Satisfiability as Abstract Interpretation

Leopold Haller
(joint work with Vijay D'Silva)

A Tale of Two Communities

A Tale of Two Communities

$\underset{(1962)}{\text { DPLL }} \underset{(1996)}{\text { CDCL }}$ solvers

are
(proper) abstract interpreters

$$
\underset{(1977)}{\mathrm{Al}}
$$

Why does this matter?

Why does this matter?

" the practical success of SAT has come as a surprise to many in the computer science community. The combination of strong practical drivers and open competition in this experimental research effort created enough momentum to overcome the pessimism based on theory. Can we take these lessons to other problems and domains?"

- Malik \& Zhang, 2009

Why does this matter?

Why does this matter?

Why does this matter?

ACDCL(A)
 \longleftrightarrow Abstract domain A

Why does this matter?

ACDCL(A)
 \longleftrightarrow Abstract domain A

Conflict Driven Clause Learning

Interpreting Logic

CDCL is Abstract Interpretation
$\operatorname{ACDCL}(A)$

The CDCL Algorithm Jargon Slide

Propositions
Literal

Clause

CNF formula

Assignment
Satisfiability
finite set V
$p, \neg p \quad p \in V$
disjunction of literals
conjunction of clauses
partial function $V \rightarrow\{\mathrm{t}, \mathrm{f}\}$
Does there exists an assignment $V \rightarrow\{\mathrm{t}, \mathrm{f}\}$ such that φ is true?

The CDCL Algorithm

Propositional CNF formula $\varphi=(p \vee \neg q) \wedge \ldots \wedge(\neg r \wedge w \wedge q)$

The CDCL Algorithm

Propositional CNF formula $\varphi=(p \vee \neg q) \wedge \ldots \wedge(\neg r \wedge w \wedge q)$

The CDCL Algorithm

Propositional CNF formula $\varphi=(p \vee \neg q) \wedge \ldots \wedge(\neg r \wedge w \wedge q)$

The CDCL Algorithm

Propositional CNF formula $\varphi=(p \vee \neg q) \wedge \ldots \wedge(\neg r \wedge w \wedge q)$

The CDCL Algorithm

Propositional CNF formula $\varphi=(p \vee \neg q) \wedge \ldots \wedge(\neg r \wedge w \wedge q)$

The CDCL Algorithm

Propositional CNF formula $\varphi=(p \vee \neg q) \wedge \ldots \wedge(\neg r \wedge w \wedge q)$

The CDCL Algorithm

Propositional CNF formula $\varphi=(p \vee \neg q) \wedge \ldots \wedge(\neg r \wedge w \wedge q)$

Boolean Constraint Propagation (BCP)

Operates over a partial function (variable assignment)

$$
V \rightarrow\{\mathrm{t}, \mathrm{f}\}
$$

Boolean Constraint Propagation (BCP)

Unit Rule

Boolean Constraint Propagation (BCP)

$$
\begin{array}{rlrl}
p & \mapsto \mathrm{t} & \quad \text { Unit Rule } \\
q & \mapsto \mathrm{f} \\
r & \mapsto \mathrm{f} & \ldots \wedge(\neg p \vee q \vee r \vee \neg w) \wedge \ldots
\end{array}
$$

Boolean Constraint Propagation (BCP)

$$
\begin{array}{cc}
p \mapsto \mathrm{t} & \text { Unit Rule } \\
q \mapsto \mathrm{f} & \\
r \mapsto \mathrm{f} & \ldots \wedge(\curvearrowleft p) \vee q \vee r \vee \neg w) \wedge \ldots
\end{array}
$$

Boolean Constraint Propagation (BCP)

$$
\begin{array}{rc}
\hline p \mapsto \mathrm{t} & \quad \text { Unit Rule } \\
\frac{q \mapsto f}{r \mapsto f} & \ldots \wedge(\curvearrowleft p) \vee(q) \vee r \vee \neg w) \wedge \ldots
\end{array}
$$

Boolean Constraint Propagation (BCP)

Boolean Constraint Propagation (BCP)

Boolean Constraint Propagation (BCP)
$\mathrm{BCP}=$ Exhaustive application of unit rule

Boolean Constraint Propagation (BCP)
$\mathrm{BCP}=$ Exhaustive application of unit rule

Boolean Constraint Propagation (BCP)
$\mathrm{BCP}=$ Exhaustive application of unit rule

$$
\rightleftarrows \quad p \mapsto \mathrm{t}
$$

Boolean Constraint Propagation (BCP)
$\mathrm{BCP}=$ Exhaustive application of unit rule

$$
\rightleftarrows \quad p \mapsto \mathrm{t}
$$

Boolean Constraint Propagation (BCP)
$\mathrm{BCP}=$ Exhaustive application of unit rule

$$
\begin{array}{r}
\rightleftarrows p \mapsto \mathrm{t} \longmapsto p
\end{array} \begin{array}{r}
\mathrm{t} \\
\\
q \mapsto \mathrm{f}
\end{array}
$$

$$
\begin{aligned}
& p \mapsto \mathrm{t} \\
& q \mapsto \mathrm{f}
\end{aligned}
$$

Pick an unassigned variable and assign a truth value

$$
\begin{gathered}
p \mapsto \mathrm{t} \\
q \mapsto \mathrm{f}
\end{gathered}
$$

Pick an unassigned variable and assign a truth value

$$
\begin{gathered}
p \mapsto \mathrm{t} \\
q \mapsto \mathrm{f}
\end{gathered} \quad \Longleftrightarrow \begin{aligned}
& p \mapsto \mathrm{t} \\
& q \mapsto \mathrm{f} \\
& r \mapsto \mathrm{f}
\end{aligned}
$$

$p \mapsto t$
$q \mapsto \mathrm{f}$
$r \mapsto f$

$$
r \mapsto \mathrm{f}
$$

$q \mapsto \mathrm{f}$ and $r \mapsto \mathrm{f}$ is not possible

learn lemma
$q \mapsto \mathrm{f}$ and $r \mapsto \mathrm{f}$ is not possible
$q \vee r$

$$
\varphi=p \wedge(\neg p \vee \neg q) \wedge(q \vee r \vee \neg w) \wedge(q \vee r \vee w) \quad q \vee r
$$

$$
\varphi=p \wedge(\neg p \vee \neg q) \wedge(q \vee r \vee \neg w) \wedge(q \vee r \vee w) \wedge(q \vee r)
$$

$$
\varphi=p \wedge(\neg p \vee \neg q) \wedge(q \vee r \vee \neg w) \wedge(q \vee r \vee w) \wedge(q \vee r)
$$

$p \mapsto \mathrm{t}$
$q \mapsto \mathrm{f}$
$r \mapsto f$

$w \mapsto f$

$$
\varphi=p \wedge(\neg p \vee \neg q) \wedge(q \vee r \vee \neg w) \wedge(q \vee r \vee w) \wedge(q \vee r)
$$

$$
p \mapsto \mathrm{t}
$$

$$
q \mapsto \mathrm{f}
$$

$$
r \mapsto \mathrm{f}
$$

$$
\Longrightarrow \begin{aligned}
& p \mapsto \mathrm{t} \\
& q \mapsto \mathrm{f}
\end{aligned}
$$

$$
\left.\left.\Longrightarrow \begin{array}{c}
p \mapsto \mathrm{t} \\
q \mapsto \mathrm{f}
\end{array}\right) \quad \begin{array}{l}
r \mapsto \mathrm{t}
\end{array}\right)
$$

The CDCL Algorithm

 One Line SummariesBCP and decisions construct an assignment $\quad \cdots$
\vdots
\vdots
\vdots
Model theoretic search guides proof theoretic search

Important: CDCL is more than case splitting

Conflict Driven Clause Learning

Interpreting Logic

CDCL is Abstract Interpretation
$\operatorname{ACDCL}(A)$

$$
\varphi=p \wedge(\neg p \vee \neg q) \wedge(q \vee r \vee \neg w) \wedge(q \vee r \vee w)
$$

Imagine no assignments, it's easy if you try

Imagine only Booleans,
I wonder if you can

```
\ominus O O c] sat.c (/private/tmp) - VIM
    H4
int main(void)
{
    bool p,q,r,w;
    if(p && (!p || q) && (q || r || !w) && (q || r || w))
        assert(0);
    return 0;
}
/private/tmp/sat.c [P0S=0002,0004][16%] [LEN=12]
```


Concrete Interpretation

$$
P=\{\langle p \mapsto \mathrm{t}, q \mapsto \mathrm{t}\rangle,\langle p \mapsto \mathrm{t}, q \mapsto \mathrm{f}\rangle\} \quad Q=\{\langle p \mapsto \mathrm{t}, q \mapsto \mathrm{t}\rangle,\langle p \mapsto \mathrm{f}, q \mapsto \mathrm{t}\rangle\}
$$

Shaded: Strongest post-condition for assume(!p || q)

Satisfiability as Concrete Analysis

$$
\begin{aligned}
C & =\langle\wp(V \rightarrow \mathbb{B}), \subseteq, \cap, \cup\rangle \\
\mathrm{\top} & =V \rightarrow \mathbb{B} \\
\perp & =\emptyset \\
\operatorname{post}_{\varphi}(X) & =\{\varepsilon \in X \mid \varepsilon \text { satisfies } \varphi\}
\end{aligned}
$$

Concrete domain
All environments
No environment
Strongest post-condition

Concrete Satisfiability:

φ is satisfiable exactly if $\operatorname{post}_{\varphi}(\top) \neq \emptyset$

Cartesian Abstract Domain

$V \rightarrow \wp(\mathbb{B})$

Concrete
Set of environments

Abstract Environment of sets

Cartesian Abstract Domain

Shaded: Abstract strongest post-condition for assume(!p || q)

Cartesian Abstract Interpretation

$$
\begin{aligned}
C & =\langle\wp(V \rightarrow \mathbb{B}), \subseteq, \cap, \cup\rangle \\
A & =\langle V \rightarrow \wp(\mathbb{B}), \sqsubseteq, \sqcap, \sqcup\rangle \\
C & \stackrel{\gamma}{\stackrel{\gamma}{\rightleftarrows}} A \\
\text { apost }_{\varphi} & =\alpha \circ \operatorname{post}_{\varphi} \circ \gamma
\end{aligned}
$$

Concrete domain
Abstract domain
Galois connection
Best abstract transformer

$$
P=\{\varepsilon \mid \varepsilon(p)=\mathrm{t}\}
$$

$$
\operatorname{post}_{p \wedge q}(\bar{P})=\emptyset
$$

$$
\operatorname{post}_{p \vee \neg q}(\bar{P})=\{\langle p \mapsto \mathrm{f}, q \mapsto \mathrm{f}\rangle\}
$$

$$
\operatorname{post}_{p \times \operatorname{xor} q}(\mathrm{~T})=\{\langle p \mapsto \mathrm{f}, q \mapsto \mathrm{t}\rangle
$$

$$
\langle p \mapsto \mathrm{t}, q \mapsto \mathrm{f}\rangle\}
$$

Transformers are sound ...

Computing the best abstract transformer is SAT-hard
Use best abstract transformer only for literals

conjunction	meet
disjunction	join

$$
\text { If } \text { apost }_{\varphi}=\perp \text { then } \varphi \text { is unsatisfiable. }
$$

(follows from the standard soundness theorem of abstract interpretation)
but they are not complete ...

... but not complete

Abbreviate $\langle p \mapsto\{\mathrm{t}\}, q \mapsto \mathbb{B}\rangle$ as $\langle p \mapsto \mathrm{t}\rangle$

$$
\begin{aligned}
\varphi & =p \wedge(\neg p \vee q) \\
\operatorname{apost}_{\varphi}(\mathrm{T}) & =\operatorname{apost}_{p}(\mathrm{~T}) \sqcap\left(\operatorname{apost}_{\neg p}(\mathrm{~T}) \sqcup \operatorname{apost}_{q}(\mathrm{~T})\right) \\
& =\langle p \mapsto \mathrm{t}\rangle \sqcap(\langle p \mapsto \mathrm{f}\rangle \sqcup\langle q \mapsto \mathrm{t}\rangle) \\
& =\langle p \mapsto \mathrm{t}\rangle \sqcap \mathrm{T} \\
& =\langle p \mapsto \mathrm{t}\rangle \\
& \neq \\
\operatorname{post}_{\varphi}(\mathrm{T}) & =\{\langle p \mapsto \mathrm{t}, q \mapsto \mathrm{f}\rangle\}
\end{aligned}
$$

Recovering Precision

Theorem (Cousot and Cousot 1979)

$$
\operatorname{post}(\gamma(a)) \subseteq \gamma\left(\operatorname{gfp}_{x}(\operatorname{apost}(x \sqcap a))\right) \subseteq \gamma(\operatorname{apost}(a))
$$

$$
\begin{aligned}
\varphi & =p \wedge(\neg p \vee q) \\
\operatorname{apost}_{\varphi}(\mathrm{T}) & =\operatorname{apost}_{p}(\mathrm{~T}) \sqcap\left(\operatorname{apost}_{\neg p}(\mathrm{~T}) \sqcup \operatorname{apost}_{q}(\mathrm{~T})\right) \\
& =\langle p \mapsto \mathrm{t}\rangle \\
\operatorname{apost}_{\varphi}(\langle p \mapsto \mathrm{t}\rangle) & =\operatorname{apost}_{p}(\langle p \mapsto \mathrm{t}\rangle) \sqcap\left(\operatorname{apost}_{\neg p}(\langle p \mapsto \mathrm{t}\rangle) \sqcup \operatorname{apost}_{q}(\langle p \mapsto \mathrm{t}\rangle)\right) \\
& =\langle p \mapsto \mathrm{t}\rangle \sqcap(\perp \sqcup\langle p \mapsto \mathrm{t}, q \mapsto \mathrm{t}\rangle) \\
& =\langle p \mapsto \mathrm{t}\rangle \sqcap\langle p \mapsto \mathrm{t}, q \mapsto \mathrm{t}\rangle \\
& =\langle p \mapsto \mathrm{t}, q \mapsto \mathrm{t}\rangle
\end{aligned}
$$

Interpreting Logic
 One Line Summaries

Satisfying assignments are fixed points of the semantics

Cartesian abstract interpretation is sound but imprecise
gfp improves precision in the abstract

Conflict Driven Clause Learning

Interpreting Logic

CDCL is Abstract Interpretation
$\operatorname{ACDCL}(A)$

A SAT solver and an abstract interpreter walk into a bar

```
#define l_True (lbool(( uint8_t )0))
#define l_False (lbool(( uint8_t)1))
#define l_Undef (lbool(( uint8_t )2))
class lbool { [...] };
class Solver {
    [...]
    // FALSE means solver is in a conflicting state
    bool okay () const;
    vec<lbool> assigns; // The current assignments.
    // Enqueue a literal . Assumes value of literal is undefined.
    void uncheckedEnqueue (Lit p, CRef from = CRef_Undef);
    // Perform unit propagation. Return possibly conflicting clause.
    CRef propagate ();
};
```

MiniSAT 2.2.0

Partial assignments

A SAT solver uses partial assignments 1_Undef

$$
V \longrightarrow \text { 1_True } \quad \text { 1_False }
$$

\neg okay

An element of the Cartesian abstraction is:

Partial assignments are order isomorphic to the reduced Cartesian abstraction

Unit rule

Unit rule and abstract transformer

The unit rule is the best abstract transformer

BCP

```
\(\mathrm{BCP}(\varphi, \pi)\{\)
    repeat
        \(\pi^{\prime} \leftarrow \pi ;\)
        for Clause \(C \in \varphi\) do \(\pi \leftarrow \operatorname{unit}\left(C, \pi^{\prime}\right)\)
    until \(\pi^{\prime}=\pi\);
\}
```

Theorem: BCP as fixed point

$$
h(\mathrm{BCP}(\varphi, \pi))=\operatorname{gfp}_{x}\left(\operatorname{apost}_{\varphi}(h(\pi) \sqcap x)\right)
$$

A SAT solver and an abstract interpreter walk into a bar

```
#define l_True (lbool(( uint8_t )0))
#define l_False (lbool(( uint8_t)1))
#define l_Undef (lbool(( uint8_t )2))
class lbool { [...] };
class Solver {
    [...]
    // FALSE means solver is in a conflicting state
    bool okay () const;
    vec<lbool> assigns; // The current assignments.
    // Enqueue a literal . Assumes value of literal is undefined.
    void uncheckedEnqueue (Lit p, CRef from = CRef_Undef);
    // Perform unit propagation. Return possibly conflicting clause.
    CRef propagate ();
};
```

MiniSAT 2.2.0

Another learning example

$$
\neg 1 \wedge(1 \vee \neg 2 \vee \neg 3) \wedge(\neg 4 \vee 5) \wedge(\neg 6 \vee 7) \wedge(\neg 6 \vee \neg 8) \wedge(\neg 7 \vee 8 \vee \neg 9) \wedge(3 \vee 9 \vee 1)
$$

Another learning example

$$
\neg 1 \wedge(1 \vee \neg 2 \vee \neg 3) \wedge(\neg 4 \vee 5) \wedge(\neg 6 \vee 7) \wedge(\neg 6 \vee \neg 8) \wedge(\neg 7 \vee 8 \vee \neg 9) \wedge(3 \vee 9 \vee 1)
$$

DL0

Another learning example

$$
\neg 1 \wedge(1 \vee \neg 2 \vee \neg 3) \wedge(\neg 4 \vee 5) \wedge(\neg 6 \vee 7) \wedge(\neg 6 \vee \neg 8) \wedge(\neg 7 \vee 8 \vee \neg 9) \wedge(3 \vee 9 \vee 1)
$$

DL0

DL2
$4 \longrightarrow 5$

Another learning example

$$
\neg 1 \wedge(1 \vee \neg 2 \vee \neg 3) \wedge(\neg 4 \vee 5) \wedge(\neg 6 \vee 7) \wedge(\neg 6 \vee \neg 8) \wedge(\neg 7 \vee 8 \vee \neg 9) \wedge(3 \vee 9 \vee 1)
$$

DLO

DL2
$4 \longrightarrow 5$
DL3

Another learning example

$$
\neg 1 \wedge(1 \vee \neg 2 \vee \neg 3) \wedge(\neg 4 \vee 5) \wedge(\neg 6 \vee 7) \wedge(\neg 6 \vee \neg 8) \wedge(\neg 7 \vee 8 \vee \neg 9) \wedge(3 \vee 9 \vee 1)
$$

DLO

DL2
$4 \longrightarrow 5$
DL3

Another learning example

$$
\neg 1 \wedge(1 \vee \neg 2 \vee \neg 3) \wedge(\neg 4 \vee 5) \wedge(\neg 6 \vee 7) \wedge(\neg 6 \vee \neg 8) \wedge(\neg 7 \vee 8 \vee \neg 9) \wedge(3 \vee 9 \vee 1)
$$

Another learning example

$$
\neg 1 \wedge(1 \vee \neg 2 \vee \neg 3) \wedge(\neg 4 \vee 5) \wedge(\neg 6 \vee 7) \wedge(\neg 6 \vee \neg 8) \wedge(\neg 7 \vee 8 \vee \neg 9) \wedge(3 \vee 9 \vee 1)
$$

DLO

Cuts $=$ Heuristic underapproximation of the weakest precondition

Another learning example

$$
\begin{gathered}
\neg 1 \wedge(1 \vee \neg 2 \vee \neg 3) \wedge(\neg 4 \vee 5) \wedge(\neg 6 \vee 7) \wedge(\neg 6 \vee \neg 8) \wedge(\neg 7 \vee 8 \vee \neg 9) \wedge(3 \vee 9 \vee 1) \\
\wedge(9 \vee 3)
\end{gathered}
$$

DLO

Trace Partitioning (Mauborgne and Rival, 2005)

```
int main(void)
{
    int x,y;
    x = y;
    if(x<5)
        assert(y<5);
    return 0;
```

Analysis too imprecise

Same analysis is precise
Changing the equation allows one to prove more with the same analysis.
Instance of a power domain (Cousot and Cousot, 1979)

Learning in SAT

```
if( phi )
    assert(0)
```


Decisions and learning are dynamic "trace" partitioning

Learning in SAT

```
if( phi )
    assert(0)
```


CDCL is Abstract Interpretation One Line Summaries

CDCL implements the Cartesian abstract domain as its main data structure

The unit rule is the application of the best abstract clause transformer

BCP is fixed point computation

Decisions \& Learning are discovery of trace partitions

CDCL is Abstract Interpretation

 Summary of SummariesCDCL = Partial assignments = Cartesian abstract domain + Unit rule \& BCP + Abstract transformer \& GFP
+ Decisions \& Learning + Trace partitioning

Not an ANALOGY but an ISOMORPHISM

Precise results using a strict abstraction!

Conflict Driven Clause Learning

Interpreting Logic

CDCL is Abstract Interpretation
$\mathrm{ACDCL}(A)$

What about programs?

DLO

What about programs?

What about programs?

What about programs?

DL1
$n_{1}: a \leq-42$

What about programs?

DL1

SAFE

What about programs?

What about programs?

DL1

What about programs?

ACDCL(A)
 One Line Summaries

ACDCL(A) program analysers!

Techniques from SAT translate to programs

ACDCL(A) discovers small, property driven refinement

Something more practical

ACDCL(Interval) procedure over floating point and machine integer intervals

Automatically finds property-dependent partitioning

Example: Taylor expansion of sine-function

```
int main()
{
    float IN;
    __CPROVER_assume(IN > -HALFPI && IN < HALFPI);
    float x = IN;
    float result = x - (x*x*x)/6.0f + (x*x*x*x*x)/120.0f + (x*x*x*x*x*x*x)/5040.0f;
    assert(result <= VAL && result >= -VAL);
    return 0;
```


Implementation

Number of partitions vs. tightness of bound

```
result \(\leq 2.0\)
```


[^0]Number of partitions vs. tightness of bound

Number of partitions vs. tightness of bound

$$
-\frac{\pi}{2} \quad \frac{\pi}{2}
$$

Number of partitions vs. tightness of bound

$$
-\frac{\pi}{2}
$$

Number of partitions vs. tightness of bound

Number of partitions vs. tightness of bound

Precise results using a strict abstraction!
Orders of magnitude faster than propositional SAT

Conclusion

SAT solvers are abstract interpreters

partial assignments	Cartesian domain
unit rule	abstr. transformer
BCP	gfp
decisions	meet irreducibles
learning	trace partioning

Abstract interpreters can be SAT solvers
ACDCL(A) for program analysis / SMT precise results in an imprecise abstraction

... walk into a bar

Al looks toward SMT

SMT looks towards AI

Invited questions

Isn't this just CEGAR?

What if case splits are not enough?
Show me experiments!

[^0]: result ≥-2.0

