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Preface

Functional programming has come of age: it is now a standard course in any
computer science curriculum. Ideas that were first developed in the laboratory
environment of functional programming have proved their values in wider
settings, such as generic Java and XML. The time is ripe, therefore, to teach
a second course on functional programming, delving deeper into the subject.
This book is the text for such a course.

The emphasis is on the fun of programming in a modern, well designed
programming language such as Haskell. There are chapters that focus on
applications, in particular pretty printing, musical composition, hardware de-
scription, and graphical design. These applications are interspersed with chap-
ters on techniques, such as the design of efficient data structures, interpreters
for other languages, program testing and optimisation. These topics are of
interest to every aspiring programmer, not just to those who choose to work
in a functional language. Haskell just happens to be a very convenient vehicle
for expressing the ideas, and the theme of functional programming as a lingua
franca to communicate ideas runs throughout the book.

The prerequisites for this material are covered in any introductory course
on functional programming. In fact, it is a seamless sequel to courses that are
based on An introduction to functional programming using Haskell by Richard
Bird [15]. Throughout the text, references to that book are made by the ab-
breviation ‘IFPH’. The present volume could also be used as a sequel to other
introductory books, however. All that is expected of the reader is a working
knowledge of higher-order functions and polymorphism, and an understand-
ing of lazy evaluation. Many of the chapters in this book are accompanied by
software, which can be found on the website

http://web.comlab.ox.ac.uk/oucl/publications/books/fop

As the book is adopted for courses by others, we shall be happy to add links
to further teaching materials.

This book was produced to celebrate the work of Richard S. Bird on his
sixtieth birthday. For many years, Richard has led the development of func-
tional programming, in particular in the area of synthesising programs from



viii

specifications. Apart from these research contributions, he educated many
generations of programmers through his textbooks. When the question of a
festschrift came up, it was immediately evident that it should be a textbook
of lasting value, written by his friends in the research community. Above all,
we hope it conveys Richard’s sense of fun in the subject, which has delighted
us all. For this reason we have borrowed the title of one of Richard’s own
lectures: the Fun of Programming. Many happy returns, Richard!

We would like to thank our editors at Palgrave, Tracey Alcock, Esther
Thackeray and Rebecca Mashayekh, for their efficient help in the production of
this book. Andres Löh gave sterling help with thorough last-minute reviewing.

Jeremy Gibbons
Oege de Moor

Oxford, September 2002


