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Abstract
Datatype-generic programming involves parametrization by the
shape of data, in the form of type constructors such as ‘list of’.
Most approaches to datatype-generic programming are developed
in the lazy functional programming language Haskell. We argue
that the functional object-oriented language Scala is in many ways
a better setting. Not only does Scala provide equivalents of all the
necessary functional programming features (such parametric poly-
morphism, higher-order functions, higher-kinded type operations,
and type- and constructor-classes), but it also provides the most
useful features of object-oriented languages (such as subtyping,
overriding, traditional single inheritance, and multiple inheritance
in the form of traits). We show how this combination of features
benefits datatype-generic programming, using three different ap-
proaches as illustrations.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Languages

Keywords Datatype-Generic Programming, Polytypic Program-
ming, Scala

1. Introduction
Datatype-generic programming is about writing programs that are
parametrized by a datatype, such as lists or trees. This is different
from parametric polymorphism, or ‘generics’ as the term is used
by most object-oriented programmers: parametric polymorphism
abstracts from the ‘integers’ in ‘list of integers’, whereas datatype-
generic programming abstracts from the ‘list of’.

There is a large and growing collection of techniques for writ-
ing datatype-generic programs. These range from domain-specific
languages such as Generic Haskell [Hinze and Jeuring, 2002] and
Charity [Cockett and Fukushima, 1992], through language exten-
sions such as Scrap Your Boilerplate [Lämmel and Peyton Jones,
2003] and Template Haskell [Sheard and Peyton Jones, 2002], to li-
braries for existing general purpose languages such as Generics for
the Masses [Hinze, 2006] and Adaptive Object-Oriented Program-
ming [Lieberherr, 1996]. Evidently datatype-generic programming
is quite a hot topic.
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Despite the rather wide variety of host languages involved in
the techniques listed above, the casual observer might be forgiven
for thinking that ‘Haskell is the programming language of choice
for discriminating datatype-generic programmers’ (to paraphrase
the first prize of the ICFP Programming Contest). Our purpose
in this paper is to argue to the contrary; we believe that although
Haskell is ‘a fine tool for many datatype-generic applications’, it is
not necessarily the best choice for them.

Specifically, we argue that the discriminating datatype-generic
programmer ought seriously to consider using Scala, a relatively re-
cent language providing a smooth integration of the functional and
object-oriented paradigms. Scala offers equivalents of all the famil-
iar features cherished by datatype-generic Haskell programmers,
such parametric polymorphism, higher-order functions, higher-
kinded type operations, and type- and constructor-classes. (The
most significant missing feature is lazy evaluation.) But in addi-
tion, it offers some of the most useful features of object-oriented
programming languages, such as subtyping, overriding, and both
single and a form of multiple inheritance. We show that not only
can Haskell techniques for generic programming be conveniently
replicated in Scala, but that the extra expressivity provides some
important additional benefits in extensibility and reuse.

We are not the first to associate datatype-generic programming
with Scala. Indeed, at the previous Workshop on Generic Program-
ming, Moors et al. [2006] presented a translation into Scala of a
Haskell library of ‘origami operators’ [Gibbons, 2006]; we discuss
this translation in depth in Section 4. And of course, it is not really
surprising that Scala should turn out to subsume Haskell, since its
principal designer is a well-known functional programmer.

We feel that our main contribution is as a position paper: a
call to datatype-generic programmers to look beyond Haskell, and
particularly to look at Scala; not only is Scala good enough, in some
ways it is better than Haskell for datatype-generic programming.
Some of those advantages derive from Scala’s mixed-paradigm
nature, and do not translate back into Haskell; but others (such as
case classes and anonymous case analyses, as we shall see) would
fit perfectly well into Haskell. So we are not just trying to take
programmers from the Haskell camp; we are also trying to add
features to the Haskell language.

As a secondary contribution, we show that Scala is more of
a functional programming language than is typically appreciated.
We believe that Scala tends to be seen only as an object-oriented
language that happens to have some functional features, and so
potential users feel that they have to use it in an object-oriented
way. (For example, Moors et al. [2006] claimed to be ‘staying as
close to the original work as possible’ in their translation, but as
we show in Section 4 they still ended up less functional than they
might have done.) Scala is also a functional programming language
that happens to have object-oriented features. Indeed, it offers the
best of both worlds, and this paper is also a tutorial in getting the
best out of Scala as a multi-paradigm language.



The rest of this paper is structured as follows. Sections 2 and 3
introduce the basics of Scala, and those more advanced features of
its type and class system on which we depend. Our contribution
starts in Section 4, in which we present an alternative to (and, we
argue, improvement of) Moors et al.’s encoding of the origami op-
erators. Section 5 discusses the extensibility benefits of using open
datatypes for type representations, which can serve as a basis for
generic programming libraries [Cheney and Hinze, 2002, Weirich,
2006]. Section 6 discusses generic programming approaches based
on type classes, such as Generics for the Masses [Hinze, 2006],
and explains how the reuse benefits from object-oriented features,
namely inheritance and overriding, can be helpful. (In this paper
we shall not present the full code required to run the examples for
reasons of space, but Oliveira [2008] presents the complete Scala
code for all three approaches.) Section 7 concludes.

2. The Basics of Scala
Scala is a strongly typed programming language that combines
object-oriented and functional programming features. Although in-
spired by recent research, Scala is not just a research language; it
is also aimed at industrial usage: a key design goal of Scala is that
it should be easy to interoperate with mainstream languages like
Java and C#, making their many libraries readily available to Scala
programmers. The user base of Scala is already quite significant,
with the compiler being actively developed and maintained. For a
more complete introduction to and description of Scala, see Oder-
sky [2006a, 2007a,b], Schinz [2007].

2.1 Definitions and values
Functions are defined using the def keyword. For example, the
squaring function on Doubles could be written:

def square (x : Double) : Double = x∗ x

Scala distinguishes between definitions and values. In a definition
def x = e, the expression e will not be evaluated until x is used.
Scala also offers a value definition val x = e, in which the right-
hand side e is evaluated at the point of definition. However, only
definitions can take parameters; values must be constants.

2.2 First-class functions
Functions in Scala are first-class values, so higher-order functions
are supported. For example, to define the function twice that applies
given a function f twice to its argument x, we could write:

def twice (f : Int⇒ Int,x : Int) : Int = f (f (x))

Scala supports anonymous functions. For instance, to define a func-
tion that raises an integer to the fourth power, we could use the
function twice together with an anonymous function:

def power (x : Int) : Int = twice ((y : Int)⇒ y∗ y,x)

The first argument of the function twice is an anonymous function
that takes an integer y and returns another integer y∗ y.

Scala also supports currying. To declare a curried version of
twice, we can write:

def curryTwice (f : Int⇒ Int) (x : Int) : Int = f (f (x))

2.3 Parametric polymorphism
Like Haskell and ML (and more recently Java and C#), Scala sup-
ports parametric polymorphism (known as generics in the object-
oriented world). For example, function composition can be defined
as follows:

def comp [a,b,c] (f : b⇒ c) (g : a⇒ b) (x : a) : c = f (g (x))

2.4 Call-by-name arguments
Function arguments are, by default, passed by value, being evalu-
ated at the point of function application. This gives Scala a strict
functional programming flavour. However, we can also pass argu-
ments by name, by prefixing the type of the argument with ‘⇒’;
the argument is then evaluated at each use within the function def-
inition. This can be used to emulate lazy functional programming;
although multiple uses do not share evaluation, it is still useful, for
example, for defining new control structures. Scala’s parser com-
binators are a good example of the use of laziness: the combinator
Then tries to apply a parser p, and if that parser succeeds, applies
another parser q to the remainder of the input:

def Then (p : Parser) (q:⇒ Parser) : Parser = . . .

Here, the second parser q is lazy: only if q is needed will it be
evaluated.

2.5 Type inference
The design goal of interoperability with languages like Java re-
quires Scala’s type system compatibility. In particular, this means
that Scala needs to support subtyping and (name-) overloaded def-
initions such as:

def add (x : Int) : Unit = . . .
def add (x : String) : Unit = . . .

This makes type inference difficult. Nevertheless, Scala does sup-
port some type inference. In particular, it is possible most of the
time to infer the return type of a definition and the type of a lambda
variable. For example, an alternative definition to power would be:

def power (x : Int) = twice (y⇒ y∗ y,x)
in which both the return type and the type of the lambda variable y
are inferred.

3. Scala’s Object System
Scala has a rich object system, including object-oriented construc-
tions familiar from mainstream languages like Java or C# such as
classes, abstract classes, subtyping and inheritance. Scala also in-
corporates some less common concepts. In particular, there is a
concrete notion of object, and interfaces are replaced by the more
general notion of traits [Schärli et al., 2003], which can be com-
posed using a form of mixin composition. Furthermore, Scala in-
troduces the notion of case classes, whose instances can be decom-
posed using case analysis and pattern matching.

In this section, we introduce a subset of the full Scala object
system. We believe, however, that this subset is particularly expres-
sive, and mostly subsumes the other features. In our opinion, the
object system is one of the rough edges of Scala, having many dif-
ferent (and largely overlapping) constructs that entail significant
complexity in the language; we believe that there is potential for
simplification in this area. Having said that, the fact is that Scala’s
object system is very powerful, precluding the need for a separate
module system and enjoying of a form of multiple inheritance via
the use of traits and mixin composition.

3.1 Traits and mixin composition
Instead of interfaces, Scala has the more general concept of
traits [Schärli et al., 2003]. Like interfaces, traits can be used to
define abstract methods (that is, method signatures). However, un-
like interfaces, traits can also define concrete methods. Traits can be
combined using mixin composition, making a safe form of multiple
inheritance possible, as the following example demonstrates:

trait Hello {
val hello = "Hello!"
}



trait List [A]
case class Nil [A ] extends List [A ]
case class Cons [A ] (x : A,xs : List [A]) extends List [A ]

def len [a ] (l : List [a]) : Int = l match {
case Nil () ⇒ 0
case Cons (x,xs)⇒ 1+ len (xs)
}
def ins [a<: Ordered [a ]] (x : a, l : List [a]) : List [a ] =

l match {
case Nil () ⇒ Cons (x,Nil [a])
case Cons (y,ys)⇒ if (x 6 y) Cons (x,Cons (y,ys))

else Cons (y, ins (x,ys))
}

Figure 1. Algebraic datatypes and case analysis in Scala.

trait HowAreU {
val howAreU = "How are you?"
}
trait WhatIsUrName {

val whatIsUrName = "What is your name?"
}
trait Shout {

def shout (str : String) : String
}

In this example, we use traits in much the same way as we would
have used classes, allowing the declaration of both abstract meth-
ods like shout and concrete methods like hello, howAreU and
whatIsUrName. In a single-inheritance language like Java or C#, it
would not be possible to define a subclass that combined the func-
tionality of the four code blocks above. However, mixin composi-
tion allows any number of traits to be combined:

trait Basics extends Hello with HowAreU
with WhatIsUrName with Shout {

val greet = hello+" "+howAreU
def shout (str : String) = str.toUpperCase ()
}

The trait Basics inherits methods from Hello, HowAreU and
WhatIsUrName, implements the method shout from Shout, and de-
fines a value greet using the inherited methods hello and howAreU.

3.2 Objects and case classes
New object instances can be created as in conventional object-
oriented languages by using the new construct. For example, we
could have defined a new Basics object by:

def basics1 = new Basics () {}
Alternatively, Scala supports a distinct notion of object:

object basics2 extends Basics
While the self-type of basics1 is Basics, the self-type of basics2 is
a new anonymous subtype of Basics; this small difference means
that there are situations where the two are not interchangeable.

Scala also supports the notion of case classes, which simplify
the definition of functions by case analysis. In particular, they al-
low the emulation of algebraic datatypes from conventional func-
tional languages. Figure 1 gives definitions for the equivalent to the
algebraic datatype of lists and the length and (ordered) insertion
functions. The trait List [A ] declares the type of lists parametrized
by some element type A; the case classes Nil and Cons act as the
two constructors of lists. The function len is defined using standard

case analysis on the list value l. The function ins shows another
definition by case analysis on lists, and also demonstrates the use
of type-parameter bounds: the list elements must be ordered.

Case classes do not require the use of the new keyword for
instantiation, as they provide a more compact syntax inspired by
functional programming languages:

val alist = Cons (3,Cons (2,Cons (1,Nil ())))

3.3 Higher-kinded types
Type-constructor polymorphism and constructor (type) classes
have proved themselves very useful in Haskell allowing, among
other things, the definition of concepts such as monads [Wadler,
1993], applicative functors [McBride and Paterson, 2007], and
container-like abstractions. This motivated the recent addition of
type-constructor polymorphism to Scala [Moors et al., 2008]. For
example, a very simple interface for the Iterable class could be
defined in Scala as:

trait Iterable [A,Container [ ]] {
def map [B ] (f : A⇒ B) : Container [B ]
def filter (p : A⇒ Boolean) : Container [A ]
}

Note that Iterable is parametrized by Container [ ], which is a type
that is itself parametrized by another type — in other words, a type
constructor. By parametrizing over the type constructor Container
rather than a particular type Container [A ], we can use the param-
eter in method definitions with different types. In particular, in the
definition of map, the return type is Container [B ], where B is a type
parameter of the method map; with parametrization by types only,
we would have to content ourselves with a homogeneous map.

3.4 Abstract types
Scala has a notion of abstract types, which provide a flexible way
to abstract over concrete types used inside a class or trait declara-
tion. Abstract types are used to hide information about internals of
a component, in a way similar to their use in SML [Harper and Lil-
libridge, 1994] and OCaml [Leroy, 1994]. As with any other kind
of class member, abstract types in a class must be given concrete
definitions before the class can be instantiated. Odersky and Zenger
[2005] argue that abstract types are essential for the construction of
reusable components: they allow information hiding over several
objects, which is a key part of component-oriented programming.

Figure 2 shows a typical example of an ML-style abstract
datatype for sets. The abstract trait SetInterface declares the types
and the operations required by sets. The abstract types A and Set
(which is a type constructor) are, respectively, abstractions over the
element type and the shape of the set. The operations supported by
the set interface are empty, insert and extract. The trait SetOrdered
presents a concrete refinement of SetInterface, in which sets are
implemented with lists and the elements of the set are ordered.

3.5 Implicit parameters and type classes
Scala’s implicit parameters allow some parameters to be inferred
implicitly by the compiler on the basis of type information; as
noted by Odersky [2006b], they can be used to emulate Haskell’s
type classes [Hall et al., 1996]. Consider this approximation to the
concept of a monoid, omitting any formalization of the monoid
laws [Odersky, 2006a]:

trait Monoid [a] {
def unit : a // unit of add
def add (x : a,y : a) : a // associative
}

This is clearly analogous to a type class. An example object would
be a monoid on strings, with the unit being the empty string and
addition being the concatenation of strings.



trait SetInterface {
type Set [ ]
type A

def empty : Set [A ]
def insert (x : A,q : Set [A ]) : Set [A ]
def extract (q : Set [A ]) : Option [(A,Set [A])]
}
trait SetOrdered extends SetInterface {

type Set [X ] = List [X ]
type A<: Ordered [A ]

def empty = Nil ()
def insert (x : A,q : Set [A]) = ins (x,q)
def extract (q : Set [A ]) = q match {

case Nil () ⇒ None
case Cons (x,xs)⇒ Some (x,xs)
}

}

Figure 2. An abstract datatype for sets.

implicit object strMonoid extends Monoid [String] {
def unit = ""
def add (x : String,y : String) = x.concat (y)
}

Again, there is a clear correspondence with an instance declaration
in Haskell. Ignoring the implicit keyword for a moment, we can
now define operations that are generic in the monoid:

def sum [a] (xs : List [a ]) (implicit m : Monoid [a ]) : a =
if (xs.isEmpty) m.unit
else m.add (xs.head,sum (xs.tail) (m))

We can now use sum in the following way (as we would have done
normally):

def test1 = sum (List ("a","bc","def")) (strMonoid)
However, we can omit the second argument to sum, since the

compiler has enough information to infer it automatically:
def test2 : String = sum (List ("a","bc","def"))

This works because (a) the implicit keyword in the object states
that strMonoid is the default value for the type Monoid [String],
and (b), the implicit keyword in the definition of sum states that
the argument m may be omitted if there exists an implicit object
in scope with the type of Monoid [a ]. (If there are multiple such
objects, the most specific one is chosen.) The second use of sum,
with the implicit parameter inferred by the compiler, is similar to
Haskell usage; however, it is more flexible, because it also provides
the option to provide an explicit value overriding the one implied
by the type.

4. Scala as a DGP Language
In order to support truly datatype-generic programming, languages
should support three forms of parametrization: “by the shape of
the computation, which is determined by the shape of the under-
lying data, and represented by a type constructor (an operation on
types); by the element type (a type); and by the body of the compu-
tation, which is a higher-order argument (a value, typically a func-
tion).” [Gibbons, 2006]. As we have seen, Scala readily supports all
of these parametrization forms: parametrization by type is provided
by generics; parametrization by computation comes from higher-
order functions; and parametrization by shape can be achieved with
higher-kinded types (and can also be encoded with abstract types).

newtype Fix f a = In{out :: f a (Fix f a)}
class BiFunctor f where

bimap :: (a→ b)→ (c→ d)→ f a c→ f b d
fmap2 :: (c→ d)→ f a c→ f a d
fmap2 = bimap id

map :: BiFunctor f ⇒ (a→ b)→ Fix f a→ Fix f b
map f = In ◦bimap f (map f ) ◦out

cata :: BiFunctor f ⇒ (f a r→ r)→ Fix f a→ r
cata f = f ◦ fmap2 (cata f ) ◦out

ana :: BiFunctor f ⇒ (r→ f a r)→ r→ Fix f a
ana f = In ◦ fmap2 (ana f ) ◦ f

hylo :: BiFunctor f ⇒ (a→ f c a)→ (f c b→ b)→ a→ b
hylo f g = g ◦ fmap2 (hylo f g) ◦ f

build :: (forall b . (f a b→ b)→ b)→ Fix f a
build f = f In

Figure 3. Origami in Haskell

4.1 A little DGP library
Moors et al. [2006] were the first to point out that Scala is ex-
pressive enough to be a DGP language; they showed how to en-
code the origami patterns (analogues of the COMPOSITE, ITERA-
TOR, VISITOR and BUILDER design patterns) [Gibbons, 2006] in
Scala. However, their encoding was in an object-oriented style that
was somewhat heavyweight and had limitations that the original
Haskell version did not have. We feel that this object-oriented style,
while perhaps more familiar to an object-oriented programmer as
Moors et al. intended, does not show the full potential of Scala from
a generic programmer’s perspective. We present an alternative en-
coding of the origami patterns that is essentially a direct translation
of the Haskell solution and has the same extensibility properties.

Figure 3 shows the Haskell implementation of the origami pat-
terns. Figure 4 shows the translation of this Haskell code into Scala.
The key idea is to encode type classes through implicit parameters
(see Section 3.5) rather than using the object-oriented style pro-
posed by Moors et al.. The newtype Fix is mapped into a trait, and
its constructor In into a case class; the type class BiFunctor maps
into a trait; and the origami operations map into Scala definitions
with essentially the same signatures. (In Scala, implicit parameters
can only occur in the last parameter position.)

There are three things to note in the Scala version. Firstly, be-
cause evaluation in Scala is strict, we cannot just write the follow-
ing in the definition of cata:

f ◦ ft.fmap2 (cata [a,r,F ] (f )) ◦ ( .out)
(the syntax ( .m) is syntactic sugar for (x⇒ x.m); in other words,
‘ ’ denotes an ‘anonymous’ lambda variable). Under strict eval-
uation, this would expand indefinitely; we have to write it more
awkwardly using application rather than composition.

Secondly, in Scala there are no higher-ranked types. However,
we can encode them by wrapping methods in objects. Furthermore,
because Scala supports structural subtyping, we can define anony-
mous classes. The first argument f of build is typed with an anony-
mous class with a (type-parametrized) apply method, which encap-
sulates the rank-2 type.

Thirdly, we introduced both the trait Fix and the case class In, to
make the correspondence with the Haskell code clearer. However,
it would be more within the Scala idiom to combine these two into
one (dropping one of the two names):

case class Fix [F [ , ],a] (out : F [a,Fix [F,a]])



trait Fix [F [ , ],a ]
case class In [F [ , ],a] (out : F [a,Fix [F,a]]) extends Fix [F [ , ],a]

trait BiFunctor [F [ , ]] {
def bimap [a,b,c,d ] : (a⇒ b)⇒ (c⇒ d)⇒ F [a,c]⇒ F [b,d ]
def fmap2 [a,c,d ] : (c⇒ d)⇒ F [a,c]⇒ F [a,d ] = bimap (id)
}
def map [a,b,F [ , ]] (f : a⇒ b) (t : Fix [F,a ]) (implicit ft : BiFunctor [F ]) : Fix [F,b] =

In [F,b] (ft.bimap (f ) (map [a,b,F ] (f )) (t.out))

def cata [a,r,F [ , ]] (f : F [a,r ]⇒ r) (t : Fix [F,a]) (implicit ft : BiFunctor [F ]) : r =
f (ft.fmap2 (cata [a,r,F ] (f )) (t.out))

def ana [a,r,F [ , ]] (f : r⇒ F [a,r ]) (x : r) (implicit ft : BiFunctor [F ]) : Fix [F,a] =
In [F,a] (ft.fmap2 (ana [a,r,F ] (f )) (f (x)))

def hylo [a,b,c,F [ , ]] (f : a⇒ F [c,a ]) (g : F [c,b]⇒ b) (x : a) (implicit ft : BiFunctor [F ]) : b =
g (ft.fmap2 (hylo [a,b,c,F ] (f ) (g)) (f (x)))

def build [a,F [ , ]] (f : {def apply [b] : (F [a,b]⇒ b)⇒ b}) = f .apply (In [F,a])

Figure 4. Origami in Scala

trait ListF [a,r ]
case class Nil [a,r ] extends ListF [a,r ]
case class Cons [a,r ] (x : a,xs : r) extends ListF [a,r ]

implicit object biList extends BiFunctor [ListF ] {
def bimap [a,b,c,d ] = f ⇒ g⇒ {

case Nil () ⇒ Nil ()
case Cons (x,xs)⇒ Cons (f (x),g (xs))
}
}
type List [a] = Fix [ListF,a]

def nil [a ] : List [a] = In [ListF,a] (Nil ())
def cons [a ] = (x : a)⇒ (xs : List [a])⇒ In [ListF,a] (Cons (x,xs))

Figure 5. Lists as a fixpoint

4.2 Using the library
Figure 5 captures the shape of lists in a type constructor ListF; the
two possible shapes for lists are defined with the case classes Nil
and Cons. The BiFunctor object defines the bimap operation for
the list shape. Lists are obtained simply by applying Fix to ListF.
The figure also shows functions nil and cons that play the role of
the two constructors for lists.

We can now define operations on lists using the origami opera-
tors. A simple example is the function that sums all the elements of
a list of integers:

def sumList = cata [Int, Int,ListF ] {
case Nil () ⇒ 0
case Cons (x,n)⇒ x+n
}

4.3 Evaluation of the approach
Figure 6 presents Moors et al.’s object-oriented encoding of the
origami operators (slightly adapted due to intervening changes in
Scala syntax), and Figure 7 shows the specialization to lists. Com-
pared to this object-oriented (OO) encoding, our more functional
(FP) style has some advantages. The most significant difference
between the two is that the OO encoding favours representing op-
erations as methods attached to objects, and provided with a distin-

trait ListF extends BiFunctor [ListF ]

case class NilF [a,b ] extends ListF {
type A = a; type B = b
def bimap [c,d ] (f : a⇒ c,g : b⇒ d) : NilF [c,d ] = NilF ()
}
case class ConsF [a,b] (x : a,xs : b) extends ListF {

type A = a; type B = b
def bimap [c,d ] (f : a⇒ c,g : b⇒ d) : ConsF [c,d ] =

ConsF (f (x),g (xs))
}
type List [A ] = Fix [ListF,A ]

Figure 7. Lists as a fixpoint, after Moors et al. [2006]

guished ‘self’ parameter, whereas the FP encoding favours repre-
senting operations as global functions, independent of any object.
In particular, in the OO encoding of the type class BiFunctor, the
method bimap takes just two functions, whereas in the FP encoding
it takes a data structure too; the OO encoding of the cata operation
is as a method of the class In, with a recursive data structure as
a ‘self’ parameter, whereas the FP encoding is as a global func-
tion, with the recursive data structure passed explicitly. The OO
approach requires more advanced language features, and leads to
problems with extensibility, as we shall discuss.

The dependence on the self parameter in the OO encoding
requires some sophisticated type machinery: Scala’s explicit self
types. This is seen in the definition of the trait BiFunctor:

trait BiFunctor [S <: BiFunctor [S ]] . . . {self : S⇒ . . .}
trait ListF extends BiFunctor [ListF ]

Note that ListF is given a recursive type bound, and that the S
parameter of BiFunctor is given both an upper bound (namely
BiFunctor[S ]) and a lower bound (through the self clause, explicitly
specifying the self type: an ‘instance of the type class’ such as
ListF cannot instantiate the S parameter to anything more specific
than ListF itself). Moors et al. [2006] explain the necessity of this
construction for guaranteeing type safety; it is not required at all in
the FP encoding.

A second characteristic of the OO encoding is the attachment of
operations to objects as methods; for example, cata is a method



trait TC {type A; type B}
trait BiFunctor [S <: BiFunctor [S ]] extends TC {

self : S⇒
def bimap [c,d ] (f : A⇒ c,g : B⇒ d) : S {type A = c; type B = d}
}
trait Fix [S <: TC,a ] {

def map [b ] (f : a⇒ b) : Fix [S,b ]
def cata [b ] (f : S {type A = a; type B = b}⇒ b) : b
}
case class In [S <: BiFunctor [S ],a] (out : S {type A = a; type B = Fix [S,a]}) extends Fix [S,a] {

def map [b ] (f : a⇒ b) : Fix [S,b ] = In (out.bimap (f , .map (f )))
def cata [b ] (f : S {type A = a; type B = b}⇒ b) : b = f (out.bimap (id, .cata (f )))
}
def ana [s<: BiFunctor [s],a,b ] (f : b⇒ s {type A = a; type B = b}) (x : b) : Fix [s,a] =

In (f (x).bimap (id,ana (f )))

def hylo [s<: BiFunctor [s],a,b,c] (f : b⇒ s {type A = a; type B = b},g : s {type A = a; type B = c}⇒ c) (x : b) : c =
g (f (x).bimap (id,hylo [s,a,b,c] (f ,g)))

trait Builder [S <: BiFunctor [S ],a] {
final def build () : Fix [S,a] = bf (In [S,a ])
def bf [b ] (f : S {type A = a; type B = b}⇒ b) : b
}

Figure 6. Origami in Scala, after Moors et al. [2006]

of the case class In, rather than a global function. This works
smoothly for operations consuming a single distinguished instance
of the recursive datatype, such as cata. However, it doesn’t work for
operations that produce rather than consume, and take no instance,
such as ana; these appear outside the case class instead. (And of
course, it is well-known [Bruce et al., 1995] that it doesn’t work
well for binary methods such as ‘zip’ either.)

In addition to the awkward asymmetry introduced between cata
and ana, the association of consumer methods with a class in-
troduces an extensibility problem: adding new consumers, such as
monadic map [Meijer and Jeuring, 1995], paramorphism [Meertens,
1992], or idiomatic traversal [Gibbons and Oliveira, 2008], requires
modifications to existing code. Moors et al. [2006] address this sec-
ond problem through an ‘extensible encoding’, expressed in terms
of virtual classes — that is, nested classes in a superclass that are
overridable in a subclass. Since Scala does not provide such a con-
struct, this virtual class encoding has itself to be encoded in terms
of type members of the enclosing class (which are overridable). No
such sophistication is needed in the FP approach: a new origami
operator is a completely separate function.

Restricting attention now to the FP approach we describe, how
does the Scala implementation compare with the Haskell one?
Scala is rather more noisy than Haskell, for a variety of reasons:
the use of parentheses rather than simple juxtaposition for function
application; additional type annotations, for example in indicating
that bimap is parametrized by the four types a,b,c,d; the lack of
eta reduction because of strictness, as discussed above. However,
the extra noise is not too distracting — and indeed, the extra
explicitness in precedence might make this kind of higher-order
datatype-generic programming more accessible to those not fluent
in Haskell conventions.

On the positive side, the translation is quite direct, and the en-
coding rather transparent; the code in Figure 4 is not that much
more intimidating than that in Figure 3. Scala even has some
lessons to teach Haskell; for example, the ‘anonymous case analy-

sis’, as used in the definitions of biList and sumList, would be nice
syntactic sugar for the Haskell idiom ‘λx→ case x of . . .’.

To summarize, one sometimes gets the impression from the lit-
erature that one has to accept Haskell before one can start contem-
plating datatype-generic programming. We believe that this need
not be the case, and indeed that Scala is also a reasonable datatype-
generic programming language.

5. Generic Programming with Open Datatypes
As we discussed in Section 3.2, Scala readily supports a form of
algebraic datatypes via case classes. It turns out that these alge-
braic datatypes are quite expressive, being effectively equivalent to
Haskell’s generalized algebraic datatypes (GADTs) [Peyton Jones
et al., 2006]. However, unlike the algebraic datatypes found in most
functional programming languages, Scala allows the easy addition
of new variants to a datatype. In this section, we see how to ex-
ploit this as a basis for a generic programming library with open
representations and hence support for ad-hoc cases.

5.1 Type representations and generic functions
The trait Rep [A] in Figure 8 is a datatype of type representations.
The three objects RUnit, RInt, RChar are used to represent the basic
types Unit, Int and Char; these objects can be implicitly passed
to functions that accept implicit values of type Rep [A ]. The case
classes RPlus and RProd handle sums and products, and the RView
case class can be used to map datatypes into sums of products (and
vice versa). The first argument of RView should correspond to an
isomorphism, which is defined as:

trait Iso [A,B ] { // from and to are inverses
def from : A⇒ B
def to : B⇒ A
}

For example, the isomorphism between lists and their sum of prod-
ucts representation is given by listIso:



trait Rep [A]
implicit object RUnit extends Rep [Unit ]
implicit object RInt extends Rep [Int ]
implicit object RChar extends Rep [Char ]
case class RProd [A,B] (ra : Rep [A],rb : Rep [B ])

extends Rep [(A,B)]
case class RPlus [A,B] (ra : Rep [A ],rb : Rep [B ])

extends Rep [Either [A,B ]]
case class RView [A,B] (iso : Iso [B,A ],r : ()⇒ Rep [A ])

extends Rep [B ]

implicit def RepProd [a,b ]
(implicit ra : Rep [a],rb : Rep [b ]) = RProd (ra,rb)

implicit def RepPlus [a,b ]
(implicit ra : Rep [a],rb : Rep [b ]) = RPlus (ra,rb)

Figure 8. Type representations in Scala.

def fromList [a ] = (l : List [a])⇒ l match {
case Nil ⇒ Left ( {})
case (x :: xs)⇒ Right (x,xs)
}
def toList [a] = (s : Either [Unit,(a,List [a])])⇒ s match {

case Left ( ) ⇒ Nil
case Right ((x,xs))⇒ x :: xs
}
def listIso [a ] =

Iso [List [a],Either [Unit,(a,List [a])]] (fromList) (toList)

Note that the second argument of RView should be lazily con-
structed. Unfortunately, Scala forbids the declaration of by-name
arguments in case classes, so we have to encode call-by-name man-
ually using the conventional ‘thunk’ technique.

As a simple example of a generic function, we present a seri-
alizer. The idea is that, given some representable type t, we can
define a generic binary serializer by case analysis on the structure
of the representation of t:

def ser [t ] (x : t) (implicit r : Rep [t ]) : String =
r match {

case RUnit ⇒ ""
case RInt ⇒ encodeInt (x)
case RChar ⇒ encodeChar (x)
case RPlus (a,b) ⇒ x.fold ("0"+ ser ( ) (a),

"1"+ ser ( ) (b))
case RProd (a,b)⇒ ser (x. 1) (a)+ ser (x. 2) (b)
case RView (i,a) ⇒ ser (i.from (x)) (a ())
}

For the purposes of presentation we encode the binary representa-
tion as a string of 0’s and 1’s rather than a true binary stream. The
arguments of ser are the value x of type t to encode and a repre-
sentation of t (that may be passed implicitly). For the Unit case, we
just return an empty string; for Int and Char we assume the exis-
tence of primitive encoders encodeInt and encodeChar. The case
for sums applies the fold method (defined in the Either trait) to the
value x; in case x is an instance of Left we encode the rest of the
value and prepend 0; in case x is an instance of Right we encode the
rest of the value and prepend 1. The case for products concatenates
the results of encoding the two components of the pair. Finally, for
the view case, we convert the value x into a sum of products type
and apply the serialization function to that.

5.2 Open type representations and ad-hoc cases
In Scala, datatypes need not necessarily be closed to extension. This
means that it is possible to introduce new variants; in the case of
type representations, it means that we can add new constructors for
type representations. This is useful for ad-hoc cases in generic func-
tions — that is, to provide a behaviour different from the generic
one for a particular datatype in a particular generic function.

For example, suppose that we want to use a different encoding
of lists than the one derived generically: it suffices to encode its
length, followed by the encodings of each of the list elements.
For long lists, this encoding is likely to be more efficient than the
generic behaviour obtained from the sum of products view, which
essentially encodes the length in unary rather than binary format.
In order to be able to define an ad-hoc case, we first need to extend
our type representations with a new case for lists.

case class RList [A ] (a : Rep [A ]) extends
RView [Either [Unit,(A,List [A ])],List [A ]]

(listIso,()⇒ RPlus (RUnit,RProd (a,RList (a))))
implicit def RepList [a ] (implicit a : Rep [a ]) =

RList (a)
This is achieved by creating a subtype of RView, using the isomor-
phism between lists and their sum of products representation. No-
tice that RList depends on itself; had we not made this represen-
tation parameter lazy, the representation would unfold infinitely,
causing a stack overflow. The function RepList yields a default im-
plicit representation for lists, given a representation of the elements.

With the extra case for lists we could have an alternative serial-
ization function with a special case for lists:

def ser1 [t ] (x : t) (implicit r : Rep [t ]) : String =
r match {

. . . // just like ser
case RList (a) ⇒ ser1 (x.length)+

x.map (ser1 ( ) (a)).foldRight ("") ((x,y)⇒ x+ y)
case RView (i,a)⇒ ser1 (i.from (x)) (a ())
}

The definition of ser1 is essentially the same as ser except that there
is an extra case for lists. As we explained before, this special case
for lists encodes the length of the list followed by the encodings of
its elements.

5.3 Evaluation of the approach
The Scala approach that we have proposed in this section compares
favourably with the Haskell approach using GADTs to encode type
representations. While it is true that the code to define the represen-
tation type is somewhat more verbose than the Haskell equivalent,
we no longer need to create a separate type class to allow implicit
construction of representations. Implicit representations may not be
necessary for a generic programming library, but they are very con-
venient, and nearly all approaches provide them. The definition of
generic functions using type representations is basically as easy in
Scala as in Haskell; no significant additional verbosity is required.

In Haskell, it is very hard to extend a datatype with new variants.
In contrast, in Scala, adding a new variant is essentially the same
as adding a new subclass. From a generic programming point of
view, the lack of extensible representations is awkward, because
it prevents the design of modular generic programming libraries.
This has been realised by many researchers in the past [Hinze
and Peyton Jones, 2000, Lämmel and Peyton Jones, 2005, Hinze,
2006, Oliveira et al., 2006]. More recently, a number of clever
approaches using Haskell type classes has been used to overcome
the problem of allowing extensible representations. However, those
approaches are hard to grasp, and not as direct as one could wish
for. A different approach, extending Haskell with open datatypes



trait Generic [G [ ]] {
def unit : G [Unit ]
def int : G [Int ]
def char : G [Char ]
def plus [a,b] : G [a]⇒ G [b]⇒ G [Either [a,b]]
def prod [a,b ] : G [a]⇒ G [b]⇒ G [(a,b)]
def view [a,b] : Iso [b,a]⇒ (⇒ G [a])⇒ G [b ]
}

Figure 9. The trait Generic.

and open functions, has been proposed by Löh and Hinze [2006],
but so far that extension is not supported by any compiler. With
Scala, new cases for type representations can be modularly and
easily added, and we can define generic functions with ad-hoc
cases.

There is an extra advantage of Scala’s case classes when com-
pared to Löh and Hinze’s open datatypes. In Scala, we can mark a
trait as sealed, which prohibits direct subclassing of that trait out-
side the module defining it. Still, we can extend subclasses even in a
different module. Therefore, we could have marked the trait Rep[A ]
as sealed; modular extension of RView would still be allowed. The
nice thing about this solution is that we can be sure that a fixed set
of patterns is exhaustive, so it is easier to avoid pattern matching er-
rors. Scala even has coverage checking of patterns when using case
analysis on values of sealed types, warning of any missing cases.

6. Generic Programming with Type Classes
In Section 3.5 we saw how to encode type classes with implicit
parameters. This section builds on that encoding, showing how
generic programming techniques based on type classes can be
defined in Scala. In particular, we will look at the “Generics for the
Masses” (GM) technique by Hinze [2006] (Moors [2007] provides
an alternative Scala tutorial on this technique), and discuss two
distinct mechanisms in Scala for reusing generic functions: reuse
by inheritance and local redefinition.

6.1 Generics for the masses, in Scala
Hinze’s GM technique allows the definition of generic functions
within Haskell 98. A generic function can be encoded as an instance
of a type class Generic. Another type class (the Rep class) defines
a function rep that can be used to construct type representations
automatically.

Figure 9 presents a translation of one of the variants of Hinze’s
Generic class. Note that we use Scala’s support for higher kinds to
parametrize the trait Generic with a type-constructor G. The idea is
that instances of the trait Generic represent generic functions over
sums of products (much like the approach presented in Section 5).
A generic function is defined by giving cases for sums, products,
the unit type and also a few built-in types such as Int and Char.
For sums and products, which have type parameters, we need extra
arguments that define the generic functions for values of those
type parameters. The view case uses isomorphisms to adapt generic
functions to existing datatypes; once again, the ‘⇒’ before the type
G [a] signals that that parameter is passed by name.

For example, suppose that we want a generic function to count
the number of values contained in data structures. Such functions
have type A⇒ Int for various types A of data structure; we therefore
introduce a parametrized signature of this type, as a case class:

case class Size [A ] (size : A⇒ Int)
Thus, a value of type Size [A ] is basically a function of type A⇒
Int — that is, it is a record with a single field size of that type.

trait MySize extends Generic [Size] {
def unit = Size (x⇒ 0)
def int = Size (x⇒ 0)
def char = Size (x⇒ 0)
def plus [a,b] = a⇒ b⇒ Size ( .fold (a.size,b.size))
def prod [a,b] = a⇒ b⇒ Size (x⇒

a.size (x. 1)+b.size (x. 2))
def view [a,b] = iso⇒ a⇒ Size (x⇒

a.size (iso.from (x)))
}

Figure 10. A generic function for counting values.

(Note that we have combined the trait and the case class into one
definition here, as discussed in Section 4.1.)

Now the definition of counting has to specify the appropriate be-
haviour for units, sum, products, and so on. This is done by defining
a concrete subtype of the trait Generic [Size], giving concrete im-
plementations of each of the methods, as in Figure 10. Each case is
a value of type Size [A] for some A, which is obtained by applying
the constructor Size to a function of type A⇒ Int. For flexibility, we
count zero for each of the three base cases; this will be overridden
later. For sums, products and user-defined datatypes, we do the ob-
vious thing: choosing the appropriate branch of a sum, adding the
counts of the two components of a product, and unpacking a view
and recursively counting its contents.

6.2 Constructing type representations
A generic function is encoded as a value of type Generic [G] for
some G (such as G = Size, above); in order to decode this value,
we make use of another type representation. Figure 11 presents
a representation Rep [T ] of types T . This is a trait with a single
method accept, which takes an encoded generic function of type
Generic [g ]; it decodes the generic function to extract the specific
case at type T , which will be of type g [T ]. Again, the Scala
implementation is almost a transliteration of the Haskell type class
version, except that it uses implicit parameters instead of type
classes.

We will now show how to define representations of user-defined
datatypes, using Scala’s lists as an illustration. Essentially, for each
datatype T we want to represent, we need to create a value of type
Rep [T ]. In the case of lists, such a value can be defined as follows:

def listRep [a,g [ ]] (a : g [a ])
(implicit gen : Generic [g ]) : g [List [a]] = {

import gen.
view (listIso [a]) (plus (unit) (prod (a)

(listRep [a,g ] (a) (gen))))
}

implicit def RList [a ] (implicit a : Rep [a ]) =
new Rep [List [a]] {

def accept [g [ ]] (implicit gen : Generic [g]) =
listRep [a,g ] (a.accept [g] (gen)) (gen)

}

(The import declaration allows unqualified use of the methods
view, plus, and so on of the object gen.) Here, we use the auxiliary
listRep definition to construct the right Generic value following
the sum-of-product structure. Note that listIso is the isomorphism
presented in Section 5.2. Using listRep, we can then easily define
the representation RList for our lists.



trait Rep [T ] {
def accept [g [ ]] (implicit gen : Generic [g]) : g [T ]
}
implicit def RUnit = new Rep [Unit ] {

def accept [g [ ]] (implicit gen : Generic [g]) =
gen.unit

}
implicit def RInt = new Rep [Int ] {

def accept [g [ ]] (implicit gen : Generic [g]) =
gen.int

}
implicit def RChar = new Rep [Char ] {

def accept [g [ ]] (implicit gen : Generic [g]) =
gen.char

}
implicit def RPlus [a,b ] (implicit a : Rep [a ],b : Rep [b]) =

new Rep [Either [a,b]] {
def accept [g [ ]] (implicit gen : Generic [g]) =

gen.plus (a.accept [g] (gen)) (b.accept [g] (gen))
}
implicit def RProd [a,b ] (implicit a : Rep [a ],b : Rep [b]) =

new Rep [(a,b)] {
def accept [g [ ]] (implicit gen : Generic [g]) =

gen.prod (a.accept [g ] (gen)) (b.accept [g ] (gen))
}

Figure 11. Representations for generic functions.

6.3 Applying generic functions
We can now define a method size that provides an easy-to-use
interface for the generic function encoded by Size: this takes a
value of a representable type a and returns the number of elements
counted.

def size [a] (x : a) (implicit rep : Rep [a]) =
rep.accept [Size].size (x)

We defined MySize as a trait instead of an object so that it can be
extended, as we discuss in more detail in Sections 6.4 and 6.5. We
may, however, be interested in having an object that simply inherits
the basic functionality defined in MySize. Furthermore, this object
can be made implicit, so that methods like rep can automatically
infer this instance of Generic.

implicit object mySize extends MySize

Of course, this will return a count of zero for any data structure; we
show next how to override it with interesting behaviour.

6.4 Reuse via inheritance
The trait MySize defines a template for functions that counts values
in a data structure; however, if no functionality is overridden, the
resulting generic function always returns zero. The trait MySize
becomes more useful when some of its functionality is overridden.
In object-oriented languages like Scala we can use inheritance for
defining new generic functions, by overriding functionality of other
generic functions. In languages without inheritance (like Haskell),
this kind of reuse is more difficult to achieve. For example, suppose
that we wanted to define a generic function that counts the integers
in some structure. Using inheritance, all we have to do is to extend
MySize and override the case for integers so that it counts 1 for each
integer value.

trait CountInt extends MySize {
override def int = Size (x⇒ 1)
}
def countInt [a] (x : a) (implicit rep : Rep [a]) =

rep.accept [Size] (new CountInt {}).size (x)
With the help of CountInt we can define a method countInt to
count the integers in some structure of representable type. The
ability to explicitly pass an alternative ‘dictionary’ is essential to
the definition of the method count, since we need to parametrize
the accept method with an instance of Size other than the implicitly
inferred one.

Using such generic functions is straightforward. The following
snippet defines a list of integers test and applies countInt to this list.

val test = List (3,4,5)
def countTest = countInt (test)

Note that the implicit parameter for the type representations is
not needed, because it can be inferred by the compiler (since we
provided an implicit object RList).

6.5 Local redefinition
Suppose that we want to count the instances of the type parameter
in an instance of a parametric datatype such as lists. It is not possi-
ble to specialize Generic to define such a function directly, because
there is no way of distinguishing values of the type parameter from
other values that happen to be stored in the structure. For example,
we could have a parametric binary tree that has an auxiliary integer
at each node that is used to store the depth of the tree at that node
(this could be useful to keep the tree balanced). If the elements of
the tree are themselves integers, we cannot count them without also
counting the balance information.

val testTree = Fork (2,Fork (1,Value (6),Value (1)),Value (5))
val five = countInt (testTree) // returns 5
To solve this problem we need to account for the representations

of the type parameters of a parametric type. The method listRep, for
example, needs to receive as an argument a representation of type
g [a] for its type parameter. A similar thing happens with our binary
trees. Assuming that the equivalent method is called btreeRep, we
can provide a special-purpose counter for our trees that counts only
the values of the type parameter.

def countOne [a] = Size ((x : a)⇒ 1)
def countTree [a ] (x : Tree [a]) =

btreeRep [a,Size] (countOne [a]).size (x)
val three = countTree (testTree) // returns 3

The idea here is to replace the default behaviour that would be used
for the type parameter (as inferred from the type) by user-defined
behaviour specified by countOne.

6.6 Evaluation of the approach
Like the two previous generic programming approaches, the GM
technique can be more verbose in Scala than in Haskell. For ex-
ample, in the definitions of instances of the trait Rep (like RUnit,
RChar or RProd), we need to state the implicit argument of the
accept method and the type constructor argument g for each in-
stance; this is not necessary in the Haskell version.

In terms of functionality, the Scala solution can provide all the
functionality present in the Haskell solution, including the ability
to handle local redefinitions, and more. We can easily reuse one
generic function to define another through inheritance, as demon-
strated in Section 6.4; with the Haskell approaches, this kind of
reuse is harder to achieve. The only mechanism that we know of
that comes close, in terms of simplicity, to this form of reuse is
Generic Haskell’s default cases [Löh, 2004].



Another nice aspect that the Scala approach reveals is the ability
to override an implicit parameter. The accept method of Rep takes
an implicit argument of type Generic [g]. When we defined the
generic countInt function (see Section 6.4), we needed to override
that argument. This was easily achieved in Scala just by explicitly
passing an argument; it would be non-trivial to achieve the same
effect in Haskell using type classes, since dictionaries are always
implicitly passed. Note that we also explicitly override an implicit
parameter in the definition of countTree (since the first argument of
btreeRep is implicit by default).

Finally, it is interesting to observe that, when interpreted in an
object-oriented language, the GM approach essentially corresponds
to the VISITOR pattern. While this fact is not entirely surprising
— the inspiration for GM comes from encodings of datatypes;
and encodings of datatypes are known to be related to visitors
[Buchlovsky and Thielecke, 2005, Oliveira, 2007] — it has not
been observed in the literature before. As a consequence, many
of the variations observed by Hinze have direct correspondents in
variations of visitors and we may hope that ideas developed in the
past in the context of visitors may reveal themselves to be useful in
the context of generic programming. Oliveira [2007] explored this
and has shown, for example, both how solutions to the expression
problem [Wadler, 1998] using visitors can be adapted to GM and
how solutions to the problem of extensible generic functions in the
GM approach can be used as solutions to the expression problem.

7. Discussion
7.1 Haskell versus Scala
Scala differs significantly from Haskell, and we were curious to
know what were the advantages and disadvantages of using a
language like Scala instead of Haskell for the implementation of
generic programming libraries. Generally speaking, Haskell has a
few (mostly minor) advantages over Scala:

Laziness: Some approaches to generic programming rely, one
way or another, on laziness. While laziness comes for free in
Haskell, it does not in Scala, and we need to be more conscious
of evaluation order. For example, we had to adapt the origami
definitions in Section 4, and introduce call-by-name arguments
in the RView constructor in Figure 8.

Syntactic clarity: While Scala’s syntax is more elegant than that
of Java or C#, it is still more verbose than Haskell. In particular,
we have to declare more types in Scala, and need to have
extra type annotations. Also, case classes can be slightly more
cumbersome than Haskell data declarations.

Purity: Some generic programming approaches have strong theo-
retical foundations that provide a good framework for reason-
ing. However, in a language that does not guarantee the ab-
sence of side effects, the properties that one would expect may
not hold. Haskell is a purely functional programming language,
which means that functions will not have silent side-effects;
Scala provides no such guarantees.

On the other hand, Scala has its own advantages:

Open datatypes with case classes: As noted in Section 5, case
classes support the easy addition of new variants to a datatype.
As a consequence, we can have an extensible datatype of type
representations, which allows the definition of generic functions
with ad-hoc cases.

Generalized type-classes with implicit parameters: In Haskell,
type class “dictionaries” are always implicitly passed to func-
tions. However, it is sometimes convenient to explicitly con-
struct and pass a dictionary [Kahl and Scheffczyk, 2001, Dijk-
stra and Swierstra, 2005]. The ability to override implicit dic-

tionaries is a desirable feature for generic programming (see,
for example, [Löh, 2004, Chapter 8]).

Inheritance: Another advantage of Scala is that we can easily
reuse generic functions using inheritance. In Haskell, although
we can simulate this form of reuse in several ways, we can not
do it naturally.

Expressive type system: The combination of subtyping, higher-
kinded types, abstract types, implicit parameters, traits and mix-
ins (among other features) provides Scala with an impressively
powerful type system. Although in this paper we do not fully
exploit the expressivity, Oliveira [2007, Chapter 5] shows how
Scala’s type system can shine when implementing modularly
extensible generic functions.

Minor conveniences: We found the support for anonymous case
analysis (discussed in Section 4.3) quite neat and useful. Al-
though it is quite rare that we need to provide type annotations
in Haskell expressions, when they are needed they can be quite
tricky to get right; we believe that providing type annotations in
Scala is easier and more intuitive. Finally, Scala’s implicits can
avoid the need for some of the type classes and instances that
would be needed in Haskell (see the discussion in Section 6.6).

7.2 Idiomatic Scala
Throughout this paper, we have been using a functional program-
ming style heavily influenced by Haskell and somewhat different
from conventional Scala. What are the key techniques in this pro-
gramming style?

Making the most of type inference. Scala does not support type
inference in the same way that Haskell does. As explained in
Section 2.5, in a definition like

def power (x : Int) : Int = twice ((y : Int)⇒ y∗ y,x)
the return type of power and type of the lambda-bound y can
be inferred, but the type of the parameter x cannot. Although in
this particular case the type annotations are not too daunting, for
some definitions taking several arguments while possibly being
implemented or redefined in subclasses, this can become a burden.
However, a simple trick can help the compiler to (at least try to)
infer argument types: use lambda expressions rather than passing
parameters. That is, transform a parametrized method:

def f (x1 : t1, . . . ,xn : tn) : tn+1 = e
into a parameterless method with a higher-order value:

def fT : t1⇒ . . .⇒ tn⇒ tn+1 = x1⇒ . . .⇒ xn⇒ e
Then the return type t1 ⇒ . . .⇒ tn ⇒ tn+1 can (possibly) be in-
ferred, allowing a definition without type annotations:

def fT = x1⇒ . . .⇒ xn⇒ e
We have used this transformation a few times to make the most of
type inference, avoiding cluttering definitions with redundant type
annotations; see for example bimap in Figure 4, and the methods of
Generic in Figure 9.

Type class programming. As we have seen, type classes can be
encoded with implicit parameters. However, object-oriented classes
are more general than type classes, because they can contain data.
It is possible to mix ideas from traditional OO programming with
ideas inspired by type classes. For example, Moors et al. [2008]
define the trait

trait Ord [T ] {
def 6 (other : T) : Boolean
}

in order to encode the Ord Haskell type class
class Ord t where

(6) :: t→ t→ Bool



There is a significant difference between the two approaches: an
instance of the trait Ord [T ] will contain data, since the self variable
plays the role of the first argument; whereas an instance of the type
class Ord is essentially a dictionary containing a binary operation,
with no value of type t. In this paper, we use the classic Haskell
type class approach instead of the more OO approach. As we saw
in Section 4, sometimes merging the “type class” with the data can
lead to extensibility problems that can be avoided by keeping the
two concepts separate.

Encoding higher-ranked types. Some more advanced Haskell
libraries exploit higher-ranked types [Odersky and Läufer, 1996].
Scala does not support higher-ranked types directly, but these can
be easily encoded using a class with a single method that has
some local type arguments. However, this encoding requires a new
(named) class, which can significantly obscure the intent of the
code. In this paper, we make use of Scala’s structural types to avoid
most of the clutter of the encoding. The idea is simple: the Haskell
definition

func :: forall a.(forall b.b→ b)→ a→ a
would be encoded in Scala as:

def func [a] : {def apply [b ] : b⇒ b}⇒ a⇒ a
Note that the type {def apply[b ] :b⇒ b} stands for some class with
a method apply[b ] :b⇒ b. Structural types allow a definition that is
nearly as short and clear as the Haskell one. The main drawback of
the encoding is that we have to call the apply method explicitly
when we want to use the higher-ranked argument; in Haskell,
standard function application is used instead. As a final remark, we
note that this encoding makes it very easy to use parameter bounds.
For example, to enforce b<: a it suffices to write

def func [a] : {def apply [b<: a] : b⇒ b}⇒ a⇒ a
If we had used a separate named class, we would have had to
parametrize that class with the extra type bound arguments [Wash-
burn, 2008].

To our knowledge, this is the first time such an encoding for
higher-ranked types as been observed in the literature. We believe
that building primitive support for higher-ranked types in Scala
using this encoding as a basis should be fairly simple.

7.3 Porting generic programming libraries to Scala
In Haskell there has been a recent flurry of proposals for generic
programming libraries [Cheney and Hinze, 2002, Hinze, 2006,
Lämmel and Peyton Jones, 2005, Oliveira et al., 2006, Hinze et al.,
2006, Weirich, 2006, Hinze and Löh, 2007], all having interesting
aspects but none emerging as clearly the best option. An interna-
tional committee has been set up to develop a standard generic pro-
gramming library in Haskell. Their first effort [Rodriguez et al.,
2008] is a detailed comparison of most of the current library pro-
posals, identifying the implementation mechanisms and the com-
piler extensions needed.

The majority of the features required by those libraries translate
well into Scala; the three approaches investigated in this paper are
quite representative of the mechanisms required by most generic
programming libraries. There are however some questions about
some of the Haskell features. For example, certain approaches use
type class extensions such as undecidable instances, overlapping
instances and abstraction over type classes, which rely on so-
phisticated instance selection algorithms implemented in the lat-
est Haskell compilers. The details of Scala’s instance selection al-
gorithm have not been published, but we believe that it is not as
powerful as those in the Haskell compilers. However, as we noted
before, Scala’s implicit parameters allow us to explicitly pass dic-
tionaries, which can be used whenever automatic selection of in-
stances fails. Therefore, in principle, translating approaches that

use these features into Scala should be possible (although we may
have to specify a few more details explicitly).

Something that Scala does not have is a meta-programming fa-
cility. Some of the generic programming libraries use Template
Haskell [Sheard and Peyton Jones, 2002] to automatically gen-
erate the code necessary for type representations. In Scala those
would need to be generated manually, or a code generation tool
would need to be developed. The scrap your boilerplate approach
[Lämmel and Peyton Jones, 2003] relies on the ability to automat-
ically derive instances of Data and Typeable; in Scala there is no
deriving mechanism, so this would entail defining some instances
manually.

7.4 Where to go from here
The goal of this paper was not to promote a particular approach to
generic programming. Instead, we were more generally interested
in investigating how Haskell’s language mechanisms used in var-
ious generic programming techniques could be adapted to Scala.
The hope is that this work serves as a foundation for future work
on generic programming libraries in Scala. We believe that all three
approaches discussed in this paper could serve as good starting
points for more complete libraries. Moreover, other approaches can
still benefit from the discussions and insights presented here.

The approach discussed in Section 5 supports open datatypes,
and consequently supports ad-hoc cases for generic functions. Still,
open datatypes alone can be insufficient, and sometimes open func-
tions are also required (see for example Lämmel and Peyton Jones
[2005]; this would also allow the removal of the duplicated code
in the function ser1 in Section 5.2). Extending this approach with
open functions is an avenue for future work. One possible way to
achieve this is to use open recursion [Cook, 1989], which has been
used, in a similar context, by Garrigue [2000].

We have not discussed the possibility of adding ad-hoc cases
or open (generic) functions to the approach in Section 6. However,
[Oliveira, 2007, Chapter 5] (inspired by previous work [Oliveira
et al., 2006]) shows how to do so.

As we have been arguing, we found that Scala has some fea-
tures that are very useful in a datatype-generic programming lan-
guage. We believe that other programming languages (in particu-
lar, Haskell) can learn some lessons from Scala by borrowing these
features. For example, Oliveira and Sulzmann [2008] have recently
proposed a generalized class system for Haskell that is partly in-
spired by Scala and allows both implicit and explicit passing of
dictionaries.
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