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Abstract
This dissertation studies the category-theoretic semantics of typed programming
languages. It is known that Freyd-categories provide sound and complete semantics
for the computational lambda calculus, but a detailed description of the direct model
and its corresponding proofs are not present in the literature. The main contribution
of this project is the direct formalization of the interpretation of the semantics of the
computational lambda calculus in Freyd-categories and the syntactic Freyd-category
of the computational lambda calculus and providing detailed proofs of soundness
and completeness, and a free property showing that the computational lambda
calculus is an internal language of Freyd-categories, as well as the description
of a semantically justified translation from the computational lambda calculus
to the monadic metalanguage.
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1
Introduction

1.1 Background

Denotational semantics aims to describe the meaning of programming languages by

describing programs with mathematical objects. The denotation of a programming

language term is built up inductively from the denotation of its subterms, i.e.,

compositionally. The study of such mathematical descriptions can be helpful in

understanding programming language concepts in an implementation-independent

way, which can be useful in programming language design. It can also be used to

formally prove statements about the behaviour of programs, which can be useful

in formal program verification.

We can, for example, use a sufficiently faithful mathematical description to prove

that two program terms are contextually equivalent, i.e., that we can replace one

with another in any program and the observable outcome does not change. Such
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6 1.1. Background

a statement can be hard to prove syntactically, but with a sound and adequate

denotational semantics, it reduces to checking that the corresponding mathematical

descriptions agree as in [21]. Studying contextual equivalence can be used in

optimizing compiler design to find and justify optimizations that do not change

the semantics of the program, for example, as in [7].

One well-known result of denotational semantics is that cartesian closed categories

(CCCs) provide a sound and complete semantics for the simply-typed lambda

calculus [10]. While such a result is significant from a denotational semantics point

of view, it also has category theoretic significance. It shows that the simply-typed

lambda calculus provides an internal language for CCCs, and we can use it to

prove statements about CCCs using the language of the simply-typed lambda

calculus [4, Chapter 4].

However, the simply-typed lambda calculus (STLC) is a completely effect-free

programming language, which makes it impossible to model certain programming

language features, and hard to model others.

The monadic metalanguage (λml) is an alternative to the simply-typed lambda

calculus, which extends it with monads, a general method of adding computational

effects, such as printing, reading data or state. In the monadic metalanguage,

side-effecting computation has to be explicitly “marked” with monads, similarly

to how it would be done in Haskell. The corresponding denotational semantics

result is that CCCs with a strong monad provide a sound and complete semantics

for the monadic metalanguage [19].

However, in many commonly used programming languages, that is not how side

effects are handled: in languages such as OCaml [11], side-effecting computation

does not need to be marked explicitly. A different modification of the simply-

typed lambda calculus, the computational lambda calculus (λC), is often used to

model that treatment of side effects.
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It is known that Freyd-categories provide sound and complete semantics for the

computational lambda calculus. The result is sketched in [24], and [13] proves it by

a translation of the computational lambda calculus into another language, fine-grain

call-by-value, but a direct semantics and a detailed, formal proof of soundness and

completeness are not presented in either.

1.2 Outline and contribution of the dissertation

Chapter 2 contains a short review of the category-theoretic interpretations and

corresponding syntactic models of the simply-typed lambda calculus in CCCs.

Chapter 3 summarizes the corresponding result for the monadic metalanguage

and CCCs with a strong monad.

Chapter 4 contains a detailed description of the interpretation and syntactic model

of the computational lambda calculus in Freyd categories, with the corresponding

proofs of correctness.

Chapter 5 describes and proves how to synthesise a semantically-justified trans-

lation from the computational lambda calculus to the monadic metalanguage. The

computational lambda calculus can be regarded as a minimal model of Ocaml, and

the monadic metalanguage as a minimal model of Haskell, so such a translation can

have real-life relevance as it can inform a translation of Ocaml to Haskell.

The main contribution of this dissertation is hence three-fold. Firstly, it is

the explicit formalization of the direct syntactic model of λC in Freyd-categories.

Secondly, it is the formal proof of correctness which is often omitted when similar

results are claimed, such as in [13]. Soundness is proved in Theorem 11. Theorem

12 proves that the claimed syntactic closed Freyd-category is indeed a closed Freyd-

category, and Theorem 13 uses these results to prove a certain free property. And

thirdly, it is the translation and its justification (Theorem 14) from the computational
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lambda calculus to the monadic metalanguage.

1.3 Related work

The untyped lambda calculus is a Turing-complete model of computation introduced

by Church [2]. The simply-typed lambda calculus is a typed, terminating fragment

of that, also introduced by Alonzo Church [3]. The simply typed lambda calculus

was related to CCCs by Lambek [9]. Until that observation, denotational semantics

were largely built on sets and functions.

The monadic metalanguage and its denotational semantics in CCCs with strong

monads have been introduced by Moggi [19]. The idea of using monads to organise

effects has been a particularly influential one and informed the design of many

modern functional programming languages such as Haskell or Agda.

The computational lambda calculus and its denotational semantics in cartesian

categories with a strong monad and Kleisli-exponentials are also due to Moggi [18].

Freyd-categories were introduced and related to the computational lambda

calculus by Power and Thielecke [23], [24]. A semantics for the fine-grain call-by-

value model in Freyd categories and a description of its relation to the computational

lambda calculus is presented in [13] by Levy, Power and Thielecke.



2
Simply-typed lambda calculus and

cartesian closed categories

This chapter is a short summary of the simply-typed lambda calculus, cartesian closed

categories, and the interpretation of the former in the latter. It outlines the key results

and concepts and serves as background for understanding the main results from

Chapters 4 and 5. Proofs for standard results are omitted, for more detail, see [4].

2.1 Simply-typed lambda calculus

The simply-typed lambda calculus (STLC) is a simple, fully functional programming

language that, unlike the untyped lambda calculus, is not Turing complete, and can

only describe terminating programs [25]. Nonetheless, it is an important starting

point to understanding programming languages and building more complex models,

9



10 2.1. Simply-typed lambda calculus

as we will see in the following chapters.

In this dissertation, we work with a version of the STLC parameterized by a

signature, with a unit type we denote by 1, products, and functions.

Definition 1 (Signature for the STLC). A signature S for the STLC consists of a

set Stype of base types, and a set Sconst describing the constants. Sconst has elements

(c, τ) where c is the name of the constant and τ is a STLC-type. ▲

Definition 2 (Types of the STLC). The types of the STLC are given by the following

grammar

τ ::= β | 1 | τ1 × τ2 | τ1 → τ2

where β ∈ Stype ranges over the given base types. ▲

Definition 3 (Terms of the STLC). The terms of the STLC are given by the

following grammar

E ::= x | c | () | ⟨E1, E2⟩ | πiE | λx.E | E1E2

where c ranges over the given constant symbols, i.e., (c, τ) ∈ Sconst for some τ . ▲

The typing rules are described in Figure 2.1. In the typing rules we use a context

(often denoted by Γ), which is an ordered list of pairs of variables and types.

The equations of the STLC are defined in Figure 2.2. These describe the

semantics of the STLC, and are the minimal congruence generated by the β and

η-rules familiar from the untyped lambda calculus. The β-rules describe how the

programs reduce, and they correspond to the intuition that the meaning of a program

should be preserved if we take one step in the operational semantics. The η-rules

describe the extensionality of the STLC.

In what follows, we write terms to represent the α-equivalence class that they

belong to, e.g., x : 1 ⊢ λy.yx : (1 → 1) → 1 and x : 1 ⊢ λw.wx : (1 → 1) → 1
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x1 : τ1, . . . , xn : τn ⊢ xi : τi
(var)

(c, τ) ∈ Sconst

Γ ⊢ c : τ
(const)

Γ ⊢ E : τ1 × τ2
Γ ⊢ πiE : τi

(proj)

Γ ⊢ E1 : τ1 Γ ⊢ E2 : τ2
Γ ⊢ ⟨E1, E2⟩ : τ1 × τ2

(pair)

Γ, x : τ1 ⊢ E : τ2
Γ ⊢ λx.E : τ1 → τ2

(abst)

Γ ⊢ E1 : τ1 → τ2 Γ ⊢ E2 : τ1
Γ ⊢ E1E2 : τ2

(app)

Figure 2.1: Simply-typed lambda calculus over a signature

represent the same terms. We use E1[x 7→ E2] to denote the capture-avoiding

substitution of the free variable x in the term E1 with the term E2. As these are

standard practices for working with the lambda calculus, these are not detailed

here, for more detail see [14].

2.2 Cartesian closed categories

Definition 4 (Terminal object). In a category C, an object 1 is a terminal object

iff for every object X there is a unique morphism ! : X → 1.

X 1!

▲

Definition 5 (Binary product). In a category C, given two objects A1, A2, the

binary product of A1 and A2 (if it exists) is an object A1 × A2, and two morphisms:
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Γ ⊢ E1 : τ1 Γ ⊢ E2 : τ2 i ∈ {1, 2}
Γ ⊢ πi⟨E1, E2⟩ ≡ Ei : τi (prodβ)

Γ, x : τ1 ⊢ E1 : τ2 Γ ⊢ E2 : τ1

Γ ⊢ (λx.E1)E2 ≡ E1[x 7→ E2] : τ2 (fnβ)

Γ ⊢ E : τ1 × τ2
Γ ⊢ ⟨π1E, π2E⟩ ≡ E : τ1 × τ2 (prodη)

Γ ⊢ E : τ1 → τ2 x is fresh in E
Γ ⊢ λx.Ex ≡ E : τ1 → τ2 (fnη)

Γ ⊢ E : 1
Γ ⊢ () ≡ E : 1 (unit)

Together with the equivalence relation rules (reflexivity, symmetry, transitivity),
and congruence rules for each constructor.

Figure 2.2: Equations of the STLC

π1 : (A1 × A2) → A1 and π2 : (A1 × A2) → A2, such that for any object X,

and any morphisms f1 : X → A1, f2 : X → A2, there is a unique morphism

⟨f1, f2⟩ : X → (A1 × A2) such that π1 ◦ ⟨f1, f2⟩ = f1 and π2 ◦ ⟨f1, f2⟩ = f2.

A1 A1 × A2 A2

X

π1 π2

⟨f1,f2⟩
f1 f2

▲

Definition 6 (Exponential). In a category C in which all binary products exist,

given two objects A1, A2 the exponential (if it exists) is an object A1 ⇒ A2 together

with a morphism eval : ((A1 ⇒ A2) × A1) → A2 such that for any object X and

morphism f : X × A1 → A2, there is a unique map Λ(f) : X → (A1 ⇒ A2) such
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that the following diagram commutes.

(A1 ⇒ A2) × A1 A2

X × A1

eval

Λ(f)×A1 f

▲

Definition 7 (Cartesian closed category). A cartesian closed category (CCC) is

a category with a terminal object, where all binary products, and all exponentials

exist. ▲

Note that a cartesian closed category might have multiple possible choices for

products and exponentials, in what follows, when referring to a particular CCC,

we assume a particular choice of products and exponentials.

Example 1. The category Set where the objects are sets and the morphisms are

functions between sets is a cartesian closed category. The terminal object is the

one-element set. Given two objects corresponding to sets X1 and X2, their binary

product object is given by the Cartesian product X1 × X2, and their exponential

object is given by the set of all functions from X1 to X2. ▲

2.3 Connection

An interpretation is a mapping from the types and terms of a programming language

to mathematical objects. In our case, the types will be mapped to objects in a

category, and the typed terms will be mapped to morphisms.

An interpretation J−K of a typed language L is sound with respect to an equational

theory Γ ⊢ − ≡ − : τ , iff

(Γ ⊢ M1 ≡ M2 : τ) ⇒ (JΓ ⊢ M1 : τK = JΓ ⊢ M2 : τK).
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An interpretation J−K of a typed language L is complete with respect to an

equational theory Γ ⊢ − ≡ − : τ , iff

(JΓ ⊢ M1 : τK = JΓ ⊢ M2 : τK) ⇒ (Γ ⊢ M1 ≡ M2 : τ).

Subsection 2.3.1 describes an interpretation of the STLC that is sound with

respect to the equational theory from Figure 2.2. Subsection 2.3.2 then describes

the syntactic CCC of the STLC, i.e., a CCC that is “built from” the syntax of the

STLC and the equations, and in which interpretation of the STLC is complete.

The existence of this CCC proves the following completeness result of inter-

pretations of the STLC in CCCs: if the interpretation of two terms agrees in all

CCCs, they are equal with respect to the equational theory. Together with the

soundness result, this proves that two terms are equal with respect to the equational

theory iff their interpretations agree in all CCCs.

Subsection 2.3.3 formalizes the free property the interpretation of the STLC

in the syntactic CCC has.

2.3.1 Interpretation of the STLC in CCCs

Definition 8 (Interpretation of a signature in a CCC). Given a signature S =

(Stype, Sconst), and a CCC C with chosen products and exponentials, an interpretation

of S in C is a map itype : Stype → ob(C) extended to a mapping of all types to objects

as in Figure 2.3, and a map iconst that maps a constant (c, τ) ∈ Sconst to a morphism

1 → JτK in C, that is extended to a mapping from all terms of the STLC with that

signature, as in Figure 2.3. ▲

Note that this interpretation maps types to objects and terms Γ ⊢ E : τ with con-

text Γ = [x1 : τ1, x2 : τ2, . . . xn : τn] to morphisms from J((τ1 × τ2) × . . . ) × τnK to JτK.
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JβK = itype(β)
J1K = 1

Jτ1 × τ2K = Jτ1K × Jτ2K
Jτ1 → τ2K = Jτ1K ⇒ Jτ2K

J♢K = 1
Jx1 : τ1, . . . xn : τnK = ((Jτ1K × Jτ2K) × . . . ) × JτnK

JΓ ⊢ c : τK = iconst(c, τ)◦!
JΓ ⊢ xi : τiK =

(
JΓK πi−→ JτiK

)
JΓ ⊢ () : 1K =

(
JΓK !−→ JτiK

)
JΓ ⊢ λx.E : τ1 → τ2K = Λ

(
JΓK × Jτ1K

JΓ,x:τ1⊢E:τ2K−−−−−−−→ Jτ2K
)

JΓ ⊢ ⟨E1, E2⟩ : τ1 × τ2K =
(
JΓK ⟨JΓ⊢E1:τ1K,JΓ⊢E2:τ2K⟩−−−−−−−−−−−−→ JΓK

)
JΓ ⊢ πiE : τiK =

(
JΓK JΓ⊢E:τ1×τ2K−−−−−−−→ Jτ1K × Jτ2K

πi−→ JτiK
)

JΓ ⊢ E1E2 : τ2K =
(
JΓK ⟨JΓ⊢E1:τ1→τ2K,JΓ⊢E2:τ2K⟩−−−−−−−−−−−−−−−→ (Jτ1K ⇒ Jτ2K) × Jτ1K

eval−−→ Jτ2K
)

Figure 2.3: Interpretation of the STLC in a CCC

Theorem 1. The interpretation of the STLC in any CCC, described in Definition

8, is sound with respect to the equational theory described in Figure 2.2.

2.3.2 Syntactic CCC of the STLC

Given a signature S, the syntactic CCC of the STLC with that signature is the

category F [S] with:

• Objects given by types of the STLC.

• Morphisms between objects τ1 and τ2 given by equivalence classes of well-
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typed terms E of the STLC with a fixed variable x,

x : τ1 ⊢ E : τ2,

quotiented by α-renaming and the equational theory described in Figure 2.2.

Note that for clarity, we abuse notation by using different variable names

x, x1, x2, . . . , y . . . for naming the one fixed variable.

• Identity morphism of an object τ is given by x : τ ⊢ x : τ .

• Composition is given by substitution:

(y : τ2 ⊢ E2 : τ3) ◦ (x : τ1 ⊢ E1 : τ2) = (x : τ1 ⊢ E2[y 7→ E1] : τ3).

Theorem 2. F [S] is a CCC.

There is a natural interpretation ι of the STLC in F [S] with

ι(β) = β for β in Stype

ι(c) = ( ⊢ c : τ) for a constant c of type τ in Sconst.

extended to all types and terms as in Definition 8.

Theorem 3. The interpretation ι of the STLC in F [S] is complete with respect to

the equational theory described in Figure 2.2.

Proof. This statement holds by the definition of the category, as two terms x : τ1 ⊢

E1 : τ2 and x : τ1 ⊢ E2 : τ2 are in the same equivalence class iff x : τ1 ⊢ E1 ≡ E2 :

τ2.
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For more on the STLC and CCCs, see Chapter 4 of Categories for Types [5].

For a full proof of the soundness and completeness stated in this chapter, see [6].

2.3.3 Free property

Definition 9 (Strict cartesian closed functor). Given two cartesian closed categories

C1, C2 with chosen products and exponentials, a strict CC-functor C1 → C2 is a

functor F : C1 → C2 that strictly preserves cartesian closed structure, i.e., for any

objects τ1, τ2, τ , and morphisms f1, f2, f , and for i ∈ {1, 2},

F (1C1) = 1C2

F (τ1 ×C1 τ2) = F (τ1) ×C2 F (τ2)

F (τ1 ⇒C1 τ2) = F (τ1) ⇒C2 F (τ2)

F (!τC1) =!F (τ)
C2

F (πτ
C1,i) = π

F (τ)
C2,i

F (⟨f1, f2⟩C1) = ⟨F (f1), F (f2)⟩C2

F (evalτC1) = evalF (τ)
C2

F (ΛC1(f)) = ΛC2(F (f)). ▲

Definition 10 (Free CCC over a signature). Given a signature S = (Stype, Sconst)

a CCC F [S] is free over S iff there exists an interpretation ι of S in F [S] such

that for any CCC C, and any interpretation F of S in C, there is a unique strict

CC-functor F # such that the following diagram commutes:

F [S] C

S

F #

F
ι
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i.e., for any β ∈ Stype, F #(ι(β)) = F (β) and any c ∈ Sconst, F #(ι(c)) = F (c). ▲

To motivate calling it free, consider the following adjunction.

Definition 11 (Restricted signature for the STLC). A restricted signature for the

STLC S consists of a set Stype of base types, and a set Sconst describing the constants.

Sconst has elements (c, τ) where c is the name of the constant and τ ∈ Stype. ▲

Note that unlike before, constants cannot be of arbitrary types, only of base types.

Definition 12 (Sig−). Let Sig− be the category of restricted signatures: the objects

are restricted signatures of the STLC, and a morphism from (Stype,1, Sconst,1) to

(Stype,2, Sconst,2) is a mapping of base types Ftypes : Stype,1 → Stype,2 and a mapping

of constants Fconst : Sconst,1 → Sconst,2 respecting the types. ▲

Definition 13 (CCC). Let CCC be the category of CCCs: the objects are small

CCCs with chosen products and exponentials and the morphisms are strict cartesian

closed functors. ▲

Given C ∈ CCC, let UC ∈ Sig be the underlying signature of C, in particular, let

UC = (Stypes, Sconst) where Stypes = ob(C) and Sconst = ⋃
X∈ob(C)

⋃
f∈C(1,X){(f, X)},

i.e., we choose all types as base types and all morphisms from the terminal object

to a base type as constants.

For this special case of restricted signatures, we can rephrase the uniqueness

requirement in Definition 10 as follows: for any S ∈ Sig−,(F [S], ι : S → UF #S) is

such that F [S] ∈ CCC and for any C ∈ CCC and functor F : S → UC, there is a

unique F # : F [S] → C in CCC such that the following diagram commutes in Sig−:

UF [S] UC

S

UF #

F
ι .
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This is exactly the universality condition of the following adjunction.

Sig− CCC

F [−]

U

⊣

Our construction is more general as it allows for constants of any type, but this

restricted case illustrates the reason for naming it free.

Theorem 4. F [S] with ι is the free CCC over S.

Proof sketch. F [S] is a CCC by Theorem 2.

F # is a mapping from objects and morphisms of F [S] so from types and

equivalence classes of typed lambda terms (with a one-variable context) to objects

of C.

The requirement that the above diagram commutes enforces the behaviour of

F # on base types. The requirement that F # is a CC-functor extends the behaviour

to the terminal object, products and exponentials. Similarly, the requirement that

the above diagram commutes enforces the behaviour of F # on constants, and we

can inductively extend this to all morphisms using the requirement that F # is

a CC-functor. Hence if such an F # exists, it is unique, and it maps on object

corresponding to the type τ to JτK and a morphism corresponding to x : τ1 ⊢ E : τ2

to Jx : τ1 ⊢ E : τ2K for the interpretation of the STLC with that signature as defined

in Definition 8.

Now Theorem 1 can be used to see that this gives a well-defined functor on

morphisms, i.e., that if two terms correspond to the same morphism in F [S], i.e., if

they are equivalent in the congruence from above, then they are mapped to the same

object by F [S]. Finally, it remains to check that F # is indeed a strict CC-functor:

preservation of composition can be proved by induction on the second morphism of

the composition and preservation of identities, strict preservation of the terminal
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object and binary products all follow directly from the definition of F #.



3
Monadic metalanguage and cartesian

closed categories with a strong monad

This chapter is a short summary of the monadic metalanguage, strong monads, and

the interpretation of the monadic metalanguage in CCCs with a strong monad.

3.1 Monadic metalanguage

The monadic metalanguage (λml) was introduced by Moggi [19] as a minimalist

programming language that allows for the modelling of side-effecting computation.

It extends the STLC by adding a new type constructor T that describes monadic

computation. Intuitively, a computation of type Tτ means a computation of type

τ that potentially has side effects of kind T .

This treatment of side effects is similar to that of Haskell, where a print function

21
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has type putStrLn :: String -> IO (). Here IO has the same role as the

monad T in our metalanguage.

To combine monadic computations, we can use the let-binding in our language:

let x ⇐ E1 in E2 corresponds to the intuition of “perform the computation of E1

together with all its side effects, bind the resulting value of E1 and perform the com-

putation E2 with the resulting value substituted for x”. The corresponding operator

in Haskell is »=, for example, we could combine two printing operations as follows:

putStr "hello " >>= (\ x -> putStr "world")

(Note that here x will be bound to the result of the first putStr statement, which

has type () and we do not use it in the second putStr statement.)

In the monadic metalanguage, to create a monadic term of type Tτ from a

term of type τ without adding any actual side effect, we can use the [−]T construct.

This corresponds to return in Haskell.

(return ()) >>= (\x -> putStr "hello world")

A signature for the monadic metalanguage is similar to that of the simply-typed

lambda calculus: a set of base types and a set of constants, but now these might have

a monadic type. For example, a possible signature could be Stype = {bool, string},

Sconst = {(true, bool), (false, bool), (print, string → T1)}.

Definition 14 (Signature for λml). A signature for λml S consists of a set Stype of

base types, and a set Sconst describing the constants. Sconst has elements (c, τ) where

c is the name of the constant and τ is a monadic metalanguage type. ▲

Definition 15 (Types of λml). The types of the monadic metalanguage are given by

the following grammar

τ ::= β | 1 | Tτ | τ1 × τ2 | τ1 → τ2
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x1 : τ1, . . . , xn : τn ⊢ xi : τi
(var)

(c, τ) ∈ Sconst

Γ ⊢ c : τ
(const)

Γ ⊢ E : τ1 × τ2
Γ ⊢ πiE : τi

(proj)

Γ ⊢ E1 : τ1 Γ ⊢ E2 : τ2
Γ ⊢ ⟨E1, E2⟩ : τ1 × τ2

(pair)

Γ ⊢ E : T
Γ ⊢ [E]T : Tτ

(return)

Γ ⊢ E1 : Tτ1 Γ, x : τ1 ⊢ E2 : Tτ2
Γ ⊢ let x ⇐ E1 in E2 : Tτ2

(let)

Γ, x : τ1 ⊢ E : τ2
Γ ⊢ λx.E : τ1 → τ2

(abst)

Γ ⊢ E1 : τ1 → τ2 Γ ⊢ E2 : τ1
Γ ⊢ E1E2 : τ2

(app)

Figure 3.1: Monadic metalanguage

where β ∈ Stype ranges over the given base types. ▲

Definition 16 (Terms of the monadic metalanguage). The terms of the monadic

metalanguage are given by the following grammar

E ::= x | c | () | ⟨E1, E2⟩ | πiE | λx.E | E1E2 | [E]T | let x ⇐ E1 in E2

where c ranges over the given constant symbols, i.e., (c, τ) ∈ Sconst for some τ . ▲

The typing rules are described in Figure 3.1.

The equations of λml are defined in Figure 3.2. They differ from the rules for

the STLC by the addition of the (letβ), (letη) and the (assoc) rules.
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Γ ⊢ E1 : τ1 Γ ⊢ E2 : τ2 i ∈ {1, 2}
Γ ⊢ πi⟨E1, E2⟩ ≡ Ei : τi (prodβ)

Γ, x : τ1 ⊢ E1 : τ2 Γ ⊢ E2 : τ1

Γ ⊢ (λx.E1)E2 ≡ E1[x 7→ E2] : τ2 (fnβ)

Γ ⊢ E1 : τ1 Γ, x : τ1 ⊢ E2 : τ2

Γ ⊢ let x ⇐ [E1]T in E2 ≡ E2[x 7→ E1] : τ2 (letβ)

Γ ⊢ E : τ1 × τ2
Γ ⊢ ⟨π1E, π2E⟩ ≡ E : τ1 × τ2 (prodη)

Γ ⊢ E : τ1 → τ2 x not free in E
Γ ⊢ λx.Ex ≡ E : τ1 → τ2 (fnη)

Γ ⊢ E : Tτ
Γ ⊢ let x ⇐ E in [x]T ≡ E : Tτ (letη)

Γ ⊢ E : 1
Γ ⊢ () ≡ E : 1 (unit)

Γ ⊢ E1 : Tτ1 Γ, x : τ1 ⊢ E2 : Tτ2Γ, y : τ2 ⊢ E3 : Tτ3

Γ ⊢ let y ⇐ (let x ⇐ E1 in E2) in E3 ≡
let x ⇐ E1 in (let y ⇐ E2 in E3) : Tτ3

(assoc)

Together with the equivalence relation rules (reflexivity, symmetry, transitivity),
and congruence rules for each constructor.

Figure 3.2: Equations of λml

3.2 Strong monads

The previous section introduced monads as a programming language concept. This

section presents monads in category theory. It presents them in Kleisli form, which

is equivalent to their standard definition [16] but, as we will see later, aligns more

directly with monads in the monadic metalanguage.

Definition 17 (Monad in Kleisli form). Given a category C, a monad in Klesli form

is a triple (T, η, (·)†), where:

• T : ob(C) → ob(C)
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• for each object X, ηX ∈ C(X, TX)

• for all pairs of objects X, Y , (·)†
X,Y : C(X, TY ) → C(TX, TY )

satisfying the following axioms:

• η†
X = idX

• f † ◦ ηX = f

• g† ◦ f † = (g† ◦ f)†. ▲

The following theorem illustrates the importance of monads from a category-

theoretic point of view.

Theorem 5. [1] Every adjunction L ⊣ R gives rise to a monad R ◦ L.

Definition 18 (Strength of a monad). Given a monad (T, η, (·)†), a strength for T

is a natural transformation with components

stA,B : A × TB → T (A × B)

satisfying the strength axioms from [8]. ▲

Definition 19 (Strong monad). A strong monad is a monad with a strength. ▲

As we will see below, strong monads can be used to describe the semantics

of the monadic metalanguage. In particular, η corresponds to returning a value,

i.e., making a monadic term from a term without adding any side effects, and (·)†

corresponds to sequentially composing computations. The strength of a monad then

describes how to combine a term and a monadic term into a single monadic term.

As an illustration of the strength of a monad, consider the following theorem.
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Theorem 6. [17] Every monad in Set with the Cartesian product has a unique

strength given by

stX,Y (x, ym) = T (λy.⟨x, y⟩)(ym).

3.3 Connection

This section describes how to extend the results for the STLC and CCCs to the

case of the monadic metalanguage. The results are due to Moggi [19].

3.3.1 Interpretation of the monadic metalanguage in CCCs

with a strong monad

Definition 20 (Interpretation of a signature in a CCC with a strong monad).

Given a signature S = (Stype, Sconst), and a CCC C with chosen products and

exponentials and a strong monad (T, η, (·)†, st), an interpretation of S in C is a map

itype : Stype → ob(C) extended to a mapping of all types to objects as in Figure 3.3,

and a map iconst that maps a constant (c, τ) ∈ Sconst to a morphism 1 → JτK in C,

that is extended to a mapping from all terms of λml with that signature, as in Figure

3.3. ▲

Theorem 7. [19] The interpretation of λml in any CCC with a strong monad,

described in Definition 20 is sound with respect to the equational theory described in

Figure 3.2.
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JβK = itype(β)
J1K = 1

Jτ1 × τ2K = Jτ1K × Jτ2K
Jτ1 → τ2K = Jτ1K ⇒ Jτ2K

JTτK = T JτK

J♢K = 1
Jx1 : τ1, . . . xn : τnK = ((Jτ1K × Jτ2K) × . . . ) × JτnK

JΓ ⊢ c : τK = iconst(c, τ)◦!
JΓ ⊢ xi : τiK =

(
JΓK πi−→ JτiK

)
JΓ ⊢ () : 1K =

(
JΓK !−→ JτiK

)
JΓ ⊢ λx.E : τ1 → τ2K = Λ

(
JΓK × Jτ1K

JΓ,x:τ1⊢E:τ2K−−−−−−−→ Jτ2K
)

JΓ ⊢ ⟨E1, E2⟩ : τ1 × τ2K =
(
JΓK ⟨JΓ⊢E1:τ1K,JΓ⊢E2:τ2K⟩−−−−−−−−−−−−→ JΓK

)
JΓ ⊢ πiE : τiK =

(
JΓK JΓ⊢E:τ1×τ2K−−−−−−−→ Jτ1K × Jτ2K

πi−→ JτiK
)

JΓ ⊢ E1E2 : τ2K =(
JΓK ⟨JΓ⊢E1:τ1→τ2K,JΓ⊢E2:τ1K⟩−−−−−−−−−−−−−−−→ (Jτ1K ⇒ Jτ2K) × Jτ1K

eval−−→ Jτ2K
)

JΓ ⊢ [E]T : TτK = ητ ◦ JΓ ⊢ E : τK
JΓ ⊢ let x ⇐ E1 in E2 : Tτ2K = JΓ, x : τ1 ⊢ E2 : Tτ2K† ◦ stτ1,τ2 ◦ ⟨idτ1 , JΓ ⊢ E1 : τ1K⟩

Figure 3.3: Interpretation of the monadic metalanguage in a CCC with a strong monad

3.3.2 Syntactic CCC with strong monad of the Monadic

Metalanguage

Given a signature S, the syntactic CCC with a strong monad of λml with that

signature is the category F [S] with:

• Objects given by the types of the λml.

• Morphisms between objects τ1 and τ2 given by equivalence classes of well-
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typed terms E of λml with

x : τ1 ⊢ E : τ2,

quotiented by the equational theory above.

• Identity morphism of an object τ is given by x : τ ⊢ x : τ .

• Composition is given by substitution:

(y : τ2 ⊢ E2 : τ3) ◦ (x : τ1 ⊢ E1 : τ2) = (x : τ1 ⊢ E2[y 7→ E1] : τ3).

• The monad is given by (T, η, (·)†) where

ητ = (x : τ ⊢ [x]T : Tτ)

(x : τ1 ⊢ E : Tτ2)† = (y : Tτ1 ⊢ let x ⇐ y in E : Tτ1).

• The strength of the monad is given by

stτ1,τ2 = (x : τ1 × Tτ2 ⊢ let z ⇐ π2x in ⟨π1x, z⟩ : T (τ1 × τ2)).

Theorem 8. F [S] is indeed a CCC with a strong monad.

There is a natural interpretation ι of the monadic metalanguage in F [S] with

ι(β) = β for β in Stype

ι(c) = ( ⊢ c : τ) for a constant c of type τ in Sconst.

extended to all types and objects as in Figure 3.3.

Theorem 9. The interpretation ι of the monadic metalanguage in F [S] is complete

with respect to the equational theory described in Figure 3.2.
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Proof. As before, this holds by the definition of the quotienting.

3.3.3 Free property

The free property of the interpretation of λml is similar to that of the STLC.

Definition 21 (Strictly preserving a strong monad). Give cartesian categories with

strong monads (C1, T1, η1, (·)†1 , st1) and (C2, T2, η2, (·)†2 , st2), a functor F : C1 → C2

is said to strictly preserve the strong monadic structure if for all objects τ, τ1, τ2,

F (T1(τ)) = T2(F (τ))

F (η1,τ ) = η2,F τ

F ((f)†1) = (F (f))†2

F (st1,τ1,τ2) = st2,F (τ1),F τ2 . ▲

Definition 22 (Free CCC with a strong monad over a signature). Given a signature

S = (Stype, Sconst) a CCC with a strong monad F [S] is free over S iff there exists

an interpretation ι of S in F [S] such that for any CCC with a strong monad C,

and any interpretation F of S in C, there is a unique strict CC-functor F strictly

preserving the strong monadic structure, such that the following diagram commutes:

F [S] C

S

F #

F
ι

i.e., for any β ∈ Stype, F #(ι(β)) = F (β) and any c ∈ Sconst, F #(ι(c)) = F (c). ▲

Theorem 10. F [S] with ι is the free CCC with a strong monad over that signature.
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4
Computational lambda calculus and

Freyd-categories

This chapter describes and proves the relationship between the semantics of compu-

tational lambda calculus and closed Freyd-categories. While it has been known that

closed Freyd-categories provide sound and complete semantics of the computational

lambda calculus, the detailed description of the interpretation and the syntactic

closed Freyd-category, and the required proofs are original work. The key to the

abbreviations used throughout this Chapter is available in Appendix A.

4.1 Computational lambda calculus

The computational lambda calculus is a simple programming language introduced by

Moggi [18] as a generalization of the STLC that allows for modelling side-effecting

31
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computation. Its structure is similar to that of the STLC and λml, but unlike the

STLC, it is not necessarily pure, and unlike the λml, side-effecting computations

do not need to be treated differently in syntax from pure expressions.

Definition 23 (Signature for the computational lambda calculus). A signature for

the λC S consists of:

• A set Stype of base types.

• A set Sprim describing the pure constants. Sprim has elements (c, τ) where c is

the name of the constant and τ is a computational lambda calculus type.

• A set Sefop describing the effectful constants. Sefop has elements (c, τ) where c

is the name of the constant and τ is a computational lambda calculus type.

▲

The types of the computational lambda calculus are exactly the same as

those of the STLC.

Definition 24 (Types of λC). The types of the computational lambda calculus are

given by the following grammar

τ ::= β | 1 | τ1 × τ2 | τ1 → τ2

where β ∈ Stype ranges over the given base types. ▲

We introduce a new concept: intuitively, values are terms that do not have

side effects. Note that this definition differs from the definition of values often

used for the untyped lambda calculus, where values are those terms that do not

reduce. In this case, values also include complex values [12], terms that reduce,

but do not have side effects, such as π1⟨(), x⟩.
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Definition 25 (Terms of λC). The terms of the computational lambda calculus are

given by the following grammars of values and general computations

V ::= x | cprim | () | πxV | ⟨V1, V2⟩ | let x ⇐ V1 in V2 | λx.M

M ::= cefop | V | πxM | ⟨M1, M2⟩ | let x ⇐ M1 in M2 | M1M2

where cprim ranges over the given pure constant symbols, i.e., (cprim, τ) ∈ Sprim for

some τ , and cefop ranges over the given effectful constant symbols, i.e., (cefop, τ) ∈

Sefop for some τ . ▲

Note that an expression might not have side effects, and still might not be

generated by the V grammar, for example, if it is of the form (λx.V1)V2. This

is not a problem as V is simply a helper construct and we will see later, that

in that case, an equivalent expression (in the above case V2[x 7→ V1]) might be

generated by the value grammar.

Note also that in λC, every variable is pure, unlike in λml where variables could

have monadic types and hence correspond to potentially side-effecting computation.

The typing rules, described in Figure 4.1, are also similar to those of the STLC,

with the exception of the (let) rule, and the rules for constants.

The equations of λC are described in Figure 4.2. These differ from the STLC

ones in multiple points. In particular, in the η and β rules of products and functions,

and in the (unit) rule, some of the terms are restricted to be values. The fnβ-rule is

restricted to values to achieve a call-by-value semantics, i.e., a semantics where the

values are computed before substituting them. Note that if a term does not have

side effects (such as all the term of the STLC), while it makes a difference in the

operational semantics whether we compute the term before or after substitution,

it does not make a difference semantically. However, with side effects, it does, as

it affects when and how many times the side effects are performed. Similarly, the
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x1 : τ1, . . . , xn : τn ⊢ xi : τi
(var)

(c, τ) ∈ Sprim

Γ ⊢ c : τ
(prim)

(c, τ) ∈ Sefop

Γ ⊢ c : τ
(efop)

Γ ⊢ () : 1 (unit)

Γ ⊢ M : τ1 × τ2
Γ ⊢ πiM : τi

(proj)

Γ ⊢ M1 : τ1 Γ ⊢ M2 : τ2
Γ ⊢ ⟨M1, M2⟩ : τ1 × τ2

(pair)

Γ ⊢ M1 : τ1 Γ, x : τ1 ⊢ M2 : τ2
Γ ⊢ let x ⇐ M1 in M2 : τ2

(let)

Γ, x : τ1 ⊢ M : τ2
Γ ⊢ λx.M : τ1 → τ2

(abst)

Γ ⊢ M1 : τ1 → τ2 Γ ⊢ M2 : τ1
Γ ⊢ M1M2 : τ2

(app)

Figure 4.1: Typing rules of λC

prodβ specifies that we first compute the product, and only project out the correct

position after it, and the letβ specifies that for a let-binding let x ⇐ M1 in M2 we

want to compute M1 before substituting it for x in M2. We restrict certain terms in

the η-rules to values to remain sound with respect to contextual equivalence.

The (letη), (letβ) and (assoc) rules are newly added as we have newly added

the let construct. The (compproj), (comppair) and (compapp) rules are also new,

intuitively, these describe how these constructs interact with side-effecting terms.

Note that these equations also explicitly describe which order the terms are evaluated

in. For example, the (comppair) rules specifies that ⟨M1, M2⟩ should semantically
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agree with let x ⇐ M1 in (let y ⇐ M2 in ⟨x, y⟩), so these equations specify that

the left position should be evaluated first in a product.

4.2 Freyd-categories

Freyd-categories were introduced as a model of languages with side effects [23].

Intuitively, premonoidal categories are better suited to modelling side effects than

monoidal categories (such as cartesian categories), because they allow us to explicitly

describe that side effects do not commute, as (f ⊗ id) ◦ (id ⊗ g) does not in general

equal (id ⊗ g) ◦ (f ⊗ id). This is required as for example printing hello and

then world should have different semantics than the other way around. Freyd-

categories formalize the intuition that non-side-effecting expressions, i.e., values, do

commute (so they can be modelled by a cartesian category V), but computations,

in general, satisfy a weaker structure (and form a premonoidal category C instead),

and every value can be regarded as a general computation (so we have a structure-

preserving functor J : V → C).

Definition 26 (Binoidal category). A binoidal category is a category C together

with:

• for any two of objects X, Y of C, an object X ⊗ Y of C

• for any object X, a functor X ⋊− such that for any object Y , X ⋊Y = X ⊗Y

• for any object X, a functor − ⋉ X such that for any object Y , Y ⋉ X =

Y ⊗ X. ▲

For simplicity, for a morphism f we denote X ⋊ f by id ⊗ f when X is clear.

Similarly, we also denote f ⋉ X by f ⊗ id.
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Γ ⊢ V : τ1 Γ, x : τ1 ⊢ M : τ2

Γ ⊢ let x ⇐ V in M ≡ M [x 7→ V ] : τ2 (letβ)

Γ ⊢ V1 : τ1 Γ ⊢ V2 : τ2 i ∈ {1, 2}
Γ ⊢ πi⟨V1, V2⟩ ≡ Vi : τi (prodβ)

Γ ⊢ V : τ2 Γ, x : τ1 ⊢ M : τ2

Γ ⊢ (λx.M)V ≡ M [x 7→ V ] : τ2 (fnβ)

Γ ⊢ M : τ
Γ ⊢ let x ⇐ M in x ≡ M : τ (letη)

Γ ⊢ V : τ1 × τ2
Γ ⊢ ⟨π1V, π2V ⟩ ≡ V : τ1 × τ2 (prodη)

Γ ⊢ V : τ1 → τ2 x is not free in V
Γ ⊢ λx.V x ≡ V : τ1 → τ2 (fnη)

Γ ⊢ E1 : τ1 Γ, x : τ1 ⊢ E2 : τ2 Γ, y : τ2 ⊢ E3 : τ3

Γ ⊢ let y ⇐ (let x ⇐ E1 in E2) in E3 ≡
let x ⇐ E1 in (let y ⇐ E2 in E3) : τ3

(assoc)

Γ ⊢ V : 1
Γ ⊢ () ≡ V : 1 (unit)

Γ ⊢ M : τ1 × τ2 i ∈ {1, 2}
Γ ⊢ πiM ≡ let x ⇐ M in πix : τi (compproj)

Γ ⊢ M1 : τ1 Γ ⊢ M2 : τ2

Γ ⊢ ⟨M1, M2⟩ ≡
let x ⇐ M1 in (let y ⇐ M2 in ⟨x, y⟩) : τ1 × τ2

(comppair)

Γ ⊢ M1 : τ1 → τ2 Γ ⊢ M2 : τ1
Γ ⊢ M1M2 ≡ let x ⇐ M1 in (let y ⇐ M2 in xy) : τ2 (compapp)

Together with the equivalence relation rules (reflexivity, symmetry, transitivity),
and congruence rules for each constructor.

Figure 4.2: Equations of λC
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Definition 27 (Central morphism). In a binoidal category C, f : X1 → Y1 is a

central morphism iff for any morphism g : X2 → Y2 the following diagrams commute:

X1 ⊗ X2 X1 ⊗ Y2

Y1 ⊗ X2 Y1 ⊗ Y2

X1⋊g

f⋉X2 f⋉Y2

Y1⋊g

and

X2 ⊗ X1 Y2 ⊗ X1

X2 ⊗ Y1 Y2 ⊗ Y1.

g⋉X1

X2⋊f Y2⋊f

g⋉Y1

▲

Definition 28 (Premonoidal category). A premonoidal category is a category C

with:

• an object I

• a natural transformation a with components

aX,Y,Z : (X ⊗ Y ) ⊗ Z → X ⊗ (Y ⊗ Z),

where all components are isomorphisms and central

• natural transformations λ and ρ with components

λX : X ⊗ I → X

ρX : I ⊗ X → X

where all components are isomorphisms and central, such that the pentagon
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law and triangle law holds, i.e., the following two diagrams commute:

(X ⊗ I) ⊗ Y X ⊗ (I ⊗ Y )

X ⊗ Y

aX,I,Y

λX⋉Y X⋊ρY

and
((W ⊗ X) ⊗ Y ) ⊗ Z (W ⊗ X) ⊗ (Y ⊗ Z)

(W ⊗ (X ⊗ Y )) ⊗ Z

W ⊗ ((X ⊗ Y ) ⊗ Z) W ⊗ (X ⊗ (Y ⊗ Z))

aW,X,Y ⋉Z

aW ⊗X,Y,Z

aW,X,Y ⊗Z

aW,X⊗Y,Z

W⋊aX,Y,Z

▲

Example 2. Every monoidal category is also a premonoidal category. ▲

Definition 29 (Symmetry of a premonoidal category). A symmetry of a premonoidal

category C is a central natural isomorphism with components

sX,Y : X ⊗ Y → Y ⊗ X

such that for any X, Y , sY,X ◦ sX,Y = idX⊗Y and the following diagram commutes:

(X ⊗ Y ) ⊗ Z X ⊗ (Y ⊗ Z) (Y ⊗ Z) ⊗ X

(Y ⊗ X) ⊗ Z Y ⊗ (X ⊗ Z) Y ⊗ (Z ⊗ X)

sX,Y ⊗id

aX,Y,Z sX,Y ⊗Z

aY,Z,X

aY,X,Z id⊗sX,Z

▲

Definition 30 (Freyd category). A Freyd category [20] is V J−→ C where:

• V is a category with finite products
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• C is a symmetric premonoidal category

• V and C have the same objects

• J : V → C is an identity-on-object functor that strictly preserves symmetric

premonoidal structure and maps every morphism of V to a central morphism

in C. ▲

Definition 31 (Closed Freyd category). A Freyd category V J−→ C is closed if for

every object X, the functor J(− × X) : V → C has a right adjoint.

Explicitly, if we denote the right adjoint by (X ⇒ −), we get

C
(
J(A1 × X), A2

) ∼= V(A2, X ⇒ A1),

natural in A1 and A2. ▲

So if we denote the counit of this adjunction by eval, one has that for any

f : X × A1 → A2 in C, there is a unique Λ(f) : X → (A1 ⇒ A2) in V such

that the following diagram commutes:

(A1 ⇒ A2) ⊗ A1 A2

X ⊗ A1

eval

J(Λ(f))⋉A1 f

With this notation, we might also represent the above adjunction as:

V(X, A ⇒ B) C(X ⊗ A, B)

eval◦(J−⊗A)

Λ(−)

⊣

This adjunction gives the following η and β rules of exponentials in closed

Freyd-categories:



40 4.3. Interpretation of λC in a closed Freyd-category

• For any f : X → (A ⇒ B) in V

Λ(eval ◦ (Jf ⊗ A)) η= f.

• For any f : X ⊗ A → B in C

eval ◦ (JΛ(f) ⊗ A) β= f.

These have a similar form to the (fnη) λx.V x ≡ V and (fnβ) λx.MV ≡ M [x 7→

V ] rules for the computational lambda calculus, and as we will see later, are

indeed closely related.

Example 3. For a cartesian category with a strong monad (C, T, η, (·)†), and CT

the Kleisli-category of C with the monad T , C η◦−−−→ CT is a Freyd-category, and it is

closed iff C has Kleisli-exponentials [13]. ▲

4.3 Interpretation of λC in a closed Freyd-category

Definition 32 (Interpretation of a signature in a Freyd-category). Given a signature

S = (Stype, Sprim, Sefop), and a Freyd-category V J−→ C, an interpretation of S in C

is a map itype : Stype → ob(V) extended to a mapping of all types to objects as in

Figure 4.3, and maps iprim, iefop that map (c, τ) ∈ Sprim to a morphism 1 → JτK in

V and (c, τ) ∈ Sefop to a morphism 1 → JτK in C respectively, that is extended to a

mapping from all values and terms respectively, as in Figure 4.3. ▲

Note that as before, types are interpreted as an object of V and C, denoted

by JτK = JτKV = JτKC. Furthermore, every well-typed term Γ ⊢ M : τ has an

interpretation in C given by JΓ ⊢ M : τKC. Values Γ ⊢ V : τ also have an

interpretation in V given by JΓ ⊢ V : τKV.
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Notes on notation. Where the type of a variable in a context or the type of a

term is deducible from context, it is omitted for brevity. E.g., we might use

JΓ, x ⊢ MKC

as a shorthand for JΓ, x : τ1 ⊢ M : τ2KC.

4.4 Soundness

In this section, we prove that the interpretation of λC is sound with respect to the

equations of λC. The two key lemmas required to prove this are the Weakening

lemma (Lemma 3) and the Substitution lemma (Lemma 4) from below.

Lemma 1. In a closed Freyd-category V J−→ C, for objects X, A, B, and morphisms

f, g : X → A ⇒ B in V,

f = g ⇐⇒ (eval ◦ (Jf ⊗ A)) = (eval ◦ (Jg ⊗ A)).

Proof. The ⇒ direction holds trivially.

To see the ⇐ direction, note that f
η= Λ(eval ◦ (Jf ⊗ A)), and similarly Λ(eval ◦

(Jg ⊗ A)) η= g.

Lemma 2. In a closed Freyd-category V
J−→ C, for objects X, X ′, A, B, and

morphisms f : X ′ ⊗ A → B in C and g : X → X ′ in V,

Λ(f ◦ (Jg ⊗ A)) = Λ(f) ◦ g.
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JβK = itype(β)
J1K = 1

Jσ1 × σ2K = Jσ1K × Jσ2K
Jσ1 → σ2K = Jσ1K ⇒ Jσ2K

J♢K = 1
Jx1 : τ1, . . . xn : τnK = ((Jτ1K × Jτ2K) × . . . ) × JτnK

JΓ ⊢ cprim : τKV = iprim(cprim, τ)◦!
JΓ ⊢ xi : σiKV =

(
JΓK πi−→ JσiK

)
JΓ ⊢ () : 1KV =

(
JΓK !−→ JσiK

)
JΓ ⊢ λx.M : σ1 → σ2KV = Λ

(
JΓK ⊗ Jσ1K

JΓ,x:σ1⊢MKC−−−−−−−→ Jσ2K
)

JΓ ⊢ ⟨V1, V2⟩ : σ1 × σ2KV =
(
JΓK ⟨JΓ⊢V1KV,JΓ⊢V2KV⟩−−−−−−−−−−−→ JΓK

)
JΓ ⊢ πiV : σiKV =

(
JΓK JΓ⊢V KV−−−−→ Jσ1K × Jσ2K

πi−→ JσiK
)

JΓ ⊢ let x ⇐ V1 in V2 : σ2KV =
(
JΓK ⟨id,JΓ⊢V1KV⟩−−−−−−−→ JΓK × Jσ1K

JΓ,x:σ1⊢V2KV−−−−−−−→ Jσ2K
)

JΓ ⊢ cefop : τKC = iefop(cefop, τ) ◦ J !
JΓ ⊢ ⟨M1, M2⟩ : σ1 × σ2KC = (JΓK ⋊ JΓ ⊢ M2 : σ2KC) ◦ (JΓ ⊢ M1 : σ1KC ⋉ JΓK)

◦ J∆
JΓ ⊢ πiM : σiKC = Jπi ◦ JΓ ⊢ M : σ1 × σ2KC

JΓ ⊢ let x ⇐ M1 in M2 : σ2KC = JΓ, x : σ1 ⊢ M2 : σ2KC ◦ (JΓK ⋊ JΓ ⊢ M1KC) ◦ J∆
JΓ ⊢ M1M2 : σ2KC = eval ◦ (Jσ1 → σ2K ⋊ JΓ ⊢ M2 : σ2KC)

◦ (JΓ ⊢ M1 : σ1 → σ2KC ⋉ JΓK) ◦ J∆

Figure 4.3: Interpretation λC in a closed Freyd-category
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Proof. Using Lemma 1, it is sufficient to show

eval ◦ (J(Λ(f ◦ (Jg ⊗ A))) ⊗ A) = eval ◦ (J(Λ(f) ◦ g) ⊗ A).

But indeed, eval ◦ (J(Λ(f ◦ (Jg ⊗ A))) ⊗ A) β= f ◦ (Jg ⊗ A) and using that J and

− ⊗ A are functors:

eval ◦ (J(Λ(f) ◦ g) ⊗ A)

= eval ◦ ((J(Λ(f)) ◦ Jg) ⊗ A)

= eval ◦ (J(Λ(f)) ⊗ A) ◦ (Jg ⊗ A)
β= f ◦ (Jg ⊗ A).

Lemma 3 (Weakening). For contexts Γ1 = x1 : τ1, . . . xn : τn, Γ2 = y1 : σ1, . . . , ym :

σm, define ρ : Γ1 → Γ2 to be a context renaming if, for each xi in Γ1, ρ(xi) = yj for

yj is in Γ2 and τi = σj. Furthermore, define ρi to be the (unique) index j such that

ρ(xi) = yj.

Now for J−KV, J−KC the interpretation of λC in the closed Freyd-category V J−→ C,

for any value Γ1 ⊢ V : τ ,

JΓ1 ⊢ V : τKV ◦ ⟨πρ1 , . . . , πρn⟩ = JΓ2 ⊢ V [xi 7→ ρ(xi)] : τKV

in V, and for any term Γ1 ⊢ M : τ ,

JΓ1 ⊢ M : τKC ◦ J⟨πρ1 , . . . , πρn⟩ = JΓ2 ⊢ M [xi 7→ ρ(xi)] : τKC

in C.

Proof. We are going to prove this statement by structural induction on the grammar
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of values and computations. For each term, we have to show that the denotation of

the right-hand side agrees with the denotation of the left-hand side.

• Case: var

JΓ2 ⊢ xj[xi 7→ ρi(xi)]KV

= JΓ2 ⊢ ρ(xj)KV

= πρj

= πj ◦ ⟨πρ1 , . . . , πρn⟩

= JΓ1 ⊢ xjKV ◦ ⟨πρ1 , . . . , πρn⟩

• Case: prim

JΓ ⊢ c[xi 7→ ρi(xi)] : τKV

= JΓ ⊢ c : τKV

= J ⊢ c : τKV◦!

= J ⊢ c : τKV◦! ◦ ⟨πρ1 , . . . , πρn⟩

= Jx1, . . . , xn ⊢ c : τKV ◦ ⟨πρ1 , . . . , πρn⟩

• Case: unit

JΓ1 ⊢ () : 1KV ◦ ⟨πρ1 , . . . , πρn⟩ = JΓ2 ⊢ ()[xi 7→ ρ(xi)] : 1KV

because both are morphisms from the JΓ2K object to the terminal object.

• Case: val-proj

JΓ2 ⊢ (πjV )[xi 7→ ρ(xi)]KV
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= JΓ2 ⊢ πj(V [xi 7→ ρ(xi)])KV

= πj ◦ JΓ2 ⊢ V [xi 7→ ρ(xi)]KV
IH= πj ◦ JΓ1 ⊢ V KV ◦ ⟨πρ1 , . . . , πρn⟩

= JΓ1 ⊢ (πjV )KV ◦ ⟨πρ1 , . . . , πρn⟩

• Case: val-pair

JΓ2 ⊢ ⟨V1, V2⟩[xi 7→ ρ(xi)]KV

= JΓ2 ⊢ ⟨V1[xi 7→ ρ(xi)], V2[xi 7→ ρ(xi)]⟩KV

= ⟨JΓ2 ⊢ V1[xi 7→ ρ(xi)]KV, JΓ2 ⊢ V2[xi 7→ ρ(xi)]KV⟩
IH= ⟨JΓ1 ⊢ V1KV ◦ ⟨πρ1 , . . . , πρn⟩, JΓ1 ⊢ V2KV ◦ ⟨πρ1 , . . . , πρn⟩⟩

= ⟨JΓ1 ⊢ V1KV, JΓ1 ⊢ V2KV⟩ ◦ ⟨πρ1 , . . . , πρn⟩

= JΓ1 ⊢ ⟨V1, V2⟩KV ◦ ⟨πρ1 , . . . , πρn⟩

• Case: val-let

JΓ2 ⊢ (let x ⇐ V1 in V2)[xi 7→ ρ(xi)]KV

= JΓ2 ⊢ let x ⇐ V1[xi 7→ ρ(xi)] in V2[xi 7→ ρ(xi), x 7→ x]KV

= JΓ2, x ⊢ V2[xi 7→ ρ(xi), x 7→ x]KV ◦ (id × JΓ2 ⊢ V1[xi 7→ ρ(xi)]KV) ◦ ∆
IH= JΓ1, x ⊢ V2KV ◦ ⟨πρ′

1
, . . . , πρ′

n
, πρ′

n+1
⟩

◦ (id × (JΓ1 ⊢ V1KV ◦ ⟨πρ1 , . . . , πρn⟩)) ◦ ∆

= JΓ1, x ⊢ V2KV ◦ ⟨πρ1 ◦ π1, . . . , πρn ◦ π1, π2⟩

◦ (id × (JΓ1 ⊢ V1KV ◦ ⟨πρ1 , . . . , πρn⟩)) ◦ ∆

= JΓ1, x ⊢ V2KV ◦ (⟨πρ1 , . . . , πρn⟩ × id) ◦ (id × JΓ1 ⊢ V1KV)

◦ (id × ⟨πρ1 , . . . , πρn⟩) ◦ ∆
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= JΓ1, x ⊢ V2KV ◦ (id × JΓ1 ⊢ V1KV) ◦ (⟨πρ1 , . . . , πρn⟩ × id)

◦ (id × ⟨πρ1 , . . . , πρn⟩) ◦ ∆

= JΓ1, x ⊢ V2KV ◦ (id × JΓ1 ⊢ V1KV) ◦ ∆ ◦ ⟨πρ1 , . . . , πρn⟩

= JΓ1 ⊢ let x ⇐ V1 in V2KV ◦ ⟨πρ1 , . . . , πρn⟩

• Case: abst

JΓ2 ⊢ (λx.M)[xi 7→ ρ(xi)]KV

= JΓ2 ⊢ λx.(M [xi 7→ ρ(xi), x 7→ x])KV

= Λ
(
JΓ2, x ⊢ M [xi 7→ ρ(xi), x 7→ x]KC

)
IH= Λ

(
JΓ1, x ⊢ MKC ◦ J⟨πρ′

1
, . . . , πρ′

n
, πρ′

n+1
⟩
)

= Λ
(
JΓ1, x ⊢ MKC ◦ J⟨πρ1 ◦ π1, . . . , πρn ◦ π1, π2⟩

)
= Λ

(
JΓ1, x ⊢ MKC ◦ (J⟨πρ1 , . . . , πρn⟩ ⊗ id)

)
∗= Λ

(
JΓ1, x ⊢ MKC

)
◦ ⟨πρ1 , . . . , πρn⟩

= JΓ1 ⊢ λx.MKV ◦ ⟨πρ1 , . . . , πρn⟩

where ∗ hold by Lemma 2.

• Case: val-to-comp

JΓ2 ⊢ V [xi 7→ ρ(xi)]KC

= JJΓ2 ⊢ V [xi 7→ ρ(xi)]KV
IH= J(JΓ1 ⊢ V KV ◦ ⟨πρ1 , . . . , πρn⟩)

= (JJΓ1 ⊢ V KV) ◦ J⟨πρ1 , . . . , πρn⟩

= JΓ1 ⊢ V KC ◦ J⟨πρ1 , . . . , πρn⟩
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• Case: efop

JΓ ⊢ c[xi 7→ ρ(xi)] : τKC

= JΓ ⊢ c : τKC

= J ⊢ c : τKC ◦ J !

= J ⊢ c : τKC ◦ J ! ◦ J⟨πρ1 , . . . , πρn⟩

= Jx1, . . . , xn ⊢ c : τKC ◦ J⟨πρ1 , . . . , πρn⟩

• Case: comp-proj

JΓ2 ⊢ (πjM)[xi 7→ ρ(xi)]KC

= JΓ2 ⊢ πj(M [xi 7→ ρ(xi)])KC

= Jπj ◦ JΓ2 ⊢ M [xi 7→ ρ(xi)]KC

= Jπj ◦ JΓ2 ⊢ M [xi 7→ ρ(xi)]KC
IH= Jπj ◦ (JΓ1 ⊢ MKC ◦ J⟨πρ1 , . . . , πρn⟩)

= Jπj ◦ JΓ1 ⊢ MKC ◦ J⟨πρ1 , . . . , πρn⟩

= JΓ1 ⊢ πjMKC ◦ J⟨πρ1 , . . . , πρn⟩

• Case: comp-pair

JΓ2 ⊢ ⟨M1, M2⟩[xi 7→ ρ(xi)]KC

= JΓ2 ⊢ ⟨M1[xi 7→ ρ(xi)], M2[xi 7→ ρ(xi)]⟩KC

= (id ⊗ JΓ2 ⊢ M2[xi 7→ ρ(xi)]KC) ◦ (JΓ2 ⊢ M1[xi 7→ ρ(xi)]KC ⊗ id) ◦ J∆
IH= (id ⊗ (JΓ1 ⊢ M2KC ◦ J⟨πρ1 , . . . , πρn⟩))

◦ ((JΓ1 ⊢ M1KC ◦ J⟨πρ1 , . . . , πρn⟩) ⊗ id) ◦ J∆
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= (id ⊗ (JΓ1 ⊢ M2KC ◦ J⟨πρ1 , . . . , πρn⟩))

◦ ((JΓ1 ⊢ M1KC ◦ J⟨πρ1 , . . . , πρn⟩) ⊗ id) ◦ J∆

= (id ⊗ JΓ1 ⊢ M2KC) ◦ (id ⊗ J⟨πρ1 , . . . , πρn⟩))

◦ (JΓ1 ⊢ M1KC ⊗ id) ◦ (J⟨πρ1 , . . . , πρn⟩ ⊗ id) ◦ J∆

= (id ⊗ JΓ1 ⊢ M2KC) ◦ (JΓ1 ⊢ M1KC ⊗ id)

◦ (id ⊗ J⟨πρ1 , . . . , πρn⟩)) ◦ (J⟨πρ1 , . . . , πρn⟩ ⊗ id) ◦ J∆

= (id ⊗ JΓ1 ⊢ M2KC) ◦ (JΓ1 ⊢ M1KC ⊗ id) ◦ J∆ ◦ J⟨πρ1 , . . . , πρn⟩

= JΓ1 ⊢ ⟨M1, M2⟩KC ◦ J⟨πρ1 , . . . , πρn⟩

• Case: comp-let

JΓ2 ⊢ (let x ⇐ M1 in M2)[xi 7→ ρ(xi)]KC

= JΓ2 ⊢ let x ⇐ (M1[xi 7→ ρ(xi)]) in (M2[xi 7→ ρ(xi), x 7→ x])KC

= JΓ2, x ⊢ (M2[xi 7→ ρ(xi), x 7→ x])KC

◦ (id ⊗ JΓ2 ⊢ M1[xi 7→ ρ(xi)KC) ◦ J∆
IH= JΓ1, x ⊢ M2KC ◦ J⟨πρ1 ◦ π1, . . . , πρn ◦ π1, π2⟩

◦ (id ⊗ (JΓ1 ⊢ M1KC ◦ J⟨πρ1 , . . . , πρn⟩)) ◦ J∆

= JΓ1, x ⊢ M2KC ◦ (J⟨πρ1 , . . . , πρn⟩ ⊗ id)

◦ (id ⊗ (JΓ1 ⊢ M1KC ◦ J⟨πρ1 , . . . , πρn⟩)) ◦ J∆

= JΓ1, x ⊢ M2KC ◦ (id ⊗ JΓ1 ⊢ M1KC)

◦ (J⟨πρ1 , . . . , πρn⟩ ⊗ id) ◦ (id ⊗ J⟨πρ1 , . . . , πρn⟩) ◦ J∆

= JΓ1, x ⊢ M2KC ◦ (id ⊗ JΓ1 ⊢ M1KC) ◦ J∆ ◦ J⟨πρ1 , . . . , πρn⟩

= JΓ1 ⊢ let x ⇐ M1 in M2KC ◦ J⟨πρ1 , . . . , πρn⟩
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• Case: app

JΓ2 ⊢ (M1M2)[xi 7→ ρ(xi)]KC

= JΓ2 ⊢ (M1[xi 7→ ρ(xi)])(M2[xi 7→ ρ(xi)])KC

= eval ◦ (id ⊗ JΓ2 ⊢ M2[xi 7→ ρ(xi)]KC)

◦ (JΓ2 ⊢ M1[xi 7→ ρ(xi)]KC ⊗ id) ◦ J∆
IH= eval ◦ (id ⊗ (JΓ1 ⊢ M2KC ◦ J⟨πρ1 , . . . , πρn⟩))

◦ ((JΓ1 ⊢ M1KC ◦ J⟨πρ1 , . . . , πρn⟩) ⊗ id) ◦ J∆

= eval ◦ (id ⊗ JΓ1 ⊢ M2KC) ◦ (id ⊗ J⟨πρ1 , . . . , πρn⟩)) ◦ (JΓ1 ⊢ M1KC ⊗ id)

◦ (J⟨πρ1 , . . . , πρn⟩ ⊗ id) ◦ J∆

= eval ◦ (id ⊗ JΓ1 ⊢ M2KC) ◦ (JΓ1 ⊢ M1KC ⊗ id) ◦ (id ⊗ J⟨πρ1 , . . . , πρn⟩))

◦ (J⟨πρ1 , . . . , πρn⟩ ⊗ id) ◦ J∆

= eval ◦ (id ⊗ JΓ1 ⊢ M2KC) ◦ (JΓ1 ⊢ M1KC ⊗ id) ◦ J∆ ◦ J⟨πρ1 , . . . , πρn⟩

= JΓ1 ⊢ M1M2KC ◦ J⟨πρ1 , . . . , πρn⟩

Lemma 4 (Substitution lemma). For J−KV, J−KC the interpretation of λC in the

closed Freyd-category V J−→ C, for any values Γ ⊢ Ui : τi for i = 1, . . . , n, and any

value x1 : τ1, . . . , xn : τn ⊢ V : τ

JΓ ⊢ V [xi 7→ Ui] : τKV = Jx1 : τ1, . . . , xn : τn ⊢ V : τKV ◦ ⟨JΓ ⊢ U1KV, . . . , JΓ ⊢ UnKV⟩

in V, and for any term x1 : τ1, . . . , xn : τn ⊢ M : τ ,

JΓ ⊢ M [xi 7→ Ui] : τKC = Jx1 : τ1, . . . , xn : τn ⊢ M : τKC◦J⟨JΓ ⊢ U1KV, . . . JΓ ⊢ UnKV⟩
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in C.

Proof. As above, we are going to prove this statement by structural induction on

the grammar of values and computations.

• Case: var

JΓ ⊢ xj[xi 7→ Ui]KV

= JΓ ⊢ UjKV

= πj ◦ ⟨JΓ ⊢ U1KV, . . . , JΓ ⊢ UnKV⟩

= Jx1, . . . , xn ⊢ xjKV ◦ ⟨JΓ ⊢ U1KV, . . . , JΓ ⊢ UnKV⟩

• Case: prim

JΓ ⊢ c[xi 7→ Ui] : τKV

= JΓ ⊢ c : τKV

= J ⊢ c : τKV◦!

= J ⊢ c : τKV◦! ◦ ⟨JΓ ⊢ U1KV, . . . , JΓ ⊢ UnKV⟩

= Jx1, . . . , xn ⊢ c : τKV ◦ ⟨JΓ ⊢ U1KV, . . . , JΓ ⊢ UnKV⟩

• Case: unit

JΓ ⊢ ()[xi 7→ Ui]KV

= JΓ ⊢ ()KV

=!

=! ◦ ⟨JΓ ⊢ U1KV, . . . , JΓ ⊢ UnKV⟩

= Jx1, . . . , xn ⊢ ()KV ◦ ⟨JΓ ⊢ U1KV, . . . , JΓ ⊢ UnKV⟩
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• Case: val-proj

JΓ ⊢ (πjV )[xi 7→ Ui]KV

= JΓ ⊢ πj(V [xi 7→ Ui]KV)

= πj ◦ JΓ ⊢ (V [xi 7→ Ui])KV
IH= πj ◦ Jx1, . . . , xn ⊢ V KV ◦ ⟨JΓ ⊢ U1KV, . . . , JΓ ⊢ UnKV⟩

= Jx1, . . . , xn ⊢ πjV KV ◦ ⟨JΓ ⊢ U1KV, . . . , JΓ ⊢ UnKV⟩

• Case: val-pair

JΓ ⊢ ⟨V1, V2⟩[xi 7→ Ui]KV

= JΓ ⊢ ⟨V1[xi 7→ Ui], V2[xi 7→ Ui]⟩KV

= ⟨JΓ ⊢ V1[xi 7→ Ui]KV, JΓ ⊢ V2[xi 7→ Ui]KV⟩
IH= ⟨Jx1, . . . , xn ⊢ πjV1KV ◦ ⟨JΓ ⊢ U1KV, . . . , JΓ ⊢ UnKV⟩,

Jx1, . . . , xn ⊢ πjV2KV ◦ ⟨JΓ ⊢ U1KV, . . . , JΓ ⊢ UnKV⟩⟩

= ⟨Jx1, . . . , xn ⊢ πjV1KV, Jx1, . . . , xn ⊢ πjV2KV⟩

◦ ⟨JΓ ⊢ U1KV, . . . , JΓ ⊢ UnKV⟩

= Jx1, . . . , xn ⊢ ⟨V1, V2⟩KV ◦ ⟨JΓ ⊢ U1KV, . . . , JΓ ⊢ UnKV⟩

• Case: val-let

JΓ ⊢ (let x ⇐ V1 in V2)[xi 7→ Ui]KV =

= JΓ ⊢ (let x ⇐ (V1[xi 7→ Ui]) in (V2[xi 7→ Ui, x 7→ x]))KV

= JΓ, x ⊢ V2[xi 7→ Ui, x 7→ x]KV ◦ (id × JΓ ⊢ V1[xi 7→ Ui]KV) ◦ ∆
IH= Jx1, . . . xn, x ⊢ V2KV ◦ ⟨JΓ, x ⊢ U1KV, . . . , JΓ, x ⊢ UnKV, JΓ, x ⊢ xKV⟩
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◦ (id × (Jx1, . . . , xn ⊢ V1KV ◦ ⟨JΓ ⊢ U1KV, . . . , JΓ ⊢ UnKV⟩)) ◦ ∆
w= Jx1, . . . xn, x ⊢ V2KV ◦ ⟨JΓ ⊢ U1KV ◦ π1, . . . , JΓ ⊢ UnKV ◦ π1, π2⟩

◦ (id × (Jx1, . . . , xn ⊢ V1KV ◦ ⟨JΓ ⊢ U1KV, . . . , JΓ ⊢ UnKV⟩)) ◦ ∆

= Jx1, . . . xn, x ⊢ V2KV ◦ (⟨JΓ ⊢ U1KV, . . . , JΓ ⊢ UnKV⟩ × id)

◦ (id × Jx1, . . . , xn ⊢ V1KV) ◦ (id × ⟨JΓ ⊢ U1KV, . . . , JΓ ⊢ UnKV⟩) ◦ ∆

= Jx1, . . . xn, x ⊢ V2KV ◦ (id × Jx1, . . . , xn ⊢ V1KV) ◦ ∆

◦ ⟨JΓ ⊢ U1KV, . . . , JΓ ⊢ UnKV⟩

= Jx1, . . . xn ⊢ let x ⇐ V1 in V2KV ◦ ⟨JΓ ⊢ U1KV, . . . , JΓ ⊢ UnKV⟩

where w holds by weakening.

• Case: abst

JΓ ⊢ (λx.M)[xi 7→ Ui]KV

= JΓ ⊢ λx.(M [xi 7→ Ui, x 7→ x])KV

= Λ
(
JΓ, x : σ1 ⊢ M [xi 7→ Ui, x 7→ x]KC

)
IH= Λ

(
Jx1, . . . , xn, x ⊢ MKC ◦ J⟨JΓ, x ⊢ U1KV, . . . JΓ, x ⊢ UnKV, JΓ, x ⊢ xKV⟩

)
w= Λ

(
Jx1, . . . , xn, x ⊢ MKC ◦ J⟨JΓ ⊢ U1KV ◦ π1, . . . , JΓ ⊢ UnKV ◦ π1, π2⟩

)
= Λ

(
Jx1, . . . , xn, x ⊢ MKC ◦ ((J⟨JΓ ⊢ U1KV, . . . , JΓ ⊢ UnKV⟩) ⊗ id)

)
∗= Λ

(
Jx1, . . . , xn, x ⊢ MKC

)
◦ ⟨JΓ ⊢ U1KV, . . . , JΓ ⊢ UnKV⟩

= (Jx1, . . . , xn ⊢ λx.MKV) ◦ ⟨JΓ ⊢ U1KV, . . . , JΓ ⊢ UnKV⟩

where w holds by weakening and ∗ holds by Lemma 2.

• Case: val-to-comp

JΓ ⊢ V [xi 7→ Ui]KC
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= JJΓ ⊢ V [xi 7→ Ui]KV
IH= J(Jx1, . . . , xn ⊢ V KV ◦ ⟨JU1KV, . . . , JUnKV⟩)

= J(Jx1, . . . , xn ⊢ V KV) ◦ J(⟨JU1KV, . . . , JUnKV⟩)

• Case: efop

JΓ ⊢ c[xi 7→ Ui] : τKC

= JΓ ⊢ c : τKC

= J ⊢ c : τKC ◦ J !

= J ⊢ c : τKC ◦ J ! ◦ J⟨JΓ ⊢ U1KV, . . . , JΓ ⊢ UnKV⟩

= Jx1, . . . , xn ⊢ c : τKC ◦ J⟨JΓ ⊢ U1KV, . . . , JΓ ⊢ UnKV⟩

• Case: comp-proj

JΓ ⊢ (πjM)[xi 7→ Ui]KC

= JΓ ⊢ πj(M [xi 7→ Ui]KC)

= Jπj ◦ JΓ ⊢ (M [xi 7→ Ui])KC
IH= Jπj ◦ Jx1, . . . , xn ⊢ MKC ◦ J⟨JΓ ⊢ U1KV, . . . , JΓ ⊢ UnKV⟩

= Jx1, . . . , xn ⊢ πjMKC ◦ J⟨JΓ ⊢ U1KV, . . . , JΓ ⊢ UnKV⟩

• Case: comp-pair

JΓ ⊢ ⟨M1, M2⟩[xi 7→ Ui]KC

= JΓ ⊢ ⟨M1[xi 7→ Ui], M2[xi 7→ Ui]⟩KC

= (id ⊗ JΓ ⊢ M2[xi 7→ Ui]KC) ◦ (JΓ ⊢ M1[xi 7→ Ui]KC ⊗ id) ◦ J∆
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IH= (id ⊗ (Jx1, . . . , xn ⊢ M2KC ◦ J⟨JΓ ⊢ U1KV, . . . , JΓ ⊢ UnKV⟩))

◦ ((Jx1, . . . , xn ⊢ M1KC ◦ J⟨JΓ ⊢ U1KV, . . . , JΓ ⊢ UnKV⟩) ⊗ id) ◦ J∆

= (id ⊗ (Jx1, . . . , xn ⊢ M2KC)) ◦ (id ⊗ J⟨JΓ ⊢ U1KV, . . . , JΓ ⊢ UnKV⟩)

◦ (Jx1, . . . , xn ⊢ M1KC ⊗ id) ◦ (J⟨JΓ ⊢ U1KV, . . . , JΓ ⊢ UnKV⟩ ⊗ id)

◦ J∆

= (id ⊗ (Jx1, . . . , xn ⊢ M2KC)) ◦ (Jx1, . . . , xn ⊢ M1KC ⊗ id) ◦ J∆

◦ J⟨JΓ ⊢ U1KV, . . . , JΓ ⊢ UnKV⟩

= Jx1, . . . , xn ⊢ ⟨M1, M2⟩KC ◦ J⟨JΓ ⊢ U1KV, . . . , JΓ ⊢ UnKV⟩

• Case: comp-let

JΓ ⊢ (let x ⇐ M1 in M2)[xi 7→ Ui]KC

= JΓ ⊢ let x ⇐ (M1[xi 7→ Ui]) in (M2[xi 7→ Ui, x 7→ x])KC

= JΓ, x ⊢ M2[xi 7→ Ui, x 7→ x]KC ◦ (id ⊗ JΓ ⊢ M1[xi 7→ Ui]KC) ◦ J∆
IH= (Jx1, . . . , xn, x ⊢ M2KC ◦ J⟨JΓ, x ⊢ U1KV, . . . , JΓ, x ⊢ UnKV, JΓ, x ⊢ xKV⟩)

◦ (id ⊗ (Jx1, . . . , xn ⊢ M1KC ◦ J⟨JΓ ⊢ U1KV, . . . , JΓ ⊢ UnKV⟩)) ◦ J∆
w= (Jx1, . . . , xn, x ⊢ M2KC ◦ J⟨JΓ ⊢ U1KV ◦ π1, . . . , JΓ ⊢ UnKV ◦ π1, π2⟩))

◦ (id ⊗ (Jx1, . . . , xn ⊢ M1KC ◦ J⟨JΓ ⊢ U1KV, . . . , JΓ ⊢ UnKV⟩)) ◦ J∆

= Jx1, . . . , xn, x ⊢ M2KC ◦ (J⟨JΓ ⊢ U1KV, . . . , JΓ ⊢ UnKV⟩ ⊗ id)

◦ (id ⊗ (Jx1, . . . , xn ⊢ M1KC ◦ J⟨JΓ ⊢ U1KV, . . . , JΓ ⊢ UnKV⟩)) ◦ J∆

= Jx1, . . . , xn, x ⊢ M2KC ◦ (J⟨JΓ ⊢ U1KV, . . . , JΓ ⊢ UnKV⟩ ⊗ id)

◦ (id ⊗ Jx1, . . . , xn ⊢ M1KC) ◦ (id ⊗ J⟨JΓ ⊢ U1KV, . . . , JΓ ⊢ UnKV⟩)

◦ J∆

= Jx1, . . . , xn, x ⊢ M2KC ◦ (id ⊗ Jx1, . . . , xn ⊢ M1KC)
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◦ (id ⊗ J⟨JΓ ⊢ U1KV, . . . , JΓ ⊢ UnKV⟩)

◦ (J⟨JΓ ⊢ U1KV, . . . , JΓ ⊢ UnKV⟩ ⊗ id) ◦ J∆

= Jx1, . . . , xn, x ⊢ M2KC ◦ (id ⊗ Jx1, . . . , xn ⊢ M1KC) ◦ J∆

◦ J⟨JΓ ⊢ U1KV, . . . , JΓ ⊢ UnKV⟩

= Jx1, . . . , xn ⊢ let x ⇐ M1 in M2KC ◦ J⟨JΓ ⊢ U1KV, . . . , JΓ ⊢ UnKV⟩

where w holds by weakening.

• Case: app

JΓ ⊢ (M1M2)[xi 7→ Ui]KC

= JΓ ⊢ (M1[xi 7→ Ui])(M2[xi 7→ Ui])KC

= eval ◦ (id ⊗ JΓ ⊢ M2[xi 7→ Ui]KC) ◦ (JΓ ⊢ M1[xi 7→ Ui]KC ⊗ id) ◦ J∆
IH= eval ◦ (id ⊗ (Jx1, . . . , xn ⊢ M2KC ◦ J⟨JΓ ⊢ U1KV, . . . , JΓ ⊢ UnKV⟩))

◦ ((Jx1, . . . , xn ⊢ M1KC ◦ J⟨JΓ ⊢ U1KC, . . . , JΓ ⊢ UnKC⟩) ⊗ id) ◦ J∆

= eval ◦ (id ⊗ (Jx1, . . . , xn ⊢ M2KC))

◦ (id ⊗ J⟨JΓ ⊢ U1KV, . . . , JΓ ⊢ UnKV⟩)

◦ (Jx1, . . . , xn ⊢ M1KC ⊗ id)

◦ (J⟨JΓ ⊢ U1KV, . . . , JΓ ⊢ UnKV⟩ ⊗ id) ◦ J∆

= eval ◦ (id ⊗ (Jx1, . . . , xn ⊢ M2KC)) ◦ (Jx1, . . . , xn ⊢ M1KC ⊗ id) ◦ J∆

◦ J⟨JΓ ⊢ U1KV, . . . , JΓ ⊢ UnKV⟩

= Jx1, . . . , xn ⊢ M1M2KC ◦ J⟨JΓ ⊢ U1KV, . . . , JΓ ⊢ UnKV⟩

Theorem 11 (Soundness). The interpretation of λC is sound with respect to the
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equational theory described in Figure 4.2.

That is, if we interpret λC in the closed Freyd-category V J−→ C, then for values

V1, V2, we have (Γ ⊢ V1 ≡ V2 : τ) =⇒ JΓ ⊢ V1 : τKV = JΓ ⊢ V2 : τKV, and for terms

M1, M2, we have (Γ ⊢ M1 ≡ M2 : τ) =⇒ JΓ ⊢ M1 : τKC = JΓ ⊢ M2 : τKC.

Proof. We are going to prove that each of the rules from Figure 4.2, and reflexivity

are sound. We can then prove that symmetry, transitivity, and the congruence rules

are sound by induction on the derivation of the ≡-relation.

For the reflexivity, symmetry, transitivity and congruence rules, we are only

going to show soundness for J−KC, as the proof follows exactly the same way for

J−KV.

Reflexivity is sound because for any term (Γ ⊢ M : τ), JΓ ⊢ M : τKC = JΓ ⊢ M :

τKC.

The symmetry rule
Γ ⊢ M1 ≡ M2 : τ
Γ ⊢ M2 ≡ M1 : τ

is sound as if we deduce Γ ⊢ M2 ≡ M1 : τ with this rule, we can apply the inductive

hypothesis to the condition of the rule to get JΓ ⊢ M1 : τKC = JΓ ⊢ M2 : τKC, so

using the symmetry of equality, JΓ ⊢ M2 : τKC = JΓ ⊢ M1 : τKC.

Similarly, the transitivity rule

Γ ⊢ M1 ≡ M2 : τ Γ ⊢ M2 ≡ M3 : τ
Γ ⊢ M1 ≡ M3 : τ

is sound because if we deduce Γ ⊢ M1 ≡ M3 : τ with this rule, we can apply the

inductive hypothesis to the condition of the rule to get JΓ ⊢ M1 : τKC = JΓ ⊢

M2 : τKC and JΓ ⊢ M2 : τKC = JΓ ⊢ M3 : τKC, so using the transitivity of equality,

JΓ ⊢ M1 : τKC = JΓ ⊢ M3 : τKC.

The congruence rules are sound by induction as the interpretation is defined
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compositionally. E.g., consider the following congruence rule.

Γ ⊢ M1 ≡ M ′
1 : τ1 Γ ⊢ M2 ≡ M ′

2 : τ2

Γ ⊢ ⟨M1, M2⟩ ≡ ⟨M ′
1, M ′

2⟩ : τ1 × τ2 .

If we deduce Γ ⊢ ⟨M1, M2⟩ ≡ ⟨M ′
1, M ′

2⟩ : τ1 × τ2 with this rule, then we can apply

the inductive hypothesis to the condition of the rule to get JΓ ⊢ M1 : τ1KC = JΓ ⊢

M ′
1 : τ1KC and JΓ ⊢ M2 : τ2KC = JΓ ⊢ M ′

2 : τ2KC, so using that the denotations are

defined in terms of the denotations of the subterms, JΓ ⊢ ⟨M1, M2⟩ : τ1 × τ2KC =

JΓ ⊢ ⟨M ′
1, M ′

2⟩ : τ1 × τ2KC.

So it remains to prove that the rules given explicitly are sound.

• Case: letβ let x ⇐ V in M ≡ M [x 7→ V ]

JΓ ⊢ let x ⇐ V in MKC

= JΓ, x ⊢ MKC ◦ (id ⊗ JΓ ⊢ V KC) ◦ J∆

= JΓ, x ⊢ MKC ◦ (id ⊗ (JJΓ ⊢ V KV)) ◦ J∆

= JΓ, x ⊢ MKC ◦ J⟨id, JΓ ⊢ V KV⟩

= JΓ, x ⊢ MKC ◦ J⟨JΓ ⊢ ΓKV, JΓ ⊢ V KV⟩
s= JΓ ⊢ M [Γ 7→ Γ, x 7→ V ]KC

= JΓ ⊢ M [x 7→ V ]KC

• Case: prodβ πi⟨V1, V2⟩ ≡ Vi

JΓ ⊢ πi⟨V1, V2⟩KV

= πi ◦ JΓ ⊢ ⟨V1, V2⟩KV

= πi ◦ ⟨JΓ ⊢ V1KV, JΓ ⊢ V2KV⟩

= JΓ ⊢ ViKV
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• Case: fnβ (λx.M)V ≡ M [x 7→ V ]

JΓ ⊢ (λx.M)V KC

= eval ◦ (id ⊗ JΓ ⊢ V KC) ◦ (JΓ ⊢ λx.MKC ⊗ id) ◦ J∆

= eval ◦ (id ⊗ JJΓ ⊢ V KV) ◦ (JΛ(JΓ, x ⊢ MKC) ⊗ id) ◦ J∆

= (eval ◦ (JΛ(JΓ, x ⊢ MKC) ⊗ id)) ◦ (id ⊗ JJΓ ⊢ V KV) ◦ J∆
β= JΓ, x ⊢ MKC ◦ J⟨id, JΓ ⊢ V KV⟩

= JΓ, x ⊢ MKC ◦ J⟨JΓ ⊢ ΓKV, JΓ ⊢ V KV⟩
s= JΓ ⊢ M [Γ 7→ Γ, x 7→ V ]KC = JΓ ⊢ M [x 7→ V ]KC

• Case: letη let x ⇐ M in x ≡ M

JΓ ⊢ let x ⇐ M in xKC

= JΓ, x ⊢ xKC ◦ (id ⊗ JΓ ⊢ MKC) ◦ J∆

= Jπ2 ◦ (id ⊗ JΓ ⊢ MKC) ◦ J∆

= Jπ2 ◦ (J ! ⊗ id) ◦ (id ⊗ JΓ ⊢ MKC) ◦ J∆

= Jπ2 ◦ (id ⊗ JΓ ⊢ MKC) ◦ (J ! ⊗ id) ◦ J∆
∗= ρ ◦ (id ⊗ JΓ ⊢ MKC) ◦ (J ! ⊗ id) ◦ J∆
†= JΓ ⊢ MKC ◦ ρ ◦ (J ! ⊗ id) ◦ J∆

= JΓ ⊢ MKC ◦ Jπ2 ◦ (J ! ⊗ id) ◦ J∆

= JΓ ⊢ MKC

where ∗ holds because JπI,X
2 = ρX because J preserves the premonoidal

structure; and † holds because ρ : I ⊗ X → X is natural.
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• Case: prodη ⟨π1V, π2V ⟩ ≡ V

JΓ ⊢ ⟨π1V, π2V ⟩KV

= ⟨JΓ ⊢ π1V KV, JΓ ⊢ π2V KV⟩

= ⟨π1 ◦ JΓ ⊢ V KV, π2 ◦ JΓ ⊢ V KV⟩

= JΓ ⊢ V KV

• Case: fnη λx.V x ≡ V

Jλx.V xKV

= Λ
(
JΓ, x ⊢ V xKC

)
= Λ

(
eval ◦ (id ⊗ JΓ, x ⊢ xKC) ◦ (JΓ, x ⊢ V KC ⊗ id) ◦ J∆

)
= Λ

(
eval ◦ (id ⊗ Jπ2) ◦ (JJΓ, x ⊢ V KV ⊗ id) ◦ J∆

)
w= Λ

(
eval ◦ (id ⊗ Jπ2) ◦ ((JJΓ ⊢ V KV ◦ Jπ1) ⊗ id) ◦ J∆

)
= Λ

(
eval ◦ ((JJΓ ⊢ V KV) ⊗ id) ◦ (id ⊗ Jπ2) ◦ (Jπ1 ⊗ id) ◦ J∆

)
= Λ

(
eval ◦ ((JJΓ ⊢ V KV) ⊗ id)

)
η= JΓ ⊢ V KV

• Case: assoc

let y ⇐ (let x ⇐ M1 in M2) in M3 ≡ let x ⇐ M1 in (let y ⇐ M2 in M3)

JΓ ⊢ let y ⇐ (let x ⇐ M1 in M2) in M3KC

= JΓ, y ⊢ M3KC ◦ (id ⊗ JΓ ⊢ let x ⇐ M1 in M2KC) ◦ J∆

= JΓ, y ⊢ M3KC ◦ (id ⊗ (JΓ, x ⊢ M2KC ◦ (id ⊗ JΓ ⊢ M1KC) ◦ J∆)) ◦ J∆

= JΓ, y ⊢ M3KC ◦ (id ⊗ JΓ, x ⊢ M2KC) ◦ (id ⊗ (id ⊗ JΓ ⊢ M1KC))
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◦ (id ⊗ J∆) ◦ J∆
∗= JΓ, y ⊢ M3KC ◦ (id ⊗ JΓ, x ⊢ M2KC) ◦ (id ⊗ (id ⊗ JΓ ⊢ M1KC)) ◦ a

◦ J(⟨id, id⟩ × id) ◦ J∆
†= JΓ, y ⊢ M3KC ◦ (id ⊗ JΓ, x ⊢ M2KC) ◦ a ◦ ((id ⊗ id) ⊗ JΓ ⊢ M1KC)

◦ (J⟨id, id⟩ ⊗ id) ◦ J∆

= JΓ, y ⊢ M3KC ◦ (id ⊗ JΓ, x ⊢ M2KC) ◦ a ◦ (J⟨id, id⟩ ⊗ id)

◦ ((id ⊗ id) ⊗ JΓ ⊢ M1KC) ◦ J∆

= JΓ, y ⊢ M3KC ◦ (id ⊗ JΓ, x ⊢ M2KC) ◦ (id ⊗ J∆) ◦ (id ⊗ JΓ ⊢ M1KC) ◦ J∆

where ∗ holds because (id ⊗ J∆) = J(a ◦ (⟨id, id⟩ × id)) and † holds because a

is a natural transformation.

Furthermore,

JΓ ⊢ let x ⇐ M1 in (let y ⇐ M2 in M3)KC =

= JΓ, x ⊢ (let y ⇐ M2 in M3)KC ◦ (id ⊗ JΓ ⊢ M1KC) ◦ J∆

= (JΓ, x, y ⊢ M3KC ◦ (id ⊗ JΓ, x ⊢ M2KC) ◦ J∆) ◦ (id ⊗ JΓ ⊢ M1KC) ◦ J∆
w= (JΓ, y ⊢ M3KC ◦ J⟨π1 ◦ π1, π2⟩ ◦ (id ⊗ JΓ, x ⊢ M2KC) ◦ J∆)

◦ (id ⊗ JΓ ⊢ M1KC) ◦ J∆

= JΓ, y ⊢ M3KC ◦ (Jπ1 ⊗ id) ◦ (id ⊗ JΓ, x ⊢ M2KC) ◦ J∆

◦ (id ⊗ JΓ ⊢ M1KC) ◦ J∆

= JΓ, y ⊢ M3KC ◦ (id ⊗ JΓ, x ⊢ M2KC) ◦ (Jπ1 ⊗ id) ◦ J∆

◦ (id ⊗ JΓ ⊢ M1KC) ◦ J∆

= JΓ, y ⊢ M3KC ◦ (id ⊗ JΓ, x ⊢ M2KC) ◦ (id ⊗ J∆) ◦ (id ⊗ JΓ ⊢ M1KC) ◦ J∆

• Case: unit () ≡ V
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The interpretation of both sides, JΓ ⊢ () : 1KV and JΓ ⊢ V : 1KV are morphisms

to the terminal object 1, so they have to agree.

• Case: compproj πiM ≡ let x ⇐ M in πix

JΓ ⊢ let x ⇐ M in πixKC

= JΓ, x ⊢ πixKC ◦ (id ⊗ JΓ ⊢ MKC) ◦ J∆

= Jπi ◦ JΓ, x ⊢ xKC ◦ (id ⊗ JΓ ⊢ MKC) ◦ J∆

= Jπi ◦ Jπ2 ◦ (id ⊗ JΓ ⊢ MKC) ◦ J∆

= Jπi ◦ JΓ ⊢ MKC ◦ Jπ2 ◦ J∆

= Jπi ◦ JΓ ⊢ MKC

= JΓ ⊢ πiMKC

• Case: comppair ⟨M1, M2⟩ ≡ let x ⇐ M1 in (let y ⇐ M2 in ⟨x, y⟩)

JΓ ⊢ let x ⇐ M1 in (let y ⇐ M2 in ⟨x, y⟩)KC

= JΓ, x ⊢ (let y ⇐ M2 in ⟨x, y⟩)KC ◦ (id ⊗ JΓ ⊢ M1KC) ◦ J∆

= JΓ, x, y ⊢ ⟨x, y⟩KC ◦ (id ⊗ JΓ, x ⊢ M2KC) ◦ J∆ ◦ (id ⊗ JΓ ⊢ M1KC) ◦ J∆

= J⟨π2 ◦ π1, π2⟩ ◦ (id ⊗ JΓ, x ⊢ M2KC) ◦ J∆ ◦ (id ⊗ JΓ ⊢ M1KC) ◦ J∆
w= J⟨π2 ◦ π1, π2⟩ ◦ (id ⊗ (JΓ ⊢ M2KC ◦ Jπ1) ◦ J∆ ◦ (id ⊗ JΓ ⊢ M1KC) ◦ J∆

= (Jπ2 ⊗ id) ◦ (id ⊗ JΓ ⊢ M2KC) ◦ (id ⊗ Jπ1) ◦ J∆ ◦ (id ⊗ JΓ ⊢ M1KC)

◦ J∆

= (id ⊗ JΓ ⊢ M2KC) ◦ (Jπ2 ⊗ id) ◦ (id ⊗ Jπ1) ◦ J∆ ◦ (id ⊗ JΓ ⊢ M1KC)

◦ J∆

= (id ⊗ JΓ ⊢ M2KC) ◦ J⟨π2, π1⟩ ◦ (id ⊗ JΓ ⊢ M1KC) ◦ J∆
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∗= (id ⊗ JΓ ⊢ M2KC) ◦ s ◦ (id ⊗ JΓ ⊢ M1KC) ◦ J∆
†= (id ⊗ JΓ ⊢ M2KC) ◦ (JΓ ⊢ M1KC ⊗ id) ◦ s ◦ J∆

= (id ⊗ JΓ ⊢ M2KC) ◦ (JΓ ⊢ M1KC ⊗ id) ◦ J⟨π2, π1⟩ ◦ J∆

= (id ⊗ JΓ ⊢ M2KC) ◦ (JΓ ⊢ M1KC ⊗ id) ◦ J∆

= JΓ ⊢ ⟨M1, M2⟩KC

where ∗ holds because J preserves symmetry, and † holds because s is natural.

• Case: compapp M1M2 ≡ let x ⇐ M1 in (let y ⇐ M2 in xy)

JΓ ⊢ let x ⇐ M1 in (let y ⇐ M2 in xy)KC

= JΓ, x ⊢ (let y ⇐ M2 in xy)KC ◦ (id ⊗ JΓ ⊢ M1KC) ◦ J∆

= JΓ, x, y ⊢ xyKC ◦ (id ⊗ JΓ, x ⊢ M2KC) ◦ J∆ ◦ (id ⊗ JΓ ⊢ M1KC) ◦ J∆

= eval ◦ J⟨π2 ◦ π1, π2⟩ ◦ (id ⊗ JΓ, x ⊢ M2KC) ◦ J∆ ◦ (id ⊗ JΓ ⊢ M1KC) ◦ J∆
w= eval ◦ J⟨π2 ◦ π1, π2⟩ ◦ (id ⊗ (JΓ ⊢ M2KC ◦ Jπ1)) ◦ J∆ ◦ (id ⊗ JΓ ⊢ M1KC)

◦ J∆

= eval ◦ (Jπ2 ⊗ id) ◦ (id ⊗ JΓ ⊢ M2KC) ◦ (id ⊗ Jπ1) ◦ J∆

◦ (id ⊗ JΓ ⊢ M1KC) ◦ J∆

= eval ◦ (id ⊗ JΓ ⊢ M2KC) ◦ (Jπ2 ⊗ id) ◦ (id ⊗ Jπ1) ◦ J∆

◦ (id ⊗ JΓ ⊢ M1KC) ◦ J∆

= eval ◦ (id ⊗ JΓ ⊢ M2KC) ◦ J⟨π2, π1⟩ ◦ (id ⊗ JΓ ⊢ M1KC) ◦ J∆
∗= eval ◦ (id ⊗ JΓ ⊢ M2KC) ◦ s ◦ (id ⊗ JΓ ⊢ M1KC) ◦ J∆
†= eval ◦ (id ⊗ JΓ ⊢ M2KC) ◦ (JΓ ⊢ M1KC ⊗ id) ◦ s ◦ J∆

= eval ◦ (id ⊗ JΓ ⊢ M2KC) ◦ (JΓ ⊢ M1KC ⊗ id) ◦ J⟨π2, π1⟩ ◦ J∆

= eval ◦ (id ⊗ JΓ ⊢ M2KC) ◦ (JΓ ⊢ M1KC ⊗ id) ◦ J∆
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τ = β | 1 | τ1 × τ2 | τ1 → τ2

Figure 4.4: Objects of V and C

= JΓ ⊢ ⟨M1, M2⟩KC

where ∗ holds because J preserves symmetry, and † holds because s is natural.

This concludes the proof, so the interpretation is indeed sound with respect to the

equational theory.

4.5 Syntactic closed Freyd-category of λC

This section describes the syntactic Freyd-category of λC with a given signature

and proves that it is indeed a closed Freyd-category.

4.5.1 Definition of the syntactic Freyd-category of λC

V
J−→ C where:

Objects of V and C are the types of λC, as in Figure 4.4.

Morphisms of V from object τ1 to τ2 are equivalence classes of well-typed terms

(with a distinguished and fixed free variable x) x : τ1 ⊢ V : τ2, and morphisms of C

from object τ1 to τ2 are equivalence classes of well-typed terms (with a distinguished

and fixed free variable x) x : τ1 ⊢ M : τ2 of λC, quotiented by the equations

from Figure 4.2, as described in Figure 4.5. We describe morphism with contexts

for brevity. A term Γ ⊢ V : τ or Γ ⊢ M : τ for context Γ = x1 : τ1, . . . , xn : τn

corresponds to a morphism from ((τ1×τ2) . . . )×τn to τ and is essentially a shorthand

for x : ((τ1 × τ2) . . . ) × τn ⊢ V [x1 7→ π1x, . . . , xn 7→ πnx] and x : ((τ1 × τ2) . . . ) × τn ⊢

M [x1 7→ π1x, . . . , xn 7→ πnx] respectively. This is consistent with the treatment of

contexts in the interpretations of λC: in both cases, we simulate n-ary products
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morphisms of V morphisms of C

x1 : τ1, . . . , xn : τn ⊢ xi : τi
(var) Γ ⊢ V : τ

Γ ⊢ V : τ
(val-to-comp)

Γ ⊢ () : 1 (unit)

Γ ⊢ V : τ1 × τ2
Γ ⊢ πiV : τi

(val-proj) Γ ⊢ M : τ1 × τ2
Γ ⊢ πiM : τi

(comp-proj)

Γ ⊢ V1 : τ1 Γ ⊢ V2 : τ2
Γ ⊢ ⟨V1, V2⟩ : τ1 × τ2

(val-pair) Γ ⊢ M1 : τ1 Γ ⊢ M2 : τ2
Γ ⊢ ⟨M1, M2⟩ : τ1 × τ2

(comp-pair)

Γ ⊢ V1 : τ1 Γ, x : τ1 ⊢ V2 : τ2
Γ ⊢ let x ⇐ V1 in V2 : τ2

(val-let) Γ ⊢ M1 : τ1 Γ, x : τ1 ⊢ M2 : τ2
Γ ⊢ let x ⇐ M1 in M2 : τ2

(comp-let)

Γ, x : τ1 ⊢ M : τ2
Γ ⊢ λx.M : τ1 → τ2

(abst) Γ ⊢ M1 : τ1 → τ2 Γ ⊢ M2 : τ1
Γ ⊢ M1M2 : τ2

(app)

(cprim, τ) ∈ Sprim

Γ ⊢ cprim : τ
(prim)

(cefop, τ) ∈ Sefop

Γ ⊢ cefop : τ
(efop)

Quotiented by the equations from Figure 4.2

Figure 4.5: Morphisms of V and C

with a sequence of binary products associating to the left.

Identity in V and C of object τ is the morphism x : τ ⊢ x : τ which exists

in V by (var) and in C by (val-to-comp).

Composition of morphisms x : τ1 ⊢ M1 : τ2 and y : τ2 ⊢ M2 : τ3 in C is

(y : τ2 ⊢ M2 : τ3) ◦ (x : τ1 ⊢ M1 : τ2) = (x : τ1 ⊢ let y ⇐ M1 in M2 : τ3).

This morphism exists in C because

x : τ1 ⊢ M1 : τ2

y : τ2 ⊢ M2 : τ3
x : τ1, y : τ2 ⊢ M2 : τ3

(weakening)

x : τ1 ⊢ let y ⇐ M1 in M2 : τ3
(comp-let)

.
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Similarly, using (val-let), define composition in V as

(y : τ2 ⊢ V2 : τ3) ◦ (x : τ1 ⊢ V1 : τ2) = (x : τ1 ⊢ let y ⇐ V1 in V2 : τ3).

Define the functor J to be identity-on-objects, and map a morphism x : τ1 ⊢

V : τ2 to the morphism x : τ1 ⊢ V : τ2 in C, which exists by (val-to-comps).

4.5.2 V and C are categories

Lemma 5. Composition (in both V and C) is well-defined with respect to the

quotient, i.e., if

x : τ1 ⊢ M1 ≡ M2 : τ2

y : τ2 ⊢ M3 ≡ M4 : τ3

according to the equational theory, then

(y : τ2 ⊢ M3 : τ3) ◦ (x : τ1 ⊢ M1 : τ2) ≡ (y : τ2 ⊢ M4 : τ3) ◦ (x : τ1 ⊢ M2 : τ2).

Proof. Using the definition of composition,

(y : τ2 ⊢ M3 : τ3) ◦ (x : τ1 ⊢ M1 : τ2) = x : τ1 ⊢ let y ⇐ M1 in M3 : τ3

and

(y : τ2 ⊢ M4 : τ3) ◦ (x : τ1 ⊢ M2 : τ2) = x : τ1 ⊢ let y ⇐ M2 in M4 : τ3.

These two morphisms agree because the ≡-relation is a congruence.
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Lemma 6. The identity as defined above satisfies the left- and right-unit rules.

Proof. Let us prove this for C, as the proof follows exactly analogously for V.

idτ2 ◦ (x : τ1 ⊢ M : τ2)

= (y : τ2 ⊢ y : τ2) ◦ (x : τ1 ⊢ M : τ2)

= x : τ1 ⊢ let y ⇐ M in y : τ2

lη= x : τ1 ⊢ M : τ2

(x : τ1 ⊢ M : τ2) ◦ idτ1

= (x : τ1 ⊢ M : τ2) ◦ (y : τ1 ⊢ y : τ1)

= y : τ1 ⊢ let x ⇐ y in M : τ2

lβ= y : τ1 ⊢ M [x 7→ y] : τ2

= x : τ1 ⊢ M : τ2

Lemma 7. Composition as defined above is associative.

Proof. Let us prove this for composition in C, as the proof follows exactly analogously

for V.

((z : τ3 ⊢ M3 : τ4) ◦ (y : τ2 ⊢ M2 : τ3)) ◦ (x : τ1 ⊢ M1 : τ2)

= (y : τ2 ⊢ let z ⇐ M2 in M3 : τ4) ◦ (x : τ1 ⊢ M1 : τ2)

= (x : τ1 ⊢ let y ⇐ M1 in (let z ⇐ M2 in M3) : τ4)
a= (x : τ1 ⊢ let z ⇐ (let y ⇐ M1 in M2) in M3 : τ4)

= (z : τ3 ⊢ M3 : τ4) ◦ (x : τ1 ⊢ let y ⇐ M1 in M2 : τ3)
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= (z : τ3 ⊢ M3 : τ4) ◦ ((y : τ2 ⊢ M2 : τ3) ◦ (x : τ1 ⊢ M1 : τ2))

Combining these lemmas, we can deduce the following proposition.

Proposition 1. V and C are categories.

4.5.3 J is an identity-on-objects functor

Note that it is identity-on-objects by definition, and it maps a morphism between

objects τ1 and τ2 in V to a morphism between τ1 and τ2 in C as required.

Lemma 8. J is well-defined with respect to the quotient, i.e., if

x : τ1 ⊢ M1 ≡ M2 : τ2,

then J(x : τ1 ⊢ M1 : τ2) ≡ J(x : τ1 ⊢ M2 : τ2).

Proof. We quotient the morphisms by the same set of rules, so if (x : τ1 ⊢ M1 :

τ2) ≡ (x : τ1 ⊢ M2 : τ2) in V, then (x : τ1 ⊢ M1 : τ2) ≡ (x : τ1 ⊢ M2 : τ2) in C, i.e.,

J(x : τ1 ⊢ M1 : τ2) ≡ J(x : τ1 ⊢ M2 : τ2).

Lemma 9. J respects identity morphisms.

Proof.

J(idVτ ) = J(x : τ ⊢ x : τ) = (x : τ ⊢ x : τ) = idCτ

Lemma 10. J respects composition.
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Proof.

J((y : τ2 ⊢ V2 : τ3) ◦V (x : τ1 ⊢ V1 : τ2))

= J(x : τ1 ⊢ let y ⇐ V1 in V2 : τ3)

= x : τ1 ⊢ let y ⇐ V1 in V2 : τ3

= (y : τ2 ⊢ V2 : τ3) ◦C (x : τ1 ⊢ V1 : τ2)

= J(y : τ2 ⊢ V2 : τ3) ◦C J(x : τ1 ⊢ V1 : τ2)

Combining these lemmas, we can deduce the following proposition.

Proposition 2. J is an identity-on-objects functor.

4.5.4 V has finite products

Lemma 11. The object corresponding to type 1 is a terminal object in V.

Proof. For any object τ in V, there is a unique morphism τ → 1 in V, (x : τ ⊢ () : 1),

which exists by the (unit) rule, and it is unique because every (x : τ ⊢ V : 1)

morphism is equivalent to it by the (unit) equivalence rule.

Lemma 12. (τ1 × τ2, πV1 , πV2 ) for πVi : τ1 × τ2 → τi given by

πVi = (x : τ1 × τ2 ⊢ πix : τi)

is a binary product for objects τ1, τ2 in V.

Proof. We are required to prove that this has the universal property, i.e., for any

object τ and morphisms x : τ ⊢ Vi : τi, there is a unique morphism x : τ ⊢ V : τ1 × τ2
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such that
τ1 × τ2 τi

τ

πVi

V
Vi

commutes.

Indeed, we can define V = ⟨V1, V2⟩ which is a morphism in V between the

appropriate objects by rule (val-pair), and it has the required property:

(y : τ1 × τ2 ⊢ πiy : τi) ◦ (x : τ ⊢ ⟨V1, V2⟩ : τ1 × τ2)

= x : τ ⊢ let y ⇐ ⟨V1, V2⟩ in πiy : τi

lβ= x : τ ⊢ πi⟨V1, V2⟩ : τi

pβ= x : τ ⊢ Vi : τi

Furthermore, any V with the above property is ≡-equal to ⟨V1, V2⟩, because:

x : τ ⊢ V : τ1 × τ2

pη= x : τ ⊢ ⟨π1V, π2V ⟩ : τ1 × τ2

= x : τ ⊢ ⟨(π1y1)[y1 7→ V ], (π2y2)[y2 7→ V ]⟩ : τ1 × τ2

= x : τ ⊢ ⟨let y1 ⇐ V in π1y1, let y2 ⇐ V in π2y2⟩ : τ1 × τ2

= x : τ ⊢ ⟨πV1 ◦ V, πV2 ◦ V ⟩ : τ1 × τ2

= x : τ ⊢ ⟨V1, V2⟩ : τ1 × τ2

So V has a terminal object and binary products, so we can deduce the fol-

lowing proposition.

Proposition 3. V is a category with finite products.
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Corollary 1. V is a premonoidal category with the premonoidal structure given by:

τ ⋊V (x : τ1 ⊢ V : τ2) = τ ×V (x : τ1 ⊢ V : τ2) = (y : τ × τ1 ⊢ ⟨π1y, M [x 7→ π2y]⟩)

(x : τ1 ⊢ V : τ2) ⋉V τ = (x : τ1 ⊢ V : τ2) ×V τ = (y : τ1 × τ ⊢ ⟨M [x 7→ π1y], π2y⟩)

I = 1

aVτ1,τ2,τ3 = x : (τ1 × τ2) × τ3 ⊢ ⟨π1(π1x), ⟨π2(π1x), π2x⟩⟩

λVτ = (x : τ × I ⊢ π1x)

ρVτ = (x : I × τ ⊢ π2x)

Proof. V has finite products, so it is a monoidal category, e.g., as described in [15,

Chapter VII], hence it is also a premonoidal category. The structure is derived from

the finite products of V.

4.5.5 C is a premonoidal category

Description of the premonoidal structure

Let us define the premonoidal structure on C as follows.

For objects τ1, τ2, define τ1 ⊗ τ2 := τ1 × τ2.

For a particular objects τ , define the functors τ ⋊ − and − ⋉ τ as follows:

τ ⋊ τ ′ := τ ⊗ τ ′ = τ × τ ′

τ ⋊ (x : τ1 ⊢ M : τ2) := (y : τ × τ1 ⊢ ⟨π1y, M [x 7→ π2y]⟩ : τ × τ2)

τ ′ ⋉ τ := τ ′ ⊗ τ = τ ′ × τ

(x : τ1 ⊢ M : τ2) ⋉ τ := (y : τ1 × τ ⊢ ⟨M [x 7→ π1y], π2y⟩ : τ2 × τ)
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And define the corresponding premonoidal structure as:

I := 1

aτ1,τ2,τ3 := (x : (τ1 × τ2) × τ3 ⊢ ⟨π1(π1x), ⟨π2(π1x), π2x⟩⟩ : τ1 × (τ2 × τ3))

λτ := (x : τ × I ⊢ π1x : τ)

ρτ := (x : I × τ ⊢ π2x : τ)

Lemma 13. τ ⋊ − and − ⋉ τ are indeed functors.

Proof. τ ⋊ − respects identities:

τ ⋊ id′
τ

= (y : τ × τ ′ ⊢ ⟨π1y, π2y⟩ : τ × τ ′)
pη= (y : τ × τ ′ ⊢ y : τ × τ ′)

= idτ×τ ′

And it respects composition:

(τ ⋊ (y : τ2 ⊢ M2 : τ3)) ◦ (τ ⋊ (x : τ1 ⊢ M1 : τ2))

= (z2 : τ × τ2 ⊢ ⟨π1z2, M2[y → π2z2]⟩) ◦ (z1 : τ × τ1 ⊢ ⟨π1z1, M1[x → π2z1]⟩)

= z1 : τ × τ1 ⊢ let z2 ⇐ (⟨π1z1, M1[x → π2z1]⟩) in ⟨π1z2, M2[y → π2z2]⟩
cp= z1 : τ × τ1 ⊢

let z2 ⇐ (let z3 ⇐ M1[x → π2z1] in ⟨π1z1, z3⟩) in ⟨π1z2, M2[y → π2z2]⟩
a= z1 : τ × τ1 ⊢

let z3 ⇐ M1[x → π2z1] in (let z2 ⇐ ⟨π1z1, z3⟩ in ⟨π1z2, M2[y → π2z2]⟩)
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lβ= z1 : τ × τ1 ⊢ let z3 ⇐ M1[x → π2z1] in ⟨π1⟨π1z1, z3⟩, M2[y → π2⟨π1z1, z3⟩]⟩
pβ= z1 : τ × τ1 ⊢ let z3 ⇐ M1[x → π2z1] in ⟨π1z1, M2[y → z3]⟩
cp= z1 : τ × τ1 ⊢ let z3 ⇐ M1[x → π2z1] in (let z4 ⇐ M2[y → z3] in ⟨π1z1, z4⟩)
a= z1 : τ × τ1 ⊢ let z4 ⇐ (let z3 ⇐ M1[x → π2z1] in M2[y → z3]) in ⟨π1z1, z4⟩
cp= z1 : τ × τ1 ⊢ ⟨π1z1, (let z3 ⇐ M1[x → π2z1] in M2[y → z3])⟩

= z : τ × τ1 ⊢ ⟨π1z, (let y ⇐ M1[x 7→ π2z] in M2)⟩ : τ × τ3

= z : τ × τ1 ⊢ ⟨π1z, (let y ⇐ M1 in M2)[x 7→ π2z]⟩ : τ × τ3

= τ ⋊ (x : τ1 ⊢ let y ⇐ M1 in M2 : τ3)

= τ ⋊ ((y : τ2 ⊢ M2 : τ3) ◦ (x : τ1 ⊢ M1 : τ2))

Hence it is a functor. Similarly, − ⋉ τ is also a functor.

Lemma 14. For each (x : τ1 ⊢ V : τ ′
1) and (y : τ2 ⊢ M : τ ′

2),

τ1 × τ2 τ1 × τ ′
2

τ ′
1 × τ2 τ ′

1 × τ ′
2

τ1⋊(y:τ2⊢M :τ ′
2)

(x:τ1⊢V :τ ′
1)⋉τ2 (x:τ1⊢V :τ ′

1)⋉τ ′
2

τ ′
1⋊(y:τ2⊢M :τ ′

2)

and
τ2 × τ1 τ ′

2 × τ1

τ2 × τ ′
1 τ ′

2 × τ ′
1

(y:τ2⊢M :τ ′
2)⋉τ1

τ2⋊(x:τ1⊢V :τ ′
1) τ ′

2⋊(x:τ1⊢V :τ ′
1)

(y:τ2⊢M :τ ′
2)⋉τ ′

1

commute, i.e., x : τ1 ⊢ V : τ ′
1 is central.

Proof. Let us first consider the two paths in the first square.

((x : τ1 ⊢ V : τ ′
1) ⋉ τ ′

2) ◦ (τ1 ⋊ (y : τ2 ⊢ M : τ ′
2))

= (y1 : τ1 × τ ′
2 ⊢ ⟨V [x 7→ π1y1], π2y1⟩) ◦ (y2 : τ1 × τ2 ⊢ ⟨π1y2, M [y 7→ π2y2]⟩)
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= y2 : τ1 × τ2 ⊢ let y1 ⇐ ⟨π1y2, M [y 7→ π2y2]⟩ in ⟨V [x 7→ π1y1], π2y1⟩
cp= y2 : τ1 × τ2 ⊢

let y1 ⇐ (let z ⇐ M [y 7→ π2y2] in ⟨π1y2, z⟩) in ⟨V [x 7→ π1y1], π2y1⟩
a= y2 : τ1 × τ2 ⊢

let z ⇐ M [y 7→ π2y2] in (let y1 ⇐ ⟨π1y2, z⟩ in ⟨V [x 7→ π1y1], π2y1⟩)
lβ= y2 : τ1 × τ2 ⊢ let z ⇐ M [y 7→ π2y2] in (⟨V [x 7→ π1⟨π1y2, z⟩], π2⟨π1y2, z⟩⟩)
pβ= y2 : τ1 × τ2 ⊢ let z ⇐ M [y 7→ π2y2] in ⟨V [x 7→ π1y2], z⟩

and

(τ ′
1 ⋊ (y : τ2 ⊢ M : τ ′

2)) ◦ ((x : τ1 ⊢ V : τ ′
1) ⋉ τ2)

= (y2 : τ ′
1 × τ2 ⊢ ⟨π1y2, M [y 7→ π2y2]⟩) ◦ (y1 : τ1 × τ2 ⊢ ⟨V [x 7→ π1y1], π2y1⟩)

cp= (y2 : τ ′
1 × τ2 ⊢ let z ⇐ M [y 7→ π2y2] in ⟨π1y2, z⟩)

◦ (y1 : τ1 × τ2 ⊢ ⟨V [x 7→ π1y1], π2y1⟩)

= y1 : τ1 × τ2 ⊢

let y1 ⇐ ⟨V [x 7→ π1y1], π2y1⟩ in (let z ⇐ M [y 7→ π2y2] in ⟨π1y2, z⟩)
lβ= y1 : τ1 × τ2 ⊢

let z ⇐ M [y 7→ π2⟨V [x 7→ π1y1], π2y1⟩] in ⟨π1⟨V [x 7→ π1y1], π2y1⟩, z⟩
pβ= y1 : τ1 × τ2 ⊢ let z ⇐ M [y 7→ π2y1] in ⟨V [x 7→ π1y1], z⟩

So the two paths agree, so the first square indeed commutes.

Similarly but in the proof, the π1 and π2 and the positions in ⟨−, −⟩ swapped,

the second square commutes as well.

Hence all value morphisms are central. Note that these are the morphisms of

C that are of the form Jf for a morphism f of V.
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Note in particular, that aτ1,τ2,τ3 , λτ , ρτ are values, so they are central.

Lemma 15. J strictly preserves premonoidal structure, i.e., for any objects τ1, τ2,

τ3, τ and morphism x : τ1 ⊢ V : τ2 in V,

aτ1,τ2,τ3 = JaVτ1,τ2,τ3

λτ = JλVτ

ρτ = JρVτ

and

τ ⋊ (x : τ1 → V : τ2) = J(τ ⋊V (x : τ1 → V : τ2))

(x : τ1 → V : τ2) ⋉ τ = J((x : τ1 → V : τ2) ⋉V τ)

Proof. This holds trivially by Corollary 1 and the definition of J .

Lemma 16. The triangle law and the pentagon law for C with the claimed

premonoidal structure defined above holds.

Proof. J is a functor, so it preserves commuting diagrams, so using that the triangle

law and pentagon law holds for V, it also holds for C.

Lemma 17. λ and ρ are natural transformations.

Proof. To see that λ is natural, required to prove that the following diagram

commutes.
τ1 × I τ2 × I

τ1 τ2

(x:τ1⊢M :τ2)⋉I

λτ1 λτ2

(x:τ1⊢M :τ2)
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λτ2 ◦ ((x : τ1 ⊢ M : τ2) ⋉ I)

= (w : τ2 × I ⊢ π1w : τ2) ◦ (y : τ1 × I ⊢ let z ⇐ M [x 7→ π1y] in ⟨z, π2y⟩

= y : τ1 × I ⊢ let w ⇐ (let z ⇐ M [x 7→ π1y] in ⟨z, π2y⟩) in π1w : τ2

a= y : τ1 × I ⊢ let z ⇐ M [x 7→ π1y] in (let w ⇐ ⟨z, π2y⟩ in π1w) : τ2

lβ= y : τ1 × I ⊢ let z ⇐ M [x 7→ π1y] in π1⟨z, π2y⟩ : τ2

pβ= y : τ1 × I ⊢ let z ⇐ M [x 7→ π1y] in z

lη= y : τ1 × I ⊢ M [x 7→ π1y] : τ2

= y : τ1 × I ⊢ let x ⇐ π1y in M : τ2

= (x : τ1 ⊢ M : τ2) ◦ (y : τ1 × I ⊢ π1y : τ1)

= (x : τ1 ⊢ M : τ2) ◦ λτ1

Hence λ is indeed natural. Similarly, ρ is also natural.

Lemma 18. As defined above, a is a natural transformation with components

aτ1,τ2,τ3 : (τ1 ⊗ τ2) ⊗ τ3 → τ1 ⊗ (τ2 ⊗ τ3).

Proof. There are three naturality-squares to consider, one for each of τ1, τ2, τ3. We

will consider these in turn, and confirm that the two paths agree in each of them.

(τ1 × τ2) × τ3 τ1 × (τ2 × τ3)

(τ ′
1 × τ2) × τ3 τ ′

1 × (τ2 × τ3)

aτ1,τ2,τ3

((x:τ⊢M :τ ′
1)⋉τ2)⋉τ3 (x:τ1⊢M :τ ′

1)⋉(τ2×τ3)

aτ ′
1,τ2,τ3

((x : τ1 ⊢ M : τ ′
1) ⋉ (τ2 × τ3)) ◦ aτ1,τ2,τ3

= (y : τ1 × (τ2 × τ3) ⊢ let z ⇐ M [x 7→ π1y] in ⟨z, π2y⟩ : τ ′
1 × (τ2 × τ3))

◦ (w : (τ1 × τ2) × τ3 ⊢ ⟨π1(π1w), ⟨π2(π1w), π2w⟩⟩ : τ1 × (τ2 × τ3))
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= w : (τ1 × τ2) × τ3 ⊢ let y ⇐ ⟨π1(π1w), ⟨π2(π1w), π2w⟩⟩

in (let z ⇐ M [x 7→ π1y] in ⟨z, π2y⟩) : τ ′
1 × (τ2 × τ3)

lβ= w : (τ1 × τ2) × τ3 ⊢ let z ⇐ M [x 7→ π1⟨π1(π1w), ⟨π2(π1w), π2w⟩⟩]

in ⟨z, π2⟨π1(π1w), ⟨π2(π1w), π2w⟩⟩⟩ : τ ′
1 × (τ2 × τ3)

pβ= w : (τ1 × τ2) × τ3 ⊢ let z ⇐ M [x 7→ π1(π1w)]

in ⟨z, ⟨π2(π1w), π2w⟩⟩ : τ ′
1 × (τ2 × τ3)

aτ ′
1,τ2 τ3 ◦ (((x : τ1 ⊢ M : τ ′

1) ⋉ τ2) ⋉ τ3)

= (q : (τ ′
1 × τ2) × τ3 ⊢ ⟨π1(π1q), ⟨π2(π1q), π2q⟩⟩ : τ ′

1 × (τ2 × τ3))

◦ (w : (τ1 × τ2) × τ3 ⊢

let z2 ⇐ (let z1 ⇐ M [x 7→ π1w1] in ⟨z1, π2w1⟩)[w1 7→ π1w]

in ⟨z2, π2w⟩ : (τ ′
1 × τ2) × τ3)

= (q : (τ ′
1 × τ2) × τ3 ⊢ ⟨π1(π1q), ⟨π2(π1q), π2q⟩⟩ : τ ′

1 × (τ2 × τ3))

◦ (w : (τ1 × τ2) × τ3 ⊢ let z2 ⇐ (let z1 ⇐ M [x 7→ π1(π1w)] in ⟨z1, π2(π1w)⟩)

in ⟨z2, π2w⟩ : (τ ′
1 × τ2) × τ3)

a= (q : (τ ′
1 × τ2) × τ3 ⊢ ⟨π1(π1q), ⟨π2(π1q), π2q⟩⟩ : τ ′

1 × (τ2 × τ3))

◦ (w : (τ1 × τ2) × τ3 ⊢ let z1 ⇐ M [x 7→ π1(π1w)]

in let z2 ⇐ ⟨z1, π2(π1w)⟩ in ⟨z2, π2w⟩ : (τ ′
1 × τ2) × τ3)

lβ= (q : (τ ′
1 × τ2) × τ3 ⊢ ⟨π1(π1q), ⟨π2(π1q), π2q⟩⟩ : τ ′

1 × (τ2 × τ3))

◦ (w : (τ1 × τ2) × τ3 ⊢ let z1 ⇐ M [x 7→ π1(π1w)]

in let z2 ⇐ ⟨z1, π2(π1w)⟩ in ⟨z2, π2w⟩ : (τ ′
1 × τ2) × τ3)
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= (q : (τ ′
1 × τ2) × τ3 ⊢ ⟨π1(π1q), ⟨π2(π1q), π2q⟩⟩ : τ ′

1 × (τ2 × τ3))

◦ (w : (τ1 × τ2) × τ3 ⊢ let z1 ⇐ M [x 7→ π1(π1w)]

in ⟨⟨z1, π2(π1w)⟩, π2w⟩ : (τ ′
1 × τ2) × τ3)

= w : (τ1 × τ2) × τ3 ⊢ let q ⇐ (let z1 ⇐ M [x 7→ π1(π1w)]

in ⟨⟨z1, π2(π1w)⟩, π2w⟩)

in ⟨π1(π1q), ⟨π2(π1q), π2q⟩⟩ : τ ′
1 × (τ2 × τ3)

a= w : (τ1 × τ2) × τ3 ⊢ let z1 ⇐ M [x 7→ π1(π1w)]

in let q ⇐ ⟨⟨z1, π2(π1w)⟩, π2w⟩

in ⟨π1(π1q), ⟨π2(π1q), π2q⟩⟩ : τ ′
1 × (τ2 × τ3)

lβ= w : (τ1 × τ2) × τ3 ⊢ let z1 ⇐ M [x 7→ π1(π1w)]

in ⟨π1(π1⟨⟨z1, π2(π1w)⟩, π2w⟩),

⟨π2(π1⟨⟨z1, π2(π1w)⟩, π2w⟩), π2⟨⟨z1, π2(π1w)⟩, π2w⟩⟩⟩ : τ ′
1 × (τ2 × τ3)

= w : (τ1 × τ2) × τ3 ⊢ let z1 ⇐ M [x 7→ π1(π1w)]

in ⟨z1, ⟨π2(π1w), π2w⟩⟩ : τ ′
1 × (τ2 × τ3)

(τ1 × τ2) × τ3 τ1 × (τ2 × τ3)

(τ1 × τ ′
2) × τ3 τ1 × (τ ′

2 × τ3)

aτ1,τ2,τ3

(τ1⋊x:τ2⊢M :τ ′
2)⋉τ3 τ1⋊((x:τ2⊢M :τ ′

2)⋉τ3)

aτ1,τ ′
2,τ3

(τ1 ⋊ ((x : τ2 ⊢ M : τ ′
2) ⋉ τ3)) ◦ aτ1,τ2,τ3

= (y1 : τ1 × (τ2 × τ3) ⊢ ⟨π1y1, ⟨M [x 7→ π1(π2y1)], π2(π2y1)⟩⟩ : τ1 × (τ ′
2 × τ3))

◦ (y2 : (τ1 × τ2) × τ3 ⊢ ⟨π1(π1y2), ⟨π2(π1y2), π2y2⟩⟩ : τ1 × (τ2 × τ3))

= y2 : (τ1 × τ2) × τ3 ⊢ let y1 ⇐ ⟨π1(π1y2), ⟨π2(π1y2), π2y2⟩⟩
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in ⟨π1y1, ⟨M [x 7→ π1(π2y1)], π2(π2y1)⟩⟩ : τ1 × (τ ′
2 × τ3)

lβ= y2 : (τ1 × τ2) × τ3 ⊢ ⟨π1⟨π1(π1y2), ⟨π2(π1y2), π2y2⟩⟩,

⟨M [x 7→ π1(π2⟨π1(π1y2), ⟨π2(π1y2), π2y2⟩⟩)],

π2(π2⟨π1(π1y2), ⟨π2(π1y2), π2y2⟩⟩)⟩⟩ : τ1 × (τ ′
2 × τ3)

pβ= y2 : (τ1 × τ2) × τ3 ⊢ ⟨π1(π1y2), ⟨M [x 7→ π2(π1y2)], π2y2⟩⟩ : τ1 × (τ ′
2 × τ3)

aτ1,τ ′
2,τ3 ◦ (τ1 ⋊ ((x : τ2 ⊢ M : τ ′

2) ⋉ τ3))

= (y1 : (τ1 × τ ′
2) × τ3 ⊢ ⟨π1(π1y1), ⟨π2(π1y1), π2y1⟩⟩ : τ1 × (τ ′

2 × τ3))

◦ (y2 : (τ1 × τ2) × τ3 ⊢ ⟨⟨π1(π1y2), M [x 7→ π2(π1y2)]⟩, π2y2⟩ : (τ1 × τ ′
2) × τ3)

= y2 : (τ1 × τ2) × τ3 ⊢

let y1 ⇐ ⟨⟨π1(π1y2), M [x 7→ π2(π1y2)]⟩, π2y2⟩

in ⟨π1(π1y1), ⟨π2(π1y1), π2y1⟩⟩ : τ1 × (τ ′
2 × τ3)

= y2 : (τ1 × τ2) × τ3 ⊢ let y1 ⇐ (let z ⇐ M [x 7→ π2(π1y2)]

in ⟨⟨π1(π1y2), z⟩, π2y2⟩)

in ⟨π1(π1y1), ⟨π2(π1y1), π2y1⟩⟩ : τ1 × (τ ′
2 × τ3)

a= y2 : (τ1 × τ2) × τ3 ⊢ let z ⇐ M [x 7→ π2(π1y2)]

in (let y1 ⇐ ⟨⟨π1(π1y2), z⟩, π2y2⟩

in ⟨π1(π1y1), ⟨π2(π1y1), π2y1⟩⟩) : τ1 × (τ ′
2 × τ3)

lβ= y2 : (τ1 × τ2) × τ3 ⊢ let z ⇐ M [x 7→ π2(π1y2)]

in ⟨π1(π1⟨⟨π1(π1y2), z⟩, π2y2⟩),

⟨π2(π1⟨⟨π1(π1y2), z⟩, π2y2⟩), π2⟨⟨π1(π1y2), z⟩, π2y2⟩⟩⟩ : τ1 × (τ ′
2 × τ3)
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pβ= y2 : (τ1 × τ2) × τ3 ⊢ let z ⇐ M [x 7→ π2(π1y2)]

in ⟨π1(π1y2), ⟨z, π2y2⟩⟩ : τ1 × (τ ′
2 × τ3)

= y2 : (τ1 × τ2) × τ3 ⊢ ⟨π1(π1y2), ⟨M [x 7→ π2(π1y2)], π2y2⟩⟩ : τ1 × (τ ′
2 × τ3)

(τ1 × τ2) × τ3 τ1 × (τ2 × τ3)

(τ1 × τ2) × τ ′
3 τ1 × (τ2 × τ ′

3)

aτ1,τ2,τ3

(τ1×τ2)⋊(x:τ3⊢M :τ ′
3) τ1⋉(τ2⋉(x:τ3⊢M :τ ′

3))

aτ1,τ2,τ ′
3

(τ1 ⋊ (τ2 ⋊ (x : τ3 ⊢ M : τ ′
3))) ◦ aτ1,τ2,τ3

= (y1 : τ1 × (τ2 × τ3) ⊢ ⟨π1y1, ⟨π1(π2y), M [x 7→ (π2(π2y1))]⟩⟩ : τ1 × (τ2 × τ ′
3))

◦ (y2 : (τ1 × τ2) × τ3 ⊢ ⟨π1(π1y2), ⟨π2(π1y2), π2y2⟩⟩ : τ1 × (τ2 × τ3))

= y2 : (τ1 × τ2) × τ3 ⊢ let y1 ⇐ ⟨π1(π1y2), ⟨π2(π1y2), π2y2⟩⟩

in ⟨π1y1, ⟨π1(π2y), M [x 7→ (π2(π2y1))]⟩⟩ : τ1 × (τ2 × τ ′
3)

lβ= y2 : (τ1 × τ2) × τ3 ⊢ ⟨π1⟨π1(π1y2), ⟨π2(π1y2), π2y2⟩⟩,

⟨π1(π2y), M [x 7→ (π2(π2⟨π1(π1y2), ⟨π2(π1y2), π2⟩⟩))]⟩⟩ : τ1 × (τ2 × τ ′
3)

pβ= y2 : (τ1 × τ2) × τ3 ⊢ ⟨π1(π1y2), ⟨π1(π2y), M [x 7→ (π2y2))]⟩⟩ : τ1 × (τ2 × τ ′
3)

aτ1,τ2,τ ′
3

◦ ((τ1 × τ2) ⋊ (x : τ3 ⊢ M : τ ′
3))

= (y2 : (τ1 × τ2) × τ ′
3 ⊢ ⟨π1(π1y2), ⟨π2(π1y2), π2y2⟩⟩ : τ1 × (τ2 × τ ′

3))

◦ (y1 : (τ1 × τ2) × τ3 ⊢ let z ⇐ M [x 7→ π2y1] in ⟨π1y1, z⟩ : (τ1 × τ2) × τ ′
3)

= y1 : (τ1 × τ2) × τ3 ⊢ let y2 ⇐ (let z ⇐ M [x 7→ π2y1] in ⟨π1y1, z⟩)

in ⟨π1(π1y2), ⟨π2(π1y2), π2y2⟩⟩ : (τ1 × τ2) × τ ′
3

a= y1 : (τ1 × τ2) × τ3 ⊢ let z ⇐ M [x 7→ π2y1]



80 4.5. Syntactic closed Freyd-category of λC

in (let y2 ⇐ ⟨π1y1, z⟩ in ⟨π1(π1y2), ⟨π2(π1y2), π2y2⟩⟩) : (τ1 × τ2) × τ ′
3

lβ= y1 : (τ1 × τ2) × τ3 ⊢ let z ⇐ M [x 7→ π2y1]

in ⟨π1(π1⟨π1y1, z⟩), ⟨π2(π1⟨π1y1, z⟩), π2⟨π1y1, z⟩⟩⟩ : (τ1 × τ2) × τ ′
3)

pβ= y1 : (τ1 × τ2) × τ3 ⊢ let z ⇐ M [x 7→ π2y1]

in ⟨π1(π1y1), ⟨π2(π1y1), z⟩⟩ : (τ1 × τ2) × τ ′
3)

= y1 : (τ1 × τ2) × τ3 ⊢ ⟨π1(π1y1), ⟨π2(π1y1), M [x 7→ π2y1]⟩⟩ : (τ1 × τ2) × τ ′
3)

Hence a is indeed a natural transformation.

Lemma 19. aτ1,τ2,τ3, λτ , ρτ are isomorphisms.

Proof. By Lemma 15, aVτ1,τ2,τ3 , λVτ and ρVτ are isomorphisms, and aτ1,τ2,τ3 , λτ and ρτ

are their images respectively under the functor J , so they are isomorphisms in C.

Hence we can formulate the following proposition.

Proposition 4. C is a premonoidal category.

4.5.6 C is a symmetric premonoidal category

Define sτ1,τ2 := (x : τ1 × τ2 ⊢ ⟨π2x, π1x⟩ : τ2 × τ1).

Lemma 20. s is a natural transformation with components sτ1,τ2 : τ1 ⊗ τ2 → τ2 ⊗ τ1.

Proof. We are required to prove that the following naturality square commutes.

τ1 × τ2 τ ′
1 × τ2

τ2 × τ1 τ2 × τ ′
1

sτ1,τ2

(y:τ1⊢M :τ ′
1)⋉τ2

sτ ′
1,τ2

τ2⋊(y:τ1⊢M :τ ′
1)
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Indeed,

sτ ′
1,τ2 ◦ ((y : τ1 ⊢ M : τ ′

1) ⋉ τ2)

= (x : τ ′
1 × τ2 ⊢ ⟨π2x, π1x⟩ : τ2 × τ ′

1) ◦ (z : τ1 × τ2 ⊢ ⟨M [y 7→ π1z], π2z⟩)

= z : τ1 × τ2 ⊢ let x ⇐ ⟨M [y 7→ π1z], π2z⟩ in ⟨π2x, π1x⟩ : τ2 × τ ′
1)

cp= z : τ1 × τ2 ⊢ let x ⇐ (let w ⇐ M [y 7→ π1z] in ⟨w, π2z⟩) in ⟨π2x, π1x⟩ : τ2 × τ ′
1

a= z : τ1 × τ2 ⊢ let w ⇐ M [y 7→ π1z] in (let x ⇐ ⟨w, π2z⟩ in ⟨π2x, π1x⟩) : τ2 × τ ′
1

lβ= z : τ1 × τ2 ⊢ let w ⇐ M [y 7→ π1z] in (⟨π2⟨w, π2z⟩, π1⟨w, π2z⟩⟩) : τ2 × τ ′
1

pβ= z : τ1 × τ2 ⊢ let w ⇐ M [y 7→ π1z] in ⟨π2z, w⟩ : τ2 × τ ′
1

cp= z : τ1 × τ2 ⊢ ⟨π2z, M [y 7→ π1z]⟩ : τ2 × τ ′
1

and

(τ2 ⋊ (y : τ1 ⊢ M : τ ′
1)) ◦ sτ1,τ2

= (z : τ2 × τ1 ⊢ ⟨π1z, M [y 7→ π2z]⟩ : τ2 × τ ′
1) ◦ (x : τ1 × τ2 ⊢ ⟨π2x, π1x⟩ : τ2 × τ1)

= x : τ1 × τ2 ⊢ let z ⇐ ⟨π2x, π1x⟩ in ⟨π1z, M [y 7→ π2z]⟩
lβ= x : τ1 × τ2 ⊢ ⟨π1⟨π2x, π1x⟩, M [y 7→ π2⟨π2x, π1x⟩]⟩
pβ= x : τ1 × τ2 ⊢ ⟨π2x, M [y 7→ π1x]⟩ : τ2 × τ ′

1.

Hence the above square commutes. By logical symmetry, sτ1,τ2 is also natural in

the second position, so it is indeed natural as required to prove.

Lemma 21. For any τ1, τ2, sτ1,τ2 is central.

Proof. It is a value, so it is central by Lemma 14.

Lemma 22. If we regard V as a symmetric premonoidal category with × the product,
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as in Corollary 1, then the symmetry is sVτ1,τ2 = (x : τ1 × τ2 ⊢ ⟨π2x, π1x⟩ : τ2 × τ1),

so we have sτ1,τ2 = JsVτ1,τ2.

Lemma 23. sτ1,τ2 is an isomorphism.

Proof. By Lemma 22 sτ1,τ2 is the image of an isomorphism under the functor J , so

it is also an isomorphism.

Lemma 24. The following diagram commutes:

(τ1 × τ2) × τ3 τ1 × (τ2 × τ3) (τ2 × τ3) × τ1 (τ3 × τ2) × τ1

τ3 × (τ2 × τ1)

τ3 × (τ1 × τ2)

aτ1,τ2,τ3

sτ1×τ2,τ3

sτ1,τ2×τ3 sτ2,τ3⋉τ1

aτ3,τ2,τ1

τ3⋊sτ2,τ1

Proof. We have seen above that J maps the symmetric premonoidal structure of

V to the claimed symmetric premonoidal structure of C, and J is a functor, so it

preserves commuting diagrams.

The above diagram is the symmetry condition, so the corresponding diagram

holds in V, so this diagram holds in C.

Hence we can deduce the following two propositions.

Proposition 5. C is a symmetric premonoidal category.

Proposition 6. J is an identity-on-object functor that strictly preserves symmetric

premonoidal structure.

4.5.7 V
J−→ C is a closed Freyd-category

Define

(τ1 ⇒ τ2) := (τ1 → τ2)
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eval : (τ1 ⇒ τ2) ⊗ τ1 → τ2

eval := (x : (τ1 → τ2) × τ1 ⊢ (π1x)(π2x) : τ2)

And for any (x : τ × τ1 ⊢ M : τ2) in C, let

Λ(x : τ × τ1 ⊢ M : τ2) := y : τ ⊢ λz : τ1.M [x 7→ ⟨y, z⟩] : τ1 → τ2.

Lemma 25. This is the unique y : τ ⊢ V : τ1 → τ2 such that

τ1 ⇒ τ2 ⊗ τ1 τ2

τ ⊗ τ1

eval

J(y:τ⊢V :τ1→τ2)⋉τ1 x:τ×τ1⊢M :τ2

commutes.

Proof. For any y : τ ⊢ V : τ1 → τ2,

eval ◦ (J(y : τ ⊢ V : τ1 → τ2) ⋉ τ1)

= (w : (τ1 → τ2) × τ1 ⊢ (π1w)(π2w) : τ2) ◦ (z : τ × τ1 ⊢ ⟨V [y 7→ π1z], π2z⟩)

= q : τ × τ1 ⊢ let w ⇐ ⟨V [y 7→ π1q], π2q⟩ in (π1w)(π2w) : τ2

lβ= q : τ × τ1 ⊢ (π1⟨V [y 7→ π1q], π2q⟩)(π2⟨V [y 7→ π1q], π2q⟩) : τ2)
pβ= q : τ × τ1 ⊢ (V [y 7→ π1q])(π2q) : τ2.

So for V = λz : τ1.M [x 7→ ⟨y, z⟩],

eval ◦ (J(y : τ ⊢ V : τ1 → τ2) ⋉ τ1)

= q : τ × τ1 ⊢ (λz : τ1.M [x 7→ ⟨y, z⟩][y 7→ π1q])(π2q) : τ2

= q : τ × τ1 ⊢ (λz : τ1.M [x 7→ ⟨π1q, z⟩])(π2q) : τ2

fβ= q : τ × τ1 ⊢ (M [x 7→ ⟨π1q, π2q⟩]) : τ2
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pη= q : τ × τ1 ⊢ (M [x 7→ q]) : τ2 = τ × τ1 ⊢ M : τ2

as required.

However, it is unique with this property (with respect to the congruence from

above), because if eval ◦ (J(y : τ ⊢ V : τ1 → τ2) ⋉ τ1) = x : τ × τ1 ⊢ M : τ2, then:

y0 : τ ⊢ λz.M [x 7→ ⟨y0, z⟩]

= y0 : τ ⊢ λz.(eval ◦ (J(y : τ ⊢ V : τ1 → τ2) ⋉ τ1))[x 7→ ⟨y0, z⟩]

= y0 : τ ⊢ λz.((V [y 7→ π1x])(π2x))[x 7→ ⟨y0, z⟩]

= y0 : τ ⊢ λz.(V [y 7→ π1⟨y0, z⟩])(π2⟨y0, z⟩)
pβ= y0 : τ ⊢ λz.(V [y 7→ y0])z)

= y : τ ⊢ λz.V z

fη= y : τ ⊢ V : τ1 → τ2.

Hence Λ(x : τ × τ1 ⊢ M : τ2) is indeed the unique value with that property.

Theorem 12. V J−→ C is a closed Freyd-category.

Proof. By Proposition 3 V is a category with finite products, by Proposition 5 C is

a symmetric premonoidal category, and by Proposition 6 J is an identity-on-objects

functor strictly preserving the symmetric premonoidal structure and it maps central

morphisms to central morphisms, so V J−→ C is a Freyd-category. Furthermore, by

Lemma 25, it is a closed Freyd-category.

4.6 Free property

Definition 33 (Strict closed Freyd-functor). For a closed Freyd-categories V1
J1−→ C1,

V2
J2−→ C2 let us call F = (FV, FC) a strict closed Freyd-functor if:
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(C1) FV : V1 → V2 is a functor that strictly preserves finite products;

(C2) FC : C1 → C2 is a functor that strictly preserves symmetric premonoidal

structure;

(C3) FV and FC strictly preserve the closed structure;

(C4) The following diagram commutes:

V1 C1

V2 C2

J1

FV FC

J2

▲

Definition 34 (Free closed Freyd-category over a signature). Given a signature

S = (Stype, Sconst) a closed Freyd-category F [S] = VS
JS−→ CS is free over S iff there

exists an interpretation ι of S in F [S] such that for any Freyd-category V J−→ C, and

any interpretation F of S in V J−→ C, there is a unique strict closed Freyd-functor

F # such that the following diagram commutes:

(VS
JS−→ CS) (V J−→ C)

B

F #

ι
F

(C5)

i.e, for any β ∈ Stype, F #
V (ι(β)) = F (β), any (cprim, τ) ∈ Sprim, F #

V (ι(cprim)) =

FV(cprim), and any (cefop, τ) ∈ Sefop, F #
C (ι(cefop)) = FC(cefop). ▲

This section contains the proof of the following theorem, the key theorem

of this dissertation.

Theorem 13. Given a signature S, the syntactic closed Freyd-category of the
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computational lambda calculus with that signature, VS
JS−→ CS, is the free closed

Freyd-category over that signature.

In particular, given a closed Freyd-category V J−→ C and an interpretation F of

S in V J−→ C we can define F # = (F #
V , F #

C ) as follows. On objects:

F #
V (1) = F #

C (1) = 1 (O1)

F #
V (β) = F #

C (β) = F (β) for β in Stype (O2)

F #
V (τ1 × τ2) = F #

C (τ1 × τ2) = F #
V (τ1) × F #

V (τ2) = F #
C (τ1) ⊗ F #

C (τ2) (O3)

F #
V (τ1 → τ2) = F #

C (τ1 → τ2) = F #
V (τ1) ⇒ F #

V (τ2) = F #
C (τ1) ⇒ F #

C (τ2) (O4)

On morphisms of VS :

F #
V (x1 : τ1, . . . , xn : τn ⊢ xi : τi) = πi (MV1)

F #
V (Γ ⊢ () : 1) =! (MV2)

F #
V (Γ ⊢ πiV : τi) = πi ◦ F #

V (Γ ⊢ V : τ1 × τ2) (MV3)

F #
V (Γ ⊢ ⟨V1, V2⟩ : τ1 × τ2) = ⟨F #

V (Γ ⊢ V1 : τ1), F #
V (Γ ⊢ V2 : τ2)⟩ (MV4)

F #
V (Γ ⊢ let x ⇐ V1 in V2 : τ2) = F #

V (Γ, x : τ1 ⊢ V2 : τ2)

◦ (id × F #
V (Γ ⊢ V1 : τ1)) ◦ ∆ (MV5)

F #
V (Γ ⊢ λx.M : τ1 → τ2) = Λ

(
F #
C (Γ, x : τ1 ⊢ M : τ2)

)
(MV6)

F #
V (Γ ⊢ cprim : τ) = FV(cprim)◦! (MV7)

On morphisms of CS :

F #
C (Γ ⊢ V : τ) = JF #

V (Γ ⊢ V : τ) (MC1)

F #
C (Γ ⊢ let x ⇐ M1 in M2 : τ2) = F #

C (Γ, x : τ1 ⊢ M2 : τ2)

◦ (id ⊗ F #
C (Γ ⊢ M1)) ◦ J∆ (MC2)
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F #
C (Γ ⊢ πiM : τi) = Jπi ◦ F #

C (Γ ⊢ M) (MC3)

F #
C (Γ ⊢ ⟨M1, M2⟩ : τ1 × τ2) = (id ⊗ F #

C (Γ ⊢ M2)) ◦ (F #
C (Γ ⊢ M1) ⊗ id) ◦ J∆

(MC4)

F #
C (Γ ⊢ M1M2 : τ2) = eval ◦ (id ⊗ F #

C (Γ ⊢ M2 : τ1))

◦ (F #
C (Γ ⊢ M1 : τ1 → τ2) ⊗ id) ◦ J∆ (MC5)

F #
C (Γ ⊢ cefop : τ) = FC(cefop)◦! (MC6)

Note that syntactically this is the same definition as the interpretation of the

computational lambda calculus in a Freyd-category from Figure 4.3, but conceptually

this is a mapping from objects and morphism of the syntactic category, not types

and terms of the computational lambda calculus.

4.6.1 F # is a strict closed Freyd-functor

Lemma 26. F #
V and F #

C are functors.

Proof. We defined F #
V (A), F #

C (A) for all objects of VS and CS and F #
V (fV), F #

C (fC)

for all morphisms.

Furthermore, we have seen that the interpretation of λC in a closed Freyd-

category is sound with respect to the equations we quotient with, so F #
V and F #

C

are well-defined with respect to the quotienting.

Furthermore, they respect identities:

F #
V (x : τ ⊢ x : τ) = idVτ

F #
C (x : τ ⊢ x : τ) = JF #

V (x : τ ⊢ x : τ) = J idVτ = idCτ
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and composition:

F #
V ((y : τ2 ⊢ V2 : τ3) ◦ (x : τ1 ⊢ V1 : τ2))

= F #
V (x : τ1 ⊢ let y ⇐ V1 in V2 : τ3)

= F #
V (x : τ1, y : τ2 ⊢ V2 : τ3) ◦ (id × F #

V (x : τ1 ⊢ V1 : τ2)) ◦ ∆
w= F #

V (y : τ2 ⊢ V2 : τ3) ◦ π2 ◦ (id × F #
V (x : τ1 ⊢ V1 : τ2)) ◦ ∆

= F #
V (y : τ2 ⊢ V2 : τ3) ◦ F #

V (x : τ1 ⊢ V1 : τ2)

F #
C ((y : τ2 ⊢ M2 : τ3) ◦ (x : τ1 ⊢ M1 : τ2))

= F #
C (x : τ1 ⊢ let y ⇐ M1 in M2 : τ3)

= F #
C (x : τ1, y : τ2 ⊢ M2 : τ3) ◦ (id ⊗ F #

C (x : τ1 ⊢ M1 : τ2)) ◦ J∆
w= F #

C (y : τ2 ⊢ M2 : τ3) ◦ Jπ2 ◦ (id ⊗ F #
C (x : τ1 ⊢ M1 : τ2)) ◦ J∆

= F #
C (y : τ2 ⊢ M2 : τ3) ◦ F #

C (x : τ1 ⊢ M1 : τ2) ◦ Jπ2 ◦ J∆

= F #
C (y : τ2 ⊢ M2 : τ3) ◦ F #

C (x : τ1 ⊢ M1 : τ2)

Hence F #
V and F #

C are indeed functors, as required.

Lemma 27. F #
V strictly preserves finite products.

Proof. It strictly preserves the terminal object by (O1). It strictly preserves the

unique morphism into the terminal object by (MV2). It strictly preserves the

product object by (O3). It strictly preserves projections by (MV3) and pairing by

(MV4).

Lemma 28. F #
C strictly preserves symmetric premonoidal structure.

Proof. It strictly preserves − ⊗ = on objects by (O3).

F #
C (τ ⋊ (x : τ1 ⊢ M : τ2))
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= F #
C (y : τ × τ1 ⊢ ⟨π1y, M [x 7→ π2y]⟩ : τ×τ2)

= F #
C (y : τ × τ1 ⊢ let z ⇐ M [x 7→ π2y] in ⟨π1y, z⟩ : τ×τ2)

= F #
C (y : τ × τ1, z : τ2 ⊢ ⟨π1y, z⟩ : τ×τ2) ◦ (id ⊗ F #

C (y : τ × τ1 ⊢ M [x 7→ π2y]))

◦ J∆

= J⟨π1 ◦ π1, π2⟩ ◦
(
id ⊗ (F #

C (x : τ1 ⊢ M : τ2) ◦ Jπ2)
)

◦ J∆

= (Jπ1 ⊗ id) ◦
(
id ⊗ F #

C (x : τ1 ⊢ M : τ2)
)

◦ (id ⊗ Jπ2) ◦ J∆

= (id ⊗ F #
C (x : τ1 ⊢ M : τ2)) ◦ (Jπ1 ⊗ id) ◦ (id ⊗ Jπ2) ◦ J∆

= (id ⊗ F #
C (x : τ1 ⊢ M : τ2))

Similarly, it also strictly preserves − ⋉ τ .

F #
C (I) = 1 by (O1).

F #
C (aX,Y,Z) ∗= JF #

V (aX,Y,Z) †= JaVX,Y,Z = aCX,Y,Z

where ∗ hold because F #
V strictly preserves finite products by Lemma 27 and † holds

because J strictly preserves premonoidal structure.

Similarly

F #
C (λX) = λCX

F #
C (ρX) = ρCX

F #
C (sX,Y ) = sCX,Y .

So indeed F #
C strictly preserves the symmetric premonoidal structure.

Lemma 29. F #
V and F #

C strictly preserve the closed structure.
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Proof. The exponential object is preserved by (O4).

F #
C (eval)

= F #
C (x : (τ1 → τ2) × τ1 ⊢ (π1x)(π2x) : τ2)

= eval ◦ (id ⊗ F #
C (x : (τ1 → τ2) × τ1 ⊢ π2x : τ1))

◦ (F #
C (x : (τ1 → τ2) × τ1 ⊢ π1x : τ1 → τ2) ⊗ id) ◦ J∆

= eval ◦ (id ⊗ Jπ1) ◦ (Jπ2 ⊗ id) ◦ J∆

= eval

F #
V (Λ(x : τ × τ1 ⊢ M : τ2))

= F #
V (y : τ ⊢ λz.M [x 7→ ⟨y, z⟩] : τ1 → τ2)

= Λ(F #
C (y : τ, z : τ1 ⊢ M [x 7→ ⟨y, z⟩] : τ2))

= Λ(F #
C (x : τ × τ1 ⊢ M : τ2))

So F #
V and F #

C strictly preserve the closed structure, as required.

Lemma 30. F #
V and F #

C satisfy (C4).

Proof. Using (MC1),

F #
C (JS(x : τ1 ⊢ V : τ2)) = F #

C (x : τ1 ⊢ V : τ2) = JF #
V (x : τ1 ⊢ V : τ2).

Lemma 31. F #
V and F #

C satisfy (C5).

Proof. For any β ∈ Stype,

F #
V (ιβ) = F #

V (β) = F (β)
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by (O2).

Similarly, for any (τ, cprim) ∈ Sprim, using (MV7),

F #
V (ι(cprim)) = F #

V ( ⊢ cprim : τ) = F (cprim),

and any (τ, cefop) ∈ Sefop, using (MV6),

F #
C (ι(cefop)) = F #

C ( ⊢ cefop : τ) = F (cefop).

Hence F # satisfies all of the requirements (C1) , (C2), (C3), (C4) and (C5).

4.6.2 F # is unique

We are going to prove that F # as defined above is unique by showing that each

of the above rules has to hold for F # with the required properties.

For rules O1-O4 we will only argue for F #
V , but using that J1 and J2 are

identities-on-object, and by C4, F #
C has to behave the same way.

O1 has to hold because F #
V strictly preserves finite products.

O2 has to hold by (C5).

O3 has to hold to because F #
V strictly preserves finite products.

O4 has to hold to because F #
V strictly preserves the closed structure.

MV1 has to hold because F #
V strictly preserves finite products, and it is a functor,

so

F #
V (x : ((τ1 × τ2) · · · × τn) ⊢ πix : τi)
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= πi ◦ F #
V (x : ((τ1 × τ2) · · · × τn) ⊢ x : ((τ1 × τ2) · · · × τn))

= πi.

MV2 has to hold because F #
V strictly preserves the unique morphism into the

terminal object.

MV3 has to hold because F #
V strictly preserves finite products, so F #

V (x : τ1 × τ2 ⊢

πix : τi) = πi, so using the substitution lemma,

F #
V (Γ ⊢ (πix)[x 7→ V ] : τi)

= F #
V (x : τ1 × τ2 ⊢ πix : τi) ◦ F #

V (Γ ⊢ V )

= πi ◦ F #
V (Γ ⊢ V ).

MV4 has to hold because F #
V strictly preserves finite products.

MV5 has to hold, because

F #
V (Γ ⊢ let x ⇐ V1 in V2)

= F #
V (Γ ⊢ V2[x 7→ V1])

= F #
V (Γ ⊢ V2[Γ 7→ Γ, x 7→ V1])

= F #
V (Γ ⊢ let y ⇐ ⟨Γ, V1⟩ in V2)

= F #
V ((Γ, x : τ1 ⊢ V2) ◦ (Γ ⊢ ⟨Γ, V1⟩ : τ × τ1))

= F #
V (Γ, x : τ1 ⊢ V2) ◦ F #

V (Γ ⊢ ⟨Γ, V1⟩ : τ × τ1)

= F #
V (Γ, x : τ1 ⊢ V2) ◦ ⟨id, F #

V (Γ ⊢ V1 : τ1)⟩.
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MV6 has to hold because F #
V and F #

C strictly preserves closed structure, so

F #
V (Γ ⊢ λx.M : τ1 → τ2) = Λ(F #

C (Γ, x : τ1 ⊢ M : τ2)).

MV7 has to hold by (C5).

MC1 has to hold by (C4).

MC2 has to hold because

F #
C (p : τ ⊢ let x ⇐ M1 in M2[q 7→ ⟨p, x⟩]

= F #
C (p : τ ⊢ let x ⇐ M1 in let q ⇐ ⟨p, x⟩ in M2)

a= F #
C (p : τ ⊢ let q ⇐ (let x ⇐ M1 in ⟨p, x⟩) in M2)

cp= F #
C (p : τ ⊢ let q ⇐ ⟨p, M1⟩ in M2)

= F #
C ((q : τ × τ1 ⊢ M2 : τ2) ◦ (p : τ ⊢ ⟨p, M1⟩ : τ × τ1))

= F #
C (q : τ × τ1 ⊢ M2 : τ2) ◦ F #

C (p : τ ⊢ ⟨p, M1⟩ : τ × τ1)

= F #
C (q : τ × τ1 ⊢ M2 : τ2)

◦ F #
C (r : τ ⊢ ⟨π1⟨r, r⟩, M1[p 7→ π2⟨r, r⟩]⟩ : τ × τ1)

= F #
C (q : τ × τ1 ⊢ M2 : τ2)

◦ F #
C (r : τ ⊢ let t ⇐ ⟨r, r⟩ in ⟨π1t, M [p 7→ π2t]⟩)

= F #
C (q : τ × τ1 ⊢ M2 : τ2) ◦ F #

C (t : τ × τ ⊢ ⟨π1t, M [p 7→ π2t]⟩)

◦ F #
C (r : τ ⊢ ⟨r, r⟩)

= F #
C (q : τ × τ1 ⊢ M2 : τ2) ◦ (id ⊗ F #

C (τ ⊢ M1 : τ1)) ◦ J∆.

MC3 has to hold because

F #
C (Γ ⊢ πiM)
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cpr= F #
C (Γ ⊢ let y ⇐ M in πiy)

∗= F #
C (Γ, y : τ1 × τ2 ⊢ πiy : τi) ◦ (id ⊗ F #

C (Γ ⊢ M : τ1 × τ2)) ◦ J∆

= Jπi ◦ Jπ2 ◦ (id ⊗ F #
C (Γ ⊢ M : τ1 × τ2)) ◦ J∆

= Jπi ◦ F #
C (Γ ⊢ M : τ1 × τ2) ◦ Jπ2 ◦ J∆

= Jπi ◦ F #
C (Γ ⊢ M : τ1 × τ2)

where ∗ holds as (MC2) holds.

MC4 has to hold because

F #
C (Γ ⊢ ⟨M1, M2⟩ : τ1 × τ2)

cp= F #
C (Γ ⊢ let x ⇐ M1 in let y ⇐ M2 in ⟨x, y⟩ : τ1 × τ2)

= F #
C (Γ, x : τ1 ⊢ let y ⇐ M2 in ⟨x, y⟩ : τ1 × τ2) ◦ (id ⊗ F #

C (Γ ⊢ M1 : τ1))

◦ J∆

= F #
C (Γ, x : τ1, y : τ2 ⊢ ⟨x, y⟩ : τ1 × τ2) ◦ (id ⊗ F #

C (Γ, x : τ1 ⊢ M2)) ◦ J∆

◦ (id ⊗ F #
C (Γ ⊢ M1 : τ1)) ◦ J∆

= J⟨π2 ◦ π1, π2⟩ ◦ (id ⊗ (F #
C (Γ ⊢ M2) ◦ Jπ1)) ◦ J∆

◦ (id ⊗ F #
C (Γ ⊢ M1 : τ1)) ◦ J∆

= (Jπ2 ⊗ id) ◦ (id ⊗ F #
C (Γ ⊢ M2)) ◦ (id ⊗ Jπ1) ◦ J∆

◦ (id ⊗ F #
C (Γ ⊢ M1 : τ1)) ◦ J∆

= (id ⊗ F #
C (Γ ⊢ M2)) ◦ J⟨π2, π1⟩ ◦ (id ⊗ F #

C (Γ ⊢ M1 : τ1)) ◦ J∆
∗= (id ⊗ F #

C (Γ ⊢ M2)) ◦ (F #
C (Γ ⊢ M1 : τ1) ⊗ id) ◦ J⟨π2, π1⟩ ◦ J∆

= (id ⊗ F #
C (Γ ⊢ M2)) ◦ (F #

C (Γ ⊢ M1 : τ1) ⊗ id) ◦ J∆

where ∗ holds because J⟨π2, π1⟩ = sτ1,τ2 .
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MC5 has to hold because the closed structure is strictly preserved, so

F #
C (x : (τ1 → τ2) × τ1 ⊢ (π1x)(π2x) : τ2) = eval

so we need

F #
C (Γ ⊢ M1M2 : τ2)

ca= F #
C (Γ ⊢ let x ⇐ M1 in let y ⇐ M2 in xy : τ2)

= F #
C (Γ ⊢ let x ⇐ M1 in let y ⇐ M2 in let z ⇐ ⟨x, y⟩ in (π1z)(π2z) : τ2)

= F #
C (Γ ⊢ let z ⇐ (let x ⇐ M1 in let y ⇐ M2 in ⟨x, y⟩) in (π1z)(π2z))

= F #
C (Γ ⊢ let z ⇐ ⟨M1, M2⟩ in (π1z)(π2z))

= F #
C (z : (τ1 → τ2) × τ1 ⊢ (π1z)(π2z) : τ2) ◦ F #

C (Γ ⊢ ⟨M1, M2⟩)

= eval ◦ (id ⊗ F #
C (Γ ⊢ M2 : τ1)) ◦ (F #

C (Γ ⊢ M1 : τ1 → τ2) ⊗ id) ◦ J∆.

MC6 has to hold by (C5).

Hence F #
V and F #

C are indeed unique.

Hence the syntactic closed Freyd-category is indeed the free closed Freyd-category

over a signature.

Note that this proves that λC is an internal language of Freyd-categories, and

we can use it to prove statements about Freyd-categories the same way we can

use the STLC to prove statements about CCCs.



96



5
The computational lambda calculus in the

monadic metalanguage

This chapter describes and proves how to translate the computational lambda

calculus to the monadic metalanguage in a semantically justified way.

By [22], [13], for K a cartesian category with a strong monad T and Kleisli-

exponentials, K η◦−−−→ KT is a closed Freyd-category.

Chapter 3 characterized the syntactic CCC with a strong monad of the monadic

metalanguage. Chapter 4 characterized how to interpret the computational lambda

calculus in a Freyd-category. By interpreting the computational lambda calculus

in the Freyd-category we get from the syntactic CCC with a strong monad of the

monadic metalanguage, we get a mapping from computational lambda calculus

terms to monadic metalanguage terms that is synthesized from purely semantic

concerns. In particular, if M1 =βη M2 in λC, then using the soundness result of λC,
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5.1. Description of the Freyd-category structure derived from the monadic

metalanguage

Computational lambda calculus Monadic metalanguage
x : τ ⊢ M : τ ′ x : τ ⊢ M : Tτ ′

x : τ ⊢ () : 1 x : τ ⊢ [()]T : T1

x : τ ⊢ πiM : τi x : τ ⊢ let y ⇐ M in [πiy]T : Tτi

x : τ ⊢ ⟨M1, M2⟩ : τ1 × τ2
x : τ ⊢ let z1 ⇐ M1 in (let z2 ⇐ M2 in ⟨z1, z2⟩)

: T (τ1 × τ2)
x : τ ⊢ λz.M : τ1 → τ2 x : τ ⊢ [λz.M ]T : T (τ1 → Tτ2)

x : τ ⊢ M1M2 : τ1 × τ2
x : τ ⊢ let z1 ⇐ M1 in (let z2 ⇐ M2 in z1z2)

: T (τ1 × τ2)
x : τ ⊢ let z ⇐ M1 in M2 : τ2 x : τ ⊢ let z ⇐ M1 in M2 : Tτ2

Figure 5.1: Translation of the computational lambda calculus to the monadic metalan-
guage

JM1KC = JM2KC in the syntactic Freyd-category of λml, so M1 =βη M2 in λml.

The resulting translation is summarized recursively in Figure 5.1 and the

derivation is described in Section 5.2.

5.1 Description of the Freyd-category structure

derived from the monadic metalanguage

This section describes the the Freyd-category structure obtained from the syntactic

CCC with a strong monad of the monadic metalanguage. It is derived by instantiating

the structure of the syntactic CCC with a strong monad of the monadic metalanguage

described in Chapter 3 in the standard construction of a Freyd-category from a

CCC with a strong monad as in [22].
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Finite products in K:

• Terminal object: 1

• Binary product of objects τ1, τ2:

(τ1 × τ2, (x : τ1 × τ2 ⊢ π1x : τ1), (x : τ1 × τ2 ⊢ π2x : τ2)).

Premonoidal structure in KT :

τ1 ⊗ τ2 := τ1 × τ2

For an object τ , for (x : τ1 ⊢ E : Tτ2) ∈ K(τ1, T τ2) = KT (τ1, τ2)

τ ⋊ (x : τ1 ⊢ E : Tτ2) ∈ KT (τ × τ1, τ × τ2)

τ ⋊ (x : τ1 ⊢ E : Tτ2) := (y : τ × τ1 ⊢ let z ⇐ E[x 7→ π2y] in [⟨π1y, z⟩]T : T (τ × τ2))

(x : τ1 ⊢ E : Tτ2) ⋉ τ ∈ KT (τ1 × τ, τ2 × τ)

(x : τ1 ⊢ E : Tτ2) ⋉ τ := (y : τ1 × τ ⊢ let z ⇐ E[x 7→ π1y] in [⟨z, π2y⟩]T : T (τ2 × τ))

Closed structure in K η◦−−−→ KT :

τ1 ⇒ τ2 := τ1 → Tτ2

eval ∈ KT ((τ1 ⇒ τ2) × τ1, τ2) = K((τ1 → Tτ2) × τ1, T τ2)

eval := x : (τ1 → Tτ2) × τ1 ⊢ (π1x)(π2x) : Tτ2
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Λ ((x : τ × τ1 ⊢ E : Tτ2)) ∈ K(τ, τ1 ⇒ τ2)

Λ ((x : τ × τ1 ⊢ E : Tτ2)) := y : τ ⊢ λz : τ1.E : τ1 → Tτ2

5.2 Derivation of the translation

This section describes how the translation in Figure 5.1 is derived. In particular, to

get the translation of a term M , which we denote by M , we take its interpretation in

the syntactic Freyd-category of the monadic metalanguage derived from its syntactic

CCC with a strong monad and formulate it as a monadic metalanguage term.

Theorem 14. Interpreting the computational lambda calculus in the syntactic Freyd-

category of the monadic metalanguage synthesises the translation in Figure 5.1.

Proof. For each of the term-constructors of the computational lambda calculus, we

are going to confirm that the interpretation agrees with the monadic metalanguage

term in Figure 5.1.

• Case: unit

x : τ ⊢ () : T1

= Jx : τ ⊢ () : 1KC

= η ◦ Jx : τ ⊢ () : 1KV

= η◦!τ

= (y : 1 ⊢ [y]T : T1) ◦ (x : τ ⊢ () : 1)

= (x : τ ⊢ [()]T : T1)
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• Case: proj

x : τ ⊢ πiM : Tτi

= Jx : τ ⊢ πiM : τiKC

= (η ◦ πK
i ) ◦KT

Jx : τ ⊢ M : τ1 × τ2KC

= (η ◦ (x : τ1 × τ2 ⊢ πix : τi)) ◦KT
(x : τ ⊢ M : Tτ1 × τ2)

= (y : τ1 × τ2 ⊢ [πiy]T : Tτi) ◦KT
(x : τ ⊢ M : Tτ1 × τ2)

= x : τ ⊢ let y ⇐ M in [πiy]T : Tτi

• Case: pair

x : τ ⊢ ⟨M1, M2⟩ : Tτ1 × τ2

= Jx : τ ⊢ ⟨M1, M2⟩ : τ1 × τ2KC

= (τ1 ⋊ Jx : τ ⊢ M2 : τ2KC) ◦KT
(Jx : τ ⊢ M1 : τ1KC ⋉ τ) ◦KT

(η ◦ ∆)

= (τ1 ⋊ (x : τ ⊢ M2 : τ2)) ◦KT
((x : τ ⊢ M1 : τ1) ⋉ τ)

◦KT
(x : τ ⊢ [⟨x, x⟩]T : T (τ × τ))

= (y2 : τ1 × τ ⊢ let z2 ⇐ M2[x 7→ π2y2] in [⟨π1y2, z2⟩]T : T (τ1 × τ2))

◦KT
(y1 : τ × τ ⊢ let z1 ⇐ M1[x 7→ π1y1] in [⟨z1, π2y1⟩]T : T (τ1 × τ))

◦KT
(x : τ ⊢ [⟨x, x⟩]T : T (τ × τ))

= (y2 : τ1 × τ ⊢ let z2 ⇐ M2[x 7→ π2y2] in [⟨π1y2, z2⟩]T : T (τ1 × τ2))

◦KT
(x : τ ⊢ let y1 ⇐ [⟨x, x⟩]T in (let z1 ⇐ M1[x 7→ π1y1]

in [⟨z1, π2y1⟩]T ) : T (τ1 × τ))
lβ= (y2 : τ1 × τ ⊢ let z2 ⇐ M2[x 7→ π2y2] in [⟨π1y2, z2⟩]T : T (τ1 × τ2))

◦KT
(x : τ ⊢ let z1 ⇐ M1[x 7→ π1⟨x, x⟩] in [⟨z1, π2⟨x, x⟩⟩]T : T (τ1 × τ))

pβ= (y2 : τ1 × τ ⊢ let z2 ⇐ M2[x 7→ π2y2] in [⟨π1y2, z2⟩]T : T (τ1 × τ2))
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◦KT
(x : τ ⊢ let z1 ⇐ M1 in [⟨z1, x⟩]T : T (τ1 × τ))

= x : τ ⊢ let y2 ⇐ (let z1 ⇐ M1 in [⟨z1, x⟩]T )

in let z2 ⇐ M2[x 7→ π2y2] in [⟨π1y2, z2⟩]T : T (τ1 × τ2)
a= x : τ ⊢ let z1 ⇐ M1 in (let y2 ⇐ [⟨z1, x⟩]T

in (let z2 ⇐ M2[x 7→ π2y2] in [⟨π1y2, z2⟩]T ))
lβ= x : τ ⊢ let z1 ⇐ M1 in (let z2 ⇐ M2[x 7→ π2[⟨z1, x⟩]T ]

in [⟨π1[⟨z1, x⟩]T , z2⟩]T )
pβ= x : τ ⊢ let z1 ⇐ M1 in (let z2 ⇐ M2 in [⟨z1, z2⟩]T ) : T (τ1 × τ2)

• Case: abst

x : τ ⊢ λz.M : Tτ1 → τ2

= Jx : τ ⊢ λz.M : τ1 → τ2KC

= η ◦ Jx : τ ⊢ λz.M : τ1 → τ2KV

= η ◦ Λ(Jx : τ, z : τ1 ⊢ M : τ2KC)

= η ◦ Λ(Jy : τ × τ1 ⊢ M [x 7→ π1y, z 7→ π2y] : τ2KC)

= η ◦ Λ(y : τ × τ1 ⊢ M [x 7→ π1y, z 7→ π2y] : τ2)

= η ◦ Λ(y : τ × τ1 ⊢ M [x 7→ π1y, z 7→ π2y] : τ2)

= η ◦ Λ(x : τ , z : τ1 ⊢ M : Tτ2)

= η ◦ (y : τ ⊢ λz.M : τ1 → Tτ2)

= (y : τ ⊢ [λz.M ]T : T (τ1 → Tτ2))

• Case: app

x : τ ⊢ M1M2 : Tτ2
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= Jx : τ ⊢ M1M2 : τ2KC

= eval ◦KT
Jx : τ ⊢ ⟨M1, M2⟩ : (τ1 ⇒ τ2) × τ1KC

= (y : (τ1 ⇒ τ2) × τ1 ⊢ (π1y)(π2y) : Tτ2)

◦KT
(x : τ ⊢ ⟨M1, M2⟩ : T ((τ1 ⇒ τ2) × τ1))

= (y : (τ1 ⇒ τ2) × τ1 ⊢ (π1y)(π2y) : Tτ2)

◦KT
(x : τ ⊢ let z1 ⇐ M1

in (let z2 ⇐ M2 in ⟨z1, z2⟩) : T ((τ1 ⇒ τ2) × τ1))

= x : τ ⊢ let y ⇐ (let z1 ⇐ M1 in (let z2 ⇐ M2 in ⟨z1, z2⟩))

in (π1y)(π2y) : Tτ2

a= x : τ ⊢

let z1 ⇐ M1 in let y ⇐ (let z2 ⇐ M2 in ⟨z1, z2⟩)

in (π1y)(π2y) : Tτ2

a= x : τ ⊢

let z1 ⇐ M1 in (let z2 ⇐ M2 in (let y ⇐ ⟨z1, z2⟩ in (π1y)(π2y))) : Tτ2

= x : τ ⊢ let z1 ⇐ M1 in (let z2 ⇐ M2 in z1z2) : Tτ2

• Case: let

x : τ ⊢ let z ⇐ M1 in M1 : Tτ2

= Jx : τ ⊢ let z ⇐ M1 in M1 : τ2KC

= Jx : τ, z : τ1 ⊢ M2 : τ2KC ◦KT
(JτK ⋊ Jx : τ ⊢ M1 : τ1KC) ◦KT

(η ◦ ∆)

= (x : τ , z : τ1 ⊢ M2 : Tτ2) ◦KT
(τ ⋊ (x : τ ⊢ M1 : Tτ1))

◦KT
(η ◦ (x : τ ⊢ ⟨x, x⟩ : τ))

= (x : τ , z : τ1 ⊢ M2 : Tτ2)
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◦KT
(y : τ × τ ⊢ let z ⇐ M1[x 7→ π2y] in [π1y]T z : τ × τ1)

◦KT
(η ◦ (x : τ ⊢ ⟨x, x⟩ : τ))

= (x : τ , z : τ1 ⊢ M2 : Tτ2)

◦KT
(y : τ × τ ⊢ let z ⇐ M1[x 7→ π2y] in [⟨π1y, z⟩]T : τ × τ1)

◦ (x : τ ⊢ ⟨x, x⟩ : τ)

= (x : τ , z : τ1 ⊢ M2 : Tτ2)

◦KT
(x : τ : τ × τ ⊢ let z ⇐ M1[x 7→ π2⟨x, x⟩]

in [⟨π1⟨x, x⟩, z⟩]T : τ × τ1)

= (x : τ , z : τ1 ⊢ M2 : Tτ2)

◦KT
(x : τ ⊢ let z ⇐ M1 in [⟨x, z⟩]T : τ × τ1)

= x : τ ⊢ let y ⇐ (let z ⇐ M1 in [⟨x, z⟩]T ) in M2[x 7→ π1y, z 7→ π2y] : Tτ2

a= x : τ ⊢ let z ⇐ M1 in (let y ⇐ [⟨x, z⟩]T in M2[x 7→ π1y, z 7→ π2y]) : Tτ2

lβ= x : τ ⊢ let z ⇐ M1 in M2[x 7→ π1⟨x, z⟩, z 7→ π2⟨x, z⟩]
pβ= x : τ ⊢ let z ⇐ M1 in (let y ⇐ [⟨x, z⟩]T in M2[x 7→ π1y, z 7→ π2y]) : Tτ2

lβ= x : τ ⊢ let z ⇐ M1 in M2[x 7→ x, z 7→ z] : Tτ2

= x : τ ⊢ let z ⇐ M1 in M2 : Tτ2

Hence the interpretation indeed synthesises the above translation.



6
Conclusion

This dissertation studied the category-theoretic semantics of simply-typed pro-

gramming languages. It surveyed some of the key results relating to the simply-

typed lambda calculus and the monadic metalanguage and their category-theoretic

semantics. It then formalized the corresponding result relating to the computational

lambda calculus and Freyd-categories. Finally, it used these semantics to give

a semantically-justified translation from the computational lambda calculus to

the monadic metalanguage.

While it has been known that Freyd-categories provide a sound and complete

semantics of the computational lambda calculus, this is the first full description

and proof of the denotational semantics directly in Freyd-categories and the first

derivation of the translation of the computational lambda calculus to the monadic

metalanguage using it.

Directions for future work could include formalizing further translations between
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other pairs of languages based on their semantics, such as a translation between the

fine-grain call-by-value and the computational lambda calculus. Another direction

could be showing that the semantics given indirectly by translating to another

language first, such as in [13], is indeed equivalent to the one directly given in this

dissertation. Additionally, other aspects found in real languages, such as sum types,

or more ambitiously, object-oriented features could be explored.
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Notation
♢ An empty context.

∆ In a cartesian category C, for an object X, a morphism ∆ : X → X given

by ∆ = ⟨idX , idX⟩.
IH= Holds by the inductive hypothesis.
w= Holds by the weakening lemma.
s= Holds by the substitution lemma.
lβ= Holds by letβ.
lη= Holds by letη.
pβ= Holds by prodβ.
pη= Holds by prodη.
fβ= Holds by fnβ.
fη= Holds by fnη.
cp= Holds by comppair.
ca= Holds by compapp.
cpr= Holds by compproj.
a= Holds by assoc.
u= Holds by unit.
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