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Abstract

Arithmetic coding is a highly effective method for data compression. One of the
criticisms levelled at it is that it runs fairly slowly. We propose a novel method for
arithmetic coding that runs at a significantly higher speed and can be implemented
using simple hardware if required.

1 Introduction

Arithmetic coding is a technique for data compression. The origins of the method come from
the work of Claude Shannon, although the first recognisable arithmetic coder was developed
by Elias some time in 1963. The ideas were further refined until, in 1987, Witten, Neal and
Cleary published a practical implementation [13] of the method including C source code.
People could then try their own experiments, and the method began to take off.

One of the criticisms often levelled at arithmetic coding is that it tends to run very slowly.
Several authors have attempted to remedy this, with limited success. Moffat et al. [6] man-
aged to produce a coder that is faster on systems that have to perform multiplications and
divisions in software, although there is a significant cost in the algorithm’s compression
effectiveness and the speedup completely vanishes when hardware-based arithmetic is avail-
able. The new algorithm described in this paper can compete even with hardware-based
arithmetic, as it uses only addition, comparison and bit-shift operations. Furthermore, it
can easily be implemented in cheap hardware.

2 Mathematical Preliminaries

2.1 Definition. For real numbers a and b such that a < b, we use the notation 〈a, b〉 to
represent the interval1 {x ∈ R : a ≤ x < b}. We let I = {〈a, b〉 : a, b ∈ R ∧ a < b}. �

We will need to use some results about the floor function, x 7→ bxc. Many published
proofs involving arithmetic coding have been made more difficult than necessary because the
authors were unaware of these useful characterisations. These results are used extensively
throughout this paper. Because the proofs are obvious, they are omitted.

2.2 Lemma. (Rule of Floors) Let x ∈ R and n ∈ Z. Then

• n ≤ bxc ⇐⇒ n ≤ x
• bxc < n ⇐⇒ x < n. �

∗Supported by a grant from the EPSRC.
1The standard notation for such intervals is [a, b). We have avoided this notation owing to the possible

confusion between interval delimiters, list brackets and parentheses.
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Figure 1: The Arithmetic Coder of Example 3.1.

2.3 Lemma. (Plus 1 Rule) Let n ∈ Z and m ∈ Z. Then

• n ≤ m ⇐⇒ n < m + 1
• n < m ⇐⇒ n + 1 ≤ m �

For the most part, functions will be specified using the notation of the Haskell program-
ming language [1]. This is a particularly intuitive language that makes it very easy to carry
out formal reasoning about programs. Following the lead of Witten, Neal and Cleary, we
translate our faster coder into C to enable the reader to experiment.

3 What is Arithmetic Coding?

A message can be considered as a finite list of symbols drawn from some alphabet. In
arithmetic coding, each message is represented by an interval of real numbers in 〈0, 1〉.
Messages containing more information are represented by narrower intervals; the empty
message is always encoded as 〈0, 1〉.

Every interval that represents some message xs can be partitioned into disjoint subin-
tervals, one for each letter x of our alphabet. The subintervals are then taken to represent
the messages xs ++ [x]. (++ is Haskell’s list concatenation operator.) By repeating this
partitioning process, we can encode messages of any required length.

To decode, all we need to know is a single element e of the interval representing the
message. Suppose that xs is any message whose corresponding interval I contains e. The
messages xs ++ [x] will be represented by disjoint subsets of I, only one of which contains
e. We can use this fact to find successively longer messages whose corresponding interval
contains e. Eventually, we will have recovered the whole message.

The partitions used by these algorithms are fixed at the design stage, so both the encoder
and decoder will know how to partition each interval. The particular choice of partition used
is known as a model, and is discussed further shortly.

3.1 Example. Suppose that our alphabet consists of the three symbols “Fish”, “Chips”
and “EOF”. Every interval that represents a message xs is partitioned into thirds, with the
lowest third representing the message xs ++[Fish], the middle third representing the message
xs ++[Chips], and the highest third representing the message xs ++[EOF]. The EOF symbol
occurs at the end of every message we wish to encode, and nowhere else.

Suppose that we need to encode the message [Fish,Chips,EOF]. The only message whose
encoding we know straight away is the empty message, [ ], which is encoded as 〈0, 1〉.

By using our model, we see that [ ] ++ [Fish] is encoded as 〈0, 1/3〉. The middle third of
this, or 〈1/9, 2/9〉, is the interval representing [Fish]++[Chips]. Finally, [Fish,Chips]++[EOF]
is represented by the top third of 〈1/9, 2/9〉, or 〈5/27, 6/27〉, and our complete message has been
encoded.
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Suppose now that a friend has encoded a message, and we are told that its corresponding
interval contains 12/25. We know straight away that [ ] is a message whose corresponding
interval, 〈0, 1〉, contains 12/25.

As before, 〈0, 1〉 is partitioned into thirds, and the subset containing 12/25 is 〈1/3, 2/3〉.
This corresponds to the message [ ] ++ [Chips]. The middle third of 〈1/3, 2/3〉 is 〈4/9, 5/9〉,
representing the message [Chips] ++ [Chips], and this too contains 12/25. The message
[Chips,Chips] ++ [Fish] is represented by the interval 〈12/27, 13/27〉, which also contains 12/25;
as does 〈38/81, 39/81〉, representing [Chips,Chips,Fish] ++ [EOF]. This message ends in EOF,
and so is the same as the message that our friend encoded. We have successfully decoded
the message. �

The arithmetic decoder continues to emit symbols until the whole message has been
recovered. The question then arises of how the decoder can know when it has decoded a
complete message. The commonest method in the literature is to use of a special EOF
symbol, as was the case in the preceding example. Another common choice is to record
the length of the message and decode precisely that many symbols. Which method is used
is largely a matter of taste. The first method may be more useful when the length of the
message to be compressed is not known in advance, while the second might be better if
one wishes to check in advance that there is sufficient space to decode the entire message.
Throughout this paper, we follow the literature and assume that all messages end in the
EOF character.

Although the idea behind arithmetic coding is strikingly simple, practical implementa-
tions have earned themselves a deserved reputation for being difficult to understand and
reason about. Perhaps as a result of this, there have been only a few attempts (eg. [2, 11])
to produce a rigorous proof of the method’s correctness. The current work was a result
of a formal derivation of the method, although it is presented here in a form that is more
accessible to experimentalists.

4 Models

A model is an association between symbols and disjoint intervals in 〈0, 1〉, and is used to
calculate the partitions mentioned in the previous section. Suppose that Ixs is the interval
corresponding to the string xs, and Ixs++[x] is the interval corresponding to the message
xs ++ [x]. Suppose also that Mx is the interval associated with the letter x in our model.
If we stretch the real line so that 〈0, 1〉 is mapped onto Ixs , then Mx will be mapped onto
Ixs++[x].

4.1 Example. Returning to our previous example, we could take

• MFish = 〈0/3, 1/3〉
• MChips = 〈1/3, 2/3〉
• MEOF = 〈2/3, 3/3〉

If we map 〈0, 1〉 onto Ixs , then MFish will be mapped onto the lowest third of Ixs , which
is Ixs++[Fish]. Similarly, MChips will be mapped onto the middle third of Ixs , which is
Ixs++[Chips], and the same goes for the EOF symbol. �

Most models have rational-valued endpoints to their intervals. Therefore we can write
Mx = 〈n1/d, n2/d〉 for some n1, n2 and d. Furthermore, we can assume without loss of
generality that d depends only on the model, and not on the letter being encoded. If
Ixs = 〈a, b〉, then

Ixs++[x] =
〈
a +

n1

d
(b− a), a +

n2

d
(b− a)

〉
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The decoder works in a similar manner. Suppose that e is any member of the interval
representing the message, and we have found that e ∈ Ixs . We wish to find a letter such
that e ∈ Ixs++[x]. Note that

e ∈ Ixs++[x]

⇔ {Preceding result }

e ∈
〈
a +

n1

d
(b− a), a +

n2

d
(b− a)

〉
⇔ {Set Theory and Arithmetic }

n1 ≤ d× e− a

b− a
< n2

⇔ {Rule of Floors }

n1 ≤
⌊
d× e− a

b− a

⌋
< n2

Hence, we can find the next letter x by comparing bd(e − a)/(b − a)c with the associated
values of n1 and n2.

Arithmetic coders are not required to use the same model throughout the encoding of
a message. Most practical coders adjust the model as encoding proceeds. This enables the
coder to closely match the data being encoded, thereby optimising compression effectiveness.
All that is required is that the encoder and decoder must both use the same model at the
same stage in the process. In the literature, it is said that the encoder and decoder must be
“in lockstep”.

5 The Coder’s Output

We have seen that the output from an arithmetic coder is an interval. Most of the time,
this is not useful. Instead, we need to store our encoded data as a sequence of letters from
some finite alphabet. For convenience, and without loss of generality, we will assume that
the alphabet used is {0, 1, . . . , base − 1}, where base is a fixed constant. We refer to the
letters of this alphabet as digits.

The analogy with the standard radix notation is intended, since the output of an arith-
metic coder will be the digits of some number in the interval Ixs . For example, taking
base = 10 and Ixs = 〈0.25, 0.5〉, we could output [3], [4], or even [2, 5, 0]. Since we are
interested in data compression, it is natural to attempt to minimise the length of the output
as much as is convenient.

Suppose that Ixs = 〈a, b〉. As a and b approach each other, their initial digits may
coincide. For example, taking 〈a, b〉 = 〈0.3456, 0.3491〉, the initial digits, 3 and 4, are the
same for a and b. Therefore, every number in 〈a, b〉 will begin with the digits [3, 4]. We
may as well output those digits immediately, rather than waiting for the encoding to be
completed. This is known as incremental encoding.

We can do better than this, however, by outputting a digit whenever 1/base ≥ b−a, not
just when they have the same initial digits. For example, if Ixs = 〈0.4998, 0.5001〉, then we
can provisionally output the digits [4, 9, 9], although we may need to revise these to [5, 0, 0]
at a later stage in the encoding.

This outputting of digits can be made precise. Instead of representing the interval as
Ixs = 〈a, b〉, we represent it as

Ixs = 〈digits file a, digits file b〉

where file is a list of digits and
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digits [ ] x = x
digits ([d] ++ ds) x = (d + digits ds x)/base

Whenever a digit is appended to file, we must therefore shift a and b one digit to the left to
ensure that the value of Ixs is unchanged.

Finally, we must consider what happens when the encoding is finished. We can assume
that none of the above cases occur, and so we know that

1/base < b− a

⇔ {Arithmetic }

a× base + 1 < b× base

⇔ {Rule of Floors }

ba× base + 1c < b× base

⇔ {Since a× base < ba× base + 1c }

a× base < ba× base + 1c < b× base

⇔ {Arithmetic }

a < ba× base + 1c/base < b

⇒ {Set theory }

ba× base + 1c/base ∈ 〈a, b〉

Therefore, we need only output one final digit, which is ba× base + 1c.

6 Integer Arithmetic and Approximate Coding

The work so far requires the use of arbitrary-precision arithmetic. This greatly slows the
compression and decompression algorithms, and costs a great deal of memory. Therefore, we
would like to introduce some alterations to enable us to use only finite-precision integers to
represent intervals. Since we can’t represent all possible intervals using such integers (there
aren’t enough integers) we will have to make some approximations.

Of course, an approximate arithmetic coder will be slightly less effective than the exact
version, but this is a small price to pay for practicality.

Let N be some integer that is a multiple of base, and suppose that

Ixs = 〈digits file (a/N), digits file (b/N)〉

for some integers a and b. Then we can approximately encode the next symbol by taking

Ixs++[x] =
〈

digits file
(
ba + (n1/d)(b− a)c

N

)
, digits file

(
ba + (n2/d)(b− a)c

N

)〉
≈

〈
digits file

(
a + (n1/d)(b− a)

N

)
, digits file

(
a + (n2/d)(b− a)

N

)〉
Although we are now encoding approximately, the decoder can still recover the original

message since the Ixs++[x] intervals are still disjoint subsets of Ixs . We will soon see how this
can be used to produce an alternative approximation to division that requires significantly
less time to evaluate than the obvious one given here.

There is one small problem with approximate arithmetic coding. Suppose that b−a < d,
n1 = 0 and n2 = 1. Then ⌊

a +
n1

d
(b− a)

⌋
= a =

⌊
a +

n2

d
(b− a)

⌋
5



and so Ixs++[x] is the empty set. This is not a well-defined state of the arithmetic coder
(which requires its intervals to be non-empty) and in practice, a coder would probably crash
or spew out infinite rubbish if this were to happen. This is called the underflow problem.

The solution is to use incremental encoding to ensure that a and b are always widely-
separated, for then this problem can only occur when d > N/base. By choosing N to be
sufficiently large and preventing d from growing too much, we can ensure that this never
happens.

7 Incremental Decoding

Suppose that digits file (e/N) ∈ Ixs for some list file and real number e, and we wish to
find a letter x such that digits file (e/N) ∈ Ixs++[x]. As we did with the exact coder, we can
derive a method for finding x rigorously.

digits file (e/N) ∈ Ixs++[x]

⇔ {Definitions of Ixs++[x] and digits }

e/N ∈
〈⌊

a +
n1

d
(b− a)

⌋/
N,

⌊
a +

n2

d
(b− a)

⌋/
N

〉
⇔ {Arithmetic and Set Theory }⌊

a +
n1

d
(b− a)

⌋
≤ e <

⌊
a +

n2

d
(b− a)

⌋
⇔ {Rule of Floors }⌊

a +
n1

d
(b− a)

⌋
≤ bec <

⌊
a +

n2

d
(b− a)

⌋
⇔ {Plus 1 Rule }⌊

a +
n1

d
(b− a)

⌋
< bec+ 1 ≤

⌊
a +

n2

d
(b− a)

⌋
⇔ {Rule of Floors }

a +
n1

d
(b− a) < bec+ 1 ≤ a +

n2

d
(b− a)

⇔ {Arithmetic }

n1(b− a) < d(bec − a + 1) ≤ n2(b− a)

⇔ {Plus 1 Rule }

n1(b− a) ≤ d(bec − a + 1)− 1 < n2(b− a)

⇔ {Arithmetic }

n1 ≤
d(bec − a + 1)− 1

b− a
< n2

⇔ {Rule of Floors }

n1 ≤
⌊

d(bec − a + 1)− 1
b− a

⌋
< n2

This result was first proved by Witten, Neal and Cleary [13], except their proof was
rather more complicated because they didn’t use the Rule of Floors, preferring to reason
directly from the definition of the floor function.
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The use of integer arithmetic in the encoder has made it possible for us to use incremental
decoding, since we only need to use the integer part of e to decode each symbol. The
fractional part of e (representing the remainder of the message that has yet to be decoded)
can be left in the compressed data stream until it is needed.

Since the value of Ixs and digit file (e/N) both depend on file, it will be necessary to
update the value of e whenever file gets updated. As before, we simply shift digits to the
left. This time, however, the digit immediately to the right of the decimal point gets shifted
into the integer part of e, which is equivalent to reading the next digit from the compressed
data stream.

8 Approximate Interval Shrinking

In the Witten, Neal and Cleary coder, we require to calculate a + bn1(b − a)/dc and a +
bn2(b − a)/dc, where 0 ≤ n1 < n2 ≤ d and, to prevent the underflow problem rearing its
ugly head, d ≤ b− a. We give an approximation to⌊

ni(b− a)
d

⌋
when 0 ≤ ni ≤ d ≤ b− a

where ni = n1 or n2. Previous work on such approximations can be found in [3, 4, 8, 9].
For brevity, we let w = b− a.

Let k ∈ N be such that 1/2w < 2kd ≤ w, that is k = blog2(w/d)c. Then⌊niw

d

⌋
=

⌊
(2kni)w
(2kd)

⌋
and so we can assume without loss of generality that 1/2w < d ≤ w. Now,

1/2w < d ≤ w

⇔ {Arithmetic }

1 ≤ w

d
< 2

⇒ {Since 0 ≤ x− bxc < 1 for all x }

1 ≤ niw

d
−

⌊niw

d

⌋
+

w

d
< 3

⇔ {Arithmetic }

1 +
⌊niw

d

⌋
≤ (ni + 1)w

d
< 3 +

⌊niw

d

⌋
⇔ {Rule of Floors }

1 +
⌊niw

d

⌋
≤

⌊
(ni + 1)w

d

⌋
< 3 +

⌊nw

d

⌋
⇔ {Arithmetic }

1 ≤
⌊

(ni + 1)w
d

⌋
−

⌊niw

d

⌋
< 3

⇔ {Arithmetic }⌊
(ni + 1)w

d

⌋
−

⌊niw

d

⌋
= 1 or 2
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Observe that

d−1∑
ni=0

(⌊
(ni + 1)w

d

⌋
−

⌊niw

d

⌋)
=

⌊
dw

d

⌋
−

⌊
0w

d

⌋
= w.

But each of the terms in this sum evaluates to either 1 or 2. Suppose that p of them evaluate
to 1 and q of them evaluate to 2. There are d terms in total. Therefore,

1p + 2q = w (writing the above sum in a different way) and
p + q = d (since the total number of terms is d).

This pair of equations has solution

p = 2d− w, and
q = w − d.

We therefore make the following approximation:⌊
(ni + 1)w

d

⌋
−

⌊niw

d

⌋
≈

{
1 if ni ≥ w − d
2 if ni < w − d

Note that there are p = 2d−w values of ni for which this approximation is 1, and q = w−d
for which it is 2. Furthermore, we can easily see that⌊niw

d

⌋
≈

{
ni + w − d if ni ≥ w − d
2ni if ni < w − d

Guided by this reasoning, we make the following definition:

approx w ni d
| 2kni ≥ w − 2kd = 2kni + w − 2kd
| 2kni < w − 2kd = 2(2kni)

where k = blog2(w/d)c

for then ⌊niw

d

⌋
≈ approx w ni d.

For the purposes of decoding, we will need to be able to reverse this approximation.
Suppose that, for some n,

approx w ni d ≤ n < approx w (ni + 1) d.

What is the value of ni? To answer this question, we would like to define another function,
unapprox, so that ni = unapprox w n d or, to put it another way,

ni ≤ unapprox w n d < ni + 1.

This is equivalent to saying that

approx w ni d ≤ n ⇐⇒ ni ≤ unapprox w n d.
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Figure 2: Integer Division and Approximate Division with d = 6 and w = 8

A little bit of easy work gives us that

unapprox w n d
| n ≥ 2(w − 2kd) = b2−k(n− w + 2kd)c
| n < 2(w − 2kd) = b2−k(1/2n)c

where k = blog2(w/d)c

Since the approximation requires at most a small constant number of additions, sub-
tractions and bit-shifts, it is clear that it will be much quicker to evaluate than the original
function, which used multiplication and division. In effect, we have approximated integer
division by putting a kink into the graph: see Figure 2. This approximation also lends itself
to hardware implementations [3] of arithmetic coding, since multiplication and division re-
quire a significantly larger quantity of silicon than these simple operations. Not only is our
approximation reversible, but the operations required to reverse it are also extremely cheap.
We can therefore make a very fast decoder as well.

The approximation’s cost is that the compression effectiveness is reduced by about 1%.
This compares favourably with the cost of 5% that Moffat was prepared to accept in his
improved coder [6].

Using this approximation to division, we can update our coder. As before, suppose that

Ixs = 〈digits file (a/N), digits file (b/N)〉

for some integers a and b. Then we take

Ixs++[x] =
〈

digits file
(

a + approx (b− a) n1 d

N

)
, digits file

(
a + approx (b− a) n2 d

N

)〉
Suppose we know that digits file (e/N) ∈ Ixs , and we wish to find the next letter in the

encoded data stream. Then

digits file (e/N) ∈ Ixs++[x]

⇔ {Definition of digits and Ixs++[x] }

e

N
∈

〈
a + approx (b− a) n1 d

N
,

a + approx (b− a) n2 d

N

〉
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Encoding Encoded Size Encoding Time Decoding Time
None 3,251,493 bytes
Witten 1,795,707 bytes 4.181 s 4.378 s
Moffat 2,180,261 bytes 3.583 s 4.712 s
Fast 1,818,799 bytes 1.335 s 1.710 s

Table 1: Comparison of the Different Arithmetic Coders

⇔ {Arithmetic and Set Theory }

approx (b− a) n1 d ≤ e− a < approx (b− a) n2 d

⇔ {Rule of Floors }

approx (b− a) n1 d ≤ be− ac < approx (b− a) n2 d

⇔ {Property of approx and unapprox }

n1 ≤ unapprox (b− a) be− ac d < n2

We can therefore use the unapprox function to help recover the next letter.

9 Conclusion

Table 1 shows the performances of the various arithmetic coders discussed so far, measured
on a SunBlade 100 machine with a 500MHz Sparc 9 processor running Solaris. The test file
is the concatenation of the files in the Calgary Corpus [12]. The fast coder (given in C in
the appendix) produces an output file that is about 101% of the output of Witten’s coder,
while encoding and decoding take only 32% and 39% of the time respectively. The model
used in all cases was identical to the adaptive model given in Witten’s original paper [13]. It
is interesting to note that the time required for modelling in the encoder was 0.814 seconds,
meaning that the faster encoder runs at about 6.5 times the speed when modelling time is
discounted.

A A C Implementation of the Fast Arithmetic Coder

A.1 Introduction

The arithmetic coding program given here is based on the fast coder discussed in previous
sections. It is optimised for readability as well as speed, and is intended to be used as a
general-purpose arithmetic coding library—experience has shown that it’s very hard to get
arithmetic coding algorithms to run correctly, so it is much better to reuse tried and tested
code!

The encoded data produced by this code contains a few dummy bytes in addition to
the useful data. This is to make the program more flexible in practical applications. In
particular, the encoder and decoder will both leave the file pointer in the same location
after compression / decompression has been completed. Therefore, one can simply append
further data to the file without having to re-position the file pointer after decoding. This
convenience was not present in other arithmetic coders.

Before using this code, the reader should be aware that arithmetic coding was covered
by a number of patents. Many of these have now expired, since the method is over 20 years
old; others may still be in force. You need to perform your own checks. None of the novel
ideas in this paper are covered by additional patents, so you can use them as you wish.
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These files can be downloaded from

http://barney stratford.fastmail.fm/coder.zip

which also includes examples of how to use the library.

A.2 ac.h

The programmers’ interface for this arithmetic coder is fairly self-explanatory. The de-
nominator used by AC_Encode and AC_Decode is that passed to the previous call to those
functions. Initially, the denominator is set to 1, so you will almost certainly want to say
AC_Encode (0, 1, new_denom) before beginning the encoding of the file, and equivalently
value = AC_Decode (0, 1, new_denom) before decoding.

In order to ensure correct operation, both the compressor and decompressor must make
matching calls to AC_Encode and AC_Decode. If the compression software makes a call to
AC_Encode (low, high, new_denom) then the decompressor must make a matching call to
AC_Decode (low, high, new_denom).

/*
* ac.h
* By Barney Stratford
* Version 12, 13th January 2005
*/

#ifndef AC_H
#define AC_H

#define MAX_DENOM 65536

void AC_InitialiseEncoder (FILE *compressed);
void AC_InitialiseDecoder (FILE *compressed);

void AC_Encode (register long low, register long high, long new_denom);
long AC_Decode (register long low, register long high, long new_denom);

void AC_FinaliseEncoder (void);
void AC_FinaliseDecoder (void);

#endif

A.3 encode.c

Throughout this file, the left variable contains the value of a and width contains b−a. The
value of k in the definition of approx is contained in bits, while kink contains the location
of the kink in the graph of the approximation to integer division.

The denom variable contains the denominator to be use next time AC_Encode is called.
It is not used directly, other than in the assertions at the beginning of AC_Encode.

/*
* encode.c
* By Barney Stratford
* Version 12, 13th January 2005
*/

11



#include <assert.h>
#include <stdio.h>
#include "ac.h"

#define BITS 16

static FILE *file = NULL;
static long left, kink, bits;
static long denom;
extern const int ac_shift[];

static void write_byte (long byte);

void AC_InitialiseEncoder (FILE *compressed)
{
#ifdef DEBUG

assert (compressed != NULL);
assert (file == NULL);

#endif

/* Initialise state */
file = compressed;
left = 0;
kink = 0;
bits = BITS + 8;
denom = 1;

}

void AC_Encode (register long low, register long high, long new_denom)
{

register long width;

#ifdef DEBUG
assert (1 <= new_denom);
assert (new_denom <= MAX_DENOM);
assert (0 <= low);
assert (low < high);
assert (high <= denom);
assert (file != NULL);

#endif

/* Shrink the interval */
low <<= bits;
high <<= bits;
if (low < kink) low <<= 1;
else low += kink;
if (high < kink) high <<= 1;
else high += kink;
left += low;
width = high - low;
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/* If necessary, write out some bytes */
while (width <= 1L << BITS)
{

write_byte (left >> BITS);
left = (left & ((1L << BITS) - 1)) << 8;
width <<= 8;

}

/* Adjust the denominator */
if (new_denom <= 256)

bits = BITS + ac_shift[new_denom] - ac_shift[width >> BITS];
else

bits = BITS - 8 + ac_shift[new_denom >> 8] - ac_shift[width >> BITS];
if (new_denom << bits > width) bits--;
kink = width - (new_denom << bits);
denom = new_denom;

}

void AC_FinaliseEncoder (void)
{
#ifdef DEBUG

assert (file != NULL);
#endif

/* Write out any remaining data in the buffer */
write_byte (left >> BITS);
write_byte (256);
write_byte (0);
write_byte (0);
file = NULL;

}

static void write_byte (long byte)
{

static int buffer = 0, carry = 0;

if (byte < 255)
{

putc (buffer, file);
while (carry)
{

putc (255, file);
carry--;

}
buffer = byte;

}
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else if (byte > 255)
{

putc (buffer + 1, file);
while (carry)
{

putc (0, file);
carry--;

}
buffer = byte - 256;

}
else carry++;

}

A.4 decode.c

All the variables in the decoder are analogous to those in the encoder, with the exception of
left, which now contains be−ac. The fractional part of e is stored in the incoming encoded
data-stream.

The value variable is used only to facilitate the assertion-checking that occurs at the
beginning of AC_Decode.

/*
* decode.c
* By Barney Stratford
* Version 12, 13th January 2005
*/

#include <stdio.h>
#include <assert.h>
#include "ac.h"

#define BITS 16

static FILE *file = NULL;
static long left, kink, bits;
static long denom, value;
extern const int ac_shift[];

static long read_byte (void);

void AC_InitialiseDecoder (FILE *compressed)
{
#ifdef DEBUG

assert (compressed != NULL);
assert (file == NULL);

#endif
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/* Initialise state */
file = compressed;
read_byte ();
left = (read_byte () << 16) + (read_byte () << 8) + read_byte ();
kink = 0;
bits = BITS + 8;
denom = 1;
value = 0;

}

long AC_Decode (register long low, register long high, long new_denom)
{

register long width;

#ifdef DEBUG
assert (1 <= new_denom);
assert (new_denom <= MAX_DENOM);
assert (0 <= low);
assert (low <= value);
assert (value < high);
assert (high <= denom);
assert (file != NULL);

#endif

/* Shrink the interval */
low <<= bits;
high <<= bits;
if (low < kink) low <<= 1;
else low += kink;
if (high < kink) high <<= 1;
else high += kink;
left -= low;
width = high - low;

/* If necessary, read in some bytes */
while (width <= 1L << BITS)
{

left = (left << 8) + read_byte ();
width <<= 8;

}

/* Adjust the denominator */
if (new_denom <= 256)

bits = BITS + ac_shift[new_denom] - ac_shift[width >> BITS];
else

bits = BITS - 8 + ac_shift[new_denom >> 8] - ac_shift[width >> BITS];
if (new_denom << bits > width) bits--;
kink = width - (new_denom << bits);
denom = new_denom;
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/* Find the next symbol */
if (left < kink << 1) return (value = (left >> 1) >> bits);
else return (value = (left - kink) >> bits);

}

void AC_FinaliseDecoder (void)
{
#ifdef DEBUG

assert (file != NULL);
#endif

file = NULL;
}

static long read_byte (void)
{

int byte = getc (file);
return (byte == EOF ? 0 : byte);

}

A.5 lookup.c

This lookup table satisfies 256 <= n << ac_shift[n] && n << ac_shift[n] < 512 when-
ever 0 < n && n <= 256. We use a lookup table for this task because it’s faster than
performing the calculation.

/*
* lookup.c
* By Barney Stratford
* Version 12, 13th January 2005
*/

const int ac_shift[] =
{

9, 8, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0

};
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