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Abstract. We present an approach to modelling Abadi–Cardelli-style
object calculi as Unifying Theories of Programming (UTP) designs. Here
we provide a core object calculus with an operational small-step evalua-
tion rule semantics, and a corresponding UTP model with a denotational
relational predicate semantics. For clarity, the UTP model is defined in
terms of an operand stack, which is used to store the results of sub-
programs. Models of a less operational nature are briefly discussed. The
consistency of the UTP model is demonstrated by a structural induction
proof over the operations of the core object calculus. Overall, our UTP
model is intended to provide facilities for encoding both object-based
and class-based languages.

1 Introduction

Hoare and He’s Unifying Theories of Programming (UTP) [6] can be used to
formally define how results produced in one formal model can be translated as
assumptions to another formal model. Essentially, programs are considered to be
predicates that relate the values of their observable input and output variables
(their alphabet). For example, the increment program x := x + 1 is typically
defined by the relational predicate x ′ = x + 1, where predicate variables x and
x ′ denote the input and output values of the program variable x . In general,
the alphabet of a program P is denoted by αP ; it is the disjoint union of P ’s
input and output sets (inαP and outαP respectively), which in the case of the
example is the set {x , x ′}.

This basic relational model has been specialised to reflect the semantics of
various programming paradigms and languages, such as: imperative programs
without subroutines; reactive systems for simple message-based concurrency;
and class-based object orientation [4, 2, 11]. Here, we consider a variant of the
Abadi–Cardelli-style untyped object calculus (ς-calculus) [1]. We hope that, by
providing an encoding of the ς-calculus in the UTP, we can provide facilities
for modelling and relating a wide range of object-oriented (OO) languages. In
particular, we take an object-based rather than class-based approach, following
Abadi and Cardelli, providing both object values and references through the use
of a heap. We do not discuss delegation, inheritance, or other mechanisms for
sharing methods, since these can be implemented in terms of our primitives; nor
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again, following Abadi and Cardelli, do we support evolution of object interfaces,
although it would be trivial to remove this restriction.

In the remainder of this section we introduce the notion of a UTP design
and some notation that is too cumbersome to introduce when it is required.
The paper then presents our variant of the object calculus, its stack-based UTP
model, the consistency of this model, and some concluding remarks.

1.1 Designs in Unifying Theories of Programming

A UTP design specialises the general model of programming within the UTP
by adding the notion of program termination. It introduces two special model
variables Πok and Πok

′ to denote when a program is ready to start and when a
program has terminated, respectively.

Definition 1 (UTP design). A design predicate p ` P states that the program
represented by the relational predicate P will successfully terminate whenever it
has been started in an input state that satisfies input assumption (precondition)
predicate p.

p ` P =̂ (Πok ∧ p)⇒ (Πok
′ ∧ P)

α(p ` P) =̂ αP ∪ {Πok, Πok
′}

where αp ⊆ inαP and Πok, Πok
′ 6∈ αP.

This definition of a UTP design is taken from [4]. It updates the original defini-
tion in [6] by ensuring that “the assumption is a precondition, containing only
undashed [input] variables [. . . which . . .] corresponds exactly to the third health-
iness condition” of [6, page 84]. The remainder of the UTP design language is
now summarised as follows:

skip to represent the program whose outputs are unchanged;
chaos to represent the program whose outputs are arbitrary;
miracle to represent the program whose outputs are always correct;
var x to introduce variable x (i.e. add it to the alphabet);
end x to complete variable x (i.e. remove it from the alphabet);
x k
i=1 :=ek

i=1 to assign the evaluation of each ei to xi simultaneously;
P # Q to compose subprograms P and Q sequentially;
P / b . Q to execute P when b is true, and Q otherwise;
P u Q to choose non-deterministically between P and Q ;
b ∗ P to iterate subprogram P whilst b is true;
µ z • P [z ] to establish the weakest fixed point of recursive program P .

where the meta variables
b, e denote a boolean value and a general expression respectively;
P ,Q denote UTP relational predicates (e.g. designs);
x , y denote variables (in this case program variables);
z denotes the special fixed point variable;
P [z ] denotes a relational predicate P that may contain the variable z .
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The miracle program is not implementable; it and chaos are useful for reasoning
about program, as they are the bottom and top of the design refinement lattice
respectively. For further information on UTP designs refer to [4, 6, 12].

1.2 Design frame and compilation notation

We now introduce two utility notations. First, design frames are introduced
to simplify the definitions of relational predicates that affect only some of the
variables within an alphabet.

Definition 2 (Design Frame). Let V be a set of program variables. A design
with frame V has the form V : (p ` P), denoting the predicate p ` P ∧ w ′= w,
where the vector w contains the logical and program variables within the input
alphabet of p ` P except those in the set V (i.e. {x | x ∈ w} = inα(p ` P)\V ).

Second, the compilation of a source language term t with subterms t1, . . . , tk is
denoted by 〈〈t{tki=1}〉〉m, where m represents an optional compilation mode. We
use this notation for compiling the heap extended core ς-calculus (Och-calculus)
into the UTP operand stack model (Ush) below.

1.3 Operational reduction rule notation

The semantics of object calculus operations is defined in terms of a collection of
small-step evaluation-rules. These rules are similar to those in [10] except that
they include a notion of a general context (Γ ), which is essentially used to denote
those specific contexts that are irrelevant to a given rule. A specific context, such
as the heap in the Och-calculus (Section 2.3), can be selected and set as follows:

{heap 7→ H } Let H denote the heap context.
{heap← [ H } Set the heap context to the value of H .

The objective of the evaluation rules is to provide the circumstances under which
a term t in a context Γ can evaluate in one step to a term t ′ in context Γ ′; such
one-step evaluations are denoted by Γ • t −→ Γ ′ • t ′, where • denotes the
context-term pair binder and −→ denotes an individual evaluation step. It
is now possible to define the rule representation as follows:

〈condition1〉 . . . 〈conditionn〉
〈concluded term evaluation step〉 RuleName 〈optional side condition〉

where conditioni may be either a logical constraint or an evaluation step.

2 The Object Calculi

The Och-calculus we consider in this paper is an extension of the ς-calculus
presented in Chapter 6 of Abadi and Cardelli’s book on objects [1]. We now
provide a brief summary of the ς-calculus (Section 2.1), which is followed by our
arithmetic and heap extensions (Sections 2.2 and 2.3 respectively).



4 Michael Anthony Smith and Jeremy Gibbons

2.1 Abadi–Cardelli untyped object calculus

The Abadi–Cardelli ς-calculus introduces the notion of an object, as a collection
of labelled methods that can be updated and selected as follows.

[ki=1 li = mi ] denotes an object value – a partial map from labels to meth-
ods, where method mi is identified by label li .

ς(x ) e denotes a method whose body is defined by the expression
e, which may itself contain one or more instances of the self
variable (identifier) x .

o.l ↼↽ m denotes a method update operation, which generates a new
object by taking a copy of the object o and replacing the
method identified by label l with the method m.

o.l denotes a method selection operation, which evaluates the
body of the method with label l in object o, after each
instance of the method’s self variable has been replaced by
a copy of the invoking object o.

where the meta-variables
o, l denote an object and a label value respectively;
m denotes a method;
e, x denote an expression and the self identifier (variable/expression).

Note that a ς-calculus expression is either an object value, variable identifier,
or an application of the method selection or update operators. In particular,
neither a label nor a method is considered to be a value-expression.

Method update The base case for the method update operations can now be
defined by the following small-step evaluation rule.

l A o
Γ • o.l ↼↽ m −→ Γ • po ⊕ {l 7→ m}q UpdM

where
l A o label l is in the domain of object o.
o1⊕o2 object map o1 is overridden by object map o2.
peq the meta-expression e.

There is one other small-step evaluation rule, which ensures that the evaluable
argument (i.e. expression argument) of the method update operation is evaluated
prior to the operation being applied.

Γ • e −→ Γ ′ • e ′

Γ • e.l ↼↽ m −→ Γ ′ • e ′.l ↼↽ m
UpdM-1



Unifying Theories of Objects 5

Method invocation (or selection) The base case for the method invocation
operations of the ς-calculus can be defined by the following rule.

l A o
Γ • o.l −→ Γ • pb{|x ← [ o|}q InvM

m =̂ o(l)
ς(x ) b .= m

where

o(l) is the method of object o with label l .
m =̂ e defines variable m to be the evaluation of meta-expression e.
ς(x ) b .= m binds x and b to the self-variable and body of method m.
b{|x ←[ o|} the substitution of object o for free variable x in term b.

The rule for evaluating an evaluable argument before the base rule can be applied
is defined in precisely the same manner as that of the method update operation.

2.2 Core object calculus (Oc-calculus)

The core ς-calculus (Oc-calculus) introduces field assignment, integer literals,
and some basic arithmetic operators.

o.l := e denotes the operation that evaluates the expression e to a value
v , then applies the method update operation o.l ↼↽ ς( ) v .

i denotes a (literal) integer value.

�(ek
i=1) denotes a k -ary operation on literal values (e.g. binary "+").

The following rules specify the base cases for both of the above operations.

Γ • �(vk
i=1) −→ Γ • p�(vk

i=1)q
LitOp vk

i=1 ∈ dom(�)

l A o
Γ • o.l := v −→ Γ • po ⊕ {l 7→ ς( ) v}q FldA

The other cases for these operations ensure that their evaluable arguments are
processed in a left to right order.

Γ • en −→ Γ ′ • e ′n
Γ • �(vn−1

i=1 , e
k
i=n) −→ Γ ′ • �(vn−1

i=1 , e
′
n , e

k
i=n+1)

LitOp-n

Γ • e1 −→ Γ ′ • e ′1
Γ • e1.l := e2 −→ Γ ′ • e ′1.l := e2

FldA-1

Γ • e −→ Γ ′ • e ′

Γ • o.l := e −→ Γ ′ • o.l := e ′
FldA-2
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2.3 Heap-extended object calculus (Och-calculus)

The Och-calculus introduces a copy-based heap storage model [10], where the
heap is a partial map from abstract locations to values. Here the contents of an
abstract location can be read (dereferenced) or updated (assigned) via atomic
operations that take copies of the source values. The new constants and operators
introduced by this model now follow.

`i denotes an abstract location on the heap and an allocated refer-
ence value.

null denotes the null (i.e. unallocated) reference value.
¿ denotes the unset value.

fresh denotes the operation that results in the location of a newly
allocated heap entry, whose contents are unset.

∗r denotes the operation that takes a copy of the contents in heap
location r .

r ∗= v denotes the assignment, by copy, of value v to location r .

where r , v , and i are reference, general, and integer values respectively.
The following rules specify the base cases for the fresh, dereference, and

assignment (reference update) operators. The other cases for these operators are
defined to follow the usual left to right evaluation order, in a similar manner to
those of the Oc-calculus operators.

Γ{heap 7→ H } • fresh −→ Γ{heap←[ H ′} • r
Fresh

r b= freshloc(dom H )
H ′ b= H ⊕ {r 7→ ¿}

r A H

Γ{heap 7→ H } • ∗r −→ Γ • H (r)
DeRef

r A H

Γ{heap 7→ H } • r ∗= v −→ Γ{heap← [ H ⊕ {r 7→ v}} • r
UpdL

where freshloc is a meta-function that takes a set of location values and returns
a location that is not within this set.

3 The Operand Stack Model (Ush) of the Och-calculus

The UTP operand stack model (Ush) extends the notion of a UTP design with
an operand stack for storing intermediate results, and a heap map for storing
dynamically allocated values in abstract heap locations. Formally this stack and
heap are denoted by the UTP context variables Πstk, Πheap, Πstk

′, and Πheap
′,

which represent the input and output states (values) of the operand stack and
heap storage respectively.

The contents of the stack are the semantic entities that represent the operands
of the Och-calculus operations, i.e. the integers, objects, labels, methods, and
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(heap) locations. The idea is that following the execution of a subprogram the
top value on the stack represents its result.

The heap storage (map) context is essentially taken from the Och-calculus,
the main differences being in the changes to its name and the precise represen-
tation of its contents (values). In particular, the restriction that the heap can
only contain values is kept; thus unlike the stack a heap cannot contain labels
or methods. An alternative trace-based approach to modelling the Och-calculus
is the subject of current work as discussed in Section 5.2.

3.1 Literal value programs

The simplest object calculus program is represented by a literal value, which is
also the final result value of the program. Therefore, the compilation of such an
Och-calculus program must result in the Ush design (E sv) that pushes a single
stack-value (sv) – i.e. a label, a method or a value – onto the operand stack.

E sv =̂ {Πstk} : ( true ` Πstk
′ = 〈sv〉aΠstk )

The compilation of a literal value lv to the Ush is now defined in stages by the
following two compilation rules. Here, the first rule compiles the value to a UTP
program, whereas the second rule compiles the value to a UTP expression.

〈〈lv 〉〉 =̂ E〈〈lv 〉〉e 〈〈lv 〉〉e =̂ lv

Note that these compilation rules produce Ush texts, which can then be converted
into a Ush program by applying the semantic meaning brackets as follows.

J t K =̂ t

where t is a valid output of the program compilation process. This amounts
to being in a subset of the available Ush operations, whose syntactic forms are
amenable to the structural definition of functions involving scope of variables.
For example, the free-variable substitution function in Section 3.5 is defined in
terms of such a structural definition.

3.2 Modelling object values and method definitions

In the Ush an object value is defined as a map from labels to methods. This is
denoted by {ki=1 li 7→ mi}, where k represents the number of object methods mi

with distinct labels li . The compilation of an object value is similar to that of
literal values.

〈〈[ki=1li = mi ]〉〉 =̂ E〈〈[ki=1li = mi ]〉〉e

〈〈[ki=1li = mi ]〉〉e =̂ {ki=1 〈〈li 〉〉e 7→ 〈〈mi 〉〉e}

A method is defined as a pair of compiled program texts that represent the
method’s self variable and body. It is denoted by (| x ,P |), where the scope
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of the self variable x is the program text P . Methods cannot occur as top
level programs as they are not considered to be values, thus they only have an
evaluation moded compilation scheme.

〈〈ς(x ) e 〉〉e =̂ (| 〈〈x 〉〉e, 〈〈e 〉〉 |)

where a variable is represented by itself in both the program and declaration
(literal evaluation) contexts.

〈〈x 〉〉 =̂ x 〈〈x 〉〉e =̂ x

Note that a variable by itself is not a valid program, but it may be the entire
contents of a method’s body (i.e. a compiled program text). Such variables are
substituted by their values, prior to the program text being extracted to a Ush

subprogram. Details of the program text variable-substitution and extraction
processes are presented in the discussion of method invocation (Section 3.5).

3.3 Command expressions

In theOch-calculus, almost all the programming operations are expressions. Such
expressions are converted into UTP commands by evaluating each of their argu-
ments, whose results are stored in the operand stack (Πstk), and then applying
an appropriate stack transformation command.

The Ush stack transformation operation trans(f , k) takes a k -parameter func-
tion f , which defines the operation being modelled, and constructs a UTP pro-
gram that applies this function to the top k contents of the operand stack. Care
must be taken to ensure that the parameters are in the order that they are going
to appear on the operand stack, as this may not be the same as the left-to-right
declaration order.

Given that the meta-variables x1, . . . , xk represent the arguments for func-
tion f , then the updated stack can be modelled by 〈f (x1, . . . , xk )〉a (tailk Πstk),
assuming that: it has started (Πok = true); there are sufficient arguments
(k ≤ #Πstk); and these arguments are in the domain of the function being
modelled ((x1, . . . , xk ) A f ).

trans(f , k) =̂
∃ x k

i=1 • (
(k ≤ #Πstk) ∧ (∀ki=1 xi = head(tailk−i Πstk)) ∧ (x k

i=1) A f
`
Πstk

′ = 〈f (x k
i=1)〉a (tailk Πstk)

)

Having defined the transformation function, the next step is to provide a Ush

operation that evaluates the arguments for this function and then applies this
function to these arguments. Note that these arguments range over acceptable
stack values, so may include labels and methods, which are considered to be
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values for the purpose of the argument evaluation. Therefore, the arguments
consist of stack values and general expressions (se1, . . . , sek ).

cmdExp(f , (sek
i=1)) =̂ (#ki=1〈〈sei 〉〉) # trans(f , k)

Example 1. The Och-calculus addition operation can be modelled in terms of
the cmdExp operation as follows:

〈〈e1 + e2〉〉 =̂ cmdExp(( + ), (〈〈e1〉〉, 〈〈e2〉〉))

= 〈〈e1〉〉 # 〈〈e2〉〉 # trans(( + ), 2)

3.4 Method Updates and Field Assignments

Method update in the Och-calculus is compiled in two parts: first, the terms
representing the arguments are compiled; and second, they are combined by an
appropriate method update transformation function.

〈〈e1.e2 ↼↽ m 〉〉 =̂ cmdExp(methUpd , (〈〈e1〉〉, 〈〈e2〉〉, E〈〈m 〉〉))

where:

methUpd = { (o, l ,m) 7→ o ⊕ {l 7→ m} |
(o, l ,m) ∈ Object × Label ×Method ∧ l A o

}

A field assignment is compiled in a similar manner.

〈〈e1.e2 := e3〉〉 =̂ cmdExp(fldUpd , (〈〈e1〉〉, 〈〈e2〉〉, 〈〈e3〉〉))

where:

fldUpd = { (o, l , v) 7→ o ⊕ {l 7→ (| , v |)} |
(o, l , v) ∈ Object × Label ×Value ∧ l A o

}

3.5 Method invocation

Method invocation in the Och-calculus is compiled in two parts. First an object-
member pair is constructed from the invocation arguments: a pair of expressions
(e1 and e2) representing an object (o) and a label (l). This is achieved by retriev-
ing the method with label l from object o. The second part performs the actual
method invocation, using a generic method call command (call). It executes the
body of the method where the method’s self variable has been instantiated with
the calling object’s value.

〈〈e1.e2〉〉 =̂ cmdExp(omPair , (〈〈e1〉〉, 〈〈e2〉〉)) # call
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where:

omPair = {(o, l) 7→ (o, o(l)) | (o, l) ∈ Object × Label}

Before formally defining the generic call command, it is worth presenting two
helper functions, for method extraction and self variable substitution. Both these
functions are defined by cases, where the first case that matches is taken. The
ext(t , z ) constructs a program that can be represented by program text t once
the fixed point variable z has been instantiated.

ext(t , z ) =̂ J extInner(t , z ) K
extInner(call, z ) =̂ z
extInner(t{ki=1 ti}, z ) =̂ t{ki=1 extInner(ti , z )}
extInner(t , z ) =̂ t

The following Ush substitution function (t{|x ← [ sv |}) performs the same role as
that of its Och-calculus counterpart, in that it replaces all free occurrences of
the program variable x with the stack-value sv in the program text t .

x{|x ← [ sv |} =̂ sv
(| x , t |){|x ←[ sv |} =̂ (| x , t |)
t{ki=1 ti}{|x ← [ sv |} =̂ t{ki=1 ti{|x ← [ sv |} }
t{|x ← [ sv |} =̂ t

Note that this definition assumes that both the variable x and the stack-value
sv have a textual representation. Both variables and literal values are their own
texts. This leaves methods and object stack values. As a method is modelled
by its text and an object is a partial map from labels to method texts, it is
possible to define a straightforward function (text) for taking these values to an
equivalent program text.

We are now in a position to define the call command. It is defined as the
least fixed point of the apply function, which substitutes the self object o in the
method text t for its self variable x .

call =̂ µ z • apply(z )

where

apply(z ) =̂ ( ∃ o, x , t | (o, ((| x , t |))) = headΠstk •
pop # ext(t{|x ← [ text(o)|}, z )

)
/ #Πstk > 0 ∧ (headΠstk) ∈ Object ×Method .
chaos

3.6 Modelling the Heap Operations

The Ush model of a heap mirrors that of the Och-calculus, where the location,
unset and null values are shared semantic entities between the models.
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Fresh Operator The Och-calculus fresh operation is compiled to its Ush mirror.

〈〈fresh〉〉 =̂ fresh

The fresh command creates a new location on the heap, which is initialised to
the explicit unset value; it then pushes the value of this new location onto the
operand stack.

fresh =̂ ∃ r | r = freshloc(domΠheap) •
Πstk, Πheap := 〈r〉aΠstk, Πheap⊕ {r 7→ ¿}

Note that this operation deliberately uses the same fresh location generation
function as in the Och-calculus, as it simplifies the consistency proof between
the models. Without this we would have to have a notion of heap equivalence.

Dereference Operator The dereference Och-calculus operation is compiled
by evaluating the expression representing the heap location, then applying the
Ush’s command for dereferencing the current result.

〈〈∗e 〉〉 =̂ 〈〈e 〉〉 # deref

The heap dereference command (deref), takes the heap location on the top of
the stack and replaces it with a copy of the associated heap value.

deref =̂ {Πstk} : (
#Πstk > 0 ∧ (headΠstk) A Πheap

`
Πstk

′ = 〈Πheap(headΠstk)〉a (tailΠstk)
)

Heap Update Operator The heap update Och-calculus operation is compiled
by evaluating its arguments in a left to right order, storing their results into
a single location-value pair, and then applying the model of the heap update
operation.

〈〈e1 ∗= e2〉〉 =̂ cmdExp(lvPair , (〈〈e1〉〉, 〈〈e2〉〉)) # update

where lvPair is a variant of the identity function whose domain elements are
defined to be the location-value pairs.

lvPair = {(r , v) 7→ (r , v) | (r , v) ∈ Location ×Value}

The reason for combining the location and value into a pair, is so that it has
the same form as the heap extended result-value and constant-map UTP models
of the Och-calculus. This helps to highlight the semantic, rather than syntactic,
differences between the models. These alternative models are discussed briefly
in Section 5.2.
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The heap update command consumes the location-value pair on the top of
the stack, assigns the new value to the existing heap location, and then pushes
the heap location onto the stack.

update =̂ ( ∃ r , v | (r , v) = headΠstk •
Πstk, Πheap := 〈r〉a (tailΠstk), Πheap⊕ {r 7→ v}
/ r A Πheap .
chaos

)
/ #Πstk > 0 ∧ (headΠstk) ∈ Location ×Value .
chaos

4 Consistency of the Operand Stack Model

We now demonstrate that the Ush denotational semantics is consistent with the
Och-calculus operational semantics via a structural induction over the object cal-
culus’ terms — specifically, that the denotational semantics of an Och-calculus
operation is the same as that of its result. The commuting diagram in Figure 1
illustrates the structure of the proof that the semantic models for an object cal-
culus operation op with k subterms are consistent, where:

sei is the i th subexpression of the original operation.

svi is the i th subterm of the operation after its arguments (i.e. stack
values) have been evaluated in the correct order.

〈t 〉m is the the combination of the compilation and semantic meaning
functions (i.e. J 〈〈t 〉〉m K), where m is the compilation mode.

Γi is the i th object calculus run-time context variable.

A0 is the assumption that the subterms can be evaluated in the cor-
rect order. Note this assumption also guarantees the consistency
of the sub-term mappings (i.e. ∀ki=1 〈〈svi 〉〉 = E svi).

A1 is the assumption that the arguments are in the domain of the
operation being modelled (i.e. (svk

i=1) A op).

A2 is the assumption that the result of executing the operation with
arguments svk

i=1 is the expression e.

→,� are the one-step and multi-step Och-calculus operations.
↓ is a compilation and/or semantic evaluation function.

=, ‖ are two different representations of the equality relation, for hor-
izontal and vertical display contexts respectively.

The left hand square of the commuting diagram in Figure 1 is essentially the
same for every operator being checked, as it mirrors the use of the induction
hypothesis, that an operation’s arguments (subterms) can be evaluated success-
fully. Therefore, in practice this aspect of the diagram is omitted, as illustrated
in Figure 2.
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Γ0 • op{sek
i=1} Γ1 • op{svk

i=1} Γ2 • e

〈Γ0〉 # 〈op{sek
i=1}〉 〈Γ1〉 # 〈op{svk

i=1}〉 〈Γ2〉 # 〈e 〉

ww

A0

u

〈 〉

w

A1, A2

u

〈 〉

u

〈 〉

A0 A1, A2

Fig. 1. Commuting diagram principle

Γ1 • op{svk
i=1} Γ2 • e

〈Γ1〉 # 〈op{svk
i=1}〉 〈Γ2〉 # 〈e 〉

u

〈 〉

w

A1, A2

u

〈 〉

A1, A2

Fig. 2. Commuting diagram practice

The remainder of this section presents a representative sample of the consistency
proofs; space limits preclude completeness.

4.1 Scalar value operations

The Och-calculus provides a variety of arithmetic operations that take scalar
values and return a scalar value. Further, as all of these operations are system-
atically translated into the Ush, it is possible to present a generic proof that these
operations are consistently modelled.

The commuting diagram in Figure 3 outlines the structure of the proof that
a generic infix binary operator ( � ), over scalar values in the Och-calculus,
has a consistent denotational semantics. Here we assume that:

A1 The scalar values sv1 and sv2 are in the domain of the infix operator;
i.e. (sv1, sv2) A ( � ).

A2 The scalar value sv3 is the result of evaluating the binary operator;
i.e. sv3 = sv1 � sv2.

In Figure 3’s commuting diagram, L1 denotes the first lemma (Lemma 1). It is
the key step in this consistency proof, which demonstrates that a command ex-
pression has the expected semantics. Essentially, this commuting diagram forms
a template for all the Och-calculus operations that are defined as command ex-
pressions in the Ush. In particular, field assignment and method update are also
covered by this proof template.

Command expression lemma The command expression lemma demonstrates
that the effect of applying a command-expression command to a function f ,
with pre-evaluated arguments svk

i=1, is the same as the effect of applying the
evaluation command to the result of the function f on its arguments. It assumes
that the arguments are in the domain of the function (i.e. (svk

i=1) A f ). Note
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Γ • sv1 � sv2 Γ • sv3

〈Γ 〉 # cmdExp(( � ), (E sv1, E sv2))

〈Γ 〉 # E(sv1 � sv2) 〈Γ 〉 # E sv3

w

A1, A2

u

〈 〉

u

〈 〉

u

A1, L1

A2

Fig. 3. Generic binary operation commuting diagram

that a pre-evaluated argument is an operand-stack value (i.e. a label, method
definition or a value).

Lemma 1 (Command Expression Lemma).

(svk
i=1) A f ⇒ cmdExp(f , (ki=1 E svi)) = E(f (svk

i=1))

Note that within the following proof, the left-hand-side of the initial implication
is added as an assumption to the proof context.

cmdExp(f , (ki=1 E svi))

= · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
(#k

i=1
E svi) # trans(f , k)

Defn. of cmdExp

= · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
(#k

i=1
(true ` Πstk

′ = 〈svi〉aΠstk))#
trans(f , k)

Defn. of E

= · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
(true ` Πstk

′ = 〈ki=1 svk+1−i〉aΠstk)#
trans(f , k)

Defn. of #
and predicate logic

= · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
(true ` Πstk

′ = 〈ki=1 svk+1−i〉aΠstk)#
∃ x k

i=1 • #Πstk ≥ k ∧
(∀ki=1 xi = head(tailk−i Πstk)) ∧
(x k

i=1) A f
`
Πstk

′ = 〈f (x k
i=1)〉a (tailk Πstk)

Defn. of trans

= · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
#(〈ki=1 svk+1−i〉aΠstk) ≥ k ∧
(∀ki=1 svi = head(tailk−i Πstk)) ∧
(svk

i=1) A f
`
Πstk

′ = 〈f (svk
i=1)〉a tailk (〈ki=1svk+1−i〉aΠstk)

Defn. of #
and predicate logic

= · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
(svk

i=1) A f ` Πstk
′ = 〈f (svk

i=1)〉aΠstk

Predicate logic
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= · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
true ` Πstk

′ = 〈f (svk
i=1)〉aΠstk

A1, i.e. (svk
i=1) A f

= · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
E(f (svk

i=1))

Defn. of E

4.2 Method invocation

The commuting diagram in Figure 4 demonstrates that the Och-calculus method
invocation is consistent with one unwinding of the fixed-point function (call) that
defines method invocation, where:

A1 The label l of object o has the method ς(x ) e;
A2 The compilation of substitution process is defined as:

〈〈e{|x ←[ o|}〉〉 =̂ ext(〈〈e 〉〉{|x ←[ 〈〈o〉〉e|}, call)

Γ • o.l Γ • e{|x ←[ o|}

〈Γ 〉 # cmdExp(omPair , (E 〈o〉 , E l)) # call

〈Γ 〉 # E( 〈o〉 , 〈ς(x ) e 〉 ) # apply(call) 〈Γ 〉 # ext(〈〈e 〉〉{|x ←[ 〈〈o〉〉e|}, call)

w

A1

u

〈 〉

u

〈 〉 , A2

A1, L1, L2

L3

Fig. 4. Method invocation commuting diagram

The consistency diagram in Figure 4 relies on three lemmas: the command ex-
pression lemma (Lemma 1); the unwinding lemma (Lemma 2), which uses the
fixed-point definition to provide a single unwinding; and the method call lemma
(Lemma 3), which demonstrates that this unwinding is correct. We now state
and prove the remaining two lemmas.

Recall that the method call operation is defined as the fixed point of an apply
function (µ z • apply(z )). The structure of this definition leads to the following
unwinding lemma.

Lemma 2 (Unwinding Lemma).

call = apply(call)

Proof

call

= · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
(µ z • apply(z ))

Defn. of call
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= · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
apply(µ z • apply(z ))

Defn of fixed point µ

= · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
apply(call)

Defn. of call

Method call lemma Informally the method call lemma says that the effect of
applying the call command is equivalent to the effect of applying one iteration
of this command to itself.

Lemma 3 (Method Call Lemma).

E( 〈o〉 e, 〈ς(x ) e 〉 ) # apply(call) = ext(〈〈e 〉〉{|x ← [ 〈〈o〉〉e|}, call)

Proof

E( 〈o〉 e, 〈ς(x ) e 〉 ) # apply(call)

= · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
E( 〈o〉 e, (| x , 〈〈e 〉〉 |)) # apply(call)

Defn. of 〈ς(x ) e 〉

= · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
(true ` Πstk

′ = 〈( 〈o〉 e, (| x , 〈〈e 〉〉 |))〉aΠstk)#
apply(call)

Defn. of E

= · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
(true ` Πstk

′ = 〈( 〈o〉 e, (| x , 〈〈e 〉〉 |))〉aΠstk)#
( ( ∃ o1, x1, t1 | (o1, (| x1, t1 |)) = headΠstk •

pop # ext((| t1{|x1 ←[ text(o1)|} |), call)
)
/ #Πstk > 1 ∧ (headΠstk) ∈ Object ×Method .
skip

)

Defn. of apply

= · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
(true ` Πstk

′ = 〈( 〈o〉 e, (| x , 〈〈e 〉〉 |))〉aΠstk)#
( ( ∃ o1, x1, t1 | (o1, (| x1, t1 |)) = headΠstk •

(#Πstk > 1 ` Πstk
′ = tailΠstk)#

ext((| t1{|x1 ←[ text(o1)|} |), call)
)
/ #Πstk > 1 ∧ (headΠstk) ∈ Object ×Method .
skip

)

Defn. of pop

= · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
( ∃ o1, x1, t1 | (o1, (| x1, t1 |)) = ( 〈o〉 e, (| x , 〈〈e 〉〉 |)) •

(true ` Πstk
′ = Πstk)#

ext((| t1{|x1 ← [ text(o1)|} |), call)
)
/ true ∧ ( 〈o〉 e, (| x , 〈〈e 〉〉 |)) ∈ Object ×Method .
skip

Defn. of #
and predicate logic

= · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
∃ o1, x1, t1 | (o1, (| x1, t1 |)) = ( 〈o〉 e, (| x , 〈〈e 〉〉 |)) •

(true ` Πstk
′ = Πstk)#

ext((| t1{|x1 ←[ text(o1)|} |), call)

Defn. of ( / . )
and predicate logic
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= · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
skip#
ext((| 〈〈e 〉〉{|x ←[ text( 〈o〉 e)|} |), call)

One point rule
and defn of skip

= · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
ext((| 〈〈e 〉〉{|x ←[ 〈〈o〉〉e|} |), call)

skip unit of ( # )
and defn. of text

4.3 Fresh heap locations

The commuting diagram in Figure 5 outlines the structure of the proof that the
fresh operator in the Och-calculus has a consistent denotational semantics. Here
we assume that:

A1 The initial Och-calculus context-heap value is H0.
A2 The expression freshloc(dom H0) evaluates to `j .
A3 The context-heap value H1 is H0 ⊕ {`j 7→ ¿}.

Γ0 • fresh Γ1 • `j

(Πheap := H0) # fresh (Πheap := H1) # (E `j )

w

A2

u

〈 〉 , A1

u

〈 〉 , A3

L4, A2, A3

Fig. 5. Fresh operator commuting diagram

Lemma 4 (Fresh location lemma).

(Πheap := H0) # fresh = (Πheap := H1) # (E `j )

Proof

(Πheap := H0) # fresh

= · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
(Πheap

′ = H0)#
( ∃ r | r = freshloc(domΠheap) •

Πstk, Πheap := 〈r〉aΠstk, Πheap⊕ {r 7→ ¿}
)

Defn. of fresh

= · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
∃ r | r = freshloc(dom H0) •
Πstk, Πheap := 〈r〉aΠstk,H0 ⊕ {r 7→ ¿}

Defns. of # and :=

= · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
∃ r | r = `j •
Πstk, Πheap := 〈r〉aΠstk,H0 ⊕ {r 7→ ¿}

A2

= · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Πstk, Πheap := 〈`j 〉aΠstk,H1

1-point rule & A3

= · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
(Πheap := H1) # (E `j )

Defns. of # and E
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5 Conclusions and Related Work

In this paper we have provided a UTP encoding of an Abadi–Cardelli-style ς-
calculus with an explicit heap model, along with a proof of its consistency. It is
straightforward to add several other features, such as direct support for eagerly
evaluated untyped lambda calculus (λ-calculus) functions, and for treating labels
as values. In the former case, this amounts to relaxing the restriction on the
definition of the Ush’s call operator, to accept any value-method pair rather than
an object-method pair. The latter case amounts to treating labels as values, and
adding operations for conditional execution and for checking whether an object
contains a method with a given label.

5.1 Related work

Hoare and He’s UTP [6, 12] provides a rich model of programs as relational-
predicates. Abadi and Cardelli’s ς-calculi [1] provides an alternative model of
programs as objects. Our contribution is to model the Abadi–Cardelli notion of
an object in the UTP, which provides: a simple untyped object calculus with a
relational-predicate denotational semantics; and the UTP with an object-based
model of object-orientation. Further, as the UTP already has several models of
concurrency, this encoding provides the potential for adding one (or more) of
these concurrency models to the ς-calculus.

This is not the first time object-oriented ideas have been added to (or mod-
elled in) the UTP. In particular, there have been several works that model class-
based object-orientation, such as [4, 2, 11]. These differ fundamentally from our
approach, as each object is considered to be an instance of a class, rather than
a class being a special sort of object. In particular, within our approach objects
need not be associated with a class. This opens the possibility of considering
prototype-based languages, such as Self.

Within the more general field of predicative programming [5], another notion
of object-orientation has been modelled [9]. It defines objects as a combination of
their attributes and behaviour, where each attribute (field) has a unique address
and the details of its behaviour (methods) are defined by its type (e.g. class).
This approach is similar to that of Abadi and Cardelli’s imperative ς-calculus [1],
except that in this case both methods and fields are bound to objects. Further,
the Och-calculus deliberately separates the heap and object representations, to
gain a measure of orthogonality between concerns. An earlier version of this
predicative programming model [8] did not use addresses in the definition of an
object, but was still essentially class-oriented in its outlook.

Alternative approaches to modelling references (pointers) in the UTP have
been provided in [7, 3]. The former of these approaches was the inspiration for
the trace model that is briefly discussed in Section 5.2. The latter of these
approaches uses path-based equivalence classes to identify variables that share
the same reference, which are referred to as entity groups. Preliminary results
of the on-going work in this area suggest that our trace-based model is also
essentially an entity group model, which ought to enable us to unify these ideas.
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5.2 On-going work

The operand-stack model of the Och-calculus is arguably too operational in
nature. In order to address this issue three further models have been constructed,
the result-value, constant-map, and trace models. For reasons of space we can
only provide a brief description of these models.

Result-value model This replaces the stack with a single value that represents
the result of executing anOch-calculus model, and intermediate results are stored
in temporary variables, which are introduced and completed in the usual UTP
manner. The one significant complication introduced by this model is the need
to manage the scope of its alphabets – specifically the requirement to hide the
intermediate result variables from the execution of a subprogram. This follows
from two observations: first, that a subprogram’s execution is independent of
the result – but not side-effecting heap updates – of a previous subprogram; and
second, that the weakest fixed point semantics of method invocation requires the
alphabets both before and after any method invocation to be the same.

Constant-map model This extends the result-value model by updating the
representation of a method (and its invocation). Here a method is represented
by a triple: a self variable; a program-text body ; and a map from the free
variables within that body to their values. Such values may be updated during
the method invocation process, which recursively updates all free instances of a
method’s self variable, within both its own and its inner-method variable maps.
The idea is that by the time of a method’s invocation, all the free-variables
within a method’s body have a defined value in their associated variable map;
and that this variable map is used to introduce read-only (constant) variables
for the scope of the method’s definition.

Trace model This takes a fundamentally different approach from that pre-
sented in this paper, in that it models variables, values, and heap locations, in
terms of a directed graph that can be represented by a set of trace sets. This
approach was inspired by trace-based pointers in [7] and is also similar to the
entity-group work in [3]. Essentially, it came from the motivation of using the
ideas presented in these UTP models on the Och-calculus. Here, each entity
group is represented by an equivalence class, which is the set of traces that de-
fines a node of the directed graph. There are several complicating factors, not
least of which is that in the Och-calculus not all values have locations (nor should
they).

Having said that the trace-based model is fundamentally different from the
others, it also has some striking similarities to the constant-map model; specif-
ically, that the layout of the graph essentially mirrors the structure of the vari-
ables and the heap of the constant-map model. With a little extra work, we can
make use of the constant-map model’s variable-maps to provide a named path
(trace) to any location within the graph.
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