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Abstract

Participatory budgeting describes a form of election in which citizens
can inform their government about their preferences for how they
feel a public budget should be spent. In this dissertation, we study a
new form of participatory budgeting election in which projects con-
flict with each other over a one-dimensional interval. We provide a
polynomial time algorithm for this scenario that optimises utilitarian
welfare, and show that an implementation of the algorithm is efficient
enough to be useful in practice. Furthermore, we show that generalis-
ing the model to allow each project to have multiple possible locations
in which it could be implemented makes the problem of utilitarian

welfare optimisation NP-hard.

We also study multiwinner voting and participatory budgeting with
partial information, which could be used in the scenario where elicit-
ing the preferences of a whole electorate is infeasible. We define the
notion of approximate representation for forms of justified representa-
tion and provide bounds on the sample size of a population required to
provide approximate representation. Finally, we simulate such a sam-
pling process on a real-world election instance and provide evidence

for the practicality of such a process.
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Chapter 1

Introduction

Participatory budgeting (PB) is a democratic process in which citizens can inform
the government about their preferences for how a public budget should be spent.
PB was first developed in Brazil by the Brazilian Workers Party in the 1980s and
fully implemented in 1989 in the city of Porto Alegre (Shah, 2007), and is now
used in more than 1,500 cities around the world (Ganuza and Baiocchi, 2012).
PB has had many positive impacts on the cities where it has been implemented.
Due to the fact that more citizens are aware of how resources are distributed
during a PB election, PB tends to increase the transparency of the governments
that implement it and reduce corruption (Shah, 2007). However, the benefits of
PB extend beyond just democratic health; studies have shown that increased
implementation of PB is strongly correlated with reductions in infant mortality
in Brazil (Touchton and Wampler, 2020). This is mainly because PB leads to
improvements in infrastructure, particularly health and wastewater infrastruc-
ture, in poorer areas of cities that otherwise would not have received investment
(Gongalves, 2014). Clearly then, PB can be a useful tool in a city government’s

toolbox.



The process in each city differs, but it can generally be broken down into the

following steps (Aziz and Shah, 2021):

1. The city is divided into smaller districts, and the budget for each district is
decided.

2. Residents share and discuss ideas through meetings and forums to come up

with proposals for projects to be completed in their district.

3. The proposals are developed into feasible projects by focus groups and

experts, and estimates of the costs of the projects are given.
4. Eligible citizens vote on the final projects to be implemented.
5. Votes are counted and a final budget allocation is formed.

To achieve each of these steps in a way that ensures that citizens are represented
fairly in the outcome poses interesting, but not necessarily computational, chal-
lenges. However, some of these challenges can be tackled computationally. For ex-
ample, the problem of redistricting, that is, splitting a city into smaller districts
in a way that is fair and not subject to gerrymandering, has been approached
algorithmically from many different perspectives (Magleby and Mosesson, 2018;
Fifield et al., 2020; Cohen-Addad et al., 2018, 2021). In this dissertation, we shall

primarily focus on the computational aspects of the final two steps.

1.1 Contributions

The contributions of this dissertation are as follows:
e PB with project conflicts

— We generalise the standard PB model to allow projects to conflict with

each other on a one-dimensional interval;



— We provide a pseudo-polynomial time algorithm and a polynomial time
algorithm that output election results that maximise utilitarian wel-

fare;

— We implement the algorithms in Python 3 and test the performances

of the algorithms against random and real-world election data;

— We generalise the model further to allow projects to have multiple
possible locations. We prove that the conflict graphs of these prob-
lems have unbounded treewidth, and finally prove that the problem of

utilitarian welfare optimisation in this scenario is NP-hard.
e PB with partial information

— Within the context of MWV, we generalise three common notions of
representation, and provide a general upper bound on the population

sample size required to provide approximate representation;

— Within MWV, we provide tighter upper bounds on the sample sizes
necessary to provide approximate Justified Representation, and ap-

proximately optimal utilitarian welfare;

— Within the context of PB, we provide upper bounds on the necessary
sample sizes to provide Extended and Proportional Justified Repre-

sentation;

— We simulate taking samples of voters on a real-world PB election to
show that the bounds we derive are empirically correct, and to show

that the sampling method could be useful in practice.



1.2 Related work

The theoretical problem of PB has been extensively studied (Aziz and Shah,
2021). Much of the theory of PB was first developed within the context of mul-
tiwinner voting (MWYV) (Faliszewski et al., 2017). The concept of Justified Rep-
resentation and Extended Justified Representation was first developed by Aziz
et al. (2017), with Proportional Justified Representation being developed later
by Fernandez et al. (2017). Other types of fairness properties exist; for example,
Full Justified Representation (Peters et al., 2020) is an even stronger form of
justified representation and, indeed, implies Extended Justified Representation.
Peters et al. (2020) also discuss generalised utility ballots rather than just ap-
proval ballots, while Aziz and Lee (2021) examine fairness properties for ordinal
preference ballots.

PB with general conflicts has also previously been studied. Jain, Sornat and
Talmon (2021) discuss general interactions between projects, where projects can
be substitutes for each other or where projects complement each other so that a
project should only be implemented if the complement is also implemented. Jain,
Sornat and Talmon (2021) show that, in general, the problem of utilitarian wel-
fare maximisation in this context is NP-complete. The authors later discussed
PB where projects are divided into categories that each have their own budget
requirement, in addition to the overall budget requirement (Jain, Sornat, Tal-
mon and Zehavi, 2021). They similarly show N P-completeness of the utilitarian
welfare maximisation problem in this setting.

Voting for candidates with locations associated with them is studied in the
field of facility location. For example, Elkind et al. (2022) investigate fairness
within facility location, and consider cases where two facilities cannot be placed
at the same location. Chan et al. (2021) provide a survey of voting mechanism

design for facility location problems.



Maximising utilitarian welfare in the standard PB context is equivalent to the
0-1 knapsack problem, of which there is abundant literature (Martello and Toth,
1990; Kellerer et al., 2004). Pferschy and Schauer (2009) discuss the knapsack
problem where items can conflict with each other, and provide algorithms for
two special cases of the conflict graph, which we shall examine in more detail in
Section 3.1.1. The specific problem of maximising welfare within standard PB has
been studied before by Fluschnik et al. (2019), where they discuss maximising
utilitarian welfare, egalitarian welfare, and Nash welfare.

Partial information within voting theory has been studied extensively, but
primarily from the perspective of election manipulation given partial information
(Dey et al., 2018; Erdélyi and Reger, 2016). Hazon et al. (2012) studied the
evaluation of election results under partial information in a single-winner election,
and discuss computing the probability of a particular candidate winning given
only partial information. Kalech et al. (2011) also explore practical rules for voting
under partial information, where in this setting, only partial information about
each voter’s preferences is known, but every voter is considered.

The method discussed in Chapter 4 involves random sampling of the popu-
lation. Sampling techniques have been extensively studied (Cochran, 1977; Wu
and Thompson, 2020), and in particular, methods for deriving upper bounds on
the necessary sample size based on the desired statistical power (Henry, 1990)
and standard error (Land and Zheng, 2010) have also been studied . Finally, the
method we construct can be thought of as a form of (£, d) approximation scheme
(Mitzenmacher and Upfal, 2005), albeit in some cases, we obtain a non-polynomial

approximation scheme.



1.3 Outline

e In Chapter 2, we introduce the theoretical foundations of MWV and PB.

e In Chapter 3, we generalise the PB model to allow projects to be placed
along an interval. We shall show that utilitarian welfare optimisation can
be solved in polynomial time in this new context, implement the algorithm
in Python 3, and test the performance of the algorithm against random and
real-world election data. We shall then further generalise the model to the
scenario where projects have multiple possible locations at which they could
be placed. We show that despite restrictions on the number of possible lo-
cations for each project, and the number of other projects overlapping with
any given project location, the conflict graphs of these problems have un-
bounded treewidth. Indeed, we finally show that the problem of utilitarian

welfare optimisation is N/P-hard in this scenario.

e In Chapter 4, we discuss taking a random sample of the population and
polling only the sample voters, instead of assuming that we have full infor-
mation about the whole population. We prove upper bounds on the popu-
lation sample size necessary to provide approximate representation within
MWYV and PB contexts. We shall also simulate the sampling method on a
real-world PB election to show that the bounds hold for a real election, and

to show that the sampling method could prove useful in practice.

e In Chapter 5, we shall discuss the contributions made and identify further

open problems.



Chapter 2

Preliminaries

We shall start by establishing the theoretical foundations of PB.

2.1 Voting models

Much of the theoretical development of PB stems from the study of MWV, so
we shall first define MWV and explore some of the properties of MWV before

turning to PB.

Definition 2.1. (MWYV election)
Let

V ={1,...,n} a set of voters;

C ={zy,...,z,,} aset of candidates or projects;

k € N a total number of candidates to elect;

e A:V — P(C) an approval function that maps voters to the set of candi-

dates they approve.

Then E = (V,C,k, A) is an MWV election. The primary task associated with
an MWV election is to find a set W C C of projects that are selected to be

completed with |W| = k. We say that W is valid if |W| = k.



An MWYV election occurs, for example, in committee elections, where we have
a fixed number k of committee members that we wish to vote in. In the above
model, and throughout this dissertation, we shall focus on the case where voters’
preferences are given through an approval ballot. There are other ways in which
voters can express their preferences; for example, ordinal ballots allow voters to
specify ranked preferences rather than just providing two levels of preference.
Similarly, utility ballots allow each voter to indicate exactly how much personal
utility they would gain from each candidate. The extra information about voters’
true preferences would allow us to compute election results that match the pop-
ulation’s preferences more closely in general; however, the extra information also
adds extra complexity to the model and to the fairness properties that we shall
define below. Therefore, we shall use approval ballots throughout the dissertation,
but it is worth noting that results such as Theorem 3.14 could likely be adapted
to the case of full utility ballots.

We can extend the MWV election model to allow the candidates to have

different costs associated with them, which gives us the PB election model.

Definition 2.2. (PB election)
Let

o V=1{1,...,n} aset of voters;

C ={x1,...,2,} aset of candidates or projects;

cost : C'— R, a cost function that takes each project to a cost value;

b € R, a total budget available for implementing projects;

AV — P(C) an approval function that maps voters to the set of candi-

dates that they approve.



Then E = (V,C,cost, b, A) is a PB election. The primary task associated with a
PB election is to find a set W C (' of projects that are selected to be completed,

with >y cost(p) < b. We again say that W is valid if )y cost(p) < b.

We can see that every MWV election is actually a special case of a PB election;

if we set b =k and cost(p) =1 for all p € C.

Remark 2.3. We shall slightly abuse the notation and define A(G) = (), A(v)
for a group of voters G C V. A(G) is the set of candidates that every voter in
G approves. Furthermore, for T C C, we define cost(T)) = >, cost(p) so that

cost(T") is the total cost of implementing all projects in T

Definition 2.4. (Valid set)

For an MWV or a PB election E, let V(E) = {W C C : W is valid}. Explicitly,
for an MWV election, we have V(E) = {W C C : |IW| = k} and for a PB election,
we have V(E) = {W C C': cost(W) < b}.

Now that we have defined the elections, we shall now discuss some desirable

properties for W (the result of an election) and how to achieve those properties

for W.

2.2 Fairness properties

There are potentially up to 2™ different possible choices for W in PB elections,
and (’ZL) choices in MWV elections, but typically we wish to select W in a way
that ensures some fairness property holds of W. To select a winning set, we will

use an election algorithm.

Definition 2.5. (Election algorithm)
Let A be an algorithm that takes an election over a set of candidates C' as input,
and produces a subset of C' as output. Let £ be an election over candidates C'.

Then we say W C C'is the result, or the winning set, of election E using algorithm

9



A if the output of A on the input £ is W, and W € V(E), so W is a valid result.
We shall use the notation A(F) = W.

Definition 2.6. (Fairness properties)

R is a fairness property if, for each election F, there exists a set R(E) C V(E).
Let E be an election and W the result of election E using algorithm A, so
W = A(F). We say that W satisfies the fairness property R if W € R(E). We

say A guarantees R if for every election F, A(E) € R(E).

Nothing in the above two definitions guarantees any intuitive sense of fairness
for W. For example, for PB elections, we could define R(E) = {0}, and A as
the algorithm that outputs the constant empty set. The empty set is always a
valid project set since it has cost 0, and A guarantees R. Of course, we would
like to define fairness properties that encapsulate intuitive ideas of fairness. We

shall now define some common fairness properties that we will use later.

Definition 2.7. (Utilitarian welfare optimisation)
The utilitarian welfare optimisation fairness property is defined by
R(E) = argmaxy, cy(p) Z |A(v) N W].
veV
In words, W satisfies utilitarian welfare optimisation if it achieves the maximum
possible sum of the number of approved candidates in the winning set per voter,

compared to all other valid winning sets.

For MWV utilitarian welfare can be achieved in polynomial time: sort the
projects by number of approvals and select the best k projects. In the standard
PB model, utilitarian welfare optimisation is actually a special case of the 0-1

knapsack problem.

10



Definition 2.8. (0-1 knapsack problem)

Suppose that we are given a set of r items, where item ¢ has weight w; > 0 and
value v;, and a weight limit /capacity w. The knapsack problem is defined as the
problem of assigning to each variable z; a value in {0,1} such that >, zuv; is

maximised, subject to Y '_, z;w; < w.

If we define the items to be the candidates, the weight of each item to be the
cost of the candidate, and the value of the item to be the number of people that
approve of the candidate, then we can see that utilitarian welfare optimisation
is a special case of the knapsack problem. The decision version of the knapsack
problem (deciding whether ), z;u; > t is achievable or not) is weakly NP-
complete (Martello and Toth, 1990). However, we can construct a polynomial time
algorithm to solve the problem in the PB election scenario because the utilities
v; are polynomially bounded by the input, as we shall show in Section 2.3.

We can define other fairness properties. Let us first focus on fairness prop-
erties specific to MWV, and then generalise them to PB. The following fairness

properties will be defined in terms of cohesive groups of voters.

Definition 2.9. (MWYV cohesive group)
We say a group of voters G C V is g-cohesive (with respect to election E) for

some 1 < ¢ < kif |G| > 4% and |A(G)| > ¢. Let
qn
¢, = (@ V10> ™ and |AG) = )

denote the set of g-cohesive groups for election F, if £ is unambiguous in the

context, or we shall use C,(E) if necessary.

A g-cohesive group is a set of voters who all approve of some set of ¢ candidates
and who together make up at least { proportion of V. Informally, this group G
represents a set of voters who, if they were “sufficiently underrepresented” by a

winning set, could make a convincing case that they deserve to be represented by

11



at least ¢ members of the winning set, and could propose a set of ¢ candidates

on which they would all agree.

Definition 2.10. (MWYV Justified Representation (MWV-JR))
MWV-JR (Aziz et al., 2017) is a fairness property defined by

MWV-JR(E) = {W € V(E) : VG € C;, 30 € G, |A(v) N W| > 1}.

If W satisfies Justified Representation, then there is no group of voters that all
agree on a single candidate and is large enough to be represented by a candidate,
but where no voter in the group currently has any candidate they approve in the

winning set.
Definition 2.11. (MWYV Proportional Justified Representation (MWV-PJR))
MWV-PJR (Fernandez et al., 2017) is a fairness property defined by

MWV-PJR(E) = {W € V(E):¥1< g < kG eCp W | Aw) > q} .
veG

Definition 2.12. (MWYV Extended Justified Representation (MWV-EJR))
MWV-EJR (Aziz et al., 2017) is a fairness property defined by

MWV-EJR(E) = {W € V(E) : V1 < ¢ < k,VG € C,, v € G|W N A(v)| > q}.

MWV-EJR guarantees that there is no cohesive group of voters of size > q7,
such that every voter has fewer than ¢ candidates in the winning set that they
approve of. Intuitively, every voter in this group isn’t as represented as they should
be given that they belong to a large enough group that all agree on ¢ candidates.
Similarly, MWV-PJR guarantees that there is no cohesive group such that there
are fewer than ¢ members of the winning set that any of the voters in the group
approve. We find that if a winning set satisfies MWV-EJR then it also satisfies
MWV-PJR, and if it satisfies MWV-PJR then it satisties MWV-JR. To see this,
first consider that if we had a g-cohesive group such that

W AW <aq
ved

12



then there certainly cannot exist a voter in G such that |WNA(v)| > ¢. Similarly,
if we had a 1-cohesive group with |A(v) N W| = 0 for every voter, then

wnlJAw)|=0<1.
veEG

To generalise these notions to the PB setting, we first need to change the
definition of a cohesive group to take into account the cost of the candidates. The

new definitions of a cohesive group and PB-EJR were formalised by Peters et al.

(2020).

Definition 2.13. (PB Cohesive group)
Define a group G C V of voters as T-cohesive for T C C' (with respect to election

E) if |G| = Zcost(T), and T' C A(G). Let
n
Cr = {G CV: |G| > gcost(T) and T C A(G)} :
similar to before.

We can then use this definition of a cohesive group in our definitions.

Definition 2.14. (PB Extended Justified Representation (PB-EJR))

PB-EJR is a fairness property defined by
PB-EJR(E) ={W € V(E) : VT C C,VG € Cr,Fv € G,|W N A(v)| > |T}.

For PB-EJR, we use the cost of the projects that the voters approve of to define
the minimum size of the cohesive group, rather than just the number of projects.
As an example, if the members of a group agree on 3 projects that together would
use 100% of the budget, then this group needs to constitute a larger proportion of
the population to justify implementing the projects compared to 3 projects that
together use 5% of the budget.

To call both MWV-EJR and PB-EJR by a similar name is justified: on MWV

elections, these properties are equivalent.

13



Lemma 2.15. In MWV elections, MWV-EJR and PB-EJR are equivalent.

Proof. Let E = (V,C,cost, b, A) be a PB election that is also a MWV election, so
b = k and cost(p) = 1 for every candidate p € C. First, suppose that W satisfies
PB-EJR. Let G be an MWV g-cohesive group. Then |G| > £* and |A(G)| > q.
Let T' C A(G) with |T'| = g. Then |G| > 4* = 23 . cost(p) so G is a PB T-
cohesive group. Therefore, there exists a voter v € G with |A(v) NW| > |T| = ¢,
so G satisfies MWV-EJR.

Now suppose that W satisfies MWV-EJR. Let G be a PB T-cohesive group.
Let ¢ = |T|. Then |G| > 3> cpcost(p) = 3|T'| = &*. Also, since T' C A(G), we
have that |A(G)| > ¢, and so G is an MWV g¢-cohesive group. Since G satisfies
MWV-EJR, there exists v € G such that |[A(v) "N W| > g = |T|, so G satisfies
PB-EJR. [ |

PB-PJR has been defined similarly before by Los et al. (2022).

Definition 2.16. (PB Proportional Justified Representation (PB-PJR))
PB-PJR is a fairness property defined by

PB-PJR(E) = {W € V(E) : VT C C,VG € Cr, | | ] A(v) nW| > |T]}.

veG

Similarly to the MWV case, we also find that MWV-PJR is equivalent to
PB-PJR on MWV elections (Los et al., 2022), and we see that PB-EJR implies
PB-PJR; if there were some T-cohesive group with ||J,co A(v) N W| < |T'|, then
there cannot exist a voter v with |A(v) N W| > |T.

A definition of PB-JR is harder to construct. This is because in the definition
of these fairness properties for the PB setting, we use cohesive groups for subsets
rather than for values of q. For MWV elections, each candidate can be considered
to be a uniform unit of the total budget of k candidates. We then consider only
cohesive groups of size n x %, so groups that make up at least a whole unit pro-

portion of the population need representation, where here, representation means

14



that at least one voter of the group must be satisfied with the winning set by at
least by candidate. In the PB setting however, the concept of a unit of the budget
is less clear. Aziz et al. (2018) consider a unit of the budget as min,ec cost(p), so
a group that agrees on a candidate must have a size of at least nminp+ccosup) to

be guaranteed representation. They provide the following definition, which they

call StrongBJR-L.

Definition 2.17. (PB Justified Representation (PB-JR))

PB-JR is a fairness property defined by

PB-JR(E) = {W e V(E):VGCV,

nmin,ec cost(p)
b

K|A(G)!21and |G| > ) = aveG,A(v)mwyé@H.

However, Aziz et al. (2018) also show that under this definition, the existence
of a set of projects that satisfies PB-JR is not guaranteed. Therefore, we shall
focus on PB-EJR and PB-PJR in this dissertation, since the existence of a winning
set that satisfies them is guaranteed to exist due to the fact that the Method of
Equal Shares (described in Section 2.3) always finds a winning set that satisfies

PB-EJR.

2.3 Election algorithms

Finally, we will look at some examples of election algorithms. For utilitarian
welfare optimisation, we have a pseudo-polynomial time algorithm that can solve
the 0-1 knapsack problem. Recall that as input, we are given a set of r items, where
the item ¢ has weight w; > 0 and value v;, and a weight limit w. The dynamic
programming algorithm constructs a table indexed by index ¢, for 0 < ¢ < r and
by weight y, for 0 < y < w. The entry in the table at position (i,y) will store the

best possible value achievable from the first ¢ of r items, and with a weight limit
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of y (instead of w). We can iteratively build the table T'. First, we place 0 in the
table entries with ¢ = 0 or y = 0, since we can achieve no value if we use none
of the items or if we have a weight limit of 0. Then, for each value 1 <7 < r in
increasing order and for each 1 < y < w, we can construct the table entry
T(i,y) = {T[i ~ Lyl . fwi>y
max(T[i — 1,y],T[i — 1,y —w;] +v;) otherwise

With a filled table, we can then work backwards from the entry (r,w) = (7,y) to
reconstruct the winning set; if 7' — 1,y] < T[i — 1,y — w;] + v;, then we know
that item ¢ is included, so we can then update the remaining weight limit to
y = y —w;, and otherwise we do not include item . We reduce ¢ by 1, and repeat.
We continue until we reach ¢ = 0. The algorithm runs in pseudo-polynomial time,
since it runs in O(rw), where r is polynomial in the size of the input, but w could
be exponential in the size of the input.

Instead, we can index T' by 0 < ¢ < r and by utility 0 < y < >7_ v;, and
store the minimum weight capacity required to achieve a utility of at least y. We

can similarly compute this table:
T[Zv y] = IIllIl(T[’l - 17 y]7 w; + T[Z - 17 maX(y — Vs, 0)])7

and we start with 70,y] = oo,T[i,0] = 0. This table can be computed in
O(rY_;_,v;), which is again pseudo-polynomial time if we are given just the
v;’s as input. We can also compute the winning set in polynomial time, similarly
to before. However, when applied to PB, we are provided with each voter’s full
preferences as input, and in this case v; = [{v € V : z; € A(v)}|. So, here we have
that Y7 _,v; < nm which is polynomial in the size of the input. For more de-
tails on solving knapsack problems using dynamic programming, see the textbook
(Kellerer et al., 2004).

Let us now look at algorithms for achieving JR, PJR, and EJR. Two of the

earliest algorithms designed to provide representation for MWV are Proportional
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Approval Voting (PAV) and Phragmén’s method. PAV is simple; we iterate over

all possible valid sets W and compute its score

ORI
sy =>" Y -
veV =1

We then select the winning set with the highest score. PAV satisfies MWV-EJR
(Aziz et al., 2017), but runs in potentially exponential time, since there are (ZL)
valid sets W. PAV can be generalised to the PB setting by instead considering
all valid sets W for the PB election. However, generalising in this way means
that PAV no longer satisfies PB-EJR, or even PB-PJR (Los et al., 2022), and
still runs in potentially exponential time. Phragmén’s method on the other hand
satisfies MWV-PJR and PB-PJR (but not MWV-EJR) (Los et al., 2022), and
can be computed in polynomial time. Phragmén’s method can be thought of as
a continuous process where each voter is provided with a fixed rate income of
money over time. As soon as some group of voters who all approve of a project
p which is not already in W can afford the cost of p, p is added to W and the
voters who approve p get their balance reset to 0. This continues until a project
is selected that would make the total cost of W exceed the budget.

The Method of Equal Shares (on approval ballots), otherwise known as Rule
X, guarantees PB-EJR, as well as another fairness property called priceability
(Peters et al., 2020). The method works as follows (Peters and Skowron, 2019):
start with an empty winning set W and allocate $1 to each voter. We want each
voter to “pay” for the projects they approve of and that are implemented. Let
$P,(p) be the amount that the voter v pays for project p, initialised at 0. Let
$P(W) = > ew $FPi(p) be the amount that the voter v already pays for the
projects in W. For r > 0, say that a project p is r-affordable if

Z min($r, $1 — $P2,(W)) > Scost(p).

vipeA(v)
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The sum > ymin($r, $1 — $P,(W)) is the total amount of money that the

v:peA(v
voters of project p would pay for a given r, where we need to take the minimum
of r with 1 — P,(W) to account for the case where voter v does not have $r
left, and so instead they will simply pay all the money they have left, which
is $1 — $P,(W). If no project is r-affordable for any r, terminate and output
W, otherwise select the project p that is r-affordable for the lowest r to be put
into W, and set $P,(p) = min($r, $1 — $P,(WW)) for all voters v with p € A(v).
This algorithm runs in polynomial time, and since it guarantees PB-EJR, it also
guarantees PB-PJR and MWV-(E/P/)JR. Therefore, we can use Rule X as the

algorithm A4 in all the main theorems in Chapter 4. We shall now move on to use

these definitions and concepts in the following chapters.
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Chapter 3

Participatory budgeting with
conflicts

First, we shall consider the problem of PB when we have conflicts between
projects. By conflicts between projects, we mean that some subsets of projects
are unable to be implemented together in the same winning set. Standard PB can
be thought of as already having some project conflicts; any subset of the projects
whose total cost is greater than the budget cannot be implemented in a winning
project set. Project conflicts arise naturally in different ways. Multiple projects
may carry out the same general function, and as such, at most one project of
each function may need completing. For example, we could have multiple differ-
ent plans to build a park in the city, but it has been decided that at most one
park should be built (perhaps the city only has the ongoing budget to maintain
a single park). In this case, the park projects would conflict with each other.
Conflicts between projects could also occur due to implementation workload.
If all the projects that won in the election were a single governmental depart-
ment’s responsibility, i.e. all projects were to be implemented by the Parks and
Recreation department, this may be too much extra workload for the department.
In this way, we may define the Parks and Recreation projects to be conflicting in
such a way that we set a maximum limit on the number of those projects that

can be implemented.
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In this dissertation, however, I shall focus on one-dimensional location con-
flicts. For the moment, we make some assumptions about the situation we wish

to model:
1. Once implemented, a project occupies a certain space;
2. The space that a project occupies is part of a one-dimensional interval;

3. The space a project occupies on the interval is itself an interval, so every

project is contiguous on the larger interval;

4. Every project proposal proposes a single specific location, rather than a set

or range of possible locations in which it can be implemented in;
5. No two projects can occupy the same point.

Assumption 1, as we shall see in Section 3.1.3.1, can be removed to allow us
to also consider projects without location, and we study Assumption 4 in more
detail in Section 3.2 to show that removing this assumption makes the problem
of utilitarian welfare optimisation intractable.

To illustrate this idea, see Figure 3.1. Here, we can see a road at the bottom
and some proposed public works. From left to right, we have: new public toilets
(WC), anew shopping centre, a new DIY workshop, a new bus shelter, a new park,
a new town square with a fountain, and a new multi-storey car park. The specific
location along the road matters; we can see that the proposed DIY workshop
would take up the same space along the road as the park, the shopping centre,
and the bus shelter. If we implement the DIY workshop, we can then no longer

implement the park, the shopping centre, or the bus shelter.
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Figure 3.1: An example of how the new participatory budgeting model could be
used to plan the public amenities along a road.

3.1 Conflicts on the one-dimensional interval

Let us start by modifying the standard PB model defined in Definition 2.2.

Definition 3.1. (PB with interval conflicts (PBIC) election)

Define Z :={[s,e) : 0 < s < e < 1}. A PB with interval conflicts (PBIC) election
E = (V,C,cost, b, A, 0) is a standard PB election that additionally has a function
¢: C — Z. We interpret {(z;) = [s, e) as meaning that project x; would occupy
[s,€) on the interval. In addition to requiring that valid winning sets be within
budget, we require that for W to be valid, we need that for any p;, p, € W, with

p1 # po, it holds that £(p;) N l(p2) = 0. We therefore define
V(E)={W C C :cost(W) <band Vpy,ps € W,p1 # ps = {(p1) Nl(p2) = 0}.

21



Remark 3.2. We say that z; occupies [s, €) instead of [s, e] so that we can place
projects right next to each other, which makes examples easier to demonstrate,
but practically does not make much difference to the computations, since other-
wise we could subtract a small € “buffer” to the ends of each project to ensure
they do not overlap. We say that s is the start of the interval and e is the end of

the interval.

Definition 3.3. (Conflict graph of a PBIC election)

Let E be a PBIC election with candidate set C and location function ¢. Let
F = {(zi,z;) CC?:z; # x; and l(z;) N l(x;) # 0}
Then we define the conflict graph of E to be the graph G = (C, F).

We shall turn our attention to fairness properties for this new model. First,
fairness properties other than welfare make less sense in this new context. Even
MWV-JR, a relatively weak form of fairness, may not always be satisfiable. In
contrast, in a standard MWV election, a winning set W that satisfies MWV-JR

always exists (Aziz et al., 2017). Consider the following election:

o V={I1,...,n}

C - {xlax% o >x2n};

cost(xz) =1 for all x € C}

o b=2n;

A() ={zs, xpyi} for i € V;

l(x)=10,1) for all z € C.
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This is an MWV election, since the cost of each candidate is the same. Only
one of the 2n candidates is electable since they overlap on the interval; however,
{v} forms a 1-cohesive group for x, and z,, for every v € V. This is because for
both p = x, and p = x,,,, if a 1-cohesive group agrees on p then the minimum
group size is - = %, so we only need a single voter to approve of p. So, if a
winning set satisfies JR, we would need |A(v) N W| = {zy, Zpnio} N W] > 0 for
all v, and so we would need to implement at least n different projects, which is
not possible.

In fact, for any fairness property R defined for PB elections, we can prove

that generalising R to PBIC elections does not make it easier to find winning

sets that satisfy R.

Theorem 3.4. Let R be a fairness property defined for PB elections. Let X be
the problem of finding a winning set W for a PB election E = (V,C, cost, b, A)
that satisfies R(E) if it exists and let Y be the problem of finding a winning set

W' for a PBIC election E' = (V',C", cost', b/, A', {) that satisfies
R(E") =R((V',C", cost' ,b', A")) N V(E")

if it exists. Then problem Y 1is at least as hard as problem X under Karp reduc-

tions.

Proof. Suppose we are given a PB election £ = (V,C,cost, b, A). Label each of
the m members of C' by x; for 0 < i < m. Let {(x;) = [+, 2L). This gives us a
PBIC instance £’ = (V, C, cost, b, A, £). No project in C' overlaps with any other
project, so since V(F) = V(E'), we have that R(E) = R(E’) and so problem Y

is at least as hard as problem X. |

Elkind et al. (2022) consider a fairness property called Maximal Justified
Representation (MJR), specifically designed for voting in MWV elections under

conflicts.
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Definition 3.5. (Maximal Justified Representation (MWV-MJR))
Let £ = (V,C, cost, b, A, {) be an election. Let

N ={GCV: |G =7 NAG) #0)

be the set of 1-cohesive groups of E. Let the group-representing set of candidate
z; be N ={G e N :2; € U, A(v)}. Then the fairness property is defined by

MWV-MRJ(E) =4 W e V(E) :YW' e V(E), | J N ¢ | N p-

T, EW z €W’

Elkind et al. (2022) show that under no conflicts, MWV-MJR is equivalent
to MWV-JR, and that with conflicts, an MWV-MJR winning set always exists.
However, in general, it is NP-complete to find such a set, and specialising to
conflicts on the interval does not immediately appear to make the problem easier.

We now turn our attention to welfare optimisation. We shall first show that
egalitarian welfare optimisation is at least as hard as finding a minimum set cover,

even for just MWV elections.

Definition 3.6. (Egalitarian welfare optimisation)

The egalitarian welfare optimisation fairness property is defined as
R(E) = argmaxy, ¢y g mi‘gl |A(v) N W|.
veE

In words, W satisfies egalitarian welfare optimisation if it achieves the maximum

possible minimum utility over all voters, compared to all other valid winning sets.

Definition 3.7. (Minimum set cover)

Let U be a finite set of items, C C P(U) a collection of subsets of U, and
j < |C|. The minimum set cover problem (Garey and Johnson, 1991) is defined
as deciding whether there exists some C' C C with |C’| < j such that for every

element x € U, there exists some ¢ € C’ such that = € c.
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The minimum set cover problem is known to be N'P-complete (Garey and
Johnson, 1991). We shall now show that the problem of deciding if an egalitarian
welfare of at least 1 is achievable is at least as hard as deciding the minimum set

cover problem.

Theorem 3.8. The problem of deciding whether there exists a winning set W for
MWV election E such that the egalitarian welfare achieved by W is at least 1 s

at least as hard as the minimum set cover problem under Karp reductions.

Proof. Let R be the egalitarian welfare optimisation fairness property. Let X be
a collection of subsets of Y, and 7 < |X|. We shall construct a MWV election £
such that X contains a cover for Y of size j or less if and only if for W € R(FE),
mingey |AW)NW| > 1. Let V=Y,C = X,k = j,A(v) = {c € C :v € ¢} and
E=(V,C k,A). Let W € R(E). If minyey |[A(v) N W] > 1, then |A(v)NW| > 1
for all v € V. We have |W| = k = j and for every member v of V =Y there is
some member p of W such that p € A(v) and so v € p, so X contains a cover for
Y of size j or less.

Now suppose that X contains a cover for Y of size j or less. There exists a
subset X’ C X with |X’| < j such that every element of Y belongs to some

member of X'. Let T' 2 X’ be some set with |7'| = j. Then

min [A(v) NT| > min |[A(v) N X'| =min|[{c€ X' :v € c}| > 1.
veV veV veY

Therefore maxrey gy mingey [A(v) NT| > 1 and so for W € R(E),

min |[A(v) N W| > 1.

veV

Therefore, if we had a polynomial time algorithm that could find a winning
set W that achieves egalitarian welfare optimisation for an election E, we could

decide if E has egalitarian welfare of at least 1 and so hence this algorithm could
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be used to decide the minimum set cover problem. Therefore, unless P = NP,

no polynomial time algorithm exists.

3.1.1 Utilitarian welfare optimisation

We shall now look at utilitarian welfare optimisation. Utilitarian welfare opti-
misation with conflicts between pairs of projects is equivalent to knapsack with

conflicts:

Definition 3.9. (Knapsack with conflicts)

Suppose that we are given the following;:

e aset I ={yi,...,y.} of r items, where item y; has weight w; > 0 and value

Vs
e a weight limit w;
e a graph G = (I, E) called the conflict graph.

The knapsack with conflicts problem is defined as the problem of assigning each
variable z; a value in {0, 1} such that ", z;v; is maximised, subject to z; + z; < 1
for each {y;,y;} € E and to >, z;w; < w (in other words, for two items that

have an edge between them, at most one of them is in the knapsack).

The equivalence can be seen for an election F by setting I = C,w = b, and
G as the conflict graph of E. The knapsack with conflicts problem has been
studied before by Pferschy and Schauer (2009). Knapsack with conflicts clearly
generalises the standard 0-1 knapsack, just by taking the edge set E = (), and so
is weakly NP-hard. We also see that we can reduce the independent set problem
to knapsack with conflicts: for a graph (V) F), let I =V, with w; = 0 and v; = 1,
and let w = 0. Then by solving this knapsack with conflicts problem, we can find
the maximum independent set. So, this shows that the knapsack with conflicts

problem is strongly A/ P-hard.
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Pferschy and Schauer (2009) provide two pseudo-polynomial time algorithms
for special cases of the conflict graph, one for the case where the conflict graph is
chordal, and one where the conflict graph has bounded treewidth. First, we shall
define these terms and then show that the chordal graph algorithm would work

in the PBIC setting.

Definition 3.10. (Chordal graph)
A graph G = (V| E) is chordal if every induced cycle G[S] (an induced subgraph

that is a simple cycle) has exactly 3 vertices.

Definition 3.11. (Treewidth)
A tree decomposition of a graph G = (V, E) isatree T = (X, E’) where X C P(V)

is such that
L. Ugex S =V, so every vertex in V' appears in some S € X;

2. For any edge (a,b) € E there exists a vertex S of T such that both a and
b are in S, so for every edge there is some vertex S € X that captures the

edge relation;

3. If a vertex x € V is in both S and S’ for S, S’ vertices of the tree, then x

is in every vertex of the tree T" that lies on the (unique) path from S to S’

The width of the tree decomposition is defined as w(7) = maxgex |S| — 1. Let
7(G) be the set of all tree decompositions of G. The treewidth of G is defined as

minge.c) w(T).

The conflict graphs of PBIC problems are exactly interval graphs, and we can

show that interval graphs are chordal.
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New interval

Figure 3.2: An illustration of the positioning of u, x, v, and the new interval.

Definition 3.12. (Interval graph)

Let G = (V, F) be a graph. Then G is an interval graph if there exists a set
S ={S;: 5, is an interval on the real line and 1 <i < |V}

and a bijection f : V — S such that (a,b) € E < f(a)N f(b) # 0. In words,
it is a graph with vertices that can be interpreted as intervals and edges between

intervals that overlap.

Lemma 3.13. Interval graphs are chordal.

Proof. Suppose that there exists a t-cycle subgraph with no chord for ¢ > 3 in
an interval graph. Let x be some vertex of the cycle, and let u,v be its two
neighbours. Then v and v do not have an edge between them, so on the interval
they do not overlap. Without loss of generality, say that the end of the interval u
is less than the start of the interval v, so u comes strictly before v on the interval.
Then z overlaps both of them, so we must have that the start of x is before the
end of u and the end of z is after the start of v. See Figure 3.2 for an illustration.

Consider the other t — 3 vertices of the cycle. If we contract all the edges
between these vertices, we get a 4-cycle. Contracting the edges is equivalent to
taking the union of the intervals together into one single interval, with the start

being the leftmost start of all the intervals and the end being the rightmost end
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of all the intervals. This new large interval conflicts with both v and v, so we
also see that its start is before the end of u and the end of the new interval is
after the start of v. But then we necessarily see that the new large interval will
overlap with x between the end of u and the start of v. Therefore, there exists an
edge between the new contracted vertex and x. But then that means that there
existed an edge between = and one of the ¢ — 3 contracted vertices which are not

neighbours of z, so there exists a chord in this cycle. |

The algorithm for chordal graphs presented by Pferschy and Schauer (2009)
runs in O ((n + m)P?) where the authors use n as the number of items, m as
the number of edges in the conflict graph, and P as the sum of the values of the
items. In our case, we have m items, at most m? edges, and P < nm, so the
algorithm would run in O ((m + m?)(nm)?) = O(n?m?). This runs in polynomial
time with respect to our input, since we assume that we are given the ballot of
each voter individually as input.

However, we can achieve optimal utilitarian welfare in O(nm?) as we shall
see. First, we will discuss a pseudo-polynomial time algorithm, and then optimise

it to achieve the polynomial time algorithm.

Theorem 3.14. There exists a pseudo-polynomial time algorithm that guarantees

optimal utilitarian welfare.

Proof. See Algorithm 1 for the pseudocode of the algorithm. The algorithm op-
erates similarly to the standard pseudo-polynomial time algorithm for knapsack
described in Section 2.3. We create a dynamic programming table T" where in
T'[7]ly] we shall store the maximum utility that we can achieve using the first j
projects, where we order the projects by the rightmost point of the interval of
each project, with a maximum cost limit of y. The main change from the standard
knapsack algorithm is how we generate T[j][y] from previously generated table

entries. Note the step “Find preceding non-conflicting index ¢ of j”. Here, we find
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the largest index t of P such that the end of P[t]’ is before the start of P[j]’. We
let t = 0 if there is no preceding index. To find the largest index t of the project
that precedes 7 without conflicting with it, we can compute these values for each
j at the beginning of the algorithm and store them in a map, so when we need to
find ¢ in the main body of the algorithm, we can find the value in a map in O(1).

Now, we show that the algorithm is correct. We proceed by induction. Clearly,
the maximum utility achievable from the first 0 projects is 0; the only possible
achievable set of projects is the empty set, regardless of the weight limit. Now,
suppose that for all 0 < i < j and 0 < z < y, we have that T'[i|[z] is the maximum
utility that we can achieve using the first ¢ projects with a maximum cost limit of
x. We wish to compute T'[j][y]. Consider an optimal set of projects that achieve
the maximum possible utility using the first j projects with a maximum cost limit
of y.

Either this set contains P[j] or it does not. If not, then this optimal set is
the same as the optimal set for projects up to j — 1 with the same weight limit
of w, so in this scenario we would have T'[j][y] = T[j — 1][y] by our inductive
hypothesis with i = j — 1,2 = y. Note that if the cost of P[j] is greater than the
weight limit, we know that the optimal set cannot include P[j]. Now, consider
the case where the set does contain P[j]. Let ¢ be the largest index of P such that
the end position of P[t] is before the start of P[j], and 0 if it doesn’t exist. Since
P[t + 1]’s end is after P[j]’s start, we have that every P[i]’s end is after P[j]’s
start for t+1 <14 < j—1, since P is ordered by end position. Also, since P[j] has
the rightmost end point of all projects up to j, P[i]’s end is between P[j]’s start
and end for ¢t +1 < ¢ < j — 1. Therefore, we know that all of the projects from
t+ 1 to j — 1 overlap with P[j], and none of the projects up to t overlap with
PJj]. Therefore, in this case, we know that the optimal project set is P[j] union
with the optimal set for the first ¢ projects, but with cost limit y — cost(P[j]),

since we have used some of the capacity y by including P[j] in the set. Therefore,
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T[jlly] = T[t]ly — cost(Pli])] + v[P[j]] where v[P[j]] is the utility gained from
implementing P[j]. Now, if we do not know whether P[j] should be included in

the optimal set for j,y, we can just take the maximum of the two cases, and so

Tljlly) = max(T[j — 1[yl, T[t]ly — cost(Pj])] + v[P[]]

Once we have computed the table values for the maximum achievable utility,
we can recover the corresponding set using a similar argument. From table entry
T[j]ly], if we have that T[j — 1][y] < T[t][y — cost(P[j])] +v[P]j]], then clearly we
are better to add project P[j] to the optimal set for the projects up to project t
using the weight limit y — cost(P][j]), which we can generate inductively, similar
to above. See Algorithm 1 for the pseudocode of this section of the algorithm.

Finally, the runtime of the algorithm is pseudo-polynomial. It takes O(nm)
to compute v, O(mlogm) to compute P, and O(b) to setup the table. The main
loop then takes O(m(log(m) + b)). Finally, computing the winning set takes

O(mlog(m)). Overall then, the algorithm runs in
O(m(n + log(m) + b)).

n and m are polynomial in the size of the input, since we will assume that we are
given A as a table of voters to ballots, however, b is not polynomial in the size of

the input but is polynomial in the numeric value of the input. |
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input : F = (V, A, C,cost, b, (), a PBIC election.
T < an (m+1) x (b+ 1) array, initialised with null values in each

position, O-indexed;
for a € V do

for z € A(a) do
| vfa] = vl + 1,
end

end
P « C sorted by rightmost location on interval (1-indexed);
for y=0to b do

| Tloy) < o:
end
for j=1 to m do
Find preceding non-conflicting index ¢ of j;
for y=0 to b do
if cost(P[j]) > y then

| Tl 71 - 1l
end
else

| dT[J'] [y] = max(T'[j — 1][y], T[t][y — cost(P[5])] + v[P[f]];
en

end

end

X < 0

J=my

y < b;

while j > 0 do

Find preceding non-conflicting index ¢ of j;

if cost(P[j]) <y and T[j —1]ly] < TTt)ly — cost(P[j])] + v[P[j]] then
X < X U{P[jl};
J 1
y <y — cost(P[j]);

end

else

| i1
end

end

output: X
Algorithm 1: Maximising utilitarian welfare in a PBIC setting in pseudo-

polynomial time.
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We can optimise Algorithm 1 to be fully polynomial. Rather than indexing
the dynamic programming table by weight, we can index it by utility and store
the minimum weight limit required to achieve that utility. We can also optimise
the implementation of the algorithm by generating table entries “on demand”
rather than generating the entire table. We can do this by keeping a stack of
table entries that we need to generate to compute the final answer. When we pop
a table entry x from the stack, we check that the prerequisite table entries have
already been computed. If not, we put = back on the stack and additionally add

the uncomputed prerequisite entries on top of x on the stack as well.

Theorem 3.15. There exists a polynomial time algorithm that solves the PBIC

problem optimally with respect to utilitarian welfare.

Proof. See Algorithm 2 for the pseudocode. The key points in the proof of cor-
rectness follow in a similar fashion to the proof of correctness of the pseudo-
polynomial time algorithm. We find the maximum utility in the m’th row that
has a minimum required weight limit < b by means of a binary search, where we
generate the value in the table on demand, and then compare it with the budget
to choose if we should continue searching for a lesser or greater achieved utility
value. The use of a binary search works here because the table values will be
sorted. If u < v, the weight limit required to achieve a utility of u will be at most
the weight limit w required to achieve a utility of v.

We then construct the corresponding project set similar to before; when we
decide if project j should be in the set, we compare the weight limits required to
achieve a utility of u from the first j projects where the project set includes and
excludes project j. Since both options achieve a utility of u, we should choose the
option of least weight. Since we choose the option of least weight at each stage,

we select the set of least weight overall that achieves a utility of upper. From
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the correctness of the dynamic programming table, the minimum weight set that
achieves utility upper has weight at most b, so we get an optimal set that is valid.

The runtime is polynomial in the size of the input: we compute v in O(nm)
and set up T in O(m?n) (since Upay < nm). We compute P in O(mlogm). The
table generation takes time O(nm? + log(nm)); we have at most O(nm?) table
generation steps and at most O(log(nm)) binary search steps. We also take O(m)
steps to recover the set X. Therefore, in total, the algorithm runs in O(nm?) steps,

which is polynomial in the size of the input. ]
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input : F = (V, A, C,cost, b, (), a PBIC election.
Compute v[z| for every x € C' as before;
Unax < D_pec vlal;
T < an (m + 1) X (Unax + 1) array, initialised with null values in each
position, 0-indexed;
T'[0][u] <= oo for all 1 < u < Upax; T'[4][0] < 0 for all 0 < i < m;
P <+ C sorted by rightmost location on interval (1-indexed);
lower < 0, upper < Upax;
while lower<upper do
current _u < L—loweTJ“gppeHlJ;
stack«— [(m, current _u)l;
while stack is not empty do
(j,u) < stack.pop();
Find preceding non-conflicting index ¢ of j;
needed _util < max(0,u — v[P[j]]);
if T'[t][needed_wutil] is not null and T[j — 1][u] is not null then
| T[j][u] = min(cost(P[j]) + T[t][needed_util], T[j — 1][u])
else
Push (j,u) back to the stack, then push (¢, needed util) and
(7 — 1,u) to the stack if table entries are null respectively;
end
end
if T'[m|[current_u] > b then
upper <— current _u — 1;
else
| lower < current _u;
end

end
X < 0,7 < m,u + upper;
while j > 0 do

Find preceding non-conflicting index ¢ of j;
needed _util < max(0,u — v[P[j]]);
if T'[j — 1][u] > cost(P]j]) + T'[t][needed_util] then
X < X U{P[jl};
J < t,u < needed__util;
else
| i1
end
end
output: X

Algorithm 2: Maximising utilitarian welfare in a PBIC setting in polynomial
time.
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3.1.2 Empirical testing

The correctness of the algorithms was confirmed for small elections by iterating
over all valid winning sets and ensuring the winning set output by the algorithms
had maximal utility with respect to the valid sets. To test the practical perfor-
mance of the algorithm, 2 versions of the algorithm were implemented. The first
version of the algorithm generates a (m + 1) x (b + 1) dynamic programming
table on-demand, which we shall call standard interval knapsack. This algorithm
works similarly to the algorithm in Algorithm 1, but with the on-demand stack
demonstrated in Algorithm 2. The Python code for this version is provided in
Appendix A.1.3. The second version is the algorithm described in Algorithm 2
where we instead use a (m 4 1) X (Upax + 1) dynamic programming table with
on-demand generation, which we shall call reverse interval knapsack. The Python
code for this version is provided in Appendix A.1.4.

The algorithms were implemented using Python 3.10. Although the algorithms
could have been implemented in any modern programming language, Python 3

was chosen for the following reasons:

e Quality of existing libraries and built-in data types. Python 3 has an exten-
sive number of inbuilt data types that have been utilised in this project, such

as sets and dictionaries. The library support for Python is also excellent.

e Existing familiarity with Python 3. Previous experience with Python helped
significantly, as commonly used features and optimisations were previously
known to the author. Python is also a widely used language and so is also

likely to be supported for future work.

e Ease of testing. Python has excellent profiling and interactive debugging

tools, which allow for easier bug fixing and testing.
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To benchmark the code, an Amazon Web Services (AWS) Elastic Compute Cloud
(EC2) r6a.large instance was created and used to remotely run the benchmarking
code. This instance had 16GiB memory, a sustained clock speed of 3.6GHz, and
used Amazon Linux 2 (Kernel 5.10) as its operating system. This instance type
was chosen because it most closely resembled the author’s personal laptop, which
had been used for informal testing.

To begin, we shall look at the algorithm performance on randomly generated
elections. To generate the artificial data, random elections were created with
the number of voters uniformly distributed between 1,000 and 300,000, and the
number of projects uniformly distributed between 3 and 70. The location data
for the random elections is generated by selecting a size for the project between 0
and 1, and then a random start location on the interval for the project such that
the project still remains wholly within the interval. The costs of the projects were
distributed uniformly at random between 5,000 and 100,000. The budget is then
chosen uniformly between 1 times the average cost of a single project and the
sum of the costs of all projects. The graphs in Figure 3.3 illustrate the runtime
of these versions.

We make the following observations:

e The practical runtime of the standard interval knapsack algorithm is highly
correlated with mb, suggesting that the practical runtime is O(mb) as pre-

dicted. The trend line for the standard knapsack time is
t =4.997 x 10~*mb + 1.990 x 1072

The R-squared value for the trend line of standard knapsack runtime against

mb is 0.9967.
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Both runtimes against mb

Rule Id
B Standard Knapsack
B Reversed Knapsack
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(a) The runtimes of both algorithms, plotted against the value of mb for each election.
Both runtimes against nm?
Rule Id
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(b) The runtimes of both algorithms plotted against the value of nm? for each election.

Figure 3.3: Runtimes of both the standard and reversed knapsack algorithms
compared to both mb and nm? on random data.

e The reverse interval knapsack algorithm’s practical runtime is highly corre-
lated with nm?, suggesting that the practical runtime is indeed O(nm?) as

predicted. The trend line for the reverse knapsack time is
t = 2.359 x 10 %nm? + 2.820 x 10"
The R-squared value for the trend line of reverse knapsack is 0.9923.

e The runtime of the reverse interval knapsack is only weakly correlated with
mb, and similarly the runtime of the standard interval knapsack is only

weakly correlated with nm?. The R-squared value for the trend line for
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the runtime of reverse knapsack against mb is 0.2062, and the R-squared
value for the trend line for the runtime of standard knapsack against nm?

is 0.2018.

e The standard knapsack algorithm generally tends to perform better than

the reversed knapsack algorithm on random data.

We then test the standard and reverse interval knapsack algorithms on par-
tially real data. To test the practical performance of the algorithms, Pabulib
data (Stolicki et al., 2020) was used as input to the algorithms. The data avail-
able within Pabulib is real-world PB election data, primarily from Poland. At
the time of testing, there were 458 different elections available within Pabulib.
However, these elections do not have location data associated with the projects.
For testing, the location data for the projects is randomly generated in the same
way as for the random data. This location generation process was repeated 10
times for each election to obtain 10 test elections for each real election, for a total
of 4580 test elections.

From Figure 3.4, we can make the following observations:

e We can see that the relationship between runtime and nm? is less clear for
the reversed knapsack algorithm compared to the random data, but that
the runtime of the algorithm on real data is significantly less than on ran-
dom data. On the election with the highest value of nm? ~ 1.232 x 10'°,
the longest time it took was 7.133s, while (extrapolating and assuming
that the trend line relationship still holds up to >12 billion) we would
expect it to take ~ 615.7s. Taking into account all data, we get a weak
trend line (not shown) with R-squared of 0.4746, but this trend line is
“weighed down” by the low runtimes of the high nm? elections. Consid-
ering only the elections with nm? < 300 million, we get a trend line of

t =5.122 x 10 %nm? + 1.490 x 102 with an R-squared of 0.7063.
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e We can see that the relationship between runtime and mb for the standard
knapsack algorithm on real data is stronger than the relationship between
the reversed knapsack runtime and nm?, and that the algorithm performs
similarly well on real data compared to random data. We get a trend line

of t = 3.971 x 10~8mb + 4.550 x 10~2 with an R-squared of 0.9380.

e We can see that the standard knapsack algorithm performs significantly
worse on real data compared to the reversed knapsack algorithm. This con-
trasts with the performance of the two algorithms on random data. On
average, the standard knapsack algorithm took 42.01 times longer on the

same election.

Overall, the practical performance of the reversed knapsack algorithm is signif-
icantly better than the standard knapsack algorithm on (partially) real-world
elections, and the runtime is well within what would be acceptable for deploy-

ment within a government.
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Reversed runtime against nm?
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(a) The runtime of the reversed knapsack algorithm against nm?. The trend line ob-
tained from the random data for the reversed knapsack algorithm is shown in grey.
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(b) The runtime of the standard knapsack algorithm against nm?. The trend line ob-
tained from the random data for the standard knapsack algorithm is shown in grey.

Both runtimes against mb
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(¢) Runtimes of both the standard and reversed knapsack algorithms on log-log plot.
Log-log plot used due to wide variation in order of magnitudes of data.

Figure 3.4: Runtimes of both the standard and reversed knapsack algorithms
compared to mb and nm? on real data.
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3.1.3 Extensions
Now we shall discuss some extensions of the model.
3.1.3.1 Projects without location

We can also allow some projects to have no specific location associated with
them. For example, we may have a project to improve the frequency of household
rubbish collection within the city, in which case implementing this project does
not take up physical space. To include these types of project into consideration
alongside the projects with locations, we can extend the total interval to the left
and place the non-located projects into this extension before the located projects
in such a way that none of the non-located projects overlap with any of the
other projects. The location knapsack algorithm will then function identically to
the standard knapsack algorithm on these non-located projects, building up the
dynamic programming table in the same fashion. Then once we have reached the

projects with locations, the algorithm functions as required.
3.1.3.2 Multiple intervals

If we have multiple independent intervals (i.e. there are no project conflicts be-
tween projects on different intervals) that share the same total budget, then we
can also solve this case by appending one interval after another so that no project
from one interval overlaps with another project in a different interval. Then, by

running the algorithm on this larger interval, we get the desired result.
3.1.3.3 Temporal conflicts

This model could also be applied to temporal conflicts on the interval. In this
scenario, ¢(z) could represent the time in which the project will be implemented
rather than the space. An example of such a scenario would be a community

garden whose members wish to vote on the crops to be grown in the garden
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throughout the year. Certain crops can only be grown at certain times of the
year and different crops may have different maturity periods. The cost of seeds
and maintenance for each crop may also differ, so each crop may have different
costs. In this scenario, we can use the above model to vote on the crops to
grow and maximise the approval of the voters. This model assumes that we can
only implement one project at any point on the interval, so if we can implement
multiple projects at the same time (i.e. in the example above, if we can grow
different plants at the same time), then this model will not necessarily find an

optimal solution in that scenario.

3.2 Multiple possible project locations

We now turn our attention to a modification of the model in which projects can
have multiple possible locations at which they could be implemented, instead of

one single specific location.

Definition 3.16. (Partition)

A set m = {p1,...,pr} is a partition of the set C' if:
e 0,
e U_ipi=C,
e and V1 <i,j<r[pNp; =0

We say that p; is a part of .

Definition 3.17. (Multi-instance PB with interval conflicts (MPBIC) election)

A multi-instance PB with interval conflicts (MPBIC) election
E = (V,C,cost, b, A, ¢, 7)

is a PBIC problem which additionally has a partition 7 of C' such that Vp € =

and Vz,y € p, we have cost(x) = cost(y), and for all voters v € V, we have
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r € Alv) < y € A(v). We interpret the candidates as instances of different
projects p, so 7 represents the set of projects, and each instance in p is a possible
location for the project p. Let part(p) be the part p of m with p € p. For MPBIC

elections we define valid winning sets as

V(E) ={W € V(E') : Vp1,p2 € W,p1 # po = part(p;) # part(ps)},

where £’ = (V,C,cost, b, A, ¢) and so V(E') is the set of valid winning sets of F
as interpreted just as a PBIC election. We require that in the winning set, no two

winning instances are of the same project type.

Remark 3.18. Clearly, every PBIC is an MPBIC: if we let 7 = {{z} : z € C},

every project type has only one instance.

Definition 3.19. (Conflict graph of a MPBIC election)
Let E be an MPBIC election with a candidate set C| location function ¢, and

partition 7. Let
Fy = {(z;,z;) C C?:x; # z; and £(x;) N l(x;) # 0},

Fy = {(zs,2;) CC*: 2, # xj and Ip € 7, {w;, 2;} C p}.

Then we define the conflict graph of E to be the graph G = (C, F} U F3).

MPBIC elections cannot, in general, be solved by Algorithm 1 or Algorithm 2.
Consider the example in Figure 3.5. The superscript denotes the project type, and
the subscript denotes the instance number of that project type. The instances
sorted by endpoint are in order P = [I}, I, I3, I3]. In the last stage of the algo-
rithms, we will decide whether I is included in the optimal solution or not. If it
is not, then the optimal utility is the same as the utility achievable from the first
3 instances. However, if it is, then the optimal utility is the utility we would get

from I3, plus the utility we would achieve from just IZ, but not including I}, since
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Figure 3.5: An example MPBIC problem where the algorithms in Section 3.1 fail.

otherwise we would have a conflict between the two instances of Project 1. In this
way, allowing projects to have multiple possible locations breaks the linearity of
project conflicts. By this, we mean that it breaks the property that for every
instance I, every instance J that has its endpoint to the left of I’s endpoint and
conflicts with I exists within a contiguous subarray of P (the instances sorted by
endpoint) that ends at the project before I in P. In the example in Figure 3.5,
the instances that conflict with I are both 2 and I}, so the conflicting instances
do not form a contiguous subarray of P.

Utilitarian welfare optimisation in the above setting is again a form of con-
flicted knapsack problem. The conflict graphs generated are interval graphs where,
additionally, the vertices of the graph have been partitioned and where edges are
added to make the induced subgraph of each partition a complete graph.

As stated before, the pseudo-polynomial time algorithms demonstrated by
Pferschy and Schauer (2009) deal with two special cases of the conflict graph, one
for the case where the conflict graph is chordal, and one where the conflict graph
has bounded treewidth. We shall now show that the conflict graphs generated
when we allow multiple locations per project fall into neither of these two classes.

First, we present a straightforward proof that the conflict graphs in MPBIC

problems are not chordal.
Lemma 3.20. The conflict graphs of MPBIC problems are, in general, not chordal.

Proof. Consider the example in Figure 3.5. The conflict graph is a simple 4-cycle.

The only induced cycle is the 4-cycle which has more than 3 vertices, so the
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Figure 3.6: An example MPBIC problem that demonstrates how to create arbi-
trarily large non-chordal conflict graphs.

conflict graph is not chordal. Arbitrary g-cycle conflict graph MPBIC problems
can be generated from ¢ instances that overlap in a “bricklaying” pattern, with
the first and last instance being of the same project type. See Figure 3.6 for an

example. |

We shall now show that conflict graphs generated with multiple possible loca-
tions per project also do not have bounded treewidths, except in the very limited
case outlined in Lemma 3.29. To prove this, we need to define a family of graphs

that we will show later exist as graph minors in the conflict graphs.

Definition 3.21. (Graph minor)
Let G be a graph. Then H, a graph, is a graph minor of G if H can be formed from

G through a sequence of edge contractions, edge deletions, and vertex deletions

of GG.

Definition 3.22. (Hexagonal grid graph)
A t-hexagonal grid graph is a graph H = (V| E) constructed as follows. Let
Vil = {uH 1 <r <6} for 0 < 4,5 < t. Identify the following vertices as the

same (where they exist):

i:j — i_lvj — Z:]+1 ¥
vy! =wvy 7 =0’ for even j;

L2V R b ) R S g VR ;.
vy =0T =g for even j;

A Sl B A S S A i
v =vy ) =0 for odd j;

ij i+l gl :
vy =1, =g’ for odd j.
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Let
EY = {{v v} s =r+1 mod 6}.

s ' Ur

Finally, let V' = Uy, ;.. V"7, and let £ = [y, ;_, E. See Figure 3.8 for an illus-
tration of the construction of the graph, and Figure 3.7 for an overall illustration
of an 8-hexagonal grid graph. We shall refer to subgraph H*/ = (V% E%J) as
hexagon (i, 7). We say that a hexagon is internal if every vertex in V% is identified

with 2 other vertices of other hexagons.

We shall define a square grid in a similar way. Note that for other definitions of
a t-square grid, ¢ may refer to the number of vertices within each row and column
of vertices rather than the number of squares in each row and column of squares,
so a t-square grid here may be referred to as a (t + 1)-square grid elsewhere. We

use this definition to be consistent with our definition of a hexagonal grid graph.

Definition 3.23. (Square grid graph)
A t-square grid graph is defined as a graph S = (V| E') constructed as follows. Let
Vid = {v% 1 <r <4} for 0 < 4,5 < t. Identify the following vertices as the

same (where they exist):

i—1,5 i—1,j+1 _

ij _ ij+1

Uy

Let
Eiﬁj = {{(Ui’j Ui’j) :s=r+1 mod 4}}

Then let V' = Uy ;i V™, and let B = Jy, o, E™7. See Figure 3.9 for an
illustration of the construction of the square grid. We shall refer to subgraph
Sl = (V4 E%) as square (i, j). We say that a square is internal if every vertex

in V% is identified with 3 other vertices of other squares.
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Figure 3.8: Illustration of the construction of the hexagon grid. Here, j is odd.
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Figure 3.9: Illustration of the construction of the square grid.

Lemma 3.24. A t-hexagonal grid has 2t(t + 2) vertices and 3t* + 4t — 1 edges.

Proof. Consider each column of hexagons, where column j is defined as the
induced subgraph H|[U!_;V*/]. The concatenation of a column of hexagons at
one end of the grid would add 2t + 1 new vertices to the graph, where we
identify the new concatenated vertices to be consistent with Definition 3.22. A
graph of a single column of hexagons would have 5t + 1 vertices, and we can
think of the grid as a single column of hexagons with ¢ — 1 columns sequen-
tially concatenated to it. Therefore, the total number of vertices in the ¢-grid is
St+1+(t—1)(2t+1) =2t —t — 1+ 56+ 1 =2t + 4t = 2t(t + 2) vertices.
Now the number of edges in the grid is less than 6¢? since each hexagon is
associated with at most 6 edges to the graph and there are t? hexagons; however,
some of these edges are counted twice. Every edge that belongs to two hexagons is
counted twice, and the only edges that are not counted twice are the edges along

the exterior of the grid. Every column with 1 < j < ¢ — 1 has four edges on the
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exterior of the grid, and the two columns at the end of the grid have 2t 4+ 3 edges
each that are on the exterior. Therefore, there are 2 x (2t +3) +4(t —2) = 8t —2
exterior edges. If we add this to 6¢%, we guarantee that we count each edge exactly
twice. Therefore, the total number of edges in the graph is % =32 +4t—1

edges. |

Now, we shall use the square grid to obtain a lower bound on the treewidth

of the hexagonal grid. Cygan et al. (2015) provide the following lemma.
Lemma 3.25. The treewidth of a t-square grid ist + 1.
Proof. See Exercise 7.37 in the textbook (Cygan et al., 2015). |

From this lemma, we can obtain the following lower bound on the treewidth

of a t-hexagonal grid.
Lemma 3.26. The treewidth of a t-hexagonal grid is at least t + 1.

Proof. Within the ¢-hexagonal grid, for every hexagon H®, contract the edges
(vP? 057 and (vh7,vh7) if j is odd, and the edges (v57,v57) and (v}’ vE7) if j is
even. Note that for an internal hexagon H%J, each edge e of H* we contract
also belongs to another adjacent hexagon H*Y, but if j is odd, then y will be
even (and vice versa), so the contraction of e in H*¥ will be the same as the
contraction of e in H%J. We only contract the edge once. Referring to Figure 3.8
helps to demonstrate this.

The remaining graph is a (¢ + 1)-square grid graph. Every hexagon H*/ be-
comes a square S“; we contract exactly 2 edges in each hexagon H*/. Without
loss of generality, assume j is odd. For a hexagon with odd j, we contract (vi’j , vé’j )
and (vé’j , vé’j ), and for hexagons H*"%J and H**'Y we do not contract the edges
they share with H%’. For the other 4 hexagons that share edges with H*/, j + 1

and j—1 are both even, so those hexagon’s contracted edges exactly correspond to
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the contracted edges for H*’. This holds because of the identification of the ver-

i—1,j+1
)

1 1 Z?] 27] — Z_ly]—"_l
tices between adjacent hexagons, so for example (vy”7,v57) = (vg ).

Uy
This can be seen in Figure 3.8. Therefore, each odd j hexagon has exactly two
contracted edges, and the same holds for even j hexagons. For internal hexagons,

this is equivalent to contracting the edges shared between adjacent hexagons
H% _ H®Y where both i # x and j # v.
For odd j, relabel the vertices:
.3 4,7
Uiy = 81
i,J (B
U3Y — 897
i,J 4,7,
1,3 4,3
Usig = Sy -
For even j, relabel:
] 4,7,
(] 0]
.3 4,7
1,3 .3
vg” — 8,7
We use e.g. v1/2 because vertices v; and v, are now identified as the same vertex
due to the edge between v; and v, being contracted. The edges of each square
are preserved, since we contract two edges in each hexagon; we just need to show
that every vertex is identified with the correct vertices.

For odd j, 5 + 1 is even, and so by using the above relabelling, and the

identification of the vertices in the hexagonal grid, we have that

iy %3 0=l _i—17,
S17 = U7 = U3 =8y 7
0j  dg  i—1g4+1 1,41,
17 = V1" = Uy = 53 ;
ij ij ij+1 ij+1
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For even j, 7+ 1 is odd, and we have

i?j — 27] — 2_17_7 — i_lvj.

1" =V = =38 7

S0 = U =Ug T =V T =y = 53 ;
(2% I 7% B 2 b o SR 2 b |

S = V{7 = Vg = Sy .

Therefore, every hexagon H*/ becomes square S*/, so the t-square grid is a graph
minor of the t-hexagonal grid. The treewidth of the t-square grid is t + 1 by
Lemma 3.25, and so by the paper (Bodlaender and Koster, 2011), Lemma 14,
which states that the treewidth of a graph is at least as large as the treewidth of
any of its graph minors, we find that the treewidth of the t-hexagonal grid graph

is at least ¢ + 1. |

Now that we have shown that the ¢-hexagonal grid graph has a treewidth
of t + 1, we will show that we can construct a family of MPBIC elections where

hexagonal grid graphs exists as graph minors of the conflict graphs of the elections.

Theorem 3.27. There exists a family of MPBIC' elections where each project
can have at most 2 possible instances, and each instance can overlap with at most
2 other instances, such that the treewidths of the conflict graphs of the elections

in this family s unbounded.

Proof. Let t € N. We shall construct an MPBIC problem that will have the
t-hexagonal grid as a graph minor of its conflict graph. This election will have
m = 6t(t + 2) instances in total, with every project having 2 instances each (so
each project has 2 possible locations), and every instance will overlap with at
most 2 other instances.

Let H be a t-hexagonal grid graph. H has 2t(t + 2) vertices by Lemma 3.24.
Divide the interval into 2¢(f 4 2) distinct and non-overlapping sections and index

each section by a vertex of H, so we say that the section corresponding to v starts
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Figure 3.10: A “close up” of a neighbourhood of the conflict graph, with each small
white vertex corresponding to an instance of the election, and each large grey
vertex corresponding to a section of the interval, and a vertex of the hexagonal
grid.
at s(v) and ends at e(v). For each vertex v of H, we shall construct 3 instances,
17, I3, IY. These instances shall be placed at the v’th section of the interval, and
so will occupy [s(v), e(v)). For each edge (u,v) in H, we will select instances I?
and [} that have not already been selected and identify them as the same project
type, so we add a part {I?, J“} to . Since each vertex of H has degree at most
3, there will always exist an unselected instance for each vertex when we need to
select an instance for an edge.

A subsection of the conflict graph is shown in Figure 3.10 as an example.

Every instance I conflicts with exactly the instances placed in the same section,

and with the instance that is of the same project type as I. In the conflict graph,
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if we contract the edges corresponding to the conflict among instances placed in
the same section, we get exactly the t-hexagonal grid graph. From Lemma 3.26,
the treewidth of the hexagonal grid is at least t + 1 and again by the paper
(Bodlaender and Koster, 2011), Lemma 14, the treewidth of the conflict graph is
at least t + 1 = O(y/m). [ |

We can prove a similar result for the case when each instance can overlap with

at most 1 other instance.

Theorem 3.28. There exists a family MPBIC elections where each project can
have at most 3 possible instances, and each instance can overlap with at most 1
other instance, such that the treewidths of the conflict graphs of the elections in

the family are unbounded.

Proof. The proof is similar to the proof of Theorem 3.27. We allow each project
to have at most 3 instances each, and for each instance to overlap with at most 1
other instance. The vertices of the hexagonal grid now correspond to projects, so
the triangle formed at each vertex of the hexagon will be derived from the conflict
subgraph of the 3 instances of the same project type. We divide the interval into
3t2 44t — 1 sections, one for each edge of the hexagonal grid. We index the vertices
of the hexagonal grid by project types, so for a vertex v, we can refer to project
type v. To derive the edges (z,y) of the hexagonal grid, we place at each section
an instance of project type = and an instance of project type y. Because the
maximum degree of the hexagonal grid graph is 3, we will always have enough
instances of a project to do this. Therefore, we can similarly find the ¢-hexagonal
grid minor within the conflict graph, and so the treewidth of the conflict graph
is at least t + 1 = O(y/m). [ |

We have therefore shown that, for both of the cases above, the treewidths of

the graphs can be unbounded. Therefore, the bounded treewidth algorithm we
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discussed earlier will not run in polynomial time in the size of the input election,
as the runtime is exponential in the treewidth. For the sake of completeness, we

note that the final case remaining is trivial.

Lemma 3.29. If we allow at most 2 different locations per project and allow
every instance to overlap with at most 1 other instance, we can solve the problem

of utilitarian welfare optimisation in polynomial time.

Proof. Every instance can now only conflict with at most 2 other instances; the
other instance of the same project type and the instance it overlaps with. So,
every vertex in the conflict graph has degree at most 2, and so every component
of the conflict graph is either a simple path or a simple cycle.

The paths have treewidth 1 since they are trees. The cycles have treewidth
at most 2; see Exercise 7.8(d) of the textbook (Cygan et al., 2015), but a proof
is provided here for completeness. Select some vertex x in the cycle and order
the edges ey, ..., e, by traversing the cycle, starting with an edge adjacent to x.
Create a tree decomposition by creating a path with vertices labelled {z} Ue; for
each 1 < ¢ < r in order. The maximum size of each label is 3, every vertex and
edge appears in some label, and any vertex appears only in connected labels; x is
in every label, and any other vertex only appears in the two labels corresponding
to its two edges, which are connected to each other in the tree decomposition.

We can then create a tree decomposition of the whole conflict graph by select-
ing an arbitrary component’s tree decomposition to start, and arbitrarily connect-
ing the other tree decompositions to the starting decomposition, using a single
edge to ensure that the resultant decomposition is a tree. The resultant tree de-
composition is, in fact, a tree decomposition by the fact that each component
is disconnected from every other component. This tree decomposition still has
treewidth at most 2, since each label still has at most 3 vertices in it. We then

apply the bounded treewidth algorithm provided by Pferschy and Schauer (2009)
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to this tree decomposition. This procedure runs in O(m?n?) time, which is poly-

nomial in the size of the input election. |

Upon a final wider search of the literature, the paper (Spiecksma, 1999) was
uncovered. Whilst it was not directly identified in the initial literature search
with the relevant search terms, it has proven to contain much relevant informa-
tion about the MPBIC problem studied here. Spieksma (1999) explores a similar
problem within interval scheduling. The problem they formulate is as follows:

given n k-tuples of intervals
(I}, I, .. L), (I, 12, ... 1), ..., (I}, I, ... L)}

on the real line, we must select as many intervals as possible such that at any
point on the real line, no two selected intervals intersect, and no two selected
intervals are in the same tuple. Spieksma (1999) cites from personal communica-
tion that the problem of deciding whether there exists a solution with at least ¢
intervals selected is N'P-complete for k > 2, and further shows that the problem
of maximising the number of intervals does not have a PTAS unless P = NP,
for any k > 2. In particular, this means that solving the problem exactly cannot
be done in polynomial time, as otherwise this polynomial time algorithm could
be used as a PTAS. The utilitarian welfare optimisation problem for an MPBIC

election is a more general form of the problem formulated here: let

o V={Il,...,n}

C={l;:1<z<n1<y<k}

e cost(p) = 1;
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e m={{[j:1<y<k}:1<x<n}

Then we obtain an MPBIC election where the problem of maximising utilitarian
welfare is equivalent to the interval scheduling problem. This is because the value
of each project here is 1, so we are trying to just maximise the number of projects
implemented. The cost of each project is also 1, and the budget is n, so the budget
will never limit the number of projects implemented. Therefore, utilitarian welfare
optimisation for an MPBIC election also does not admit a PTAS unless P = NP,
and similarly the decision problem of deciding if a utilitarian welfare value of at

least t is achievable is AN/P-hard.

58



Chapter 4

Participatory budgeting with
partial information

A government does not know the preferences and wishes of the citizens it rep-
resents unless it has elicited those preferences. Elections are a vital part of the
democratic process, as they provide a structured way for all eligible citizens to ex-
press their preferences to their government. However, they can be expensive and
logistically challenging to conduct for the government. In addition to eliciting
voter preferences through elections, governments also employ polls and surveys
to get a broad idea of the views of the electorate. In this chapter, we shall consider
the scenario in which we do not have full information about the preferences of
all voters. Instead, we shall only be allowed to sample a subset of voters to elicit
their preferences, and then run an election algorithm on the subset of preferences
to obtain a winning set. We shall provide bounds on the number of citizens we
are required to sample to achieve certain fairness properties with respect to the
whole population.

Of course, it is unreasonable to expect us to be able to achieve perfect represen-
tation with probability 1 without sampling the whole population. If we consider
the problem of achieving an MWV-JR winning set, there may be some 1-cohesive
group such that all members approve only a single candidate p, and such that

the group has size exactly 7. Then any MWV-JR winning set must contain p,
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however, if we take a sample of n — 1 voters where the excluded voter is a member
of this group (which can occur with probability %), and then run an MWV-JR
algorithm on the sampled voters’ preferences, we will not necessarily achieve an
MWV-JR winning set, since 3 —1 < ”T’l Instead, we can try to achieve approx-
imate representation with high probability. The problem then becomes finding
the number of voters we need to sample to provide approximate representation
for the whole population, given values for the desired probability of error and

precision of the approximation.

4.1 Multiwinner voting with partial information

First, we shall focus only on the MWV scenario.

Definition 4.1. Let G C V. Define B(G) = {A(v) : v € G} as the set of ballots
B such that there exists a voter v in G with A(v) = B. Define G' as the set

of voters for which there exists some voter in G with the same ballot type, so

G'={veV:A(v) € B(G)}. Note that if G is a g-cohesive group, then so is G'.

Definition 4.2. (Subelection)
For an election £ = (V,C, k, A) with a set of voters V' and an approval function
A, for a subset S C V, define a subelection E[S] = (S,C,k, A’) where A’ is A

restricted to the domain S.

We will also extend our definition of a cohesive group, so that we can capture

the idea of approximate representation.

Definition 4.3. ((g, )-cohesive group)
We say a group G is (q,¢)-cohesive (for election E) for some 1 < ¢ < k if
|G| > (1+¢)% and |A(G)| > q. Define

C/(E) ={G SV : |G > (1+2) 7= and |AG)| = g}
for 1 < g <k and € > 0 as the set of (g, ¢)-cohesive groups of E.
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Remark 4.4. Clearly 0-C,(E) = C,(FE). For €1,e9 > 0 with ; < &5, we have
£1-Cy(E) C e9-Cy(E).

Definition 4.5. (Monotonic justified representation)

Let R be a fairness property. Then R is a form of monotonic justified representa-
tion if for every k > 1, there exists 1 < U < k such that for every MWV election
E to select k candidates, for every 1 < ¢ < U, and for every T" € V(FE), there

exists a family of sets of voters G(E, T, q) C C,(FE) such that
R(E) ={W e V(E):V1 < q<UC/(E)=G(E,W,q)}
and where V1 < ¢ < U,VG € C,(E),VT € V(E), we have:
o G¢G(E T q = G'¢G(E,T,q);
e VSCV,[G"¢G(E.T,q) = G'NS¢G(ES).T,q).

For a form of monotonic justified representation R, we can then define a fairness

property e-R, where
eR(E)={W e V(E):V1<q<UZeC/E)CGEW,q)}

We shall now motivate these definitions. Monotonic justified representation
attempts to capture the idea that cohesive groups deserve representation, where
the precise idea of what it means for a group to be represented is different for
each fairness property. The family of groups of voters G(FE, T, q) is the set of
g-cohesive groups that would be represented if 7" was selected as a winning set.
Therefore W € R(F) if and only if every cohesive group is represented with
W. The first additional constraint, G ¢ G(E,T,q) = G' & G(E,T,q)
for G € C,(E), captures the idea that if G' is not represented by 7', but is
g-cohesive, then simply making the group bigger without changing the type

of ballots present in the group won’t make the group represented. This allows
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us to upper bound the size of an unrepresented group by assuming that every
voter with a ballot type present in G is in GG. The second additional constraint,
VS C V,[G"¢G(E,T,q) = G'NS &G(E[S],T,q)], states that if G* is not
represented, then there is no subelection in which the restriction of GT to that
subelection is represented with respect to the subelection. If we assume 7' satis-
fies R with respect to the subelection E[S], this will allow us to show that the
restriction of G to the set S must be too small to form a cohesive group for E[S],
and thus allow us to make conclusions about the size of G.

Now, we shall motivate e-R. First, note that R(E) C e-R(E). For R a form
of monotonic justified representation, suppose that for an election F it holds that
W satisfies e-R but not R. Then there is some group G that is g-cohesive, such
that G € G(E, W, q). Therefore, G cannot be (g, £)-cohesive since W satisfies e-R,
and so if G were (q,¢)-cohesive, we would have that G € G(E, W, q). Therefore,
& < |G| < £(1 + ¢). This means that if a ;= (< ¢) proportion of the group
decide to change their preferences away from the groups preferences, then this
group is no longer cohesive. Therefore, if W satisfies e-R but not R, the only

cohesive groups that W does not represent are somewhat unstable, and so in this

way, W approximately represents the cohesive groups of the election.

Lemma 4.6. MWV-JR, MWV-PJR and MWV-EJR are all forms of monotonic

justified representation.

Proof. Let EZ be an MWV election. For MWV-JR and MWV-EJR, let
G(E,T,q) ={G € C,/FE): Jv € G such that |[A(v)NT] > q]}.

Then for R = MWV-JR, we have U = 1, and R = MWV-EJR, we have U = k.
By Definitions 2.10 and 2.12, we have W € R(FE) iff for every 1 < ¢ < U and
every g-cohesive group G, G € G(E,W,q). Now, let 1 < ¢ < U and let G be a
g-cohesive group with G € G(E, T, q). Then we have Yv € G, |A(v) N T| < ¢q. So,
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let v € G'. There exists a voter u € G such that A(v) = A(u). But [A(u)NT| < q
so |[A(v) NT| < g for any v € G, and so we have G' ¢ G(E,T,q). Now, if
G' ¢ G(E,T,q), then Vo € G,|A(v) N T| < ¢, but then certainly Vv € GTN S,
|A(v) NT| < q. So GT'N S ¢ G(E[S], T, q), regardless of whether GT N S is large
enough to form a g-cohesive group for E[S]. Therefore MWV-JR and MWV-EJR

-of.

Then for U = k, by Definition 2.11, we have W satisfies MWV-PJR(E) iff for ev-

are both monotonic justified representations.

For MWV-PJR, let

UJAw)nT

veG

G(E,T,q) = {G € Cy(E) -

ery 1 < ¢ < U, for every g-cohesive group G with respect to £, G € G(E, W, q).
Let 1 < ¢ < U and let G be a g-cohesive group with respect to E. Suppose
G ¢ G(E,T,q). We have ||J,cc A(v) NT| < q. So then J,c A(v) = Uyear A(v)
since for every v € G, there exists a voter u € G such that A(v) = A(u). There-
fore, |U,eqr A(v) NT| < g and G' ¢ G(E, T, q). Also, if |U,cqr A(v) NT| < g,
then |, corng A(v) NT| < g, so we have that if GT ¢ G(E, T, q) then

G'NS ¢ GBS, T, q),

regardless of whether GTN S is large enough to form a g-cohesive group for E[S].

Therefore, MWV-PJR is also a form of monotonic justified representation. |

Now that we have fully defined monotonic justified representation, and shown
that MWV-JR, MWV-PJR, and MWV-EJR are all forms of monotonic justified
representation, we shall now provide a general upper bound on the sample size
required for approximate representation for forms of monotonic justified repre-

sentation. First, let us define the hypergeometric distribution.
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Definition 4.7. (Hypergeometric distribution)
The hypergeometric distribution is a probability distribution with parameters N,
the population size, K, the number of success states of the population, and n,
the number of draws. For X distributed with a hypergeometric distribution, the
probability mass function of X is given by
(o) Girt)

()

for 0 < k < min(K,n). We require 0 < K < N and 0 < n < N. We can

Pr(X = k) =

interpret X as being the number of success states in a random draw of n states
from a whole population of N, where the number of success states in the whole

population is K. It models sampling without replacement.

Theorem 4.8. Let R be a form of monotonic justified representation. Let E be

an MWV election. Suppose that we have an algorithm A that guarantees R, and

we can sample uniformly (without replacement) from V. Then we can construct

a sampling process that achieves e-R for E with probability at least 1 — o for any
1

g,0 > 0, using a number of samples polynomial in In %, <, and k, and independent

of n, but potentially exponential in m.

Proof. Let R be a form of monotonic justified representation. Let & > 1 and

let U be as defined in the definition of monotonic justified representation. Let

E = (V,C,k, A) be some MWV election to select k candidates. Let o(G) = |B(G)|,

and let
QIT)={GCV:31<q<U[GeeCy(E)and G ¢ G(E,T,q)]};

a = max max o(G).
TeV(E) GeQ(T)

a(@) is the number of different ballots present in group G. Q(T') is the set of

(€, q)-cohesive groups such that G ¢ G(E,T,q). So then « is an upper bound of
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the number of ballots present in (g, g)-cohesive groups that are not represented

by winning set 7', over all possible valid sets 7T'.

Let B C C be a ballot type. Let zx(B) = |[{v € X : A(v) = B}| be the

number of voters in the set X C V' who vote with ballot type B. Let
f=H{BCC:z(B) >0}

be the number of different types of ballots present in the population. Trivially,

f < 2™. The sampling process is as follows:

k2a2In( L
1. Take a uniform sample S without replacement from V' of size s > %(5);

2. Apply A to the election E[S] to get a winning set of candidates W.

We shall now show that this achieves e-R for £ with probability at least 1 — 9
for any €,0 > 0. For every B C C, zg(B) is distributed with a hypergeometric
distribution with population size n, 2y (B) success states, and with a draw size
of s. Let t = ;=. Hocffding (1963) provides a tail bounds on the hypergeometric

distribution, so we get

Pr (ZS(B) < (@ - t) -s) < e 2,

By the union bound, we have that

Pr (for some B C C, z25(B) < <M _ t) _S> < f€—2t25‘

n

For the moment, suppose that we have that for every B C C,

zs(B) > (M - t) - 8,

n

sozy(B) <mn (%B) + t). Let G be some (g, €)-cohesive group for some 1 < ¢ < U.
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Suppose to the contrary that G &€ G(E, W, q). We have that

Gl < > wv(B) (4.1)

BeB(G)

< > n-(@%—t)

BeB(G)

=ntlBG)|+= Y z(B)

BeB(G)

< nta + Z¢2 (4.2)
S

n
= (1 =
( +€)qk

which is a contradiction since G is (g, €)-cohesive so |G| > (1 +¢)q%, so we must
have G € G(E, W, q).

Equation (4.1) holds because G certainly cannot contain more voters than all
voters who vote with the same type of ballot as some voter in G. Equation (4.2)
holds as follows: we have

d  z(B)=|{veS: Aw) € B(G)} =|GTn3|.
BEB(G)
We have that G ¢ G(E, W, q), and so by the two additional constraints on mono-
tonic justified representation, GT ¢ G(E, W, q) and G NS ¢ G(E[S], W, q). Since
A guarantees R, we have that A(E[S]) € R(E[S]), and so for any 1 < ¢q<U
and g-cohesive group G’ with respect to E[S], G’ € G(E[S], W, q). We have that
G'NS ¢ G(E[S],W,q), so G NS is not a g-cohesive group for E[S]. But we
have |A'(GT N S)| > |A(G)| > ¢ (assuming GT NS # ), so we must have that
IGTNS| < L. If GTNS = 0, we again have |GTN S| < . Therefore, if for every

B CC,z¢(B) > (ZVT@ - t) - s, then we achieve e-R.
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So then the probability that we do not achieve e-R is at most

k2a21n<§) 2
< fe s — fe_Z% _ fe_g% _s
So therefore, we achieve e-R with probability at least 1 — 9. [

We can provide bounds for « in the case of MWV-JR, MWV-PJR and MW V-
EJR.

Lemma 4.9. For MWV-JR, MWV-PJR, we have that o < 2™~ k=1 For MWV-

EJR, we have that oo < 2m71,

Proof. Let E be an MWV election and 7" € V(FE). Here, take G(E,T,q) to
be relative to the fairness property considered. First, consider MWV-JR, and
a (1, e)-cohesive group G ¢ G(E,T,1). Then for a voter to be in this group, their
ballot must approve A(G) and disapprove of T. |A(G)| > 1 and |T| = k, so the

number of different ballots that satisfy this is at most 27~ *+1)

since the approval
and disapproval of k£ 4 1 of the candidates is fixed.

Now, consider MWV-PJR and a (g, ¢)-cohesive group G ¢ G(E,T,q). Let
X =Uyeq¢ A(v) NT. Then, for a voter to be in G, they must approve every
candidate in A(G) and disapprove every candidate in 7"\ X. We have that
T\ X| >k — (¢ — 1), and so there are at most 2m~(¢+k=(a=1)) = gm=k=1 gch
ballots.

Finally, consider MWV-EJR and a (g, £)-cohesive group G & G(E, T, q). Every
voter approves of A(G) and approves of less than ¢ of the winning set 7'. We want
to count the number of different ballots that could possibly exist in GG. Consider
a voter v and say that the voter approves exactly r’ of the candidates in T for
|A(G) N T| < " < g — 1. Then the voter approves r = 1’ — |A(G) N T| of

the candidates in 7'\ A(G). There are ('T\f:(G)') ways to select r candidates in
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T\ A(G) to approve, and we know then that all other candidates in 7"\ A(G) are

disapproved by v. We have then fixed the approval/disapproval of
[AG)| + 7+ (IT\AG)| —r) = [A(G)| + [T\ A(G)| = |A(G) UT]

of the candidates, and the rest of the candidates can be approved or disapproved
freely without affecting G’s membership of G(F, T, q). Therefore, the number of

ballots in G is at most

q—1-|A(G)NT| q—1
Z <|T \ A(G> |> 2m—|TUA(G)\ S Z (k> 2m—|TUA(G)\
r=0 r r=0 r

<

< 2m—l
|

We can in fact provide a better bound on the number of people we need to

sample for MWV-JR.

Lemma 4.10. Let E be an MWV election. Suppose that we have an algorithm A
that guarantees MWV-JR, and we can sample uniformly (without replacement)
from V. Then we can construct a sampling process that guarantees e-MWV-JR

for E with probability at least 1 — & for any £,0 > 0, using a number of samples

polynomial in In %, %, m, and k, and independent of n.
Proof. The sampling process is as follows:

1. Take a uniform sample S without replacement from V' of size

2¢2 ’

S

2. Apply A to the election E[S] to get a winning set of candidates W.
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Let Dr(p) = {v € V : p € A(v),A(v) N T = 0} be the set of voters who
approve of a candidate p and do not approve any candidate in 7' € V(FE). For
p € T, we have Dy(p) = (). Similarly to above, we have that for every fixed
pe C, T CC\{p}, |Dr(p)N S| is distributed with a hypergeometric distribution
with population size n, Dr(p) success states, and s draws. Let ¢t = 7. Again by

the paper (Hoeffding, 1963), we have a tail bound on the distribution,

Pr <|DT(p) ns| < (M - t) -5> < e,

n

For p € T we have |Dp(p)| = 0 with certainty, so

Pr (IDT(p)ﬂSI < (% —t) -s) =0

in this case. So by the union bound, we have that

Pr (for some T'C C,pe C, |Dr(p)NS| < (M —t) -s)
m

n
m—1
= ( k )6_%28‘

Suppose for the moment that we do not have the above event, so for all

T CC,peC,|Dr(p)NS| > (M - t) - 5. Then certainly for W, we have that

n

|Dw(p) NS| > ('DW—n(m' — t) - s for every p € C. Then let G be a (1, ¢)-cohesive
group. Suppose to the contrary that no voter in G approves of some project
in W (so considering MWV-JR as a form of monotonic justified representation,

G ¢ G(E,W,1)). Then for all p € A(G), we have G C Dy (p). So therefore, for

any arbitrary p € A(G), we have

|G| < |Dw(p)l
“n. <|DW(ZZ)QS| +%)
<n. <_ ; z) (4.3)
= %(14—8).
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Equation (4.3) holds; if Dy (p) NS = 0, then |Dy(p) N S| < {. Otherwise, if
Dw (p) N S is a 1-cohesive group with respect to E[S], we would have that there
exists some voter v € Dy (p) NS with [A(v)NW| > 1, since A guarantees MW V-
JR, and so W € MWV-JR(E[S]). However, if |A(v) "N W] > 1, then v € Dy (p),
since v does not approve of any candidate in W, so therefore by contradiction,
Dw (p)NS cannot be 1-cohesive. We have that A(Dy (p)NS) 2 A(Dw(p)) 2 {p},
and so we must have that |Dy (p) N S| < 7.

Therefore, we have that |G| < Z(1+¢), and so G is not (1,¢)-cohesive. There-

fore since we have derived a contradiction, it must be the case that some voter

in GG approves of some candidate in W, and so if for all " C C,p € C,
D
L

then we achieve e-MWV-JR. The probability that we have for all 7' C C' and for

all p € C, |Dr(p)N S| > <% — t) - s is at least 1 — m(mk_l)e_%%. We have

that

1 1 k%( ’ )
("))

and so we achieve e-MWV-JR with probability > 1 — 4. |

m—1
Remark 4.11. The quantity In (m( 5 )) =1In (m (mk_l)) + ln% is polynomial in
k
k and m; by Stirling’s bounds on factorials, we have m(m_l) < (@) m, SO

k
In (m(™. ") <lnm+kln (@) = O(klogm).

We shall finally look at approximately maximising utilitarian welfare within

the MWV context.

Theorem 4.12. Let E be an MWV election. Suppose that we know that the aver-
age proportion of candidates that voters approve of (out of the m total candidates)
is at least r. Suppose that we have an algorithm A that guarantees exact utilitarian

welfare optimisation, and we can sample uniformly (without replacement) from
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V. Then we can construct a sampling process that achieves an € approrimation
of the optimal utilitarian welfare for E with probability at least 1 — 0 for any
£,0 > 0, using a number of samples polynomial in ln%,% and %, logarithmic in
m, and independent of k and n.

2m
2In 55*

Proof. The sampling process is the same as previously, with sample size s > ~—--.
Let W be the result of this process. Let D(p) = {v €V :p € A(v)} forp € C. Let
OPT be the maximum possible utilitarian welfare achievable by a valid winning
set WW*. We have that the total number of approvals given across all projects is at
least rmn. So, the top k most approved candidates must receive in total at least
krn approvals by the pigeonhole principle, so we have OPT > krn.

Let X, = |D(p) N S)| where S is the random sample set taken in the sampling
process. Then X, is distributed with a hypergeometric distribution with popula-
tion size n, |D(p)| success states, and s draws. By the paper (Hoeffding, 1963),

we again have that

Similar to before, we then have that

X, _ |D®)|

Pr (For some p € C,
n

> t) < 2me 2,

Let t = %. With probability at least 1 — 2me_2t25, we see that for all p € C,

% — &np)' < t, so if this event holds, we have

> JA@) N[ =" |[D(p)]

veV pEW

ZZZ(Xp_tS)

peW
n
= — _E
nk—l—s X,
peW
n
> —tnk + — X 4.4
> —tn +S§ » (4.4)

peEW*
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> —tnk+= Y~ (ID@)] ~ts)

peEW™*

> —2tnk+ Y _ |D(p)|

peEW™
> OPT — 2tnk
— OPT — 2 nk
= OPT —ernk
> OPT (1—¢).

Here, Equation (4.4) is true because W was chosen to maximise the utilitarian
welfare with respect to the subelection E[S], and ) . X, is the total utility
obtained from W in E[S], so it must be at least as much as the utility obtained
from W* with respect to E[S].

So, if we have that for all p € C, % - &np)'

< t, then we achieve an ¢
approximation of the optimal utilitarian welfare. We have that the probability of

this not occurring is at most

2m

Therefore, we achieve an e approximation of optimal utilitarian welfare with

probability at least 1 — 4. [ |

Remark 4.13. We can make the modest assumption that every voter approves

of at least one candidate to get r > % This gives us a sampling bound of
5 > 2m?2 In 24;

e2
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4.2 Participatory budgeting with partial informa-
tion

We shall now show similar bounds for the standard PDB scenario without conflicts.

Definition 4.14. For an election £ = (V,C,cost, b, A) with a voter set V' and

an approval function A, for a subset S C V', define a subelection
E[S] = (S, C,cost, b, A")
where A’ is A with domain restricted to S.

First, we look at PB-EJR, as defined in Definition 2.14. We will similarly

extend our definition of a T-cohesive group.

Definition 4.15. ((T,¢)-cohesive group)
We say a group G is (T, €)-cohesive with respect to election E for some T' C C' if

|G| > (1 —l—&‘)% and 7" C A(G). Let e-Cy be the set of (T, €)-cohesive groups.

We then define e-PB-EJR and e-PB-PJR similarly to the definition of PB-
EJR and PB-PJR from Definition 2.14 and Definition 2.16 with (7', ¢)-cohesive

groups substituting in for T-cohesive groups. Explicitly,
e-PB-EJR(E) ={W € V(E) : VT C C,VG € e-Cr,Fv € G,|W N A(v)| > |T|};

e-PB-PJR(E) = {W € V(E) : VT C C,VG € eCr,| | A()nW| > |T|}.
veG
We then get the following theorem.
Theorem 4.16. Let E be a PB election. Suppose we have an algorithm A that
guarantees PB-EJR, and we can sample uniformly (without replacement) from V.

Let p = min,ec cost(p). Then we can construct a sampling process that achieves

e-PB-EJR for E with probability at least 1 — d for any €,6 > 0, using a number

11

of samples polynomial in Ins, -, and l%, and independent of n, but potentially

exponential in m.
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Proof. Let
a =max{|B(G)| : G is (T, e)-cohesive and Vv € G, |A(v) NW| < |T|}.

Let zx(B) = |{v € X : A(v) = B}| be the number of voters in the set X C V
who vote with ballot type B. Let f = |{B C C : zy/(B) > 0}|. The process is as
follows:

. . . 2p21n £
1. Take a uniform sample S without replacement from V' of size s > %;

2. Apply A to the set of ballots collected from S to get a winning set of

candidates W.

We shall now show that this guarantees e-PB-EJR with probability at least 1 — 9
for any €, > 0. For every B C C, zg(B) is again distributed with a hypergeo-
metric distribution with population size n, zy (B) success states, and s draws. By

the same argument as before, we have that

Pr <for some B C C, z5(B) < (ZV(B) —t) -s) < f€—2t25‘

n

Let t = °&. For the moment, suppose that for every B C C, z5(B) > (ZV—(B) — t) .

n

8,80 zy(B) <n <@ + t). Let G be some (T, €)-cohesive group. Suppose to the

contrary that for every voter v € G we have |A(v) N W| < |T'|. We have that

Gl < > wv(B)
)

BeB(G

< > n(@ﬂ)

BeB(G)

=ntlBG)|+= Y z(B)

BEB(G)

< nto + E%cost(T) (4.5)
s

ST

<t Z

<n—a + bcost(T)

= n—ECOSt(T) + Ecost(T)
b b

— (14 5)%cost(T)
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which is a contradiction since G is (T’ ¢)-cohesive so |G| > (1 + ¢)%cost(T),
so we must have that there exists some voter v € G with |A(v) N W| > |T.
Equation (4.5) holds by similar arguments to Theorem 4.8; we have that
> z5(B)=1G"nS|.
BeB(G)

If for every voter in G, we have that |A(v) N W| < T, then for every voter v in
G',|A(v) NW| < |T| and so for every voter v € GT NS, |A(v) N W| < |T|. Since
A guarantees PB-EJR, W = A(E[S]) € PB-EJR(E[S]). Therefore, if GT N S
were T-cohesive for E[S], we would have that there exists some voter v in GTN S
such that |A(v) N W/| > |T|. Therefore, G NS is not T-cohesive for E[S]. But
T C AG) € A(G"N S), so we have |GT N S| < % Therefore since we
derived a contradiction, for every (7, ¢)-cohesive group G, there exists a voter
v € G with |A(v) NW| > |T|. So if for every B C C,z5(B) > ('ZVT(m — t) - s,
then we achieve e-PB-EJR. The probability that it is not the case that for every

n

B CC,z¢(B) > (z‘/—(m —t) - $ is at most

2 2,2 o221 £

2
ET N -2 0
a2b2s —= fe a2b2 252/,/,2 — 57

< f€72t23 — f€_2

so therefore we achieve e-PB-EJR with probability at least 1 — 4. ]
A sampling process for e-PB-PJR can be achieved similarly.

Corollary 4.17. Let E be a PB election. Suppose that we have an algorithm
A that guarantees PB-PJR, and we can sample uniformly (without replacement)
from V. Let ;1 = min,ec(cost(p)). Then we can construct a sampling process

that achieves e-PB-PJR for E with probability at least 1 — 0 for any £,0 > 0,

11

using a number of samples polynomial in In 3, 2, and ;%’ and independent of n,

but potentially exponential in m.
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Proof. By a similar proof, we can achieve identical bounds on s. This time,
we assume to the contrary that there exists a (7, ¢)-cohesive group such that
|Upec A(v) N W| < |T|. In this case, we still have ), s 2z5(B) < fcost(T): if
U AW < [T, then | U, cer ANV < 7] and | U, cgrng BN W] < [T,
Also, T C A(G) = A(G") C A(GTn S). Since A guarantees PB-PJR,

W = A(E[S])) € PB-PJR(E[S]).
Therefore, if G NS formed a T-cohesive group for E[S] we would have
I J Bnw|=1],
veGTNS

so it cannot be a T-cohesive group and so since T C A(GT N S), we have that

|GT N S| < 2cost(T). Finally, Y- 5 2s(B) = |GTN S| [ |
4.2.1 Empirical Results

We now look at evaluating these bounds in relation to a real instance from Pabulib

(Stolicki et al., 2020). We shall attempt to answer 2 questions:

e In practice, do the proven sampling bounds actually achieve the ¢, repre-

sentation?
e If so, how tight are the bounds?

We shall focus on a specific case of PB election in which every voter approves of
exactly one project, which we shall call a single-approval election. We focus on
this case because of the 458 elections available on Pabulib at the time of testing,
142 of the 458 elections (31.0%) were single-approval elections, and in particular,
13 of the 20 largest elections by number of voters were single-approval elections,
so this election format is widely used in practice. Under this assumption, a 7T-
cohesive group can only exist for |T'| = 1, since for any group G, |A(G)| < 1.

T-cohesive groups, then, are subsets of the set of voters who approve of the single
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project in T'. W satisfies PB-EJR if for every T-cohesive group G, there exists
a voter v € G such that |[A(v) N W| > |T|, but |T'| = 1 and A(v) = T for all
v € G. So W satisfies PB-EJR if for any {p}-cohesive group, p € W but this is

equivalent to having for all p € C,
HveV:{p}=AW)} > %COSt(p) = peW,

since any {p}-cohesive group is a subset of {v € V : {p} = A(v)}.

From this we can make two observations. First, we can construct a very simple
polynomial time algorithm to achieve PB-EJR in this setting. We iterate over the
projects p, and if the number of voters that approve p is at least 7cost(p), then
we add p to W. The resultant W is, in a sense, minimal. That is to say that any
winning set W’ satisfies PB-EJR if and only if W C W’ since adding additional
projects to W does not affect whether or not it satisfies PB-EJR, and every
candidate p of W must be included in W’, since the group of all voters who
approve p forms a cohesive group of sufficient size. Second, in this scenario we
have significantly lower bounds on f and a. We know that we have at most m
different ballots present in the population, and o = 1.

Let us focus on a specific real-world election. We shall look at the election
titled “Poland Wroctaw 2015 From 500”7 within Pabulib. This data corresponds
to the 2015 PB election held in the Polish city of Wroctaw. In this election, the
projects were split by cost into 3 groups: the set of projects costing less than
150,000 PLN, the set of projects costing between 150,000 PLN and 500,000 PLN,
and the set of projects costing at least 500,000 PLN (Bednarska-Olejniczak and
Olejniczak, 2016). The total budget for the whole election was 20,000,000 PLN,
but for our purposes, we shall assume that the budget is only for allocation to
the projects costing at least 500,000 PLN, so we shall treat this project price
group as a standalone election. In this election, 171 projects were considered,

a total of 127,773 voters voted, and using this price group, we have that the
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minimum project cost is 530,000 PLN. This election is a single-approval election
(each voter could only vote for at most one project in each price group), so for
our sampling bounds, we can use « = 1 and f = m = 171. We shall use ¢ = 5%
for demonstration and analyse the results we achieve for varying values of e.

Using the above election parameters, we will choose samples of size

B [200000002 m%)w B [800 1n(3420)w

225000002 g2

for appropriate values of €. We see that for ¢ < \/%(3420) ~ 0.2257, the theo-
retical sample size we need is actually larger than the total population size. The
smallest value of € we shall use will be 0.25 and we shall increase € by 0.05 up to
e = 5. For each value of ¢, we shall generate 900 samples and apply our basic EJR
algorithm to the sample to get a winning set W. Given W, we can then use the
whole population to calculate the simulated error value €* achieved. That is to
say, for each project p ¢ W, we can check if the number of voters of p is enough
for the voters of p to form a cohesive group, and if so, we can then compute

__baGl
~ cost(p)n

p

where G = is the set of voters of p, to get the true error value for each project,
and then £* = max,ec\w €, which is the overall true error value.

The minimal single-approval EJR algorithm we derived is useful for evaluating
the sampling bounds we have achieved. Compare the winning set W produced
by this algorithm with the winning set W’ produced by some other PB-EJR
algorithm on the same sample of the population S. We have that W C W/,
and so if W provides ¢*-PB-EJR for the whole population, then W’ certainly
does. However, W’ may be able to provide ¢-PB-EJR with & < &*. Clearly

maxpgw €, < MaXpgw €p, but we could have a strict inequality if
argmaxe, C W'
& peW "
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Therefore, when we analyse the £* we obtain from the real election, we should keep
in mind that using a different PB-EJR algorithm could provide better bounds,
and so the £* that we obtain is a worst-case value.

We shall now answer the two questions we started with. The first question
has a straightforward answer: the sampling bounds do indeed achieve the cor-
responding 9, £ representation for each value of € we test. In fact, there was no
sample in which €* > ¢, so in the experiment, we achieve ¢ with probability 1,
so 0 = 0. This then leads to our second question. The fact that no sample ever
failed to provide its corresponding ¢ representation suggests that our bounds are
quite loose.

In Figures 4.1 to 4.4, we see 4 graphs for ¢* = 0,5, 15, 25%, respectively. The
graphs plot the probability that the winning set of the sample does not achieve
e-PB-EJR for the whole population against (log) sample size. We use a logarith-
mic axis because of the difference in order of magnitudes between the sample sizes.
Four points in particular are annotated on each graph corresponding to sample
sizes of 689, 1787, 8014, and 92635. These sample sizes are the minimum sample

*

sizes (of the sizes tested) required to achieve 25,15,5, and 0% &* in practice,
respectively, with probability at most 5%.

However, these sample sizes correspond to a guaranteed ¢ = 290, 180, 85, and
25% given by our bounds, respectively, and so we can see that the bounds are
extremely loose. Furthermore, we had that for ¢* = 30%, even a sample size
of s = 232, corresponding to a guaranteed ¢ = 500%, provided 30%-PB-EJR
with failure probability of 0% in the tests. We can see then that in practice,
sampling can produce approximate representation with a relatively small sample
size. Certainly in this example, we can achieve 15%-PB-EJR with less than 1.4%
of the population sampled, but since the sample bounds we show do not depend

on the total population size, it is reasonable to expect the required proportion of

the population to be sampled to only decrease for larger populations.
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Figure 4.1: Simulated failure probability against log sample size with ¢ = 0%.
Only s = 92635 provided exact representation with probability at most 5%.
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Figure 4.2: Simulated failure probability against log sample size with ¢ = 5%.
The smallest sample size to provide 5% representation with failure probability at

most 5% is s = 8014.
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Figure 4.3: Simulated failure probability against log sample size with ¢ = 15%.
The smallest sample size to provide 15% representation with failure probability
at most 5% is s = 1787.
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Figure 4.4: Simulated failure probability against log sample size with ¢ = 25%.

The smallest sample size to provide 25% representation with failure probability
at most 5% is s = 689.
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Chapter 5

Conclusion

5.1 Summary and evaluation

Initially in Chapter 2, we discussed the MWV and PB theory, including the un-
derlying voting models, fairness properties for each type of election, and existing
algorithms that can guarantee these fairness properties. In Chapter 3, we then
moved on to discuss an extension of the PB model in which projects are assigned
some position on a one-dimensional interval, such that any winning set of the
election cannot include two projects that overlap on this interval. We showed in
Section 3.1 that guaranteeing any fairness property for this model is at least as
hard as providing it for the standard model and that some fairness properties
for the standard model are unsatisfiable for the interval model. We then went on
to show in Section 3.1.1 that there exists a pseudo-polynomial time algorithm,
and then a fully polynomial time algorithm, for utilitarian welfare optimisation
in the interval PB model. The algorithms were then implemented and tested in
Python 3 against both random and partially real-world data, and in Section 3.1.2,
it was demonstrated that the practical performance of the algorithms matched
the proven runtimes, and showed the applicability of the algorithms to real-world
elections. In the interval model, we then went on to show in Section 3.2 that if
we allow each project to have a set of possible locations on the interval that it

could be implemented at, then the conflict graph of the election has unbounded
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treewidth, even with a bounded number of locations per project and a bounded
number of overlaps per project location. In fact, we showed that the problem of
utilitarian welfare maximisation in this setting is N/P-hard.

In Chapter 4, we then investigated the scenario in which we obtain partial in-
formation about the electorate’s preferences through random sampling. We first
discussed the MWV scenario in Section 4.1. A subclass of fairness properties called
monotonic justified representation was defined, and it was shown that MWV-JR,
MWV-PJR, and MWV-EJR are all forms of monotonic justified representation.
We then provided a general approximation scheme for forms of monotonic justi-
fied representation, so that for any ,6 > 0, we can give the sample size required
to achieve an ¢ approximation of representation with probability at least 1 — 4.
We then proved a tighter bound for MWV-JR and also provided a bound for util-
itarian welfare optimisation. Similar techniques were then used to prove bounds
on the required sample size to provide approximate PB-EJR and PB-PJR rep-
resentation for the PB scenario in Section 4.2. Finally, using real-world election
data taken from Pabulib (Stolicki et al., 2020), we simulated taking samples of
the voters in this election, and in Section 4.2.1, we gave evidence for the empir-
ical correctness of the bounds proven and showed the practical applicability of

the methods derived.

5.2 Further open problems

There are several different possible directions for future work, which we shall now

discuss.

5.2.1 Higher dimensional project conflicts

In Chapter 3, we consider only conflicts between projects that overlap in the one-
dimensional interval. However, we could further extend this to the scenario where

projects are instead represented by hyperrectangles of dimension n in [0, 1]™,
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where two projects conflict if they overlap in this space. The two-dimensional
case has applications for PB; we could consider the land in a city as the [0, 1>
space, and the projects to be rectangular plots of land in the city, with the
objective of achieving some fairness property subject to no two projects using the
same piece of land. This is at least as hard as the one-dimensional case since we
can always embed any one-dimensional PBIC election into a higher-dimensional
space. Furthermore, for the two-dimensional case and above, the conflict graph
is no longer necessarily an interval graph, or even chordal: we can construct a
simple 4-cycle as shown in Figure 5.1. This means that we cannot apply most of
the algorithms discussed in Section 3.1.1. The algorithm for bounded treewidth
conflict graphs presented by Pferschy and Schauer (2009) is not immediately ruled
out, but intuitively it feels unlikely that higher-dimensional conflict graphs have
bounded treewidth, even under strict conditions on the degree of each project in

the conflict graph.

Figure 5.1: An illustration of the projects of a two-dimensional PBIC election
where the conflict graph is not chordal. Each rectangle corresponds to a project’s
location in [0, 1]2.
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5.2.2 Allowing multiple projects at a particular point on
the interval

For certain settings, we may want to allow projects to overlap on the interval.
If we consider the scenario discussed in Section 3.1.3.3, we may be able to have
multiple projects “active” at the same time. Perhaps we have h allotments that
can grow different crops at each time, so in this case we would allow at most h
different projects to be active at any point on the interval instead of just 1. We
could extend this further and define each project as having some numerical “load”
value which potentially differs for different projects. A valid winning set would
then require that the sum of the loads of the winning projects at each time point
be at most some capacity value, in addition to requiring that the total cost of the
projects be within the budget. The literature of interval scheduling with multiple

machines may be useful here.

5.2.3 Improved sampling bounds

The empirical evaluation of the sampling bounds derived in Section 4.2.1 suggests
that tighter bounds may be possible, so that we can guarantee a smaller value of
¢ for any sample size s and failure probability §. There are tighter bounds for the
hypergeometric distribution, but they are harder to manipulate mathematically.
For example, Chvatal (1979) provides a tighter bound in terms of the Kullback-
Leibler divergence

1—a

1-0b

D(a|b) = alog% +(1-a)log

Using this bound, we can prove that

P <ZS(B> < (ZV(B) _t) S) < PP

n

25t and so is a strictly tighter bound than

This can be shown to be at most e~
what we achieve; however, the Kullback-Leibler divergence is not easily manipula-

ble in the contexts that we use it in, such as Theorem 4.8. However, for a specific
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election, if we have reasonable bounds on Z"T@, then we could compute bounds on

D (ZVle) — t||ZVTSB)) that could be used to potentially provide improved sample

size bounds.

5.3 Personal reflection

I would like to conclude by making some final remarks on my own personal ex-
perience. This dissertation has challenged me greatly; for example, the process
of deriving the general sampling bounds for monotonic justified representation in
the context of MWV elections was particularly demanding. The derivation of the
bounds in Section 4.1 involves bounding the error between the number of voters
who vote with ballot type B within the whole population and within the sample,
for every ballot type B present in the whole population. However, in the develop-
ment of this dissertation, I attempted to bound the error for many other groups
of voters to obtain a similar proof of a much tighter bound, with little success.
To overcome this, I realised that instead of aiming directly for a tight bound,
if I instead prove a general looser bound, I may then be able to prove a tighter
bound from that foundation. This led to the development of Theorem 4.8, and
then the tighter bound shown in Lemma 4.10. The challenges I have tackled have
led to discoveries that I personally have found interesting, and so I have found the
process of developing this dissertation extremely rewarding. Completing this dis-
sertation has been an enjoyable experience for me, and an excellent opportunity
for me to further explore the concepts introduced to me in the “Computational
Game Theory” course, and apply the probabilistic techniques taught to me in the
“Probability and Computing” course to other areas of computer science. Research
is very rarely truly completed, and Section 5.2 reflects the possible future direc-
tions of the work I have begun, but I am happy with the theoretical work and

the results I have presented in this dissertation.
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Appendix A

Source code extracts

This chapter contains an extract of the core code described in the dissertation.
Some code, such as code to read and write Pabulib files, has not been included, but

can be found at http://github. com/DrewSpringham/ParticipatoryBudgeting.

A.1 PB with conflicts on interval

A.1.1 election_instance.py

Listing A.1: Implementation of PBIC projects.

1| class Project:
2 nmnn
3 Defines a locational project
4 nimn
5 def  init__ (self, start, size, cost):
6 nnn
7 Creates a locational project
8 :param start: Start position on the interval
9 :param size: The size (width) of the project
10 :param cost: The cost of the project
11 nnn
12 self.start = start
13 self.size = size
14 self.cost = cost
15
16 def  repr  (self):
17 return {start}/{end}/{cost}’ . format(start=self.start, end=self.end, cost=self.cost)
18
19 @property
20 def end(self):
21 return self.start + self.size
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Listing A.2: Implementation of PBIC election.

class Election:
_approvals_by project = None

def  init _ (self, voters, projects, approvals, election id=None, budget=1):
nmnn
Creates an election
:param election_id: An identifier for the election. Optional, but useful for testing
:param voters: A set of voters
:param projects: A set of Projects
:param approvals: A dict, indexed by voters and containing set of Projects as values
:param budget: The budget of the election

nimnn

self.approvals = approvals
self.voters = voters
self.projects = projects
self.budget = budget
#1If we don’t have an id, create a random 64 length string
if election id is None:
self.election id = ".join(random.choice(string.ascii letters) for i in range(64))
else:
self.election id = election id

@property
def approvals by project(self):
nnn
Generates a dictionary that takes projects to the total number of voters that approve
it. Dictionary is cached, so only generated once
rreturn: dictionary that takes projects to the total number of voters that approve it.
nnn
if self. _approvals by project is not None:
return self. approvals by project
else:
total project approval = defaultdict(int)
# Iterate over voters and add one to the count of each project the voter approves
for v in self.voters:
for p in self.approvals|v]:
total project approval[p] += 1
self. approvals by project = total project approval
return total project approval
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A.1.2 helpers.py

Listing A.3: Implementation of correctness testing functions.

1 def verify outcome(E, W):

2 nmnn

3 Check that a winning set if valid for E

4 :param E: An election

5 :param W: A subset of projects of E

6 :return: Bool indicating if W is valid for E

7 nmnn

8 # if W is over budget, it is not valid

9 if sum([p.cost for p in W]) > E.budget:
10 return False
11 # For each pair of projects, check they dont overlap. Could be more efficient in this
12 #but don’t need to be
13 for pin W:
14 for q in W:
15 ifpl=q:
16 # Projects overlap iff one’s start exists within the others interval
17 if g.start <= p.start <= g.end or p.start <= q.start <= p.end:
18 return False
19 return True
20
21
22| def check optimality(E, W):
23 nmnn
24 Brute force check the utilitarian welfare optimality of W
25 :param E: An election
26 :param W: A winning set for E
27 creturn: if Wis utilitarian welfare optimal
28 nmnn
29 max_approvals = 0
30 # For every possible subset of projects
31 for s in powerset(E.projects):
32 # If the subset would be a valid outcome
33 if verify outcome(E, s):
34 # Check that it does not achieve more utility than our winning set
35 total approvals = sum([E.approvals by project[v] for v in s])
36 if total approvals > max_approvals:
37 max_approvals = total approvals
38 achieved value = sum([E.approvals by project|p| for p in W])
39 return max approvals == achieved value
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Listing A.4: Implementation of computing the preceding project in a list ordered
by end position.

def compute preceding projects(P):
mnn
Compute a map from projects to the index of the project that lies wholly to the left of it
:param P: The set of projects sorted by end point
:return: A dictionary from projects to index of project that lies wholly to the left of it
mnn
m = len(P)
prec_projects = {}
for j in range(m + 1):
found = False
# Could make this more efficient with a binary search since P is sorted by end point,
#but don’t need to. Iterate backwards from project j until we find the project that lies
#wholly to the left of it, so that projects end is before project i’s start
for k in range(j — 1, —2, —1):
if P[k].end < P[j — 1].start:
prec_ projects[j] = k
found = True
break
# If we don’t find it, no project lies to the left of it, so we assign it index —1
if not found:
prec_ projects[j] = —1
return prec_ projects
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A.1.3 standard_interval_knapsack.py

Listing A.5: Implementation of standard knapsack dynamic programming table
generation.

def interval knapsack table(E: Election):
nmn
Compute the knapsack table for E using the standard knapsack table format: rows
representing how many projects we are considering, columns representing weight limit
:param E: The election
sreturn m: the (partial) knapsack table, with sufficient entries filled to compute optimal
project set
nimn
# number of projects
n = len(E.projects)
# Projects asc. sorted by end point
P = list(sorted(E.projects, key=lambda p: p.end))
W = E.budget
# set up table
m = [[None for _ in range(W + 1)] for _ in range(n + 1)]
# If we consider no projects, the best utility we can achieve is 0, so weight is irrelevant
for w in range(W + 1):
m[0][w] =0
# We compute table entries on demand instead of the whole table, so we set up a stack
# we wish to compute the (n, W) entry, as this corresponds to finding the best utility from
all n projects and weight limit of W
to_compute = [(n, W)]
# We compute for every project p the project q whose endpoint is furthest to the right of
p and not overlapping with p
prec_ project = compute preceding projects(P)
# We shall stop once we have computed all table entries we need to compute
while len(to compute) > 0:
i, w = to_ compute.pop()
proj index =i—1
proj = P[proj_index]
wi = proj.cost
# prec_index is the index of P of the precding project
prec_index = prec_ projectli]
# if, for this weight limit w, we could ever include the i’th project in the set, the
optimal value is the same as not considering project 1
if wi > w:
# we may not have already computed this value, so we’ll put the current (i,w)
back on the stack and add the computation of (i—1,w) on the stack
if m[i — 1][w] is None:
to__compute.append((i, w))
to__compute.append((i — 1, w))
else:
mfilfw] = mfi — 1w
else:
util = E.approvals by project[proj]
if m[i — 1]|[w] is not None and m|prec_index + 1|[w — wi| is not None:
m[i][w] = max(m[i — 1][w], util + m[prec_index + 1][w — wi])
else:
# We can’t compute (i,w) yet because some computation we depend on has
not been computed, so we add it back to the stack so we can come back to it later
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45 to__compute.append((i, w))

46 if m[i — 1][w] is None:

47 to__compute.append((i — 1, w))

48 if m[prec_index + 1][w — wi| is None:

49 to__compute.append((prec_index + 1, w — wi))
50 return m

Listing A.6: Implementation of reversed knapsack set generation from the dy-
namic programming table.

1| def from table(E, P, T):

2 mnimn

3 Gets the project set from the partially filled dynamic programming table
4 :param E: An election

5 :param P: The project set of P ordered by end point

6 sparam T: The partially filled dynamic programming table for E

7 ‘return:

8 nimn

9 proj_set = set()

10 i = len(E.projects)

11 w = E.budget

12 #at each iteration, we look if we should include item i to the project set given our current
weight limit w

13 while i > 0:

14 wi = P[i — 1].cost

15 prec_projects = compute preceding projects(P)

16 k = prec_ projectsli] + 1

17 # if the weight of project i is greater than our remaining weight limit, then we can’t

add it, so we then look at project i—1. Also, if the utility we get from not adding it and using
all items up to i—1 is more than we get from adding it and only using items up to k, we won’t

add it

18 if w < wior T[i — 1][w] > T[k|[w — wi] + E.approvals_by project[P[i — 1]]:

19 i=i—-1

20 # if we can add it and we get more utility from adding it, we’ll add it, and update
the weight limit

21 else:

22 proj_set.add(P[i — 1])

23 i=k

24 w=w — wi

25

26 return proj_set

27

28

29| def interval knapsack projects(E):

30 nimn

31 Create the optimal project set for election E

32 :param E: An election

33 creturn: A subsset of projects of E that optimise utiliatrian welfare for E

34 nimn

35 #Generate the dynamic programming table

36 T = interval knapsack table(E)

37 P = list(sorted(E.projects, key=lambda p: p.end))
38 proj set = from table(E, P, T)

39 return proj set
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A.1.4 reverse_interval_knapsack.py

Listing A.7: Implementation of reversed knapsack dynamic programming table
generation.

def interval knapsack table reversed(E: Election):
nmn
Creates the reverse knapsack dynamic programming table
:param E: An election
:return T upper: the dynamic programming table T, and upper which is the max utility
achievable with budget b
nmn
m = len(E.projects)
max_total approvals = sum([E.approvals by project[p| for p in E.projects]|)
# Projects sorted by end point
P = list(sorted(E.projects, key=lambda p: p.end))
b = E.budget
# set up table
T = [[None for _ in range(1l + max_total approvals)| for _ in range(m + 1)]
# Compute dict indexed by projects p of last project that lies wholly before p on interval
prec_ projects = compute preceding projects(P)
# need infinite weight limit to achieve any utility with no items
for u in range(l + max_total approvals):
T[0][u] = math.inf
# can achieve o utility with any number of projects
for i in range(m + 1):
T[i][0] = 0
lower bound = 0
upper bound = max_total approvals
# binary search style loop
while lower bound < upper bound:
r = (lower bound + upper bound + 1) // 2
to__compute = [(m, )]
# Computing table elements on demand, so we can get the value of T[m][r]
while len(to_ compute) > 0:
i, u = to_ compute.pop()
# Value of item 1
vi = E.approvals by project[P[i — 1]]
# weight of item i
wi = P[i — 1].cost
# the index of last project that lies wholly to left of project i (—1 if doesn’t exist)
t = prec_ projects]i]
# if we include project i, to make utility of u, the rest of the projects must
# contribute u—vi, 0 if u—vi<0
needed util = max(u — vi, 0)
# if we've already compute the table elements we need, we can compute Tfi][u]
if T[t + 1|[needed util] is not None and T[i — 1|[u] is not None:
T[i][u] = min(wi + T[t + 1][needed util], T[i — 1][u])
else:
# we need to compute prerequisite table entries
to__compute.append((i, u))
if T[t + 1|[needed util] is None:
to_compute.append((t + 1, needed util))
if T[i — 1][u] is None:
to__compute.append((i — 1, u))
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# given T[m][r], we compare to the budget to see if we have spare capacity to achieve
#more utility, or if we are over capacity
if T[m]|[r] > b:
upper _bound =r — 1
else:
lower bound = r
return T, upper bound

Listing A.8: Implementation of reversed knapsack set generation from the dy-
namic programming table.
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def from table reversed(E, P, T, u):
nimnn
Generates the set of projects that achieves u within E’s budget, given a sufficiently filled
dyn. prog. table
:param E: An election
:param P: The projects of E ordered by end point
:param T: The reverse knapsack dynamic programming table for E
:param u: the optimal utility we have found that we can achieve for E
;return proj_set: A subset of E.projects that achieves utility u within E’s budget
nmn
i = len(E.projects)
proj set = set()
while i > 0:
wi = P[i — 1].cost
vi = E.approvals by project[P[i — 1]]
prec_ projects = compute preceding projects(P)
t = prec_ projects|i] + 1
needed util = max(u — vi, 0)
#1If item i is not in an optimal set, then adding item i mean that we would need a
larger weight limit to reach the same utility, so therefore if we add item i and the weight limit
we need from the remaining items is not more than the weight limit we require from the first
1—1 items, then item i is in the optimal set
if T[i — 1[u] < wi + T[t][needed util]:

i=i—1

else:
proj_set.add(P[i — 1])
i=t

u = needed util
return proj set

def interval knapsack projects reversed(E):
nimn
Generates the optimal winning set for election E
:param E: An election
:return proj_set: The optimal project set for E
nmn
# Generate the dynamic programming table
T, best_util = interval knapsack table reversed(E)
P = list(sorted(E.projects, key=lambda p: p.end))
# Get the project set from the table
proj_set = from table reversed(E, P, T, best _util)
return proj set
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A.1.5 random_instances.py

Listing A.9: Implementation of the random instance generation.

def random_project size then start(min_cost, max_cost):

nmnn
Create a random project by selecting a random size and then start point
sparam min_ cost: A minimum cost of the project
rparam mazx_ cost: A maximum cost of the project
creturn: A random project with the parameters given
nnn

size = random.random/()

start = random.uniform(0, 1 — size)

if min_cost == max_ cost:

cost = min_cost
else:

cost = random.randint(min_cost, max__cost)
return Project(start, size, cost)

def random_project(min _cost, max_cost):
return random project size then start(min_cost, max cost)

def random approvals(voters, projects):

mnn

Generate a random approval dict given the voters and projects

:param voters: Set of voters

:param projects: Set of projects

:return: Random approval function

mnn

approvals = {}

for v in voters:
num = random.randint(1, len(projects))
approvals[v] = random.sample(projects, num)

return approvals

def random _instance(N, p):
nimn
Generates a random election with at N voters and p projects
:param N: Number of voters for the election
:param p: Number of projects for the election
:return: An election with those parameters
mnimn
voters = [i for i in range(1, N + 1)]
projects = ]|
for i in range(p):
#generate p random projects
projects.append(random__ project(5000, 100000))
approvals = random _approvals(voters, projects)
#find average cost of project
average cost = sum([P.cost for P in projects]) / p
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51 #select the budget randomly to be between the average cost of a single project and the
sum of all the costs

52 budget = ceil(average cost * random.uniform(1, p))

53 E = Election(voters, projects, approvals, None, budget)

54 return E

Listing A.10: Implementaton of the random instance correctness checking.

1] def random_instances(k, min N, max N, min p, max_p):
2 nmnn
3 Generate k random election
4 :param k: The number of elections to generate
5 :param min_ N: The minimum number of voters in each election
6 :param max_ N: The mazx. number of voters in each election
7 :param min_ p: The min. number of projects in each election
8 :param max_p: the max. number of porjects in each election
9 nmnn

10 for i in range(k):

11 N = random.randint(min_ N, max_N)

12 p = random.randint(min_ p, max_p)

13 yield random instance(N, p)

14

15| def random_check(N, p, rule):

16 nimn

17 Verify that the elction rule is correct on a random instance

18 :param N: The number of voters in the random instance

19 :param p: The number of project in the random instance

20 :param rule: The rule to test

21 nimn

22 E = random_ instance(N, p)
23 ik result = rule(E)

24

25 if not check optimality(E, ik result):

26 pickle.dump(E, open("bad _instance.p", "wb"))

27 raise ValueError("Random checks failed, check pickle file.")
28

29

30[ def random  checks(k, rule, min N=50, max N=1000, min p=>5, max_ p=15):
31 nimn

32 Test an election rule k times for correctness against random instances
33 :param k: The number of tests to run

34 :param rule: The election rule

35 :param min_ N: The min number of voters in the test
36 :param max_ N: the mazx number of voters in the test
37 sparam min_ p: The min number of projects in the test
38 :param max_p: The max number of porjects in the test
39 nmnn

40 for in tqdm(range(k)):

41 N = random.randint(min_ N, max_N)

42 p = random.randint(min_ p, max_p)

43 random__check(N, p, rule)

44

45| def main():
46 random_ checks(1000, interval knapsack projects)
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A.1.6 real_instance.py

Listing A.11: Implementation of the real election data correctness testing.

1] def real instances(up_ to=None):
2 nmnn
3 Generator for real instances
4 param up_to: An optional limiter to limit the number of instances to return
5 nimn
6 directory = "../tests/pb_files loc/"
7 files = os.listdir(directory)
8 if up to is not None:
9 files — files[:up _to]
10 for filename in tqdm(files):
11 f = os.path.join(directory, filename)
12 print(f)
13 # checking if it is a file
14 if os.path.isfile(f):
15 E = convert _to_election(f)
16 yield E
17
18
19| def real checks(rule):
20 for E in real instances():
21 ik result = rule(E)
22 if not check optimality(E, ik result):
23 raise ValueError(f"Real checks failed, check file {E.election_id}")
24
25
26| def main():
27 real checks(interval knapsack projects reversed)
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A.1.7 Dbenchmarking.py

Listing A.12: Implementation of benchmarking of election rules.

def generate(data_source, rules):

mnn

Benchmarks the time election rules take for different elections, and saves the data
:param data_ source: A string of which data source to use. Either "random" or "real”

:param rules: a list of tuples of rules and rule ids
nimn

elections = {’election id”: [], "voters’: [], 'projects’: [|, ’budget’: [}
times = {’election_id’: [|, 'rule_id’: [|, ’time’: [|}
if data_source == ’random’:
source = random __instances(10, 1000, 300000, 3, 70)
elif data_source == ’real”:
source = real instances()
else:
raise ValueError("Unknown data source!")
try:

print("Starting testing")
for n, E in enumerate(source):

election id = E.election id
print(f"Testing election {n}")
elections|’election id’].append(election_ id)
elections|'voters’].append (len(E.voters))
elections|'projects’].append(len(E.projects))
elections[’budget’].append (E.budget)
for (rule, rule id) in rules:
# We time how long it takes for a rules to compute a winning set
start = timeit.default timer()
ik result = rule(E)
end = timeit.default timer()
time = end — start
print(f"Finished on rule {rule id}")
times|[’election id’].append(election id)
times['rule_ id’|.append(rule_id)
times['time’].append (time)
finally:
#We save the data to a csv file for external analysis
election frame = pd.DataFrame(elections)
res_frame = pd.DataFrame(times)
election frame.to _csv(f’bench elections {data source}.csv’, mode="a’, index—=
False, header=False)
res_frame.to_csv(f’bench results {data_source}.csv’, mode=’a’, index=False,
header=False)
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A.2 Sampling
A.2.1 basic_single_ejr.py

Listing A.13: Implementation of the basic single approval election EJR algorithm.

def basicejr(E: Election):

nmn

Generates the minimal EJR project set for a single approval election

:param E: A single approval election

:return Wi A minimal EJR winning set for E

mnimn

if not is_single(E):

raise ValueError("Election needs to be single")

# For each project, check if the number of people that approve is sufficiently large such
that exclduing the

# project would make the project set no longer EJR

W=|p for p in E.projects if E.approvals by project|p] >= p.cost / E.budget * len(E.
voters)]

return set(W)
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A.2.2 sampling.py

Listing A.14: Implementation of helper functions for sampling simulation.

1] def is_single(E):

2 nmnn

3 Check if an election is a single approval election

4 :param E: An election

5 :return: If the election is a single approval election

6 nimn

7 single = True

8 # Check that every voter only votes for a single candidate

9 for v in E.voters:
10 if len(E.approvals|v]) != 1:
11 single = False
12 return single
13
14
15| def check EJR_single approval(E, W):
16 mnimn
17 For an single approval election, compute the true EJR error of the project set W
18 param E: An election
19 param W: A winning set of projects
20 rreturn true__eps: true_eps which is the max value of eps over each project p such that p

is not in W and the number of voters of p is (1+eps)(cost(p)*n/b)

21 mnimn

22 true eps = 0
23 for p in E.projects:

24 G _size = E.approvals by project[p]

25 req_size = p.cost * len(E.voters) / E.budget

26 if G_size >= req_size and p not in W:

27 true eps = max(true_ eps, G_size / req_size — 1)
28 return true_eps

29

30

31| def create subelection(E, s):

32 nmn

33 Create a new election derived from E with a sample of the voters of size s
34 :param E: An election

35 :param s: A sample size of the voters

36 :return: A new election derived from E

37 nmn

38 S = set(random.sample(list(E.voters), s))
39 subapprovals = E.approvals.copy()

40 # Remowve all voters not in the sample S
41 for v in E.voters:

42 if v not in S:

43 del subapprovals[v]

44 subelection = Election(S, E.projects, subapprovals, None, E.budget)
45 return subelection
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Listing A.15: Implementation of sampling simulation.

def test election(E, source name, runs, max_eps, eps_step per_ unit, delta):
elections = {’election id’: [|, "voters’: [|, 'projects’: [|, ’budget’: [|, 'min_cost’: [|}
results = {election id’: [|, 'rule id” [], 'run_id’: [], 'delta’: [|, 'eps’: [|, 'real eps’: [|}
#wrap in try so we can save current results at any timr

try:

#only works if election is single
if is_single(E):

min_cost = min([p.cost for p in E.projects|) + 0.0001
elections[’election id’].append(E.election _id)
elections|'voters’].append(len(E.voters))
elections|’projects’].append(len(E.projects))
elections|’budget’].append (E.budget)

elections|'min_ cost’].append(min_ cost)

m = len(E.projects)
for eps_1iin range(max_eps * eps_step per unit):
#eps_ i runs from 0 to max_ eps* number of steps per unit of epsilon, so to

get a value of eps we transform

finally:

eps = (eps_1i+ 1) / eps_step per unit
#get sample size from bound
s = ceil(E.budget #* 2 x log(m / delta) / (2 % eps ** 2 * min_cost *x* 2))
# only try to sample if sample size is less than whole population
if s <= len(E.voters):
print (f"EPSILON: {eps}\n")
print(f"SAMPLE SIZE {s}")
#run this configuration runs number of times
for _ in trange(runs):
subelection = create_ subelection(E, s)
W = basicejr(subelection)
real eps = check EJR single approval(E, W)
results[’election id’].append(E.election id)
results['rule id’].append("BasicJR")
#choose random id for run to make it easier to select a specific run
#in analysis
r_id=""join(random.choice(string.ascii letters) for _ in range(64))
results[Tun_id’|.append(r_id)
results['delta’].append(delta)
results|’eps’].append (eps)
results|'real eps’|.append(real eps)

#save the results once we finish or error (or keyboard interupt)

election frame = pd.DataFrame(elections)

res_frame = pd.DataFrame(results)

election_frame.to csv(f’elections {source name}.csv’, mode="a’, index=False,
header=False)

res_frame.to csv(f'results {source name}.csv’, mode="a’, index=False, header=

False)

def main(source_name, runs, max_eps, eps_step_ per_unit, delta):
f="./tests/pb_files/poland wroclaw 2015 from—>500.pb"
if source _name == "real":
source = real instances()
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elif source_name == "only":
source = [convert_to_election(f)]
elif source_name == "random":
source = random__instances(50, 1000, 300000, 3, 70)
else:
raise ValueError("Source name not defined")
for E in source:
test _election(E, source name, runs, max_eps, eps_step_ per_unit, delta)
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