
A Formalization & Attack Tree for Gasper:
Ethereum’s Proposal for Proof-of-Stake

Consensus

Candidate no. 1051618
Thesis word count: 16,009

A thesis submitted for the degree of
Master of Science

Michaelmas 2022

Abstract
Blockchain applications are becoming more prominent at a growing pace, and the
stake-based consensus is being adopted by the majority of the current networks.
Stake-based blockchains already stepped into many mission-critical sectors such as
transportation, health, and defense. It is crucial that security research catches hold
of the development. This article introduces Proof-of-Stake consensus protocols
and formalizes a specific instance: the "Gasper" protocol that is used to convert
the widely used Ethereum into a stake-based network. Taking Gasper as the status
quo, the article explores a range of straightforward and more sophisticated ways
of challenging the protocol. The identified attack scenarios are then combined
in an attack tree which helps our illustration and comparison purposes. We
determine that attacking a blockchain application vastly differs for different
consensus paradigms. Most work-based attacks are not applicable to stake-based
networks and vice versa. The attack space is also significantly affected by the
specifics of the consensus algorithms. Overall, we attest that Gasper has a
considerably smaller attack space than a general work-based blockchain with
the longest chain fork-choice rule.

A Formalization & Attack Tree for
Gasper: Ethereum’s Proposal for

Proof-of-Stake Consensus

Candidate no. 1051618
Word count: 16,009

A thesis submitted for the degree of
Master of Science

I hereby certify that this is entirely
my own work unless otherwise stated.

Michaelmas 2022

Efe Acer

Acknowledgements

Foremost, I would like to acknowledge and give my warmest thanks to my super-
visors Prof Michael Goldsmith and Dr Louise Axon. Their continuous support,
valuable guidance and seasoned advice carried me through the process of writing
my dissertation.

Besides my supervisors, I would like to thank my family for their incredible
understanding and moral support.

Finally, I would like to thank all my friends and colleagues who in one way
or another shared their support.

Abstract

Blockchain applications are becoming more prominent at a growing pace, and the
stake-based consensus is being adopted by the majority of the current networks.
Stake-based blockchains already stepped into many mission-critical sectors such
as transportation, health, and defense. It is crucial that security research catches
hold of the development. This article introduces Proof-of-Stake consensus protocols
and formalizes a specific instance: the "Gasper" protocol that is used to convert
the widely used Ethereum into a stake-based network. Taking Gasper as the status
quo, the article explores a range of straightforward and more sophisticated ways of
challenging the protocol. The identified attack scenarios are then combined in an
attack tree which helps our illustration and comparison purposes. We determine that
attacking a blockchain application vastly differs for different consensus paradigms.
Most work-based attacks are not applicable to stake-based networks and vice versa.
The attack space is also significantly affected by the specifics of the consensus
algorithms. Overall, we attest that Gasper has a considerably smaller attack space
than a general work-based blockchain with the longest chain fork-choice rule.

Contents

List of Figures ix

1 Introduction 1
1.1 Aim . 1
1.2 Motivation . 2
1.3 Contribution . 2

2 Background 5
2.1 Background . 5

2.1.1 Consensus Protocols . 6
2.1.2 Attacks . 10
2.1.3 Attack Graphs . 16

3 Gasper: The Proof-of-Stake Consensus Protocol 19
3.1 Basics . 20

3.1.1 Views & Network View . 22
3.1.2 Validators & Stakes . 23
3.1.3 Key Ingredients of a Consensus Protocol 23
3.1.4 Byzantine Validators . 24
3.1.5 Security Properties . 24
3.1.6 Slots & Epochs . 25
3.1.7 Synchrony . 25
3.1.8 Note on our Formalization 25

3.2 Casper FFG . 26
3.2.1 Checkpoints & Attestations 26
3.2.2 Justification & Finalization 27
3.2.3 Slashing Conditions . 27
3.2.4 Guarantees . 28

3.3 LMD GHOST . 28
3.4 Gasper . 29

3.4.1 Epoch Boundaries . 29
3.4.2 Committees . 30

vii

viii Contents

3.4.3 Attestations . 31
3.4.4 Justification . 32
3.4.5 Finalization . 33
3.4.6 Hybrid LMD GHOST . 34
3.4.7 Slashing Conditions . 35
3.4.8 Guarantees . 35

4 Attack Tree 39
4.1 Preliminary . 39
4.2 Top-Level Categorization . 40
4.3 Gain Stakes Illegitemately . 41

4.3.1 Steal Network Currency . 41
4.3.2 Increase Relative Stakes . 44

4.4 Challenge Availability . 45
4.5 Challenge Integrity . 46
4.6 Recognizable Attacks in the Tree 46

4.6.1 The Balancing Attack . 46
4.6.2 The Reorg Attack . 48
4.6.3 The Avalanche Attack . 49
4.6.4 The Long Range Attack . 51
4.6.5 The 51% Attack . 53

4.7 Reflection . 53
4.8 Comparison with the PoW Tree . 54

5 Conclusion & Future Work 57

Appendices
.1 Appendix: PoW Tree . 61

References 69

List of Figures

4.1 Top-Level Categorization of PoS Attacks 40
4.2 Ways of Gaining Stakes Illegitemately 41
4.3 Steal Network Currency . 43
4.4 Increase Relative Stakes . 44
4.5 Challenge Availability . 45
4.6 Challenge Availability . 46
4.7 An Illustration of the Avalanche Attack 50

1 Top-level Categorization . 61
2 Gaining Work Incentives Illegitimately 62
3 Signing Transactions Without Consent 63
4 Countermeasures for Malware . 64
5 Deep Fork . 65
6 Adding an Invalid Block to the Chain 66
7 Restricting Chain Growth 1 . 67
8 Restricting Chain Growth 2 . 68

ix

x

1
Introduction

Contents
1.1 Aim . 1
1.2 Motivation . 2
1.3 Contribution . 2

1.1 Aim

This article has two major aims. The first is to introduce Proof-of-Stake (PoS)

consensus protocols and formalize a specific instance: the "Gasper" protocol that is

used to convert the widely used Ethereum into a stake-based network. We define

the building blocks of Gasper under a mathematical framework and analyze the

properties of the protocol to truly understand the key components affecting the

security guarantees of PoS networks.

Second, we will create an attack tree for the Gasper protocol, originating

from a given attack tree for PoW networks. We determine the paths of the

tree, i.e., attack vectors, that are only applicable to PoW networks and identify

those that specifically arise in PoS networks. We will systematically compare

the origin tree with the resulting tree to weigh the two consensus paradigms in

terms of certain security metrics.

1

2 1.2. Motivation

1.2 Motivation

Blockchain applications are stepping into our daily lives at a growing pace. We

recently saw a significant portion of the global financial system occupied by

cryptocurrencies. The defense sector started using blockchains to store confidential

data securely. Medical records are also stored in blockchains to mitigate integrity

and single point of failure issues while guaranteeing transparency.

The pace of security research on the blockchain should match the pace at which

we incorporate the technology. Otherwise, drastic side effects would follow. Using a

blockchain that is weak in terms of availability in global trade would mean that

an attacker could arbitrarily interrupt the exchange of critical goods and services.

Similarly, using a blockchain that is not well tested in terms of integrity to store

military records would mean that a malicious party could tamper with the records

and generate false flags. Hence, security research is not an option, it is not even a

need, it is a must. We, therefore, explore the most prominent type of blockchains,

PoS networks, comprehensively in terms of security guarantees and vulnerabilities.

1.3 Contribution

Our contributions, in this article, are:

• Formalizing Gasper in our own terms by simplifying certain notions in the

original Gasper paper, and introducing new notation when we feel the need to

do so. We put forward a summary of Gasper such that the definitions follow

each other in a progressive manner leading to the final protocol.

• Building a Gasper-specific Attack Tree. We build an attack tree that enumer-

ates attack vectors, i.e., ways of attacking the blockchain application backed

by the Gasper protocol. We present a semantic categorization of attack types

in our tree, as well as specific exploits needed to advance the attacks. The

tree also includes countermeasures to certain attacks. We later compare this

tree to a general PoW Attack Tree to identify attacks specific to the consensus

paradigm and evaluate the paradigms in conjunction with each other.

1. Introduction 3

• Explore the State-of-the-art Attacks on PoS Networks. The article can be

viewed as a comprehensive exploration of attack possibilities on PoS networks

and known defenses. Hence, it includes descriptions of the state-of-the-

art attacks exploiting specific vulnerabilities of the underlying consensus

algorithms. We reviewed the large set of attacks on PoS-networks and,

specifically, Gasper; vectorized each of them, and put together a summarizing

attack tree.

4

2
Background

Contents
2.1 Background . 5

2.1.1 Consensus Protocols . 6
2.1.2 Attacks . 10
2.1.3 Attack Graphs . 16

2.1 Background

A blockchain is essentially a distributed ledger, a database that is consensually

shared among multiple network participants. Cryptographic primitives such as hash

functions, digital signatures, and distributed consensus protocols ensure that a record

entered into the ledger can only be altered with the consensus of the entire network.

Consequently, data in the distributed ledger can be verified in a decentralized

manner, and blockchain applications can operate in trustless environments.

The distributed consensus protocols constitute the backbone of a blockchain

network. It dictates the network’s security in terms of the ledger’s integrity and

resiliency and the network’s performance in terms of speed and energy efficiency.

The very first blockchain application was introduced in "Satoshi Nakamoto"’s

famous cryptocurrency paper "Bitcoin: A Peer-to-Peer Electronic Cash System"

5

6 2.1. Background

[1] and proposed the proof-of-work (PoW) consensus protocol. Therefore, the vast

majority of the current blockchain networks rely on the PoW consensus protocol.

However, the PoW protocol includes an intensive mining process that leads to

several limitations such as energy inefficiency, network delays, and certain security

vulnerabilities. A newer consensus protocol, proof-of-stake (PoS) has been proposed

to overcome the limitations of PoW.

The PoS consensus protocol achieves consensus by requiring the network par-

ticipants to stake capital, i.e., deposit digital tokens, the staked capital acts as

collateral that incentivizes the participants to behave honestly. Many of the new

blockchain applications are deploying the PoS protocol and many existing blockchain

applications are mitigating to it because of the substantial efficiency and security

improvements. The PoS protocol is expected to be the foundational building block

for future blockchain networks and applications.

2.1.1 Consensus Protocols

In distributed environments network participants must agree on the state of the

network to be able to act deterministically and simultaneously. Otherwise, the

participants can get involved in faulty or malicious behaviors, resulting in a corrupt

network. The consensus protocol is therefore vital for a reliable blockchain network

in such trustless environments. The protocol incentivizes network participants to

behave properly as well as governs how the transactions are added to the distributed

ledger. We will now briefly explore the PoW and PoS consensus protocols in

comparison with each other.

Proof-of-Work Consensus

The proof-of-work consensus protocol is foundational to early blockchain networks

and applications due to its reputation gained with Bitcoin. The participants, i.e.,

the nodes in a PoW network reach consensus by participating in a puzzle-solving

process in which a node competes against others to find a nonce (a number that

is used once) for the candidate block it proposes. More precisely, the puzzle is

2. Background 7

the problem of finding a special number, a nonce, such that the nonce together

with the readily available previous block’s hash and transactions contained in the

candidate block produces an output contained in a target range when given as input

to a secure hash function, e.g., SHA-256. If a node succeeds to find a nonce that

maps the hash output to the target range, then its candidate block is accepted and

broadcasted to the network. This process is also known as the mining of a block.

If the broadcasted block is verified to be the first block mined after the last block

in the chain, then it is attached to the chain as the new last block.

Keeping a consensual and distributed database is still not that straightforward.

Network delays may cause several versions, i.e., forks of the ledger due to two or more

miners finding a suitable candidate block simultaneously. This possibility becomes

negligible as the mined blocks go deeper in the blockchain, the probability chain rule

ensures that the possibility of two valid forks of the ledger existing simultaneously

decreases exponentially with the chain length. This result simply follows from

the fact that each puzzle-solving attempt is an independent weighted random coin

tossing process. Consequently, a mined block is finalized only when it is k, typically

six, blocks deep in the blockchain. This requirement ensures there can only exist

one main, canonical, chain, but delays the transaction confirmation dramatically.

Due to the non-reversibility property of the hash function, the only way of solving

the nonce puzzle is to perform a brute-force search that exhaustively tries a different

number until the hash output is within the desired range. Thus, the only factor

contributing to the solution searching process is the hash rate of the participants,

i.e., the computational power they possess. The probability of participant i finding

a solution to the puzzle is simply the ratio of the participant’s hash rate to the

total hash rate in the network.

pi = ci∑N
j=1 cj

(2.1)

The PoW protocol places a block reward on the puzzle, the block winner also

called the leader, i.e., the participant solving the puzzle, receives a reward backed

by the network currency. The reward amount is adjusted in a way that it is in the

8 2.1. Background

participant’s best interest to participate in the puzzle-solving process. However,

a huge drawback of the PoW protocol is that the participants try to increase

their hash rates as it is linearly correlated to their chance of winning the block

reward, this, in turn, leads to elevated levels of energy consumption which hurts

the environment as well as network scalability.

Another problem with the PoW protocol is the formation of mining pools. A

mining pool is the collection of computing resources provided by network participants

who want to get higher opportunities to win block rewards by collaboratively solving

the nonce puzzles. Mining pools guarantee more stable incomes to their participants

due to the increased chances of mining a block. However, they threaten the

decentralization premise of blockchain technology. Up to 62.7% of the total hash

rate of the entire Bitcoin network is held by the largest five mining pools [2].

One of the most significant vulnerabilities of the PoW protocol is the chance

of a 51% attack. In such a scenario, a single party controlling more than 51% of

the total hash rate can maliciously alter the chain by launching double spending

attacks or avoiding transactions submitted by other participants. The 51% attack

is neglectable for large networks, but they need to be taken into consideration as

centralized entities such as mining pools grow larger within the networks. Small and

newly established networks should particularly take this attack into consideration.

Proof-of-Stake Consensus

The proof-of-stake (PoS) consensus protocols are energy-saving alternatives to PoW

consensus protocols. The name of the protocol is self-explaining. The fundamental

difference between the two types of protocols is that in PoS the leader selection

process is dictated by the stakes contributed by the participants instead of the

computational work they have performed. The stake of a node is the number of

tokens, i.e., the native currency of the network, which the node deposits upfront.

The leader is, again, the participant that mines the new block and appends it to

the chain, and it is selected based on the stakes.

2. Background 9

The Follow-the-Satoshi (FTS) algorithm is, generally, used in the leader selection

process. The FTS algorithm is essentially a hash function that takes a seed, typically

pseudo-random, and outputs a token index. Given the output token index, the

algorithm searches the deposit history and finds the owner of the output token.

The owner is set to be the leader and awarded with the block reward as in the PoW

protocol. However, the probability of participant i winning the block reward is

now associated with the proportion of the total stakes it holds. The more stakes

a participant has, the higher chance it has of winning the block reward.

pi = si∑N
j=1 sj

(2.2)

The PoS protocol implements an incentive mechanism that combines rewards and

penalties to incentivize consensus participation by means of staking while avoiding

adversarial behaviors. The protocol penalizes the adversarial participant by taking

away his stakes when malicious behavior is detected. The incentive mechanism is a

crucial element of any PoS protocol, it allows analyzing network security under a

mathematical framework by means of game theory. A PoS-based network is not

secure without an incentive mechanism with a provably secure equilibrium.

The transaction confirmation speed is another strength point of the PoS protocol

over the PoW protocol. The transaction confirmation depends on the transaction

throughput and the block confirmation time. Transaction throughput, Tx/s, is the

number of transactions processed in the network per second. It is calculated by

dividing the number of transactions contained in a block by the block time, which

is the average time needed to increase the chain length by one.

Tx/s = Blocksize

Txsize ×Blocktime

(2.3)

The Tx/s dictates how fast transactions are added to the ledger. The block

confirmation time, on the other hand, dictates how fast the added transactions are

being finalized. It depends on the block time and the finality of the protocol. The

finality is, in general, the depth in terms of blocks a transaction must go in the

chain to be finalized, different protocols may have different finality notions.

10 2.1. Background

Block time is much shorter in PoS-based networks as a deterministic selection

process replaces the puzzle-solving competition, also PoS-based networks typically

have a larger block size, thus the transaction throughput is much higher in PoS than

in PoW. Most PoS-based networks achieve immediate finality by voting to confirm

a block after each round of block addition, which means that the transactions are

finalized right after the respective block is added to the chain. Other PoS-based

networks implement variants of the longest chain rule which maintains forks of

the ledger up to a certain depth, finality is delayed in such networks so they have

a longer block confirmation time.

Another factor affecting the security of PoS-based networks is network synchrony.

The leader selection process is oftentimes implemented using sub-processes such as

voting and message passing. These sub-processes are fallible due to network delays

and network congestion. Some networks provide results showing that they are secure

under relaxed synchrony requirements, such as partial synchrony or asynchrony.

2.1.2 Attacks

We will briefly touch on the most common attacks that must be considered when

building secure blockchain structures. Most of the following attacks are used

as sub-processes within more sophisticated attacks. Describing these common

attacks will provide an insight into the weaknesses and vulnerabilities of different

blockchain types.

Chen et al. [3] propose a clear categorization of the blockchain attacks. They

focus on (1) mining pool attacks; which include attacks such as the 51%, pool

hopping, selfish mining, and fork after withholding (FoW), (2) consensus exci-

tation attacks; such as distributed denial-of-service (DDos), Sybil, eclipse, and

reentrancy, (3) middle protocol attacks; mainly attacks targeting identity privacy

and transaction information.

Attacks on blockchain have already caused substantial damage and proved that

security and privacy are one of the most substantial issues in blockchain technology.

There are several concrete examples of mining pool attacks where hackers launch

2. Background 11

attacks on the mining pool to increase the expectation over their revenues. On

May 16, 2018, Bitcoin Gold (BTG) adopted the EquiHash mining algorithm and

supported graphic card mining, hackers took advantage and launched a 51% attack

by renting sufficiently many graphic cards, the incident resulted in 12, 239 stolen

gold bits [4]. A similar 51% incident took place on January 5, 2019, where Ethereum

Classic (ETC) had been attacked by hackers, again, renting the computing power

of the graphic cards, resulting in a loss of $1.1 million US dollars [5].

Hackers utilize network communication attacks to interrupt the timely commu-

nication between the nodes and hurt certain types of cryptocurrencies. Back on

September 22, 2016, Ethereum suffered greatly from a distributed denial of service

(DDoS) which significantly reduced the transaction confirmation speed resulting

in two hard forks of ETH [6]. A hard fork forces all nodes to upgrade to the

latest version of a blockchain, which makes certain valid transactions invalid and

validates certain pending transactions. Hard forks mark unstable time periods for

cryptocurrencies and hackers do insider trading to generate revenues.

Hackers also launch attacks on the blockchain application layer where they find

loopholes and steal coins staked in smart contracts. Smart contracts are essentially

scripts stored, executed, and verified on the blockchain. A famous example of smart

contract attacks is the decentralized autonomous organization (DAO) attack on

June 17, 2016, when hackers detected loopholes in the smart contract and stole >3

million ETH, again forcing a hard fork [7]. Smart contract attacks are very hard to

resolve in terms of legal sanctions, as smart contracts are immutable once they are

deployed, and hacking a smart contract essentially means exploiting a bug that is

completely the same as interacting with the smart contract in a usual way.

Other examples of practical attacks include attacks targeting servers of big

trading platforms to steal the identity and transaction information of users. Such a

privacy theft attack occurred on March 7, 2018, when hackers performed malicious

transactions on the Binance exchange after stealing private user information, the

attack significantly affected the price of the cryptocurrencies being traded on

the platform [8].

12 2.1. Background

The number of such attacks goes far beyond the examples provided above, and

they constantly happen. This necessitates a comprehensive analysis where attacks

are categorized, enumerated, and linked.

51% Attack

The 51% attack is arguably one of the most famous mining pool attacks as it is a

direct violation of the core concept of decentralization. This attack is also known as

the majority attack and occurs when a single miner or a group of miners controls

over 50% of a network’s computational power or total stakes.

Attackers achieve this by renting powerful computational resources such as

graphic cards or dedicated mining devices from third-party providers.

Provided that an attacker controls more than 50% of the overall resources, he

can block incoming transactions, rewrite parts of the existing chain, and change the

order of his transactions resulting in double-spending. Ultimately, a successful 51%

attack is extremely destructive to the integrity of the blockchain. However, the 51%

attack has its limitations, the attacker cannot prevent others from broadcasting their

transactions, reverse the order of others’ transactions, or steal assets from unrelated

parties. The likelihood of a 51% attack also decreases linearly with the network

size as it gets more costly for the attacker to gather the needed computational

resources, or stakes, as the network gets bigger.

Pool Hopping Attack

A pool hopping attack means abusing a mining pool. Mining pools implement

different reward mechanisms, in some mining pools rewards are higher at certain

times than at other times. A miner is expected to contribute to the pool equally

through the good and bad times and their reward would be the statistical average of

the collected block rewards over their contributions. Pool hoppers, however, hop into

and out of the pool in a way that they only contribute during the good times and leave

during the bad times, resulting in increased rewards at the expense of other miners.

For example, mining pools that implement the proportional method where a

block reward is distributed between miners in proportion to the number of shares

2. Background 13

they have submitted since the previous block are open to Pool Hopping attacks. In

other words, in such pools, the reward per share equals the block reward divided by

the number of shares in that round. Consequently, the reward of a share submitted

is determined by the number of shares that have already been submitted since the

last block, so a share submitted earlier in the round will yield a higher reward than a

share submitted later. It can be shown that attackers can mine in a proportional pool

until the number of shares reaches a certain threshold and hop out to join another

pool at the threshold to have extra profits. Modern defenses to pool hoppers ensure

that the reward per share depends only on the future states of the pool, not its past.

Block Withholding Attack

Block Withholding Attack falls under the category of mining pool attacks. There

are two forms of block withholding, "Sabotage" and "Lie in Wait" as Rosenfeld

names them [9].

In Sabotage withholding, the attacker in a mining pool withholds the blocks

to harm the mining pool he had joined. This form of withholding brings no profit

to the attacker but harms other pool participants.

In the second form of withholding, namely, Lie in Wait, the attacker keeps the

block he mined and keeps mining the next block secretly. Then, the attacker releases

more than one block making other miners waste their computational resources. By

postponing submitting the blocks, the attacker earns more block rewards than he

mines honestly. This is only possible provided that the attacker is in possession

of sufficient computational power or sufficiently many stakes in the context of

PoS-based networks. The Lie in Wait withholding is also known as Selfish Mining.

There are enhanced versions of the block withholding attacks such as the Fork

After Withholding (FAW) attack combining Sabotage and Lie in Wait withholding

where the attacker’s profit is bounded below by the expected profit if he had

mined selfishly [10].

14 2.1. Background

DDoS Attack

DDoS Attack stands for "Distributed Denial-of-Service" attack, it is a notorious

network attack as it assists many other attacks and acts as a subsidiary. The core

idea behind the DDoS is to overwhelm the target node or the network infrastructure

and disrupt normal network traffic.

A DDoS attack involves launching denial-of-service (DoS) attacks from many

sources. The goal of the DoS attacks is to overwhelm individual nodes, this can

be achieved by flooding the nodes with messages that require heavy processing.

Launching from many sources makes the attack distributed, the attack source

becomes harder to detect and the effects become harder to avoid [11].

DDoS attackers’ aim is oftentimes to damage a competitor’s business or to ask

for a ransom to restore the network functionality. DDoS attacks are very common

and most of the downtime incidents are associated with them.

DDoS attacks are slightly different in the blockchain context as decentralized

networks eliminate single points of failure. DDoS attackers target the protocol

layer by transaction flooding, spam transactions fill the limited-sized blocks and

hinder legitimate transactions from being confirmed. This, if not detected early,

results in network failure.

Common defenses to DDoS attacks targeting blockchain networks are to ensure

that all nodes have adequate storage, processing power, and network bandwidth

and then add fail-safes into the protocol code.

Eclipse Attack

An eclipse Attack is a network attack that aims to isolate a node and manip-

ulate it into malicious acts. By isolating a node from its legitimate neighbors

and surrounding it with artificial adversarial nodes, the eclipse attack can cause

illegitimate transaction confirmations.

The success of the eclipse attacks depends heavily on the network topology

and the underlying communication scheme as the attack is based on exploiting the

target node’s neighbors. The decentralized protocols of most blockchain networks

2. Background 15

make it very hard for an attacker to create an artificial environment for a target

node [12], however, eclipse attacks still rarely happen due to bandwidth constraints

forcing a node to connect to a limited set of neighboring nodes instead of all

of the network nodes.

Attackers often use botnets as attacker-controlled neighbor nodes and repeatedly

force the target node to connect to the botnet by utilizing the DDoS attack. Once

the target node has been compromised the attacker can misdirect the node to

accept an invalid transaction or a transaction that has already been validated

resulting in double-spending. The attacker can also make the victim node hide

the fact that a block has been mined and effectively increase his relative hash

rate to prepare for a 51% attack.

Defense mechanisms such as randomization, increasing node connections, and

new node constraints make eclipse attacks even harder to happen in practice.

Sybil Attack

A Sybil attack makes a single node create and operate multiple fake identities,

also known as the Sybil identities. The Sybil identities are used to undermine the

authority in the network by gaining the majority of the influence [13].

A successful Sybil attack against a PoS-based network may create sufficiently

many Sybil nodes which out-vote the honest nodes in the block confirmation process

and avoid legitimate transactions.

Identity validation should be implemented o prevent Sybil attacks. The local

network entities must query a central authority to perform reverse lookups on the

remote entities. The look-up can use several identity verification techniques such as

phone number, IP address, or credit card verification. These identity verification

methods help reduce the risk of Sybil attacks but at the cost of sacrificing anonymity.

More sophisticated prevention mechanisms exist such as Social Trust Graphs

where the network topology and connectivity are continuously analyzed to identify

suspected Sybil clusters while maintaining the anonymity of the nodes [14].

16 2.1. Background

Identity Privacy Attack

Anonymity is an important promise of blockchain technology. It is how transactions

are kept confidential while being publicly available. Attackers try to obtain user

privacy information to steal profits or impersonate users to fake transactions.

Blockchain protocols rely heavily on cryptography primitives and the worst thing

an attacker could do in a privacy theft is to get hold of a user’s private key.

Attackers steal private keys via spyware or social engineering methods, once they

succeed they get complete control of the user’s address. Private key thefts are

commonly known as key attacks.

There are other ways in which the attacker can attempt to steal profits without

being in possession of a user’s private key. The attacker can perform a replay

attack where he intercepts the transaction data and sends a fake packet received

by the destination. The attacker can also perform an impersonation attack where

he pretends to be a legitimate user.

The more information about the user’s identity gets revealed, the stronger

the impersonation attack becomes. Several studies propose frameworks that

analyze transaction patterns to group addresses that likely belong to the same

user in a cluster [15] [16], privacy is becoming a growing concern as such pattern

recognition tools get better. Techniques such as zero-knowledge proofs proposed by

S. Goldwasser et al. [17] significantly reduce the amount of information leakage,

hence helping networks defend against de-anonymization.

2.1.3 Attack Graphs

Attack graphs are data structures used in cybersecurity to represent all possible

paths of attack against a system. A path illustrates a sequence of states where

the adversary ends up succeeding in a breach. One of the most common forms of

attack graphs is the directed graph where nodes represent system states and edges

represent exploits, i.e., parts of the attack that transform one state to another. As

we walk through a path the transformed states are always more compromised than

the preceding states, since edges are the exploits. Each path is a monotonically

2. Background 17

increasing sequence of states in terms of the damage level. There are many variants

of attack graphs such as probabilistic and Bayesian variants where uncertainty

is incorporated into the formalization.

The use of attack graphs is substantial in building secure blockchain networks.

Blockchain engineers must continuously and comprehensively test the system

defenses to protect the network. The networks are inherently complex as they

operate in multiple layers of abstraction. The complexity of these networks poses

a real challenge when attempting to test them. Attack graphs help reduce this

inherent complexity as they formally mark the vulnerabilities of a system and link

them to those they enable. For a defender, understanding the attack graph topology

is key to protecting critical states and avoiding risky paths.

Once an attack graph has been formed, defenders can analyze certain metrics

of the graph to gain insight into the potential attacks, interpret the graph, and

compare the modeled network to another that has also been formalized by an

attack graph. An attack sequence is a generalization of a path, it is a sequence

of exploits carried out in order by the adversary. Even simple metrics such as the

shortest attack sequence and the number of attack sequences give useful information.

The shortest attack sequence correlates to the easiness to attack the network as

cybersecurity assumes that the network is as strong as its weakest link. The number

of attack sequences correlates to the number of options available for an attacker as

each attack sequence corresponds to a way of penetrating the network. There are

as many more metrics as the number of graph properties and each has an insightful

interpretation, there lies the representative power of attack graphs.

Attack Trees

An Attack Tree is a connected Attack Graph without any cycle. The edges of an

Attack Tree are directed from the parent node to the child node. attack trees are

simplified attack graphs, they are relatively easier to understand and suitable for

scenarios where cyclic attack vectors are not common.

18 2.1. Background

We use an Attack Tree with two types of nodes and two types of edges in our

modeling: attack nodes, defense nodes, attack edges, and defense edges respectively.

Attack nodes describe the state of the system as well as the action required to

advance to the next state. Attack edges connect the attack nodes. Defense nodes

describe countermeasures to the parent attack or further steps of the parent defense

depending on the type of edge that connects the node to its parent. Defense edges

connect the defense nodes and they connect attack nodes to their defense node

children. We draw attack nodes and attack edges using straight lines, and defense

nodes and defense edges using dashed lines.

3
Gasper: The Proof-of-Stake Consensus

Protocol

Contents

3.1 Basics . 20
3.1.1 Views & Network View 22
3.1.2 Validators & Stakes . 23
3.1.3 Key Ingredients of a Consensus Protocol 23
3.1.4 Byzantine Validators . 24
3.1.5 Security Properties . 24
3.1.6 Slots & Epochs . 25
3.1.7 Synchrony . 25
3.1.8 Note on our Formalization 25

3.2 Casper FFG . 26
3.2.1 Checkpoints & Attestations 26
3.2.2 Justification & Finalization 27
3.2.3 Slashing Conditions . 27
3.2.4 Guarantees . 28

3.3 LMD GHOST . 28
3.4 Gasper . 29

3.4.1 Epoch Boundaries . 29
3.4.2 Committees . 30
3.4.3 Attestations . 31
3.4.4 Justification . 32
3.4.5 Finalization . 33
3.4.6 Hybrid LMD GHOST 34
3.4.7 Slashing Conditions . 35
3.4.8 Guarantees . 35

19

20 3.1. Basics

3.1 Basics

We must narrow our discussion down to a particular PoS-based consensus protocol

as security analysis is heavily dependent on the specifics of the protocols. Gener-

alizing over protocols is possible to some extent but requires essential details

to be abstracted.

We choose the "Gasper" protocol, as described in the original paper, an idealized

version of the Ethereum 2.0 beacon chain [18]. The Ethereum 2.0 merge is arguably

one of the most awaited events in the cryptocurrency world as Ethereum occupies a

significant share of the market volume. Consequently, a lot of effort goes into the

development of Ethereum’s PoS-based protocol, and Gasper is presented directly by

the members of the founding team. Hence, we find it sensible to focus our discussion

on Gasper as we expect future blockchains to either adapt it or build on top of it.

Gasper combines a finality tool, Casper FFG (the Friendly Finality Gadget),

with a fork-choice rule, LMD GHOST (Latest Message Driven Greediest Heaviest

Observer Sub-Tree), while introducing subtle adaptations to both.

Casper FFG is not a standalone protocol in the sense that it serves as a gadget

operating on top of a functioning blockchain. Casper FFG marks certain blocks

as finalized so that nodes with partial information can still be fully confident

that the marked blocks are part of the canonical chain, i.e., the chain that is

consensually viewed as the main one.

LMD GHOST is a fork-choice rule, just like the longest chain rule, where

validators attest to certain blocks, i.e., support certain blocks by means of voting.

Gasper is, again, an ideal abstraction of the Ethereum 2.0 beacon chain, so the

planned Ethereum implementation differs from Gasper in some ways such as delays

in attestations and finalization, or the validator sets being dynamic.

We try to keep up with the notation used in the original paper as we study the

Gasper protocol, to keep the bookkeeping in this article easy and consistent.

3. Gasper: The Proof-of-Stake Consensus Protocol 21

Definition 3.1.1 (Validators) V is the set of validators that are connected to

each other and able to broadcast messages (typically blocks).

Definition 3.1.2 (Genesis Block) Bg is the "genesis block" representing the blank

initial state during the cold start.

Honest reasons such as network latency, as well as malicious reasons such

as Byzantine validators, a common term in cybersecurity to mean dishonest

participants, may result in conflicting blocks in the blockchain history. Thus,

we cannot take the entire blockchain history as the common consensual history,

we therefore define:

Definition 3.1.3 (History) History is the choice of a "chain", essentially a linked

list that is rooted at Bg and extends to a particular block.

Definition 3.1.4 (Consensus History) A history (a chain) that is mutually

accepted as correct by all V .

We assume that a message M sent by an honest validator V is sent to all

validators of the network. Messages can be block proposals, attestation notices

(supporting blocks), slashing (proving malicious acts of others), etc..

We also define:

Definition 3.1.5 (Digital Signatures) A function sign() exists for all messages

M such that sign(M) = V outputs the author of the message.

The sign() function is implemented using digital signatures in practice and it

makes impersonation based attacks impotent.

22 3.1. Basics

3.1.1 Views & Network View

Validators do not necessarily observe the same blockchain at a given time. A

validator may see some messages and miss others. A message is said to be accepted

if all other messages that it depends on are accepted, recursively. We now define:

Definition 3.1.6 (View of a Validator) view(V, t) is the set of messages ac-

cepted by V until time t.

Definition 3.1.7 (Network View) NW denotes a hypothetical validator that has

accepted all M broadcasted at any time. view(NW, t) is called the network view.

Property 3.1.1 (Network View encapsulates any View) By definition, we

have view(V) ⊆ view(NW) for all V .

We usually suppress time and drop the parameter t (view(V, t) = view(V)),

unless time explicitly matters.

Some important assumptions and observations about views follow:

Property 3.1.2 (Cold Start) All V start with Bg as the initial message. Bg

has no dependencies and it is the only message for which the sign() function is

undefined.

Definition 3.1.8 (Parent of a Block) Each B that is not Bg has a parent block

P (B) = B′, and contains a pointer to B′ as part of its data. The parent-child

relationship is shown using the edge B ←− B′. Thus, each view(V) defines a directed

tree of parent-child edges, rooted at Bg.

Definition 3.1.9 (Leaf Block) Leaf blocks are the blocks having no children, L

denotes the set of leaf blocks in a view.

Definition 3.1.10 (Descendant Relation) B′ is a descendant of B in the chain

B1 ←− B2 ←− ..., if there exists a path from B to B′.

3. Gasper: The Proof-of-Stake Consensus Protocol 23

Definition 3.1.11 (Conflicting Blocks) Two blocks conflict if neither is a de-

scendant of the other.

Definition 3.1.12 (Chain of a Block) For a given block B, chain(B) uniquely

defines the path rooted at Bg and ending at B.

3.1.2 Validators & Stakes

The above definitions and properties also apply for a PoW-based blockchain. We

now proceed with PoS-specific definitions where a validator’s voting power is

proportional to their bonded stake in the network.

Definition 3.1.13 (Stakes) Λ = {V1, ..., VN} is the set of N validators. Each

V ∈ Λ has an amount stake(V) representing the amount of collateral V has,

stake(V) is a positive real number. We assume ∑
V ∈Λ stake(V) = N . As all

operations involving stake(V) are linear this scaling has no effect.

3.1.3 Key Ingredients of a Consensus Protocol

The key ingredients we need to formalize to be able to define a consensus protocol are:

Definition 3.1.14 (Fork-choice Rule) A fork function identifies a single leaf

block B when given a view W . fork(W) = chain(B) and B is called the head of

the chain in view W .

Definition 3.1.15 (Finality Function) A finality function F is a deterministic

function where F (W) returns the set of finalized blocks in the view W . If B ∈ F (W),

B is part of the consensus history.

Definition 3.1.16 (Slashing Conditions) Slashing conditions are rules the hon-

est validators would never violate. If some V violates a slashing condition, stake(V)

is burned, or slashed. Slashing conditions are the key ingredients of a protocol’s

incentive mechanism.

We say an attestation is a vote attached to a message indicating which block

is seen as the head of the chain in a view.

24 3.1. Basics

3.1.4 Byzantine Validators

A byzantine validator is a dishonest validator. Practical Byzantine Fault Tolerance

(PBFT) literature assumes that strictly less than p = 1/3 of the validators are

byzantine [19], we stick to this constant.

Definition 3.1.17 (p-slashable) A PoS-based blockchain is p-slashable if, at any

time, there exists a validator V with view(V) = view(NW) that can slash a

byzantine validator or a group of byzantine validators with a total of pN stake.

Being (1/3)-slashable is a very strong property as we cannot guarantee any

sound properties as we have too many stakes held by byzantine actors.

3.1.5 Security Properties

The following properties are important in our construction:

Definition 3.1.18 (Safety) A protocol is safe if F (W) never contains two con-

flicting blocks for any view W . Consequently, any finalized view is a subchain of

the finalized network view, i.e., F (W) is a subsequence of F (view(NW)).

Definition 3.1.19 (Liveness) A protocol is live if the set of finalized blocks always

grow. There are two variants of the liveness property:

• plausible liveness: regardless of any unexpected event, the logic of the

protocol ensures that the set of finalized blocks grow.

• probabilistic liveness: regardless of any unexpected event, the set of finalized

blocks grows in expectation provided we make probabilistic assumptions about

the context of the protocol.

3. Gasper: The Proof-of-Stake Consensus Protocol 25

3.1.6 Slots & Epochs

Definition 3.1.20 (Slot) A slot is the atomic unit for time.

Definition 3.1.21 (Epoch) An epoch is the collection of a constant C slots.

The time runs as:

0(0), 1(0), ..., C − 1(0), C(1), C + 1(1), ..., 2C − 1(1), 2C(2), 2C + 1(2), ..., 3C − 1(2), ...

where the base denotes the slot number and the superscript denotes the epoch

number. The epoch of slot i is simply epoch(i) = floor(i/C). Epochs will help

us introduce checkpoints later.

3.1.7 Synchrony

A consensus protocol should not assume that all validators have the same view of

time. Therefore, the following synchrony conditions are defined:

Definition 3.1.22 (Synchronous Systems) A synchronous system has explicit

upper bounds for delays in sending and receiving messages.

Definition 3.1.23 (Asynchronous Systems) An asynchronous system has no

synchrony guarantees.

Definition 3.1.24 (Partially Synchronous Systems) A partially synchronous

system has explicit upper bounds for delays but they are unknown a priori and can

be learned only after a certain unknown time t.

Having defined the baseline, we now describe Casper FFG and LMD GHOST

to build a foundation for Gasper.

3.1.8 Note on our Formalization

We want to clarify the ways in which our formalization differs from the original

paper’s in this subsection.

26 3.2. Casper FFG

• Gasper is an idealized form of Ethereum 2.0’s consensus mechanism, however

the original paper does not hang back from giving practical details. We add

a layer of abstraction and narrow our formalization to the "idealized" world

where the assumptions we state along with our definitions always hold.

• The original paper assumes an informed reader, but we do not. We build our

formalization from the ground bottom, by defining the primitives in simplest

terms.

• We omit parameters and functions specifically defined in the original paper

to discuss probabilistic liveness, dynamic validator sets, and extreme cases;

again, because of our abstraction to the "idealized" world.

Ultimately, our formalization is a compact summary of key points of Gasper

that is easy to follow, even for the uninformed reader.

3.2 Casper FFG

3.2.1 Checkpoints & Attestations

We first define:

Definition 3.2.1 (Height of a Block) Height of B is the distance between B

and Bg in terms of the number of blocks, height(B) = |chain(B)| − 1.

Definition 3.2.2 (Checkpoint Block) A checkpoint block B is a block with height(B) =

nH, for some constant H and a nonnegative integer n.

Definition 3.2.3 (Attestations & Checkpoint Edges) An attestations is a signed

message containing the checkpoint edge B1 −→ B2 where both ends are checkpoint

blocks. An attestation is a vote to move from B1 to B2, resulting in finalizing B1

and justifying B2. Ideally, height(B2) = height(B1) + 1, but practically a validator

can miss certain blocks and attest to B1 −→ B3 where height(B3)− height(B1) > H.

Definition 3.2.4 (Attestation Weight) An attestation has a weight which can

be thought of as its voting power. The attestation weight is the stake of its author,

weight(α) = stake(sign(α)).

3. Gasper: The Proof-of-Stake Consensus Protocol 27

3.2.2 Justification & Finalization

Given a view W , J(W) denotes the set of justified checkpoint blocks, and F (W)

denotes the set of finalized checkpoint blocks.

We define the concept of a supermajortity link, a key part of Casper.

Definition 3.2.5 (Supermajority Link) A supermajority link, denoted by B′ J−→

B, exists if the combined weight of attestations to B observed in a given view W is

at least two thirds of the total stake, ∑
αi:B′−→B weight(αi) ≥ 2N/3.

Casper FFG finalizes blocks in a view using the following rules:

• Justification Rule: A checkpoint block B is justified in view W , if there

exists a supermajority link to B in W .

• Finalization Rule: A checkpoint block B is finalized in view W , if there

exists a supermajority link from B to some other checkpoint block B′ in W

(B J−→ B′) (B is justified (B ∈ J(W)), and B′ is the consecutive checkpoint

(height(B′) = height(B) + 1)).

Property 3.2.1 (Justification is a Pre-condition of Finalization) The final-

ization rule states that a block can only be finalized in W , if it has been justified in

W . This implies F (W) ⊂ J(W), note that this is a proper subset relation as the

set J(W) is always strictly larger than F (W) (we omit the cold start).

3.2.3 Slashing Conditions

Casper FFG introduces certain slashing conditions, which are conditions honest

validators never violate. When a validator V ′ proves that another validator V

violated a slashing condition, V ′ slashes V by burning stake(V) and getting some

portion of it as the slashing reward. The following are Casper’s slashing conditions:

• SC1: Fork Attempt: No validator V can make two attestations α1 : A1 −→

B1 and α2 : A2 −→ B2 with height(B1) = height(B2). In words, V cannot

attempt a fork at a checkpoint, he should explicitly vote for a chain.

28 3.3. LMD GHOST

• SC2: Override Attempt: No validator V can make two attestations α1 :

A1 −→ B1 and α2 : A2 −→ B2 with height(A1) < height(A2) < height(B2) <

height(B1).

3.2.4 Guarantees

Casper FFG provides the following guarantees:

• Accountable Safety: Two checkpoint blocks on different branches cannot

both be finalized. If this happens, it means that a set of validators provably

violated the slashing conditions hence they can be slashed.

• Plausible Liveness: Casper FFG always makes progress in finalizing new

checkpoints, no deadlock occurs.

Recall that Casper FFG is a finality tool, not a complete protocol, so its

functioning and its guarantees depend on the underlying blockchain creating new

blocks without any problems.

3.3 LMD GHOST

The Greediest Heavies Observed Sub-Tree (GHOST) is a fork-choice rule that

selects the branches with the most activity [20]. Zamfir [21] adapts GHOST

to the PoS setup and calls the variant Latest Message Driven Greediest Heavies

Observed Sub-Tree (LMD GHOST).

We re-parametrize the weight() function as follows. Given the view W , block B,

and a set of latest attestations M in W ; weight(W, B, M) is the sum of validator

stakes whose last attestations in M are to B or B’s descendants.

3. Gasper: The Proof-of-Stake Consensus Protocol 29

Data: View W
Result: A block B uniquely defining a chain
B ←− Bg;
M ←− set of latest attestations in W ;
while B has a descendant in W do

B ←− argmax(B′child of B)weight(W, B′, M);
(compare block hashes in case of ties)

end
return B

Algorithm 1: LMD GHOST Fork Choice Rule

LMD GHOST uses the weights of the subtrees at the forks as the heuristic and

assumes the "heaviest" is the correct one. It is a simple greedy algorithm in the

sense that it always selects the most supported branch. LMD GHOST is complete,

it always returns a leaf block B uniquely defining the canonical chain chain(B).

3.4 Gasper

Having defined the necessary bits and pieces, we now define the main protocol

Gasper. We describe parts of the protocol below where variations to existing

definitions and additional definitions are given when needed.

3.4.1 Epoch Boundaries

We define the following:

Definition 3.4.1 (Epoch Boundary Pair) An epoch boundary pair is a varia-

tion of Casper’s checkpoint block to disambiguate the checkpoints occurring on the

same chain multiple times. We use an ordered pair (B, j) where B is the checkpoint

block and j is the epoch. The resulting tuple is called the (epoch boundary) pair.

Definition 3.4.2 (Epoch Boundary Block) ebb(B, j) denotes the epoch bound-

ary block of B, it is the block with the largest slot number less than or equal to jC

on chain(B), i.e., argmax(B:slot(B)≤jC)slot(B).

Definition 3.4.3 (Last Epoch Boundary Block) lebb(B) denotes the last epoch

boundary block of B, it is the epoch boundary block of B with the last seen epoch

number, i.e., argmax(B:slot(B)≤jmaxC)slot(B).

30 3.4. Gasper

Some observations are listed below:

Property 3.4.1 (Genesis Epoch) ebb(B, 0) = Bg for all B.

Property 3.4.2 (Exact Boundaries) If slot(B) = jC, then ebb(B′, j) = B for

all B′ such that B ∈ chain(B′) (B′ is a descendant of B)

Property 3.4.3 B can be an epoch boundary block in some chains but not in all.

Attestations are now to pairs, not blocks. An attestation α to the pair

P = (B, j) is said to have attestation epoch j, ep(α) = aep(P) = j, which

can be different than ep(B).

3.4.2 Committees

Gasper introduces the concept of committees to distribute responsibilities among the

participants. Validators are partitioned into committees in each slot, and one com-

mittee member is assigned as the block proposer. Other members of the committee,

say V , then attest to the head of fork(view(V)), which will hopefully be the last

block proposed by the block proposer, i.e., fork(view(V)) = fork(view(NW)).

We assume we have access to randomized length-N permutation pj : {1, ..., N} −→

{1, ..., N} for epoch j. We use pj during epoch j to split the set of validators Λ into

C equal-size (N/C) committees S0, ..., SC−1. More clearly, for a k ∈ {0, ..., C − 1}

we define Sk = Λpj [s] where s ≡ k (mod C), here pj shuffles Λ and s indexes

(selects from) pj.

Definition 3.4.4 (Committee) A committee is a pseudo-randomly selected, N/C-

size, set of validators responsible for appending a block to the blockchain at a given

slot.

Definition 3.4.5 ((Block) Proposer) A pseudo-randomly selected member of

the committee that is responsible for proposing a new block at a given slot.

3. Gasper: The Proof-of-Stake Consensus Protocol 31

3.4.3 Attestations

Each slot is a round of the protocol, and in each round, the proposer proposes a

new block and others on the committee attests to their head of the chain. The

proposal and attestations are both digitally-signed and broadcasted messages.

The block proposer is selected at the beginning of the slot i = jC + k as Vk =

Λpj [k] = Sk[0], in words, the first member of the committee Sk. When Vk proposes a

new block B, he broadcasts a message Mk containing the following information:

• slot(B) = i = jC + k

• fork(view(Vk, i))←− B, in words, the canonical head in Vk’s view at slot i is

the parent of B. We also say P (B) = fork(view(Vk, i)).

• newattests(B): a set of attestation pointers Vk has accepted, that supports

B as the head of the chain

• Data specific to the blockchain application

The proposed block B, therefore, depends on P (B) (and newattests(B)) and

cannot be processed until P (B) is in the processing node’s view.

Digital signatures ensure the block proposed at slot i is proposed by the proposer

designated for slot i, mathematically, if slot(B) = jC + k, then sign(B) = Vk.

As a result, dishonest behavior such as proposing a multiple blocks in a single

slot number can be slashed.

Now each of the other members V ∈ Sk \ {Vk} broadcasts an attestation α at

the middle of the slot i (i + 1/2) containing the following information:

• slot(α) = i = jC + k

• block(α) = B′, which is the block α votes for. If B′ = fork(view(Vk, i)) (the

block Vk has just proposed at the beginning of slot i), then slot(α) = slot(B′).

Otherwise V is attesting to an earlier block and slot(α) > slot(B′).

32 3.4. Gasper

• A checkpoint edge: LJ(α) V−→ LE(α). LJ(α) and LE(α) are epoch boundary

pairs in view(V, i + 1/2), we define them in the next section.

The attestation α, therefore, depends on block(α) and cannot be processed

until block(α) is in the processing node’s view.

Gasper attestations can be consideres as both "GHOST votes" for the head

block and "Casper FFG votes" for checkpoint blocks.

3.4.4 Justification

Recall that lebb(B) is the last epoch boundary block, the block with the greatest

slot number such that slot(B) ≤ jC where j is the largest epoch so far.

We define the following for a given block B:

Definition 3.4.6 (View of a Block) The view of a block B, view(B) (note that

this is different than view(V), the argument to the function is now a block not a

validator), is a collection of B and all its ancestors derived from the dependency

graph. If B ∈ view(V) for some V and B ∈ view(V ′) for some V ′, then view(B)

is identical for V and V ′ as view(B) is essentially chain(B) with additional

dependencies (attestations, etc.).

Definition 3.4.7 (FFG View of a Block) The FFG view of a block B,

ffgview(B) = view(lebb(B)) is the snapshot of view(B) at the latest checkpoint.

ffgview(B) extracts the information in view(B) that is relevant to Casper FFG.

We extend the Casper FFG definition and say there exists a supermajority

link between the epoch boundary pairs (B′, j′) and (B, j); (B′, j′) J−→ (B, j), if

the attestations with the checkpoint edge (B′, j′) V−→ (B, j) have a combined

weight of 2/3 of the total stake.

Gasper justifies blocks in a view using the following rules:

• Genesis Rule: (Bg, 0) ∈ J(W)

3. Gasper: The Proof-of-Stake Consensus Protocol 33

• Justification Rule: A pair (B, j) is justified in view W , if there exists a

supermajority link to (B, j) in W .

(B, j) ∈ J(W) reads as "B is justified in W during epoch j". j is the

attestation epoch of B.

We, finally, define LJ(α) and LE(α) for a given attestation α:

Definition 3.4.8 (Last Justified Pair (LJ)) LJ(α) is the last justified pair of

α, the pair in fggview(block(α)) with the highest attestation epoch.

Definition 3.4.9 (Last Epoch Boundary Pair (LE)) LE(α) is the last epoch

boundary pair of α, that is (lebb(block(α)), ep(slot(α)))

3.4.5 Finalization

Note that finalization is stronger than justification. If a block B of a pair is

finalized in some view W at some slot j, no other block conflicting with B (a block

that is in another branch) can be finalized in any view, unless the blockchain is

(1/3)-slashable (the strongest guarantee we have).

Gasper finalizes a pair (B0, j) in a view using the following rules:

• Genesis Rule: If (B0, j) = (Bg, 0), then (B0, j) ∈ F (W)

• Finalization Rule: A pair (B0, j) is k-finalized in view W , if for some

k ≥ 1 and a sequence of blocks B1, ..., Bk ∈ view(W) we have:

1. (B0, j), (B1, j + 1), ..., (Bk, j + k) are consecutive epoch boundary pairs

in chain(Bk)

2. (B0, j), (B1, j + 1), ..., (Bk−1, j + k − 1) are all ∈ view(W)

3. (B0, j) J−→ (Bk, j + k)

Most of the time a block is just finalized (1-finalized), i.e., (B0, j) ∈ J(W) and

the set of latest attestations in W has a supermajority link (B0, j) J−→ (B1, j + 1).

k > 1 cases occur rarely due to latency and delay issues, such cases are included

in the definition for completeness.

34 3.4. Gasper

3.4.6 Hybrid LMD GHOST

We begin with a prototype algorithm that simply extends the LMG GHOST

algorithm to epoch boundary pairs:

Data: View W
Result: A block B uniquely defining a chain
(Bj, j)←− the justified pair with the highest attestation epoch in W ;
B ←− Bj;
M ←− set of latest attestations in W ;
while B has a descendant in W do

B ←− argmax(B′child of B)weight(W, B′, M);
(compare block hashes in case of ties)

end
return B

Algorithm 2: Prototype HLMD GHOST Fork Choice Rule

The prototype implementation suffers from the following problems:

• The finalization part, i.e., the checkpoint edge contained in an attestation

includes LJ(α) which is the last justified pair in the "frozen snapshot"

ffgview(block(α)). However, (Bj, j) is not frozen and may change during an

epoch, which may lead honest validators to violate certain slashing conditions.

• In the case of forks, the resulting blocks can have radically different last

justified pairs due to the branches growing at substantially different speeds.

As a result, an honest validator that had attested to a higher last justification

epoch but forked to a chain whose last justification epoch is older may find

himself violating a slashing condition.

Below is the actual HLMD GHOST algorithm. The main idea is to reduce

the view W to the view W ′ so that the problems described above are prevented.

The initial lines of the algorithm are pre-processing steps to compute W ′. We first

consider the leaves of W , as they are the most recent messages observed by the

validator. Then, we backtrack from these leaves and find the highest justification

epoch checkpoint pair. So instead of using heights as in Casper FFG, we compare

the frozen snapshots of each chain defined by the leaves and trust the most recently

3. Gasper: The Proof-of-Stake Consensus Protocol 35

supported (attested) one, this helps us in choosing a leaf node while agreeing on

checkpoints. We then eliminate the leaves that conflict with the computed (Bj, j),

and reduce W to only include the chains defined by leaves that are descendants of

(Bj, j). W ′ allows us to execute LMD GHOST while using the FFG justification

and finalization information in a correct way.

Data: View W
Result: A block B uniquely defining a chain
L←− set of leaf blocks Bl in W ;
(Bj, j)←−

the justified pair with the highest attestation epoch in J(ffgview(Bl)) over Bl ∈ L;
L′ ←− set of leaf blocks Bl in W such that (Bj, j) ∈ J(ffgview(Bl));
W ′ ←− union of chain(Bl) over Bl ∈ L′;
B ←− Bj;
M ←− set of latest attestations in W ;
while B has a descendant in W’ do

B ←− argmax(B′child of B)weight(W, B′, M);
(compare block hashes in case of ties)

end
return B

Algorithm 3: HLMD GHOST Fork Choice Rule

3.4.7 Slashing Conditions

Gasper adapts Casper FFG slashing conditions as:

• SC1: Fork Attempt: No validator V can make two attestations α1 and α2

with ep(α1) = ep(α2). In words, V cannot attempt a fork at an epoch, he

should explicitly vote for a chain.

• SC2: Override Attempt: No validator V can make two attestations α1

and α2 with aep(LJ(α1)) < aep(LJ(α2)) < aep(LE(α2)) < aep(LE(α1).

3.4.8 Guarantees

The ultimate guarantees of Gasper are "Safety", "Plausible Liveness", and "Proba-

bilistic Liveness". We will provide proof of Safety as we believe it builds a stronger

insight into the mechanics of the protocol.

36 3.4. Gasper

Sub-guarantee 3.4.1 (Uniqueness of Attestation Epochs) All justified pairs

in a view, all P ∈ J(W), have unique attestation epochs, otherwise, the blockchain

is (1/3)− slashable.

Proof. Suppose for a contradiction that we have 2 distinct pairs with the same at-

testation epoch, (B, j) and (B′, j) in J(W). Then, ∑
(αi:A−→B∧ aep(αi)=j) weight(αi) ≥

2N/3, and ∑
(αi:A−→B′∧ aep(αi)=j) weight(αi) ≥ 2N/3. As the total stakes in a round

equal N , the sets Λ1 = {(αi : A −→ B ∧ aep(αi) = j)} and Λ2 = {(αi : A −→

B′ ∧ aep(αi) = j)} must intersect. The intersection means we have duplicate

attestations which violate SC1 and can be provably slashed.

Sub-guarantee 3.4.2 (Honest Validators) Honest validators never accidentally

violate the slashing conditions.

Proof. An honest validator is asked to attest exactly once per epoch as it is

assigned to a specific committee, so it cannot violate SC1.

Suppose for a contradiction that the honest validator V is going to violate SC2

in epoch t4. V should have written an attestation αi : (B2, t2) V−→ (B3, t3) and is

now about to write αj : (B1, t1) V−→ (B4, t4) such that t1 < t2 < t3 < t4.

Now if we run HLMD GHOST on V ’s view at t4, we get a leaf block B that is a

descendent of B4, i.e., LE(B) = (B4, t4).

At t3, V wrote αi, so (B2, t2) ∈ J(ffgview(Bl)) for some leaf block Bl at t3. As

pairs that are already in J(WV) do not change as V ’s chain grows, we know that at

t4 (Bj, j), the justified pair with the highest attestation epoch in J(ffgview(Bl)) as

defined in HLMD GHOST, must have j ≥ t3, and t3 > t1, so j > t1.

At t4, however, the output block B must satisfy (Bj, j) ∈ J(ffgview(B)) (L′ in

HLMD GHOST). We know LJ(B) ∈ J(ffgview(B)) and LJ(B) = B1 as in αj.

This implies j ≤ t1 which is a contradiction. Hence, following Gasper cannot force

a violation of SC2.

Note that rewards and penalties should be adjusted numerically such that the

game theory of the protocol ensures that validators are incentivized to behave

honestly, follow the slashing conditions, and catch misbehaving participants.

3. Gasper: The Proof-of-Stake Consensus Protocol 37

Sub-guarantee 3.4.3 (Justified Blocks have Finalized Parents) Given a view

W , if (Bj, j) ∈ J(W) and (Bf , f) ∈ F (W) where j > f , then Bf is an ancestor of

Bj. Otherwise, the blockchain is (1/3)-slashable.

Proof. Suppose for a contradiction that there is a pair (Bj, j) with j > f and

Bf is not an ancestor of Bj. Because Bf is finalized, we have (Bf , f) J−→ (Bf , f + k)

where (Bf , f), (B1, f + 1), ..., (Bk, f + k) are adjacent epoch boundary pairs.

Knowing that Bj is not a descendant of Bf , we can say that Bj is not included

in the sequence up to (Bk, f + k). So there exists another pair (Bl, l) J−→ (Bj, j),

where l < f and j > f , we omit the equality cases as there is a guarantee for the

uniqueness of the attestation epochs. Addedly, j > f + k as Bj is not part of the

sequence.

So there must be a subset Λ1 of Λ in view W , such that the combined stakes of

Λ1 members that have attested to (Bl, l) −→ (Bj, j) are more than 2N/3. For any

such attestation αj, we have aep(LJ(αj)) = l and ep(αj) = j.

Similarly, there must be a subset Λ2 of Λ in view W , such that the combined

stakes of Λ2 members that have attested to (Bf , f) −→ (Bk, f + k) are more than

2N/3. For any such attestation αf , we have aep(LJ(αf)) = f and ep(αf) = f + k.

Now, an honest validator V ∈ Λ1 ∩ Λ2 will see two distinct attestations αj and

an earlier αf , where l < f < f + k < j, but then aep(LJ(αj)) < aep(LJ(αf)) <

ep(αf) < ep(αj). Thus V sees a violation of SC2 and slashes the attester.

Now comes the main guarantees of Gasper:

Guarantee 3.4.1 (Safety) A view W is (1/3) − slashable or we are certain of

the properties below:

1. Any pair included in F (G) remains in the set as W is updated through time.

2. If (B, j) ∈ F (G), then B is in the canonical chain of W . Consequently,

chain(B) is a subsequence of the canonical chain of W .

38 3.4. Gasper

Proof. The first property follows from the definitions of justification and

finalization.

HLMD GHOST always selects the block with a canonical chain that goes through

the justified pair with the highest attestation epoch, with the last sub-guarantee this

means that it always goes through the highest finalized pair in F (W). If we show

that no finalized blocks can conflict, then it follows that all finalized blocks must be

in the same chain, which is a subchain of the consensus history.

Suppose for a contradiction that (B1, f1) and (B2, f2) are pairs in F (W) and

they conflict. Then W must be (1/3)-slashable because the last sub-guarantee tells

us that a justified pair is necessarily the descendant of a finalized pair and we know

that a pair gets justified before it can be finalized. Thus, either B1 is the descendent

of B2 or vice versa, the only way they can conflict is, again, via a (1/3)-slashable

blockchain.

Guarantee 3.4.2 (Plausible Liveness) The blockchain is (1/3)− slashable or

we are certain that the honest validators will follow the protocol and new blocks will

be finalized.

The proof for plausible liveness is based on assuming plausible conditions such

as good synchrony and honest validators.

The Probabilistic Liveness guarantee and the corresponding proof delve into

probability theory and game theory. We omit that proof in this article and advise the

curious reader to see it in the original paper as our purpose is to analyze consensus.

This in-depth overview of Gasper hopefully provides a good foundation to

form an attack tree.

4
Attack Tree

Contents
4.1 Preliminary . 39
4.2 Top-Level Categorization 40
4.3 Gain Stakes Illegitemately 41

4.3.1 Steal Network Currency 41
4.3.2 Increase Relative Stakes 44

4.4 Challenge Availability . 45
4.5 Challenge Integrity . 46
4.6 Recognizable Attacks in the Tree 46

4.6.1 The Balancing Attack 46
4.6.2 The Reorg Attack . 48
4.6.3 The Avalanche Attack 49
4.6.4 The Long Range Attack 51
4.6.5 The 51% Attack . 53

4.7 Reflection . 53
4.8 Comparison with the PoW Tree 54

4.1 Preliminary

Bellchambers provides an attack tree for generic blockchain applications where he

makes the elementary assumption that the fork choice rule compares the chains

by length alone [22]. His tree presents a clear top-level categorization of attacks

as well as comprehensive top-down attack vectors. We, therefore, acknowledge his

39

40 4.2. Top-Level Categorization

work as our origin. We prune his tree when an attack vector is not applicable to

the Gasper consensus protocol. We also branch his tree to highlight new paths

of attacks that are not applicable for the PoW and longest chain settings. Note

that our tree is a Gasper-specific tree, but many elements of it apply to general

PoS protocols as Gasper is an instance of them. We discuss which paths of attack

apply to general PoS protocols in the "Reflection" section.

Our approach aligns with the future work proposed by Bellchambers as an

extension to his dissertation. He specifically states that the longest chain as-

sumption restricts the potential blockchain applications and reasonably modern

cryptocurrencies such as Ethereum have different notions of fork choice. He notes

that it would be interesting to relax certain assumptions and consider different

applications. His work inspired our extension and we thereby appreciate his efforts.

4.2 Top-Level Categorization

We stick to Bellchambers’ top-level categorization with slight adaptations. Bellcham-

bers’ categorization and attack tree are included in the Appendix.

Figure 4.1: Top-Level Categorization of PoS Attacks

Semantically, we categorize three ways of attacking a PoS-based network. The

latter two are categorized under the same node as they are challenging the security

guarantees of a blockchain, in the general sense.

4. Attack Tree 41

1. Gain Stakes Illegitimately: A secure network depends on the fairness of

the flow of stakes, a validator must not be favored over others, or must not

steal others’ stakes.

2. Challenge Availability: Recall that the previous chapter stated the plausible

and probabilistic liveness properties of the Gasper protocol, which mean that

the blockchain keeps growing, i.e., new pairs are being finalized, no matter

what. A desirable network must be able to process transactions at any time.

3. Challenge Integrity: Consensus is all about integrity, a blockchain must

maintain the accuracy and consistency of the stored data.

4.3 Gain Stakes Illegitemately

An attacker can gain stakes illegitimately in two ways: it can either steal others’

stakes or increase his relative stakes by downplaying others.

Figure 4.2: Ways of Gaining Stakes Illegitemately

4.3.1 Steal Network Currency

Stealing currency is essentially stealing a private key. The private key of a user is

the key to his safe, or his wallet. An attacker can attempt digitally stealing the

wallet and its key using adversarial software, or it can try physically stealing it

and hacking the hardware. Common countermeasures against such thievery are

specified in the tree. For example, Node 18 states a good practice to defend against

stolen wallets, it suggests the user use his cold wallet only to withdraw money to

his hot wallet from which he temporarily holds money that is just enough for the

42 4.3. Gain Stakes Illegitemately

awaiting transactions. Node 21 suggests memorizing the wallet seed. An attacker’s

job would be very hard in the hypothetical case where the user memorizes the

seed and only signs from his cold wallet to send money to his hot wallet address,

i.e., both countermeasures are taken. The attacker may also try to trick or coerce

the user into false payments. He can also attempt to defeat certain cryptographic

primitives to deduce the private key or interfere with the key exchange algorithms.

4. Attack Tree 43

Figure 4.3: Steal Network Currency

44 4.3. Gain Stakes Illegitemately

4.3.2 Increase Relative Stakes

Figure 4.4: Increase Relative Stakes

From the attacker’s perspective, increasing his stakes relative to others corre-

sponds to having more control on the consensus process. One way of doing this is to

introduce unacceptable delays to the network, which in turn disrupts the synchrony

of others, if the attacker maintains good synchrony then he would secure control over

the consensus. Another sophisticated way of increasing relative stakes is given by the

attack vector defined by the rightmost leaf. An attacker may create Sybil identities

and have more influence on the algorithm. Instead of validating with C stakes as a

single validator, he can validate with C/k stakes as k validators. This way, he will

have k times higher probability to propose blocks as he will be occupying k positions

in the committee permutations. In other words, the attacker will be using the same

amount of stake more effectively and thus have more control over the consensus

algorithm. Other ways of increasing relative stakes are provided in the tree above.

4. Attack Tree 45

4.4 Challenge Availability

Figure 4.5: Challenge Availability

Challenging availability comes in two forms. An attacker can either sabotage a

node or a set of nodes, or he can exploit certain vulnerabilities of the underlying

protocol to avoid block finalization. The attacker can degrade the chain’s quality

to dis-function certain sets of nodes, ways of doing this are enumerated in the

sub-tree rooted at Node 42. If the attacker chooses to target the protocol layer,

then his options are DoS, the Balancing Attack, and Stake Bleeding (these attacks

are described in the following sections).

46 4.5. Challenge Integrity

4.5 Challenge Integrity

Figure 4.6: Challenge Availability

Ways of challenging the integrity of the chain are vectorized above. The

path defined by Node 75 is the Long Range Attack, Node 78 defines the 51%

Attack, these attacks are ways of deep forking. The rightmost two paths are

ways of replacing honest blocks with adversarial ones, these attacks are called

the Avalanche Attack, and the Reorg Attack respectively. All the named attacks

are described in the next section.

4.6 Recognizable Attacks in the Tree

4.6.1 The Balancing Attack

(Node 65)

4. Attack Tree 47

The Balancing Attack is similar to the Blockwitholding Attack we described in

the introduction where we delineated what sort of things an attacker can do. The

attacks are similar in the sense that, in both, the adversary purposefully withholds

messages and releases them intentionally to harm the network participants. One can

think of the Balancing Attack as the Gasper counterpart of the Blockwithholding

Attack. Neu et. al. formalize the attack in [23], we give a brief description.

We make the following assumptions about the network:

1. The attacker knows, up to a certain error margin, when the honest validators

execute the HLMD GHOST algorithm, i.e., run fork() to attest to the head

of their view.

2. The attacker is able to target a message for delivery to an honest validator

before a certain point in time.

3. Honest validators cannot exchange information about their local views arbi-

trarily quickly, i.e., they must wait a certain time to update each other about

the messages they have received.

These assumptions are sensible, they oftentimes hold. The first assumption

is given by the definition of Gasper as the Casper FFG votes are attestations

sent by the committee at the beginning of new epochs. The second and third

assumptions hold when the attacker has better synchrony than the other network

participants, which is not an ignorable scenario.

We define:

Definition 4.6.1 (Opportune Epoch) An epoch is opportune if the attacker is

assigned as the proposer of the first slot and there are sufficiently many (six is enough

[23]) adversarial validators in each slot of the epoch. The probability of an epoch

being opportune is roughly f/n for large n where f is the number of adversarial

validators. In expectation, an attacker controlling 1% of the validators waits for

only 100 epochs for an opportune epoch.

The steps of the attack are described below:

48 4.6. Recognizable Attacks in the Tree

1. The attacker waits for an opportune epoch.

2. The attacker produces two conflicting blocks: Bleft and Bright

3. The attacker reveals Bleft and Bright to two equal-sized subsets of the commit-

tee: Cleft and Cright respectively. Naturally, Cleft attests to Bleft and Cright

attests to Bright. The attacker withholds the attestations he received.

4. The attacker selectively releases the withheld attestations from the previous

slot to manipulate the validators of the next slot into two equal-sized groups

where one sees Bleft and the other sees Bright as parts of their canonical chains.

5. The attacker continues this strategy in the upcoming slots and epochs. He

releases withheld attestations selectively to reaffirm honest validators in the

illusion that their previous votes are in accordance with what is still happening.

The attacker can continue this indefinitely to break the liveness of the protocol

and avoid it from finalizing new blocks as the attestations from "left" and "right"

groups are, in expectation, of equal weight. Recall that finality requires a combined

weight of 2N/3 supporting a specific pair.

A careful reader may point out slashing and say that the attacker would get

slashed when it broadcasts two conflicting blocks. This is true, the proposer in the

first slot of the opportune block would lose his stakes, however, Bleft and Bright

are not slashed and remain part of the history in the consensus protocol. Hence,

slashing is not a proper defense against the Balancing Attack.

4.6.2 The Reorg Attack

(Node 87)

A reorg attack is a deliberate attempt to rewrite the consensus history as an

alternate legitimate chain of transactions. Such an attack violates the integrity of

the blockchain, which is arguably the most important promise of the technology.

Schwarz-Schilling et. al. describes a strategy for [24] a low-cost reorg attack

against the Gasper protocol:

4. Attack Tree 49

1. The attacker secretly creates Bn+1 as the child of Bn and attests to it, at the

beginning of slot n + 1. Others attest to Bn as their view do not include Bn+1.

2. An honest proposer publishes Bn+2, at the beginning of slot n + 2. Now,

assuming good synchrony, the attacker publishes the secret Bn+1 and its

attestation. The committee now sees Bn+1 and Bn+2 simultaneously, these

blocks conflict as they share the same parent Bn.

3. Bn+1 and Bn+2 both inherit the attestation weight of Bn, due to the heaviest

sub-tree strategy. However, the committee attests to the adversarial block

Bn+1 as a result of HLMD GHOST as it has one more attestation which the

attacker had secretly prepared at slot n + 1.

4. At the beginning of slot n + 3, an honest proposer will create Bn+3 as the

child of the adversarial block Bn+1 as it outweighed the legitimate block Bn+2.

This effectively displaces the honest block out of the chain, i.e., reorgs out

the block, or orphans it.

Schwarz-Schilling et. al. call the above strategy the 1-reorg attack, and generalize

the strategy to k-reorg where k is used to parameterize the portion of honest

validators the attacker must control [24].

One may point out slashing, but again, slashing makes the attacker lose its

stakes, not the adversarial blocks it had created.

4.6.3 The Avalanche Attack

(Node 81)

The Avalanche Attack aims to displace honest blocks out of the consensus

history just like the attack we have previously described. The attacker exploits a

vulnerability inherent in the design of the GHOST algorithm. The attacker releases

the withheld blocks in a flat but wide sub-tree when the tree’s weight catches up

to the weight of the legitimate chain. At first, it may seem like the attacker has

to create an abounding number of adversarial blocks. However, this is not the

50 4.6. Recognizable Attacks in the Tree

case as the attacker has the advantage of re-using "uncle" blocks, this is because

only two blocks in the flat-wide sub-tree replacing the long-legitimate one joins

the canonical chain when a fork choice is made. The rest of the adversarial blocks

act as attesters which can be used over and over again.

The Avalanche Attack may not be crystal clear when described in words, so

we put a pictorial illustration of what happens in the attack below:

Figure 4.7: An Illustration of the Avalanche Attack

The green boxes represent the honest blocks whereas the red ones represent

the adversarial ones. The flat sub-tree in the second and third levels of the tree

is released by the adversary when the 6th honest block is added to the canonical

chain, this in turn displaced the honest chain. The attacker repeats this strategy

and releases another flat sub-tree, the one in the third and fourth levels, when the

10th honest block is added, and so on. Observe that the attacker reuses certain

blocks. Analysis shows that with k adversarial withheld blocks, an attacker can

displace O(k2) honest blocks [25].

4. Attack Tree 51

Steps of the attack are listed below:

1. The attacker secretly creates k adversarial blocks.

2. The attacker waits until the weight of the honest canonical chain matches

the flat and wide sub-tree it created. The attacker releases the adversarial

sub-tree outweighing the honest one when the time arrives. The adversarial

sub-tree displaces the legitimate one.

3. The attacker waits until the new sub-tree formed by the honest proposals

matches the weight of the flat and wide sub-tree it created by re-using the

"uncle" adversarial blocks. It releases the adversarial sub-tree when the time

arrives and displaces the honest blocks.

4. The attacker continues in this fashion, displacing as many honest blocks as

possible until it runs out of reusable blocks.

Neu et. al. show that the LMD variant of the GHOST rule interferes with the

Avalanche Attack but comes with its own problems [26].

Defenses

One may add node depth as a comparison key in the HLMD GHOST algorithm.

In other words, the algorithm will not only look at the sub-tree weight when

choosing a branch but also look at how deep that branch goes, perhaps it will look

at some weighted linear combination of the two parameters. Note that this will

not prevent the Avalanche type of attacks completely but will force the attacker

to organize the adversarial sub-trees in a narrower form, which decreases the

number of blocks he can re-use.

4.6.4 The Long Range Attack

(Node 73)

The Long Range Attack is often attributed as the PoS version of the 51%

Attack in the sense that the attacker takes over the blockchain with a false one

52 4.6. Recognizable Attacks in the Tree

of its own. The attacker rewrites the history by replacing the consensus history

with the so-called "alternate" history.

Weak Subjectivity is a critical property of PoS blockchains. It describes the

situation where offline nodes or nodes that have been offline for a sufficiently long

time are not certain of the canonical chain. They need to traverse the entire history,

starting from the genesis block, and end up in a specific leaf defining the consensus

history. For that, they run the fork() function.

Costless Simulation is another critical property in the PoS setting. It means

that anyone can create a branch, or a sub-tree, rooted at the genesis block, with

a negligible cost. This is simply because the PoS consensus does not involve any

computational puzzle solving.

Weak Subjectivity together with Costless Simulation implies that an attacker

can create a custom-tailored branch and deceive non-active nodes. Even the active,

i.e., online, nodes can be deceived via Eclipse type of attacks.

Before describing the defenses against the Long Range Attack, we point out

an inherent challenge for the attacker. The attacker must outperform the honest

validators in creating a real-time branch as blocks contain timestamps. If the

attacker can forge timestamps, then it can simply create blocks ahead of time

as it is the single validator viewing the adversarial branch. However, creating

blocks becomes a competition when timestamp creation is secured via cryptographic

primitives. The attacker has two ways of outperforming others in the block creation

process and these ways are described below:

Posterior Corruption

Under certain conditions, validators can leave the network, i.e., they can retire. This

must be the case as it would be unfair if the set of validators, Λ, had been static.

One way for the attacker to create additional blocks is to hack (or bribe and

get) a retired validators, Vr private key. Once the attacker controls the retired

validators private key, it can use the blocks Vr had created in the past that are not

part of the consensus history, sign them as Vr and add them into the adversarial

4. Attack Tree 53

chain. The more retired validators the attacker controls, the higher its chances

to outgrow the canonical chain.

Stake Bleeding

(Node 68)

Another strategy the attacker can follow is to stall the canonical chain by

intentionally decreasing its stakes. Every round the attacker gets selected as the

block proposer it can purposefully skip the round, which in turn stalls the canonical

chain’s growth in the cost of not having any block rewards. This gradually decreases

the attacker’s stakes, hence the name stake bleeding. The attacker grows the alternate

chain in parallel and publishes it when it outgrows the main chain. Here we use

outgrow to mean that it is selected over the main chain when a fork() call is made.

Defenses

The most effective defense against the Long Range Attack is the use of checkpoints.

Checkpointing allows only a subset of the latest blocks to be reorganized and makes

it impossible to construct an entire alternate history. Note that an attacker could

still launch the attack if it succeeds to forge the checkpoints.

The Gasper protocol, which is the one we are focusing on, is secure against this

attack as Gasper votes contain Casper FFG votes that finalizes pairs as checkpoints.

4.6.5 The 51% Attack

(Node 77)

The notorious 51% attack also comes into play in PoS-based networks. However,

the attacker must control 51% of the total network stakes instead of the total

compute power.

4.7 Reflection

The tree we have established is Gasper-specific, meaning all attack vectors are

created with Gasper’s vulnerabilities in mind. However, Gasper is an instance of a

54 4.8. Comparison with the PoW Tree

PoS consensus protocol, so most branches of our tree are either directly applicable

to PoS protocols in general or have counterparts for other PoS protocols.

The sub-tree rooted at Node 3, "Steal Network Currency", is applicable to all

PoS protocols. Since stealing tokens depends on getting hold of a user’s private key

or deceiving the user, this sub-tree does not have a Gasper-specific exploit. In fact,

this sub-tree is applicable to all paradigms of consensus, including PoW and others.

The sub-tree rooted at Node 41, "Increase Relative Stakes" is also quite general.

The sub-tree defined by Node 42, "Degrade Chain Quality", is applicable to all

consensus paradigms, as the attack strategy involves attacking the network layer

which is common to all blockchain types. The sub-tree given by Node 47, "Reduce

Others’ Stakes", is applicable to all PoS protocols implementing slashing, with

the only difference being the way in which you deceive the user in Node 49 as

the specific slashing conditions may differ. Similarly, the sub-tree given by Node

51, "Increase Influence", is applicable to any PoS network that conducts the block

proposal process by voting rounds among randomized committees.

Nodes 58 (Referencing Degrade Chain Quality), 60 ("DoS"), and 68 ("Stake

Bleeding") listed as ways of challenging availability are also generally applicable

to all PoS protocols. However, Node 65, in the availability sub-tree defines the

Balancing Attack, which is specific to Gasper.

In the integrity sub-tree, Node 71, "Deep Fork", explains a general strategy to

replace the canonical PoS chain, but Node 79, "Checkpointing" gives a defense option

that is implemented in Gasper. The branches rooted at Node 80, "Displacing blocks",

are Gasper specific as they describe the Avalanche and Reorg attacks respectively.

4.8 Comparison with the PoW Tree

Janse van Rensburg’s doctoral thesis on analyzing Attack Graphs inspired the

current section of our article [27]. The "Relative Attack-Graph Security" chapter of

his work demonstrates that it is possible to objectively compare two different attack

graphs in terms of security to a certain extent. However, Rensburg’s proposed

method for comparison depends on comparing paths that share common exploits,

4. Attack Tree 55

otherwise, the attack graphs cannot be compared as the cost of different exploits

are necessarily subjective for different attackers. He, therefore, mentions other

simpler ways to draw lighter conclusions on the secureness of the attack graphs,

one of which is to compare the number of paths.

A complete path, or attack vector, in our attack tree, is a path starting from

the root node and extending to a leaf node. Note that the defenses are given

in dashed lines and they are not parts of the main tree, they are considered as

parts of the augmented tree, so we do not consider the defense leaves as leaf

nodes. Intuitively, if a tree has many leaf nodes, it means that the system it is

modeling has many vulnerabilities that give the attacker chances to accomplish

different attacks. Based on this intuition, Rensburg proposes the number of paths

metric to compare the likelihood of an attacker reaching his targets in different

systems modeled by different trees.

The number of paths metric also has some important limitations. It weighs

each path equally, irrespective of the length of the paths and the exploits contained

in them. This is a problem of the metric as well as a problem of attempting to

"objectively" compare systems in terms of their secureness.

The PoS tree has 24 leaf nodes, whereas Bellchamber’s PoW tree has 43 leaf

nodes. A direct conclusion of this difference in the number of paths is that PoW

systems supply the attackers with more ways of attacking the system. This is an

intuitively correct conclusion as PoS-based consensus is derived from PoW-based

consensus with the vulnerabilities and limitations of PoW in mind. It is important

to note that the number of paths in the two trees is associated with the level of

detail their authors have decided to provide. The reader is encouraged to enhance

both trees by adding new paths that they may have noticed and re-compare them,

even so, we think that the level of detail we have provided matches Bellchamber’s.

56

5
Conclusion & Future Work

This article focused on PoS networks and specifically the Gasper protocol which

is a variant of stake-based consensus algorithms.

The foundation of consensus is to prove that you are willing to sacrifice

"something" of importance in exchange for information. This "something" can

be computational work, staked currency, storage space, or real-life concepts. Hence

there are many types of networks: Proof-of-Work, Proof-of-Stake, Proof-of-Capacity,

and Proof-of-Concept respectively. We call this "something" the consensual value.

Exploring interesting consensual values and the associated attacks other than work

and stake would be a good direction for future research.

In the case of PoS-based networks, it would be interesting to explore how the

choice of the consensus algorithm opens up possibilities for new types of attacks, or

how the algorithm prevents certain attacks. For example, the Avalanche Attack and

its variants are specifically targeting the GHOST fork-choice rule, other fork-choice

rules may be resilient to such attacks but vulnerable to others. Hence, delving

into the specifics of the consensus algorithms would be a great step forward. Even

parameters of Gasper (such as slots in an epoch, slashing conditions, etc.) would

drastically affect the success of attacks, the effect of algorithm parameters on

specific attacks would also be a great research topic.

57

58 5. Conclusion & Future Work

Our attack tree serves as a model that explores the possible attacks in general

terms. However, more advanced models may incorporate edge weights to specify

the costs of certain exploitation or to quantify the probability of certain paths.

An interesting research goal would be to try and construct a probabilistic attack

tree, or an attack graph that captures cyclic exploitation.

The field of blockchain is still crawling, and the pace of innovation is great.

Analyzing attacks at a matching pace is crucial to building reliable systems. In fact,

it must be a prerequisite in blockchain development, as we are using blockchain

networks in mission-critical fields such as finance, defense, and health.

Appendices

59

61

.1 Appendix: PoW Tree

The following figures are parts of Bellchamber’s attack tree for the PoW-based

networks with longest chain fork-choice.

Figure 1: Top-level Categorization

62 .1. Appendix: PoW Tree

Figure 2: Gaining Work Incentives Illegitimately

63

Figure 3: Signing Transactions Without Consent

64 .1. Appendix: PoW Tree

Figure 4: Countermeasures for Malware

65

Figure 5: Deep Fork

66 .1. Appendix: PoW Tree

Figure 6: Adding an Invalid Block to the Chain

67

Figure 7: Restricting Chain Growth 1

68 .1. Appendix: PoW Tree

Figure 8: Restricting Chain Growth 2

References

[1] Satoshi Nakamoto. “Bitcoin: A Peer-to-Peer Electronic Cash System”. In: (May
2009). url: http://www.bitcoin.org/bitcoin.pdf.

[2] “Hashrate Distribution An estimation of hashrate distribution amongst the largest
mining pools. url: https://www.blockchain.com/pools.

[3] Yourong Chen et al. “A survey on blockchain systems: Attacks, defenses, and
Privacy Preservation”. In: High-Confidence Computing 2.2 (2022), p. 100048.

[4] Vishal; Chaudhary Kaylash; Chand and Ansgar Fehnker. “Double-Spending
Analysis of Bitcoin”. In: PACIS 2020 Proceedings. 210. (2020). url:
https://aisel.aisnet.org/pacis2020/210.

[5] Mubashar Iqbal and Raimundas Matulevicius. “Exploring sybil and
double-spending risks in Blockchain Systems”. In: IEEE Access 9 (2021),
pp. 76153–76177.

[6] Christopher Natoli and Vincent Gramoli. “The balance attack or why forkable
blockchains are ill-suited for Consortium”. In: 2017 47th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN) (2017).

[7] Liang Chen et al. “Phishing scams detection in Ethereum Transaction Network”.
In: ACM Transactions on Internet Technology 21.1 (2021), pp. 1–16.

[8] AHMET FARUK AYSAN et al. “Survival of the fittest: A natural experiment from
crypto exchanges”. In: The Singapore Economic Review (2021), pp. 1–20.

[9] Mubashar Iqbal and Raimundas Matulevičius. “Exploring Sybil and
Double-Spending Risks in Blockchain Systems”. In: IEEE Access 9 (2021),
pp. 76153–76177.

[10] Yujin Kwon et al. “Be Selfish and Avoid Dilemmas”. In: Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security. ACM, Oct.
2017. url: https://doi.org/10.1145%2F3133956.3134019.

[11] Jelena Mirkovic and Peter Reiher. “A taxonomy of ddos attack and ddos defense
mechanisms”. In: ACM SIGCOMM Computer Communication Review 34.2 (2004),
pp. 39–53.

[12] Hatem Ismail, Daniel Germanus, and Neeraj Suri. “Detecting and Mitigating P2P
Eclipse Attacks”. In: Dec. 2015, pp. 224–231.

[13] Kuan Zhang et al. “Sybil Attacks and Their Defenses in the Internet of Things”.
In: Internet of Things Journal, IEEE 1 (Oct. 2014), pp. 372–383.

[14] Dieudonné Mulamba, Indrajit Ray, and Indrakshi Ray. “Sybilradar: A
graph-structure based framework for Sybil Detection in on-line social networks”. In:
ICT Systems Security and Privacy Protection (2016), pp. 179–193.

69

http://www.bitcoin.org/bitcoin.pdf
https://www.blockchain.com/pools
https://aisel.aisnet.org/pacis2020/210
https://doi.org/10.1145%2F3133956.3134019

70 References

[15] Michele Spagnuolo, Federico Maggi, and Stefano Zanero. BitIodine: Extracting
Intelligence from the Bitcoin Network.

[16] Philip Koshy, Diana Koshy, and Patrick McDaniel. “An analysis of anonymity in
bitcoin using P2P network traffic”. English (US). In: Financial Cryptography and
Data Security - 18th International Conference, FC 2014, Revised Selected Papers.
Ed. by Reihaneh Safavi-Naini and Nicolas Christin. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics). Funding Information: This material is based upon work
supported by the National Science Foundation Grants No. CNS-1228700 and
CNS-0905447. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect
the views of the National Science Foundation. Publisher Copyright: © International
Financial Cryptography Association 2014.; 18th International Conference on
Financial Cryptography and Data Security, FC 2014 ; Conference date: 03-03-2014
Through 07-03-2014. Germany: Springer Verlag, 2014, pp. 469–485.

[17] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. “The Knowledge Complexity
of Interactive Proof Systems”. In: SIAM J. Comput. 18.1 (1989), pp. 186–208.

[18] Vitalik Buterin et al. Combining GHOST and Casper. 2020. eprint:
arXiv:2003.03052.

[19] Miguel Castro and Barbara Liskov. “Practical Byzantine Fault Tolerance”. In: 3rd
Symposium on Operating Systems Design and Implementation (OSDI 99). New
Orleans, LA: USENIX Association, Feb. 1999. url:
https://www.usenix.org/conference/osdi-99/practical-byzantine-fault-
tolerance.

[20] Yonatan Sompolinsky and Aviv Zohar. “Secure high-rate transaction processing in
bitcoin”. In: Financial Cryptography and Data Security (2015), pp. 507–527.

[21] V. Zamfir. “Casper the friendly ghost: a ”correct-by-construction” blockchain
consensus protocol”. 2017. url: https://github.com/vladzamfir/research/
blob/master/papers/%20CasperTFG/CasperTFG.pdf.

[22] Christopher Bellchambers. A Block Structure Framework Attack Tree for Generic
Blockchain Applications. 2018.

[23] Joachim Neu, Ertem Nusret Tas, and David Tse. “Ebb-and-Flow Protocols: A
Resolution of the Availability-Finality Dilemma”. In: CoRR abs/2009.04987 (2020).
arXiv: 2009.04987. url: https://arxiv.org/abs/2009.04987.

[24] Caspar Schwarz-Schilling et al. “Three Attacks on Proof-of-Stake Ethereum”. In:
CoRR abs/2110.10086 (2021). arXiv: 2110.10086. url:
https://arxiv.org/abs/2110.10086.

[25] Joachim Neu, Ertem Nusret Tas, and David Tse. Avalanche Attack on
Proof-of-Stake GHOST. Jan. 2022. url: https://ethresear.ch/t/avalanche-
attack-on-proof-of-stake-ghost/11854.

[26] Joachim Neu, Ertem Nusret Tas, and David Tse. Balancing Attack: LMD Edition.
Jan. 2022. url:
https://ethresear.ch/t/balancing-attack-lmd-edition/11853.

[27] Alastair Janse van Rensburg. “Generation and Analysis of Attack Graphs on
Computer Networks”. In: (Sept. 2018).

arXiv:2003.03052
https://www.usenix.org/conference/osdi-99/practical-byzantine-fault-tolerance
https://www.usenix.org/conference/osdi-99/practical-byzantine-fault-tolerance
https://github.com/vladzamfir/research/blob/master/papers/%20CasperTFG/CasperTFG.pdf
https://github.com/vladzamfir/research/blob/master/papers/%20CasperTFG/CasperTFG.pdf
https://arxiv.org/abs/2009.04987
https://arxiv.org/abs/2009.04987
https://arxiv.org/abs/2110.10086
https://arxiv.org/abs/2110.10086
https://ethresear.ch/t/avalanche-attack-on-proof-of-stake-ghost/11854
https://ethresear.ch/t/avalanche-attack-on-proof-of-stake-ghost/11854
https://ethresear.ch/t/balancing-attack-lmd-edition/11853

	List of Figures
	Introduction
	Aim
	Motivation
	Contribution

	Background
	Background
	Consensus Protocols
	Attacks
	Attack Graphs

	Gasper: The Proof-of-Stake Consensus Protocol
	Basics
	Views & Network View
	Validators & Stakes
	Key Ingredients of a Consensus Protocol
	Byzantine Validators
	Security Properties
	Slots & Epochs
	Synchrony
	Note on our Formalization

	Casper FFG
	Checkpoints & Attestations
	Justification & Finalization
	Slashing Conditions
	Guarantees

	LMD GHOST
	Gasper
	Epoch Boundaries
	Committees
	Attestations
	Justification
	Finalization
	Hybrid LMD GHOST
	Slashing Conditions
	Guarantees

	Attack Tree
	Preliminary
	Top-Level Categorization
	Gain Stakes Illegitemately
	Steal Network Currency
	Increase Relative Stakes

	Challenge Availability
	Challenge Integrity
	Recognizable Attacks in the Tree
	The Balancing Attack
	The Reorg Attack
	The Avalanche Attack
	The Long Range Attack
	The 51% Attack

	Reflection
	Comparison with the PoW Tree

	Conclusion & Future Work
	Appendix: PoW Tree

	References

