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Chapter 1

Introduction

It is predicted that the increase in transistor density will start to slow down

around 2025, which means that Moore’s law is bound to end [3]. Then once, we

will reach the ultimate limitations of physics and engineering which will prevent

us from further increasing the performance of classical chips. To overcome this

limitation, we are investigating other ways of computation. Among many others,

one of the most promising paradigms is quantum computing.

Quantum computing is the use of quantum phenomena such as superposition

and entanglement to perform computation. Computers that perform quantum

computations are known as quantum computers. Problems related to such devices

are in the scope of many studies of today as they could solve specific problems

exponentially faster than classical computers. For example, Shor’s algorithm

presents us with a way to factorise large numbers efficiently, thus, beating many

of the cryptographic systems in use today [4]. Furthermore, the simulation of

complex molecules is not possible momentarily; however, a quantum computer

could tackle such a task, thus, helping researchers design new drugs [5].

Clifford computation is a simple yet particularly important fragment of quantum

computation with some differentiating properties. For example, the Gottes-

man–Knill theorem states that any Clifford state can be efficiently classically

1



CHAPTER 1. INTRODUCTION

simulated [6]. Although Clifford computation does not give us a computational

advantage over classical computation, it is still a widely used part of quantum

computing, as many quantum algorithms and protocols rely only on Clifford gates.

For example, only Clifford unitaries are required to implement several quantum

protocols. Just to name a few, we can implement superdense coding [7], quantum

teleportation [8], and quantum key distribution [9] using only Clifford gates.

Most theory of quantum computation has so far focused on qubits; however, in

recent years, there has been a surge of interest in studying quantum computation

using d-dimensional systems, called qudits. For example, the qudit version of

several quantum algorithms has been presented in Ref. [10]. We can not only

implement the same quantum algorithms using a higher dimensional system but

also enhance some, that were originally designed for qubits. For instance, qudits

have some advantages in fault-tolerant quantum computing [11]. Also, there is a

benefit to quantum communication using higher dimensional systems [12].

While qudit-based quantum computation sounds promising, it would fail to

offer an alternative to qubits unless we were able to design and build such systems.

In recent years, qudit-based quantum computation has been realised in compet-

ing paradigms of quantum computation, such as ion traps [13, 14], photonic

devices [15], and superconducting devices [16, 17, 18, 19].

There are many ways to express quantum computation such as linear al-

gebra, the quantum circuit model, or a quantum turning machine. The scope of

this thesis is a relatively new language called the ZX-calculus, a graphical lan-

guage for reasoning about quantum computation. It was first introduced by Bob

Coecke and Ross Ducan as an extension of categorical quantum mechanics [20].

The ZX-calculus is used in many areas of quantum computing, for example, in

measurement-based quantum computing [21, 22, 23], error correcting codes [24,

25, 26], quantum circuit optimisation [27, 28, 29], quantum natural language

processing [30, 31], and it can also be used in the context of quantum machine
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learning [32]. While the ZX-calculus is a rigorous language actively studied by

many in academia, it is also an intuitive framework making it an ideal candidate

for education.

Unlike the quantum circuit model, the ZX-calculus gives us tools to reason

about quantum computation. It has built-in rewrite rules which allow us to

transform one diagram into another while preserving the underlying linear map.

Although these rules are an essential and powerful part of the calculus, they also

give us a challenge to solve, completeness : The ZX-calculus is complete if, for

two diagrams representing the same linear map, there is a sequence of rewrites

that transforms one diagram into the other. The first completeness result was

shown for the Clifford fragment in Ref. [33], then it was shown for the Clifford+T

fragment in Ref. [34], and finally, an extended version of the calculus was shown

to be universally complete [35]. In addition to the completeness results regarding

the qubit ZX-calculus, there have been papers dealing with higher-dimensional

systems. For example, the completeness of the qutrit Clifford fragment has been

shown in Ref. [36] and for odd prime dimensional qudits, completeness has been

shown in Ref. [2].

A rewrite rule that some completeness results rely on is called local comple-

mentation. This rewrite rule allows us to modify Clifford circuits in such a way

that we can remove some parts of our diagram, resulting in a denser but smaller

one. Another powerful rule that we can use to transform Clifford diagrams is

called pivoting. Loosely speaking, by applications of these two rewrite rules, one

can transform any Clifford circuit into one in a pseudo-normal form. If we trans-

form the resulting diagram a bit further, we can obtain a unique normal form.

Then, this unique normal form provides us with an obvious way to prove the

completeness of the ZX-calculus. It is worth mentioning that further to normal

forms, local complementation and pivoting are also used in other areas such as

in optimisation algorithms.
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CHAPTER 1. INTRODUCTION

A particular normal form, which we call the AP-form in this thesis, that has

been proposed in Ref. [37] is the core focus of this thesis. This normal form

has some interesting applications. For example, it was shown that this form can

be used to efficiently weekly simulate Clifford circuits [38]. Also, this normal

form has been used to show the completeness of the Clifford fragment of the

ZX-calculus in the Quantum Software course. Lastly, Ref. [23] also presents this

form in the ZX-calculus and also proves the completeness of the calculus using it.

Research regarding the ZX-calculus has also mostly focused on two-dimensional

systems, e.g. qubits. Therefore, many transformations that are extensively used in

the qubit ZX-calculus have not yet been presented for the qudit case, for example,

local complementation and pivoting. Since the AP-form is constructed using the

two rules mentioned above, its qudit version has not yet been presented either.

Moreover, many optimisation algorithms designed in the qubit ZX-calculus can-

not be implemented because of the lack of local complementation and pivoting.

In this thesis, we use a slightly modified version of the calculus presented

Ref. [2]. This calculus is designed for odd prime dimensional qudits, and the

modification is related to the representation of scalars. Using this calculus, we

present and prove the correctness of the qudit version of local complementation

and pivoting for odd prime dimensions. Moreover, we present the AP-form and

its unique variant, the reduced AP-form, and show how to transform any Clifford

circuit into these normal forms in the calculus. Furthermore, we present the qudit

variant of the efficient week simulation algorithm of Clifford states presented in

Ref. [38]. Lastly, we also show an alternative completeness proof of the qudit

ZX-calculus for odd prime dimensions using the reduced AP-form. While the

completeness of the above-mentioned calculus has already been shown in Ref. [2],

we aim to present a completeness proof that can be more accessible and easier to

implement in practice.
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Chapter 2

Preliminaries

In this chapter, we provide enough background to make the thesis self-contained.

First, we introduce quantum computation, how it can be represented using lin-

ear algebra, what the Clifford fragment is, and a higher dimensional model of

quantum computation using qudits. Then, we look at a graphical language for

expressing and reasoning about quantum computation called the ZX-calculus.

Using this graphical language, we explore how to represent the above-mentioned

Clifford fragment and qudit quantum computation.

2.1 Quantum computation

Quantum computation is the use of quantum phenomena, such as superposition

and entanglement, to perform computation. There are many ways to express

quantum computation, be it low- or higher-level. For example, there are low-

level languages like pure linear algebra or somewhat higher-level languages like

the ZX-calculus. Subsequently, we introduce quantum computation using linear

algebra which is a lower-level and more traditional language in the context of

quantum computing.
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CHAPTER 2. PRELIMINARIES

2.1.1 Basic concepts

This section introduces the basic concepts and mathematical formulation of quantum

computation, starting with what qubits are, how we can visualise and manipu-

late them, the quantum circuit model with some basic examples, and lastly, the

phenomenon called quantum entanglement.

The qubit

The elementary unit of information in quantum computation is called the qubit

or quantum bit – the quantum version of the classical binary bit [39]. Unlike a

bit that can be in one state, 0, or the other, 1, a qubit can be in any coherent

superposition of its basis states. Superposition is a fundamental principle of

quantum mechanics that quantum states can be added together (‘superposed’)

and the result will be another valid quantum state The computational basis states

are orthonormal vectors in a 2-dimensional vector space and are denoted |0⟩ and

|1⟩. They represent the following values:

|0⟩ =
[︃
1

0

]︃
and |1⟩ =

[︃
0

1

]︃
.

We can also combine single qubit basis states to form product basis states. For

example, two qubits can be represented by the following product basis states:

|00⟩ =

⎡⎢⎢⎢⎣
1

0

0

0

⎤⎥⎥⎥⎦ , |01⟩ =

⎡⎢⎢⎢⎣
0

1

0

0

⎤⎥⎥⎥⎦ , |10⟩ =

⎡⎢⎢⎢⎣
0

0

1

0

⎤⎥⎥⎥⎦ , |11⟩ =

⎡⎢⎢⎢⎣
0

0

0

1

⎤⎥⎥⎥⎦ .

We use the abbreviation |ij⟩ := |i⟩ ⊗ |j⟩ where ⊗ is the tensor product operator.

The consequence of the usage of the tensor product is that n qubit product basis

states are represented as a 2n-dimensional vector.

Any (pure) quantum state |ψ⟩ can be represented as the linear combination
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2.1. QUANTUM COMPUTATION

of |0⟩ and |1⟩, that is

|ψ⟩ = α |0⟩+ β |1⟩

where α, β ∈ C are the probability amplitudes such that |α|2 + |β|2 = 1. These

amplitudes correspond to the likelihood of measurement outcomes. This means

that the probability of a measurement outcome |0⟩ is |α|2, and it is |β|2 for the

|1⟩ outcome.

Bloch sphere

At first, it may seem like there are four degrees of freedom in a quantum state

|ψ⟩ = α |0⟩+β |1⟩ as both α and β are complex numbers. However, the constraint

|α|2+ |β|2 = 1 removes one degree of freedom. Therefore, we can represent qubits

using an adequate coordinate system with three degrees of freedom. One option

is to use the Hopf coordinates for this matter, that is

α = eiδ cos
θ

2
, β = ei(δ+φ) sin

θ

2
.

Moreover, the global phase eiδ is unmeasurable for a single qubit that leaves us

with two degrees of freedom that we can represent as

α = cos
θ

2
, β = eiφ sin

θ

2
.

The above equation is a parameterization of the surface of a sphere, making it

an intuitive way to visualise single qubits. This representation is called the Bloch

sphere, that can be seen in Figure 2.1. The north and south poles of the Bloch

sphere correspond to the computational basis states |0⟩ and |1⟩, respectively.

Furthermore, we can represent any single-qubit (pure) quantum state on the

surface of the Bloch sphere.
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CHAPTER 2. PRELIMINARIES

x

y

z

φ

θ

|ψ⟩

|0⟩

|1⟩

Figure 2.1: The Bloch sphere represents single-qubit pure quantum states.

Quantum logic gates

We can manipulate single qubits using different gates, sometimes called operators,

such as the NOT gate (X) or the Hadamard gate (H). To describe how these

operators evolve quantum states we can provide a mapping that represents how

a gate changes each computational basis state. For example, the NOT gate acts

on the basis states as follows:

|0⟩ ↦→ |1⟩ , |1⟩ ↦→ |0⟩ .

This means that the NOT gate, as one would expect, clearly corresponds to the

classical NOT gate. The Hadamard gate is a bit more complicated as it maps

the two basis states into their uniform superposition, that is:

|0⟩ ↦→ |0⟩+ |1⟩√
2

, |1⟩ ↦→ |0⟩ − |1⟩√
2

.

Because these quantum states are used extensively in the field, the states |0⟩+|1⟩√
2

and |0⟩−|1⟩√
2

are usually denoted as |+⟩ and |−⟩, respectively. Furthermore, the |+⟩

states correspond to the unit vector on the x-axis of the Bloch sphere and the

|−⟩ state to its negative.

8



2.1. QUANTUM COMPUTATION

Since the computational basis states are represented as vectors, we can con-

veniently represent operators as matrices. For instance, the above examples cor-

respond to the following matrices:

X =

[︃
0 1

1 0

]︃
, and H =

1√
2

[︃
1 1

1 −1

]︃
.

We can verify, for example, that the NOT gate indeed acts on the basis states as

intended, since

[︃
0 1

1 0

]︃ [︃
1

0

]︃
=

[︃
0

1

]︃
and

[︃
0 1

1 0

]︃ [︃
0

1

]︃
=

[︃
1

0

]︃
.

There is a particular set of gates, called the Pauli gates, which is used in

many elementary quantum algorithms. These are the X, Y, and Z gates that

correspond to rotations around the x-, y-, and z-axis of the Bloch sphere by

π radians, respectively. These gates correspond to the Pauli matrices σx, σy,

and σz. Another important operation is the identity gate (I) that corresponds

to the identity matrix. Applying an identity gate to a state does not change

it, so I |ψ⟩ = |ψ⟩. A notable feature of the Pauli gates is that consecutive the

application of a Pauli gate two times equals the identity gate. The definition of

the matrix that the X gate corresponds to can be found above. The matrix form

of the rest of the Pauli gates and the identity gate are as follows:

Y =

[︃
0 −i
i 0

]︃
Z =

[︃
1 0

0 −1

]︃
I =

[︃
1 0

0 1

]︃

We can not only perform rotation around the axes by π radians but also

generalise such operations for arbitrary angles. Rotation gates that are essential

regarding this thesis are the α rotations around the z- and x-axis, which are,

9
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respectively:

RZ(α) = exp
(︂
−iα

2
Z
)︂
=

[︃
e−iα

2 0

0 ei
α
2

]︃
= ei

α
2

[︃
1 0

0 eiα

]︃

RX(α) = exp
(︂
−iα

2
X
)︂
=

[︃
cos

(︁
α
2

)︁
−i sin

(︁
α
2

)︁
−i sin

(︁
α
2

)︁
cos

(︁
α
2

)︁ ]︃
= e−iα

2

[︃
1 + eiα 1− eiα

1− eiα eiα

]︃

Single qubit gates that are also important besides the ones already mentioned

are the S and
√
X gates. The rotation gates and matrices corresponding to the

above-mentioned gates are as follows:

S = RZ

(︂π
2

)︂
=

[︃
1 0

0 i

]︃ √
X = RX

(︂π
2

)︂
=

1√
2

[︃
eiπ/4 e−iπ/4

e−iπ/4 eiπ/4

]︃

A useful rule related to single-qubit operations is the Euler decomposition. This

rule allows us to express any single-qubit gate as a z-rotation followed by an

x-rotation, and once again a z-rotation.

Further to single qubits gates, there are also operators acting on multiple

qubits. For example, there is a gate called the CNOT gate (CX) that applies

a NOT gate to the second qubit if the first, control qubit is in the state |1⟩.

Therefore, we can describe the CNOT gate as:

|00⟩ ↦→ |00⟩ |01⟩ ↦→ |01⟩ |10⟩ ↦→ |11⟩ |11⟩ ↦→ |10⟩ ,

or more conveniently

|x, y⟩ ↦→ |x, x⊕ y⟩ .

Note that the ⊕ is the exclusive or operator. The matrix corresponding to the

CNOT operator is

CX =

⎡⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎤⎥⎥⎥⎦ .
10



2.1. QUANTUM COMPUTATION

The circuit model

A quantum circuit is a widely used model for quantum computation, similar to

classical circuits, in which computation is a sequence of quantum gates, measure-

ments, and initializations of qubits to known values. It is a graphical model that

depicts qubits as wires and gates as boxes on the qubits. Most of the operators

are represented as boxes with their names written into the box. However, there

are some exceptions like the NOT gate which is represented the same way the

classical NOT gate is. We can also represent controls as black dots on a wire

connected to the controlled gate. That is, the NOT, the Hadamard, the
√
X, and

the CNOT gates are, represented respectively as follows:

H
√
X

When drawing a full quantum circuit, we have to specify the states of each

qubit. We do so by adding the state to the front of the wire. Furthermore, we

use a somewhat non-conventional notation: A multi-qubit state can be prepared

using braces on each qubit in the given state.

We can also represent a measurement as a box with an analogue measurement

display drawn inside it. The outcome of a measurement is stored in bits that we

represent in the model as a double, sometimes called classical wire. A classical

wire originates from a measurement box and it can be connected to a quantum

operation. Such connection translates to a classically controlled quantum opera-

tion. Circuits that use classically controlled quantum gates are called feed-forward

quantum circuits.

Quantum teleportation Using the model, we can conveniently describe how,

for example, the quantum teleportation protocol works. Quantum teleportation

is an algorithm for transferring quantum information from one place to another.

While one may think about teleportation as a way to transfer an object between

two locations, quantum teleportation can only transfer quantum information.
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Moreover, to transfer this quantum information, one needs to send classical in-

formation to the recipient; therefore, the transfer can not occur faster than the

speed of light. We can describe quantum teleportation using the quantum circuit

model as follows:

|ψ⟩ H

|Φ+⟩
|ψ⟩

In the above circuit, we begin with an arbitrary quantum state |ψ⟩ on the first

qubit; the second and third qubits are in the Bell-state. We apply the given

operations as depicted above, and thus the quantum state |ψ⟩ is transferred to

the last qubit.

Entanglement

In addition to superposition, another non-classical feature of quantum systems

is entanglement. Quantum entanglement is a phenomenon that occurs when

multiple qubits interact in such a way that the resulting quantum state of each

qubit can not be described independently of the others; that is, the qubits do not

act as individuals but as an inseparable whole. Therefore, quantum systems can

express higher correlation than it is classically possible. The simplest state that

demonstrates quantum correlation is called the Bell state, that is:

|00⟩+ |11⟩√
2

=:
⃓⃓
Φ+

⟩︁
and can be constructed as follows:

|0⟩ H

|0⟩

The Bell state is in an equal superposition of |00⟩ and |11⟩ meaning that

measuring the state yields |00⟩ or |11⟩ with 50% probability since
⃓⃓⃓

1√
2

⃓⃓⃓2
= 1

2
. The

12
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above statement means that if we prepare two qubits in the Bell state, separate

them, and measure one of them, we will know with certainty what outcome

the other qubit would yield upon measuring. The above result may not seem

surprising as a classical system could achieve the same behaviour by setting the

bits to the same value when interacting. The difference is that classical systems

have definite values for all observables, while quantum systems do not. In a

sense, quantum systems acquire a probability distribution for the outcomes of

a measurement, but this distribution changes or ‘collapses’ when measuring any

qubit that is part of the system. This effect occurs instantaneously such that no

information about the measurement outcome can be communicated to the other

qubit, assuming that information cannot travel faster than light.

2.1.2 Clifford gates

Recall that the X, Y, and Z gates are called the Pauli gates that correspond to

rotations of π radians around the x-, y-, and z-axis, respectively. The Pauli group

on 1 qubit, P1, is the matrix group consisting of the Identity matrix, the Pauli

matrices and the products of these matrices with the factors ±1 and ±i:

P1 = {±I,±X,±Y,±Z,±iI,±iX,±iY,±iZ}.

The Pauli group on n qubits, Pn, is the group generated by the elements of P1

applied to each of n qubits, or simply Pn = P⊗n
1 .

The group of automorphisms of the Pauli group is called the Clifford group

and is denoted as:

Cn = {U | UPU † = P, ∀P ∈ Pn}.

The elements of the Clifford group are known as Clifford gates. Alternatively,

the Clifford gates are those gates generated by compositions of the CNOT, the

Hadamard, and the S gates. The states we can produce by applying Clifford

13
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gates to the initial state |00 . . . 0⟩ are called Clifford states.

A differentiating property of Clifford states is that they can be efficiently clas-

sically simulated. This result is the content of the Gottesman–Knill theorem [6].

One implication of this theorem is that Clifford states and gates do not allow uni-

versal quantum computation (unless BQP = BPP) as that would indicate that

we can efficiently simulate arbitrary quantum systems.

Even though Clifford computation does not give us the computational ad-

vantage we may desire, it is still widely used in numerous tasks. For example,

we use it in error correcting codes, measurement-based quantum computing, and

several protocols such as quantum key distribution, quantum teleportation, or

superdense coding.

2.1.3 Quantum computation using qudits

Qudits are a d-level alternative to the unit of quantum information to the con-

ventional 2-level qubits. This means that we have |0⟩, |1⟩, |2⟩, . . ., |d− 1⟩ as

our computational basis states instead of just |0⟩ and |1⟩. Consequently, qudits

provide a larger state space to store and process information. They can also

provide a reduction of the circuit complexity and enhancement of the algorithm

efficiency.

To visualise a single-qudit, instead of the Bloch sphere, we use a torus on

which the basis states are the d roots of unity in a slice. Furthermore, we have

states similar to |+⟩ around the torus. An example can be seen in Figure 2.2.

Most theory of quantum computation has so far focused on qubits; however,

in recent years there has been a recent surge of interest in studying quantum

computation using d-dimensional systems, called qudits. For example, the qudit

version of several quantum algorithms has been presented in Ref. [10]. We can not

only implement the same quantum algorithms using a higher dimensional system

but also enhance some, that were originally designed for qubits. For instance, we

14



2.2. THE ZX-CALCULUS

Figure 2.2: Some of the qudit stabilizer states on the unbiased torus.

can enhance fault-tolerant quantum computing using qudits [11]. Also, there is

a benefit to quantum communication using higher dimensional systems [12].

While qudit-based quantum computation sounds promising, it would fail to

offer an alternative to qubits unless we are able to design and build such com-

puters. In recent years, qudit-based quantum computation has been realised using

different paradigms of quantum computation, such as ion traps [13, 14], photonic

devices [15], and superconducting devices [16, 17, 18, 19].

2.2 The ZX-calculus

This section introduces the ZX-calculus from scratch; however, an extensive book,

Picturing Quantum Processes by Coecke and Kissinger, with many examples and

exercises can be a good introduction to the topic [40]. Alternatively, a less lengthy

review paper, ZX-calculus for the working quantum computer scientist by van de

Wetering, can be another good source of information regarding the basics of ZX-

calculus and a bit further [1].
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2.2.1 ZX-calculus basic concepts

The ZX-calculus is a graphical language for expressing and reasoning about

quantum computation. It was first introduced by Bob Coecke and Ross Ducan

as an extension of categorical quantum mechanics [20]. The ZX-calculus consists

of ZX-diagrams and a set of graphical rewrite rules that enables us to transform

these diagrams without changing the underlying linear map. At its core, ZX-

diagrams are built up from spiders that represent specific tensors or linear maps.

We can connect these spiders, resulting in a network of spiders that represents a

tensor network. One particularly nice feature of ZX-diagrams is that topological

deformation does not change the linear map it represents. This means that we

can freely move around the spiders in a diagram and the meaning of it remains

the same.

Category theory background

The ZX-calculus is often discussed as a particular type of category. A category

is an abstract mathematical structure consisting of objects and morphisms such

that they satisfy some properties. Generally speaking, a morphism is what goes

between objects in a category. Given a morphism f : A → B from object A to

B and g : B → C from object B to C, we can compose these morphisms to get

a morphism g ◦ f : A → C. Composition is required to be associative, that is

h ◦ (g ◦ f) = (h ◦ f) ◦ g. We also have something called the identity morphism

for each object B, idB : B → B, that act as the identity for the composition:

idB ◦ f = f . The above two rules are the requirements for a category to be

one. As presented in the subsequent sections, we can compose ZX-diagrams,

but we can compose them not only sequentially but also in parallel using the

tensor product. Those categories that are equipped with some notion of ‘tensor

product’ of its objects are called monoidal categories. Furthermore, if A ⊗ B is

also isomorphic to B ⊗ A, then it is a symmetric monoidal category.
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We denote the category of ZX-diagrams as ZX. The objects of ZX are natural

numbers meaning that the object n corresponds to n point of connection for

spiders. The morphisms from the object n to m correspond to ZX-diagrams with

n input- and m output-wires. There are ZX-diagrams that we call caps and cups

that allow inputs to be mapped into outputs and vice versa. Those categories

that admit a cap and cup-like structures are called compact closed categories,

which is a fundamental structure in categorical quantum mechanics [41].

Given a ZX-diagram D, we denote the linear map it represents by JDK where

the function J·K is called the interpretation of a diagram D. The function maps

elements of ZX to linear maps that we denote as elements of the category FLin,

finite-dimensional C-linear spaces. A function that maps elements from one cat-

egory to another is called a functor if it maps identities to identities and respects

composition. It turns out that our interpretation function J·K : ZX → FLin is

such a functor. It is possible to show that for any linear map f we can find a

ZX-diagram D such that the interpretation of D is f , i.e. JDK = f . This property

of the ZX-calculus is called universality, and a functor that admits this property

is called full.

Spiders

As it is mentioned above, ZX-diagrams are built up from, or generated by, spiders.

One of the spiders is called a Z-spider. They can have an arbitrary number

of inputs (wires on the left side) and outputs (wires on the right side). The

interpretation of the Z-spider as a linear map is as follows:

s
α nm
...

...

{
= |0⟩⊗n ⟨0|⊗m + eiα |1⟩⊗n ⟨1|⊗m

where α ∈ R, but we usually have α ∈ [0, 2π) since the eiα function is 2π periodic,

and therefore we can take the number modulo 2π. Note that if α = 0, then the
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scalar ei0 = 1 and so the structure corresponds to something like a copy: The

spider either corresponds to |0⟩⊗n ⟨0|⊗m or |1⟩⊗n ⟨1|⊗m which can be interpreted

as inputting and outputting the same computational basis state on each wire. As

such spiders are used rather often, we define an empty spider to be a spider with

phase 0:

nm
...

... := 0 nm
...

...

We call these diagrams ‘spider’ simply because of the way they look. Moreover,

the Z in the name corresponds to the eigenbasis of the Z gate, |0⟩ and |1⟩, that

we use to define the spider. Similarly, we can define the X-spider that is defined

with respect to the eigenbasis of the X gate. Its interpretation is similar to the

previous spider and is defined as follows:

s
α nm
...

...

{
= |+⟩⊗n ⟨+|⊗m + eiα |−⟩⊗n ⟨−|⊗m

We define the phases and an empty X-spider similarly to the Z-spider

Subsequently, we examine some specific spiders that play an elemental role

in the ZX-calculus. First of all, the 1-input and 1-output Z-spider describes the

RZ(α) gate up to the phase e−iα
2 since:

J α K = |0⟩ ⟨0|+ eiα |1⟩ ⟨1| =
[︃
1 0

0 eiα

]︃
= e−iα

2 RZ(α)

And similarly, the 1-input 1-output X-spider corresponds to the RX(α) gate up

to the phase ei
α
2 since:

J α K = |+⟩ ⟨+|+ eiα |−⟩ ⟨−| = 1

2

[︃
1 + eiα 1− eiα

1− eiα eiα

]︃
= ei

α
2 RX(α)

It is also worth mentioning that if α = 0 in the above examples, they correspond
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2.2. THE ZX-CALCULUS

to the identity since RZ(0) = I = RX(0), and so:

= =

This is sometimes called the identity rule in the ZX-calculus.

Another interesting spider type is a state that has 0-inputs and at least 1

output. Some examples are the following spiders that correspond to the compu-

tational basis states, up to the scalar
√
2, since:

= |+⟩+ |−⟩ =
√
2 |0⟩ = |0⟩+ |1⟩ =

√
2 |+⟩

π = |+⟩ − |−⟩ =
√
2 |1⟩ π = |0⟩ − |1⟩ =

√
2 |−⟩

Note that, even though it may seem counter-intuitive, the X-spiders correspond

to the basis states of the Z gate and vice versa for the Z-spiders. Also, note that

we get the states with the wrong scalar factors. However, just like with quantum

circuits, we can usually ignore global non-zero scalars in ZX-diagrams. A more

thorough discussion can be found on scalars in ZX-diagrams in Section 2.2.1.

Lastly, it is worth mentioning that throughout the literature one can find other

naming conventions as well. Z-spiders are often called green-spiders, and X-

spiders can be referenced as red-spiders.

Composition

As it is mentioned above, we can compose spiders that can result in a structure

similar to a tensor network. There are two kinds of compositions of ZX-diagrams,

parallel and sequential composition. Parallel composition corresponds to the

tensor product of the underlying linear maps. To parallelly compose two ZX-
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diagrams we simply place one diagram on top of the other:

(︂ )︂
⊗ ( ) =

The other kind of composition, sequential composition, corresponds to the

multiplication of the underlying matrices and is denoted with the ◦ operator. To

sequentially compose two ZX-diagrams we connect the output wires of the first

part of the composition with the input wires of the second part. For instance, we

can construct the CNOT gate from spiders if we compose the following diagrams:

[︂
( )⊗

(︂ )︂]︂
◦
[︂(︂ )︂

⊗ ( )
]︂

=

⎡⎣ ⎤⎦ ◦

⎡⎣ ⎤⎦
=

While the above diagram may not resemble the very same structure of the CNOT

gate, we introduce a rule subsequently that can help us transform the diagram

to more clearly depict it.

Only connectivity matters

One particularly useful rule in the ZX-calculus is the Only Connectivity Matters

(OCM ) rule. This rule allows us to move spiders in a ZX-diagram while preserving

interpretation of it. As long as the input and output wires stay in the same place,

we can freely rearrange any ZX-diagrams. For example, we can bend or straighten

wires as we wish:

= =
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We can also change the location of spiders in a ZX-diagram; therefore, each of

the following diagrams corresponds to the CNOT gate:

= =

We can also do something more radical, for example:

=

π

π
2

π
4

-π
2π

π

π
2

π
4

-π
2

π
=

π

π
2

π
4

-π
2

π

Scalars

Scalars are ZX-diagrams with 0-inputs and 0-outputs. They have a somewhat dis-

tinguished role in the calculus as they represent complex numbers. For example,

the interpretation of some scalars are:

J K = 2 J α K =
√
2

J π K = 0 J α π K = eiα (2.1)

J α K = 1 + eiα
q y

=
1√
2

Note that we can represent any complex number using only the scalars presented

in Eq. (2.1) and their combinations. We can write scalars just as a number in a

grey circle that has no legs next to the diagram instead of representing the scalar

as a ZX-diagram:

= √
2

Throughout the literature, it is quite usual to drop the scalar factors from

the equations in ZX-diagrams. This is for the same reason why some physicists
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calculate with unnormalized values, it is inconvenient and unnecessary to keep

track of all the scalars. We annotate this by using the ≈ operator, which means

that the two diagrams equal up to some non-zero scalar, for instance:

√
2 ≈

Note that it is only possible to ignore non-zero scalars. One example where scalars

can conveniently be dropped is when dealing with ZX-diagrams representing some

quantum circuits. This is because for a matrix M representing a ZX-diagram,

MM † = λI where λ > 0. Therefore, we can re-normalise M by multiplying it

with 1
λ
. We can calculate the value λ by composing a diagram with its adjoint

and simplifying it until it reduces to the identity. However, we cannot ignore

scalars when calculating probability amplitudes, for instance when calculating

the probabilities of some particular input and output.

The Hadamard gate

The Hadamard gate has a somewhat distinguished role in quantum computation

as it maps Z rotations to X rotations and vice versa. We have a different notation

for the Hadamard gate in the ZX-calculus:

J K = H =
1√
2

[︃
1 1

1 −1

]︃
.

This ‘Hadamard box’ can be derived in terms of Z- and X-spiders. To do so, let

us first recall the Euler decomposition that allows us to express any single qubit

rotation as a rotation around the z-, x-, and once again z-axis of the Bloch sphere.

In particular, the Hadamard gate can be decomposed into the following sequence

of rotations:

= π
2

π
2

π
2

e
−i π

4
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It is also possible to show that we can express the decomposition without scalars

which might be desirable on a formal level:

= π
2

π
2

-π
2

Also, note that applying the Hadamard gate two times equals the identity:

= (2.2)

Lastly, the property that makes the Hadamard box a particularly useful element

of the ZX-calculus is that it maps Z-spiders into X-spiders and vice versa:

α =
... α

...
...

... α =
... α

...
...

...

This rule is called the colour rule.

Axioms

As it is mentioned above, the ZX-calculus consists of ZX-diagrams and also a set

of graphical rewrite rules. Subsequently, we present a convenient set of graphical

rewrite rules as the axioms for the ZX-calculus. Do note that this set is not

minimal. We introduce rules to formally deal with scalars as diagrams which

is unnecessary for the language, it just makes it simpler. Furthermore, some

rules can be derived from the rest. However, our aim is to provide a clear and

convenient set of rules in order to make it accessible for most readers.
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α
...

...

β
...

...

α + β

...

...

...

...

=
(Fusion)

α =
(Colour)... α

...
...

...

=
(Euler)

π α =
(π)

‧α
π

π

α =
(Copy)

=
(Z-Elim)

=
(X-Elim)

=
(Bigebra)

√
2

√
2

=
(Zero)

0 0

= 1 + eiα

a b ab=

= √
2 = √

2eiα

α

α π

=
(One)

1

π
2

π
2

π
2

e
−i π

4 (2.3)

The Z-Elim, X-Elim, Euler, Colour rules are mentioned above with some

explanation. Further to the above-mentioned rules, the Fusion rule allows us

to fuse connected Z-spiders. When spiders are fused, their phases are added

together. It is possible to show that we can extend this rule to fuse spiders of

the same colour if they are connected with one or even more wires. An extended

version of the rule would look as follows:

=

α
...

...

β
...

...

α + β

...

...

...

...

· · · =

α
...

...

β
...

...

α + β

...

...

...

...

· · ·

The πrule enables us to copy X-spiders with π phases through a Z-spider with

any phase and two outputs. It is also possible to extend this rule to the other

colour variant as well with any number of output wires:

π α = ‧α

π

π

...
... π α = ‧α

π

π

...
... (2.4)
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Generally speaking, we can always prove a rule for its colour inverse using

Eq. (2.2). We can also extend the rules to include more legs, not just two like

in Eq. (2.4). For example, the Copy and the Bigebra rule can be extended for

any number of legs. Also, rules can be proved for their transpose and adjoint

using OCM and the colour inverse rules.

Using the axioms described above, we can prove useful equations. For ex-

ample, we can easily prove that self-loops can be removed as follows:

=α α = α

(Z-Elim) (Fusion)

...
...

...
...

...
... (2.5)

It is also possible to show that Hadamard loops can also be removed using the

Euler rule:

α

· · ·

π
2

π
2

α

π
2

=

π
2

α + π= α + π=
(Fusion) (Hopf)(Euler)

π
2

α + π=
· · · · · · · · · · · ·

1 + i

(2.6)

One rule that is extensively used in the calculus is called the Hopf-rule, which

allows us to disconnect differently coloured spiders that are connected with two

wires.

Lemma 1. The Hopf-rule is derivable in the ZX calculus, that is:

=

√
2

(2.7)

Proof.

==

=

=

= =

(Z-Elim) (Fusion)

(Bigebra) (Copy)

(X-Elim)

√
2
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Furthermore, we can extend the Hopf-rule to spiders of the same colour with any

phase that are connected with two wires with Hadamard boxes on them. This

extension proves to be a useful tool for Clifford computation that is discussed in

Section 2.2.2.

Lemma 2. A modified version of the Hopf-rule, where identically coloured spiders

with any phase are connected through Hadamard boxes, is derivable in the ZX-

calculus, that is:

α β
... = α β

...
...

...

√
2

(2.8)

Proof.

= α β =
(Fusion)

α β

=
(Hopf)

α β =
(Fusion)

α β

(Colour)

α β
...

...
...

...
...

...

...
...

...
...

(Colour)

(2.2)

√
2

√
2

Lastly, the Zero rule allows one to transform X-states to Z-states and vice-

versa given that a 0-scalar is present. This has the consequence that a 0-scalar

‘absorbs’ or ‘deletes’ all ZX-diagrams it is composed with.

Finally, we also show a useful feature of specific states that we can change

their basis. Specifically, we can change the basis of a state with phase π
2
that

follows from the equation below. For some adequate k:

±π
2 =

(Colour)

±π
2 ≈ ±π

2
‧π
2

‧π
2

(Euler)

‧π
2 = ‧π

2

(Fusion)

‧π
2kπ

=
(Copy)

‧π
2kπ =

(Fusion)

∓π
2

(2.9)

Examples

Using the ZX-calculus, we can prove the correctness of several algorithms. For

example, the above-described quantum teleportation is a great example of the
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reasoning power of the ZX-calculus. Recall, that using the quantum circuit model

the quantum teleportation algorithm is described as follows:

|ψ⟩ H

|Φ+⟩
|ψ⟩

This quantum circuit translates to the following ZX-diagram where we also in-

dicated a space-like separation of Alice and Bob, the two participants in the

experiment:
aπ

bπ

bπ aπ

Alice

Bob

It would be cumbersome to prove the correctness of the algorithm using linear

algebra. However, using the axioms of the ZX-calculus presented in Eq. (2.3) we

can prove the correctness of the algorithm with ease:

aπ

bπ

bπ aπ

Alice

Bob

aπ

bπ

bπ aπ

Alice

Bob

=

(Fusion)

(Colour)

2bπ

aπ

aπ

Alice

Bob

=
(Fusion)

2aπ
Alice

Bob

=

(X-Elim)

(Fusion) Alice

Bob

=
(Z-Elim)

Therefore, it is possible to show that we can reduce the original ZX-diagram to

a single wire that represents the identity gate. Since the teleportation equals the

identity gate, any state that we input on Alice’s side is ‘teleported’ to Bob’s side

and so the algorithm is correct.

2.2.2 Clifford computation

Recall that Clifford unitaries are those generated by compositions of the CNOT,

the Hadamard, and the S gates. Equivalently, the group of automorphisms of
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the Pauli group is called the Clifford group and its elements are the Clifford

gates. A more throughout discussion is presented in Section 2.1.2. It turns out

that Clifford gates are those that can be constructed using such ZX-diagrams

that has a phase that is a multiple of π
2
. The Clifford fragment of the ZX-

calculus contains those diagrams that represent Clifford unitaries. The Clifford

fragment seems to be a particularly well-behaved part of the calculus. This

subsection examines this fragment in-depth starting with Graph states, through

more advanced graphical rewrite rules like local complementation and pivoting,

and finally proving completeness.

Graph-like diagrams

There are some tricks that can be used to deal with a more restricted ZX-diagram.

For example, we can convert each X-spider into Z-spider using Colour resulting

in only Z-spiders and Hadamard boxes. There are other properties that we can

restrict that can help us work with simpler diagrams. A diagram type we use for

many algorithms is called a graph-like diagram which is a ZX-diagram where:

1. All spiders are Z-spiders;

2. Spiders are only connected via Hadamard edges;

3. There are no parallel Hadamard edges or self-loops;

4. Every input or output is connected to a Z-spider.

We can convert any ZX-diagram into one that is graph-like using the following

algorithm:

1. Convert each X-spider into a Z-spider using the Colour rule;

2. Cancel adjacent Hadamard boxes using Eq. (2.2);

3. Fuse all connected spiders using Fusion;
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4. Remove all self-loops using Eq. (2.5) and Eq. (2.6);

5. If two spiders are connected by multiple Hadamard edges, remove them

using the modified version of the Hopf-rule shown in Eq. (2.8).

In order to make the description of graph-like diagrams easier, we introduce

some names for specific spiders in such a diagram. We call spiders that are not

connected to an input or an output in a graph-like diagram an internal spider.

Furthermore, spiders connected to an input or an output are called boundary

spiders. Note that a spider in a graph-like diagram is either an internal or a

boundary spider.

Graph states

A particularly useful subset of graph-like diagrams is the graph states. For a

simple undirected graph G = (V,E) we define its corresponding graph state |G⟩

as:

|G⟩ =
∏︂

(u,v)∈E

CZu,v

⨂︂
u∈V

|+⟩u

In other words, we prepare each state in |+⟩. Then, for each edge of G we apply a

CZ gate which entangles the two qubits. Note that since the CZ gate commutes,

it can be applied in any order.

For example, given the following simple graph:

(2.10)

The graph state that corresponds to the graph of Eq. (2.10) can be constructed

as follows:

= (2.11)

29



CHAPTER 2. PRELIMINARIES

For more dense graphs, writing the Hadamard boxes for each edge can become

cumbersome to manage. To overcome this issue, we use a new notation which

we call a Hadamard-edge. This new type of edge corresponds to an edge with a

Hadamard box and is drawn as a blue, dashed line:

:=..
.

..
.

..
.

..
.

Note that it is also possible to define graph-states as a restricted set of graph-

like diagrams. A graph-like diagram is a graph state when:

• There are no inputs;

• Each spider is connected to a single output;

• All phases are zero.

We can extend graph states by allowing any Clifford unitaries to be applied to

each qubit after the graph state has been initialised. Such a state is called Graph

State with Local Cliffords (GSLC). It turns out that any Clifford state equals one

in GSLC form. We could produce the following example of a GSLC by adding

some local Cliffords to the graph state of Eq . (2.11):

‧π
2

π π
2

Local complementation

As it is mentioned above, any Clifford state can be represented as a Graph state

with local Cliffords. However, this GSLC form is not unique since we can absorb

some local Cliffords by changing the graph. This can be done by applying local

complementation to the graph.

Let G = (E, V ) be a simple graph and u ∈ V a vertex of G. The local
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complementation of G about u, written as G ∗ u, is a graph that has the vertices

and edges of G but the edges between the neighbours of u are changed. For

instance, some examples of a graph and its local complementation could be as

follows:

G
a b

dc
G ⋆ a

a b

dc
(G ⋆ a) ⋆ b

a b

dc

Local complementation is derivable in the ZX-calculus as follows:

G ≈
...

}︃
NG(u)

u

...

G ∗ u
...

...

‧π
2

π
2

π
2

where the triangle on the left represents a graph state corresponding to the graph

G and NG(u) denotes the neighbours of u in G. This equation was originally

proved in the ZX-calculus in Ref. [42]. However, a more accessible proof is

provided in Ref. [40].

Using this local complementation rewrite rule it is possible to prove the fol-

lowing rule:

±π
2

α1 αn

...... ... = ...
α1∓ π

2

...
αn∓ π

2

α2

...
αn−1

...
α2∓ π

2

...
αn−1∓ π

2

...

... (2.12)

We call the simplification presented above local complementation, and it removes

an internal spider with phase ±π
2
by adding ∓π

2
phases to its neighbours and

connecting them. A proof for the above equation can be found in Ref. [28]. Note

that if there are two wires between spiders we can remove them using the Hopf-

rule. This means that if some neighbouring spiders are connected before local

complementation, then the wires get removed. We can interpret this as local
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complementation by toggling the wires of the neighbours of the internal spider.

Pivoting

In addition to local complementation, there is another useful rewrite rule called

pivot that is described as follows:

jπ kπ

α1

αn

β1

βm

...
...

...

...
...

...

≈

α1 + kπ

αn + kπ

β1 + jπ

βm + jπ

...
...

...

...
...

...
(2.13)

Using the pivot rule, we can remove connected internal spiders that have π or 0

phases. This is done by connecting each spider on one side to each spider on the

other. Furthermore, we need to add the phase of the left internal spider to the

spiders connected to the right internal spider and vice versa. Note that, just like

with local complementation, the addition of wires results in a wire-toggling effect

between the two groups of spiders connected to the internal spiders. One may
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also note that there might be spiders connected to both internal spiders.

jπ kπ

α1

αn

β1

βm

...
...

...

...
...

...

=

γ1 γℓ· · ·
· · · · · ·

jπ kπ

α1

αn

β1

βm

...
...

...

...
...

...

γ1 γℓ· · ·
· · · · · ·

(Fusion)

=
kπ

kπ

jπ

jπ

γ1 γℓ· · ·
· · · · · ·

(Pivot)

α1 + kπ

αn + kπ

β1 + jπ

βm + jπ

...
...

...

...
...

...

=
γ1 + (j + k)π

γℓ + (j + k)π

· · ·· · ·

· · ·

(Fusion)

α1 + kπ

αn + kπ

β1 + jπ

βm + jπ

...
...

...

...
...

...

=
γ1 + (j + k + 1)π

γℓ + (j + k + 1)π

· · ·· · ·

· · ·

(2.6)

α1 + kπ

αn + kπ

β1 + jπ

βm + jπ

...
...

...

...
...

...
(2.8)

A proof of the extended pivot rule can be found in Ref. [28] which naturally

implies the correctness of Eq. (2.13).

AP-form

It is clear that by using local complementation and pivoting we can remove a lot

of spiders from a Clifford diagram. In fact, we can remove so many spiders that

we can reduce any Clifford diagram into a normal form. We say that a graph-like

diagram is in Affine with Phases form (AP-form) when:

• There are no inputs;

• The internal spiders have only 0 or π phases;
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• Internal spiders are only connected to boundary spiders.

It is clear that by applying local complementation we eliminate each inner

spider with phase ±π
2
. Furthermore, any pair of connected inner spiders with

phase π or 0 are also removed because of the applications of pivots. Therefore,

by applying local complementation and pivoting as much as possible we can

indeed transform a Clifford diagram into one in AP-form.

An example of a ZX-diagram in AP-form could be:

b1π

b2π

k1
π
2

k2
π
2

k3
π
2

k4
π
2

(2.14)

We transform the above diagram a bit in order to it easier to make it easier work

with:

b1π

b2π

k1
π
2

k2
π
2

k3
π
2

k4
π
2

=
(Colour) b1π

b2π

k1
π
2

k2
π
2

k3
π
2

k4
π
2

=
(Fusion) b1π

b2π

k1
π
2

k2
π
2

k3
π
2

k4
π
2

We claim that the above diagram in AP-form, which represents the state |ψ⟩,

equals the following state up to some global phase:

|ψ⟩ ≈ 1

2N

∑︂
x⃗∈F4

2

Ax⃗=b⃗

eiπϕ(x⃗) |x⃗⟩ (2.15)

where b⃗ = (b1, b2)
T , A is the parity matrix describing the connectivity of the

inner and boundary spiders. Furthermore, ϕ is a real-valued phase function that

describes the connectivity and phases of the boundary spiders.

A =

[︃
1 0 1 0

0 1 1 0

]︃
, ϕ(x⃗) =

k1
2
x⃗1 + x⃗1x⃗2 +

k2
2
x⃗2 + x⃗2x⃗4 +

k3
2
x⃗3 + x⃗3x⃗4 +

k4
2
x⃗4
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This follows from the following transformations:

b1π

b2π

k1
π
2

k2
π
2

k3
π
2

k4
π
2

x1

x2

x3

x4

≈
(Copy) b1π

b2π

k1
π
2

k2
π
2

k3
π
2

k4
π
2

x1

x2

x3

x4

b1π

b2π

k1
π
2

k2
π
2

k3
π
2

k4
π
2

x1

x2

x3

x4

=
(Fusion)

x1

x2

x3

x4

x1 x2

x3

x4x2

x4

≈
b1π

b2π

k1
π
2

k2
π
2

k3
π
2

k4
π
2

x1

x2

x3

x4

x1

x2

x3

x4

x1 x2

x3

x4x2

x4

(Copy)

x3

=

b1π + x1 + x3

b2π + x2 + x3

k1
π
2

k2
π
2

k3
π
2

k4
π
2

x4

x1

x2

x3

x4

x1 x2

x3

x4x2

x4

(Fusion)

Note that if a single X-spider has phase π, then it equals the zero scalar which

means that it is an impossible scenario to happen. Therefore, the above diagram

allows only those vectors, x⃗, that satisfy Ax⃗ = b⃗. Furthermore, the scalars that

are copied from the phases part of the diagram equal the eiπϕ(x⃗) component of the

equation. We conclude that a diagram in AP-form in Eq. (2.14) indeed equals

the equation presented in Eq. (2.15).

Further to diagrams in AP-form, we also need something more restricted. A

diagram in AP-form defined by A, b⃗, and ϕ is in reduced AP-form if it is 0 or it

is non-zero and:

• A is in reduced row echelon form (RREF) with no zero rows;

• ϕ only contains free variables from the equation system Ax⃗ = b⃗;

• All coefficients of ϕ are in the interval (−1, 1].

We work with diagrams in reduced AP-form subsequently and therefore we need

to refresh some definitions from linear algebra. Recall that the first non-zero

element in a row of A is called a pivot. We call the spider that corresponds to

the pivot element in the matrix a pivot spider. Furthermore, we call the variable

xi a free variable if the i-th column of A does not contain a pivot, otherwise we
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call it a bound variable.

2.2.3 Clifford completeness

In this section, we examine an issue of many early ZX-calculus papers, com-

pleteness. A graphical calculus is complete if its rewrite rules are can prove any

true equation. More formally, graphical calculus is complete if for any diagram

A,B ∈ ZX such that JAK = JBK, we can provide a sequence of rewrites that trans-

forms A into B. Subsequently, we prove the completeness proof of the Clifford

fragment of the ZX-calculus.

We claim that any Clifford diagram equals one in reduced AP-form, and this

form is unique. First of all, it is clear that any Clifford diagram can be converted

into one in AP-form using local complementation and pivoting. Then, we have

to show that the biadjacency matrix A, which corresponds to the connections of

the inner and boundary spider of the diagram in AP-form, can be transformed

into one in RREF. We note that the X-spiders of a ZX-diagram in AP-form

correspond to the rows in the linear system Ax⃗ = b⃗. If we can show that we

can perform primitive row operations in a ZX-diagram in AP-form, then we can

simply transform it into one with a biadjacency matrix in RREF using Gaussian

elimination.

Lemma 3. We can perform primitive row operations on a ZX-diagram in AP-

form, i.e. we can ‘add’ one inner spider to another, for j, k ∈ {0, 1}:

jπ

kπ

...

...

...

≈
jπ

(j + k)π

...

...

...
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Proof.

jπ

kπ

...

...

...

≈

kπ

...

...

...

jπ

(Fusion)

(Hopf)

≈

kπ

...

...

...

jπ

(Bigebra) jπ

(j + k)π

...

...

...

≈
(Copy)

(Fusion)

Therefore, it is possible to translate a Clifford ZX-diagram into one in AP-form

with a biadjacency matrix in RREF.

Subsequently, we prove that we can remove any phase or Hadamard edge

connected to a pivot spider in AP-form with biadjacency matrix in REF. To

show the above statement, we consider several cases. Firstly, we show that it is

possible to remove a 0 or π phase from a pivot spider as follows:

bπ

kπ

...
=
(π)

bπ
kπ

...
kπ

=
(Fusion)

bπ
kπ
...
kπ

(Z-Elim)

(2.16)

Secondly, we have to show that we can remove ±π
2
phases from pivot spiders.

Note that we can push a±π
2
Z-spider through an X-spider with no phase, resulting

in a fully connected graph with ±π
2
Z-spiders on the outputs:

±π
2

... =
(Fusion)

±π
2

... ≈
(Bigebra)

±π
2

... =
(Eq 2.9) ...
(Fusion)

∓π
2

= ...

∓π
2(Colour)

= ...

(LC)

±π
2

±π
2

±π
2

(2.17)

Then, we can push a pivot spider with phase ±π
2
through the inner spider to
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which it is connected as follows:

bπ

±π
2

...

=
(Fusion)

(π)

...

bπ

±(‧1)b π
2

=
...

bπ

±(‧1)b π
2

±(‧1)b π
2

±(‧1)b π
2

(2.17)

(Z-Elim)

=
...

bπ

±(‧1)b π
2

±(‧1)b π
2

±(‧1)b π
2

(Fusion)

(2.18)

Lastly, we have to show that any Hadamard edge connected to a pivot spider

can be removed. Firstly, we can remove any Hadamard edge in case the in-

ner spider is connected to the spider the pivot spider is connected through the

Hadamard edge as follows:

bπ

...

... =

...

...

bπ

bπ
(Copy)

=

...

...

bπ

bπ

(Bigebra)

=

...

...bπ

bπ

(Fusion)

=

(Colour)

(Z-Elim)

...

...bπ

bπ(2.2)

(Fusion)

≈

...

...bπ

(b + 1)π

(2.6)

(Fusion)

(2.19)

We can also remove a Hadamard edge that is connected to a boundary spider
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that is not connected to the same inner spider as the pivot element as follows:

b1

b2

...

...

...

=

b1

b2

...

...

...

=

b1

b2

...

...

...
(Bigebra)

(Copy)

(Fusion)

=

b1

b2

...

...

...

b1 b1

b1

(Fusion)

(Z-Elim)

b2

...

...

...
b1

=

(Colour)

(2.2)

(Fusion)

b1

(2.20)

Therefore, we can remove any phase or Hadamard-edge that is connected to the

pivot spider.

In conclusion, we can convert any Clifford diagram into one in AP-form using

local complementation and pivoting. Then, such a diagram can be translated into

one in AP-form with biadjacency matrix A in RREF using Gaussian elimination

which is possible due to the lemma 3. Lastly, we can remove any phase using

Eq. (2.16) and Eq. (2.18) or Hadamard-edge using Eq. (2.19) and Eq. (2.20).

This enables us to transform a diagram in such a way that its phase function ϕ

only contains free variables from the equation system Ax⃗ = b⃗. Such diagrams are

in reduced AP-form and this form is unique. Ultimately, this enables us to prove

the completeness of the Clifford fragment of the ZX-calculus.

Theorem 4. For any pair of ZX-diagrams A,B ∈ ZX, if JAK = JBK, then we

can provide a sequence of rewrites that transforms A into B.
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Proof. We only show it for state by map-state duality. If A and B represent the

same linear map, i.e. JAK = JBK, then their reduced AP-form is identical thanks

to its uniqueness. Therefore, we can transform both A and B into diagrams in

reduced AP-form. The sequence of transformations from A to A in reduced

AP-form composed with the series of rewrites from B in reduced AP-form to B

provides us with a sequence of rewrites that transforms A into B
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Chapter 3

Qupit Clifford ZX-calculus

In this chapter, we first present a family of ZX-calculi, one for each odd prime

dimension. Then, we derive some essential rewrite rules that are used in prac-

tice. We also define some additional syntactic sugar to represent multi-edges

and multi-Hadamard-edges. This is followed by proving the completeness of the

scalar fragment of the calculus using the defined rules. Then, we define the qudit

version of graph states. Lastly, we present the proof of local complementation

and pivoting for odd prime dimensional qudits.

Subsequently, p denotes an arbitrary odd prime, and Zp = Z/pZ the ring

of integers modulo p. We also need ω := ei
2π
p and Z∗

p := Zp \ {0}. It is clear

that since p is prime, Zp is a field which means that there exists a multiplicative

inverse for all non-zero elements of Zp. We also need the following definition:

χp(x) =

⎧⎪⎪⎨⎪⎪⎩
1 if ∄y ∈ Zp s.t. x = y2;

0 otherwise;

(3.1)

which is the characteristic function of the complement of the set of squares in Zp.
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3.1 The calculus

In this section, we present a family of ZX-calculi, one for each odd prime dimen-

sion. Because of some group-theoretical properties of the qupit Clifford groups,

it is possible to present the calculi relatively simply, without the need to expli-

citly consider p-dimensional rotations. These calculi also satisfy the property of

flexsymmetry, proposed in [43], which allows one to recover the OCM meta-rule.

3.1.1 Generators

For any odd prime p, consider the symmetric monoidal category ZXStab
p with

objects N and morphisms generated by the following diagrams:

x, y

m
... n

... : m→ n
x, y

m
... n

... : m→ n

: 1 → 1 : 1 → 1

: 0 → 2 : 2 → 0

: 2 → 2 s : 0 → 0

where x, y ∈ Zp and s ∈ C.

A new generator we introduce to simplify the calculus is the light-grey bubble

with a scalar written in the middle that we call an explicit scalar. Note that

the empty diagram, : 0 → 0, is also a part of the language. Composition of

morphisms is given by the sequential composition of diagrams, that is we connect

output wires to input wires identically to the qubit case. The tensor product is

given on morphisms by the parallel composition of diagrams and on the objects

by n⊗m = n+m.

It is important to note that there is a key difference between the qupits and the

qubits. Among some others, the Hadamard gate does not equal its compositional
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inverse. Instead, the application of 4 Hadamard gates equals the identity, that

is H4 = I. This means that the compositional inverse of the Hadamard gate is

H3. In order to keep diagrams relatively clean, we also define the following for

shorthand:

‧ := (3.2)

which represents the compositional inverse of the Hadamard-box.

3.1.2 Interpretation

The interpretation of a ZXStab
p -diagram is defined on objects as JmK := Cp×m, and

on the generators of the morphisms as:

r
x, y

m
... n

...

z
=

∑︂
k∈Zp

ω2−1(xk+yk2) |k : Z⟩⊗n ⟨k : Z|⊗m

r
x, y

m
... n

...

z
=

∑︂
k∈Zp

ω2−1(xk+yk2) |−k : X⟩⊗n ⟨k : X|⊗m

J K =
∑︂
k∈Zp

|k : Z⟩⟨k : Z| J K =
∑︂
k∈Zp

|k : X⟩⟨k : Z|

q y
=

∑︂
k∈Zp

|kk : Z⟩
q y

=
∑︂
k∈Zp

⟨kk : Z|

q y
=

∑︂
k,ℓ∈Zp

|k, ℓ : Z⟩⟨ℓ, k : Z| J s K = s

where we denote |k : Q⟩ as the eigenvector of a given Pauli Q associated with

eigenvalue ωk.

Note that the definition of the red, X-spider is differently from the normal con-

ventions. It is defined in such a way that it maps X-eigenstates to their additive

inverse. This definition is used in order to satisfy the property of flexsymmetry,

which allows us to recover the OCM rule. Also note that spiders are defined with

an additional 2−1 factor which is necessary for one of the axioms, Gauss, to be

sound.
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It is also worth noting that, for any a ∈ Zp, a spider with (a, 0) phase cor-

responds to the qudit version of Pauli gates. Also, the qudit version of Clifford

gates corresponds to spiders with (a, b) phases, for any a, b ∈ Zp. Therefore, we

refer to spider with phase (a, 0) as Pauli spiders and to spiders with phase (a, z)

as strictly Clifford spiders where a ∈ Zp and z ∈ Z∗
p. Furthermore, single qudit

X-spiders with phase (0, 0) are called antipodes.

3.1.3 Axioms

Subsequently, we present a set of graphical rewrite rules as the axiom of our

calculus. This set of rules enables us to perform purely diagrammatic reasoning.

=
(Z-Elim)

=
(X-Elim)

=
(Char)...p

=
(Bigebra)

=
(Shear)

=
(Mult)

=
(Fusion)

a, b ...
...

c, d ...
...

a+c,
b+d

...

...

...

...

=
(Zero)

a, 0

=
(Copy)

a, 0

a, 0

a, b

=
(Colour)...

a, b...
...

...

=
(M-Elim) ...z

a, b

‧z‧1a, z‧2b

c, da, 0 a, 0

√
pp

√
p

√
p

√︁
pz‧1

00

0, 1

=

a b ab=

a, b

= √
p

c + ad, d

ω2‧1ac+2‧2a2d

=
(One)

1

...z

√︁
pz‧2

0, z‧1

0, z‧1

0, z

0, z‧1

1, 0

= 0 {︄
−√

p

√
p

if p ≡ 1 mod 8

if p ≡ 5 mod 8

0, z 0, 1

=
(Gauss)

(‧1)χp(z)

(3.3)

where a, b, c, d ∈ Zp and z ∈ Z∗
p and χp(x) is the characteristic function of the

complement of the set of squares in Zp, as defined in Eq. (3.1).
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3.2 Useful derivations

This section presents several rewrite rules that are derived from the axioms

presented in Eq. (3.3). Furthermore, we introduce some syntactic sugar to repres-

ent multi-edges and multi-Hadamard-edges which we use extensively in further

calculations.

3.2.1 Extension of axioms and further rules

While the axioms of Eq. (3.3) are enough to prove any equation, it is easier to

prove a set of rules that we can use to perform higher-level transformations. Since

most of the elementary derivations have been proved in Ref. [2], we only present

these equations as proposals. First of all, we present some rules that allow us to

move antipodes in some elementary ZX-diagrams.

Proposition 5. The following equations are derivable in ZXStab
p ,

=

=

=

=

=
x, y −x, y

=
x, y −x, y

(3.4)

We also present rules related to the Hadamard-box, its inverse, and antipodes.

Proposition 6. The subsequent equations are derivable in ZXStab
p , for a, b ∈ Zp,

=

=‧ =

=
0, 1

0, 10, 1 0, 1

0, 10, 10, 1

0, 1

√
p

√
p

(3.5)

= ‧ ‧

= ‧= ‧

(3.6)
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- = = - (3.7)

a, b

=
...

a, b...
...

... =
a, b...

...
‧a, b ...

‧

‧

...
‧

‧
(3.8)

Note that the Pauli phase of the spiders are negated on the second equation of

Eq. (3.8).

Another useful derivation is the general case of the Fusion rule that is defined

for both colours and allows any number of edges between spiders.

Proposition 7. The following equations are derivable in ZXStab
p , for a, b, c, d ∈

Zp,

=

a, b ...
...

c, d

...
...

a+c,
b+d

. . .

...

...

...

...

=

a, b ...
...

c, d

...
...

a+c,
b+d

. . .

...

...

...

...

(3.9)

Note that we need wires with antipodes in order to fuse red spiders.

Subsequently, we present some general lemmas using the axioms and the equa-

tions presented above that are used extensively in later proofs. Firstly, we prove

that we can swap the colours of the spiders in a particular set of scalar diagrams.

Lemma 8. We can change the colours of scalar diagrams of Z- and X-spiders

connected with a single wire, for a, b, c, d ∈ Zp,

a, b c, d

=
a, b c, d

(3.10)

Proof.
a, b c, d

=
a, b c, d

=
a, b c, d(Colour) (Colour)

(3.11)

Similarly, we can also change the basis of single spider diagrams.
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Lemma 9. We can change 0 → 0 Z-spiders into X-spiders, for any a, b ∈ Zp,

a, b

=
a, b

(3.12)

Proof.

a, b

=
a, ba, b(Fusion)

= - -

(Colour) a, b

=
(Eq 3.5) a, b

=
(Fusion)a, b

=
(Eq 3.6)

(3.13)

Furthermore, we provide a way to translate a set of scalar diagrams into their

explicit scalar form.

Lemma 10. For any a, b, c ∈ Zp,

=
a, 0 c, d √

pω2‧1ac+2‧2a2d =
a, 0 c, d

Proof.

a, 0 c, d

=
a, 0 c, d(Fusion)

=
a, 0 c, d(Fusion)

(Z-Elim)

a, 0 ‧a, 0

=
(Lem 3.4)

=
(Shear) ‧a, 0c + ad, d

=
(Lem 11)

ω2‧1ac+2‧2a2d

= √
pω2‧1ac+2‧2a2d

a, 0 c, d a, 0 ‧a, 0

ω2‧1ac+2‧2a2d

(3.14)

The second equality follows from the application of Lemma 8.

Then, we prove a general version of how Pauli states can absorb single qupit

spiders of the other colour.

Lemma 11. Pauli X-spiders absorb 1 → 1 Clifford Z-spiders and vice versa, for

a, c, d ∈ Zp,

a, 0 c, d

=
a, 0 c, d

=
a, 0 ‧a, 0

ω2‧1ac+2‧2a2dω2‧1ac+2‧2a2d
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Proof.

a, 0 c, d

=
(Fusion)

a, 0
c, d

1√
p=

(Copy)

a, 0 c, d

a, 0

=
a, 0

ω2‧1ac+2‧2a2d
(Lem 10)

(3.15)

a, 0 c, d

=
(Eq 3.7) a, 0 c, d

- =
(Eq 3.8) a, 0 c, d

=
(Eq 3.15)

a, 0

=
(Eq 3.8)

‧a, 0

ω2‧1ac+2‧2a2d

ω2‧1ac+2‧2a2d

(3.16)

We now show that we can change the basis of strictly Clifford states. Note

that this proof is the core element in many proofs we present subsequently and

therefore has great importance.

Lemma 12. We can change the basis of strictly Clifford states as follows, for

a ∈ Zp and z ∈ Z∗
p,

a, z

=
az‧1, ‧z‧10, z‧1

ω‧2‧2a2z‧1
√

p

a, z ‧az‧1, ‧z‧1

=
0, z‧1

ω‧2‧2a2z‧1
√

p

(3.17)

Proof. First of all,

az‧1, z‧1

=
‧z‧1(‧a), z‧2z

=
‧a, z ...z

= =
‧a, z 0, z‧1 0, z 0, z‧1

=
a, z 0, z‧1 0, z 0, z‧1

√︁
pz‧20, z‧1 0, z‧1

0, z‧1

(M-Elim)

(X-Elim) (Mult)

(Colour)

‧a, z

√︁
pz‧2

1√
p

1√
p

...z

0, z‧1

=
a, z 0, z‧1 0, z 0, z‧1(Z-Elim)

(3.18)

48



3.2. USEFUL DERIVATIONS

therefore,

=
a, z 0, z‧1 0, z 0, z‧1 0, ‧z‧1

=
az‧1, z‧1 0, ‧z‧1

=

(Fusion)

a, z 0, z‧1 0, z

=
(X-Elim) a, z 0, z‧1 0, z

(Eq 3.18)

‧az‧1, 0(Fusion)

0, z‧11√
p

=
(Eq 3.4)

0, z‧11√
p 0, z‧11√

p

az‧1, 0

(3.19)

hence,

a, z 0, z‧1

=
a, z 0, z‧1 0, z 0, ‧z

=
‧az‧1, 0 0, ‧z

=
‧az‧1, 0

(Z-Elim) a, z 0, z‧1

=
(Fusion)

(Eq 3.19) (Lem 11)

0, z‧11√
p 0, z‧1

=
0, z‧1

‧az‧1, 0

ω‧2‧2a2z‧1
√

p
1√
p

ω‧2‧2a2z‧1

(3.20)

so finally,

a, z

=
a, z 0, z‧1 0, ‧z‧1

=
‧az‧1, 0 0, ‧z‧1

=
‧az‧1, ‧z‧1

a, z

=
(X-Elim) (Fusion)

(Eq 3.20) (Fusion)

=
az‧1, ‧z‧1(Lem 3.4)

0, z‧1

ω‧2‧2a2z‧1
√

p

0, z‧1

ω‧2‧2a2z‧1
√

p

0, z‧1

ω‧2‧2a2z‧1
√

p

(3.21)

The other equation of the lemma simply follows from colour-changing using the

Hadamard-box as follows:

a, z

=
‧az‧1, ‧z‧1a, z

=
az‧1, ‧z‧1

=
(Colour) (Eq 3.21) (Colour)0, z‧1

ω‧2‧2a2z‧1
√

p

0, z‧1

ω‧2‧2a2z‧1
√

p

(3.22)

Now that we have proved the qudit version of how to do state-change, we present

further useful lemmas that rely on the result. For example, we can show how

Pauli spiders commute through spiders of the other colour.
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Lemma 13. Z-spiders with any phase copy Pauli X-spiders, and vice versa, for

any a, c, d ∈ Zp,

c, d

a, 0
≈

ad ‧ c, d
a, 0

a, 0

c, d

a, 0
≈

c ‧ ad, d
‧a, 0

‧a, 0

(3.23)

Proof. First of all,

c, d

a, 0

==

a, 0
a, 0

=

c, d

c, d

a, 0

a, 0

c, d

a, 0

a, 0

c, d

=
(Fusion) (Bigebra) (Eq 3.4)

(Copy)

p p

(Fusion)

(3.24)

Then, we separate the equation into two cases based on whether the Z-spider is

Pauli or not. In case d = 0, the Z-spider is Pauli and therefore:

a, 0

a, 0

c, 0

a, 0

=

a, 0

a, 0

‧c, 0

=
‧c, 0

a, 0

a, 0

(Lem 11) (Fusion)

ω2‧1ac ω2‧1ac

(3.25)

Note that if d = 0, then ad− c = −c and so the lemma holds. Otherwise, d ̸= 0

and therefore d‧1 exists, so we can apply the state-change lemma:

≈
a, 0

a, 0

cd‧1, ‧d‧1

a, 0

≈
a, 0

a, 0

ad ‧ c, d

=
ad ‧ c, d

a, 0

a, 0

=

a, 0

a, 0

a ‧ cd‧1, ‧d‧1

a, 0

a, 0

c, d

a, 0
(Lem 12)

(Lem 12)

(Fusion)(Eq 3.27)

(Fusion)

(3.26)

Note that the phases after the application of the second state-change follow
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from:

−(a− cd‧1)(‧d‧1)‧1, ‧(‧d‧1)‧1 = −(a− cd‧1)(‧d), d = ad− c, d (3.27)

We can prove the second equation of the lemma using Hadamard-boxes as fol-

lows:

c, d

a, 0

=
c, d

a, 0

=‧ ‧
c, d

a, 0

‧

≈
ad ‧ c, d

‧

a, 0

a, 0

=
ad ‧ c, d

‧

‧a, 0

‧a, 0

‧

‧
=

c ‧ ad, d
‧a, 0

‧a, 0

(Colour) (Eq 3.7)

(Colour)(Eq 3.8)

(3.28)

3.2.2 Multipliers

Unlike in the qubit case, a Z- and X-spider can be connected by more than just

one edge, and such multi-edges cannot be simplified. Therefore, we add some

syntactic sugar that represents such multi-edges in order to reduce the size of some

recurring diagrams. In particular, their usage results in a nice representation of

qupit graph states.

We extend our language by multipliers, which are defined recursively by:

m + 1 :=
m

0 := and

1√
p

√
p (3.29)

It turns out that we can prove the following equation using Char, for anym ∈ N,

=m m mod p (3.30)

We can explicitly express multipliers as, for x ∈ Z∗
p,

...xx =

√︁
px‧1

(3.31)

51



CHAPTER 3. QUPIT CLIFFORD ZX-CALCULUS

We also define inverted multipliers, which is a multiplier pointing in the other

direction:

x x:= (3.32)

The following equations hold for multipliers and are proved in Ref. [2]:

Proposition 14.

= ‧1

x y = xy z‧1 = z

x

y
= x + y

= 1 p = 0

(3.33)

The action of multipliers on spiders is given by, for any x ∈ Z∗
p,

a, b ...
...

x

x

x

x

ax, bx2 ...
...=

a, b ...
...

x

x

ax, bx2 ...
...=

x

x
(3.34)

It is worth pointing out that multipliers are not flexsymmetric and therefore

OCM is technically lost if they are present. This is one of the reasons why

multipliers are only a syntactic sugar of the language. Nevertheless, we can

recover OCM up to a point by dealing with directed graphs with labelled edges.

Note that by applying a Hadamard-box to the multiplier we construct a sym-

metric gate:

x = x (3.35)

Therefore, we can define H-boxes :

x := x (3.36)

Explicitly, H-boxes are equivalent to repeated Hadamard wires, for x ∈ Zp,

=x
...x

√︁
px‧1

(3.37)
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Note that, unlike multipliers, H-boxes are flexsymmetric, so we can move such

boxes freely in a diagram.

We now present some equations related to H-boxes that we use through many

proofs. Note that the proofs of these equations can be found in Ref. [2] and are

not present in this thesis.

Proposition 15. zxp proves the following equations:

yx = -xy-1

=‧xx x x x = ‧x

x

y
= x + y

0 = 1 =

(3.38)

Furthermore, Hadamard-loops correspond to pure-Clifford operations, for any x ∈

Zp and z ∈ Z∗
p,

0, 2x

=x
0, 2z

=‧z‧1 (3.39)

In addition to these rewrite rules, we also prove the subsequent lemmas for

convenient calculations.

Lemma 16. H-boxes multiply with multipliers, for any x, y ∈ Zp,

x y= xy =xy

Proof.

x y = x y xy= xy=

xy = y x xy= xy=
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Lemma 17. We can ‘push’ multipliers through spiders as follows, for any a, b ∈

Zp and x ∈ Z∗
p,

a, b

x =
ax, bx2

x

x

a, b

x =
ax‧1, bx‧2

x

x

a, b

x =
ax, bx2

x

x

a, b

x =
ax‧1, bx‧2

x

x

Proof.

a, b

x =
a, b x

x
=

ax, bx2
x

x
x

(Eq 3.34)(Prop 14) x

x

...
...

...

a, b

x =
a, b x

x
=

ax, bx2
x

x
x

(Eq 3.34)(Prop 14) x

x

...
...

...

The other proofs follow from the above equations while using the multiplicative

inverse of the multipliers as presented in Proposition 14.

Lemma 18. We can ‘push’ H-boxes through spiders as follows, for any a, b ∈ Zp

and x ∈ Z∗
p,

a, b

=
ax‧1, bx‧2

x
‧x

‧x

a, b

=
‧ax, bx2

x
‧x

‧x

Proof. First of all,

a, b

=

ax‧1, bx‧2

x

‧x

‧x

a, b

x =
a, b

x
-

-

(Eq 3.8)(Eq 3.36)

=
(Lem 17) ax‧1, bx‧2

x

x
(Eq 3.6)

=
(Prop 14) ax‧1, bx‧2

x

x
(Eq 3.36)

(Lem 16)
‧1

‧1
=

(3.40)

The other equation can be proved similarly,

a, b

=
‧ax, bx2

x

‧x

‧x

‧a, b

=
(Colour)

x -
-

-
(Eq 3.36)

=
(Eq 3.7) ‧a, b

x

(Prop 15)

‧1

‧1

=
‧ax, bx2

x

x

‧1

‧1

(Lem 17) (Lem 16)

(3.41)
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Since edges that contain H-boxes are central to most subsequent proofs, we define

H-edges, similarly to the qubit case, as a blue-, dashed-line with the corresponding

numbers written near the line, for x ∈ Zp,

:=..
.

..
.

..
.

..
.x

x
(3.42)

Lastly, we note that scalar diagrams of Pauli X-spiders can be expressed as explicit

scalars.

Lemma 19. Scalar diagrams of Pauli X-spiders connected through a multiplier

and a Hadamard-box equal the following explicit scalar, for any a, b ∈ Zp and

x ∈ Z∗
p,

x

a, 0 b, 0

= √
pω‧2‧1abx (3.43)

Proof.

a, 0 b, 0

= x
a, 0 ‧b, 0

=
ax, 0 ‧b, 0(Colour) (Eq 3.34)

= √
pω‧2‧1abx

(Lem 10)

xa, 0 b, 0

=
(Eq 3.36)

x

(Eq 3.42)

(3.44)

3.3 Scalar completeness

In this section, we prove the completeness of the scalar fragment of ZXStab
p . To

do so we first prove that a state can absorb any single qupit diagram. Then, we

show that each of the possible scalar diagrams can be expressed as an explicit

scalar; thus we can prove any equation regarding scalars.

The 1 → 1 diagrams in our calculus is generated by the following gates, for
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any x, y ∈ Zp
x, y x, y

x

(3.45)

We call any such diagram a single-qupit Clifford diagram.

Lemma 20. Any scalar diagram can be transformed into an elementary scalar,

i.e. one that corresponds to an explicit scalar in our axioms.

Proof. It is clear that the single-qupit Clifford group is generated by the in-

vertible generators under sequential composition. Therefore, it suffices to show

that composing state diagrams with either of the diagrams in Eq. (3.45) can

also be transformed into a state diagram with some elementary scalars. We

show this using several case distinctions. First of all, any state can absorb a

Hadamard-box using the Colour rule as follows:

a, b

=
(Colour) a, b ‧a, b

=
(Colour)a, b

(3.46)

Secondly, we can show that multipliers are also absorbed by states, for z ∈ Z∗
p:

a, b

=z
az‧1, bz‧2 a, b

=z
az, bz2(Eq 3.34) (Eq 3.34)

(3.47)

In case the multiplier has weight 0, we have the following reduction:

a, b

=0
a, b

1√
p(Eq 3.29)

=
(Fusion) a, b

1√
p

(3.48)

a, b

=0
a, b

1√
p(Eq 3.29)

= (3.49)

Another obvious case is when there are spiders of the same colour, which we

can reduce as follows:

a, b c, d

=
a + c, b + d(Fusion) a, b c, d

=
‧a + c, b + d(Fusion)

(3.50)
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Lastly, the case that involves the most complication is when a state has to

absorb a spider of the other colour. In case the state is Pauli, we can reduce

the diagram as follows:

a, 0 c, d

=
(Lem 11) ‧a, 0

ω2‧1ac+2‧2a2d

a, 0 c, d

=
(Lem 11)

=
a, 0

ω2‧1ac+2‧2a2d

(3.51)

And finally, we can use the state-change lemma to show that a strictly Clifford

state can absorb spiders of the other colour as follows,

a, z c, d

=
(Lem 12) az‧1, ‧z‧1 c, d

=
(Fusion) c ‧ az‧1, d ‧ z‧10, z‧1

ω‧2‧2a2z‧1
√

p

0, z‧1

ω‧2‧2a2z‧1
√

p

(3.52)

a, z c, d

=
(Lem 12) ‧az‧1, ‧z‧1 c, d

=
(Fusion) c ‧ az‧1, d ‧ z‧10, z‧1

ω‧2‧2a2z‧1
√

p

0, z‧1

ω‧2‧2a2z‧1
√

p

(3.53)

In conclusion, we have shown that an arbitrary state can absorb any single-

qupit Clifford diagram. Therefore, without loss of generality, we can reduce

any scalar diagram to a state composed with an effect without a phase. Here

we have two cases, either the state and the effect are coloured differently or

identically. If they are of different colours, the scalar diagram is an elementary

one and corresponds to
√
p. When they are of the same colour we can fuse

them resulting in either a Z- or an X-spider with no legs. As we have shown in

Lemma 9, we can convert such X-spiders to Z-spiders so we only have to deal

with that case. We can also suppose that neither component of the phase is 0

since that is already an elementary scalar, therefore, for any s, t ∈ Z∗
p,

s, t

=
(Fusion) s, t

=
(Lem 12) st‧1, ‧t‧1

=
0, t‧1

ω‧2‧2s2t‧1
√

p

0, t‧1

ω‧2‧2s2t‧1 (3.54)

We conclude that any scalar diagram can be converted into an explicit scalar.
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Theorem 21. For any pair of scalar-diagrams A,B ∈ ZXStab
p [0, 0], if JAK = JBK,

we can provide a sequence of rewrites that transform the scalar A into B.

Proof. It is clear that we can convert both A and B into an explicit scalar

form using Lemma 20. Given that JAK = JBK, the sequence of transformations

from A to A in explicit scalar form composed with the series rewrites from B

in explicit scalar to B proves us a sequence of rewrites that transforms A into

B.

3.4 Graph states

As presented in Chapter 2, graph states are a powerful tool in quantum in-

formation theory. They are closely linked to Clifford states and have some nice

properties. For example, rewrite rules such as local complementation and pivot-

ing can be proved using such graph states. Furthermore, the completeness proof

we present also relies extensively on a variant of graph states. The qubit graph

states have been generalised to the case of an arbitrary (finite) dimension, and

we present them here.

The idea is to associate a state in Z⊗V
p to any graph with vertex set V . Unlike

in the qubit case, we use Zp-edge-weighted graphs that we identify with the

adjacency matrix G ∈ ZV×V
p . Then, the corresponding graph state is as follows,

|G⟩ =
∏︂

(u,v)∈V
u̸=v

EGu,v
u,v |0 : X⟩⊗V . (3.55)

In other words, we can create a graph state by first initialising the qupits in the

state ket0 : X. Then we apply the entangling operation EGuv
uv , an H-box with

weight Guv, for each edge in G. Note that since the E
Gu,v
u,v gates commute, they

can be applied in any order, just like in the qubit case.
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As a simple example, the graph

3
has adjacency matrix

⎛⎝0 3 1

3 0 1

1 1 0

⎞⎠ (3.56)

and is associated with the graph state E3
1,2E1,3E2,3 |0 : X⟩⊗3. And the graph state

corresponding to the graph in Eq. (3.56) is as follows:

3

=
3(Fusion)

(3.57)

It is clear that we can obtain a graph state in ZXStab
p for any given graph

G ∈ ZV×V
p . This is done by identifying each vertex of the graph with a green

spider, and each edge with a correspondingly weighted H-edge. More formally a

ZXStab
p -diagram is a graph state diagram if:

1. It contains only green spiders;

2. Each spider is connected to a single output by a plain wire;

3. The spiders are connected only by H-edges.

3.5 Graph simplifications

Now that we have seen how to represent graph states in ZXStab
p , we give some

rules to transform such diagrams.
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3.5.1 Weighted local complementation

For any γ ∈ Z∗
d, the γ-weighted local Zd-complementation or γ-complementation

about a vertex w in a graph G ∈ ZV×V
d is defined as:

(G
γ
⋆ w)uv :=

⎧⎪⎪⎨⎪⎪⎩
Guv + γGuwGwv if u ̸= v;

Guv otherwise.

(3.58)

For example, the following graph and its γ-complementation about the vertex w

are presented in the following equation:

a

b w

γ
⋆w↦−→ a

b
γab

1 + γa

γb

γ
γa

γb
. (3.59)

We now show the γ-weighted local Zd-complementation for graphs states in

ZXStab
p .

Proposition 22. γ-weighted local Zd-complementation is derivable in zxp, for

any graph G ∈ ZV×V
p , γ ∈ Zp and u ∈ V ,

G ≈
...

}︄
NG(u)

u

...

G
γ
⋆ u

...

...

0,−γG2
1w

0,−γG2
Nw

0, γ

(3.60)

Note that the proof of this proposition can be found in Ref. [2].
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3.5.2 Local complementation

As we have seen in the qubit case, there is another version of local complement-

ation that we used in the qubit case. This allows us to remove a strictly Clifford

inner spider by adding phases and wires to the spiders it is connected to. In this

section, we show and prove local complementation in ZXStab
p .

Lemma 23. Local complementation is derivable in zxp, for any z ∈ Z∗
p and for

all a, αi, βi, ei, wi,j ∈ Zp where i, j ∈ {1, . . . k} such that i < j,

a, z

e1
e2

ek
α1, β1

α2, β2

αk, βk

w2k
w12

w1k

· · ·

· · ·
· · ·

· · ·

≈

α1 ‧ e1az‧1, β1 ‧ z‧1e2
1

α2 ‧ e2az‧1, β2 ‧ z‧1e2
2

αk ‧ ekaz‧1, βk ‧ z‧1e2
k

w2k ‧ z‧1e2ek
w12 ‧ z‧1e1e2

w1k ‧ z‧1e1ek

· · ·

· · ·
· · ·

· · ·

Proof. First, we can prove a simplified version of the lemma without phases of
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the boundary spiders and H-edges as follows,

a, z

e1
e2

ek

· · ·· · · · · ·
· · ·

=

a, z

e1
e2

ek

· · ·· · · · · ·
· · ·

=

az‧1, 0

0, ‧z‧1

≈

az‧1, 0

e1
e2

ek
0, ‧z‧1e2

1

0, ‧z‧1e2
2

0, ‧z‧1e2
k

‧z‧1e2ek
‧z‧1e1e2

‧z‧1e1ek

· · ·

· · ·
· · ·

· · ·

≈

az‧1, 0

az‧1, 0
az‧1, 0

e1
e2

ek
0, ‧z‧1e2

1

0, ‧z‧1e2
2

0, ‧z‧1e2
k

‧z‧1e2ek
‧z‧1e1e2

‧z‧1e1ek

· · ·

· · ·
· · ·

· · ·

=

‧e1az‧1, 0

‧e2az‧1, 0
‧ekaz‧1, 0

0, ‧z‧1e2
1

0, ‧z‧1e2
2

0, ‧z‧1e2
k

‧z‧1e2ek
‧z‧1e1e2

‧z‧1e1ek

· · ·

· · ·
· · ·

· · ·

=

‧e1az‧1, ‧z‧1e2
1

‧e2az‧1, ‧z‧1e2
2

‧ekaz‧1, ‧z‧1e2
k

‧z‧1e2ek
‧z‧1e1e2

‧z‧1e1ek

· · ·

· · ·
· · ·

· · ·

(Fusion) (Lem 12)

(Fusion) (Prop 22)

(Copy)

(Colour)

(Fusion)

≈
e1
e2

ek

· · ·· · · · · ·
· · ·

az‧1, ‧z‧1

e1
e2

ek

· · ·· · · · · ·
· · ·

(Eq 3.34)

(3.61)
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Then, we can use the previous equation to prove the lemma.

a, z

e1
e2

ek
α1, β1

α2, β2

αk, βk

w2k
w12

w1k

· · ·

· · ·
· · ·

· · ·

=

a, z

e1 e2 ek
α1, β1

α2, β2

αk, βk

w2k
w12

w1k

· · ·
· · ·

· · ·

· · ·

(Fusion)

≈

‧e1az‧1, ‧z‧1e2
1

‧e2az‧1, ‧z‧1e2
2

‧ekaz‧1, ‧z‧1e2
k

α1, β1

α2, β2

αk, βk

w2k

w12

w1k

· · ·

· · ·
· · ·

· · ·

‧z‧1e2ek‧z‧1e1e2

‧z‧1e1ek

=

α1 ‧ e1az‧1, β1 ‧ z‧1e2
1

α2 ‧ e2az‧1, β2 ‧ z‧1e2
2

αk ‧ ekaz‧1, βk ‧ z‧1e2
k

w2k ‧ z‧1e2ek
w12 ‧ z‧1e1e2

w1k ‧ z‧1e1ek

· · ·

· · ·
· · ·

· · ·

(Fusion)

(Prop 15)

(Eq 3.61)

(3.62)

3.5.3 Pivoting

Further to local complementation, there is another important graphical rewrite

rule related to graph states, pivoting. Pivoting allows us to remove connected

Pauli spiders by adding some phases and connections to the spiders they are

connected to. In this section, we show and prove pivoting in ZXStab
p .

First, we prove a simplified version of the local complementation.

Lemma 24. The following version of pivoting is derivable in zxp: for any ϵ ∈ Z∗
p,

a, b ∈ Zp; furthermore, for all αk, βk, ek ∈ Zp and γℓ, δℓ, fℓ ∈ Zp where k ∈
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{1, . . . i} and ℓ ∈ {1, . . . j},

a, 0 b, 0

α1, β1

αi, βi

γ1, δ1

γj , δj

...
...

...

...
...

... e1

ei

f1

fj
ϵ =

α1 ‧ ϵ‧1be1, β1

αi ‧ ϵ‧1bei, βi

γ1 ‧ ϵ‧1af1, δ1

γj ‧ ϵ‧1afj , δj

...
...

...

...
...

...
‧ϵ‧1e1f1

‧ϵ‧1e1fj
‧ϵ‧1eif1

‧ϵ‧1eifj

√
pω‧ϵ‧1ab

Proof. First, we can prove a simplified version of the equation that omits the
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phases of the boundary spiders as follows,

a, 0 b, 0...
...

...

...
...

... e1

ei

f1

fj
ϵ =

a, 0 b, 0

...
...

...

...
...

... f1

fj

e1

ei

ϵ

=

‧a, 0 b, 0

...
...

...

...
...

... f1

fj

e1

ei

ϵ =

‧a, 0

b, 0

...
...

...

...
...

... f1

fj

ϵ‧1e1

ϵ‧1ei

ϵ

=

‧ϵ‧1a, 0 b, 0

...
...

...

...
...

...
f1

fj

ϵ‧1e1

ϵ‧1ei

=
...

...

...

...
...

...
f1

fj

ϵ‧1e1

ϵ‧1ei

‧b, 0

‧b, 0

ϵ‧1a, 0

ϵ‧1a, 0

= ...
...

...

...
...

... ϵ‧1e1

ϵ‧1ei

‧b, 0

‧b, 0

‧ϵ‧1af1, 0

‧ϵ‧1afj , 0

‧f1

‧fj

‧fj

‧f1

=

‧ϵ‧1be1, 0

‧ϵ‧1bei, 0

‧ϵ‧1af1, 0

‧ϵ‧1afj , 0

...
...

...

...
...

... ‧ϵ‧1e1f1

‧ϵ‧1eifj

‧ϵ‧1eif1

‧ϵ‧1e1fj

(Fusion)

(Colour)

(Lem 17)

(Prop 14)

(Bigebra) (Copy)

√︁
pij

1√︂
pij

(Lem 18)

‧ϵ‧1be1, 0

‧ϵ‧1bei, 0

‧ϵ‧1af1, 0

‧ϵ‧1afj , 0

...
...

...

...
...

... ϵ‧1e1

ϵ‧1e1

ϵ‧1ei

ϵ‧1ei

=
(Lem 17)

(Fusion)

‧f1

‧fj

‧fj

‧f1

(Fusion)

=

‧ϵ‧1be1, 0

‧ϵ‧1bei, 0

‧ϵ‧1af1, 0

‧ϵ‧1afj , 0

...
...

...

...
...

...

‧ϵ‧1eifj

‧ϵ‧1e1f1
‧ϵ‧1e1fj

‧ϵ‧1eif1

(Fusion)

√
pω‧ϵ‧1ab √

pω‧ϵ‧1ab

√
pω‧ϵ‧1ab

√
pω‧ϵ‧1ab

‧ϵ‧1a, 0 b, 0√︁
pij

(Lem 16) (Eq 3.42)

(3.63)
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Then, we can use the previous equation to prove the lemma as follows,

a, 0 b, 0

α1, β1

αi, βi

γ1, δ1

γj , δj

...
...

...

...
...

... e1

ei

f1

fj
ϵ =

(Fusion) a, 0 b, 0

α1, β1

αi, βi

γ1, δ1

γj , δj

...
...

...

...
...

... e1

ei

f1

fj
ϵ

=

‧ϵ‧1be1, 0

‧ϵ‧1bei, 0

‧ϵ‧1af1, 0

‧ϵ‧1afj , 0

...
...

...

...
...

...
‧ϵ‧1e1f1

‧ϵ‧1e1fj
‧ϵ‧1eif1

‧ϵ‧1eifj

α1, β1

αi, βi

γ1, δ1

γj , δj

=
(Fusion)

α1 ‧ ϵ‧1be1, β1

αi ‧ ϵ‧1bei, βi

γ1 ‧ ϵ‧1af1, δ1

γj ‧ ϵ‧1afj , δj

...
...

...

...
...

...
‧ϵ‧1e1f1

‧ϵ‧1e1fj
‧ϵ‧1eif1

‧ϵ‧1eifj

√
pω‧ϵ‧1ab √

pω‧ϵ‧1ab

(Eq 3.63)

(3.64)

Now, we prove the general version of local complementation.

Lemma 25. A general version of pivoting is derivable in zxp: for any ϵ ∈ Z∗
p,

a, b ∈ Zp and for all αi, βi, ei, fi ∈ Zp where i ∈ {1, . . . k},

a, 0 b, 0
ϵ

α1, β1
αk, βk

· · ·

e1
ek

f1 fk

· · · · · ·
α2, β2

· · ·

e2

f2

=

α1 ‧ ϵ‧1(af1 + be1), β1 ‧ 2ϵ‧1e1f1

α2 ‧ ϵ‧1(af2 + be2), β2 ‧ 2ϵ‧1e2f2

αk ‧ ϵ‧1(afk + bek), βk ‧ 2ϵ‧1ekfk

· · ·

· · ·

· · ·

‧ϵ‧1e1fk ‧ ϵ‧1ekf1

· · ·

‧ϵ‧1e1f2 ‧ ϵ‧1e2f1
‧ϵ‧1e2fk ‧ ϵ‧1ekf2

√
pω‧ϵ‧1ab
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Proof.

a, 0 b, 0
ϵ

α1, β1
αk, βk

· · ·

e1
ek

f1 fk

=

· · · · · ·

a, 0 b, 0
ϵ

α1, β1
αk, βk

· · ·

e1

ek

f1

fk

· · · · · ·

...
...

=

‧ϵ‧1be1, 0

‧ϵ‧1bek, 0

‧ϵ‧1af1, 0

‧ϵ‧1afk, 0

...
...

‧ϵ‧1e1f1

‧ϵ‧1e1fk

‧ϵ‧1ekfk

=
α1 ‧ ϵ‧1(af1 + be1), β1

α2 ‧ ϵ‧1(af2 + be2), β2

αk ‧ ϵ‧1(afk + bek), βk

· · ·· · · · · ·

‧ϵ‧1ekfk
‧ϵ‧1e1f1

=

α1 ‧ ϵ‧1(af1 + be1), β1 ‧ 2ϵ‧1e1f1

α2 ‧ ϵ‧1(af2 + be2), β2 ‧ 2ϵ‧1e2f2

αk ‧ ϵ‧1(afk + bek), βk ‧ 2ϵ‧1ekfk

· · ·

· · ·

· · ·

‧ϵ‧1e1fk ‧ ϵ‧1ekf1

α2, β2

· · ·

e2

f2

α2, β2

· · ·

e2 f2

‧ϵ‧1be2, 0 ‧ϵ‧1af2, 0‧ϵ‧1e2f2

α1, β1
αk, βk

· · ·· · · · · ·
α2, β2

· · ·

‧ϵ‧1e1f2 ‧ϵ‧1e2f1

‧ϵ‧1ekf1

‧ϵ‧1e2fk ‧ϵ‧1ekf2

· · ·

‧ϵ‧1e2f2
‧ϵ‧1e1f2

‧ϵ‧1e2f1

‧ϵ‧1e1fk

‧ϵ‧1ekf1

‧ϵ‧1e2fk

· · ·

‧ϵ‧1e1f2 ‧ ϵ‧1e2f1
‧ϵ‧1e2fk ‧ ϵ‧1ekf2

√
pω‧ϵ‧1ab

√
pω‧ϵ‧1ab

√
pω‧ϵ‧1ab

(Fusion)

(Fusion)

(Prop 15)

(Eq 3.39)

‧ϵ‧1ekf2

(Lem 24)
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Chapter 4

A normal form

In this chapter, we present the qudit version of the AP-form and some of its

applications for odd prime dimensions. We first define the AP-form in ZXStab
p

and present some of its properties. Then, we show the qudit version of the week

simulation algorithm presented in Ref. [38]. Lastly, we prove the completeness of

the Clifford qudit ZX-calculus for odd prime dimensions.

4.1 AP form

Similarly to the qubit case, we can define the AP-form of diagrams in ZXStab
p .

However, we need to deal with more complicated phases and H-edges between

spiders; therefore, the complexity of proofs increases. We say that a graph-like

diagram is in Affine with Phases form (AP-form) when:

• There are no inputs;

• The internal spiders are Pauli-spiders;

• Internal spiders are only connected to boundary spiders.

Note that we say that a diagram is in Affine with Phases form because it describes

an affine subspace with some additional phase function.
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We claim that any diagram in ZXStab
p can be transformed into one in AP-form.

This can be done by first transforming the diagram into a graph-like one. Then,

applying local complementation and pivoting as much as possible results in a

diagram that is in AP-form. It is clear that by applying local complementation

we eliminate each strictly Clifford inner spider. Furthermore, pivoting removes

any pair of connected inner Pauli spiders. Therefore, we reach a diagram that

has neither strictly Clifford inner spiders, nor any connected pair of inner Pauli

spiders. That is, the application of local complementation and pivoting trans-

forms a graph-like diagram into one in AP-form.

The general form of a diagram in AP-form can be described and decomposed

similarly to the qubit case as follows, for any ai, αi, βi, eh,i, fi,j ∈ Zp where h ∈

{1, . . . , k} and i, j ∈ {1, . . . , ℓ} such that i < j:

a1, 0

α1, β1

α2, β2

αℓ, βℓ

...

ak, 0

e1,1

...

ek,1
e1,2

ek,2

ek,ℓ

e1,ℓ

...

...

=

f1,2 f1,ℓ

f2,ℓ

a1, 0

α1, β1

α2, β2

αℓ, βℓ

...

ak, 0

e1,1

...

ek,1
e1,2

ek,2

ek,ℓ

e1,ℓ

...

...

f1,2 f1,ℓ

f2,ℓ

a1, 0

α1, β1

α2, β2

αℓ, βℓ

ak, 0

e1,1

ek,1
e1,2

ek,2

ek,ℓ

e1,ℓ
...

=

f1,2 f1,ℓ

f2,ℓ

(Colour) (Fusion)

(4.1)

We claim that the above diagram, that we describe as the state |ψ⟩, equals the

following state up to some global phase:

|ψ⟩ ≈
∑︂
Ex⃗=a⃗

ωϕ(x⃗) |x⃗⟩ (4.2)

where E is the parity matrix describing the connectivity of the inner and bound-

ary spiders and a⃗ corresponds to the Pauli phases of the internal spiders as de-
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scribed subsequently:

E =

⎡⎢⎢⎢⎢⎣
e1,1 · · · e1,ℓ
e2,1 · · · e2,ℓ
...

...

ek,1 · · · ek,ℓ

⎤⎥⎥⎥⎥⎦ , a⃗ =

⎡⎢⎣a1...
ak

⎤⎥⎦ . (4.3)

Furthermore, ϕ is a phase function that describes the connectivity and phases of

the boundary spiders:

ϕ(x⃗) =
∑︂

i,j∈{1,...,ℓ}
i<j

2‧1xiαi + 2‧2x2iβi − 2‧1fi,jxixj (4.4)

We can prove this claim purely diagrammatically, by composing the diagram of

Eq. (4.1) with an effect that corresponds to the vector ⟨x|. By rewriting the

diagram while keeping track of the scalars, we can prove that the diagram indeed

represents the one described in Eq. (4.2). These transformations are as follows:

a1, 0

α1, β1

α2, β2

αℓ, βℓ

...

ak, 0

e1,1

...

ek,1
e1,2

ek,2

ek,ℓ

e1,ℓ

...

...

f1,2 f1,ℓ

f2,ℓ

=

x1, 0

x2, 0

xℓ, 0

a1, 0

...

ak, 0

e1,1

...

ek,1
e1,2

ek,2

ek,ℓ

e1,ℓ

...
...

f1,2
f1,ℓ

f2,ℓ

x1, 0

x2, 0

xℓ, 0

α1, β1

α2, β2

αℓ, βℓ

=

a1, 0

...

ak, 0

e1,1

...

ek,1
e1,2

ek,2

ek,ℓ

e1,ℓ

...

...

f1,2

f1,ℓ
f2,ℓ

x1, 0

x2, 0

xℓ, 0

α1, β1

α2, β2

αℓ, βℓ

x1, 0
x1, 0

x2, 0
x2, 0

x1, 0

x2, 0

xℓ, 0

xℓ, 0

xℓ, 0

(Fusion)

1√︂
pℓ2

(Copy)

=

a1, 0

...

ak, 0

e1,1

...

ek,1
e1,2

ek,2

ek,ℓ

e1,ℓ

...

...

x1, 0

x2, 0

xℓ, 0

√
pω

‧2‧1f1,2x1x2

√
pω

‧2‧1f1,ℓx1xℓ

√
pω

‧2‧1f2,ℓx2xℓ

√
pω2‧1x1α1+2‧2x2

1β1

√
pω2‧1x2α2+2‧2x2

2β2

√
pω

2‧1xℓαℓ+2‧2x2
ℓ βℓ

...
...

...
...

1√︂
pℓ

(Lem 10)

(Lem 19)
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=

a1, 0

...

ak, 0

e1,1

...

ek,1
e1,2

ek,2

ek,ℓ

e1,ℓ

...

...

x1, 0

x2, 0

xℓ, 0

x1, 0

x2, 0

xℓ, 0

=

a1, 0

...

ak, 0

...

...

...

x1e1,1, 0

x1ek,1, 0

x2e1,2, 0

x2ek,2, 0

xℓe1,ℓ, 0

xℓek,ℓ, 0

=

a1 ‧ x1e1,1 ‧ x2e1,2 ‧ xℓe1,ℓ, 0

ak ‧ x1ek,1 ‧ x2ek,2 ‧ xℓek,ℓ, 0

...

(Copy) (Prop 14)

(Fusion)

∑︁
i,j∈{1,...,ℓ}

i<j

ω
2‧1xiα1+2‧2x2

i βi‧2
‧1fi,jxixj

∑︁
i,j∈{1,...,ℓ}

i<j

ω
2‧1xiα1+2‧2x2

i βi‧2
‧1fi,jxixj

∑︁
i,j∈{1,...,ℓ}

i<j

ω
2‧1xiα1+2‧2x2

i βi‧2
‧1fi,jxixj

...
...

1√︂
pℓ

√︁
pℓ

√︃
p

ℓ(ℓ‧1)
2

√︁
pℓ

p
ℓ2(ℓ‧1)

4

p
ℓ2(ℓ‧1)

4 =

a1 ‧ x1e1,1 ‧ x2e1,2 ‧ xℓe1,ℓ, 0

ak ‧ x1ek,1 ‧ x2ek,2 ‧ xℓek,ℓ, 0

...
(Lem 9)

∑︁
i,j∈{1,...,ℓ}

i<j

ω
2‧1xiα1+2‧2x2

i βi‧2
‧1fi,jxixj

p
ℓ2(ℓ‧1)

4

Note that if a Z-spider with no legs has phase (z, 0) for any z ∈ Z∗
p, then it

equals the zero scalar. This means that the probability of such an effect is 0.

Therefore, the above diagram allows only such x⃗ vectors that satisfy the equation

Ex⃗ = a⃗. Furthermore, the scalars that are copied from the phases part of the

diagram equal the ωϕ(x⃗) component of the equation. We conclude that a diagram

in Eq. (4.1) indeed equals the state presented in Eq. (4.2).

4.2 Week simulation

In this section, we present the qudit version of the week sampling algorithms

shown in Ref. [38]. Since this method is based on the AP-form, it is an ideal

candidate to present as we extensively examine diagrams of such form.

We can show that each diagram in ZXStab
p can be efficiently classically sim-

ulated. Given a diagram D that describes the state |ψ⟩. We first transform D

into a diagram in AP-from using local complementation and pivoting. As the

thesis shows, such a diagram is described by the triple (E, b⃗, ϕ). Note that the

algorithm requires the biadjacency matrix E ∈ Zk×ℓ
p to be invertible.

72



4.3. COMPLETENESS

Our goal is to efficiently simulate {|0⟩ , . . . , |d− 1⟩} measurements on the

state |ψ⟩. To do so, we argue as follows. The outcome probabilities of a measure-

ment in the computational basis are independent of the phase function. That is,

the specific value of ϕ is in this context completely redundant. Therefore, we can

set the phase function to its trivial value ϕ ≡ 0. This leaves us with the following

state: ∑︂
Ex⃗=a⃗

|x⃗⟩ (4.5)

Then, sampling from this probability distribution is relatively easy. We simply

generate a vector u⃗ ∈ Zℓ
p uniformly at random. Then, calculating the equation

Ru⃗ + a⃗ results in a sample from the state |ψ⟩. This shows that each Clifford

circuit can efficiently be simulated in the weak sense.

4.3 Completeness

In this section, we prove the completeness of ZXStab
p . Recall, that we say a graph-

ical calculus is complete if its rewrite rules can prove any true equation. More

formally, graphical calculus is complete if, for any diagram A,B ∈ ZX such that

JAK = JBK, we can provide a sequence of rewrites that transforms A into B.

To prove the completeness of the calculus, we use a more restricted version of

the AP-form. We say that a diagram in AP-form defined by E, A⃗, and ϕ is in

reduced AP-form if it is 0 or it is non-zero and:

• E is in reduced row echelon form (RREF) with no zero rows;

• ϕ only contains free variables from the equation system Ex⃗ = a⃗.

We claim that any diagram in ZXStab
p equals one in reduced AP-form, and this

form is unique.

First of all, let us prove the uniqueness of the form.
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Lemma 26. For any non-zero state |ψ⟩, there is at most one triple (E, b⃗, ϕ)

satisfying the conditions of reduced AP-form such that:

|ψ⟩ ≈
∑︂
Ex⃗=a⃗

ωϕ(x⃗) |x⃗⟩

Proof. Since |ψ⟩ ≠ 0, the set A = {x⃗ | Ex⃗ = a⃗} is non-empty. Therefore, there

is a unique system of equations in RREF that define A. This means that E

and a⃗ are uniquely fixed. Now, for any assignment {xi1 := c1, . . . , xik := ck} of

free variables, there exists a state |x⃗⟩ ∈ A such that xiµ = cµ. Therefore, we

have ⟨x⃗|ψ⟩ = ωϕ(c1, ... ,ck) for some fixed constant λ ̸= 0. Using this fact we can

determine the value of ϕ at all inputs (c1, . . . , ck) which is enough to compute

each coefficient of ϕ. We conclude that ϕ is uniquely fixed by |ψ⟩.

It is clear that any diagram in ZXStab
p can be transformed into one in AP-form

using local complementation and pivoting. As the first step, we have to show

that we can rewrite a ZX-diagram in AP-form in such a way that its biadjacency

matrix E is transformed into one in RREF. Then, we also have to show that

we can transform the diagram in such a way to ensure that ϕ only contains free

variables from the equation system Ex⃗ = a⃗. That is, we have to prove that any

phase or Hadamard edges connected to boundary spiders can be removed from a

pivot spider.

First, we show that we can perform primitive row operations in a ZX-diagram

in AP-form; thus, we can transform a diagram in AP-form into one with a biad-

jacency matrix in RREF using Gaussian elimination.

Lemma 27. We can perform primitive row operations on a ZX-diagram in AP-

form, i.e. we can ‘add’ one inner spider to another. For any k, a, b, ei, fj ∈ Zp
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where i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}:

a, 0

b, 0

e1

e2

en

f1

f2

fn

...

...

≈

a, 0

ka + b, 0

e2

en

...

e1

ke1 + f1

ke2 + f2

ken + fn

...

Proof. Firstly, we show that we can transform two disconnected X-states in the

following way:

a, 0

b, 0

=

a, 0

b, 0

=

a, 0

b, 0

=

a, 0

b, 0

0
=

a, 0

b, 0

k ‧k

=

a, 0

b, 0

k ‧k ≈

a, 0

a, 0

k

b, 0

‧k =

a, 0

ka, 0

b, 0

‧k

=

a, 0

ka, 0

b, 0

‧k =

a, 0

ka + b, 0

‧k =

a, 0

ka + b, 0
‧k

=

a, 0

ka + b, 0

k

=

a, 0

ka + b, 0

k =

a, 0

ka + b, 0

k
=

a, 0

ka + b, 0

k

(Z-Elim) (Fusion) (Eq 3.29)

(Prop 14)

(Fusion) (Copy) (Eq 3.34)

(Eq 3.4) (Fusion) (Eq 3.4) (Prop 14)

(X-Elim) (Eq 3.4) (Fusion)

(Fusion)

(4.6)
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Then, we can show that we can transform a diagram in AP-form as follows:

a, 0

b, 0

e1

e2

en

f1

f2

fn

...

...

=

a, 0

b, 0

e1

e2

en

f1

f2

fn

...

...

≈

a, 0

ka + b, 0

k

e1

e2

en

f1

f2

fn

...

...

≈

a, 0

ka + b, 0

k

e1

e2

en

f1

f2

fn

...

...

= k

ka + b, 0

a, 0
e1

e2

en

f1

f2

fn

...

...

=

a, 0

ka + b, 0

k

e2

en

f1

f2

fn

...

...

e1

e2

en

e1

...

...

...

=

a, 0

ka + b, 0

e2

en

f1

f2

fn

...

e1

ke2

ken

ke1

...

...

...

=

a, 0

ka + b, 0

e2

en

f1

f2

fn

...

...

e1

ke2

ken

ke1

...

(Fusion)

(Eq 4.6) (Bigebra)

(Fusion)
(Lem 17)

(Lem 17)
(Fusion)

(Fusion)

(Prop 14)
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a, 0

ka + b, 0

e2

en

f1

f2

fn

...

...

e1

ke2

ken

ke1

...
=

a, 0

ka + b, 0

e2

en

...

e1

ke1 + f1

ke2 + f2

ken + fn

...

=

a, 0

ka + b, 0

e2

en

f1

f2

fn

...

...

e1

ke2

ken

ke1
(Fusion)

(Prop 14)

=

As the above lemma states, we can perform primitive row operations on diagrams

in AP-from. This means that we can use Gaussian elimination on diagrams. Thus,

we can transform their biadjacency matrix to be in RREF.

Subsequently, we show that we can remove any phase from the pivot spider

of a diagram in AP-form. We begin with the case when the phase of the pivot

spider is Pauli.

Lemma 28. We can remove Pauli-phases from the pivot spiders of diagrams in

AP-form.
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Proof. For any a, x, ei ∈ Zp where i ∈ {2, . . . , k} and e1 ∈ Z∗
p:

a, 0

e1

e2

e3

ek

x, 0

...

=
a, 0

e1

e2

e3

ek

xe‧1
1 , 0

...

=

e1

e2

e3

ek

...

a, 0 ‧xe‧1
1 , 0

‧xe‧1
1 , 0

‧xe‧1
1 , 0

=
...

‧xe‧1
1 e2, 0

‧xe‧1
1 e3, 0

‧xe‧1
1 ek, 0

a, 0

e1

e2

e3

ek

(Z-Elim) (Lem 13)

(Lem 17)

(Fusion)

(Lem 17)

We now direct our attention to the elimination of strictly Clifford phases from

pivot spiders. To prove this case, we first show that we can push strictly Clifford

Z-spider through an X-spider with weighted outputs.

Lemma 29. We can push a strictly Clifford Z-spider through an X-spider with

weighted output legs. That is, for any a, ei ∈ Zp where i ∈ {1, . . . , k} and z ∈ Z∗
p:

e1

ek

e2a, z

≈ ...

‧ae1, z

‧ae2, z

‧aek, z

be1ekbe2ek

be1e2
e1

ek

e2

...
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Proof.

a, z ... =

a, z a, z

...

=

az‧1, ‧z‧1

... =

‧az‧1, ‧z‧1

... =

‧az‧1, ‧z‧1

...

= ...

‧ae1, z

‧ae2, z

‧aek, z

be1ekbe2ek

be1e2

e1

ek

... ≈
e1

ek

e1

ek

e1

ek

e1

ek

e1

ek

e2

=

‧az‧1, ‧z‧1

...

e1

ek

e2

e1

e2

ek

e1

ek

e2

(Fusion) (Bigebra)

(Lem 12) (Fusion) (Colour)

(Lem 23)(Lem 17)

(Eq 4.7)

Note that the phase after the application of the local complementation comes

from the following equation:

‧az‧1, ‧z‧1 ↦→ ‧(‧az‧1)(‧z‧1)‧1, ‧(‧z‧1)‧1 = ‧az‧1z, z = ‧a, z (4.7)

Using the lemma proved above, we show that non-Pauli phases from pivots spiders

can be removed.

Lemma 30. We can remove strictly Clifford phases from the pivot spiders of

diagrams in AP-form.
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Proof. For any a, x, ei ∈ Zp where i ∈ {2, . . . , k} and z, e1 ∈ Z∗
p:

a, 0

x, z

...

=

x, z

...

=

a, 0

=

‧(xe‧1
1 + aze‧2

1 )e2, ze
‧2
1

‧(xe‧1
1 + aze‧2

1 )e3, ze
‧2
1

‧(xe‧1
1 + aze‧2

1 )ek, ze‧2
1

...

a, 0

=
a, 0

‧(xe‧1
1 + aze‧2

1 )e2, ze
‧2
1

‧(xe‧1
1 + aze‧2

1 )e3, ze
‧2
1

‧(xe‧1
1 + aze‧2

1 )ek, ze‧2
1

...

ye‧21 e2e3

ye‧21 e2ekye‧21 e3ek

ye‧21 e2e3

ye‧21 e3ek ye‧21 e2ek

e1

e2

e3

ek

e1

e2

e3

ek

xe‧1
1 , ze‧2

1

...

a, 0 e1

e2

e3

ek

=

‧(xe‧1
1 + aze‧2

1 ), ze‧2
1

...

a, 0

e1

e2

e3

ek

=

xe‧1
1 + aze‧2

1 , ze‧2
1

...

a, 0

e1

e2

e3

ek

e1

e2

e3

ek

e1

e2

e3

ek

(Fusion) (Lem 17) (Lem 13)

(Eq 3.4) (Lem 29) (Fusion)

(Z-Elim)

Combining the results of Lemma 28 and Lemma 30, we conclude that any phase

can be removed from a pivot spider.

Subsequently, we show how to remove H-edges between the pivot spider and

other boundary spiders. We have two case distinctions based on whether the

H-box connects to a spider that is connected to the same internal spider as the

pivot, or not. However, most parts of the proofs are identical in the two cases. In

order to reduce repetition, we prove a lemma that generalises the identical parts

of the proofs.

Lemma 31. For any a, x, ei ∈ Zp where i ∈ {2, . . . , k} and e1 ∈ Z∗
p the following

equation holds:

a, 0

e1

≈

ek

e2
...

a, 0 ‧axe‧1
1 , 0

e1

ek

e2
...‧xe‧11 ek

‧xe‧11 e2

x

(4.8)

Proof. Firstly, we focus on transforming a specific part of the diagram of in-
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terest.

a, 0 = =
x

x

e1

· · ·

=

e1

e1
a, 0

a, 0

=

· · ·

xe‧11

e1

a, 0 xe‧11

e1

a, 0

a, 0

xe‧11

e1

=

a, 0

‧axe‧1
1 , 0

‧xe‧11

e1

=

a, 0

‧axe‧1
1 , 0

‧xe‧11

e1

=

a, 0

‧axe‧1
1 , 0

xe‧11

e1

≈

a, 0

‧axe‧1
1 , 0

xe‧11

e1

=

a, 0

‧axe‧1
1 , 0

xe‧11

e1

(Lem 17) (Lem 16) (Fusion)

(Lem 13) (Lem 18) (Lem 13)

(Prop 14)

(Bigebra)
(Fusion)

k k· · ·k· · ·k

· · ·k · · ·k · · ·k

· · ·k · · ·k · · ·k

(Lem 16)

(4.9)

Then, we can use the previous equation to prove the lemma.

a, 0

x

e1

≈

ek

e2

a, 0

‧axe‧1
1 , 0

e1

...
ek

e2
...

=

a, 0
‧axe‧1

1 , 0

e1

ek

e2
...

xe‧11xe‧11

=

a, 0
‧axe‧1

1 , 0

e1

ek

e2
...

‧xe‧11

‧xe‧11
=

a, 0
‧axe‧1

1 , 0

e1

ek

e2

...

‧xe‧11

‧xe‧11
ek

e2

=

a, 0
‧axe‧1

1 , 0

e1

ek

e2

...

‧xe‧11 ek

‧xe‧11 e2

=

a, 0
‧axe‧1

1 , 0

e1

ek

e2

...

‧xe‧11 ek

‧xe‧11 e2
=

a, 0

‧axe‧1
1 , 0

e1

ek

e2
...‧xe‧11 ek

‧xe‧11 e2

(Eq 4.9) (Eq 3.42)

(Lem 18) (Lem 17) (Lem 16)

(Fusion) (Fusion)

(4.10)

Using the lemma proved above, we show that H-edges that are connected to the
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pivot spider can be removed.

Lemma 32. We can remove an H-edge between the pivot spider and a boundary

spider that connects to the same internal spider as the pivot.

Proof. Let us suppose that the pivot spider is connected to the ℓ-th wire with

an H-box. Then, for any a, x, ei ∈ Zp where i ∈ {2, . . . , k} and e1 ∈ Z∗
p:

...

x

a, 0

e1

e2

eℓ

ek

= ≈
...

a, 0

e1

e2

eℓ

ek

x ‧axe‧1
1 , 0

...

a, 0

e1

e2

eℓ

ek

‧xe‧11 ek

‧xe‧11 e2

‧xe‧11 eℓ

=

...

‧axe‧1
1 , 0

a, 0

e1

e2

eℓ

ek

‧xe‧11 ek

‧xe‧11 eℓ‧xe‧11 e2
=

...

‧axe‧1
1 , ‧2xe‧1

1 eℓ

a, 0

e1

e2

eℓ

ek

‧xe‧11 ek

‧xe‧11 e2

(Fusion) (Lem 31)

(Fusion)
(Eq 3.39)

...
...

...

...

...

...

Lemma 33. We can remove an H-edge between the pivot spider and a boundary

spider that does not connect to the same internal spider as the pivot.

Proof. For any a, b, x, ei, fh ∈ Zp where i ∈ {2, . . . , k}, h ∈ {1, . . . , j} and
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e1 ∈ Z∗
p:

a, 0
... x

b, 0

...

=

e1

e2

ek

f1

fh

a, 0
...

x
e1

e2

ek =

a, 0
...

‧axe‧1
1 , 0

e1

e2

ek
‧xe‧11 ek

‧xe‧11 e2

=

a, 0 ...

e1

e2

ek

‧xe‧11 e2

‧xe‧11 ek

(Fusion)
(Lem 31)

(Fusion)

fℓ

... b, 0

...

f1

fh

fℓ

... b, 0

...

f1

fh

fℓ

...

b, 0

...

f1

fh

fℓ

...

Therefore, we can remove H-boxes connected to the pivot spider.

We conclude the previous proofs with the following lemma:

Lemma 34. Any diagram in ZXStab
p can be converted into one in reduced AP-

form.

Proof. First, we can convert any diagram in ZXStab
p into one in AP-form using

local complementation and pivoting. Then, such a diagram can be translated

into one in AP-form with a biadjacency matrix in RREF using Gaussian elim-

ination which can be performed because of Lemma 27. We have also proved

that any phase can be removed from the pivot spider thanks to Lemma 28

and Lemma 30. Lastly, we can also remove any H-edge connected to the pivot

spider using Lemma 32 and Lemma 33. This enables us to transform a diagram

in such a way that its phase function ϕ only contains free variables from the

equation system Ex⃗ = a⃗. In conclusion, we are able to rewrite any diagram in
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ZXStab
p in such a way that it satisfies the properties to be a diagram in reduced

AP-form.

Ultimately, we can prove the completeness of ZXStab
p using the proofs discussed

above.

Theorem 35. For any pair of ZX-diagrams A,B ∈ ZXStab
p , if JAK = JBK, then

we can provide a sequence of rewrites that transforms A into B.

Proof. Without loss of generality, we can assume that A and B are states by

map-state duality, that is, we can bend the wires in order to make the diagram

form a state. If A and B represent the same linear map, i.e. JAK = JBK, then

their reduced AP-form is identical thanks to the uniqueness of the form proved

in Lemma 26. Therefore, we can transform both A and B into diagrams in

reduced AP-form because of Lemma 34. The sequence of transformations from

A to A in reduced AP-form composed with the series of rewrites from B in

reduced AP-form to B provides us with a sequence of rewrites that transforms

A into B.
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Conclusion

To sum up, we have presented a modified version of the qudit ZX-calculus for

odd prime dimensions of Ref. [2], which includes explicit scalars. Using this

calculus, we have shown the qudit version of local complementation and pivoting.

We have also presented the qudit version of the AP-form and its unique version,

the reduced AP-form. Then, using the AP-form, we have demonstrated how to

efficiently weekly simulate Clifford circuits. Lastly, using the reduced AP-form we

have also proved that the qudit ZX-calculus for odd prime dimensions is complete.

5.1 Evaluation of the thesis

Our aim was to present a completeness proof that is more accessible and easier

to implement compared to the proof of Ref. [2]. Firstly, the completeness proof

we present in the thesis is completely constructive and is based on methods like

Gaussian elimination. Therefore, we provide clear steps for someone who aims

to implement automatic rewrites of Clifford diagrams into one in AP-form or

reduced AP-form. Moreover, the applications related to the AP-forms are also

implementable as is, without any further development of the theory. On the other

hand, it is complicated to reason about the simplicity or understandability of a

proof. We may assume that it is easier to grasp the completeness proof of the
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thesis for students familiar with the proof presented in the Quantum Software

course. However, it might be the case that people familiar with the completeness

proof of Ref. [33] would find the proof of Ref. [2] more accessible. Nevertheless,

we present each proof in the thesis as simply and intuitively as the author’s

imagination allowed with many simplifications and sub-lemmas.

The other aspect we may consider with caution is the axiomatisation with

explicit scalars. On the one hand, it requires several additional rules in the

axioms which means that our calculus is further from one that is minimal. On

the other hand, it increases the simplicity of proofs and equations substantially,

and can generally improve the comprehensibility of the graphical rewrite rules.

It is up to one’s preferences what they believe is more important, minimality or

comprehensibility.

We also note that while researching the calculus and recalculating the proofs

of Ref. [2], several typos in the text and errors in the calculations have been

found. These notices have been communicated to the authors of the paper.

One of the main results of the thesis is the general version of the week simula-

tion algorithm presented in Ref. [38] which is presented for odd prime dimensions

in Section 4.2. The other main result is the alternative proof of completeness for

the Clifford fragment of the qudit ZX-calculus for odd prime dimensions which

is presented in Section 4.3. Since both of our main results rely on local comple-

mentation (Lemma 23) and pivoting (Lemma 25), one may suggest that the most

valuable contributions of the thesis could be these rewrite rules as we prove our

final results using them. The demonstration of the above-mentioned graphical

rewrite rules may also enable future researchers to investigate the qudit versions

of other proofs and algorithms that rely on them.
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5.1.1 Limitations

The first limitation we note is that the number of rules needed in order to repres-

ent the scalars explicitly, as part of the calculus, is larger than one may expect.

This is because we needed several rules to translate the empty diagram, the zero

scalar, and all the elementary scalars in order to make the scalar fragment com-

plete.

Another limitation is the fact that the calculus is only presented for odd

prime dimensions. Firstly, this is because the construction does not work for the

qubit case, so we have to omit the d = 2 case, i.e. the even prime case. More

importantly, we need p to be a prime in order for Zp to be a field. This allows us

to use the multiplicative inverse of every element of Z∗
p which we use extensively

throughout the proofs.

Another limitation is that we only present the completeness of the Clifford

fragment of the calculus. However, we can prove that the Clifford+T and also

the universal fragment of the qubit ZX-calculus are complete. Nonetheless, the

proof of such results would be highly non-trivial even if we know how the proof

works for less general cases.

Further to the completeness result, the thesis does not discuss the qudit ver-

sion of algorithms that rely on local complementation and pivoting. These two

rules are used in many papers, and one may expect it not to be difficult to prove

and implement such methods for the qudit case. Nevertheless, the aim of this

thesis is not to provide the qudit version of algorithms, but to provide an overview

of the AP-form and its applications for qudits.

Lastly, it is worth noting that we originally aimed to use a slightly modified

interpretation of spiders compared to that of Ref. [2]. We intended to omit the

2−1 factor from the power of ω resulting in ωxk+yk2 instead of ω2−1(xk+yk2). How-

ever, this modification changed our axiomatisation; more specifically, it changed

Gauss, Shear, and Mult. Eventually, the changed axioms resulted in more
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complicated rules that were undesired for our aims to provide simpler proofs.

Also, using a different interpretation would mean that one could not use the res-

ults of both papers. Therefore, we decided that using the same interpretation as

Ref. [2] is a wise decision.

5.2 Future work

Firstly, the most obvious recommendation for future work would be to define

a calculus for not only odd prime dimensions but arbitrary ones. This would

probably include the combination of the prime-dimensional calculi in such a way

that they represent the given dimension. However, the design of such a calculus is

non-trivial, and it may be problematic to provide rules that require the existence

of the multiplicative inverse of a given number.

Another reasonable work could be to define the calculus for and prove the

completeness of the Clifford+T fragment for odd prime-dimensional qudits. The

interpretation of the spiders in such a system would be achievable using a third

phase that represents the cubic part in the power of ω. A path to prove complete-

ness could be to examine and use the method of previous papers dealing with the

completeness of the Clifford+T fragment in less general cases.

Based on the completeness result for the Clifford+T fragment, a possible

path would be to prove that the universal fragment of the qudit ZX-calculus is

complete for odd prime dimensions. Finally, by combining the results of the works

mentioned above one could prove the completeness of the qudit ZX-calculus for

the universal fragment.

Another suggestion for future work would be the further analysis of the local

complementation and pivoting for odd prime qudits. One would expect that most

algorithms that rely on the rewrite rules mentioned above would be adaptable

for the qudit case without much complication. One example could be to design
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T-count reducing algorithms for qudits circuits based on the works of Ref. [29].

The last recommendation for future work would be the implementation of

a tool to perform automated rewriting for the qudit ZX-calculus, similarly to

PyZX [44]. One possibility would be to fork the existing PyZX library, which is

a Python tool that implements the theory of ZX-calculus for the creation, visu-

alisation, and automated rewriting of large-scale quantum circuits. This forked

library could be modified to implement the qudit version of the ZX-calculus. The

drawback of this method is that the fixes and updates to PyZX would not ap-

pear in the new library. Alternatively, one could modify PyZX itself to support

qudits; however, that would mean that each new contribution would also have

to be implemented for qudits, which is undesirable for most. Another option

could be to implement some kind of extension that overrides the core of PyZX

in such a way that most functions work as originally intended while also imple-

menting the qudit ZX-calculus. Nevertheless, this method seems to involve the

most complexity, and it may not be implementable without the modification of

PyZX.

Finally, we hope that the contributions of this thesis will be found useful in

the community and that they will provide researchers with methods or ideas to

prove further and yet more interesting ideas in the ZX-calculus.
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