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Abstract Dynamically typed languages, like Scheme and Java, preserve type
information until run time, enabling concise definitions of util-
The recent years have seen a number of proposals for extendingty functions (such ashow ‘==, comparg using dynamic casts,

statically typed languages by dynamics or generics. Most propos- generic functions, or multimethods. However, type preservation in-
als — if not all — require significant extensions to the underlying troduces space and run-time overhead that is left for the compiler
language. In this paper we show that this need not be the case. Weo optimize away. Also, with dynamic typing, many type errors that
propose a particularly lightweight extension that supports both dy- could be caught at compile time are not detected until run time.
namics and generics. Furthermore, the two features are smoothly

integrated: dynamic values, for instance, can be passed to genericStatically typed languages, like Haskell and ML, are at the other ex-
functions. Our proposal makes do with a standard Hindley-Milner treme. Typechecking occurs at compile time and type information
type system augmented by existential types. Building upon theseis discarded after compilation, so it is impossible to write functions
ideas we have implemented a small library that is readily usable whose behaviour depends on run-time type information. As a re-

both with Hugs and with the Glasgow Haskell compiler. sult, utility and communication functions cannot be defined once
and for all. Instead, programmers must provide new versions of
Categories and Subject Descriptors them for each new data type. Their definitions are essentially de-

termined by type structure, but must be written out explicitly be-
cause this regular behaviour cannot be expressed using the Hindley-

D.3.3 [Programming Language$: Language Constructs and Fea- .
[Prog 9 guageg guag Milner type system.

tures

Previous approaches to supporting generic programming, type-
General Terms dependent optimizations, and dynamic casts within statically typed
languages include:

Languages
e explicit dynamic typing [21, 1], in which the language is aug-
Keywords mented with &ynamictype and aypecaser castconstruct;
e polytypic programming [19, 5, 16], in which type-dependent
Generic programming, dynamic typing, type representations functions written in a language extension are translated to
pure polymorphic functions;
1 Introduction e ad-hoc polymorphism [31, 11] (i.e. Haskell's type classes),
in which types are associated with classes that indicate the
A desirable feature of programming languagesagety Broadly presence of overloaded functions like’:

speaking, safe programming languages prevent untrapped errors at
run time [25]. Safety can be achieved either by static checking,
by dynamic checking, or by a combination of static and dynamic
checks. Each approach has its pros and cons.

e intensional polymorphism [14], in which type information is
preserved throughout compilation, so that run-time type dis-
patch can be performed.

However, none of the above techniques is both easy to implement
and powerful enough to support dynamics and generics. Explicit
dynamic typing is nontrivial to implement and to prove type-safe,
especially in the presence of polymorphism. Polytypic program-
ming is typically implemented using source-to-source translation,
and does not address dynamic typing. Type classes have long
been present in Haskell, but are limited in expressiveness. The
original type-passing implementation of intensional polymorphism
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Recent work has addressed some of these shortcomings: Leroy anadvhereRepis the type of type representations. A moment'’s reflec-
Mauny [21] and Abadi et al. [1] showed how to safely combine dy- tion, however, reveals that this won't work. The parametricity theo-
namics and polymorphism. Hinze and Peyton Jones [18] have intro- rem [29] implies that a function of this type must necessarily ignore
duced derivable type classes, which permit polytypic definitions of its second and its third argument. The trick is to use a parametric
type classes. Crary, Weirich, and Morrisett [9] have reconciled in- type for type representations:

tensional polymorphism with type erasure using explicit type repre-
sentations. However, implementations of dynamics, derivable type

classes, and type representations still seem to require substantiaHere Repr is the type representation of The one-million-dollar
compiler modifications and soundness proofs. question is, of course, how can we define such a type? There are at

) ) least two possibilities, both of which require extensions to Haskell's
In this paper, we show that this need not be the case. We present ajata construct.
encoding of type representations in Haskell 98 [23] augmented with
existential types, and show how to use type representations to de- . ) . .
fine simple polytypic functions, typBynamic and finally generic 2.1 Alternative 1: polymorphlc data signatures

functions of the same flavour as those definable by derivable type . . -
classes. This provides a simple and safe implementation for gener-V€ inhabitRept by defining for each type constructor a corre-
ics and dynamics in Haskell, with no additional compiler support sponding value constructor that represents the type. For the above

or proofs of type soundness required. It also sheds light on the re-f@mily of types we introduce

() : Vo.Repa— a— o — Bool

lationship between generics and dynamics and shows that they can Rnt = Repint
coexist and interact peacefully. Ri = Repl

. Va.Repa — (VB.Repp — Rep(a +
The rest of the paper is structured as follows. Sec. 2 explains how FRzi oo Va. Regg — gvg Regg — Regga X g;g

to define type representations in Haskell and illustrates their use

in programming functions that work for a family of types. Type For instance, the typ&+ (Int x Int) is represented by the value
representations are also at the heart of dynamics in Sec. 3. Sec. &R+ Ry (R« Rint Rint) of typeRep(1+ (Int x Int)).

shows how to achieve true genericity, the ability to define functions

that work for all types. Finally, Sec. 5 reviews related work and Of course, the declarations above are not valid Haskell since data
Sec. 6 concludes. For reference, the complete implementation ofconstructors can only be introduced diata declarations. But, let's

the Haskell library is included in App. A. accept this for the moment.

Given these prerequisites we can easily define a polytypic equality
function that works for all representable types. We simply pattern
match on the ‘type’ argument.

2 Programming with type representations

Let’s start modest. Assume that you have a possibly infinite family

of types and you want to define a function, say, equality, that works rEqual I V1.Rept — T — T — Bool
for all types of this family (we call such a functigrolytypic). For rEqual(Rn ) tit = tp==tp
concreteness, let us consider the family of types given by the fol- rEqual (Ry)tyt; = case(ty,tp) of
lowing grammar. (Unit, Unit) — True
. rEqual (Ry rq rp) ta tp
T o= Int]l|T+T|TXT ~  case(ty, ty) of
We assume that the unit type, the sum type and the pair type are (Inlag,Inlaz) — rEqual rq a1 &
given by the following declarations (Haskell already offers isomor- (Inr by, Inr by) — rEqual rg by by
phic types but we introduce new types for reasons to become clear - — False
later). rEqual (Rx rq rB) t1 to
. = case(ty,to) of
datal = Unit (ag :x: by,ap :x: bp) —
dataa+B = |Inla]lInrp rEqual rq a3 a A rEqual rg by by
dataoaxpB = a:x:f

Note that each equation defines a function whose type is a true in-
stance of the declared typeEqual (Riyt), for instance, has type
Now, in Haskell one would immediately fall back on the class sys- Int— Int — Bool

tem to implement such a type-indexed family of functions. The

equality function is assigned the type A polytypic function can also be defined in terms of other polytypic
functions. The functiomElem for instance, implements polytypic
(==) = Vo.(Eqa)=a— a— Bool list membership.
The so-called class contextEq o) =’ makes explicit that the rElem I V1.Rept — 1 — [1] — Bool
equality function does not work for all types but only for those types rElemrtx = or[rEqualrtala«—X|

that are instances of the type cl&ss ] ) o
REMARK 1. The function rElem hints at one essential difference

The purpose of this section is to show that one can also do withoutto Haskell's class system. Consider the class-based variant of
type classes. The basic idea is to passdn additional argument rElem:
the}trepresentshe type at mﬂthh the equality function is called. As elem : Va.(Eqa)= o — [a] — Bool
a first try we could assign:*’ the typeVa.Rep— a — a — Bool,

The class context records precisely on which overloaded function
Iwe will always write universal quantifiers explicitly. elem depends. Forinstance, if elem additionally called show at type
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a, then Shovat would be added to the class context. By contrast, Turning to the definition oRepwe replace each type constraint
the signature of the type-passing implementation would not changewith T =1’ by the corresponding equivalence type- 1’.
if it called a type-passing rShow.[]

Rint (T < Int)

We have already noted that in Haskell data constructors can only be | 1 (t=1)
introduced bydata declarations. Unfortunately, we cannot define | VapB.Ry (Repa) (RepB) (T (a+p))
Repa via adata declaration since none of the data constructors has | Vo B.Rx (Repa) (Repp) (T (o x B))
result typeRepa. We require a slight extension that allows us to Additionally, we introduce so-calledmart constructorsorre-

instantiate the declared type to some specific instance. sponding to th&; constructors of the previous section that incorpo-

data Reprt

dataRept = Rint with T = Int rate the reflexive equivalence valself as a proof of equivalence.
| Ry witht=1 .
| Yap.R. (Repa) (Repf) wih 1~ - o Ep(tomid.o—id)
| VaB.Rx (Repa) (RepB)with T=axf '
Int © Replint
The idea is to assigRint the typeRept with the additional con- Int = Ry self
straint thatt = Int, recorded by thavith clause. As an aside, note ri © Repl
that a universal quantifier in front of a constructor name acts as an r = Ry self
existential quantifierSoRy rq rg has typeRept for sometypesa re . Va.Repa — (VB.RepP — Rep(a+B))
andp with T = a + . Existential types are supported both by Hugs rirarg = Ryrqrgself
and by the Glasgow Haskell compiler. Mx . Va.Repa — (VB.RepP — Rep(a x B))
r<fafg = Rxralp self

REMARK 2. Equational type constraints have been studied in the
context of module systems for ML [20, 13] and typed closure con- ) ) ) ) N
version in the presence of intensional polymorphism [22]. In those It remains to adapt the polytypic equality function to the new defini-
contexts, the problem is that important relationships between typestion of Rep The changes are straightforward: whenever we analyze
are hidden by modular abstraction or existential quantification; it @ valueeof typet equivalent tar’, we replacee by from ep ewhere

is solved using translucent sum types, singleton kinds, or restricted €p:: T < T’ is the corresponding proof of equivalence.

type equations in order to make enough type sharing information

identin th dul | i rEqual . V1.Rept —1—1— Bool
evident in the module or closure type. rEqual(Rmep)tit, — fromept --fromeps
rEqual(Rieptit; = case(fromep g,fromep ) of

Unfortunately, this prior work is not directly applicable, since it
addresses type sharing between elements of a module or existentia4
package, not type equations that depend on data type cases. For
example, singleton kinds would not help because each case of Rep
would requiret to have a different singleton kind. Perhaps this
could be addressed using kind polymorphism, but this complicates

(Unit, Unit) — True

Equal(Ry rargep) ty tz
= case(fromep§,fromepp) of

(Inlag,Inlay) — rEqual rq &1 a2

(Inr by, Inr by) — rEqual rg by by

_— False
the type system even furthef] Equal (Ry fo g ep) ty o
Fortunately, we don’t have to wait for yet another extension to = case(from ep §,from ep b) of
Haskell's already quite impressive type system siwith clauses (aq >x:by,ap < bp) —
can be simulated in Haskell 98 using embedding-projection pairs or rEqual ra a1 a A rEqual rg by by

equvalence types It is important to note thatEqual is polymorphically recursive:

the recursive calls are at the existentially quantified typesnd
2.2 Alternative 2: equivalence types B. This means that the type signature is mandatory, otherwise the
code would not typecheck.
In a type system corresponding to a consistent logical system,
we could (motivated by the Curry-Howard isomorphism) think of The equality function takes values of the ‘generic’ typapart.
with o = f clauses as propositions asserting thand are equiv- When weconstructa value of typer = T, then we must wrafo ep
alent in some sense. This notion of equivalence could range fromaround the constructed value. The polytypic functidtinBound
strict type equality to logical equivalence (that is, equivalence of which constructs the least value of a type, serves as an example.
type inhabitation). Propositional equivalence is typically defined as
“if and only if”: A=B meangA=-B)A (B=-A). Recall that con-
junctions correspond to product types and implications to function
types. Thus, we could define amuivalence typa « 1 corre-
sponding to the proposition that the typeandt’ are equivalent as
(1 — ) x (U — 1). The function components can be thought of as
casts front to T and back. In Haskell we declare

rMinBound D VI.Rept —1
rMinBound(Rin: ep) to ep(minBound
rMinBound(R; ep) to ep(Unit)
rMinBound(Ry rq rg ep) to ep(Inl (rMinBound 1))
rMinBound(Ry rq rs ep to ep(rMinBound Iy

:x: rMinBound 1g)

dataa < = EP{from:a—B,to:f—a}. phism and use of the terms “proposition” and “proof” for equiv-
alence types and values is not formally justified. In Haskell, an
An elementep of type T < T’ is a “proof” that the two types are  equivalence pair only guarantees tlatan be cast t@® and vice
equivalenf versa, with nontermination a possibility for either case. This turns
out to be enough for our purposes, since it still lets us encode repre-
2Haskell is not strongly normalizing and does not correspond sentations safely. In practice, all casts witnessing equivalences are
to a consistent logic, so our appeal to the Curry-Howard isomor- expected to terminate; usually, they are the identity.
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The polytypic functioorMema which memoizes a given function,  for example we can assert the equivalencénofand [Float] with

is an intriguing example of a function that both analyzes and syn- Ax — [] andAl — 0. Ensuring that equivalence cast pairs are the
thesizes values of the generic type. identity or form an isomorphism is not expressible in Haskell, so
these are external proof obligations.

rMemo I VIV.Rept = (T—V) = (T—V)
rMemo (Rt ep) f = A—ft -- N0 memoization
rMemo(Ry ep) f = At — casefrom ep tof : :
Unit — funit Genuine type equality
where fUnit f (to ep(Unit))

We have seen in the previous section that the equivalence type

T does not guarantee theaindt’ are actually equal (and we have
used this to good effect). An intriguing question is whether we can
devise an equivalence type that only admits equal types. Perhaps
surprisingly, this is indeed possible and even more surprisingly, the
underlying idea goes back to Leibniz—see Wadler [30] for a related
application of Leibniz’s idea. According to Leibniz, two terms are
equal if one may be substituted for the other. Adapting this principle

At — casefrom ep tof
Inla— flnla
Inrb —finrb
rMemo iy (Aa— f (to ep(Inla)))
rMemo fz (Ab — f (to ep(Inr b)))
At — casefrom ep tof
a:x:b—fPairab

rMemo(R; rq rg ep)

wherefinl
finr
rMemo(Ry rq rg ep) f

wherefPair = rMemor (Aa— to types, we define
rMemo iz (A\b — ' ’
f (toep(a:x:b)))) newtypea < B = EP{unEP:V@.@a — @B}
To see howMemoworks note that the helper definitiofignit, finl, . . .
finr, andfPair do not depend on the actual argumenf ofThus, Note that the universally quantified type variapleanges over type

oncef is given, they can be readily computed. Memoization relies Constructors of king — x. Thus, an element af — Bis a function

critically on the fact that they are computed only on demand and that converts an element of tygea into an element o for any

then at most once. This is guaranteed if the implementatituilis type constructorp. We introduce a constarself expressing the
lazy. The interested reader is referred to Hinze [15] for background "eflexivity rule:

information. 3

self 1 Voa.a—a

New types self = EPid

So far equivalence typas— 1’ have actually consisted of proofs of
type equality, since they have been instantiated only with identity
functions. But we could also interpret an elementref> T as a
proof that the two types armsomorphicrather than equal. Coinci-
dentally, Haskell offers a linguistic construct for introducing a new
type that is isomorphic to an existing type. Consider as an example

the type of triples. To provide the same functionality as before we have to define func-

newtypeTria By = Topi{fromp;ax (Bxy)} tions that given a proof of type equality cast one type into the other.
Thefromfunction is easy: we substitute the identity type §or

In a strongly normalizing type system likg, the only inhabitant of

o < ais the identityA f Ax.x. If a andp are not equal, then the type

a < [ is empty. In Haskell, there are additional inhabitants arising
from nontermination. However, attempting to use such elements to
cast between andp will result in divergence.

The declaration defineBri a 3y to be isomorphic tax x (B xy)

with the functionsTor,; and fromy,; witnessing the isomorphism. newtypelda = Id{unld:a}
_SinceTri a Byis isomorphic to an existing type, we can represent from © vaB.(a—p)— (a—p)
it as follows. from ep = unld-unEPep Id
I Tri . Va.Repa — (VB.RepB — (Vy.Repy —
Rep(Tria By))) The to function is more subtle: we first substitute the type con-
Mrilafgly = Ruxra(rx rpry) (EP fromp; Tor) structor g x = x — o for @. This gives us a function of type

. . . . ) (a — a) — (B — a), which we then apply to the identity function.
Now, if we pass a triple to a polytypic function, then the isomor-

phismsfromy,; andTor,; are automatically called at the appropriate newtypea — B = Inv{uninv::ip—a}
places. Furthermore, sindei a 3y is implementedy the type on B -
the right-hand side, both casts amount to the identity function at to w vap.(a—p)—(B—a)

toep uninv(unEP ep(Inv id))

run time. This also means that a new type and its implementation
type are treated alike, which may or may not be what you want. In-

deed, equivalence types need not contain actual isomorphism pairs!nterestingly, both definitions af — 8 have precursors in the liter-
ature: they underly, for instance, Weirich’s implementation of type-

3In [15] memoization is defined as the composition of a func- Ssafe cast [32]. Though the above definitionoof- B is attractive,
tion that constructs a memo table and a function that queries thewe will stick to the first variant as we rely on the broader interpre-
table. If we fuse the two functions thereby eliminating the memo tation of type equivalence as types being isomorphic.
data structure, we obtain thi#emo function above. Thanks are
due to Koen Claessen for bringing this to our attention. Despite
appearance, the memo data structures did not vanish into thin air.A type class for type representations
Rather, they are now built into the closures. For instance, the memo
table for a disjoint union is a pair of memo tables. The closure for When we call a polytypic function, we have to supply a type repre-
rMemo(R; rq rg ep) f consequently contains a pair of memoized sentation as an argument. Of course, if we are working in Haskell,
functions, namelyinl andfinr. we can use the class system for this purpose.
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We define type clasRepresentablas follows:

classRepresentable where

rep Rept

instanceRepresentable Invhere

rep = rint

instanceRepresentablé where

rep = rg

instance(Representabla, Representablf) =
Representablén + ) where

rep = ryreprep

instance(Representabla, Representablf) =
Representablén x 3) where
I« reprep

rep

Building upon the type class we can define a variant of polytypic
equality that automatically constructs the type representation.

cEqual
cEqual g to

V1. (Representable) =t — 1 — Bool
rEqualrep g to

It is important to note, however, that this use of the class system is

just a convenience, not a necessity for programming with represen-(

tations.

3 Dynamics

3.1 The type Dynamic

A dynamic value is a pair consisting of the value itself and a rep-
resentation of its type. As noted by [14, 9], we can readily define
Dynamicusing the type of type representatidRepas

data Dynamic
dynamic
dynamic a

Va.Dyn(Repa) a
Va . (Representabla) = a — Dynamic
Dynrepa

The existential quantifier (which is written as a universal quantifier)
effectively hides the type of the dynamic value. It goes without
saying that dynamic values thus defined are first-class citizens: we
can, for instance, construct a list of dynamic values.

[dynamic(4711 ::Int),dynamicF ,dynamic(An — n+1::Int)]
::[Dynamid

Now, what can we do with a valuByn ry a of type Dynami®

Not that much so far. If we have a polytypic functiérof type
V1.Rept — T — v wheret does not appear in, then we can call

f rq a. The polytypic function analyzes the type representatipn
and takes the appropriate action (the existentially quantified type
variable cannot escape, sincdoes not appear ). However, we
cannot take the equality of two dynamic values or cast a dynamic
value into a static value of a given type. For both applications we
have to check two type representations for equality, which is what
we tackle next.

The functionunify takes two type representations and possibly re-
turns a proof of their equivalence.

unify

The run-time unification essentially combines proofs of equiva-
lence. Assume, for instance, thaify is called withRint ep; ::
Rept; and Rt ep, :: Repto.  The proofsep; :: 11 < Int and
ep,:: T2 < Int can be combined into a proof of < 1, by applying
the laws of symmetry and transitivity. These laws correspond to the

V11 T2.Repty — Repta — Maybe(ty < 12)
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functionsinv and ‘', respectively.

inv VaB.(a—B)— (B« a)

invf = EP{from=tof,to=fromf}

() VapBy.(By) — (@< B)—(a—y)
fog = EP{from=fromf.-fromgto=tog-tof}

The unification procedure is slightly more complicated for para-
metric types. Assume, for instance, thatify is passed the rep-
resentationdRy rq, rg, ep; ::Repty andRy rq, g, ep, :: Repta.

The arguments provide prooép,; :: 11 < (01 + 1) andep, ;i1 «

(a2 +B2). Through recursive invocations ahify we possibly ob-
tain proofs ofa; < a3 andp1 < B2. Using the law of congruence
we can then construct a proof ¢di; + 1) < (02 +B2). Finally,

the subproofs are combined into a prooftaf— 1, by applying
symmetry and transitivity. The law of congruence corresponds to
the function (&)’ defined below.

(+) Va B. (o —B) = (Vyd.(y—9d) —
((a+y) — (B+9)))
(f+9) (Inla)

Inl (f &)
(f+9) (Inrb) Inr (g b)
®)

VaB. (o< B) = (Vyd.(y«d) —
fdg

((a+y) < (B+9)))
EP{from=fromf+fromgto=tof+to g}

The function {®)’ representing the pair congruence law is defined
similarly.

REMARK 3. As an aside for the more theoretically minded reader,
types and equivalence types form the objects and arrows of a cate-
gory. The identity arrow is self and"implements the composition

of arrows. Furthermore, the sum type is a bifunctor in this cate-
gory; its action on arrows is given by'. In fact, since each arrow

ep has an inverse inv ep, every parametric data type including the
arrow type can be turned into eovariantfunctor. []

Given these prerequisitesiify can be defined as follows.

unify :: V11 12. Rept; — Reptz — [11 < T2]
unify (Rint epp) (Rint €p)
= [invepoep]
unify (R epy) (Ry ep,)
= [invepoep]
unif)/ (R—F la; rBl epl) (R—F Fa, rBz epZ)
[invepo(ep, ®ep)oep, |
epy < unify rq, Fay, € unify rg, I,
unify (R ra, g, epy) (R fa, I'p, €P)
[invepo(ep ®em)oep, |
ey < unify ra, ra,,em < unify rp, rp, ]

unify =[]
unify V11 T2.Repty — Repty — Maybe(ty < 12)
unifyrlir2 = caseunify rlr2 of

X: _ — Just x

[] — Nothing

Using run-time unification we can easily cast a dynamic value into
a static value of a given representable type.

rCast VT1.Rept — Dynamic— 1

rCastr (Dynrqa) = caseunify r; rq of
Justep—toepa
Nothing—

error "cast: type mismatch"

(Representable) = Dynamic— T
rCastrepd

cast
castd



Another useful function is dynamic function application, the appli-
cation of a dynamic function to a dynamic value. We introduce a
new caseéR_, similar toR; andR, to Rep

apply :» Dynamic— Dynamic— Dynamic
apply(Dyn(R_. rq rgep) f) (Dyn ry x)
caseunify ry rqy of
Justep— Dyn rg ((from ep f) (to ep x))
Nothing— error "apply: type mismatch"
error "apply: not a function"

apply__ =
ExaMPLE 1. Using dynamic values we can, for instance, imple-
ment a heterogeneous symbol table—a finite map from strings to
values of any type.

type Table

rLookup
rLookup | st

[(String Dynamiq|

V1.Rept — String— Table— Maybet
fmap(rCast i) (lookup s}

For alternative solutions the reader is referred to Weirich [32].]

EXAMPLE 2. Dynamic values also provide a simple way of imple-
menting C’s printf function in a type-safe manner; see also [27].
The printf function allows the programmer to show an arbitrary
number of arguments of different types. Both the number of ar-
guments and their types are specified by a so-called format string
which is passed as a first argument to printf. Since the format string
may be unknown at compile time (because it may be read from an
external source), printf cannot be statically type-checked.

printf String— [Dynamid — ShowS
printf " _ = showsString"
printf (‘%' :'d" :cs)(d:ds) = shows(castd:Int)

- printf cs ds
printf (‘%' :’s' :cs)(d:ds) = showStringcast d:: String)

- printf cs ds
printf (‘%' :'%’ :cs)ds = showChar%’ - printf cs ds
printf ("% :c:cs) [] = error "printf: missing "

"argument”

printf (c:cs) ds showChar ¢ printf cs ds

Note that the code assumes that the String type is repre-
sentable. ]

3.2 Closing the circle

We addDynamicto the family of representable types, so that we
can also pass a dynamic value to a polytypic function

data Reprt

| Roynamic(T <> Dynamig
Note thatRept andDynamicare now defined by mutual recursion.

Of course, we have to extend the polytypic function definitions to
take the new case into account. Here is how we take equality of two
dynamic values.

requal (Rpynamicep) di d2
case(fromep d,from ep @) of
(Dynrg, a1,Dynrg, a2) —
caseunify ry, rq, Of
Just ep— rEqual ry, a1 (to ep ap)
Nothing— False

We first determine whether the types of the dynamic values are
equal. If this is the casaEqual is called recursively to check
whether the values are equal, as well.
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4 Generics

4.1 Generic representation types

What have we achieved so far? Using type representations we can
program a function that works uniformly for aéipresentabléypes.

Let’'s become more ambitious now. We aim at broadening the scope
of the polytypic functions so that they work fafl types including
types that the programmer is yet to define. We won't achieve this
goal in its full glory—this requires an external tool or some support
from the compiler—but we will get pretty close. The programmer
only has to do a bit of extra work for each newly introduced type.

The principal idea is to make every type representable. Consider as
a first simple example the data type of Booleans.

data Bool False| True

Now, the typeBool is isomorphic to the sum type+ 1, which is
already representabfeHere are functions that convert to and fro.

fromggg Bool—1+1
fromgyg False = InlUnit
fromgyg True = Inr Unit
tORgol 1+ 1 — Bool
togool (INIUNit) = False

toggol (INr Unit) = True

Using these isomorphisms we can represent the Bga as fol-
lows.

Rep Bool

Ry rqr1 (EP fromggg t0gool)

The typel+ 1is the so-calledyeneric representation tymé Bool,
see [18].

Bool
Bool

Since Haskell'sdata construct introduces a sum of products and
both sums and products are representable, it looks as if we are done.
But not quite, data types may be recursively defined and they may
be parametric (possibly abstracting over higher-order kinded type
constructors). We will address each point in turn.

Haskell’s list data type serves as a nice example for a data type that
is both recursive and parametric.

dataja] =

[J1a:[a]

Its generic representation type ist+ (a x [a]) with the isomor-
phisms given by

fromy; Va.[a] — 1+ (a x [a])
fromy; [] = InlUnit

from;; (a:as) = Inr (a:x:as

to| va.l+(ax[a]) — [a]
tof; (Inl Unit) = ]

toy; (Inr (a:x: as))

a:as
Thus, the following representation i | suggests itself.

Ya.Repa — Rep[a]
R; 11 (I T (1)) Ta)) (EP from toy))

Two points are worth noting. First, the type representation of
the list type constructor is &unction taking a representation of

rH la

4Strictly speaking, the typeBool and1+ 1 are not isomorphic
in Haskell sincel contains an additional bottom element. We sim-
ply ignore this complication here.



T to a representation oft]. Second, the representation [f]

is given by aninfinite term as type recursion is mapped onto
value recursion. Since Haskell is a lazy language, this is not a
problem as far as the polytypic functions are concerned: the call
rEqual (r[) rint) [0..8] [0..9], for instance, happily evaluates to
False However, the presence of infinite terms renders the uni-
fication of representations impossible: quite annoyingly the call
cast(dynamic[0..9::Int]) :: [Int] does not terminate.

There are at least two solutions to this problem. We could represent

type recursion explicitly by introducing a fixed point operator—this
is the approach taken in PolyP [19]. However, this is technically

that the following definition ofunify does not work, as it is too
eager.

unify (RTypetl Fo, €P1) (RTypetZ la, €M) -- WRONG
[invepoep oep [ t1 == to,epy < unify rq, ro, ]

Turning to the treatment of higher-order kinded data types let us
first take a look at one popular example. The following definition
introduces so-calledeneralized rose trees

data Treega Nodea (¢ (Treeqa))

Since the first argument dfree ranges over type constructors of

rather awkward and never completely general as type recursion maykind + — «, Tree has kind(x — ) — x — x. We have already
span over several types (mutual recursion) and as it may involve seen that a type constructrof kind x — « is represented by a

type constructors rather than types (so-caledted data typesee

[6]). Thus, we would need an infinite family of fixed point oper-
ators. Furthermore, checking equality of higher-order kinded type
constructors is undecidable. Haskell avoids the latter problem by
using name equivalenceather thanstructural equivalengevhich
motivates the second solution.

We continue to represent recursive types by infinite terms but addi-
tionally label the representation by its Haskell name. The following

data type is sufficient for capturing closed Haskell type terms (in-

cluding higher-order kinded types).

dataTerm App String[ Term|

deriving (Eq)

For instance|Int] is represented bgpp"[" [App"Int"
augmenRept by one additional constructor.

Rint T« Int)
Roynamic T+ Dynamig

(

Rl ET > 1)
(
(

[]]. We

data Reprt

|
| VaB.R; (Repa) (Repp) (T — (a+p))

| Vo B.Rx (Repa) (RepP) (T (axp))

| Vva .RppeTerm(Repa) (T a)

On the face of it, we now have two types for type representations:
Rept captures the structural information afidrm captures the
naming information. The functioterm, extracts the latter infor-
mation from the former.

term, V1.Rept — Term

term, (Rint ep) = App'Int" []

term, (Roynamic€P) = App"Dynamic" []

term. (R ep) = App"l" ]

term. (Rirargep = App'(+)" [term,rg,term,rg]
term. (R« rargep = App'(*")" [termrq,term, rg]

term, (Rrypet r'a €P) t

We change the definition of; to incorporate the list type name.
r . Va.Repa — Rep[a]

r[] la RType (App"[l" [term I’g])
(ryry(rx ra (rH rq))) (EP fronn toH)

It remains to extend the definition ahify’. To unify two labelled
representationBrypety o, €y andRyypets ra, €0, We simply test
t1 andt; for equality.

unify (Rrypets fa, €pr) (Riypet2 fa, €P2)
linv ep ohead(unify rq, ra,) oepy |ty == tp]

If t; andt, are equal, we know that, andrq, must be unifiable.
The callhead(unify rq, rq,) immediately returns the proof. Note
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function of typeva .Repa — Rep(@a). SinceTreeabstracts over
type constructors of this kind it has type

V. (Va.Repa — Rep(@a)) —
(Vo .Repa — Rep(Tree@a)).

IMree

Note thatr1ree possesses a so-calleghk-2type. In general, a type
constructor of kind k is represented by an elementRép, T with

Rep t
Rep(1—>K2 T
As the latest version of the Glasgow Haskell compiler (GHC 5.03)

supports ranky types, we can, in fact, represent types of arbitrary
kinds.

Rept
Vo.ReR, o — Reg, (Ta).

So far so good. One small problem remains though. To define the
representation ofree@ a, we have to construct type terms from
the representations gfanda. Since the representation @bf type
Repn_,, @is afunctionthis sounds like a hard nut to crack. For-
tunately, Haskell's type language is a multi-sorted term algebra as
Haskell does not offer general type abstraction. Each type term is
of the formApp s[t1,...,tn]; type application is purely syntactic:
applying App s|ti,...,ts] to t yields App sit1,...,tn,t]. Conse-
quently, from the result of an application we can reconstruct both
the original function and its argument.

term,—.
term, ., ry

V. (Va.Repa — Rep(¢pa)) — Term
caseterm, (ryry) of App t ts— App t(init ts)

Given these prerequisites we define

MMreelp la = Rrype(App'Tree"
[term ., ry,term, rq])

(rx ra (rq) (rTree fp ra)))

(EP frompee tOTree)
froMyree Voao.Treepa — a x (@(Treepa))
frompee (Node aty = (a:x:ts)
tOTree Voa.ax (@ (Treepa)) — Tree@a
tOTree (@:X: 19) = Node ats

4.2 Constructor names

To be able to write polytypic functions that show or read elements
of some data type, we add one more constructor toRbpdata

type.
data Rept

| i‘«;éon String (Rept)

The Rcon constructor is intended to record the string representa-
tion of a data constructor. Of course, in practice one would replace



Stringby a more elaborate data type that contains further informa- approach has been implemented in Generic Haskell [7], a succes-
tion such as fixity, see [18]. The updated definitiornr g illus- sor to PolyP. Hinze and Peyton Jones [18] introduced derivable type
trates the use Rcon. classes, which can define type-indexed values within classes but are
limited to kindx. Clean’s generics system [3] generalizes derivable
type classes to allow generic type classes defined at arbitrary kinds
rather than just.

reool .. RepBool
lBool = Rrype(App"Bool" [])
(r+ (Reon"False” 1) (Rcon"True" 1))
(EP fromgo) t0Bool) Abadi et al. [2] first considered rigorously the problem of adding
aDynamictype and type pattern matchimgpecasdo a monomor-
phic ML-like language. Leroy and Mauny [21] studied the inter-
action of Dynamicwith implicit polymorphism and implemented
a restricted form of polymorphic type pattern matching with both

Here is a simplified version of Haskel&howfunction, which con-
verts an element of any data type to its string representation. To

understand the definition keep in mind that the sum type is used 10y and 3 quantifiers. Abadi et al. [1] considered dynamics with

represent the cases oflata declaration while the product type is explicit and implicit polymorphism, and showed how to general-

used to represent the arguments of a single constructor. The unit o typecaseto arbitrary polymorphic patterns. We believe our
type 1 signals that a constructor has no arguments.

Dynamicalso can support making values of closed polymorphic
types dynamic, although we have yet to experiment with unifying

rShows I V1.Rept — T — ShowS . ) :
rShows(Rint ep) t — shows(fromep and pattern-matching polymorphic type representations.
rShows(Rpynamicep) t = casefrom ep tof

GHC'’s Dynamiclibrary containsTypeRemndDynamictypes and a

Dysnh:;x\,;(c_h)a,ac Typeableclass that are weaker, ‘untyped’ \_/ersions of Dynamic _
- showStringdynamic " Rep andRepresentable Type representations are abstract, and it
- rShows g x is impossible to, for example, unpack componéypeRep from a
- showChar) productTypeRepOn the other hand, our typed versions constitute

rShows(R; ep) t —  showsString" a safe implementation of these constructs.

rShows(Ry rq rg ep) t

rShows(Ryx rq rg ep) t

rShows(Ryypee fq €p) t

casefrom ep tof
Inla — rShows g a
Inrb — rShows g b
casefrom ep tof
(a:x:b) —
rShows g a
- showsString' "
-rShows g b
rShows g (fromep?

Clean also includes support in development for a richer type
Dynamic[26] that includegypecasevith pattern matching on (pos-
sibly polymorphic) types, in the style of Leroy and Mauny, and
also supports type-dependent functions. Clean’s dynamics employ
atype clas3Ca that says that it is possible to makalynamic, so,
unlike earlier approaches, values with partially abstract types con-
taining free type variables can be casDignamicas long as all the
type variables are of cla§&C. Our Dynamicsupports exactly this
behaviour, whence Clean®C is analogous to ouRepresentable

rShowsRcons(Riep)t = showsStrings class
-- nullary constructor '
rShows(RconS fa) t = Sho""’::ha"(h . ’showitrmg S Shields, Sheard, and Peyton Jones [27] present an alternative imple-
.zhgaghgr)’ -rShows g t mentation of dynamics based on staged type inference. In staged

computation [10, 28], compilation of parts of a program may be
éj_elayed, so functions may be specialized to arguments available at
compile time. Staged type inference delays type inference and type
checking until run time as well. This makes it possible to avoid
many of the difficulties of explicit polymorphic type pattern match-
ing encountered in previous approaches, since unification occurs
at run time when concrete type information is available. Our ap-
proach also employs run-time unification, if only for monomorphic
types, but oumnify is a user-level program rather than compiler-
The polymorphic Horn clause language of Hanus [12] generalizes generated code. It would be interesting to see whether our ap-
the untyped Horn clause resolution semantics of Prolog to typed proach generalizes to polymorphic unifcation. Staged computation
and polymorphically typed terms. Our initial definition Bepin may also be useful in optimizing representation-passing by spe-
Section 2.1 is legal in this language, which appears to be strictly cializing generic functions to particular representations. We have
more powerful than Haskell. Interestingly, the semantics requires also experimented with using GHC'’s rewrite rules [24] to automati-
the presence of types at run time. Optimizations are possible for cally rewrite representation-based functions when type information
so-calledtype preservingunctions where the type variables of the is known at compile time. We found that functions can be fully
argument types also occur in the result type (note thaRécon- specialized to non-recursive types, but not to recursive types|like
structors are type-preserving). because recursive types are represented by recursively defined rep-
resentations. As a result, rewrite rules in their present form are of
Jansson and Jeuring [19] developed PolyP, a variant of Haskell thatlimited use for optimizing representation-based programs.
includes a polytypic function construct permitting definitions by
primitive recursion on the structure of regular data types, but did Weirich [32] showed how to implement type-safe cast and a form
not support higher-order kinded type arguments. Hinze [17] pro- of Dynamicin Haskell using type classes. The two Haskell imple-
posed an approach based on indexing values by types and typesnentations otastemploy mutually recursive type classeastTou
by kinds. This made it possible to write definitions of functions andCastFromp; the firstimplementation of these classes interprets
like mapthat work for arbitrary polymorphic data structures. This cast as coercioro(— [), whereas the second interprets cast as un-

Since type representations are ordinary values, we can separate sp
cial cases simply by pattern matching. The second but last equation
of rShows for instance, handles nullary constructors while the last
equation takes care of the remaining cases.

5 Related work
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restricted substitutiong(a — @ ). These interpretations of cast head. These drawbacks could be addressed through specialization,
correspond exactly to our interpretations of type equivalence. run-time code generation, or deforestation optimizations. Our en-
coding requires a fair amount of programmer effort, and we plan
Implicit, compiler-generated type information has been studied in to address this by implementing extensions suchitis clauses in
many languages and proposals for implementing statically-typed Haskell via translation. Finally, while it is possible to define poly-
dynamics and implementing intensional polymorphism. Explicit typic functions such amapthat analyze type constructors of kind
type representations are not new either: they were introduced byother than (using a differenReptype), constructing functions that
Crary, Weirich, and Morrisett [9]; the authors also observed that work for all types of all kinds seems out of reach within Haskell's
representations could be used to implement an exgligitamic type system. These are all important directions for future work.
type. Crary and Weirich [8] and Weirich [33] have also consid-
ered encodings of type representations in the more powerful type
systemd_X, which includes function, sum, product, and recursive
kinds, and_U —, which includes impredicative kind polymorphism.
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A Listing

A.1 Generic representation types

datal = Unit
dataa+B = InlafInrp
dataaxB = a:xB

Standard mapping functions on the above types (and on the function type).

(++) D Vo (a—B) = (vd.(y—=8) — ((a+Y) = (B+9)))
(f+9)(Inla) = Inl(fa)

(f+g)(Inrb) = Inr(gb)

(%) VAR (o B) = (WB.(y— 8) — ((a xy) — (Bx)))
(fxg)(ax:b) = fa:x:igb

(— ©VaB.(a—B) = (Wd.(y=98) = (B—y) —(a—9))
(f—g)h = g-h-f

A.2 Type equivalence

dataad —~ B = EP{from:a—B,to:p—a}

Reflexivity, symmetry and transitivity.

self @ Va.a<a

self = EP{from=id,to=id}

inv & VaB.(a—B)—B—a)

invf = EP{from=tof,to=fromf}

infixr 9o

(¢) = VaPy.(Bey) = (0o pB)—(aey)

fog = EP{from=fromf.-fromgto=tog-tof}

Mapping functions for generic representation types (and for the function type) implementing the laws of congruence.

(@) = VapB.(a<p)— (V. (y—8) —((a+y) < (B+9)))
feog = EP{from=fromf+fromgto=tof+tog}

(®) & YaP.(aeB) = (W8.(yo 8) — ((axy) < (Bx3)))
f®g = EP{from=fromfxfromgto=tof xtog}

(©) = Vap.(a—p)—(Vod.(y—=3d) — ((a—y) < (B—9))
fog = EP{from=tof — fromgto=fromf—tog}

A.3 Type representations

dataRept = Rint T« Int)
Rchar T« Char)
Rbynamic T «— Dynamig

(
E
va B-S—» (Repa) (RepB) ET < (a—p))
(
(
(

1 T 1)
v B.R;. (Repa) (Repp) (T < (a +))
Vo B.R. (Repa) (Repp) (T < (t x B))
Va .RrypeTerm(Repa) (1 a)
Rcon String (Rept)
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Smart constructors.

nt ' Replint

Mnt = Rincself

Char :© RepChar

I'Char = Rcharself )

Ibynamic .- Rep Dynamic

I'bynamic = Rbynamicself

r— . Vo.Repa — (VB.RepB — Rep(a — B))
r~rfafg = R.rarg self

r © Repl

r = Ryself

ry . Va.Repa — (VB.RepB — Rep(a +B))
rifarg = Riyrgrgself

Iy . Va.Repa — (VB.RepP — Rep(a x B))
I<falg = Ry« rq rg self

A class for representable types.

classRepresentable where

rep 1 Reprt

instanceRepresentable Inthere
rep = nlnt

instanceRepresentable Chavhere
rep = rIchar

instanceRepresentable Dynamiehere
rep = TIDynamic

instance(Representable,&epresentable)b=- Representabléa — b) where
rep = r_reprep

instance(Representabla, RepresentablB) = Representabléx + ) where
rep = ryreprep

instance(Representabla, RepresentablB) = Representabléx x ) where
rep = ryreprep

A.4 Dynamics

dataDynamic = Va.Dyn(Repa)a

dynamic . Va.(Representabla) = a — Dynamic
dynamic x = Dynrepx
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Run-time unification of types.

unify ::v11 T2.Repty — Repty — [T « T7]
unify’ (Rint epy) (Rint €p,)
= J[invepoep]
unify’ (Rchar €P1) (Rehar €R)
= [invepoep]
unify (RoynamicepPy) (Roynamicep,)
= [invepoep]
unify (R ra, rg, ep) (R o, g, €M)
. = [invepo(ep, ©em)oep: | epy < unify ra, ro,, e < unify rg, rg, |
unify (Ryepy) (Ry ep,)
= J[invepoep]
unify (Ry ro, g, €pr) (Ry fa, g, €py)
= [invepo(ep, ®em)oep: | epy — unify rq, ra,, eps < unify rg, rg,]
unify’ (Rx ra, rg, €P) (R ra, fp, €02)
= [invepo(ep, ®em)oep: | epy — unify rq, ra,,eps < unify rg, rg,]
unify (RconSt fay) (Rcon$2 Fay)
= unify rq, rq,
unify (Rrypeta ra, eP1) (Rrypet2 fa, €Pp)
[invep ohead(unify rq, ra,)oep; | t1 == to]

unify _ _
unify V11 T2.Repty — Repty, — Maybe(t1 < 12)
unifyrlr2 = caseunify rlr2 of

X:_ — Just x

[] — Nothing

Type-safe cast and dynamic function application.

rCast ;I V1.Rept — Dynamic— T
rCastr (Dynrqa) = caseunify r; rq of

Justep—toepa

Nothing— error "cast: type mismatch"
cast . (Representable) = Dynamic— 1
castd = rCastrepd
apply :: Dynamic— Dynamic— Dynamic

apply (Dyn(R-. ra rgep) f) (Dyn v X)
= caseunify ry ros Of
Just ep— Dynrg ((from ep f) (to e x))
Nothing— error "apply: type mismatch”
apply_ _ = error "apply: not a function"

A5 Typeterms

dataTerm

App String[ Term|
deriving (ShowEQq)
term, @ Vi.Rept — Term

term, (Rint ep) = App'Int" []

term, (Rehar €p) = App'Char" []

term, (Rpynamic€P) = App"Dynamic” []

term, (R rq rs ep = App">" [term.rq,term, rB]
term, (R ep) = App'l" []

term. (Ryrargep) = App“(+)" [term, rq,term, rg]
term. (R« rargep = App'(*)" [term,rq,term, rg]

term, (Rrypet ra €0) t
term,_, I Ve.(Va.Repa — Rep(@a)) — Term
term_., ry caseterm, (ryry) of App tts— App t(init ts)
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A.6 Generics

Examples of type representations.

Bool Rep Bool

I'Bool = Rrype(App"Bool" [])
(r+ (Rcon"False”  r1) (Reon"True" r1))
(EP fron’]300| toBool)

fromggo Bool— 1+1

fromgyo False = Inl Unit

fromggg True = Inr Unit

tOB ool 1+1— Bool

toggor (INl'Unit) = False

toggol (INr Unit) = True

m

Vo .Repa — Rep|d]

rfa = Rrype(App'l" [term,rg])

(r+ (Reon"l"  r1) (Reon"()" (1 ra (rj Ta))))
(EP from; toy))

fromy, Va.[a] — 1+ (ax [a])

from) [] = InlUnit

fromH (a:as) = Inr (a:x:as

to Va.l+ (ax[a]) — [a]

toy; (Inl Unit) = ]

toy) (Inr (a:x: as))

a.as

instanceRepresentable Boalhere

rep Bool

rep
Generic functions: generic equality.

rEqual

rEqual (Rint €p) ta ta
rEqual (Rcharep) ta t
rEqual (Rpynamicep) di d2

requal(R- rargep ty ta
rEqual (Ry ep) t1 to

requal(Ry ra rgep) ty tz

rEqual (Rx rq rs ep tyty

rEqual (Rrype€ o €P) ta t2

rEqual (RconS fa) t1 t2
Generic minimum.

rMinBound

rMinBound (Rt ep)
rMinBound(Rchar €p)
rMinBound (Roynamicep)
rMinBound(R, rq rg €p)
rMinBound(R; ep)
rMinBound (R;. rq rg €p)
rMinBound (R rq rg €p)
rMinBound (Rrypet rq €p)
rMinBound(Rcon S fo)

instance(Representabla) =- Representablfo | where
= I’H rep

Vt.Rept — 1 — T — Bool
fromept--fromepp
fromept--fromepp
case(fromep d,from ep &) of

(Dyn rg, v1,Dyn rq, V2)

— caseunify rq, rq, of
Just ep— rEqual ry, V1 (to eg V)
Nothing— False

error "rEqual: equality of functions”
case(fromep §,from ep p) of

(Unit, Unit) — True
case(fromep §,from ep p) of

(Inl'ag,Inlaz) — rEqual rq a1 &

(Inr by, Inr bz) — rEqual rg by by

_— False
case(fromep §,from ep b) of

(a1 :x: by,ap :x: bp) —

rEqual rq a3 a A rEqual rg by by

rEqual rq (fromep ) (fromepb)
rEqual ry tg to

V1.Rept — 1

to ep(minBound

to ep(minBound

error "rMinBound: dynamic"

to ep(Aa— rMinBound 1z)

to ep(Unit)

to ep(Inl (rMinBound Ity ))

to ep(rMinBound ry :x: rMinBound 3)
to ep(rMinBound Iy )

rMinBound ty

=
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Generic unparsing.

rShows ;I V1.Rept — T — ShowS
rShows(Rint ep) t shows(fromep §
rShows(Rchar €p) t shows(fromep §
rShows(Rpynamicep) t casefrom ep tof
Dyn rq X — showChar(" - showString'dynamic "
-rShows g x - showChar)’
showsStringd'<function>"
showsString"
casefrom ep tof
Inla — rShows g a
Inrb — rShows g b
casefrom ep tof
(a:x:b) — rShows g a- showString " - rShows g b
rShows g (fromep?

rShows(R-, rq rg ep) t
rShows(R; ep) t
rShows(Ry rq rgep) t

rShows(Rx rq rg ept

rShows(Ryype€ Iy €p) t

rShows(Rcons(Ryep))t = showsStrings
rShows(RconS o) t = showChar(" -showString sshowChar '’
- rShows g t - showChar)’
Generic memoization.
rMemo D VIv.Rept — (T—V)— (T—V)
rMemo (Rt ep) f = AM-—ft -- N0 memoization
rMemo(Rchar ep) f = M—ft -- N0 memoization
rMemo(Rpynamicep) f = At—ft -- N0 memoization
rMemo(R_ rqrgepf = At—ft -- N0 memoization
rMemo(Ry ep) f = At — casefrom ep tof
Unit — fUnit

wherefUnit
rMemo(R;. rq rg ep) f

f (to ep(Unit))
At — casefrom ep tof

Inla— finla

Inrb—finrb
wherefinl = rMemory (Aa—f (toep(Inla)))
flnr = rMemo g (Ab— f (to ep(Inr b)))

rMemo(Rx rargep)f = At — casefrom ep tof
a:x:b— fPairab
rMemo iy (Aa — rMemo i3 (Ab — f (to ep(a:x: b))))
At —rMemory (Aa—f (toepd) (fromep?
rMemo iy f

where fPair
rMemo(Rrype€ Iy ep) f
rMemo(RconSra) f

Note that we danot memoize primitive types such &sts orChars (this would require building a look-up table).
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