dis-
patch can be performed.

However, none of the above techniques is both easy to implement
and powerful enough to support dynamics and generics. Explicit
dynamic typing is nontrivial to implement and to prove type-safe,
especially in the presence of polymorphism. Polytypic program-
ming is typically implemented using source-to-source translation,
and does not address dynamic typing. Type classes have long
been present in Haskell, but are limited in expressiveness. The
original type-passing implementation of intensional polymorphism
changes the language’s semantics and violates the parametricity
theorem, precluding a simple type-erasing language implementa-
tion and complicating soundness proofs. Also, it is not clear how
or whether dynamic typing and generic programming features can
be safely combined; to date, each has been studied in isolation.
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Recent work has addressed some of these shortcomings: Leroy and
Mauny [21] and Abadi et al. [1] showed how to safely combine dy-
namics and polymorphism. Hinze and Peyton Jones [18] have intro-
duced derivable type classes, which permit polytypic definitions of
type classes. Crary, Weirich, and Morrisett [9] have reconciled in-
tensional polymorphism with type erasure using explicit type repre-
sentations. However, implementations of dynamics, derivable type
classes, and type representations still seem to require substantial
compiler modifications and soundness proofs.

In this paper, we show that this need not be the case. We present an
encoding of type representations in Haskell 98 [23] augmented with
existential types, and show how to use type representations to de-
fine simple polytypic functions, typeDynamic, and finally generic
functions of the same flavour as those definable by derivable type
classes. This provides a simple and safe implementation for gener-
ics and dynamics in Haskell, with no additional compiler support
or proofs of type soundness required. It also sheds light on the re-
lationship between generics and dynamics and shows that they can
coexist and interact peacefully.

The rest of the paper is structured as follows. Sec. 2 explains how
to define type representations in Haskell and illustrates their use
in programming functions that work for a family of types. Type
representations are also at the heart of dynamics in Sec. 3. Sec. 4
shows how to achieve true genericity, the ability to define functions
that work for all types. Finally, Sec. 5 reviews related work and
Sec. 6 concludes. For reference, the complete implementation of
the Haskell library is included in App. A.

2 Programming with type representations

Let’s start modest. Assume that you have a possibly infinite family
of types and you want to define a function, say, equality, that works
for all types of this family (we call such a functionpolytypic). For
concreteness, let us consider the family of types given by the fol-
lowing grammar.

τ ::= Int | 1 | τ+ τ | τ× τ

We assume that the unit type, the sum type and the pair type are
given by the following declarations (Haskell already offers isomor-
phic types but we introduce new types for reasons to become clear
later).

data 1 = Unit

data α+β = Inl α | Inr β
data α×β = α :×: β

Now, in Haskell one would immediately fall back on the class sys-
tem to implement such a type-indexed family of functions. The
equality function is assigned the type1

( ) :: ∀α .(Eqα)⇒ α→ α→ Bool.

The so-called class context ‘(Eq α) ⇒’ makes explicit that the
equality function does not work for all types but only for those types
that are instances of the type classEq.

The purpose of this section is to show that one can also do without
type classes. The basic idea is to pass ‘’ an additional argument
thatrepresentsthe type at which the equality function is called. As
a first try we could assign ‘’ the type∀α .Rep→ α→ α→ Bool,

1We will always write universal quantifiers explicitly.

whereRepis the type of type representations. A moment’s reflec-
tion, however, reveals that this won’t work. The parametricity theo-
rem [29] implies that a function of this type must necessarily ignore
its second and its third argument. The trick is to use a parametric
type for type representations:

( ) :: ∀α .Repα→ α→ α→ Bool.

HereRepτ is the type representation ofτ. The one-million-dollar
question is, of course, how can we define such a type? There are at
least two possibilities, both of which require extensions to Haskell’s
data construct.

2.1 Alternative 1: polymorphic data signatures

We inhabitRepτ by defining for each type constructor a corre-
sponding value constructor that represents the type. For the above
family of types we introduce

RInt :: Rep Int
R1 :: Rep1
R+ :: ∀α .Repα→ (∀β .Repβ→ Rep(α+β))
R× :: ∀α .Repα→ (∀β .Repβ→ Rep(α×β)).

For instance, the type1+ (Int× Int) is represented by the value
R+ R1 (R× RInt RInt) of typeRep(1+(Int× Int)).

Of course, the declarations above are not valid Haskell since data
constructors can only be introduced viadata declarations. But, let’s
accept this for the moment.

Given these prerequisites we can easily define a polytypic equality
function that works for all representable types. We simply pattern
match on the ‘type’ argument.

rEqual :: ∀τ .Repτ→ τ→ τ→ Bool
rEqual(RInt) t1 t2 = t1 t2
rEqual(R1) t1 t2 = case(t1, t2) of

(Unit,Unit)→ True
rEqual(R+ rα rβ) t1 t2

= case(t1, t2) of
(Inl a1, Inl a2)→ rEqual rα a1 a2
(Inr b1, Inr b2)→ rEqual rβ b1 b2
→ False

rEqual(R× rα rβ) t1 t2
= case(t1, t2) of

(a1 :×: b1,a2 :×: b2)→
rEqual rα a1 a2 ∧ rEqual rβ b1 b2

Note that each equation defines a function whose type is a true in-
stance of the declared type:rEqual (RInt), for instance, has type
Int→ Int→ Bool.

A polytypic function can also be defined in terms of other polytypic
functions. The functionrElem, for instance, implements polytypic
list membership.

rElem :: ∀τ .Repτ→ τ→ [τ ]→ Bool
rElem rτ t x = or [rEqual rτ t a | a← x]

REMARK 1. The function rElem hints at one essential difference
to Haskell’s class system. Consider the class-based variant of
rElem:

elem :: ∀α .(Eqα)⇒ α→ [α]→ Bool

The class context records precisely on which overloaded function
elem depends. For instance, if elem additionally called show at type
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α, then Showα would be added to the class context. By contrast,
the signature of the type-passing implementation would not change
if it called a type-passing rShow.

We have already noted that in Haskell data constructors can only be
introduced bydata declarations. Unfortunately, we cannot define
Repα via adata declaration since none of the data constructors has
result typeRepα. We require a slight extension that allows us to
instantiate the declared type to some specific instance.

data Repτ = RInt with τ = Int
| R1 with τ = 1
| ∀α β .R+ (Repα) (Repβ) with τ = α+β
| ∀α β .R× (Repα) (Repβ) with τ = α×β

The idea is to assignRInt the typeRepτ with the additional con-
straint thatτ = Int, recorded by thewith clause. As an aside, note
that a universal quantifier in front of a constructor name acts as an
existential quantifier. SoR+ rα rβ has typeRepτ for sometypesα
andβ with τ = α+β. Existential types are supported both by Hugs
and by the Glasgow Haskell compiler.

REMARK 2. Equational type constraints have been studied in the
context of module systems for ML [20, 13] and typed closure con-
version in the presence of intensional polymorphism [22]. In those
contexts, the problem is that important relationships between types
are hidden by modular abstraction or existential quantification; it
is solved using translucent sum types, singleton kinds, or restricted
type equations in order to make enough type sharing information
evident in the module or closure type.

Unfortunately, this prior work is not directly applicable, since it
addresses type sharing between elements of a module or existential
package, not type equations that depend on data type cases. For
example, singleton kinds would not help because each case of Rep
would requireτ to have a different singleton kind. Perhaps this
could be addressed using kind polymorphism, but this complicates
the type system even further.

Fortunately, we don’t have to wait for yet another extension to
Haskell’s already quite impressive type system sincewith clauses
can be simulated in Haskell 98 using embedding-projection pairs or
equvalence types.

2.2 Alternative 2: equivalence types

In a type system corresponding to a consistent logical system,
we could (motivated by the Curry-Howard isomorphism) think of
with α = β clauses as propositions asserting thatα andβ are equiv-
alent in some sense. This notion of equivalence could range from
strict type equality to logical equivalence (that is, equivalence of
type inhabitation). Propositional equivalence is typically defined as
“if and only if”: A≡ B means(A⇒ B)∧ (B⇒ A). Recall that con-
junctions correspond to product types and implications to function
types. Thus, we could define anequivalence typeτ ↔ τ′ corre-
sponding to the proposition that the typesτ andτ′ are equivalent as
(τ→ τ′)× (τ′→ τ). The function components can be thought of as
casts fromτ to τ′ and back. In Haskell we declare

data α↔ β = EP{from:: α→ β, to :: β→ α}.
An elementep of type τ ↔ τ′ is a “proof” that the two types are
equivalent.2

2Haskell is not strongly normalizing and does not correspond
to a consistent logic, so our appeal to the Curry-Howard isomor-

Turning to the definition ofRepwe replace each type constraint
with τ = τ′ by the corresponding equivalence typeτ↔ τ′.

data Repτ = RInt (τ↔ Int)
| R1 (τ↔ 1)
| ∀α β .R+ (Repα) (Repβ) (τ↔ (α+β))
| ∀α β .R× (Repα) (Repβ) (τ↔ (α×β))

Additionally, we introduce so-calledsmart constructorscorre-
sponding to theRτ constructors of the previous section that incorpo-
rate the reflexive equivalence valueself as a proof of equivalence.

self :: ∀α .α↔ α
self = EP{ from= id, to = id}
rInt :: Rep Int
rInt = RInt self
r1 :: Rep1
r1 = R1 self
r+ :: ∀α .Repα→ (∀β .Repβ→ Rep(α+β))
r+ rα rβ = R+ rα rβ self
r× :: ∀α .Repα→ (∀β .Repβ→ Rep(α×β))
r× rα rβ = R× rα rβ self

It remains to adapt the polytypic equality function to the new defini-
tion of Rep. The changes are straightforward: whenever we analyze
a valueeof typeτ equivalent toτ′, we replaceeby from ep ewhere
ep:: τ↔ τ′ is the corresponding proof of equivalence.

rEqual :: ∀τ .Repτ→ τ→ τ→ Bool
rEqual(RInt ep) t1 t2 = from ep t1 from ep t2
rEqual(R1 ep) t1 t2 = case(from ep t1, from ep t2) of

(Unit,Unit)→ True
rEqual(R+ rα rβ ep) t1 t2

= case(from ep t1, from ep t2) of
(Inl a1, Inl a2)→ rEqual rα a1 a2
(Inr b1, Inr b2)→ rEqual rβ b1 b2
→ False

rEqual(R× rα rβ ep) t1 t2
= case(from ep t1, from ep t2) of

(a1 :×: b1,a2 :×: b2)→
rEqual rα a1 a2 ∧ rEqual rβ b1 b2

It is important to note thatrEqual is polymorphically recursive:
the recursive calls are at the existentially quantified typesα and
β. This means that the type signature is mandatory, otherwise the
code would not typecheck.

The equality function takes values of the ‘generic’ typeτ apart.
When weconstructa value of typeτ = τ′, then we must wrapto ep
around the constructed value. The polytypic functionrMinBound,
which constructs the least value of a type, serves as an example.

rMinBound :: ∀τ .Repτ→ τ
rMinBound(RInt ep) = to ep(minBound)
rMinBound(R1 ep) = to ep(Unit)
rMinBound(R+ rα rβ ep) = to ep(Inl (rMinBound rα))
rMinBound(R× rα rβ ep) = to ep(rMinBound rα

:×: rMinBound rβ)

phism and use of the terms “proposition” and “proof” for equiv-
alence types and values is not formally justified. In Haskell, an
equivalence pair only guarantees thatα can be cast toβ and vice
versa, with nontermination a possibility for either case. This turns
out to be enough for our purposes, since it still lets us encode repre-
sentations safely. In practice, all casts witnessing equivalences are
expected to terminate; usually, they are the identity.
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The polytypic functionrMemo, which memoizes a given function,
is an intriguing example of a function that both analyzes and syn-
thesizes values of the generic type.

rMemo :: ∀τ ν .Repτ→ (τ→ ν)→ (τ→ ν)
rMemo(RInt ep) f = λt→ f t -- no memoization
rMemo(R1 ep) f = λt→ casefrom ep tof

Unit→ fUnit
where fUnit = f (to ep(Unit))

rMemo(R+ rα rβ ep) f = λt→ casefrom ep tof
Inl a→ fInl a
Inr b→ fInr b

where fInl = rMemo rα (λa→ f (to ep(Inl a)))
fInr = rMemo rβ (λb→ f (to ep(Inr b)))

rMemo(R× rα rβ ep) f = λt→ casefrom ep tof
a :×: b→ fPair a b

where fPair = rMemo rα (λa→
rMemo rβ (λb→

f (to ep(a :×: b))))

To see howrMemoworks note that the helper definitionsfUnit, fInl,
fInr, and fPair do not depend on the actual argument off . Thus,
oncef is given, they can be readily computed. Memoization relies
critically on the fact that they are computed only on demand and
then at most once. This is guaranteed if the implementation isfully
lazy. The interested reader is referred to Hinze [15] for background
information.3

New types

So far equivalence typesτ↔ τ′ have actually consisted of proofs of
type equality, since they have been instantiated only with identity
functions. But we could also interpret an element ofτ ↔ τ′ as a
proof that the two types areisomorphicrather than equal. Coinci-
dentally, Haskell offers a linguistic construct for introducing a new
type that is isomorphic to an existing type. Consider as an example
the type of triples.

newtypeTri α β γ = ToTri{ fromTri :: α× (β× γ)}
The declaration definesTri α β γ to be isomorphic toα× (β× γ)
with the functionsToTri and fromTri witnessing the isomorphism.
SinceTri α β γ is isomorphic to an existing type, we can represent
it as follows.

rTri :: ∀α .Repα→ (∀β .Repβ→ (∀γ .Repγ→
Rep(Tri α β γ)))

rTri rα rβ rγ = R× rα (r× rβ rγ) (EP fromTri ToTri)

Now, if we pass a triple to a polytypic function, then the isomor-
phismsfromTri andToTri are automatically called at the appropriate
places. Furthermore, sinceTri α β γ is implementedby the type on
the right-hand side, both casts amount to the identity function at
run time. This also means that a new type and its implementation
type are treated alike, which may or may not be what you want. In-
deed, equivalence types need not contain actual isomorphism pairs;

3In [15] memoization is defined as the composition of a func-
tion that constructs a memo table and a function that queries the
table. If we fuse the two functions thereby eliminating the memo
data structure, we obtain therMemo function above. Thanks are
due to Koen Claessen for bringing this to our attention. Despite
appearance, the memo data structures did not vanish into thin air.
Rather, they are now built into the closures. For instance, the memo
table for a disjoint union is a pair of memo tables. The closure for
rMemo(R+ rα rβ ep) f consequently contains a pair of memoized
functions, namelyfInl andfInr.

for example we can assert the equivalence ofInt and[Float] with
λx→ [ ] andλl → 0. Ensuring that equivalence cast pairs are the
identity or form an isomorphism is not expressible in Haskell, so
these are external proof obligations.

Genuine type equality

We have seen in the previous section that the equivalence typeτ↔
τ′ does not guarantee thatτ andτ′ are actually equal (and we have
used this to good effect). An intriguing question is whether we can
devise an equivalence type that only admits equal types. Perhaps
surprisingly, this is indeed possible and even more surprisingly, the
underlying idea goes back to Leibniz—see Wadler [30] for a related
application of Leibniz’s idea. According to Leibniz, two terms are
equal if one may be substituted for the other. Adapting this principle
to types, we define,

newtypeα↔ β = EP{unEP::∀φ .φ α→ φ β}.

Note that the universally quantified type variableφ ranges over type
constructors of kind?→ ?. Thus, an element ofα↔ β is a function
that converts an element of typeφ α into an element ofφ β for any
type constructorφ. We introduce a constantself expressing the
reflexivity rule:

self :: ∀α .α↔ α
self = EP id

In a strongly normalizing type system likeFω, the only inhabitant of
α↔α is the identityΛ f .λx.x. If α andβ are not equal, then the type
α↔ β is empty. In Haskell, there are additional inhabitants arising
from nontermination. However, attempting to use such elements to
cast betweenα andβ will result in divergence.

To provide the same functionality as before we have to define func-
tions that given a proof of type equality cast one type into the other.
Thefrom function is easy: we substitute the identity type forφ.

newtypeId a = Id{unId:: α}
from :: ∀α β .(α↔ β)→ (α→ β)
from ep = unId · unEP ep· Id

The to function is more subtle: we first substitute the type con-
structor ψ x = x → α for φ. This gives us a function of type
(α→ α)→ (β→ α), which we then apply to the identity function.

newtypeα← β = Inv{unInv:: β→ α}
to :: ∀α β .(α↔ β)→ (β→ α)
to ep = unInv(unEP ep(Inv id))

Interestingly, both definitions ofα↔ β have precursors in the liter-
ature: they underly, for instance, Weirich’s implementation of type-
safe cast [32]. Though the above definition ofα ↔ β is attractive,
we will stick to the first variant as we rely on the broader interpre-
tation of type equivalence as types being isomorphic.

A type class for type representations

When we call a polytypic function, we have to supply a type repre-
sentation as an argument. Of course, if we are working in Haskell,
we can use the class system for this purpose.
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We define type classRepresentableas follows:

classRepresentableτ where
rep :: Repτ

instanceRepresentable Intwhere
rep = rInt

instanceRepresentable1 where
rep = r1

instance(Representableα,Representableβ)⇒
Representable(α+β) where

rep = r+ rep rep
instance(Representableα,Representableβ)⇒

Representable(α×β) where
rep = r× rep rep

Building upon the type class we can define a variant of polytypic
equality that automatically constructs the type representation.

cEqual :: ∀τ .(Representableτ)⇒ τ→ τ→ Bool
cEqual t1 t2 = rEqual rep t1 t2

It is important to note, however, that this use of the class system is
just a convenience, not a necessity for programming with represen-
tations.

3 Dynamics

3.1 The type Dynamic

A dynamic value is a pair consisting of the value itself and a rep-
resentation of its type. As noted by [14, 9], we can readily define
Dynamicusing the type of type representationsRepas

data Dynamic = ∀α .Dyn(Repα) α
dynamic :: ∀α .(Representableα)⇒ α→ Dynamic
dynamic a = Dyn rep a.

The existential quantifier (which is written as a universal quantifier)
effectively hides the type of the dynamic value. It goes without
saying that dynamic values thus defined are first-class citizens: we
can, for instance, construct a list of dynamic values.

[dynamic(4711 ::Int),dynamic’F’ ,dynamic(λn→ n+1 :: Int)]
::[Dynamic]

Now, what can we do with a valueDyn rα a of type Dynamic?
Not that much so far. If we have a polytypic functionf of type
∀τ .Repτ → τ → ν whereτ does not appear inν, then we can call
f rα a. The polytypic function analyzes the type representationrα
and takes the appropriate action (the existentially quantified type
variable cannot escape, sinceτ does not appear inν). However, we
cannot take the equality of two dynamic values or cast a dynamic
value into a static value of a given type. For both applications we
have to check two type representations for equality, which is what
we tackle next.

The functionunify takes two type representations and possibly re-
turns a proof of their equivalence.

unify :: ∀τ1 τ2 .Repτ1 → Repτ2 →Maybe(τ1 ↔ τ2)

The run-time unification essentially combines proofs of equiva-
lence. Assume, for instance, thatunify is called withRInt ep1 ::
Repτ1 and RInt ep2 :: Repτ2. The proofsep1 :: τ1 ↔ Int and
ep2 ::τ2↔ Int can be combined into a proof ofτ1↔ τ2 by applying
the laws of symmetry and transitivity. These laws correspond to the

functionsinv and ‘¦’, respectively.

inv :: ∀α β .(α↔ β)→ (β↔ α)
inv f = EP{ from= to f , to = from f}
(¦) :: ∀α β γ .(β↔ γ)→ (α↔ β)→ (α↔ γ)
f ¦g = EP{ from= from f · from g, to = to g · to f }

The unification procedure is slightly more complicated for para-
metric types. Assume, for instance, thatunify is passed the rep-
resentationsR+ rα1 rβ1

ep1 :: Repτ1 andR+ rα2 rβ2
ep2 :: Repτ2.

The arguments provide proofsep1 ::τ1↔ (α1+β1) andep2 ::τ2↔
(α2 + β2). Through recursive invocations ofunify we possibly ob-
tain proofs ofα1 ↔ α2 andβ1 ↔ β2. Using the law of congruence
we can then construct a proof of(α1 + β1)↔ (α2 + β2). Finally,
the subproofs are combined into a proof ofτ1 ↔ τ2 by applying
symmetry and transitivity. The law of congruence corresponds to
the function ‘(�)’ defined below.

(+) :: ∀α β .(α→ β)→ (∀γ δ .(γ→ δ)→
((α+ γ)→ (β+δ)))

(f +g) (Inl a) = Inl (f a)
(f +g) (Inr b) = Inr (g b)
(�) :: ∀α β .(α↔ β)→ (∀γ δ .(γ↔ δ)→

((α+ γ)↔ (β+δ)))
f �g = EP{ from= from f + from g, to = to f + to g}
The function ‘(�)’ representing the pair congruence law is defined
similarly.

REMARK 3. As an aside for the more theoretically minded reader,
types and equivalence types form the objects and arrows of a cate-
gory. The identity arrow is self and ‘¦’ implements the composition
of arrows. Furthermore, the sum type is a bifunctor in this cate-
gory; its action on arrows is given by ‘�’. In fact, since each arrow
ep has an inverse inv ep, every parametric data type including the
arrow type can be turned into acovariantfunctor.

Given these prerequisitesunifycan be defined as follows.

unify′ ::∀τ1 τ2 .Repτ1 → Repτ2 → [τ1 ↔ τ2 ]
unify′ (RInt ep1) (RInt ep2)

= [ inv ep2 ¦ep1 ]
unify′ (R1 ep1) (R1 ep2)

= [ inv ep2 ¦ep1 ]
unify′ (R+ rα1 rβ1

ep1) (R+ rα2 rβ2
ep2)

= [ inv ep2 ¦ (epα�epβ)¦ep1 |
epα ← unify′ rα1 rα2,epβ ← unify′ rβ1

rβ2
]

unify′ (R× rα1 rβ1
ep1) (R× rα2 rβ2

ep2)
= [ inv ep2 ¦ (epα�epβ)¦ep1 |

epα ← unify′ rα1 rα2,epβ ← unify′ rβ1
rβ2

]
unify′ = [ ]
unify :: ∀τ1 τ2 .Repτ1 → Repτ2 →Maybe(τ1 ↔ τ2)
unify r1 r2 = caseunify′ r1 r2 of

x : → Just x
[ ]→ Nothing

Using run-time unification we can easily cast a dynamic value into
a static value of a given representable type.

rCast :: ∀τ .Repτ→ Dynamic→ τ
rCast rτ (Dyn rα a) = caseunify rτ rα of

Just ep→ to ep a
Nothing→

error "cast: type mismatch"

cast :: (Representableτ)⇒ Dynamic→ τ
cast d = rCast rep d
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Another useful function is dynamic function application, the appli-
cation of a dynamic function to a dynamic value. We introduce a
new caseR→ similar toR+ andR× to Rep.

apply :: Dynamic→ Dynamic→ Dynamic
apply(Dyn(R→ rα rβ ep) f ) (Dyn rα′ x)

= caseunify rα rα′ of
Just ep′→ Dyn rβ ((from ep f) (to ep′ x))
Nothing→ error "apply: type mismatch"

apply = error "apply: not a function"

EXAMPLE 1. Using dynamic values we can, for instance, imple-
ment a heterogeneous symbol table—a finite map from strings to
values of any type.

type Table = [(String,Dynamic)]
rLookup :: ∀τ .Repτ→ String→ Table→Maybeτ
rLookup rτ s t = fmap(rCast rτ) (lookup s t)

For alternative solutions the reader is referred to Weirich [32].

EXAMPLE 2. Dynamic values also provide a simple way of imple-
menting C’s printf function in a type-safe manner; see also [27].
The printf function allows the programmer to show an arbitrary
number of arguments of different types. Both the number of ar-
guments and their types are specified by a so-called format string
which is passed as a first argument to printf . Since the format string
may be unknown at compile time (because it may be read from an
external source), printf cannot be statically type-checked.

printf :: String→ [Dynamic]→ ShowS
printf "" = showString""
printf (’%’ : ’d’ : cs) (d : ds) = shows(cast d:: Int)

· printf cs ds
printf (’%’ : ’s’ : cs) (d : ds) = showString(cast d:: String)

· printf cs ds
printf (’%’ : ’%’ : cs) ds = showChar’%’ · printf cs ds
printf (’%’ : c: cs) [ ] = error "printf: missing "

"argument"
printf (c: cs) ds = showChar c· printf cs ds

Note that the code assumes that the String type is repre-
sentable.

3.2 Closing the circle

We addDynamicto the family of representable types, so that we
can also pass a dynamic value to a polytypic function

data Repτ = . . .
| RDynamic(τ↔ Dynamic)

Note thatRepτ andDynamicare now defined by mutual recursion.

Of course, we have to extend the polytypic function definitions to
take the new case into account. Here is how we take equality of two
dynamic values.

rEqual(RDynamicep) d1 d2
= case(from ep d1, from ep d2) of

(Dyn rα1 a1,Dyn rα2 a2)→
caseunify rα1 rα2 of

Just ep′→ rEqual rα1 a1 (to ep′ a2)
Nothing→ False

We first determine whether the types of the dynamic values are
equal. If this is the case,rEqual is called recursively to check
whether the values are equal, as well.

4 Generics

4.1 Generic representation types

What have we achieved so far? Using type representations we can
program a function that works uniformly for allrepresentabletypes.
Let’s become more ambitious now. We aim at broadening the scope
of the polytypic functions so that they work forall types including
types that the programmer is yet to define. We won’t achieve this
goal in its full glory—this requires an external tool or some support
from the compiler—but we will get pretty close. The programmer
only has to do a bit of extra work for each newly introduced type.

The principal idea is to make every type representable. Consider as
a first simple example the data type of Booleans.

data Bool = False| True

Now, the typeBool is isomorphic to the sum type1+ 1, which is
already representable.4 Here are functions that convert to and fro.

fromBool :: Bool→ 1+1
fromBool False = Inl Unit
fromBool True = Inr Unit

toBool :: 1+1→ Bool
toBool (Inl Unit) = False
toBool (Inr Unit) = True

Using these isomorphisms we can represent the typeBool as fol-
lows.

rBool :: Rep Bool
rBool = R+ r1 r1 (EP fromBool toBool)

The type1+1 is the so-calledgeneric representation typeof Bool,
see [18].

Since Haskell’sdata construct introduces a sum of products and
both sums and products are representable, it looks as if we are done.
But not quite, data types may be recursively defined and they may
be parametric (possibly abstracting over higher-order kinded type
constructors). We will address each point in turn.

Haskell’s list data type serves as a nice example for a data type that
is both recursive and parametric.

data [α] = [ ] | α : [α]

Its generic representation type is1+ (α× [α ]) with the isomor-
phisms given by

from[ ] :: ∀α . [α ]→ 1+(α× [α ])
from[ ] [ ] = Inl Unit
from[ ] (a : as) = Inr (a :×: as)
to[ ] :: ∀α .1+(α× [α])→ [α]
to[ ] (Inl Unit) = [ ]
to[ ] (Inr (a :×: as)) = a: as.

Thus, the following representation of[α ] suggests itself.

r[ ] :: ∀α .Repα→ Rep[α]
r[ ] rα = R+ r1 (r× rα (r[ ] rα)) (EP from[ ] to[ ])

Two points are worth noting. First, the type representation of
the list type constructor is afunction taking a representation of

4Strictly speaking, the typesBool and1+1 are not isomorphic
in Haskell since1 contains an additional bottom element. We sim-
ply ignore this complication here.
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τ to a representation of[τ]. Second, the representation of[τ ]
is given by aninfinite term as type recursion is mapped onto
value recursion. Since Haskell is a lazy language, this is not a
problem as far as the polytypic functions are concerned: the call
rEqual (r[ ] rInt) [0. .8] [0. .9], for instance, happily evaluates to
False. However, the presence of infinite terms renders the uni-
fication of representations impossible: quite annoyingly the call
cast(dynamic[0. .9 :: Int ]) :: [Int ] does not terminate.

There are at least two solutions to this problem. We could represent
type recursion explicitly by introducing a fixed point operator—this
is the approach taken in PolyP [19]. However, this is technically
rather awkward and never completely general as type recursion may
span over several types (mutual recursion) and as it may involve
type constructors rather than types (so-callednested data types, see
[6]). Thus, we would need an infinite family of fixed point oper-
ators. Furthermore, checking equality of higher-order kinded type
constructors is undecidable. Haskell avoids the latter problem by
usingname equivalencerather thanstructural equivalence, which
motivates the second solution.

We continue to represent recursive types by infinite terms but addi-
tionally label the representation by its Haskell name. The following
data type is sufficient for capturing closed Haskell type terms (in-
cluding higher-order kinded types).

data Term = App String[Term]
deriving (Eq)

For instance,[Int ] is represented byApp"[]" [App"Int" [ ]]. We
augmentRepτ by one additional constructor.

data Repτ = RInt (τ↔ Int)
| RDynamic (τ↔ Dynamic)
| R1 (τ↔ 1)
| ∀α β .R+ (Repα) (Repβ) (τ↔ (α+β))
| ∀α β .R× (Repα) (Repβ) (τ↔ (α×β))
| ∀α .RTypeTerm(Repα) (τ↔ α)

On the face of it, we now have two types for type representations:
Repτ captures the structural information andTerm captures the
naming information. The functionterm? extracts the latter infor-
mation from the former.

term? :: ∀τ .Repτ→ Term
term? (RInt ep) = App"Int" [ ]
term? (RDynamicep) = App"Dynamic" [ ]
term? (R1 ep) = App"1" [ ]
term? (R+ rα rβ ep) = App"(+)" [term? rα, term? rβ ]
term? (R× rα rβ ep) = App"(*)" [term? rα, term? rβ ]
term? (RTypet rα ep) = t

We change the definition ofr[ ] to incorporate the list type name.

r[ ] :: ∀α .Repα→ Rep[α ]
r[ ] rα = RType(App"[]" [term? rα ])

(r+ r1 (r× rα (r[ ] rα))) (EP from[ ] to[ ])

It remains to extend the definition ofunify′. To unify two labelled
representationsRTypet1 rα1 ep1 andRTypet2 rα2 ep2, we simply test
t1 andt2 for equality.

unify′ (RTypet1 rα1 ep1) (RTypet2 rα2 ep2)
= [ inv ep2 ¦head(unify′ rα1 rα2)¦ep1 | t1 t2 ]

If t1 andt2 are equal, we know thatrα1 andrα2 must be unifiable.
The callhead(unify′ rα1 rα2) immediately returns the proof. Note

that the following definition ofunify′ does not work, as it is too
eager.

unify′ (RTypet1 rα1 ep1) (RTypet2 rα2 ep2) -- WRONG
= [ inv ep2 ¦epα ¦ep1 | t1 t2,epα ← unify′ rα1 rα2 ]

Turning to the treatment of higher-order kinded data types let us
first take a look at one popular example. The following definition
introduces so-calledgeneralized rose trees.

data Treeφ α = Nodeα (φ (Treeφ α))

Since the first argument ofTree ranges over type constructors of
kind ? → ?, Tree has kind(? → ?) → ? → ?. We have already
seen that a type constructorφ of kind ? → ? is represented by a
function of type∀α .Repα→ Rep(φ α). SinceTreeabstracts over
type constructors of this kind it has type

rTree :: ∀φ .(∀α .Repα→ Rep(φ α))→
(∀α .Repα→ Rep(Treeφ α)).

Note thatrTree possesses a so-calledrank-2 type. In general, a type
constructorτ of kind κ is represented by an element ofRepκ τ with

Rep? τ = Repτ
Repκ1→κ2

τ = ∀α .Repκ1
α→ Repκ2

(τ α).

As the latest version of the Glasgow Haskell compiler (GHC 5.03)
supports rank-n types, we can, in fact, represent types of arbitrary
kinds.

So far so good. One small problem remains though. To define the
representation ofTreeφ α, we have to construct type terms from
the representations ofφ andα. Since the representation ofφ of type
Rep?→? φ is a function this sounds like a hard nut to crack. For-
tunately, Haskell’s type language is a multi-sorted term algebra as
Haskell does not offer general type abstraction. Each type term is
of the formApp s[t1, . . . , tn ]; type application is purely syntactic:
applying App s[t1, . . . , tn ] to t yields App s[t1, . . . , tn, t ]. Conse-
quently, from the result of an application we can reconstruct both
the original function and its argument.

term?→? :: ∀φ .(∀α .Repα→ Rep(φ α))→ Term
term?→? rφ = caseterm? (rφ r1) of App t ts→ App t(init ts)

Given these prerequisites we define

rTree rφ rα = RType(App"Tree"
[term?→? rφ, term? rα ])

(r× rα (rφ (rTree rφ rα)))
(EP fromTree toTree)

fromTree :: ∀φ α .Treeφ α→ α× (φ (Treeφ α))
fromTree(Node a ts) = (a :×: ts)
toTree :: ∀φ α .α× (φ (Treeφ α))→ Treeφ α
toTree(a :×: ts) = Node a ts

4.2 Constructor names

To be able to write polytypic functions that show or read elements
of some data type, we add one more constructor to theRepdata
type.

data Repτ = . . .
| RCon String(Repτ)

The RCon constructor is intended to record the string representa-
tion of a data constructor. Of course, in practice one would replace
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Stringby a more elaborate data type that contains further informa-
tion such as fixity, see [18]. The updated definition ofrBool illus-
trates the use ofRCon.

rBool :: Rep Bool
rBool = RType(App"Bool" [ ])

(r+ (RCon "False" r1) (RCon "True" r1))
(EP fromBool toBool)

Here is a simplified version of Haskell’sshowfunction, which con-
verts an element of any data type to its string representation. To
understand the definition keep in mind that the sum type is used to
represent the cases of adata declaration while the product type is
used to represent the arguments of a single constructor. The unit
type1 signals that a constructor has no arguments.

rShows :: ∀τ .Repτ→ τ→ ShowS
rShows(RInt ep) t = shows(from ep t)
rShows(RDynamicep) t = casefrom ep tof

Dyn rα x→
showChar’(’
· showString"dynamic "
· rShows rα x
· showChar’)’

rShows(R1 ep) t = showString""
rShows(R+ rα rβ ep) t = casefrom ep tof

Inl a→ rShows rα a
Inr b→ rShows rβ b

rShows(R× rα rβ ep) t = casefrom ep tof
(a :×: b)→

rShows rα a
· showString" "
· rShows rβ b

rShows(RTypee rα ep) t = rShows rα (from ep t)
rShows(RCon s(R1 ep)) t = showString s

-- nullary constructor
rShows(RCon s rα) t = showChar’(’ · showString s

· showChar’ ’ · rShows rα t
· showChar’)’

Since type representations are ordinary values, we can separate spe-
cial cases simply by pattern matching. The second but last equation
of rShows, for instance, handles nullary constructors while the last
equation takes care of the remaining cases.

5 Related work

The polymorphic Horn clause language of Hanus [12] generalizes
the untyped Horn clause resolution semantics of Prolog to typed
and polymorphically typed terms. Our initial definition ofRepin
Section 2.1 is legal in this language, which appears to be strictly
more powerful than Haskell. Interestingly, the semantics requires
the presence of types at run time. Optimizations are possible for
so-calledtype preservingfunctions where the type variables of the
argument types also occur in the result type (note that theRepcon-
structors are type-preserving).

Jansson and Jeuring [19] developed PolyP, a variant of Haskell that
includes a polytypic function construct permitting definitions by
primitive recursion on the structure of regular data types, but did
not support higher-order kinded type arguments. Hinze [17] pro-
posed an approach based on indexing values by types and types
by kinds. This made it possible to write definitions of functions
like mapthat work for arbitrary polymorphic data structures. This

approach has been implemented in Generic Haskell [7], a succes-
sor to PolyP. Hinze and Peyton Jones [18] introduced derivable type
classes, which can define type-indexed values within classes but are
limited to kind?. Clean’s generics system [3] generalizes derivable
type classes to allow generic type classes defined at arbitrary kinds
rather than just?.

Abadi et al. [2] first considered rigorously the problem of adding
aDynamictype and type pattern matchingtypecaseto a monomor-
phic ML-like language. Leroy and Mauny [21] studied the inter-
action ofDynamicwith implicit polymorphism and implemented
a restricted form of polymorphic type pattern matching with both
∀ and∃ quantifiers. Abadi et al. [1] considered dynamics with
explicit and implicit polymorphism, and showed how to general-
ize typecaseto arbitrary polymorphic patterns. We believe our
Dynamicalso can support making values of closed polymorphic
types dynamic, although we have yet to experiment with unifying
and pattern-matching polymorphic type representations.

GHC’sDynamiclibrary containsTypeRepandDynamictypes and a
Typeableclass that are weaker, ‘untyped’ versions of ourDynamic,
Rep, andRepresentable. Type representations are abstract, and it
is impossible to, for example, unpack componentTypeReps from a
productTypeRep. On the other hand, our typed versions constitute
a safe implementation of these constructs.

Clean also includes support in development for a richer type
Dynamic[26] that includestypecasewith pattern matching on (pos-
sibly polymorphic) types, in the style of Leroy and Mauny, and
also supports type-dependent functions. Clean’s dynamics employ
a type classTCα that says that it is possible to makeα dynamic, so,
unlike earlier approaches, values with partially abstract types con-
taining free type variables can be cast toDynamicas long as all the
type variables are of classTC. Our Dynamicsupports exactly this
behaviour, whence Clean’sTC is analogous to ourRepresentable
class.

Shields, Sheard, and Peyton Jones [27] present an alternative imple-
mentation of dynamics based on staged type inference. In staged
computation [10, 28], compilation of parts of a program may be
delayed, so functions may be specialized to arguments available at
compile time. Staged type inference delays type inference and type
checking until run time as well. This makes it possible to avoid
many of the difficulties of explicit polymorphic type pattern match-
ing encountered in previous approaches, since unification occurs
at run time when concrete type information is available. Our ap-
proach also employs run-time unification, if only for monomorphic
types, but ourunify is a user-level program rather than compiler-
generated code. It would be interesting to see whether our ap-
proach generalizes to polymorphic unifcation. Staged computation
may also be useful in optimizing representation-passing by spe-
cializing generic functions to particular representations. We have
also experimented with using GHC’s rewrite rules [24] to automati-
cally rewrite representation-based functions when type information
is known at compile time. We found that functions can be fully
specialized to non-recursive types, but not to recursive types like[ ]
because recursive types are represented by recursively defined rep-
resentations. As a result, rewrite rules in their present form are of
limited use for optimizing representation-based programs.

Weirich [32] showed how to implement type-safe cast and a form
of Dynamicin Haskell using type classes. The two Haskell imple-
mentations ofcastemploy mutually recursive type classesCastToα
andCastFromβ; the first implementation of these classes interprets
cast as coercion (α→ β), whereas the second interprets cast as un-
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restricted substitution (φ α → φ β). These interpretations of cast
correspond exactly to our interpretations of type equivalence.

Implicit, compiler-generated type information has been studied in
many languages and proposals for implementing statically-typed
dynamics and implementing intensional polymorphism. Explicit
type representations are not new either: they were introduced by
Crary, Weirich, and Morrisett [9]; the authors also observed that
representations could be used to implement an explicitDynamic
type. Crary and Weirich [8] and Weirich [33] have also consid-
ered encodings of type representations in the more powerful type
systemsLX, which includes function, sum, product, and recursive
kinds, andLU−, which includes impredicative kind polymorphism.

Baars and Swierstra [4] have independently discovered the type rep-
resentation encoding presented in Section 2. However, instead of
starting with representation-passing generic functions and attempt-
ing to implement representations, they start with dynamic types and
postulate a type familyTypeRepα that contains enough information
for dynamic typechecking, and then derive an implementation for
it. Baars and Swierstra address dynamic typing issues beyond those
considered here, such as dynamic typing and compilation of expres-
sions. In contrast, we have considered both generics and dynamics,
and interrelated them. We have also shown how to represent a more
general class of types, including polymorphic and recursive types.

6 Conclusions

Previous approaches to implementing generic programming and
dynamic typing in high-level statically typed languages have in-
volved substantial language modifications and substantial proofs of
type safety for the modified language. Dynamics and generics have
been studied separately, leaving unresolved the question of whether
dynamic values can be used with generic functions and vice versa.
We have shown that generic programming and dynamic typing fea-
tures can be derived simultaneously and compatibly from type rep-
resentations. Moreover, type representations can be encoded in
Haskell using existentials and equivalence types, so they can be im-
plemented and given a semantics by translation. As far as we know
this is the first approach to make this connection between statically
typed generics and dynamics explicit.

Unlike prior approaches to implementing type representations, we
encode representations as ordinary data types andtypecases as or-
dinary cases. As a result, all of the existing pattern matching con-
structs and optimizations carry over to representation patterns with
no effort. Mutually recursive functions and multiple type arguments
also pose no problems. Representation-passing functions can be
compiled separately from their calling contexts; in contrast, other
approaches to statically typed generic programming cannot compile
generic function uses and definitions separately. Dynamic types and
run-time type checking can be defined in terms of representations,
but since type representations are explicitly typed program data, this
implementation ofDynamicis more flexible than implementations
in which type information is compiler-generated and abstract.

There are several directions for improving our approach. For exam-
ple, it is not possible to override the behaviour of a polytypic func-
tion at some specific instance (without changing the definition of
Rep). In contrast, overriding is easy using type classes. Extensible
data types might alleviate this problem. Our encoding also incurs
unnecessary run-time type dispatch overhead when types are avail-
able at compile time. Furthermore, our encoding translates arbitrary
tuples and data types to a universal data type consisting of binary
products, sums, and constructors, which may incur additional over-

head. These drawbacks could be addressed through specialization,
run-time code generation, or deforestation optimizations. Our en-
coding requires a fair amount of programmer effort, and we plan
to address this by implementing extensions such aswith clauses in
Haskell via translation. Finally, while it is possible to define poly-
typic functions such asmapthat analyze type constructors of kind
other than? (using a differentReptype), constructing functions that
work for all types of all kinds seems out of reach within Haskell’s
type system. These are all important directions for future work.

References

[1] Martı́n Abadi, Luca Cardelli, Benjamin Pierce, and Didier
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A Listing

A.1 Generic representation types

data 1 = Unit

data α+β = Inl α | Inr β
data α×β = α :×: β

Standard mapping functions on the above types (and on the function type).

(+) :: ∀α β .(α→ β)→ (∀γ δ .(γ→ δ)→ ((α+ γ)→ (β+δ)))
(f +g) (Inl a) = Inl (f a)
(f +g) (Inr b) = Inr (g b)
(×) :: ∀α β .(α→ β)→ (∀γ δ .(γ→ δ)→ ((α× γ)→ (β×δ)))
(f ×g) (a :×: b) = f a :×: g b

(→) :: ∀α β .(α→ β)→ (∀γ δ .(γ→ δ)→ ((β→ γ)→ (α→ δ)))
(f → g) h = g · h · f

A.2 Type equivalence

data α↔ β = EP{ from:: α→ β, to :: β→ α}

Reflexivity, symmetry and transitivity.

self :: ∀α .α↔ α
self = EP{ from= id, to = id}
inv :: ∀α β .(α↔ β)→ (β↔ α)
inv f = EP{ from= to f , to = from f}
infixr 9 ¦
(¦) :: ∀α β γ .(β↔ γ)→ (α↔ β)→ (α↔ γ)
f ¦g = EP{ from= from f · from g, to = to g · to f }

Mapping functions for generic representation types (and for the function type) implementing the laws of congruence.

(�) :: ∀α β .(α↔ β)→ (∀γ δ .(γ↔ δ)→ ((α+ γ)↔ (β+δ)))
f �g = EP{ from= from f + from g, to = to f + to g}
(�) :: ∀α β .(α↔ β)→ (∀γ δ .(γ↔ δ)→ ((α× γ)↔ (β×δ)))
f �g = EP{ from= from f× from g, to = to f× to g}
(�) :: ∀α β .(α↔ β)→ (∀γ δ .(γ↔ δ)→ ((α→ γ)↔ (β→ δ)))
f �g = EP{ from= to f → from g, to = from f → to g}

A.3 Type representations

data Repτ = RInt (τ↔ Int)
| RChar (τ↔ Char)
| RDynamic (τ↔ Dynamic)
| ∀α β .R→ (Repα) (Repβ) (τ↔ (α→ β))
| R1 (τ↔ 1)
| ∀α β .R+ (Repα) (Repβ) (τ↔ (α+β))
| ∀α β .R× (Repα) (Repβ) (τ↔ (α×β))
| ∀α .RTypeTerm(Repα) (τ↔ α)
| RCon String(Repτ)
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Smart constructors.

rInt :: Rep Int
rInt = RInt self
rChar :: Rep Char
rChar = RChar self
rDynamic :: Rep Dynamic
rDynamic = RDynamicself
r→ :: ∀α .Repα→ (∀β .Repβ→ Rep(α→ β))
r→ rα rβ = R→ rα rβ self
r1 :: Rep1
r1 = R1 self
r+ :: ∀α .Repα→ (∀β .Repβ→ Rep(α+β))
r+ rα rβ = R+ rα rβ self
r× :: ∀α .Repα→ (∀β .Repβ→ Rep(α×β))
r× rα rβ = R× rα rβ self

A class for representable types.

classRepresentableτ where
rep :: Repτ

instanceRepresentable Intwhere
rep = rInt

instanceRepresentable Charwhere
rep = rChar

instanceRepresentable Dynamicwhere
rep = rDynamic

instance(Representable a,Representable b)⇒ Representable(a→ b) where
rep = r→ rep rep

instance(Representableα,Representableβ)⇒ Representable(α+β) where
rep = r+ rep rep

instance(Representableα,Representableβ)⇒ Representable(α×β) where
rep = r× rep rep

A.4 Dynamics

data Dynamic = ∀α .Dyn(Repα) α
dynamic :: ∀α .(Representableα)⇒ α→ Dynamic
dynamic x = Dyn rep x
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Run-time unification of types.

unify′ ::∀τ1 τ2 .Repτ1 → Repτ2 → [τ1 ↔ τ2 ]
unify′ (RInt ep1) (RInt ep2)

= [ inv ep2 ¦ep1 ]
unify′ (RChar ep1) (RChar ep2)

= [ inv ep2 ¦ep1 ]
unify′ (RDynamicep1) (RDynamicep2)

= [ inv ep2 ¦ep1 ]
unify′ (R→ rα1 rβ1

ep1) (R→ rα2 rβ2
ep2)

= [ inv ep2 ¦ (epα�epβ)¦ep1 | epα ← unify′ rα1 rα2,epβ ← unify′ rβ1
rβ2

]
unify′ (R1 ep1) (R1 ep2)

= [ inv ep2 ¦ep1 ]
unify′ (R+ rα1 rβ1

ep1) (R+ rα2 rβ2
ep2)

= [ inv ep2 ¦ (epα�epβ)¦ep1 | epα ← unify′ rα1 rα2,epβ ← unify′ rβ1
rβ2

]
unify′ (R× rα1 rβ1

ep1) (R× rα2 rβ2
ep2)

= [ inv ep2 ¦ (epα�epβ)¦ep1 | epα ← unify′ rα1 rα2,epβ ← unify′ rβ1
rβ2

]
unify′ (RCon s1 rα1) (RCon s2 rα2)

= unify′ rα1 rα2

unify′ (RTypet1 rα1 ep1) (RTypet2 rα2 ep2)
= [ inv ep2 ¦head(unify′ rα1 rα2)¦ep1 | t1 t2 ]

unify′ = [ ]
unify :: ∀τ1 τ2 .Repτ1 → Repτ2 →Maybe(τ1 ↔ τ2)
unify r1 r2 = caseunify′ r1 r2 of

x : → Just x
[ ]→ Nothing

Type-safe cast and dynamic function application.

rCast :: ∀τ .Repτ→ Dynamic→ τ
rCast rτ (Dyn rα a) = caseunify rτ rα of

Just ep→ to ep a
Nothing→ error "cast: type mismatch"

cast :: (Representableτ)⇒ Dynamic→ τ
cast d = rCast rep d

apply :: Dynamic→ Dynamic→ Dynamic
apply(Dyn(R→ rα rβ ep) f ) (Dyn rα′ x)

= caseunify rα rα′ of
Just ep′→ Dyn rβ ((from ep f) (to ep′ x))
Nothing→ error "apply: type mismatch"

apply = error "apply: not a function"

A.5 Type terms

data Term = App String[Term]
deriving (Show,Eq)

term? :: ∀τ .Repτ→ Term
term? (RInt ep) = App"Int" [ ]
term? (RChar ep) = App"Char" [ ]
term? (RDynamicep) = App"Dynamic" [ ]
term? (R→ rα rβ ep) = App"->" [term? rα, term? rβ ]
term? (R1 ep) = App"1" [ ]
term? (R+ rα rβ ep) = App"(+)" [term? rα, term? rβ ]
term? (R× rα rβ ep) = App"(*)" [term? rα, term? rβ ]
term? (RTypet rα ep) = t

term?→? :: ∀φ .(∀α .Repα→ Rep(φ α))→ Term
term?→? rφ = caseterm? (rφ r1) of App t ts→ App t(init ts)
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A.6 Generics

Examples of type representations.

rBool :: Rep Bool
rBool = RType(App"Bool" [ ])

(r+ (RCon "False" r1) (RCon "True" r1))
(EP fromBool toBool)

fromBool :: Bool→ 1+1
fromBool False = Inl Unit
fromBool True = Inr Unit

toBool :: 1+1→ Bool
toBool (Inl Unit) = False
toBool (Inr Unit) = True
r[ ] :: ∀α .Repα→ Rep[α]
r[ ] rα = RType(App"[]" [term? rα ])

(r+ (RCon "[]" r1) (RCon "(:)" (r× rα (r[ ] rα))))
(EP from[ ] to[ ])

from[ ] :: ∀α . [α]→ 1+(α× [α])
from[ ] [ ] = Inl Unit
from[ ] (a :as) = Inr (a :×: as)
to[ ] :: ∀α .1+(α× [α])→ [α]
to[ ] (Inl Unit) = [ ]
to[ ] (Inr (a :×: as)) = a : as

instanceRepresentable Boolwhere
rep = rBool

instance(Representableα)⇒ Representable[α] where
rep = r[ ] rep

Generic functions: generic equality.

rEqual :: ∀τ .Repτ→ τ→ τ→ Bool
rEqual(RInt ep) t1 t2 = from ep t1 from ep t2
rEqual(RChar ep) t1 t2 = from ep t1 from ep t2
rEqual(RDynamicep) d1 d2 = case(from ep d1, from ep d2) of

(Dyn rα1 v1,Dyn rα2 v2)
→ caseunify rα1 rα2 of

Just ep′→ rEqual rα1 v1 (to ep′ v2)
Nothing→ False

rEqual(R→ rα rβ ep) t1 t2 = error "rEqual: equality of functions"
rEqual(R1 ep) t1 t2 = case(from ep t1, from ep t2) of

(Unit,Unit)→ True
rEqual(R+ rα rβ ep) t1 t2 = case(from ep t1, from ep t2) of

(Inl a1, Inl a2)→ rEqual rα a1 a2
(Inr b1, Inr b2)→ rEqual rβ b1 b2
→ False

rEqual(R× rα rβ ep) t1 t2 = case(from ep t1, from ep t2) of
(a1 :×: b1,a2 :×: b2)→

rEqual rα a1 a2 ∧ rEqual rβ b1 b2
rEqual(RTypee rα ep) t1 t2 = rEqual rα (from ep t1) (from ep t2)
rEqual(RCon s rα) t1 t2 = rEqual rα t1 t2

Generic minimum.
rMinBound :: ∀τ .Repτ→ τ
rMinBound(RInt ep) = to ep(minBound)
rMinBound(RChar ep) = to ep(minBound)
rMinBound(RDynamicep) = error "rMinBound: dynamic"
rMinBound(R→ rα rβ ep) = to ep(λa→ rMinBound rβ)
rMinBound(R1 ep) = to ep(Unit)
rMinBound(R+ rα rβ ep) = to ep(Inl (rMinBound rα))
rMinBound(R× rα rβ ep) = to ep(rMinBound rα :×: rMinBound rβ)
rMinBound(RTypet rα ep) = to ep(rMinBound rα)
rMinBound(RCon s rα) = rMinBound rα
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Generic unparsing.

rShows :: ∀τ .Repτ→ τ→ ShowS
rShows(RInt ep) t = shows(from ep t)
rShows(RChar ep) t = shows(from ep t)
rShows(RDynamicep) t = casefrom ep tof

Dyn rα x→ showChar’(’ · showString"dynamic "
· rShows rα x · showChar’)’

rShows(R→ rα rβ ep) t = showString"<function>"
rShows(R1 ep) t = showString""
rShows(R+ rα rβ ep) t = casefrom ep tof

Inl a→ rShows rα a
Inr b→ rShows rβ b

rShows(R× rα rβ ep) t = casefrom ep tof
(a :×: b)→ rShows rα a · showString" " · rShows rβ b

rShows(RTypee rα ep) t = rShows rα (from ep t)
rShows(RCon s(R1 ep)) t = showString s
rShows(RCon s rα) t = showChar’(’ · showString s· showChar’ ’

· rShows rα t · showChar’)’

Generic memoization.

rMemo :: ∀τ ν .Repτ→ (τ→ ν)→ (τ→ ν)
rMemo(RInt ep) f = λt→ f t -- no memoization
rMemo(RChar ep) f = λt→ f t -- no memoization
rMemo(RDynamicep) f = λt→ f t -- no memoization
rMemo(R→ rα rβ ep) f = λt→ f t -- no memoization
rMemo(R1 ep) f = λt→ casefrom ep tof

Unit→ fUnit
where fUnit = f (to ep(Unit))

rMemo(R+ rα rβ ep) f = λt→ casefrom ep tof
Inl a→ fInl a
Inr b→ fInr b

where fInl = rMemo rα (λa→ f (to ep(Inl a)))
fInr = rMemo rβ (λb→ f (to ep(Inr b)))

rMemo(R× rα rβ ep) f = λt→ casefrom ep tof
a :×: b→ fPair a b

where fPair = rMemo rα (λa→ rMemo rβ (λb→ f (to ep(a :×: b))))
rMemo(RTypee rα ep) f = λt→ rMemo rα (λa→ f (to ep a)) (from ep t)
rMemo(RCon s rα) f = rMemo rα f

Note that we donot memoize primitive types such asInts orChars (this would require building a look-up table).
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