
AVoCS 2007

SVA, a tool for analysing shared-variable
programs

David Hopkins and A.W. Roscoe1

Oxford University Computing Laboratory
Wolfson Building, Parks Road

Oxford OX1 3QD, UK

Abstract

In [6], Roscoe described a prototype compiler that allowed straightforward shared variable programs to be
analysed using FDR, by writing a compiler in its CSPM language. This allowed, for example, a high degree
of control over atomicity but lacked a proper input language and an interpreter for and counter-examples
found. In this paper, we first propose a concrete syntax for the input language, and then describe a GUI
which takes this as input, drives a modified compiler and FDR, and then provides a clear explanation of
counter-examples in suitable format for users of the language.

Keywords: CSP, shared variable, FDR, verification

1 Introduction

The purpose of this paper is to describe extensions to Roscoe’s share2.csp compiler,
described in [6]. These extensions turn it from a difficult to use kernel into a tool
that can be used straightforwardly in practise, teaching etc, and consider how it
might be used to handle classes of infinite-state systems such as Lamport’s Bakery
Algorithm. We call this tool SVA, for Shared Variable Analyser.

share2.csp is not a compiler in the conventional sense of the word. Rather,
it is a CSPM [5] program that takes a simple shared variable program and sim-
ulates its execution by creating a network of processes which run in parallel as a
communicating-process model of the execution of the object program. Any compiler
for CSP, such as that used by FDR, will therefore generate a model, for analysis
or implementation, of the original program. Its input programs are represented in
a CSP data type rather than ASCII. SVA allows a natural input language written
in ASCII and, more importantly, interprets debugging output clearly and in a way
consistent with that language.

1 Email: bill.roscoe@comlab.ox.ac.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:bill.roscoe@comlab.ox.ac.uk

Hopkins and Roscoe

In this paper, which is a summary of a third-year undergraduate project under-
taken by Hopkins while supervised by Roscoe, we give an introduction to the tool’s
background, structure and applications.

2 Background

We need to understand certain features of the share2.csp compiler. We give a
summary here; a full description can be found in [6].

As already mentioned share2.csp – itself a CSPM script – takes its input in the
form of a sequence of CSPM data structures, each one representing a single process.
The main Cmd data-type of sequential programs is:

datatype Cmd = Skip | Sq.(Cmd,Cmd) | SQ.Seq(Cmd) | Iter.Cmd
| While.(BExpr,Cmd) | Cond.(BExpr,Cmd,Cmd)
| Iassign.(ivnames,IExpr) | Bassign.(bvnames,BExpr)
| Sig.Signals | ISig.(ISignals,IExpr)
| Atomic.Cmd

There are constructs for sequential composition, infinite iteration, while-loop, inte-
ger and boolean assignment, emitting signal events without or with integer data,
and marking a command for atomic execution.

A complete program is a list of sequential programs, each representing a sepa-
rate thread, together with declarations of the variables (which include arrays) and
constants that are used in them. The default mode of operation is for the pro-
grams to proceed with their steps interleaved arbitrarily. The Atomic.P construct
declared that the code P is to be executed without any of the other programs in
the system doing anything until P is finished. Again, by default, the evaluation of
an expression is carried out in a number of steps of acquiring values from variables
and evaluating the expression. However the compiler allows a flag atomic_exprs to
be set, in which case these evaluations are all treated as single steps. For example
the expression term representing x-x will always evaluate to 0 under this flag, but
not necessarily if x’s value can change between its two fetches. There are similar
data types IExpr and Bexpr representing integer and Boolean expressions, with the
expected operations represented by constructors.

The user of share2.csp is expected to declare a number of constants such as the
numbers of Boolean and integer variables, and the number and sizes of arrays. SVA
is able to compute several of these, but others still need to be declared at present.
For example, while the type of integers is used, programs are only permitted to use
the part of it between the constants MinI and MaxI. If a variable goes out of range
at run time, the special signal outofrange occurs. Under normal circumstances the
user will want to check (using FDR) that this does not occur during the execution
of the program. The user must declare signals as CSP channels (null type or a
subtype of integer as appropriate) and declare the sets of them to share2.csp.

The compiler creates one process for each variable, non-trivial expression and
thread in the shared variable language. If atomicity is used, the it creates machinery
to regulate how the threads behave relative to each others’ atomic sections.

2

Hopkins and Roscoe

3 ASCII language

The ASCII syntax we devised used conventional notation for variable declaration,
assignment, while loops and sequential composition, plus Boolean and integer opera-
tions within expressions. We added straightforward constructs for iteration, atomic
evaluation, and signals. A complete description of the syntax can be found in the
manual [2]. An easy-to-understand example program that calculates gcd(18,15) is

isig output;
int a,b,c;
P(m,n) = {a := m; b := n;

while b > 0 do skip;
isig(output, a)}

Q() = {iter if b > 0 then
{c := a % b; a := b;b := c;}}

Prog = <P(18,15),Q()>

The parser/translator translates the first component of this to

P(m,n) = Sq.(Iassign.(I.1,Const.m),Sq.(Iassign.(I.2,Const.n),Sq.
(While.(Gt.IVar.I.2.Const.0,Skip),ISig.(output,IVar.I.1))))

CSP (for example for creating specifications) can be included in a script by prefixing
it with %%. This device can be used to include specifications written in CSP directly
in the script. For example, using signals that represent the start and end of a critical
section by a labelled process, mutual exclusion is expressed

%% Mutex = css?x -> cse!x -> Mutex

Two forms of specification have been included directly in the language. These are as-
sertions respectively that a set S of signals never occurs, and that a Boolean expres-
sion b is always true. They are respectively written assert nosignal S in Prog
and assert always b in Prog. We hope to extend these to a significant subset
of LTL.

4 Trace interpreter and GUI

If a program fails its specification, we want to be able to understand the coun-
terexample that our model checker provides. Unfortunately the counterexamples
provided by FDR for share2.csp are extremely detailed, reflecting the innermost de-
tails of the translation of our little language to CSP, and replacing variable names
by index numbers. As with Casper [4], we need a way of interpreting this output
in a suitable language for the domain in which we are working.

SVA provides this, integrated into a simple GUI that manages the process of
parsing, running and counter-example interpretation. With a choice of granularity,
each action in the trace is given to the process that performed it and explained in

3

Hopkins and Roscoe

Fig. 1. SVA GUI screenshot

simple language. An example for our elementary gcd program is shown in Figure 1.

5 Advanced features

The biggest case study we have examined using SVA is Lamport’s bakery algorithm
[3] (a mutual exclusion algorithm). This cannot be modelled in its full generality
because whatever bound on integers is chosen for SVA, it will be exceeded. The
solution we adopted, and which we expect to present in full in a later paper, is
a variation on the idea of data abstraction. Instead of running an integer-based
program on SVA, we run one that records the relative order of the threads’ ticket
values (or, more properly, the n2 values representing process i ’s view of process j ’s
ticket) rather than their actual values. It is not standard data abstraction because
the successor operation needs to be modelled nondeterministically: the position of
the successor of a particular point in the order might either be the next already-
recorded value, or might be strictly less than that value. Files implementing and
explaining this can be found at [2].

It is a challenge implementing this abstract type within SVA. The approach we
took was to allow the thread processes themselves to use integers, but to have a

4

Hopkins and Roscoe

separate monitor process that preserved the invariant that the ticket views that are
non-special (see below) take a contiguous initial subset of the available values.

The standard version of SVA was not up to this since it interleaves the actions
of the threads and the monitor arbitrarily, meaning that the invariant may well
not get preserved promptly. We actually need to give the monitor priority, at least
every time one of the ticket views gets changed. We implemented two alternative
mechanisms to achieve this: the possibility of giving some threads higher priority
than others, and a mechanism that runs an atomic monitor program every time one
of a specified set of variables gets changed. We found the latter to be much more
efficient. Details of these constructs can be found in the manual [6].

By this means we were able to provide yet another verification of the bakery
algorithm for three nodes, unusual in the sense that it was a finite state model
checking run. In total, 9 values of ticket type were required including the two
special constants used by the algorithm to denote a node not in contention for a
critical section, and one that is just beginning to seek one.

6 Conclusions

We believe that SVA should be a good tool for teaching low level shared variable
programming, since it is easy to use and provides detailed feedback and explanations
of the behaviours it finds. Files analysing a range of applications, including other
mutual exclusion algorithms can be found at [6]. Its use of FDR is no obstacle since
that tool is now freely downloadable for non-commercial use.

It illustrates the way in which tools can be created for other notations by trans-
lation into CSP and using FDR in the background. Casper [4] is the best known
such tool. CSP’s great expressive power often allows translations in ways that are
economical in state space, and, provided variables take relatively limited ranges of
values, simply providing a process to hold the value of each seems to work well.
Another example of this is is the tool for Statemate Statecharts [1] described in [7].

References

[1] D.Harel, H Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman and A.S. Tauring, Statemate,
A working environment for the development of complex embeded systems, IEEE Trans on Software
Engineering 16, 4, 1990.

[2] David Hopkins and A.W. Roscoe, The SVA website,

[3] Leslie Lamport, A new solution of Dijkstra’s concurrent programming problem, CACM 17, No 8 (1974)

[4] G. Lowe, Casper: A compiler for the analysis of security protocols, JCS 6, 1, 1998.

[5] A.W. Roscoe, The theory and practice of concurrency, Prentice-Hall, 1997.

[6] A.W. Roscoe, Compiling Shared Variable Programs into CSP, Proceedings of PROGRESS workshop,
Eindhoven 2001 web.comlab.ox.ac.uk/oucl/research/areas/concurrency/tools/sva/

[7] A.W. Roscoe and Zhenhzong Wu, Verifying Statemate Statecharts Using CSP and FDR, Proceedings
of ICFEM 2006

5

	Introduction
	Background
	ASCII language
	Trace interpreter and GUI
	Advanced features
	Conclusions
	References

