
Programming Researh Group
A TAXONOMY OF WEB SERVICES USING CSPLee Momtahan, Andrew Martin and A. W. RosoePRG-RR-04-22

�
Oxford University Computing LaboratoryWolfson Building, Parks Road, Oxford OX1 3QD



AbstratTerms suh as onversational and stateless are widely used in the taxonomy ofweb servies. We give formal de�nitions of these terms using the CSP proess al-gebra. Within this framework we also de�ne the notion of Servie-Oriented Arhi-teture. These de�nitions are then used to prove important salability propertiesof stateless servies. The use of formalism should allow reent debates, onerninghow and whether web servies provide standardized aess to state, to progress morerigorously.1 IntrodutionThere is urrently a debate within the web servies and Grid ommunities overwhether, and how, web servies should allow for aess to state. One view is \webservies. . . have no notion of state" [Vog03℄ while others have argued that the ritialrole that state plays in distributed systems requires that it be addressed within theweb servies arhiteture [FKNT02℄.The debate is hindered by a lak of formality and larity in its disourse. Thispaper ontributes by de�ning some of the key terms used in the debate, withinthe Communiating Sequential Proesses (CSP) [Hoa85℄ formalism. We hope moreprinipled omparisons between di�erent proposals to standardize aess to state anbe made in the light of these de�nitions.1.1 OverviewIn setion 2 we quote the existing natural language de�nitions used in the taxonomy ofweb servies. The following setion gives a series of de�nitions in CSP ulminating ina formal version of the same taxonomy. Setion 4 disusses some of the impliations ofthis formalized taxonomy. Setion 5 onludes with a summary of the main �ndings.The �rst appendix presents our de�nitions in an alternative form that an be usedwith the CSP model heker, FDR. The seond appendix presents proofs of theoremsused in the paper.2 A taxonomy of state and serviesIn [FFGT03℄ the following taxonomy of web servies is given:� A stateless servie implements message exhanges with no aess or use of infor-mation not ontained in the input message. A simple example is a servie thatompresses and deompresses douments, where the douments are provided inthe message exhanges with the servie.� A onversational servie implements a series of operations suh that the resultof one operation depends on a prior operation and/or prepares for a subsequentoperation. The servie uses eah message in a logial stream of messages todetermine the proessing behaviour of the servie. The behaviour of a givenoperation is based on proessing preeding messages in the logial sequene.Many interative Web sites implement this pattern through use of HTTP ses-sions and ookies. 1



� A servie that ats upon stateful resoures provides aess to, or manipulatesa set of logial stateful resoures (douments) based on messages it sends andreeives.[FFGT03℄ ontinues:When we talk in the third model about a servie that ats upon statefulresoures we mean a servie whose implementation exeutes against dy-nami state, i.e., state for whih the servie is responsible between messageexhanges with its requesters. A servie that ats upon stateful resouresmay be desribed stateless if it delegates responsibility for the manage-ment of the state to another omponent suh as a database or �le system.Substantial modi�ations of the wording used in the de�nitions ourred betweenv1.0 and v1.1 of [FFGT03℄, perhaps indiating the diÆulty of de�ning these oneptsin natural language.A related de�nition is that of a servie in the ontext of Servie-Oriented Arhi-teture (SOA). [PWWR03℄ gives the following:A servie is a well-de�ned set of ations, it is self-ontained, stateless,and does not depend on the state of other servies. . .Here, stateless means that eah time a onsumer interats with a WebServie, an ation is performed. After the results of the servie invoationhave been returned, the ation is �nished. There is no assumption thatsubsequent invoations are assoiated with prior ones.[W3C℄ adds:The desription of a servie in a SOA is essentially a desription ofthe messages that are exhanged. This arhiteture adds the onstraint ofstateless onnetions, that is where all the data for a given request mustbe in the request.3 Web servies in CSPIn this setion a series of de�nitions is given whih builds our model of web serviesand their taxonomy.De�nition 3.1. Stateless 0(P), 8 s : traes(P) � P = P=sOur �rst attempt to de�ne the notion of statelessness of a proess P says thatafter ommuniating any events, the proess returns to its initial state.This de�nition is satisfatory only so long as a typial request-response operationis modelled as a single event. But we want to onsider the interation of the serverwith bak-end stateful resoures, whih usually ours between the request and re-sponse messages and therefore have to model the request and response as separateevents.
2



3.1 ThreadsWe �rst de�ne a CSP proessW , whih is willing to aept any events on the hannelsresponse and request , provided the events alternate between request and response andbegin with request.De�nition 3.2. W = request?x !W 0W 0 = response?y !WWe also de�ne for onveniene �W as all request and response events.De�nition 3.3. �W = fjrequest ; repsonsejgWe now de�ne a thread.De�nition 3.4. Thread(P), P = P j[�W ℄jW ^initials(P) � fjrequest jgThus if a proess P is a thread, it alternates between request and response events,and an do nothing until its �rst request is reeived. Other than that, events mayour at any time.3.2 Stateless ThreadsOur de�nition of a stateless thread is as follows, where where last(s) returns the lastevent in the trae s .De�nition 3.5.Stateless(P), Thread(P) ^8 s : traes(P) j last(s) 2 fjresponsejg � P=s = PThus a thread P is stateless if it always returns to its initial state after ommu-niating a response event.3.3 Salable ThreadsWe de�ne a further property threads may exhibit we refer to as salability.De�nition 3.6. Salable(P) , Thread(P) ^P = (P jjj P) j[�W ℄jWThis says in the presene of W , whih has the e�et of limiting the number ofoutstanding requests to one, two opies of P behave like a single one.In B.8 we show that it follows from this de�nition that P = (P jjj P jjj P)j[�W ℄jW .Indeed when an arbitrary number of P 's are interleaved in the presene of W theresulting ombination is idential to P 3



We also show in B.6 that Stateless(P)) Salable(P). Interestingly the onversedoes not hold. Consider:P(n) = request :up ! response:ok ! P(n + 1)2(n > 0)&request :down ! response:ok ! P(n � 1)P(0) is salable but not stateless. We note that although P(0) = (P(0) jjj P(0)) j[�W ℄j P(0), a request to the interleaved ombination must be forwarded to the rightthread i.e. the one whih an aept the event, and this feature of the interleavingoperator seems hard to realize in pratie. Of ourse if P is stateless, requests anbe forwarded to either thread, sine both always aept the same events.3.4 ExamplesThe following de�nes a proess P for whih Stateless(P) holds:P = request?name ! if Cleared(name) then(store:name ! response:ok ! P)2(full ! reponse:failed ! P)else response:failed ! PThis proess models a thread used in a very simple airline booking system. A bookingrequest is made with the passenger's name, then a seurity hek is made with thefuntion Cleared . If the passenger lears seurity, an attempt is made to add themto the passenger list (an auxiliary proess), via the event store:name, otherwise theyare rejeted. The passenger an still be rejeted if the ight is full.The following de�nes a proess P(0) for whih Thread(P(0)) holds, butStateless(P(0)) does not:P(x ) = request?n ! if Cleared(name) then((x < MaxPassengers)&response:ok ! P(x + 1))2((x = MaxPassengers)&reponse:failed ! P(x ))else response:failed ! P(x )This proess models the same booking system, but with no need for an auxiliaryproess to keep trak of bookings. This proess is not salable: a single opy of P(0)permits only MaxPassengers suessful bookings whereas two opies of P(0) mightpermit more.3.5 ServiesWe now build a model of servies. We will assume that the set Session ontainsa number of session identi�ers. Compared to to a single thread, every request andresponse to a servie ontains the session identi�er as an additional parameter. If Pis a thread, we form a servie made of threads with P 's behaviour by de�ning thefuntion Servie. 4



De�nition 3.7.Servie(P) = jjj s : Session � P [request  req :s ; response  resp:s ℄Our model is deliberately simplisti in that we do not show how lients aquiresessions. We also assume there is a thread available for eah session, so that lientsnever blok waiting for available threads whih is possibly unrealisti. An extra layer,modelling how sessions are assigned and limits on the number of onurrently ativesessions ould easily be added but is beyond the sope of this paper.If P is salable, then an obvious onsequene is Servie(P) is salable in the sensethat: Servie(P) = (Servie(P) jjj Servie(P)) j[ fjreq ; respjg ℄j Servie(W )where Servie(W ) models the onstraint that there is never more than one requestoutstanding per session.In our example airline booking system (Se. 3.4) we an see that building a serviewith the stateless thread version would be advantageous if the funtion Cleared takesonsiderable resoures; the workload an be spread aross multiple servers.We model the stateful resoures upon whih a servie may at simply as anotherproess whih is forbidden to ommuniate diretly with lients. The following pred-iate determines if a proess R is a resoure.De�nition 3.8. Resoure(R), Chaos(� � fjreq ; respjg) v R(where � denotes the set of all events.)The following diagram shows the ommuniation hannels and omponent pro-esses in our general model of a a servie that ats upon stateful resoures
Resource

.

.

.

Presp.n

req.n

Presp.2

req.2

Presp.1

req.1

5



3.6 Formalized taxonomyUsing our preeding de�nitions of thread, stateless thread, servie, and stateful re-soure, we rede�ne the [FFGT03℄ taxonomy of web servies formally.� A stateless servie is a servie made of stateless threads.� A onversational servie is a servie made of threads (stateless or not).� A stateless servie that ats upon stateful resoures is a stateless servie inparallel with one or more stateful resoures.� A onversational servie that ats upon stateful resoures is a onversationalservie in parallel with one or more stateful resoures.This taxonomy an be made disjoint, by de�ning eah ategory to exlude theones whih preede it in the above list. e.g. a onversational servie is a servie madeof threads whih are not stateless.We an also formalize the de�nition of servie in the ontext of Servie-OrientedArhiteture given in [PWWR03℄, [W3C℄. Suh servies orrespond to stateless ser-vies and stateless servies that at upon stateful resoures (the �rst and third typesin the above taxonomy).4 DisussionKey to our distintion between stateless servies that at upon stateful resouresand onversational servies that at upon stateful resoures, is that the threads fromwhih they are omposed are not aware of whih session they serve. That is although,eah lient makes requests of the form req :s :x , where s identi�es the session, only thex omponent of the event is passed to the reeiving thread. Suppose alternativelythat s is also passed to the thread, so that the session an be identi�ed. The threadsfrom whih a onversational servie is omposed, an be modi�ed to load their state(indexed by eah session s) from bak-end stateful resoures immediately after reeiv-ing a request, and to save their state to stateful resoures immediately before eahresponse. Thus (under our extra assuption), for every onversational servie thatats upon stateful resoures there exists a stateless servie that ats upon statefulresoures with the same behaviour.In fat this is a well-known tehnique for ahieving what is in e�et a onversa-tional servie in the ontext of Servie-Oriented Arhiteture, known as ontextual-ization [PWWR03℄: every message passed between the servie and its lient ontainsa unique ontext identi�er.This being the ase we may ask is if the distintion we draw matters? As a `blakbox' there is little between a stateless servie that ats upon stateful resoures and aonversational one. However, a stateless servie has important `white box' propertiesthat the onversational servie does not: the ability to repliate its stateless front endto ahieve salability. The use of stateless servies may also improve the modularityof a design.We note also, that statelessness is not preserved by re�nement e.g.P = request?x ! (response:1! Puresponse:2! P)6



is a stateless thread, whilst:P 0 = request?x ! response:1! request?x ! reponse:2! P 0is not, even though though P 0 re�nes P . We argue that one should be onerned onlywith the statelessness of spei�ations and not implementations. For suppose SPECis a stateless thread and IMPL is a re�nement of it, whih is not stateless. Although(IMPL jjj IMPL) j[�W ℄jW 6= IMPL in general, it still holds (by monotoniity) thatSPEC v (IMPL jjj IMPL) j[ �W ℄jW . IMPL still has the property that it an berepliated as required for salability whilst satisfying its spei�ation.5 ConlusionWe have given formal de�nitions of stateless and onversational servies and Servie-Oriented Arhiteture, and explained their relationship. If ontextualization is per-mitted, the distintion between stateless and onversational servies, that at uponstateful resoures annot be determined by external behaviour; rather is it an inter-nal property that an be used to ahieve salability. Finally we have explained how,in the presene of non-determinism, it is possible to have a stateful implementationof a stateless servie spei�ation, and thus it is only whether a servie's spei�a-tion is stateless that matters. We hope the ongoing debate into servies and state isinformed by these observations.Referenes[FFGT03℄ I. Foster, J. Frey, S. Graham, and S. Tueke. Modelling stateful resoureswith web servies. Computer Assoiates International, Fujitsu Limited,IBM, The Hewlett-Pakard Development Company, The University ofChiago, 2003.[FKNT02℄ I. Foster, C. Kesselman, J. Nik, and S. Tueke. The physiology of thegrid: An open grid servies arhiteture for distributed systems integra-tion, 2002.[Hoa85℄ C. A. R. Hoare. Communiating Sequential Proesses. Prentie-Hall,1985.[PWWR03℄ S. Parastatidis, J. Weber, P. Watson, and T. Rishbek. A grid ap-pliation framework based on web servies spei�ations and praties.North East Regional e-Siene Centre, Shool of Computing Siene,University of Newastle, UK, 2003.[Ros98℄ A. W. Rosoe. The Theory and Pratie of Conurreny. Prentie-Hall,1998.[Vog03℄ Werner Vogels. Web servies are not distributed objets. IEEE InternetComputing, 7(6):59{66, 2003.[W3C℄ Web servies arhiteture. W3C. http://www.w3.org/TR/2003/WD-ws-arh-20030808/.
7



A Cheking thread properties with FDRWe have used in our de�nition of threads and stateless threads properties whih an-not be readily heked with the FDR model heker for CSP. We here give alternativede�nitions whih an.To hek initials(P) � fjrequest jg we an ask FDR:request?x ! RUN� vT PWe now onsider how to hek 8 s : traes(P) j last(s) 2 fjresponsejg � P=s = P .Without loss of generality we assume tok is an event in the alphabet whih is notused by the proess P . (We an always enlarge the alphabet with a spare event ifrequired.) We de�ne: S = ?x : (�� fjresponsejg)! S2?x : fjresponsejg ! tok ! STOPThus Q = P j[��ftokg ℄jS behaves like P up to and inluding the �rst responseevent, and then beomes tok ! STOP . So the proess (Q j[ ftokg ℄j tok ! P) nftokg similarly behaves like P up to and inluding the �rst response event, and thenbehaves like P . Thus we hek whether P is stateless by heking P is a thread, andthen asking FDR if: (Q j[ ftokg ℄j tok ! P) n ftokg = PB Proofs of theoremsLet P be a thread.The following prediate holds exatly when proess X an diverge immeadiately.De�nition B.1. diverges(X ) , X = X u divLemma B.2. 8 s : traes(P) � #s � fjrequest jg � #s � fjresponsejgProof. This is an easy onsequene of Thread(P).De�nition B.3.Write Qs for P=s if s : traes(P) ^ #s � fjrequest jg = #s � fjresponsejgWrite Rs for P=s if s : traes(P) ^ #s � fjrequest jg > #s � fjresponsejgLemma B.4. initials Qs \ fjresponsejg = ;initials Rs \ fjrequest jg = ;8



Proof. This is an easy onsequene of Thread(P).Convention B.5. The interfae of the parallel operator (k) is �W unless stated oth-erwise. The interleaving operator (jjj) binds more tightly than than the paralleloperator. e.g. P jjj P kW stands for (P jjj P) j[�W ℄jWTheorem B.6. Stateless(P)) Salable(P)Proof. Suppose Stateless(P). We show that under our assuptions, for every trae tof P jjj P kW and every trae t of P :(P jjj P kW )=t = (P=t) jjj P kW = P=tif t = hi _ last(t) 2 fjresponsejg(P jjj P kW )=t = (P=t) jjj P kW 0 = P=totherwiseand hene (P jjj P) kW = P , i.e. Salable(P).To prove the above equality, we show that the initials, refusals and initial di-vergenes of the terms are equal, and that after eah initial event the result statesare also equal if we assume the above statements. This an be formally justi�ed byreferene to the theory of onstrutive reursions and unique �xeds points (UFPs) inCSP [Ros98℄.We note that due to Stateless(P) if x 2 fjresponsejg then Qsahxi = Qhi.Case (i) P1 = Qhi ^ P2 = Qhi jjj Qhi kW .initials(P1) = initials(P2)refusals(P1) = refusals(P2)diverges(P1), diverges(P2)8 x : initals(P1) � P1=hx i = Rhxi8 x : initials(P2) � P2=hx i= (Rhxi jjj Qhi kW 0) 2 (Qhi jjj Rhxi kW 0)= Rhxi jjj Qhi kW 0Case (ii) P1 = Rs ^ P2 = Rs jjj Qhi kW 0.initials(P1) = initials(P2)refusals(P1) = refusals(P2)diverges(P1), diverges(P2)8 x : initals(P1) � P1=hx i =if x 2 fjresponsejg then Qsahxi else Rsahxi =if x 2 fjresponsejg then Qhi else Rsahxi8 x : initials(P2) � P2=hx i =if x 2 fjresponsejg then Qsahxi jjj Qhi kWelse Rsahxi jjj Qhi kW 0 =if x 2 fjresponsejg then Qhi jjj Qhi kWelse Rsahxi jjj Qhi kW 09



Theorem B.7. P jjj P jjj P kW = P jjj (P jjj P kW ) kWProof. The proof of this theorem is based on the a similar tehnique to the previousone. We over all reahable states by showing the following equalities:Qs jjj Qt jjj Qv kW = Qs jjj (Qt jjj Qv kW ) kWRs jjj Qt jjj Qv kW 0 = Rs jjj (Qt jjj Qv kW ) kW 0Qs jjj Rt jjj Qv kW 0 = Qs jjj (Rt jjj Qv kW 0) kW 0Qs jjj Qt jjj Rv kW 0 = Qs jjj (Qt jjj Rv kW 0) kW 0That is, we show the initials, refusals and initial divergenes of the terms are equaland that the result states are also equal if we assume the above statements.Case (i) P1 = Qs jjj Qt jjj Qv kW ^ P2 = Qs jjj (Qt jjj Qv kW ) kW .initials P1 = initials Qs [ initials Qt [ initials Qv = initials P2refusals P1 = refusals Qs \ refusals Qt \ refusals Qv = refusals P2diverges P1, diverges Qs _ diverges Qs _ diverges Qv , diverges P28 x : initials P1 � P1=hx i =u i : fs ; t ; vg j x 2 initials(P=i) �if x =2 fjrequest jg then(i = s)&(Qsahxi jjj Qt jjj Qv kW )2(i = t)&(Qs jjj Qtahxi jjj Qv kW )2(i = v)&(Qs jjj Qt jjj Qvahxi kW )else (i = s)&(Rsahxi jjj Qt jjj Qv kW 0)2(i = t)&(Qs jjj Rtahxi jjj Qv kW 0)2(i = v)&(Qs jjj Qt jjj Rvahxi kW 0)8 x : initials P2 � P2=hx i =u i : fs ; t ; vg j x 2 initials(P=i) �if x =2 fjrequest jg then(i = s)&(Qsahxi jjj (Qt jjj Qv kW ) kW )2(i = t)&(Qs jjj (Qtahxi jjj Qv kW ) kW )2(i = v)&(Qs jjj (Qt jjj Qvahxi kW ) kW )else (i = s)&(Rsahxi jjj (Qt jjj Qv kW ) kW 0)2(i = t)&(Qs jjj (Rtahxi jjj Qv kW 0) kW 0)2(i = v)&(Qs jjj (Qt jjj Rvahxi kW 0) kW 0)10



Case (ii) P1 = Rs jjj Qt jjj Qv kW 0 ^ P2 = Rs jjj (Qt jjj Qv kW ) kW 0.initials P1 =(initials Rs [ initials Qt [ initials Qv )� fjrequest jg =initials P2refusals P1 =fr : refusals Rs j r � fjrequest jg 2 refusals Qt \ refusals Qvg =refusals P2diverges P1,diverges Rs _ divergesQt _ divergesQv ,diverges P28 x : initials P1 � P1=hx i =u i : fs ; t ; vg j x 2 initials(P=i) �if x =2 fjresponsejg then(i = s)&(Rsahxi jjj Qt jjj Qv kW 0)2(i = t)&(Rs jjj Qtahxi jjj Qv kW 0)2(i = v)&(Rs jjj Qt jjj Qvahxi kW 0)else (Qsahxi jjj Qt jjj Qv kW )8 x : initials P2 � P2=hx i =u i : fs ; t ; vg j x 2 initials(P=i) �if x =2 fjresponsejg then(i = s)&(Rsahxi jjj (Qt jjj Qv kW ) kW 0)2(i = t)&(Rs jjj (Qtahxi jjj Qv kW ) kW 0)2(i = v)&(Rs jjj (Qt jjj Qvahxi kW ) kW 0)else (Qsahxi jjj (Qt jjj Qv kW ) kW )Case (iii) P1 = Qs jjj Rt jjj Qv kW 0 ^ P2 = Qs jjj (Rt jjj Qv kW 0) kW 0.initials P1 =(initials Qs [ initials Rt [ initials Qv )� fjrequest jg =initials P2refusals P1 =fr : refusals Rt j r � fjrequest jg 2 refusals Qs \ refusals Qvg =refusals P2diverges P1,diverges Rs _ divergesQt _ divergesQv ,diverges P2
11



8 x : initials P1 � P1=hx i =u i : fs ; t ; vg j x 2 initials(P=i) �if x =2 fjresponsejg then(i = s)&(Qsahxi jjj Rt jjj Qv kW 0)2(i = t)&(Qs jjj Rtahxi jjj Qv kW 0)2(i = v)&(Qs jjj Rt jjj Qvahxi kW 0)else (Qs jjj Qtahxi jjj Qv kW )8 x : initials P2 � P2=hx i =u i : fs ; t ; vg j x 2 initials(P=i) �if x =2 fjresponsejg then(i = s)&(Qsahxi jjj (Rt jjj Qv kW 0) kW 0)2(i = t)&(Qs jjj (Rtahxi jjj Qv kW 0) kW 0)2(i = v)&(Qs jjj (Rt jjj Qvahxi kW 0) kW 0)else (Qs jjj (Qtahxi jjj Qv kW ) kW )Case (iv) P1 = Qs jjj Qt jjj Rv k W 0 ^ P2 = Qs jjj (Qt jjj Rv k W 0) k W 0.Similarly.Corollary B.8. Salable(P) ) P = P jjj P jjj P kWProof. Salable(P) ) P = P jjj P kW = P jjj (P jjj P kW ) kWP jjj (P jjj P kW ) kW = P jjj P jjj P kWSalable(P) ) P = P jjj P jjj P kW

12


