
The Fun of Programming

Edited by

Jeremy Gibbons and Oege de Moor





Contents

Preface vii

1 Fun with binary heap trees 1
Chris Okasaki
1.1 Binary heap trees 1
1.2 Maxiphobic heaps 4
1.3 Persistence 6
1.4 Round-robin heaps 7
1.5 Analysis of skew heaps 10
1.6 Lazy evaluation 12
1.7 Analysis of lazy skew heaps 15
1.8 Chapter notes 16

2 Specification-based testing with QuickCheck 17
Koen Claessen and John Hughes
2.1 Introduction 17
2.2 Properties in QuickCheck 18
2.3 Example: Developing an abstract data type of queues 20
2.4 Quantifying over subsets of types 25
2.5 Test coverage 30
2.6 A larger case study 32
2.7 Conclusions 39
2.8 Acknowledgements 39

3 Origami programming 41
Jeremy Gibbons
3.1 Introduction 41
3.2 Origami with lists: sorting 42
3.3 Origami by numbers: loops 49
3.4 Origami with trees: traversals 52
3.5 Other sorts of origami 56
3.6 Chapter notes 60



iv

4 Describing and interpreting music in Haskell 61
Paul Hudak
4.1 Introduction 61
4.2 Representing music 61
4.3 Operations on musical structures 67
4.4 The meaning of music 70
4.5 Discussion 78

5 Mechanising fusion 79
Ganesh Sittampalam and Oege de Moor
5.1 Active source 79
5.2 Fusion, rewriting and matching 85
5.3 The MAG system 89
5.4 A substantial example 98
5.5 Difficulties 101
5.6 Chapter notes 103

6 How to write a financial contract 105
Simon Peyton Jones and Jean-Marc Eber
6.1 Introduction 105
6.2 Getting started 106
6.3 Building contracts 108
6.4 Valuation 116
6.5 Implementation 123
6.6 Operational semantics 127
6.7 Chapter notes 128

7 Functional images 131
Conal Elliott
7.1 Introduction 131
7.2 What is an image? 132
7.3 Colours 135
7.4 Pointwise lifting 137
7.5 Spatial transforms 139
7.6 Animation 141
7.7 Region algebra 142
7.8 Some polar transforms 144
7.9 Strange hybrids 147
7.10 Bitmaps 148
7.11 Chapter notes 150

8 Functional hardware description in Lava 151
Koen Claessen, Mary Sheeran and Satnam Singh
8.1 Introduction 151
8.2 Circuits in Lava 152
8.3 Recursion over lists 153



v

8.4 Connection patterns 155
8.5 Properties of circuits 157
8.6 Sequential circuits 160
8.7 Describing butterfly circuits 162
8.8 Batcher’s mergers and sorters 166
8.9 Generating FPGA configurations 170
8.10 Chapter notes 175

9 Combinators for logic programming 177
Michael Spivey and Silvija Seres
9.1 Introduction 177
9.2 Lists of successes 178
9.3 Monads for searching 179
9.4 Filtering with conditions 182
9.5 Breadth-first search 184
9.6 Lifting programs to the monad level 187
9.7 Terms, substitutions and predicates 188
9.8 Combinators for logic programs 191
9.9 Recursive programs 193

10 Arrows and computation 201
Ross Paterson
10.1 Notions of computation 201
10.2 Special cases 208
10.3 Arrow notation 213
10.4 Examples 216
10.5 Chapter notes 222

11 A prettier printer 223
Philip Wadler
11.1 Introduction 223
11.2 A simple pretty printer 224
11.3 A pretty printer with alternative layouts 228
11.4 Improving efficiency 233
11.5 Examples 236
11.6 Chapter notes 238
11.7 Code 240

12 Fun with phantom types 245
Ralf Hinze
12.1 Introducing phantom types 245
12.2 Generic functions 248
12.3 Dynamic values 250
12.4 Generic traversals and queries 252
12.5 Normalisation by evaluation 255
12.6 Functional unparsing 257



vi

12.7 A type equality type 259
12.8 Chapter notes 262

Bibliography 263

Index 273



Preface

Functional programming has come of age: it is now a standard course in any
computer science curriculum. Ideas that were first developed in the laboratory
environment of functional programming have proved their values in wider
settings, such as generic Java and XML. The time is ripe, therefore, to teach
a second course on functional programming, delving deeper into the subject.
This book is the text for such a course.

The emphasis is on the fun of programming in a modern, well designed
programming language such as Haskell. There are chapters that focus on
applications, in particular pretty printing, musical composition, hardware de-
scription, and graphical design. These applications are interspersed with chap-
ters on techniques, such as the design of efficient data structures, interpreters
for other languages, program testing and optimisation. These topics are of
interest to every aspiring programmer, not just to those who choose to work
in a functional language. Haskell just happens to be a very convenient vehicle
for expressing the ideas, and the theme of functional programming as a lingua
franca to communicate ideas runs throughout the book.

The prerequisites for this material are covered in any introductory course
on functional programming. In fact, it is a seamless sequel to courses that are
based on An introduction to functional programming using Haskell by Richard
Bird [15]. Throughout the text, references to that book are made by the ab-
breviation ‘IFPH’. The present volume could also be used as a sequel to other
introductory books, however. All that is expected of the reader is a working
knowledge of higher-order functions and polymorphism, and an understand-
ing of lazy evaluation. Many of the chapters in this book are accompanied by
software, which can be found on the website

http://web.comlab.ox.ac.uk/oucl/publications/books/fop

As the book is adopted for courses by others, we shall be happy to add links
to further teaching materials.

This book was produced to celebrate the work of Richard S. Bird on his
sixtieth birthday. For many years, Richard has led the development of func-
tional programming, in particular in the area of synthesising programs from



viii

specifications. Apart from these research contributions, he educated many
generations of programmers through his textbooks. When the question of a
festschrift came up, it was immediately evident that it should be a textbook
of lasting value, written by his friends in the research community. Above all,
we hope it conveys Richard’s sense of fun in the subject, which has delighted
us all. For this reason we have borrowed the title of one of Richard’s own
lectures: the Fun of Programming. Many happy returns, Richard!

We would like to thank our editors at Palgrave, Tracey Alcock, Esther
Thackeray and Rebecca Mashayekh, for their efficient help in the production of
this book. Andres Löh gave sterling help with thorough last-minute reviewing.

Jeremy Gibbons
Oege de Moor

Oxford, September 2002


