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Abstract: Interoperability is a key challenge in software engineering, whether expressed in terms of the compatibility of 
different systems and protocols, in terms of compliance to industry standards, or—increasingly—in terms of the ability to 
share and re-use data gathered in different contexts.   Formal methods are mathematical techniques for the precise description 
of systems properties and behaviour, and have an important role to play in the future provision of interoperable systems and 
data.  This paper describes that role, and examines the implications for present-day training and education.  

Categories and subject descriptors: D.2.4 [Software engineering]: Software/program verification – Formal methods; 
K.3.2 [Computers and education]: Computer and information science education – computer science education; 
J.1 [Administrative data processing]: Government 

General terms: Standardization, design, verification 
Keywords: Metadata, model-driven development, semantic frameworks

INTRODUCTION 
Interoperability is a fundamental concern for users and 
developers of information technology.  The ability to create 
a document on one computer, and open it on another, is 
now seen as a basic requirement.  Likewise the ability to 
create an appointment, send it to another person’s calendar, 
and have it appear with the correct date, time, and list of 
participants.  And over a period of years, we have seen the 
industry arrive at a set of common standards that allow this 
to happen—most of the time. 

Perhaps the most important of these are the standards 
that define the Internet itself, standards like TCP/IP.  It is 
now difficult to imagine or remember a time when protocol 
stacks from different manufacturers would behave together 
unpredictably.  These days, at the lower levels, in terms of 
the basic protocols, the Internet just works.  And the same 
is true of our mobile phones, our smartcards, and even our 
electronic voting systems—most of the time.  

But interoperability at the lowest level is not enough.  
As the systems we build become ever closer to our lives, as 
we become increasingly reliant upon them for our work, 
our personal security, and our understanding of the world, 
we start to need interoperability at higher and higher levels 
of abstraction and meaning.  And we need to be able to 
depend upon this interoperability—all of the time.  

When we pay our electricity bill at our bank, we want 
to know that our account at the electricity provider will be 
credited.  When we arrive at an immigration desk, we want 
to know that the information that the officer has is accurate, 
and that we will not be mistaken for a dangerous criminal.  
When we visit a hospital, we want the correct treatment for 
our condition, not a prescription—or even an operation—
intended for someone else. 

Not so long ago, a computer’s version of past or future 
events was easily corrected or challenged: it was widely 
accepted that “computers make mistakes”, and mistakes 

were generally easy to detect and rectify.  A customer 
would have paper copies of electricity bills and bank 
statements, and any discrepancy might be corrected with a 
visit to the local branch, or a phone conversation with a 
human operator.  

If the information at the immigration desk, or on the 
hospital system, was incorrect, then we might be 
inconvenienced, but our hope would be that nothing too 
serious would happen without additional checks, a paper 
trail, and a review of physical evidence.  But in this 
millennium, the additional checks will be made using 
computers, there will be no paper trail—no paper bills, 
statements, tickets, prescriptions, or visas—and as far as 
any evidence is concerned, the electronic version will be 
definitive; it will be the master copy.  

This may seem a frightening, even paranoid, vision—a 
world in which any normal, law-abiding citizen could be 
plunged into a Kafkaesque nightmare of persecution 
without warning or hope of redress—but it is also a call to 
arms: this computerisation of our lives will happen, it is 
happening, and it many respects it has already happened; 
the challenge that we face is to ensure that the behaviour of 
our computing systems is correct.  

And this is a task for formal methods: it is time for 
formal methods to (help) save the world.  But are formal 
methods, as we know them, up to the job?  Are we teaching 
the right techniques?  Is our research sufficiently 
advanced?  Is what we know, and what we do, properly 
integrated into the processes of systems development, 
operation, and maintenance?   

The answer, regrettably, is no.  And much of the 
problem lies with interoperability at higher levels of 
abstraction: by this we mean not questions of programming 
language semantics—checks that variables will achieve or 
maintain certain values—but questions of what those 
variables and values mean outside of the current context: 



what they mean to other systems, and what they mean to 
stakeholders, owners, developers, and users.  

In this paper, we explore the nature of this problem, 
and formulate a grand challenge for formal methods 
research and education, one that we must address if we 
expect to live in a world where computing systems “just 
work”, in the ways that we want and believe them to: a 
world in which systems are sufficiently correct, accurate, 
and accountable to be trusted with information that can 
determine the course of our lives.  

ELECTRONIC GOVERNMENT 
One domain in which interoperability is of obvious, 
overriding importance is electronic government— the use 
of information technology “to improve outreach, access of 
information, reduced corruption, increased transparency, 
greater convenience, revenue growth and cost reductions” 
[13], “combined with organisational change and new skills 
in order to improve public services and democratic 
processes” [6], and “to promote more efficient and 
effective government, facilitate more accessible 
government services, encourage interaction between users 
of public services and providers” [12]. 

Systems development in electronic government 
involves more than a literal translation of existing services 
and processes into electronic form.  The familiar problems 
of large-scale projects are exacerbated by three main 
factors: the likelihood of conflict and misunderstanding 
between different stakeholder groups; the fact that 
requirements are linked to changes in policy and 
legislation; and the expectation that data and processes 
should be accessible, and immediately interoperable with 
those in other initiatives. 

An example commonly quoted in the electronic 
government community in the UK involves the automatic 
provision of free school meals for the children of those in 
receipt of specific social security benefits, which remains a 
manual operation.  It is a failure of interoperability that the 
task of obtaining the relevant information from one 
department, and translating it into terms understood by 
another, in order to prove eligibility, is something that has 
to be undertaken manually by the citizen concerned.  

 Electronic government carries expectations of 
transformation, often in connection with hopes for a better 
society.  The use of words such as ‘transformation’, 
‘access’, ‘transparency’, ‘change’, ‘democracy’, and 
‘interaction’, suggest specific domain challenges, with 
significant implications for the processes of software 
design and development.   

In particular, electronic government requires a high 
degree of formalisation and computerisation of 
semantics—again, not the mathematical semantics of 
programming languages, but the intended interpretation and 
usage of system artefacts: variables, values, objects, 
functions, services, models, forms, and documents.  Such a 
semantics can be expressed by communicating, in a 

structured fashion, the role of artefacts in giving each other 
meaning. 

For example, the meaning of a particular item of data, 
stored in a database, might be explained partly by 
association with the question on the form used to collect 
that data, and partly by a document describing the context 
in which it was collected.  The form and the document may 
themselves be associated with other data, or other artefacts 
describing provenance, versioning, ownership, purpose, 
and intended use.    

An informal, or implicit treatment of this kind of 
semantics is sufficient only when the concepts are 
straightforward, the user community is small or 
homogeneous, and the period of time over which shared 
understanding must be maintained is short. For systems of 
any complexity, communities of any size, or initiatives that 
are intended to last for many years—for the kind of 
systems developed for electronic government—a more 
formal, explicit approach is required.  

The lack of explicit, managed semantics is a 
contributing factor in the continuing failure of many 
electronic government initiatives.  Most people can quote at 
least one high-profile disaster, in which a large, public 
sector project has failed to deliver.  (Indeed, on the very 
day of writing this paragraph, the UK government 
announced the cancellation of a half-complete project to 
digitise and make accessible 171 years’ worth of 
genealogical records [7].) 

The mere existence of explicit, managed semantics is 
not enough, however: we need also to ensure that it is 
properly reflected in the behaviour of the systems that we 
build and use.  If it is to mean anything in practice, then the 
semantics must be faithfully incorporated at every stage of 
systems development, operation, and maintenance.  

SEMANTIC FRAMEWORKS 
We believe that a big step towards addressing the 
interoperability challenges of electronic government can be 
made by integrating ideas from data semantics and model-
driven development, an integration we call a semantic 
framework. Moreover, we claim that semantic frameworks 
both provide an interesting new domain for, and can derive 
great benefit from, work in formal methods.  

Metadata-based 
Robust, trustworthy, and transparent information systems 
require the careful consideration and representation of the 
semantics of the information they record; a structured, 
computable representation is essential if we wish to adopt 
and maintain rich terminologies across multiple initiatives. 

Conflicts and misunderstandings about the semantics 
of data can be resolved, or at least identified at an earlier 
stage, if aspects of structure, functionality, and 
interpretation are conveyed through the use of models. This 
is standard practice in software engineering; however, the 



audience for the model is usually quite restricted, and thus 
much of the detail, or semantic metadata, may be left 
implicit.   

For electronic government, in particular, it is a 
requirement that models may be validated, so that public 
servants can be held accountable; it is therefore essential 
that the models are both comprehensive and 
comprehensible—the metadata should be properly 
recorded, and accessible to the stakeholders and users, as 
well as to the developers.  Furthermore, the connection 
between data and metadata must be maintained at every 
stage of acquisition and processing.  

Model-driven 
The dynamically evolving context of policy and legislation, 
the greater requirements for accountability and 
transparency, and the sheer scale of many electronic 
government initiatives, all encourage the automatic 
generation of system artefacts—such as forms, services, 
queries, database schemas—or even complete system 
implementations, from abstract models.   

Information systems are modelled as matter of course, 
but often only informally, using fragments of specification, 
written in natural language, and presented as reports, 
spreadsheets, and diagrams. These are partial descriptions, 
often containing apparent contradictions, and there is no 
prospect of using these to generate a system automatically.  
Yet these are the documents that inform decisions such as 
those on whether to proceed, on project scope, on supplier 
selection, and on contract fulfilment, and it is here that a 
semantic framework can start to produce real benefit.  

In development, more formal models—typically, 
object models and service descriptions—can present 
precise descriptions of structure and functionality in which 
data attributes have an accessible, computable semantics, 
and terms have an agreed meaning. It may then be possible 
to determine programmatically—at the design stage, or 
after deployment—whether two systems are holding data 
that has exactly the same semantics.  

One way to represent the semantic information 
required, and to facilitate programmatic access, is to 
represent the various aspects of semantics using models of 
usage. We can identify three particularly useful kinds of 
model: ontologies, models which explain the meaning of a 
metadata item in terms of named relationships to other 
elements; applications, models in which the item appears in 
context: for example, in the context of a design document, 
or a form template; and transformations, models which 
explain how data collected against one set of elements can 
be transformed to fit another.  Although only the first of 
these is usually seen as defining or recording meaning, the 
others also have semantic import: meanings are sometimes 
best expressed, and will evolve, through usage. 

If we can develop and configure systems through 
automatic transformations, then we have a means of 
automatically translating agreements on intended 

meaning—developed iteratively, in collaboration with 
stakeholders—into the behaviour of the working system. 
This would work to increase trust, to promote standards 
adoption, and—by reducing the cost of developing 
alternative or additional functionality—to facilitate the 
development of systems that meet the varying needs of a 
wide range of stakeholders. 

Semantic frameworks 
The ideas of metadata-based and model-driven 
development together make what we call a semantic 
framework.  A practical semantic framework can be 
defined in terms of constructs at three different levels: 
terminology services, metadata registries, and model 
repositories. The first level presents a collection of defined 
terms, structured in a way that suits one or more possible 
applications. For example, a terminology for education 
might include terms such as ‘institution’ and 
‘qualification’, record that the terms ‘university’ and ‘high 
school’ denote particular kinds of institution, and record 
also that the terms ‘master’s degree’ and ‘international 
baccalaureate’ are related in some way to the notion of 
institution. 

The second level presents a collection of metadata 
elements, each of which describes a measurement or 
observation. A metadata registry for education might 
include elements such as institution attended, full title of 
degree awarded, and result obtained. Each element may be 
related to one or more terms in the underlying terminology, 
and additional semantic information is provided by 
informal explanations of intended purpose and an 
association with a domain of possible values. The registry 
also records relationships between elements, such as 
equivalence, specialisation, and versioning. 

The third level presents re-usable models for the 
definition of information artefacts, such as database 
schemas, service descriptions, forms, queries, and reports. 
A model repository for education might include models of 
admissions forms, study transcripts, and spreadsheets for 
reporting registration and progress data to national 
agencies. The fields on the forms, the entries on the 
transcripts, and the columns on the spreadsheets may be 
described, and given computable semantics, by linking 
them to the metadata elements in a metadata registry. 

The State of the Art 
Metadata standards are already starting to appear in the 
area of electronic government.  An international standard 
for metadata registries, ISO/IEC 11179 [9], is in its third 
version, and has been adopted by—amongst others—the 
Australian Institute of Health and Welfare [2], the 
Canadian Institute for Health Information [3], and the US 
Departments of Homeland Security and Justice [11].  The 
Scottish Government is now able to use a standard 
collection of metadata to drive procurement—prospective 



suppliers of information systems can be required to 
conform to agreed, customer-supplied terminology and data 
semantics [10].  There is as yet, however, little progress in 
terms of model-driven development for electronic 
government applications.  

In the domain of healthcare, more progress has been 
made.  Specifically, in translational cancer research—in 
which scientific advances depend upon the effective 
combination of clinical and research information from a 
variety of sources—metadata registries and model-driven 
techniques are being used together to guarantee the 
interoperability of data collected in different contexts.   The 
US National Cancer Institute and the UK CancerGrid 
Project [4] have successfully demonstrated semantic 
interoperability and automatic data integration across 
national and institutional boundaries.  The semantic 
framework approach has since been adopted by leading 
players in the pharmaceutical industry. 

EDUCATION AND TRAINING 
The increasing importance of interoperability, and 
compatibility with the needs and expectations of users and 
other stakeholders, and the consequential shift towards 
metadata-based, model-driven approaches, has significant 
implications for the teaching of software engineering, and 
for the teaching of formal methods in particular.   

Software engineers will need expertise in generative 
programming techniques—writing software to write 
software, rather than programming directly at the level of a 
fixed implementation.  They will need experience in 
precise modelling at higher levels of abstraction.  Most 
importantly, they will need the ability to create and 
maintain models—and generators—through effective, 
continuing collaboration with domain experts.  

Not only will precise modelling become an essential 
component of the software engineering toolkit, it will also 
be important to anyone who needs to understand or validate 
the documents and artefacts that determine the meaning 
and behaviour of software systems—experts, managers, 
customers, auditors, and even ordinary citizens.  

Both professional software engineers and these other, 
lay, stakeholders will need education and training in formal 
methods.  In neither case, however, will this be the kind of 
education and training currently being delivered, or 
envisaged in curriculum proposals such as SWEBOK [8] 
and the GSwERC [1].  

Formal methods have traditionally been seen as most 
applicable in limited domains: typically high-integrity, 
safety-critical, embedded systems.  The emphasis has been 
either upon the painstaking, manual derivation of fixed 
implementations from immutable specifications, or upon 
the post-hoc verification of program code or hardware 
designs, and these are less relevant when our systems are to 
be generated, automatically, from high level models.  

Instead, all of those directly involved in systems 
development will need education and training in precise, 

abstract modelling, in conceptual modelling, and in the 
analysis of the resulting artefacts—at least to the level of 
being able to understand and act upon feedback from 
analysis tools.    

In addition, professional software engineers will need 
education and training in translation and generation 
technology, in higher-order, declarative techniques, in 
semantic frameworks, and in requirements engineering 
techniques that take advantage of the immediate connection 
between abstract models and system behaviour.  
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