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Abstract

Polymorphic systems with arrays (PSAs) is a general class of nondeterministic re-
active systems. A PSA is polymorphic in the sense that it depends on a signature,
which consists of a number of type variables, and a number of symbols whose types
can be built from the type variables. Some of the state variables of a PSA can
be arrays, which are functions from one type to another. We present several new
decidability and undecidability results for parameterised control-state reachability
problems on subclasses of PSAs.
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1 Introduction

Context

One of the most common reasons why a system can have infinitely many
states is that it has one or more parameters which can be unboundedly large.
For example, a system might have an arbitrary number of identical parallel
components, or it might work with data from an arbitrarily large data type.
In such cases, the aim is usually to verify that the system is correct not for
specific instantiations of the parameters, but for all possible instantiations.

When a system has an arbitrary number of identical parallel components,
the counting abstraction [11] can be used to represent it as a Petri net. If the
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system uses more than rendez-vous communications between parallel com-
ponents, extensions of Petri nets are used, such as transfer arcs to represent
broadcast communications [9], or non-blocking arcs to represent partially non-
blocking rendez-vous [20]. Other abstract models related to Petri nets have
also been used for representing infinite-state systems, such as broadcast pro-
tocols [7] and multi-set rewriting specifications [6].

Finding decision procedures for model checking problems on Petri nets
and related models is therefore useful for verification of a range of infinite-
state systems. Undecidability of such problems is also significant, for guiding
further theoretical and practical work. Many results of both kinds can be
found in the literature (e.g. [8,9,20,14,6]).

In practice, infinite-state systems are often given by UNITY-style syntax,
i.e. using state variables, guards and assignments. This kind of syntax is
common for defining finite-state systems (e.g. [3]), where the types of state
variables are finite enumerated types. It is easily extended for expressing
infinite-state systems, by using type variables which can be instantiated by
arbitrary sets. For example, if X, Y and Z are type variables representing
processor indices, memory addresses and storable data, then a cache-coherence
protocol (e.g. [19]) might have a state variable cache : (X×Y ) → (Z×Enum3).
Here, cache is an array (i.e. a function) indexed by ordered pairs of processor
indices and memory addresses, and storing ordered pairs of storable data and
tags from the 3-element type Enum3. Note that this system is parametric in
three dimensions.

It is therefore important to investigate decidability of model checking prob-
lems on systems given by UNITY-style syntax with type variables and array
state variables. Moreover, it is desirable to find algorithmic translations of
such problems to decidable problems on Petri nets and related models. This
avoids duplication of work, and enables use of the various techniques imple-
mented for the latter models (e.g. [6]). However, UNITY-like syntax can
succintly express systems which are parametric in several dimensions, com-
pared with Petri nets and related models which are either restricted to one or
two dimensions [9,20,6] or relatively complex [14]. In particular, relating the
two kinds of systems is non-trivial in general.

Contributions

In this paper, we fix a UNITY-like syntax with type variables and array state
variables, and call such systems polymorphic systems with arrays (PSAs). For
generality and succinctness, we use a typed λ-calculus to express guards and
right-hand sides of assignments. Basic types are formed from type variables,
products and sums (i.e. disjoint unions). We also use first-order function
types, as types of array state variables, or types of operation symbols (such as
≤X : X×X → Bool). Assignments to array state variables can express a range
of operations, including writing to several array components, or resetting all
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components to a same value.

A PSA is polymorphic in the sense that it has a signature, which consists
of a number of type variables and a number of symbols whose types can be
built from the type variables. A signature is instantiated by assigning non-
empty sets to its type variables, and concrete elements or operations to its
symbols. Given a PSA and an instantiation of its signature, the semantics is
a transition system.

We study parameterised verification of PSAs, so a PSA also has a set of all
instantiations of its signature which are of interest. The semantics is a tran-
sition system consisting of all transition systems for the given instantiations.
If infinitely many instantiations are given, this is infinite-state.

We present several new decidability and undecidability results for param-
eterised control-state reachability problems on subclasses of PSAs. Control-
state reachability (CSR) can express a range of safety properties. We distin-
guish between initialised CSR, where all arrays are initialised at the start, and
uninitialised CSR.

By reductions from location reachability for 2-counter machines, we show
that initialised CSR is undecidable for PSAs with each of the following restric-
tions. In each case, the only allowed array operations are reads and writes,
and the type variables are instantiated by arbitrary sets of the form {1, . . . , k}.

• There is only one array, of type X × X → Bool . The only operation on X

is equality.

• There is only one array, of type X × Y → Bool . The only operations on X

and Y are equalities.

• There are only two arrays, of types X → Y and X → Z. The only opera-
tions on X, Y and Z are equalities.

• There is only one array, of type X → Y . The only operation on X is linear
order (≤X), 2 and on Y equality.

Note that, in each of the four classes, the only available operations on array
indices are equality tests or linear-order tests. In particular, given an index, we
cannot compute its predecessor or successor — this is what makes representing
counters non-trivial.

For PSAs with arbitrary array operations, but which have arrays only
of types X → Enumm, where the only operation on X is linear order, and
where X is instantiated by arbitrary sets of the form {1, . . . , k}, we show
that initialised CSR is decidable. The proof is by reducing to a reachability
problem for multi-set rewriting specifications with NC constraints, which has
an implemented decision procedure [6].

For uninitialised CSR, we obtain similar results.

2 An order predicate can express the equality predicate by t = t
′ ⇔ t ≤ t

′ ∧ t
′ ≤ t.
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Comparisons

PSAs generalise data-independent systems with arrays [13,12,21,18] by allow-
ing operations on type variables other than equality, and by allowing any array
operation expressible using array instruction parameters and assignments of
λ-terms to array state variables.

It was shown in [21] that initialised CSR is undecidable for systems with
only two arrays, of type X → Y , where the only operations on X and Y

are equalities. Our undecidability result strengthens this to two arrays with
different value types. 3

Our decidability result extends the decidability result in [21] by allowing
linear order on X instead of only equality, and by allowing a wider range of
array operations.

PSAs also generalise the parameterised systems in [15], where parameter-
isation in only one dimension is considered. On the other hand, [15] treats
quantification in guards, which we do not consider in this paper.

Using a type variable X to represent the set of all process indices, and
an array s : X → Enumm to store the state of each process, any broadcast
protocol [7] can be expressed by a PSA. The only operation needed on X is
equality.

Organisation

In the next section, we introduce the syntax and semantics of PSAs. We
define initialised and uninitialised CSR problems in Section 3. Statements
of the undecidability and decidability theorems are in Sections 4 and 5. In
Section 6, we briefly point to future work.

Technical material and examples are mostly contained in the appendices.
Appendix A gives details of the typed λ-calculus. Appendix B illustrates
expressiveness of PSAs. Proofs of the theorems are in Appendix C. In Ap-
pendix D, the Bully Algorithm [10] is used to give examples of modelling
using PSAs, of expressing safety properties as control-state reachability, and
of applying the decidability theorem.

2 Polymorphic systems with arrays

To define PSAs, we start with the syntax of types. We have basic types built
from type variables, products and non-empty sums, and function types from
one basic type to another. Function types will be used as types of array
variables, and also as types of signature symbols such as equality predicates.

B ::= X | B1 × · · · × Bn | B1 + · · · + Bn≥1

T ::= B | B → B′

3 The latter systems are less expressive because different types prevent values contained in
the two arrays to be mixed.
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Next we need a syntax of terms, which will be used to form one-step com-
putations of PSAs. The terms are built from term variables, tuple formation,
tuple projection, sum injection, sum case, λ-abstraction, and function appli-
cation.

We consider only well-typed terms. A signature consists of a finite set Ω of
type variables, and a type context Γ which is a sequence 〈x1 : T1, . . . , xn : Tn〉
of typed and mutually distinct term variables, where the types Ti can contain
only type variables from Ω. A well-typed term-in-context is written Ω, Γ ⊢ t :
T , where these valid type judgements are deduced by standard typing rules
[17], given in Appendix A.1.

Using the types and terms above, we can for example express:

• the singleton type Unit as the empty product, and its unique element as
the empty tuple;

• the boolean type Bool as the sum of two Unit types, and terms false, true,
and if t then t′1 else t′2;

• for any positive n, the n-element enumerated type Enumn as the sum of n

Unit types, its elements e1, . . . , en, and a case term.

We can also express any given operation on the Bool and Enumn types, of
any arity.

Semantics of types is defined as follows. A finite set Ω of type variables
is instantiated by a mapping ω to non-empty sets. For any type T such that
Vars(T ) ⊆ Ω, its semantics with respect to ω is a non-empty set JT Kω, which
is defined in the usual way — see Appendix A.2.

For semantics of terms, a signature (Ω, Γ) is instantiated by an ω as above,
and a mapping γ ∈ JΓKω, i.e. Dom(γ) = Dom(Γ) and γJxK ∈ JT Kω for all
x : T in Γ. For any well-typed term-in-context Ω, Γ ⊢ t : T , its semantics with
respect to (ω, γ) is an element JtKω,γ of JT Kω, and is defined in the standard
way — see Appendix A.3.

Definition 2.1 A PSA is a 5-tuple (Ω, Γ, Θ, R, I) such that:

• (Ω, Γ) is a signature, consisting of type variables and typed term variables
(i.e. typed constant or operation symbols) which the PSA is parameterised
by.

• Θ is a type context disjoint from Γ, and such that (Ω, ΓΘ) is a signature.
Θ specifies the state variables of the PSA and their types. According to its
type, a state variable is either basic or an array.

• R is a finite set of instructions. Each ρ ∈ R is of the form

Φ : c · {x1 := t1, . . . , xk := tk}

where:
· Φ is a type context disjoint from ΓΘ and such that (Ω, ΓΘΦ) is a signature,
· Ω, ΓΘΦ ⊢ c : Bool , and
· x1, . . . , xk are mutually distinct variables in Θ, and Ω, ΓΘΦ ⊢ ti : Θ(xi)
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for each i.
The semantics of ρ will be that Φ consists of parameters whose values

are chosen nondeterministically subject to satisfying c, and then the assign-
ments xi := ti are performed simultaneously.

In each state of the system, any instruction in R can be performed.

• I is a set of instantiations of (Ω, Γ).

Instruction parameters and assignments to array variables can be used to
express a range of array operations — see Appendix B.

Definition 2.2 The semantics of a PSA (Ω, Γ, Θ, R, I) is the transition sys-
tem (S,→) defined as follows:

• The set of states S consists of all (ω, γ, θ) such that (ω, γ) ∈ I and θ ∈ JΘKω.

• (ω, γ, θ) → (ω′, γ′, θ′) iff ω′ = ω, γ′ = γ, and there exists ρ ∈ R which can
produce θ′ from θ.

More precisely, as ρ is of the form Φ : c · {x1 := t1, . . . , xk := tk}, there
exists φ ∈ JΦKω such that JcKω,γθφ = tt , and:
· θ′JxiK = JtiKω,γθφ for each i;
· θ′Jx′K = θJx′K for all x′ 6∈ {x1, . . . , xk}.

3 Model-checking problems

For a range of safety properties of PSAs, where it is assumed that initially all
arrays are reset to some specified values, their checking can be reduced to the
following decision problem.

Definition 3.1 Suppose we have a PSA (Ω, Γ, Θ, R, I) with:

• a state variable b : Enumn, 4

• i, j ∈ {1, . . . , n}, and

• for each array state varible a : B → B′, a term Ω, ΓΘbas ⊢ ta : B′, where
Θbas is Θ restricted to basic state variables.

The initialised control-state reachability problem is to decide whether there
exists a sequence of transitions from a state satisfying

b = ei ∧
∧

a:B→B′∈Θ

∀x : B · a[x] = ta

to a state satisfying b = ej.

For safety properties where it is not assumed that arrays are initialised,
we have the following decision problem.

Definition 3.2 Suppose we have a PSA (Ω, Γ, Θ, R, I) with a state variable
b : Enumn, and i, j ∈ {1, . . . , n}.

4 Any tuple of variables whose types do not contain type variables is isomorphic to a
variable of type Enumn.
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The uninitialised control-state reachability problem is to decide whether
there exists a sequence of transitions from a state satisfying b = ei to a state
satisfying b = ej.

4 Undecidability results

We consider the following classes of PSAs:

X × X-to-Bool. This class consists of all PSAs (Ω, Γ, Θ, R, I) such that:
• Ω = {X} and Γ = 〈=X : X × X → Bool〉;
• there is only one array variable in Θ, and it is of type X × X → Bool ;
• instructions in R do not contain array parameters, and each array assign-

ment is a write;
• I consists of all (ω, γ) such that ω assigns to X a set of the form k̂ =
{1, . . . , k}, and γ assigns to =X the equality predicate on k̂.

X × Y -to-Bool. Here X and Y are distinct type variables, and the restric-
tions are:
• Ω = {X,Y } and Γ = 〈=X : X × X → Bool , =Y : Y × Y → Bool〉;
• there is only one array variable in Θ, and it is of type X × Y → Bool ;
• instructions in R do not contain array parameters, and each array assign-

ment is a write;
• I consists of all (ω, γ) such that ω assigns to X and Y some k̂ and l̂, and

γ assigns to =X and =Y the equality predicates.

X-to-Y ,Z. Here X, Y , Z are distinct type variables, and the restrictions are:
• Ω = {X,Y, Z} and Γ = 〈=X : X × X → Bool , =Y : Y × Y → Bool , =Z :

Z × Z → Bool〉;
• there are only two array variables in Θ, and they are of types X → Y and

X → Z;
• instructions in R do not contain array parameters, and each array assign-

ment is a write;
• I consists of all (ω, γ) such that ω assigns to X, Y , Z some k̂, l̂, m̂, and

γ assigns to =X , =Y , =Z the equality predicates.

X,≤-to-Y . Here X and Y are distinct type variables, and the restrictions
are:
• Ω = {X,Y } and Γ = 〈≤X : X × X → Bool , =Y : Y × Y → Bool〉;
• there is only one array variable in Θ, and it is of type X → Y ;
• instructions in R do not contain array parameters, and each array assign-

ment is a write;
• I consists of all (ω, γ) such that ω assigns to X and Y some k̂ and l̂,

γJ≤XK is the ordering on k̂, and γJ=Y K is the equality predicate on l̂.

Theorem 4.1 Initialised CSR is undecidable for each of the classes X × X-

to-Bool, X × Y -to-Bool, X-to-Y ,Z, and X,≤-to-Y .

Corollary 4.2 For classes of PSAs obtained by extending the classes above
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to allow resets of arrays, uninitialised CSR is undecidable.

In [21], it was shown that uninitialised CSR is decidable for systems with
arrays from X with equality to enumerated types. In [18, Chapter 8], decid-
ability of the same problem was shown for systems with an array from X with
equality to Y with equality. Theorem 4.1 tells us that decidability fails when
the former arrays are generalised to two-dimensional, and when the latter
arrays are generalised to X with a linear ordering.

By regarding X as the type of processor indices, Y as the type of memory
addresses, and Bool as the type of storable data, the class X × Y -to-Bool
contains classes of cache-coherence protocols (e.g. [4,19]). By Theorem 4.1,
any decidability result for initialised CSR for such a class of protocols must
depend on some properties of the protocols which are not common to the
whole class X × Y -to-Bool.

5 Decidability result

Let X,≤-to-Enum be the class of all PSAs (Ω, Γ, Θ, R, I) such that:

• Ω = {X} and Γ = 〈≤X : X × X → Bool〉;

• the type of any array variable in Θ, and of any array parameter in R, is of
the form X → Enumm;

• I consists of all (ω, γ) such that ω assigns to X some k̂, and γ assigns to
≤X the linear ordering on k̂.

Theorem 5.1 Initialised and uninitialised CSR problems are decidable for

the class X,≤-to-Enum.

6 Future work

On-going work includes generalising the decidability results in [21] and [18,
Chapter 8], and Theorem 5.1 to classes of PSAs with more than one array
type.
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[13] R. Lazić and A.W. Roscoe, Verifying determinism of concurrent systems which

use unbounded arrays, Proceedings of the 3rd International Workshop on
Verification of Infinite-State Systems (INFINITY ’98), Report TUM-I9825, 2–8,
Technical University of Munich, July 1998.

[14] I. A. Lomazova, Nested Petri Nets: Multi-level and Recursive Systems,
Fundamenta Informaticae 47, 283–294, IOS Press, 2001.

[15] M. Maidl, A Unifying Model Checking Approach for Safety Properties of

Parameterized Systems, Proceedings of the 13th International Conference on

9
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A A typed λ-calculus

A.1 Typing rules

Ω, Γ〈x : T 〉Γ′ ⊢ x : T

Ω, Γ ⊢ t1 : B1 · · · Ω, Γ ⊢ tn : Bn

Ω, Γ ⊢ (t1, . . . , tn) : B1 × · · · × Bn

Ω, Γ ⊢ t : B1 × · · · × Bn

Ω, Γ ⊢ πi(t) : Bi

Ω, Γ ⊢ t : Bi

Ω, Γ ⊢ ιB1+···+Bn

i (t) : B1 + · · · + Bn

∀j 6= i · Vars(Bj) ⊆ Ω

Ω, Γ ⊢ t : B1 + · · · + Bn Ω, Γ〈x1 : B1〉 ⊢ t′1 : T · · · Ω, Γ〈xn : Bn〉 ⊢ t′n : T

Ω, Γ ⊢ case t of x1.t
′
1 or . . . or xn.t

′
n : T

Ω, Γ〈x : B〉 ⊢ t : B′

Ω, Γ ⊢ λx : B · t : B → B′

Ω, Γ ⊢ t1 : B → B′ Ω, Γ ⊢ t2 : B
Ω, Γ ⊢ t1[t2] : B′

A.2 Semantics of types

JXKω = ωJXK

JB1 × · · · × BnKω = JB1Kω × · · · × JBnKω

JB1 + · · · + BnKω = {1} × JB1Kω ∪ · · · ∪ {n} × JBnKω

JB → B′Kω = (JB′Kω)JBKω

A.3 Semantics of terms

JxKω,γ = γJxK

J(t1, . . . , tn)Kω,γ = (Jt1Kω,γ , . . . , JtnKω,γ)

Jπi(t)Kω,γ = πi(JtKω,γ)

JιBi (t)Kω,γ = (i, JtKω,γ)

Jcase t of x1.t
′
1 or . . . or xn.t′nKω,γ = Jt′iKω,γ{xi 7→v}, where (i, v) = JtKω,γ

Jλx : B · tKω,γ = {v 7→ JtKω,γ{x 7→v} | v ∈ JBKω}

Jt1[t2]Kω,γ = Jt1Kω,γ(Jt2Kω,γ)
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B Expressing array operations

The following are some array operations which can be expressed as assignments
to array variables:

Reset. Assigning a value t : B′ to each component of a:

a := λx : B · t

where x is a fresh variable name.

Copy. Assigning an array a′ to a:

a := a′

Map. Applying an operation t : (B′
1 × · · · × B′

n) → B′′ componentwise to
several arrays:

a := λx : B · t[(a′
1[x], . . . , a′

n[x])]

where x is fresh.

Multiple partial assign. Assigning t1, . . . , tn to components x of a which
satisfy conditions d1, . . . , dn respectively, where x may occur free in the ti
and di:

a := λx : B · if d1 then t1 elseif · · · dn then tn else a[x]

We may abbreviate this as a[x : d1; · · · ; dn] := t1; · · · ; tn. Note that if di and
dj with i < j overlap, assigning ti takes precedence.

Write. Assigning t′1, . . . , t′n to a[t1], . . . , a[tn]:

a[x : x = t1; · · · ; x = tn] := t′1; · · · ; t
′
n

where x is fresh. We may abbreviate this as

a[t1; · · · ; tn] := t′1; · · · ; t
′
n

Cross-section. For example, assigning to a row t of an array a : (B1×B2) →
B′:

a[x : (π1(x) = t)] := t′

Using instruction parameters, we can for example also express:

Choose. Nondeterministically choosing a whole array:

〈a′ : B → B′〉 : true · {a := a′}

C Proofs

C.1 Theorem 4.1

We first recall some undecidability results for 2-counter machines (2CMs).

A 2CM consists of a finite non-empty set {L1, . . . , Lu} of locations, two
counters c1 and c2, and for every location Li, an instruction of one of the
following forms:

• Li : cj := cj + 1; goto Li′
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• Li : cj := cj − 1; goto Li′

• Li : if cj = 0 then goto Li′ else goto Li′′

A configuration of the 2CM is of the form (Li, v1, v2), where v1, v2 ∈ N
are the values of c1 and c2. The instruction at Li produces a unique next
configuration, except that Li : cj := cj − 1 cannot execute when vj = 0.

From [16], configuration reachability is undecidable, i.e. whether a given
2CM can reach a given configuration (Lj, v1, v2) from (L1, 0, 0). It is straight-
forward to reduce this problem to location reachability, i.e. whether a given
2CM can reach a configuration with a given location Lj from (L1, 0, 0), so the
latter problem is also undecidable.

Suppose we have a 2CM as above, and a location Lj. We prove the the-
orem by showing how to reduce the question whether the 2CM can reach a
configuration with location Lj from (L1, 0, 0) to an initialised CSR question
for a PSA (Ω, Γ, Θ, R, I) in each of the classes above in turn. In each case, Ω,
Γ and I are specified in the definition of the class, so it remains to construct
the state variables Θ, the instructions R, and the CSR question.

X × X-to-Bool. Let Θ equal

〈b : Enum5u+1, x1, x
′
1, x2, x

′
2, x

′′, x′′′ : X, a : X × X → Bool〉

where we shall denote the elements of Enum5u by ei for i ∈ {0, . . . , u}, and

e
j′

j,i for i ∈ {1, . . . , u} and j, j′ ∈ {1, 2}. The ei for i > 0 will represent

the locations of the 2CM, whereas e0 and the e
j′

j,i will be used as auxiliary
control states of the PSA.

The CSR question is whether the PSA can reach a state with b = ej from
a state with b = e0 and

∀(x, x′) : X × X · a[(x, x′)] = false

We represent a value vj of a counter cj by a sequence of mutually distinct
indices x

j
1, . . . , x

j
vj+1 such that a[(xj

k, x
j
k+1)] is true for all k. The sets indices

for c1 and c2 will be disjoint. The remaining entries of a will be false.
The state variables xj will contain x

j
1, and x′

j will contain x
j
vj+1.

This representation is illustrated, for c1 = 3 and c2 = 1, by the following
table. It shows a state of the array a where X is instantiated by {1, . . . , 6}.
Entries with value true are marked; the rest are false. Therefore, the se-
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quence x1 is 1, 2, 4, 3, and the sequence x2 is 5, 6.

x′
1 x′

2

x1 t 1

t 2

3

t 4

x2 t 5

6

1 2 3 4 5 6

At control state e0, we ensure that x1 6= x2. We then initialise the repre-
sentations of c1 and c2 to zero, and move to control state e1.

〈〉 : b = e0 ∧ x1 6= x2 · {b := e1, x
′
1 := x1, x

′
2 := x2}

For any instruction Li : cj := cj + 1; goto Li′ of the 2CM, the PSA has
the following four instructions. The first one chooses a value x′′ from X for
extending the representation of cj by an entry true at (x′

1, x
′′). It also starts

the computation for checking that x′′ is a fresh value. An invariant during
this computation is that if the control state is e

j′

j,i′ , then x′′ does not occur
among the indices in the representation of cj′ up to x′′′.

〈x† : X〉 : b = ei ∧ x† 6= x1 · {b := e1
j,i′ , x

′′ := x†, x′′′ := x1}

If x′′ has been compared against the whole representation of c1, we move
to comparing it against the representation of c2:

〈〉 : b = e1
j,i′ ∧ x′′′ = x′

1 ∧ x′′ 6= x2 · {b := e2
j,i′ , x

′′′ := x2}

When the computation is complete, we extend the representation of cj

corresponding to the increment by 1, and move to ei′ :

〈〉 : b = e2
j,i′ ∧ x′′′ = x′

2 · {b := ei′ , x
′
j := x′′, a[(x′

j, x
′′)] := true}

The fourth instruction performs a step in comparing x′′ with the indices
in the representation of cj′ :

〈x† : X〉 : b = e
j′

j,i′ ∧ x† 6= x′′ ∧ a[(x′′′, x†)] · {x′′′ := x†}

For any instruction Li : cj := cj − 1; goto Li′ of the 2CM, the PSA has
the following instruction, which reduces the representation of cj by moving
x1 to the next index in the sequence:

〈x† : X〉 : b = ei ∧ a[(xj, x
†)]·

{b := ei′ , xj := x†, a[(xj, x
†)] := false}

A zero-test instruction of the 2CM is straightforward to represent, since
cj has value 0 if and only if xj = x′

j:

〈〉 : b = ei · {b := if xj = x′
j then ei′ else ei′′}

14
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It is clear that this PSA is in the class X × X-to-Bool.
For any configuration (Li, v1, v2) of the 2CM, let F (Li, v1, v2) be the set

of all states (ω, γ, θ) of the PSA such that θJbK = JeiK and θ assigns to x1,
x′

1, x2, x′
2 and a a representation of v1 and v2 as above. It is straightforward

to check that:
(i) if the 2CM can reach (Li′ , v

′
1, v

′
2) from (Li, v1, v2), then the PSA can reach

a state in F (Li′ , v
′
1, v

′
2) from a state in F (Li, v1, v2);

(ii) any state (ω, γ, θ) which the PSA can reach from a state in F (Li, v1, v2)
and which satisfies b ∈ {e1, . . . , eu}, is in F (Li′ , v

′
1, v

′
2) for some (Li′ , v

′
1, v

′
2)

which the 2CM can reach from (Li, v1, v2).
It follows that the 2CM can reach a configuration with location Lj from

(L1, 0, 0) if and only if the PSA satisfies the initialised CSR question above.
Alternatively, undecidability of initialised CSR for this class follows from

undecidability for the class X × Y -to-Bool. Given a PSA S in X × Y -to-
Bool, let S ′ be the PSA in X ×X-to-Bool obtained from S by substituting
X for Y . Then S satisfies an initialised control-state rechability question if
and only if S ′ satisfies the same question with X substituted for Y .

X × Y -to-Bool. The construction of a PSA in this class which represents
the 2CM follows the same pattern as the construction above for the class
X × X-to-Bool. It is more complex because the array is now indexed by
two different types. To represent a value vj of a counter cj, we use 2vj + 1
entries true instead of vj.

Let Θ equal

〈b : Enum5u+1, x1, x
′
1, x2, x

′
2, x

′′, x′′′ : X, y1, y
′
1, y2, y

′
2, y

′′, y′′′ : Y,

a : X × Y → Bool〉

where we shall denote the elements of Enum5u by ei for i ∈ {0, . . . , u}, and

e
j′

j,i for i ∈ {1, . . . , u} and j, j′ ∈ {1, 2}. The ei for i > 0 will represent

the locations of the 2CM, whereas e0 and the e
j′

j,i will be used as auxiliary
control states of the PSA.

The CSR question is whether the PSA can reach a state with b = ej from
a state with b = e0 and

∀(x, y) : X × Y · a[(x, y)] = false

We represent a value vj of a counter cj by 2vj +1 entries true in the array
a. If their indices are (xj

k, y
j
k) for k ∈ {1, . . . , 2vj + 1}, then each x

j
2k will

equal x
j
2k+1, and each y

j
2k−1 will equal y

j
2k. All the x

j
2k−1, and also all the

y
j
2k−1 will be mutually distinct. Moreover, the sets of all x1

k and all x2
k will

be disjoint, as well as the sets of all y1
k and y2

k. The remaining entries of a

will be false.
The state variables xj and yj will contain x

j
1 and y

j
1, and x′

j and y′
j will

contain x
j
2vj+1 and y

j
2vj+1.

This representation is illustrated, for c1 = 2 and c2 = 1, by the following
table. It shows a state of the array a where X and Y are instantiated
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by {1, . . . , 5} and {1′, . . . , 6′} respectively. (This notation emphasises that
these values are of two distinct types.) Entries with value true are marked;
the rest are false. Therefore, the sequences x1 and y1 are 1, 3, 3, 4, 4 and
1′, 1′, 2′, 2′, 3′; the sequences x2 and y2 are 2, 5, 5 and 4′, 4′, 6′.

y1 y′
1 y2 y′

2

x1 t 1

x2 t 2

t t 3

x′
1 t t 4

x′
2 t t 5

1′ 2′ 3′ 4′ 5′ 6′

At control state e0, we ensure that x1 6= x2 and y1 6= y2. We then initialise
the representations of c1 and c2 to zero, and move to control state e1.

〈〉 : b = e0 ∧ x1 6= x2 ∧ y1 6= y2·

{b := e1, x
′
1 := x1, y

′
1 := y1, x

′
2 := x2, y

′
2 := y2,

a[(x1, y1); (x2, y2)] := true; true}

For any instruction Li : cj := cj +1; goto Li′ of the 2CM, the PSA has the
following four instructions. The first one chooses a value x′′ from X and
a value y′′ from Y for extending the representation of cj by entries true at
indices (x′′, y′

j) and (x′′, y′′). It also starts the computation for checking that
x′′ and y′′ are fresh values. An invariant during this computation is that if
the control state is e

j′

j,i′ , then x′′ and y′′ do not occur among the indices in
the representation of cj′ up to (x′′′, y′′′).

〈x† : X, y† : Y 〉 : b = ei ∧ x† 6= x1 ∧ y† 6= y1·

{b := e1
j,i′ , x

′′ := x†, y′′ := y†, x′′′ := x1, y
′′′ := y1}

If x′′ and y′′ have been compared against the whole representation of c1,
we move to comparing them against the representation of c2:

〈〉 : b = e1
j,i′ ∧ x′′′ = x′

1 ∧ y′′′ = y′
1 ∧ x′′ 6= x2 ∧ y′′ 6= y2·

{b := e2
j,i′ , x

′′′ := x2, y
′′′ := y2}

When the computation is complete, we extend the representation of cj

corresponding to the increment by 1, and move to ei′ :

〈〉 : b = e2
j,i′ ∧ x′′′ = x′

2 ∧ y′′′ = y′
2·

{b := ei′ , x
′
j := x′′, y′

j := y′′, a[(x′′, y′
j); (x

′′, y′′)] := true; true}

The fourth instruction performs a step in comparing x′′ and y′′ with the

16
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indices in the representation of cj′ :

〈x† : X, y† : Y 〉 :

b = e
j′

j,i′ ∧ x† 6∈ {x′′, x′′′} ∧ y† 6∈ {y′′, y′′′} ∧ a[(x†, y′′′)] ∧ a[(x†, y†)]·

{x′′′ := x†, y′′′ := y†}

For any instruction Li : cj := cj − 1; goto Li′ of the 2CM, the PSA has
the following instruction, which reduces the representation of cj by moving
xj and yj from the first entry true to the third:

〈x† : X, y† : Y 〉 : b = ei ∧ x† 6= xj ∧ y† 6= yj ∧ a[(x†, yj)] ∧ a[(x†, y†)]·

{b := ei′ , xj := x†, yj := y†, a[(xj, yj); (x
†, yj)] := false; false}

A zero-test instruction of the 2CM is straightforward to represent, since
cj has value 0 if and only if xj = x′

j and yj = y′
j:

〈〉 : b = ei · {b := if xj = x′
j ∧ yj = y′

j then ei′ else ei′′}

It is clear that this PSA is in the class X × Y -to-Bool.
For any configuration (Li, v1, v2) of the 2CM, let F (Li, v1, v2) be the set

of all states (ω, γ, θ) of the PSA such that θJbK = JeiK and θ assigns to x1,
x′

1, x2, x′
2, y1, y′

1, y2, y′
2 and a a representation of v1 and v2 as above. The

rest is as in the case X × X-to-Bool.

X-to-Y ,Z. The proof for this case differs from the case X × Y -to-Bool by
how the counters are represented.

We represent a value vj of a counter cj by 2vj entries in each of the
arrays a : X → Y and b : X → Z. If their indices are x

j
k and x

′j
k , then

JaK(xj
2k−1) = JaK(xj

2k), x
j
2k = x

′j
2k−1, JbK(x′j2k−1) = JbK(x′j2k), and x

′j
2k = x

j
2k+1.

The values JaK(xj
2k−1) are mutually distinct, and distinct from a value y

which fills the rest of the array a. In the same way, the values JbK(x′j2k−1)
are mutually distinct, and distinct from a value z which fills the rest of the
array b.

The state variables xj will contain x
j
1, and x′

j will contain x
′j
2vj

. We shall
have xj = x′

j if and only if vj = 0.
This representation is illustrated, for c1 = 2 and c2 = 1, by the following

table. It shows a state of the arrays a and b where X is instantiated by
{1, . . . , 12}. Only entries which do not contain the values y and z are filled.
Therefore, the sequences x1 and x′1 are 2, 4, 5, 3 and 4, 5, 3, 6; the sequences
x2 and x′2 are 8, 9 and 9, 11.

x1 x′
1 x2 x′

2

y1
1 y1

2 y1
1 y1

2 y2
1 y2

1

z1
2 z1

1 z1
1 z1

2 z2
1 z2

1

1 2 3 4 5 6 7 8 9 10 11 12

We define:
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Θ = 〈b′ : Enum5u+1, x1, x
′
1, x2, x

′
2, x

′′ : X, y, y′ : Y, z, z′ : Z,

a : X → Y, b : X → Z〉

The CSR question is whether the PSA can reach a state with b′ = ej from
a state with b′ = e0 and

∀x : X · a[x] = y ∧ b[x] = z

At control state e0, the representations of the counters are initialised to
zero, and we move to e1:

〈〉 : b′ = e0 ∧ x1 6= x2 · {b
′ := e1, x

′
1 := x1, x

′
2 := x2}

For an increment Li : cj := cj + 1; goto Li′ , we have the following four
instructions:

〈y† : Y, z† : Z〉 : b′ = ei ∧ y† 6= y ∧ z† 6= z·

{b′ := e1
j,i′ , y

′ := y†, z′ := z†, x′′ := x1}

〈〉 : b′ = e1
j,i′ ∧ x′′ = x′

1 · {b
′ := e2

j,i′ , x
′′ := x2}

〈x† : X, x‡ : X〉 :

b′ = e2
j,i′ ∧ x′′ = x′

2 ∧ a[x†] = y ∧ b[x†] = z ∧ b[x‡] = z ∧ a[x‡] = y·

{b′ := ei′ , x
′
j := x‡, a[x′

j; x
†] := y′; y′, b[x†, x‡] := z′, z′}

〈x† : X, x‡ : X〉 :

b′ = e
j′

j,i′ ∧ x† 6= x′′ ∧ x‡ 6= x† ∧ a[x′′] = a[x†] 6∈ {y, y′} ∧ b[x†] = b[x‡] 6= z′·

{x′′ := x‡}

For a decrement Li : cj := cj − 1; goto Li′ , we have:

〈x† : X, x‡ : X〉 :

b′ = ei ∧ x† 6= xj ∧ x‡ 6= x† ∧ a[xj] = a[x†] 6= y ∧ b[x†] = b[x‡]·

{b′ := ei′ , xj := x‡, a[xj; x
†] := y; y, b[x†, x‡] := z; z}

A zero-test Li : if cj = 0 then goto Li′ else goto Li′′ is represented by

〈〉 : b′ = ei · {b
′ := if xj = x′

j then ei′ else ei′′}

X,≤-to-Y . Again, the differences from the case X × Y -to-Bool are in how
the counters are represented.

Here, we represent values v1 and v2 of the counters c1 and c2 by 2v1+2v2+2
entries in an array a : X → Y . If their indices are

x1
1 < · · · < x1

2v1+1 < x2
1 < · · · < x2

2v2+1

we have:
• JaK(xj

1) = JaK(xj
3),

• JaK(xj
2k) = JaK(xj

2k+3) for all k ∈ {1, . . . , vj − 1}, and
• JaK(x1

1), JaK(x2
1), and all the values JaK(xj

2k) are mutually distinct, and
distinct from a value y which fills the rest of the array a.
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The state variables xj will contain x
j
1, and x′

j and x′′
j will contain x

j
2vj

and

x
j
2vj+1. We shall have xj = x′

j if and only if vj = 0.
This representation is illustrated, for c1 = 3 and c2 = 1, by the following

table. It shows a state of the array a where X is instantiated by {1, . . . , 16}.
Only entries which do not contain the value y are filled. Therefore, the
sequence x1 is 2, 4, 5, 7, 9, 10, 11, and x2 is 13, 14, 16.

x1 x′
1 x′′

1 x2 x′
2 x′′

2

y1
1 y1

2 y1
1 y1

3 y1
2 y1

4 y1
3 y2

1 y2
2 y2

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

We define:

Θ = 〈b : Enum5u+1, x1, x
′
1, x

′′
1, x2, x

′
2, x

′′
2, x

♭, x♯ : X,

y, y′ : Y, a : X → Y 〉

The CSR question is whether the PSA can reach a state with b = ej from
a state with b = e0 and

∀x : X · a[x] = y

At control state e0, the representations of the counters are initialised to
zero, and we move to e1:

〈y† : Y, y‡ : Y 〉 : b = e0 ∧ x1 < x2 ∧ y† 6= y ∧ y‡ 6∈ {y, y†}·

{b := e1, x
′
1 := x1, x

′′
1 := x1, x

′
2 := x2, x

′′
2 := x2, a[x1; x2] := y†; y‡}

For an increment Li : cj := cj + 1; goto Li′ , we have the following five in-
structions. The third and fourth instructions extend the representations of
c1 and c2 respectively, corresponding to the increment. They differ only be-
cause the constraint x1

2v1+1 < x2
1 needs to be maintained when incrementing

c1.

〈y† : Y 〉 : b = ei ∧ y† 6∈ {y, a[x1]} · {b := e1
j,i′ , y

′ := y, x♭ := x1, x
♯ := x1}

〈〉 : b = e1
j,i′ ∧ x♭ = x′

1 ∧ y′ 6= a[x2] · {b := e2
j,i′ , x

♭ := x2, x
♯ := x2}

〈x† : X, x‡ : X〉 : b = e2
1,i′ ∧ x♭ = x′

2 ∧ x′′
1 < x† < x‡ < x2·

{b := ei′ , x
′
1 := x†, x′′

1 := x‡, a[x†; x‡] := y′; a[x′
1]}

〈x† : X, x‡ : X〉 : b = e2
2,i′ ∧ x♭ = x′

2 ∧ x′′
2 < x† < x‡·

{b := ei′ , x
′
2 := x†, x′′

2 := x‡, a[x†; x‡] := y′; a[x′
2]}

〈x† : X, x‡ : X〉 : b = e
j′

j,i′ ∧ a[x♭] = a[x‡] ∧ x♯ < x† < x‡ ∧ y′ 6= a[x†]·

{x♭ := x†, x♯ := x‡}
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For a decrement Li : cj := cj − 1; goto Li′ , we have:

〈x† : X, x‡ : X〉 : b = ei ∧ a[xj] = a[x‡] ∧ xj < x† < x‡ ∧ a[x†] 6= y·

{b := ei′ , xj := x†, x′′
j := if x′′

j = x‡ then x† else x′′
j , a[xj; x

‡] := y; y}

A zero-test is represented by:

〈〉 : b = ei · {b := if xj = x′
j then ei′ else ei′′}

C.2 Theorem 5.1

Suppose we have an instance of the initialised or uninitialised CSR problem,
which is for a PSA (Ω, Γ, Θ, R, I) in the class X,≤-to-Enum. We show how to
reduce this to whether a monadic MSR(NC) specification (P , NC, I,R) can
reach the upward closure of a finite set of constrained configurations U. The
latter problem was proved decidable in [6].

The basic idea is to represent any state variable x of type X by a unary
predicate x, and any array a of type X → Enumm by unary predicates a1,
. . . , am. A state of the PSA is then represented by a configuration which
contains x(v) if and only if the value of x is v, and contains ai(v) if and only
if a contains i at index v.

We can use the following properties of the typed λ-calculus to simplify the
state variables Θ:

• any variable of product type B1 × · · · × Bn is representable by variables of
types B1, . . . , Bn;

• any variable of sum type B1 + · · ·+ Bn is representable by a variable of the
enumerated type Enumn and variables of types B1, . . . , Bn;

• a finite number of variables of enumerated types is representable by one
variable of enumerated type;

• a finite number of arrays of types X → Enumm1
, . . . , X → Enummk

is
representable by one array of type X → Enumm1×···×mk

.

We can therefore assume Θ is of the form

〈b : Enumn, x1 : X, . . . , xl : X, a : X → Enumm〉

The parameters of any instruction in R can be simplified in the same way.
Furthermore, an instruction with a parameter of type Enumn′ is equivalent to
n′ instructions without that parameter. We can thus assume the parameters
of any ρ ∈ R are of the form

〈xl+1 : X, . . . , xl+l′ : X, a′ : X → Enumm′〉

and that this type context is the same for all ρ ∈ R.

An instruction whose guard is a disjunction c ∨ c′ is equivalent to two
instructions with guards c and c′. Therefore, using reduction of terms of the
typed λ-calculus to normal form, we can assume that the guard of any ρ ∈ R
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is of the form

b = f ∧
l+l′∧

i=1

a[xi] = gi ∧
l+l′∧

i=1

a′[xi] = g′
i ∧ d

where f ∈ {e1, . . . , en}, gi ∈ {e1, . . . , em}, g′
i ∈ {e1, . . . , em′}, and d is an NC

constraint over x1, . . . , xl+l′ , i.e. 5

d ::= false | true | xi = xj | xi < xj | d ∧ d′

Finally, using reduction of terms to normal form again, we can assume
that the assignments of any ρ ∈ R are of the form

{b := f ′, x1 := y1, . . . , xl := yl,

a := λx : X · if x = x1 then g′′
1 elseif · · · x = xl+l′ then g′′

l+l′ else h[(a[x], a′[x])]}

where f ′ ∈ {e1, . . . , en}, yi ∈ {x1, . . . , xl+l′}, g′′
i ∈ {e1, . . . , em}, and h repre-

sents a function from Enumm × Enumm′ into Enumm.

We now construct a monadic MSR(NC) specification (P , NC, I,R). Let
P consist of:

• nullary predicate symbols z, nz, b1, . . . , bn;

• unary predicate symbols x1, . . . , xl;

• unary predicate symbols aa′i,j for i ∈ {1, . . . ,m}, j ∈ {0, 1, . . . ,m′}.

NC is the system of name constraints [6]:

ϕ ::= false | true | x = x′ | x < x′ | ϕ ∧ ϕ′

NC constraints are interpreted over the integers Z. The usual entailment
relation for linear integer constraints is used and denoted ⊑c.

The simplifications of the state variables Θ above mean that the CSR
problem now refers to a projection of the state variable b. Thus we need to
decide whether a state in which b has one of a set of values is reachable from a
state in which b has one of another set of values (and the array state variable a

is initialised appropriately). This is equivalent to a finite number of questions
for pairs of values of b, so we can work with the original form of the CSR
problem.

If the CSR problem is uninitialised, i.e. to decide whether a state with
b = ej is reachable from a state with b = ei, let I consist of all configurations
of the form

z | bi | x1(v1) | · · · | xl(vl) | aa′i1,0(1) | · · · | aa′ik,0(k)

such that k is a positive integer and v1, . . . , vl ∈ k̂.

If the CSR problem is initialised, i.e. to decide whether a state with b = ej

is reachable from a state with b = ei and ∀x : X · a[x] = ta, let I consist of all
configurations as above, such that in addition all ii′ equal

JtaK{X 7→k̂},{≤X 7→≤
k̂
,b 7→i,x1 7→v1,...,xl 7→vl}

5 Here t = t
′ and t < t

′ are abbreviations for t ≤ t
′ ∧ t

′ ≤ t and t ≤ t
′ ∧¬t

′ ≤ t respectively.
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For any instruction ρ ∈ R, whose form is as above, R contains a rule

nz | bf | x1(x1) | · · · | xl(xl) | aa′g1,g′
1

(x1) | · · · | aa′gl+l′ ,g
′

l+l′
(xl+l′) −→

z | bf ′ | x1(y1) | · · · | xl(yl) | aa′g′′
1
,0(x1) | · · · | aa′g′′

l+l′
,0(xl+l′)

[aa′i,j(x
′
i,j) →֒ aa′JhK(i,j),0(x

′
i,j) : i ∈ {1, . . . ,m} ∧ j ∈ {1, . . . ,m′}] : d

For simplicity of presentation, we used here multiple occurences of the vari-
ables x1, . . . , xl+l′ and x′

i,j instead of extending by equalities the constraint of
the rule.

The purpose of the predicate symbols z and nz, and the indices 0 in the re-
actions aa′i,j(x

′
i,j) →֒ aa′JhK(i,j),0(x

′
i,j), is to ensure that always aa′i,j 6= aa′JhK(i′,j′),0,

as required in [6, Definition 27]. The following rule changes all such indices to
1. Using the predicate symbols z and nz, this rule is fired in alternation with
the rules above.

z −→ nz [aa′i,0(x
′
i) →֒ aa′i,1(x

′
i) : i ∈ {1, . . . ,m}] : true

When j 6= 0, an atomic formula aa′i,j(x) represents a[x] = ei and a′[x] = ej.
The remaining rules, one for each i ∈ {1, . . . ,m} and j ∈ {2, . . . ,m′}, can
be fired an arbitrary number of times after the previous rule. They ensure
that the values a′[x] can be arbitrary, corresponding to the array a′ being a
parameter in the instructions in R.

nz | aa′i,1(x) −→ nz | aa′i,j(x) : true

For any state (ω, γ, θ) of the PSA (Ω, Γ, Θ, R, I), where ω = {X 7→ k̂} and
γ = {≤X 7→≤k̂}, let

F (ω, γ, θ) = z | bθJbK | x1(θJx1K) | · · · | xl(θJxlK) | aa′θJaK(1),0(1) | · · · | aa′θJaK(k),0(k)

It is straightforward to show that the MSR(NC) specification (P , NC, I,R)
can reach a configuration M with z ∈ M from F (ω, γ, θ) if and only if M =
F (ω, γ, θ′) for some state (ω, γ, θ′) reachable from (ω, γ, θ).

Let U = {z | bj : true}. Then the PSA can reach a state with b = ej if
and only if the MSR(NC) specification can reach a configuration in JUK, i.e.
a configuration containing z and bj. By [6, Theorem 2], there is an algorithm
to decide the latter. (The algorithm in [6] involves elimination of existential
quantifiers from NC constraints, which is not possible in general. However,
it is straightforward to overcome this problem, by using an auxiliary unary
predicate symbol ε(x). Instead of eliminating ∃x, we keep ε(x) in the con-
strained configuration. These predicates do not change the denotations of the
constrained configurations M, but they add empty multisets into the strings
Str(M).)
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D Example: Bully Algorithm

D.1 System

We express as a PSA a model of the Bully Algorithm for leadership election
in a distributed system in which process identifiers are linearly ordered [10].

The signature is ({X}, 〈≤X : X ×X → Bool〉), where X represents the set
of all process identifiers. We consider all instantiations which assign to X a
set of the form {1, . . . , k}, and to ≤X the standard ordering.

We model passing of time and detection of failure as follows. A process
which has not failed can broadcast to relevant processes with lower identifiers,
to signal its presence. At that point, its clock is set to 1. Whenever the system
performs a tock transition, all clocks are increased by 1. If this would make
the clock of a process greater than a constant TS, that process fails. Processes
can also fail at other times. In any case, it is not possible for an alive process
to let TS tock transitions happen without signalling its presence.

Since processes periodically inform others of their presence, there is no need
to have explicit election broadcasts: a process in Elect mode can simply wait
for TE time units, and if it does not receive a signal from a higher process
during that time, it goes into Coord mode.

In order for the system to be within the X,≤-to-Enum class, processes
do not store identifiers of their coordinators, although a process in Coord

mode periodically informs all lower processes that it is their coordinator. For
specification purposes, we can maintain coordinator identifiers for a bounded
number of processes.

The state of a process consists of its mode and two clocks. The primary
clock is used to measure the time since the process last signalled its presence.
The secondary clock measures waiting time of the process: either during an
election, or while awaiting a coordinator, or since it last heard from a coordi-
nator while running. We use one array variable to hold all this information:

a : X → ({Elect ,Coord ,Await ,Run,Fld}×

{1, . . . , TS} × {1, . . . , max{TE, TA, TR}})

It remains to present the system’s instructions. We write a[t].m, a[t].c and
a[t].c′ instead of π1(a[t]), π2(a[t]) and π3(a[t]).

tock This instruction increases by 1 the primary clocks of all processes which
are not in the Fld mode. If that would make the primary clock of a process
greater than TS, that process becomes Fld and its clocks are reset to 1.
The instruction also increases by 1 the secondary clocks of all processes in
the Elect , Await , or Run modes. If that would make the secondary clock
of a processes greater than the corresponding constant TE, TA, or TR, the
mode of that process is changed and its secondary clock is reset to 1. For
example, if a process is Run, but has not heard from a Coord for TR time
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units, it goes into Elect mode.

〈〉 : true·
a := λx : X· if a[x].m 6= Fld ∧ a[x].c = TS then (Fld , 1, 1)

elseif a[x].m = Elect ∧ a[x].c′ = TE then (Coord , a[x].c + 1, 1)
elseif a[x].m = Await ∧ a[x].c′ = TA then (Elect , a[x].c + 1, 1)
elseif a[x].m = Run ∧ a[x].c′ = TR then (Elect , a[x].c + 1, 1)
elseif a[x].m 6= Fld ∧ a[x].m 6= Coord

then (a[x].m, a[x].c + 1, a[x].c′ + 1)
elseif a[x].m = Coord then (a[x].m, a[x].c + 1, a[x].c′)
else a[x]

signal This instruction signals the presence of a process to all relevant pro-
cesses with lower identifiers, and it resets the primary clock of the process to
1. If a process in the Elect , Await , or Run mode signals to a process which
is in the Elect or Coord mode, the latter becomes Await . If a Coord signals
to a process which is not in the Fld mode, it “bullies” the latter to go into
the Run mode. Equality between two terms of type X is an abbreviation
for t ≤X t′ ∧ t′ ≤X t.

〈x : X〉 : a[x].m 6= Fld ·
a := λx′ : X· if x′ = x then (a[x].m, 1, a[x].c′)

elseif x′ < x ∧ a[x].m 6= Coord∧
a[x′].m ∈ {Elect ,Coord} then (Await , a[x′].c, 1)

elseif x′ < x ∧ a[x].m = Coord ∧ a[x′].m 6= Fld

then (Run, a[x′].c, 1)
else a[x′]

fail At any point, a process can fail.

〈x : X〉 : a[x].m 6= Fld · a[x] := (Fld , 1, 1)

revive At any point, a Fld process can revive, and it goes into the Elect

mode.

〈x : X〉 : a[x].m = Fld · a[x] := (Elect , 1, 1)

D.2 Properties

For example, the following safety properties of the Bully Algorithm model can
be expressed as initialised CSR in an extended system.

• There are never two distinct processes in Coord mode. We add a state
variable b : {0, 1}, and an instruction

〈x : X, x′ : X〉 : x 6= x′ ∧ a[x].m = Coord ∧ a[x′].m = Coord · b := 1

The check is whether, from a state in which b = 0 and ∀x : X · a[x] =
(Elect , 1, 1), the system can reach a state in which b = 1.

• A process cannot continuously be Run since receiving a signal from a Coord

until receiving a signal from a Coord whose identifier is smaller than that

of the previous one. We add state variables b : {0, 1, 2} and y, y′ : X. We
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Lazić, Newcomb and Roscoe

can modify the instructions tock, signal and fail, so that:
· if b = 0 and a Coord x signals to process y, b is set to 1 and y′ is set to x;
· if b = 1 and process y leaves the Run mode, b is set to 0;
· if b = 1 and a Coord x ≥ y′ signals to process y, y′ is set to x;
· if b = 1 and a Coord x < y′ signals to process y, b is set to 2.
The check is whether, from a state in which b = 0 and ∀x : X · a[x] =
(Elect , 1, 1), the system can reach a state in which b = 2.

• There is never a Coord process and a Run process with a greater identifier.

We add a state variable b : {0, 1}, and an instruction

〈x : X, x′ : X〉 : x < x′ ∧ a[x].m = Coord ∧ a[x′].m = Run · b := 1

The check is as in the first example.

D.3 Model checking

Our model of the Bully Algorithm is in the class X,≤-to-Enum. Theorem 5.1
gives us a decision procedure for initialised and uninitialised CSR problems,
such as those above.
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