
Bibliography

[1] Kavi Arya. A functional animation starter-kit. Journal of Functional
Programming, 4(1):1–18, January 1994.

[2] Lex Augusteijn. Sorting morphisms. In S. D. Swierstra, P. R. Henriques,
and J. N. Oliveira, editors, Advanced Functional Programming, volume
1608 of Lecture Notes in Computer Science, pages 1–27.
Springer-Verlag, 1999.

[3] Lennart Augustsson. Cayenne: A language with dependent types.
SIGPLAN Notices, 34(1):239–250, January 1999.

[4] Franz Baader and Tobias Nipkow. Term Rewriting and All That.
Cambridge University Press, 1998.

[5] Roland Backhouse, Patrik Jansson, Johan Jeuring, and Lambert
Meertens. Generic programming: An introduction. In S. D. Swierstra,
P. R. Henriques, and J. N. Oliveira, editors, Advanced Functional
Programming, volume 1608 of Lecture Notes in Computer Science,
pages 28–115. Springer-Verlag, Berlin, 1999.

[6] Denis Baggi. Computer-Generated Music. IEEE Computer Society Press,
Las Alamitos, CA, 1992.

[7] Joel F. Bartlett. Don’t fidget with widgets, draw! Technical Report 6,
DEC Western Digital Laboratory, May 1991.

[8] Kenneth E. Batcher. Sorting networks and their applications. In AFIPS
Spring Joint Conference, pages 307–314, 1968.

[9] Gérard Berry and Georges Gonthier. The Esterel synchronous
programming language: Design, semantics, implementation. Science of
Computer Programming, 19(2):87–152, 1992.

[10] A. S. Bhandal, V. Considine, and G. E. Dixon. An array processor for
video picture motion estimation. In J. McCanny, J. McWhirter, and
E. Swartzlander, editors, Systolic Array Processors, pages 369–378.
Prentice-Hall International, 1989.



264 The Fun of Programming

[11] Richard Bird. An introduction to the theory of lists. In M. Broy, editor,
Proceedings of the NATO Advanced Study Institute on Logic of
Programming and Caculi of Discrete Design. Springer Verlag, June 1987.

[12] Richard Bird and Oege de Moor. Algebra of Programming. Prentice
Hall, 1997.

[13] Richard Bird and John Hughes. The alpha–beta algorithm: an exercise
in program transformation. Information Processing Letters, 24(1):53–57,
January 1987.

[14] Richard S. Bird. The promotion and accumulation strategies in
transformational programming. ACM Transactions on Programming
Languages and Systems, 6(4):487–504, October 1984. Addendum in
7(3), p. 490–492.

[15] Richard S. Bird. Introduction to Functional Programming using Haskell.
Prentice Hall Europe, 2nd edition, 1998.

[16] Richard S. Bird and Jeremy Gibbons. Arithmetic coding with folds and
unfolds. In Johan Jeuring and Simon Peyton Jones, editors, Advanced
Functional Programming. Springer-Verlag, 2002. To appear.

[17] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. Lava:
Hardware design in Haskell. In International Conference on Functional
Programming. ACM, 1998.

[18] Phelim Boyle, Mark Broadie, and Paul Glasserman. Monte Carlo
methods for security pricing. Journal of Economic Dynamics and
Control, 21:1267–1321, 1997.

[19] Paul Caspi, Daniel Pilaud, Nicholas Halbwachs, and John A. Plaice.
LUSTRE: A declarative language for programming synchronous
systems. In 14th ACM Symposium on Principles of Programming
Languages, pages 178–188, Munich, 1987.

[20] James Cheney and Ralf Hinze. A lightweight implementation of
generics and dynamics. In Manuel M.T. Chakravarty, editor, Proceedings
of the 2002 ACM SIGPLAN Haskell Workshop, October 2002.

[21] Olaf Chitil. Pretty printing with lazy dequeues. In ACM SIGPLAN
Haskell Workshop, pages 183–201, Firenze, Italy, 2001. Universiteit
Utrecht UU-CS-2001-23.

[22] Seonghun Cho and Sartaj Sahni. Weight biased leftist trees and
modified skip lists. In International Computing and Combinatorics
Conference, pages 361–370, June 1996.

[23] Koen Claessen and John Hughes. QuickCheck: a lightweight tool for
random testing of Haskell programs. In International Conference on
Functional Programming, pages 268–279. ACM, 2000.

[24] Koen Claessen and John Hughes. Testing Monadic Code with
QuickCheck. In Haskell Workshop. ACM SIGPLAN, 2002.



Bibliography 265

[25] Koen Claessen and David Sands. Observable sharing for functional
circuit description. In Asian Computer Science Conference, pages
62–73, Phuket, Thailand, 1999. ACM SIGPLAN.

[26] William F. Clocksin and Christopher S. Mellish. Programming in Prolog.
Springer Verlag, second edition, 1984.

[27] Antony Courtney and Conal Elliott. Genuinely functional user
interfaces. In Haskell Workshop, pages 41–69, 2001.

[28] John C. Cox, Stephen A. Ross, and Mark Rubinstein. Option pricing: a
simplified approach. Journal of Financial Economics, 7:229–263, 1979.

[29] Clark Allan Crane. Linear lists and priority queues as balanced binary
trees. PhD thesis, Computer Science Department, Stanford University,
February 1972. Available as STAN-CS-72-259.

[30] Olivier Danvy. Functional unparsing. Journal of Functional
Programming, 8(6):621–625, November 1998.

[31] Olivier Danvy, Morten Rhiger, and Kristoffer H. Rose. Normalization by
evaluation with typed abstract syntax. Journal of Functional
Programming, 11(6):673–680, November 2001.

[32] Oege de Moor and Ganesh Sittampalam. Generic program
transformation. In Third International Summer School on Advanced
Functional Programming, volume 1608 of Lecture Notes in Computer
Science, pages 116–149. Springer-Verlag, 1998.

[33] Oege de Moor and Ganesh Sittampalam. Higher-order matching for
program transformation. Theoretical Computer Science, 269:135–162,
2001.

[34] Conal Elliott. An embedded modeling language approach to interactive
3D and multimedia animation. IEEE Transactions on Software
Engineering, 25(3):291–308, May/June 1999. Special Section:
Domain-Specific Languages (DSL).

[35] Conal Elliott, Sigbjørn Finne, and Oege de Moor. Compiling embedded
languages. Journal of Functional Programming, 2001. To appear.

[36] Conal Elliott and Paul Hudak. Functional reactive animation. In
International Conference on Functional Programming, pages 263–273,
1997.

[37] Levent Erkök and John Launchbury. Recursive monadic bindings. In
International Conference on Functional Programming, pages 174–185,
2000.

[38] Sigbjorn Finne and Simon Peyton Jones. Pictures: A simple structured
graphics model. In Glasgow Functional Programming Workshop,
Ullapool, July 1995.



266 The Fun of Programming

[39] Alexandre Frey, Gérard Berry, Patrice Bertin, François Bourdoncle, and
Jean Vuillemin. Jazz. Available from
http://www.cma.ensmp.fr/jazz, 1998.

[40] Daniel P. Friedman, Mitchell Wand, and Christopher T. Haynes.
Essentials of Programming Languages. MIT Press, second edition, 2001.

[41] Jeremy Gibbons. Algebras for Tree Algorithms. D. Phil. thesis,
Programming Research Group, Oxford University, 1991. Available as
Technical Monograph PRG-94.

[42] Jeremy Gibbons. Deriving tidy drawings of trees. Journal of Functional
Programming, 6(3):535–562, 1996.

[43] Jeremy Gibbons. A pointless derivation of radixsort. Journal of
Functional Programming, 9(3):339–346, 1999.

[44] Jeremy Gibbons. Calculating functional programs. In Roland
Backhouse, Roy Crole, and Jeremy Gibbons, editors, Algebraic and
Coalgebraic Methods in the Mathematics of Program Construction,
volume 2297 of Lecture Notes in Computer Science, pages 148–203.
Springer-Verlag, 2002.

[45] Jeremy Gibbons and Geraint Jones. The under-appreciated unfold. In
International Conference on Functional Programming, pages 273–279,
September 1998.

[46] Andrew Gill, John Launchbury, and Simon Peyton Jones. A short cut to
deforestation. In Functional Programming Languages and Computer
Architecture, pages 223–232, 1993.

[47] Carlos Gonzaĺıa. Análisis asintótico amortizado en lenguajes
funcionales perezosos. In Latin-American Conference on Functional
Programming, October 1997.

[48] Nicholas Halbwachs, Fabienne Lagnier, and Pascal Raymond.
Synchronous observers and the verification of reactive systems. In
Algebraic Methodology and Software Technology, pages 83–96. Springer
Verlag, 1993.

[49] Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. The
synchronous dataflow programming language LUSTRE. Proceedings of
the IEEE, 79(9):1305–1320, September 1991.

[50] Richard Hamlet. Random testing. In J. Marciniak, editor, Encyclopedia
of Software Engineering, pages 970–978. Wiley, 1994.

[51] Michael Hanus, Herbert Kuchen, and Juan Jose Moreno-Navarro. Curry:
A truly functional logic language. In ILPS’95 Workshop on Visions for the
Future of Logic Programming, pages 95–107, 1995.

[52] Peter Henderson. Functional geometry. In ACM Symposium on LISP and
Functional Programming, pages 179–187, 1982.



Bibliography 267

[53] Ralf Hinze. A new approach to generic functional programming. In
Thomas W. Reps, editor, Proceedings of the 27th Symposium on
Principles of Programming Languages, pages 119–132, January 2000.

[54] Ralf Hinze. Functional Pearl: Formatting: a class act. J. Functional
Programming, 2002. to appear.

[55] Thomas Ho and Sang-Bin Lee. Term Structure Movements and Pricing
Interest Rate Contingent Claims. Journal of Finance, 41:1011–1028,
1986.

[56] Douglas R. Hofstadter. Gödel, Escher, Bach: an Eternal Golden Braid.
Basic Books, New York, 1979.

[57] Gerard J. Holzmann. Beyond Photography — the Digital Darkroom.
Prentice-Hall, Englewood Cliffs, New Jersey, 1988.

[58] Paul Hudak. Building domain-specific embedded languages. ACM
Computing Surveys, 28, December 1996.

[59] Paul Hudak. Haskore music tutorial. In Second International School on
Advanced Functional Programming, pages 38–68. Springer Verlag, LNCS
1129, August 1996.

[60] Paul Hudak. Modular domain specific languages and tools. In
P. Devanbu and J. Poulin, editors, Fifth International Conference on
Software Reuse, pages 134–142. IEEE Computer Society Press, 1998.

[61] Paul Hudak. The Haskell School of Expression: Learning Functional
Programming through Multimedia. Cambridge University Press, New
York, 2000.

[62] Paul Hudak and Jonathan Berger. A model of performance, interaction,
and improvisation. In Proceedings of International Computer Music
Conference. International Computer Music Association, 1995.

[63] Paul Hudak and Mark P. Jones. Haskell vs. Ada vs. C++ vs Awk vs . . . :
An experiment in software prototyping productivity. Technical report,
Yale, 1994.

[64] Paul Hudak, Tom Makucevich, Syam Gadde, and Bo Whong. Haskore
music notation: An algebra of music. Journal of Functional
Programming, 6(3):465–483, May 1996.

[65] John Hughes. A novel representation of lists and its application to the
function ‘reverse’. Information Processing Letters, 22:141–144, 1986.

[66] John Hughes. The design of a pretty-printer library. In Johan Jeuring
and Erik Meijer, editors, Advanced Functional Programming, volume
925 of LNCS. Springer, 1995.

[67] John Hughes. Generalising monads to arrows. Science of Computer
Programming, 37:67–111, May 2000.

[68] MIDI 1.0 detailed specification: Document version 4.1.1, February 1990.



268 The Fun of Programming

[69] Michael A. Jackson. Principles of Program Design. Academic Press,
1975.

[70] Patrik Jansson and Johan Jeuring. PolyP—a polytypic programming
language extension. In Conference Record 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL’97), Paris,
France, pages 470–482. ACM Press, January 1997.

[71] Steven Johnson. Synthesis of Digital Designs from Recursion Equations.
The ACM Distinguished Dissertation Series, The MIT Press, 1984.

[72] Geraint Jones and Mary Sheeran. Collecting butterflies. Technical
Monograph PRG-91, Oxford University Computing Laboratory,
Programming Research Group, February 1991.

[73] Geraint Jones and Mary Sheeran. The study of butterflies. In Graham
Birtwistle, editor, Proc. 4th Banff Workshop on Higher Order. Springer
Workshops in Computing, 1991.

[74] Geraint Jones and Mary Sheeran. Circuit design in Ruby. In
J. Staunstrup, editor, Formal Methods for VLSI Design. North Holland,
1992.

[75] Geraint Jones and Mary Sheeran. Designing arithmetic circuits by
refinement in Ruby. In R. Bird, C. Morgan, and J. Woodcock, editors,
Mathematics of Program Construction, volume 669 of Lecture Notes in
Computer Science, pages 208–232. Springer, 1993.

[76] Geraint Jones and Mary Sheeran. Designing Arithmetic Circuits by
Refinement in Ruby. Science of Computer Programming, 22(1-2), 1994.

[77] Simon Peyton Jones. Haskell pretty-printer library.
http://www.haskell.org/libraries/#prettyprinting, 1997.

[78] André Joyal, Ross Street, and Dominic Verity. Traced monoidal
categories. Mathematical Proceedings of the Cambridge Philosophical
Society, 119(3):447–468, 1996.

[79] Jerzy Karczmarczuk. Functional approach to texture generation. In
Shriram Krishnamurthi and C. R. Ramakrishnan, editors, Practical
Aspects of Declarative Languages, volume 2257 of Lecture Notes in
Computer Science, pages 225–242. Springer, 2002.

[80] Donald E. Knuth. Searching and Sorting, volume 3 of The Art of
Computer Programming. Addison-Wesley, 1973.

[81] Richard E. Ladner and Michael J. Fischer. Parallel prefix computation.
Journal of the ACM, 27:831–838, 1980.

[82] D. Lahti. Applications of a functional programming language to
hardware synthesis. Master’s thesis, UCLA, 1980.

[83] Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: a
practical approach to generic programming. Available from
http://research.microsoft.com/˜simonpj/papers/hmap/, 2002.



Bibliography 269

[84] John Launchbury, Jeff Lewis, and Byron Cook. On embedding a
microarchitecture design language within Haskell. In International
Conference on Functional Programming. ACM, 1999.

[85] John Launchbury and Tim Sheard. Warm fusion: Deriving build-catas
from recursive definitions. In Functional Programming Languages and
Computer Architecture, pages 314–323. ACM Press, 1995.

[86] Daan Leijen and Erik Meijer. Domain-specific embedded compilers. In
Proceedings of the 2nd Conference on Domain-Specific Languages,
pages 109–122, Berkeley, CA, October 1999. USENIX Association.

[87] Peter Lucas and Stephen N. Zilles. Graphics in an applicative context.
Technical report, IBM Almaden Research Center, 650 Harry Road, San
Jose, CA 95120-6099, July 8 1987.

[88] Wayne Luk. Systematic serialisation of array-based architectures.
Integration, the VLSI Journal, 14(3), February 1993.

[89] Wayne Luk, Geraint Jones, and Mary Sheeran. Computer-based tools for
regular array design. In J McCanny, J McWhirter, and E Swartzlander,
editors, Systolic Array Processors, pages 589 – 598. Prentice-Hall
International, 1989.

[90] John Maeda. Design By Numbers. MIT Press, May 1999.

[91] John Matthews and John Launchbury. Elementary microarchitecture
algebra. In Nicolas Halbwachs and Doron Peled, editors, Computer
Aided Verification, volume 1633 of Lecture Notes in Computer Science,
pages 333–360. Springer, 1999.

[92] Lambert Meertens. Paramorphisms. Formal Aspects of Computing,
4(5):413–424, 1992.

[93] Erik Meijer, Maarten Fokkinga, and Ross Paterson. Functional
programming with bananas, lenses, envelopes and barbed wire. In John
Hughes, editor, Functional Programming Languages and Computer
Architecture, volume 523 of Lecture Notes in Computer Science, pages
124–144. Springer-Verlag, 1991.

[94] Erik Meijer and Graham Hutton. Bananas in space: Extending fold and
unfold to exponential types. In Functional Programming Languages
and Computer Architecture, 1995.

[95] Jayadev Misra. Powerlist: A structure for parallel recursion. ACM
Transactions on Programming Languages and Systems,
16(6):1737–1767, November 1994.

[96] Marek Musiela and Marek Rutkowski. Martingale Methods in Financial
Modelling. Springer, 1997.

[97] John O’Donnell. Hydra: Hardware description in a functional language
using recursion equations and higher order combining forms. In G. J.



270 The Fun of Programming

Milne, editor, The Fusion of Hardware Design and Verification, pages
363–382. North-Holland, 1988.

[98] John O’Donnell. From transistors to computer architecture: Teaching
functional circuit specification in Hydra. In Functional Programming
Languages in Education, volume 1022 of Lecture Notes in Computer
Science, pages 195–214. Springer-Verlag, 1996.

[99] Chris Okasaki. Amortization, lazy evaluation, and persistence: Lists
with catenation via lazy linking. In IEEE Symposium on Foundations of
Computer Science, pages 646–654, October 1995.

[100] Chris Okasaki. Simple and efficient purely functional queues and
deques. Journal of Functional Programming, 5(4):583–592, 1995.

[101] Chris Okasaki. The role of lazy evaluation in amortized data structures.
In ACM SIGPLAN International Conference on Functional Programming,
pages 62–72, May 1996.

[102] Chris Okasaki. Purely Functional Data Structures. Cambridge University
Press, 1998.

[103] Yoshiyuki Onoue, Zhenjiang Hu, Hideya Iwasaki, and Masato Takeichi.
A calculational fusion system HYLO. In Richard S. Bird and Lambert
Meertens, editors, Algorithmic Languages and Calculi, pages 76–106.
Chapman and Hall, 1997.

[104] Derek Oppen. Pretty-printing. ACM Transactions on Programming
Languages and Systems, 2(4):465–483, 1980.

[105] Dorab Patel, Martine D. F. Schlag, and Milos D. Ercegovac. νFP: An
environment for the multi-level specification, analysis, and synthesis of
hardware algorithms. In Functional Programming Languages and
Computer Architecture, volume 201 of Lecture Notes in Computer
Science, pages 238–255. Springer-Verlag, 1985.

[106] Ross Paterson. A new notation for arrows. In International Conference
on Functional Programming, pages 229–240. ACM Press, September
2001.

[107] John Power and Edmund Robinson. Premonoidal categories and
notions of computation. Mathematical Structures in Computer Science,
7(5):453–468, October 1997.

[108] Vaughan Pratt. Shellsort and Sorting Networks. PhD thesis, Stanford
University, 1971. Also Garland, New York, 1979.

[109] Daniel Revuz and Marc Yor. Continuous Martingales and Brownian
Motion. Springer, 1991.

[110] Curtis Roads, editor. The Music Machine (Selected Readings from
Computer Music Journal). MIT Press, Cambridge, MA, 1989.

[111] Edward Rothstein. Emblems of Mind: The Inner Life of Music and
Mathematics. Times Books, New York, 1995.



Bibliography 271

[112] Robert Sedgewick. Analysis of Shellsort and related algorithms. In
European Symposium on Programming, 1996.

[113] Eleanor Selfridge-Field, editor. Beyond MIDI (The Handbook of Musical
Codes). MIT Press, Cambridge, MA, 1997.

[114] Silvija Seres. The Algebra of Logic Programming. D.Phil., Programming
Research Group, University of Oxford, 2001.

[115] Mary Sheeran. µFP, an algebraic VLSI design language. D.Phil.,
Programming Research Group, Oxford University, 1983.

[116] Mary Sheeran. Puzzling permutations. In P. Trinder, editor, Glasgow
Functional Programming Workshop, 1996.

[117] Donald L. Shell. A high-speed sorting procedure. Communications of
the ACM, 2(7):30–32, 1959.

[118] Karl Sims. Artificial evolution for computer graphics. ACM Computer
Graphics, 25(4):319–328, July 1991.

[119] Ganesh Sittampalam and Oege de Moor. Higher-order pattern matching
for automatically applying fusion transformations. In O. Danvy and
A. Filinski, editors, Second Symposium on Programs as Data Objects,
volume 2053 of Lecture Notes in Computer Science, pages 198–217.
Springer-Verlag, 2001.

[120] Daniel D. K. Sleator and Robert E. Tarjan. Self-adjusting heaps. SIAM
Journal on Computing, 15(1):52–69, February 1986.

[121] Alvy Ray Smith. Image compositing fundamentals. Technical Report
Technical Memo #4, Microsoft, July 1995.
http://www.alvyray.com/Memos.

[122] Zoltan Somogyi, Fergus Henderson, and Thomas Conway. Mercury: An
efficient purely declarative logic programming language. In Proceedings
of the Australian Computer Science Conference, pages 499–512,
Glenelg, Australia, 1995.

[123] J. Michael Spivey. Unification: A case-study in data refinement,. Formal
Aspects of Computing, 7(2):158–168, 1995.

[124] J. Michael Spivey. Combinators for breadth-first search. Journal of
Functional Programming, 10(4):397–408, 2000.

[125] Leon Sterling and Ehud Y. Shapiro. The Art of Prolog. MIT Press, second
edition, 1994.

[126] S. Doaitse Swierstra and Luc Duponcheel. Deterministic,
error-correcting combinator parsers. In John Launchbury, Erik Meijer,
and Tim Sheard, editors, Advanced Functional Programming, volume
1129 of Lecture Notes in Computer Science, pages 184–207. Springer,
1996.



272 The Fun of Programming

[127] Robert E. Tarjan. Amortized computational complexity. SIAM Journal
on Algebraic and Discrete Methods, 6(2):306–318, April 1985.

[128] Hervé Touati and Mark Shand. PamDC: a C++ library for the simulation
and generation of Xilinx FPGA designs. Available from
http://research.compaq.com/SRC/pametta/PamDC.pdf, 1999.

[129] David A. Turner. An overview of Miranda. SIGPLAN Notices,
21(12):158–166, 1986.

[130] Arie van Deursen and Paul Klint. Little languages: little maintenance?
Journal of Software Maintenance, 10:75–92, 1998.

[131] Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific
languages: an annotated bibliography. Technical report, Centrum voor
Wiskunde en Informatica, Amsterdam, 2000.

[132] Varmo Vene. Categorical Programming with Inductive and Coinductive
Types. PhD thesis, University of Tartu, 2000.

[133] Varmo Vene and Tarmo Uustalu. Functional programming with
apomorphisms (corecursion). Proceedings of the Estonian Academy of
Sciences: Physics, Mathematics, 47(3):147–161, 1998. 9th Nordic
Workshop on Programming Theory.

[134] Jean Vuillemin. On circuits and numbers. IEEE Transactions on
Computers, 43:8:868–879, 1994.

[135] Jean Vuillemin, Patrice Bertin, Didier Roncin, Mark Shand, Hervé Touati,
and Philippe Boucard. Programmable Active Memories: the Coming of
Age. IEEE Trans. on VLSI, 4(1), March 1996.

[136] William W. Wadge and Edward A. Ashcroft. Lucid, the Dataflow
Programming Language. Academic Press, 1985.

[137] Philip Wadler. Deforestation: Transforming programs to eliminate
trees. Theoretical Computer Science, 73:231–248, 1990.

[138] Philip L. Wadler. How to replace failure by a list of successes. In J.-P.
Jouannaud, editor, Functional Programming Languages and Computer
Architecture, volume 201 of Lecture Notes in Computer Science, pages
113–128. Springer-Verlag, 1985.

[139] Paul Willmot, Jeff N. Dewynne, and Sam D. Howison. Option Pricing:
Mathematical Models and Computation. Oxford Financial Press, 1993.

[140] Stephen N. Zilles, Peter Lucas, T.M. Linden, Jeff B. Lotspiech, and A.R.
Harbury. The Escher document imaging model. In ACM Conference on
Document Processing Systems, pages 159–168, December 5–9 1988.




