
Formal Methods for Future Interoperability
Jim Davies and Jeremy Gibbons

Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD, UK.
{jim,davies,jeremy.gibbons}@comlab.ox.ac.uk

Abstract: Interoperability is a key challenge in software engineering, whether expressed in terms of the compatibility of
different systems and protocols, in terms of compliance to industry standards, or—increasingly—in terms of the ability to
share and re-use data gathered in different contexts. Formal methods are mathematical techniques for the precise description
of systems properties and behaviour, and have an important role to play in the future provision of interoperable systems and
data. This paper describes that role, and examines the implications for present-day training and education.

Categories and subject descriptors: D.2.4 [Software engineering]: Software/program verification – Formal methods;
K.3.2 [Computers and education]: Computer and information science education – computer science education;
J.1 [Administrative data processing]: Government

General terms: Standardization, design, verification
Keywords: Metadata, model-driven development, semantic frameworks

INTRODUCTION
Interoperability is a fundamental concern for users and
developers of information technology. The ability to create
a document on one computer, and open it on another, is
now seen as a basic requirement. Likewise the ability to
create an appointment, send it to another person’s calendar,
and have it appear with the correct date, time, and list of
participants. And over a period of years, we have seen the
industry arrive at a set of common standards that allow this
to happen—most of the time.

Perhaps the most important of these are the standards
that define the Internet itself, standards like TCP/IP. It is
now difficult to imagine or remember a time when protocol
stacks from different manufacturers would behave together
unpredictably. These days, at the lower levels, in terms of
the basic protocols, the Internet just works. And the same
is true of our mobile phones, our smartcards, and even our
electronic voting systems—most of the time.

But interoperability at the lowest level is not enough.
As the systems we build become ever closer to our lives, as
we become increasingly reliant upon them for our work,
our personal security, and our understanding of the world,
we start to need interoperability at higher and higher levels
of abstraction and meaning. And we need to be able to
depend upon this interoperability—all of the time.

When we pay our electricity bill at our bank, we want
to know that our account at the electricity provider will be
credited. When we arrive at an immigration desk, we want
to know that the information that the officer has is accurate,
and that we will not be mistaken for a dangerous criminal.
When we visit a hospital, we want the correct treatment for
our condition, not a prescription—or even an operation—
intended for someone else.

Not so long ago, a computer’s version of past or future
events was easily corrected or challenged: it was widely
accepted that “computers make mistakes”, and mistakes

were generally easy to detect and rectify. A customer
would have paper copies of electricity bills and bank
statements, and any discrepancy might be corrected with a
visit to the local branch, or a phone conversation with a
human operator.

If the information at the immigration desk, or on the
hospital system, was incorrect, then we might be
inconvenienced, but our hope would be that nothing too
serious would happen without additional checks, a paper
trail, and a review of physical evidence. But in this
millennium, the additional checks will be made using
computers, there will be no paper trail—no paper bills,
statements, tickets, prescriptions, or visas—and as far as
any evidence is concerned, the electronic version will be
definitive; it will be the master copy.

This may seem a frightening, even paranoid, vision—a
world in which any normal, law-abiding citizen could be
plunged into a Kafkaesque nightmare of persecution
without warning or hope of redress—but it is also a call to
arms: this computerisation of our lives will happen, it is
happening, and it many respects it has already happened;
the challenge that we face is to ensure that the behaviour of
our computing systems is correct.

And this is a task for formal methods: it is time for
formal methods to (help) save the world. But are formal
methods, as we know them, up to the job? Are we teaching
the right techniques? Is our research sufficiently
advanced? Is what we know, and what we do, properly
integrated into the processes of systems development,
operation, and maintenance?

The answer, regrettably, is no. And much of the
problem lies with interoperability at higher levels of
abstraction: by this we mean not questions of programming
language semantics—checks that variables will achieve or
maintain certain values—but questions of what those
variables and values mean outside of the current context:

what they mean to other systems, and what they mean to
stakeholders, owners, developers, and users.

In this paper, we explore the nature of this problem,
and formulate a grand challenge for formal methods
research and education, one that we must address if we
expect to live in a world where computing systems “just
work”, in the ways that we want and believe them to: a
world in which systems are sufficiently correct, accurate,
and accountable to be trusted with information that can
determine the course of our lives.

ELECTRONIC GOVERNMENT
One domain in which interoperability is of obvious,
overriding importance is electronic government— the use
of information technology “to improve outreach, access of
information, reduced corruption, increased transparency,
greater convenience, revenue growth and cost reductions”
[13], “combined with organisational change and new skills
in order to improve public services and democratic
processes” [6], and “to promote more efficient and
effective government, facilitate more accessible
government services, encourage interaction between users
of public services and providers” [12].

Systems development in electronic government
involves more than a literal translation of existing services
and processes into electronic form. The familiar problems
of large-scale projects are exacerbated by three main
factors: the likelihood of conflict and misunderstanding
between different stakeholder groups; the fact that
requirements are linked to changes in policy and
legislation; and the expectation that data and processes
should be accessible, and immediately interoperable with
those in other initiatives.

An example commonly quoted in the electronic
government community in the UK involves the automatic
provision of free school meals for the children of those in
receipt of specific social security benefits, which remains a
manual operation. It is a failure of interoperability that the
task of obtaining the relevant information from one
department, and translating it into terms understood by
another, in order to prove eligibility, is something that has
to be undertaken manually by the citizen concerned.

 Electronic government carries expectations of
transformation, often in connection with hopes for a better
society. The use of words such as ‘transformation’,
‘access’, ‘transparency’, ‘change’, ‘democracy’, and
‘interaction’, suggest specific domain challenges, with
significant implications for the processes of software
design and development.

In particular, electronic government requires a high
degree of formalisation and computerisation of
semantics—again, not the mathematical semantics of
programming languages, but the intended interpretation and
usage of system artefacts: variables, values, objects,
functions, services, models, forms, and documents. Such a
semantics can be expressed by communicating, in a

structured fashion, the role of artefacts in giving each other
meaning.

For example, the meaning of a particular item of data,
stored in a database, might be explained partly by
association with the question on the form used to collect
that data, and partly by a document describing the context
in which it was collected. The form and the document may
themselves be associated with other data, or other artefacts
describing provenance, versioning, ownership, purpose,
and intended use.

An informal, or implicit treatment of this kind of
semantics is sufficient only when the concepts are
straightforward, the user community is small or
homogeneous, and the period of time over which shared
understanding must be maintained is short. For systems of
any complexity, communities of any size, or initiatives that
are intended to last for many years—for the kind of
systems developed for electronic government—a more
formal, explicit approach is required.

The lack of explicit, managed semantics is a
contributing factor in the continuing failure of many
electronic government initiatives. Most people can quote at
least one high-profile disaster, in which a large, public
sector project has failed to deliver. (Indeed, on the very
day of writing this paragraph, the UK government
announced the cancellation of a half-complete project to
digitise and make accessible 171 years’ worth of
genealogical records [7].)

The mere existence of explicit, managed semantics is
not enough, however: we need also to ensure that it is
properly reflected in the behaviour of the systems that we
build and use. If it is to mean anything in practice, then the
semantics must be faithfully incorporated at every stage of
systems development, operation, and maintenance.

SEMANTIC FRAMEWORKS
We believe that a big step towards addressing the
interoperability challenges of electronic government can be
made by integrating ideas from data semantics and model-
driven development, an integration we call a semantic
framework. Moreover, we claim that semantic frameworks
both provide an interesting new domain for, and can derive
great benefit from, work in formal methods.

Metadata-based
Robust, trustworthy, and transparent information systems
require the careful consideration and representation of the
semantics of the information they record; a structured,
computable representation is essential if we wish to adopt
and maintain rich terminologies across multiple initiatives.

Conflicts and misunderstandings about the semantics
of data can be resolved, or at least identified at an earlier
stage, if aspects of structure, functionality, and
interpretation are conveyed through the use of models. This
is standard practice in software engineering; however, the

audience for the model is usually quite restricted, and thus
much of the detail, or semantic metadata, may be left
implicit.

For electronic government, in particular, it is a
requirement that models may be validated, so that public
servants can be held accountable; it is therefore essential
that the models are both comprehensive and
comprehensible—the metadata should be properly
recorded, and accessible to the stakeholders and users, as
well as to the developers. Furthermore, the connection
between data and metadata must be maintained at every
stage of acquisition and processing.

Model-driven
The dynamically evolving context of policy and legislation,
the greater requirements for accountability and
transparency, and the sheer scale of many electronic
government initiatives, all encourage the automatic
generation of system artefacts—such as forms, services,
queries, database schemas—or even complete system
implementations, from abstract models.

Information systems are modelled as matter of course,
but often only informally, using fragments of specification,
written in natural language, and presented as reports,
spreadsheets, and diagrams. These are partial descriptions,
often containing apparent contradictions, and there is no
prospect of using these to generate a system automatically.
Yet these are the documents that inform decisions such as
those on whether to proceed, on project scope, on supplier
selection, and on contract fulfilment, and it is here that a
semantic framework can start to produce real benefit.

In development, more formal models—typically,
object models and service descriptions—can present
precise descriptions of structure and functionality in which
data attributes have an accessible, computable semantics,
and terms have an agreed meaning. It may then be possible
to determine programmatically—at the design stage, or
after deployment—whether two systems are holding data
that has exactly the same semantics.

One way to represent the semantic information
required, and to facilitate programmatic access, is to
represent the various aspects of semantics using models of
usage. We can identify three particularly useful kinds of
model: ontologies, models which explain the meaning of a
metadata item in terms of named relationships to other
elements; applications, models in which the item appears in
context: for example, in the context of a design document,
or a form template; and transformations, models which
explain how data collected against one set of elements can
be transformed to fit another. Although only the first of
these is usually seen as defining or recording meaning, the
others also have semantic import: meanings are sometimes
best expressed, and will evolve, through usage.

If we can develop and configure systems through
automatic transformations, then we have a means of
automatically translating agreements on intended

meaning—developed iteratively, in collaboration with
stakeholders—into the behaviour of the working system.
This would work to increase trust, to promote standards
adoption, and—by reducing the cost of developing
alternative or additional functionality—to facilitate the
development of systems that meet the varying needs of a
wide range of stakeholders.

Semantic frameworks
The ideas of metadata-based and model-driven
development together make what we call a semantic
framework. A practical semantic framework can be
defined in terms of constructs at three different levels:
terminology services, metadata registries, and model
repositories. The first level presents a collection of defined
terms, structured in a way that suits one or more possible
applications. For example, a terminology for education
might include terms such as ‘institution’ and
‘qualification’, record that the terms ‘university’ and ‘high
school’ denote particular kinds of institution, and record
also that the terms ‘master’s degree’ and ‘international
baccalaureate’ are related in some way to the notion of
institution.

The second level presents a collection of metadata
elements, each of which describes a measurement or
observation. A metadata registry for education might
include elements such as institution attended, full title of
degree awarded, and result obtained. Each element may be
related to one or more terms in the underlying terminology,
and additional semantic information is provided by
informal explanations of intended purpose and an
association with a domain of possible values. The registry
also records relationships between elements, such as
equivalence, specialisation, and versioning.

The third level presents re-usable models for the
definition of information artefacts, such as database
schemas, service descriptions, forms, queries, and reports.
A model repository for education might include models of
admissions forms, study transcripts, and spreadsheets for
reporting registration and progress data to national
agencies. The fields on the forms, the entries on the
transcripts, and the columns on the spreadsheets may be
described, and given computable semantics, by linking
them to the metadata elements in a metadata registry.

The State of the Art
Metadata standards are already starting to appear in the
area of electronic government. An international standard
for metadata registries, ISO/IEC 11179 [9], is in its third
version, and has been adopted by—amongst others—the
Australian Institute of Health and Welfare [2], the
Canadian Institute for Health Information [3], and the US
Departments of Homeland Security and Justice [11]. The
Scottish Government is now able to use a standard
collection of metadata to drive procurement—prospective

suppliers of information systems can be required to
conform to agreed, customer-supplied terminology and data
semantics [10]. There is as yet, however, little progress in
terms of model-driven development for electronic
government applications.

In the domain of healthcare, more progress has been
made. Specifically, in translational cancer research—in
which scientific advances depend upon the effective
combination of clinical and research information from a
variety of sources—metadata registries and model-driven
techniques are being used together to guarantee the
interoperability of data collected in different contexts. The
US National Cancer Institute and the UK CancerGrid
Project [4] have successfully demonstrated semantic
interoperability and automatic data integration across
national and institutional boundaries. The semantic
framework approach has since been adopted by leading
players in the pharmaceutical industry.

EDUCATION AND TRAINING
The increasing importance of interoperability, and
compatibility with the needs and expectations of users and
other stakeholders, and the consequential shift towards
metadata-based, model-driven approaches, has significant
implications for the teaching of software engineering, and
for the teaching of formal methods in particular.

Software engineers will need expertise in generative
programming techniques—writing software to write
software, rather than programming directly at the level of a
fixed implementation. They will need experience in
precise modelling at higher levels of abstraction. Most
importantly, they will need the ability to create and
maintain models—and generators—through effective,
continuing collaboration with domain experts.

Not only will precise modelling become an essential
component of the software engineering toolkit, it will also
be important to anyone who needs to understand or validate
the documents and artefacts that determine the meaning
and behaviour of software systems—experts, managers,
customers, auditors, and even ordinary citizens.

Both professional software engineers and these other,
lay, stakeholders will need education and training in formal
methods. In neither case, however, will this be the kind of
education and training currently being delivered, or
envisaged in curriculum proposals such as SWEBOK [8]
and the GSwERC [1].

Formal methods have traditionally been seen as most
applicable in limited domains: typically high-integrity,
safety-critical, embedded systems. The emphasis has been
either upon the painstaking, manual derivation of fixed
implementations from immutable specifications, or upon
the post-hoc verification of program code or hardware
designs, and these are less relevant when our systems are to
be generated, automatically, from high level models.

Instead, all of those directly involved in systems
development will need education and training in precise,

abstract modelling, in conceptual modelling, and in the
analysis of the resulting artefacts—at least to the level of
being able to understand and act upon feedback from
analysis tools.

In addition, professional software engineers will need
education and training in translation and generation
technology, in higher-order, declarative techniques, in
semantic frameworks, and in requirements engineering
techniques that take advantage of the immediate connection
between abstract models and system behaviour.

ACKNOWLEDGEMENTS
This position paper draws on an earlier paper [5], with
additional contributions from Aadya Shukla and Steve
Harris.

BIBLIOGRAPHY
1. Applied Systems Thinking Institute. Graduate

Software Engineering Reference Curriculum. 2009.
http://www.asysti.org/issechome.aspx

2. Australian Institute of Health and Welfare. Metadata
Online Registry (METeOR). http://meteor.aihw.gov.au/

3. Canadian Institute for Health Information. CIHI Data
Dictionary. http://secure.cihi.ca/ddexternal/

4. CancerGrid Project. http://www.cancergrid.org/
5. Charles Crichton, Jim Davies, Jeremy Gibbons, Steve

Harris, and Aadya Shukla. Semantics Frameworks for
e-Government. In International Conference on e-
Government. December 2007.

6. Commission of the European Communities. The Role
of eGovernment for Europe’s Future. September 2003.
http://ec.europa.eu/information_society/eeurope/2005/
doc/all_about/egov_communication_en.pdf

7. David Hencke and Robert Booth. Ancestry Hunters
Stuck in Past as Web Project Fails. The Guardian,
16th August 2008.
http://www.guardian.co.uk/technology/2008/aug/16/ge
nealogy.records

8. IEEE Guide to the Software Engineering Body of
Knowledge. 2007. http://www.swebok.org/

9. ISO/IEC 11179. Information Technology – Metadata
Registries (MDR). http://metadata-stds.org/11179/

10. Scottish Government. OSIAF: Openscotland
Information Age Framework. August 2006.
http://www.scotland.gov.uk/Publications/2006/08/2409
2730/

11. US Departments of Homeland Security and Justice.
National Information Exchange Model (NIEM).
http://www.niem.gov/

12. Pacific Council on International Policy. Roadmap for
E-Government in the Developing World. April 2002.
http://www.pacificcouncil.org/pdfs/e-gov.paper.f.pdf

13. World Bank. E-Government Practice.
http://go.worldbank.org/C81XI6R6F0

