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Abstract. We argue that, for certain constrained domains, elaborate
model transformation technologies—implemented from scratch in general-
purpose programming languages—are unnecessary for model-driven en-
gineering; instead, lightweight configuration of commercial off-the-shelf
productivity tools suffices. In particular, in the CancerGrid project, we
have been developing model-driven techniques for the generation of soft-
ware tools to support clinical trials. A domain metamodel captures the
community’s best practice in trial design. A scientist authors a trial pro-
tocol, modelling their trial by instantiating the metamodel; customized
software artifacts to support trial execution are generated automati-
cally from the scientist’s model. The metamodel is expressed as an XML
Schema, in such a way that it can be instantiated by completing a form
to generate a conformant XML document. The same process works at a
second level for trial execution: among the artifacts generated from the
protocol are models of the data to be collected, and the clinician conduct-
ing the trial instantiates such models in reporting observations—again
by completing a form to create a conformant XML document, represent-
ing the data gathered during that observation. Simple standard form
management tools are all that is needed. Our approach is applicable to
a wide variety of information-modelling domains: not just clinical tri-
als, but also electronic public sector computing, customer relationship
management, document workflow, and so on.

It is the pervading law of all things organic and inorganic,
Of all things physical and metaphysical,
Of all things human and all things super-human,
Of all true manifestations of the head,
Of the heart, of the soul,
That the life is recognizable in its expression,
That form ever follows function. This is the law.

Louis Sullivan [33]
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1 Introduction

Randomized controlled trials are considered to be the ‘gold standard’ for ex-
periments in medicine. They provide the most reliable evidence supporting or
refuting a scientific hypothesis, such as that ‘treatment X cures more patients
suffering from disease D than does treatment Y ’. An experiment is designed:
treatment regimes X and Y will be specified; patients suffering from disease D
will be recruited; recruits will be stratified into groups with similar relevant char-
acteristics, based on factors such as age, gender and lifestyle; patients within
each group will be allocated at random to treatment X or treatment Y ; the
results will be analyzed to determine whether or not the difference in effect of
the treatments is statistically significant. So far, so good.

From a software point of view, a clinical trial is largely an exercise in data
management: observations have to be specified, collected, recorded, integrated,
and analyzed. But the software engineering aspects of setting up and running a
clinical trial are not trivial. Two particular problems that we will address involve
data integration and tool generation.

The data integration problem occurs because medical researchers want to be
able to combine the results of multiple trials, a process known as meta-analysis.
It is often the case that a single trial in isolation does not have adequate statis-
tical power to yield a robustly significant conclusion. Nevertheless, if sufficiently
many trials have been conducted, investigating sufficiently similar hypotheses
and collecting sufficiently similar data, it may be possible to pool the results
to greater effect: “. . . the drug Tamoxifen—an oestrogen blocker that may pre-
vent breast cancer cells growing—was the object of forty-two studies world-wide,
of which only four or five had shown significant benefits. But this did not mean
that Tamoxifen did not protect against breast cancer. When we put all the studies
together it was blindingly obvious that it does. . . ” [34]. In other situations, the
meta-analysis aims at evaluating new hypotheses that are formulated long after
the completion of the trials that originally collected the data involved—in this
case, data from trials investigating quite different hypotheses may be integrated.

Either way, for meta-analysis to be possible, it is necessary to capture and
curate metadata expressing the ‘semantics’ of the data; only then is it possible
to determine whether data collected in different trials are commensurate, and
if so, how to relate them. For example, when measuring blood pressure, it is
not enough to record a pair of numbers, or a pair of pressures, or a pair of
measurements in mmHg, or even to indicate that these represent systolic and
diastolic pressure; it is also necessary to know how that data was collected (at
rest, or after five minutes on a treadmill?), and maybe factors such as who
collected it (in the clinic by a professional, or at home by the patient?) and
how recent and reliable it is. This semantic metadata is an essential part of the
context of the data, and logically forms part of the model of the trial—alongside
more syntactic metadata such as the name of the trial and the types of data
items.

As for tool development, standard practice in clinical trials management these
days is to pass a textual document containing the trial protocol over to database
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programmers in the clinical trials unit, or to consultants from a trials manage-
ment software provider, who will use it as guidance in manually configuring an
information management system for this particular trial. This practice causes
numerous problems. Firstly, it induces delays: it is usually the case that some
to-ing and fro-ing is needed between the database programmers and the medi-
cal researchers to get the details right, but the medics are too busy to respond
immediately, and the start of the trial is often delayed because the software is
not ready. Secondly, it is costly. This is not such a problem for a big ‘phase III’
trial for measuring effectiveness of a treatment: this will have thousands of par-
ticipants and a stable design, so the software development will form only a small
proportion of the overall cost, and anyway such a trial is likely to be commercially
funded rather than run on a shoestring. But it certainly becomes a problem for
‘early-phase’ exploratory studies, which are much smaller, more dynamic, and
poorly funded. Thirdly, it is not uncommon for an early-phase trial protocol
to undergo changes during the execution of the trial, requiring adjustments to
software components of the associated trial management system; current prac-
tice is to implement these changes through manually modifying the underlying
code, running the risk of introducing software bugs when the system is in pro-
duction use. And finally, bespoke database design on a per-trial basis is unlikely
to promote the consistency and interoperability needed for meta-analysis.

All four of these generation issues could be addressed if the development
of the software tools needed to support trial execution could be automated.
Fortunately, there is essentially enough information in the trial protocol—which
needs to be written anyway, not least for the purposes of regulatory approval—
to completely determine the relevant software artifacts, either from scratch or
by configuring more generic components. If the protocol were written in a more
structured format—that is, as a formal model, rather than merely a textual
description, of the trial—then both the prose and the code could generated from
it by suitable processing, and any adjustments required because of changes to
the trial protocol can be made without risky manual intervention at the level
of code. Moreover, as we have seen, the annotation of the data descriptions in
the trial model with semantic metadata will make that model doubly useful, as
a basis for supporting meta-analysis in addition to being a specification for a
software system.

In other words, clinical trials management is crying out for a model-driven
engineering (MDE) approach.

Contribution

Our main contribution in this paper is a demonstration that model-driven en-
gineering need not involve the modeller—who is ideally a domain expert rather
than a developer—in ‘programming’ in a textual or graphical notation; rather,
in certain constrained domains, the modelling task is sufficiently formulaic that
it can be conducted simply by completing forms. Our argument is illustrated
by way of examples drawn from clinical trials management; but we also discuss
its applicability to other information domains, such as electronic government. In
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this paper we focus on the model-driven aspects of the problem; data integration
is discussed in a companion paper [12].

2 The CancerGrid Project

The CancerGrid project [7] was instigated to address the twin problems of inter-
operability and generativity in clinical trials, taking a model-driven approach to
the development of trials management tools. It was funded in the first instance
for three years from 2005 by the UK Medical Research Council, with the in-
volvement of five UK universities: Cambridge (specializing in oncology), Oxford
(software engineering), University College London (semantic modelling), Birm-
ingham (clinical trials management), and Belfast (telemedicine). Oxford Univer-
sity Software Engineering Programme and the Cancer Research UK Cambridge
Research Institute have been continuing the work.

An early activity of the project was the reification of the Consolidated Stan-
dards of Reporting Trials (CONSORT) statement [27] as a domain model. The
CONSORT statement is a widely-adopted checklist of thirty-two items, intended
to capture best practice in reporting clinical trials: name, date, sponsor, unique
unique trial number, target recruitment size, randomization protocol and strat-
ification variables, eligibility criteria, case report form structure, clinical inter-
ventions, and so on. We expressed this checklist as a class model of well-designed
trials; this model is described in detail in a technical report [19], and the prin-
ciples behind the model discussed in a companion paper [12].

An intriguing aspect of the CancerGrid approach is the parallels it reveals
between the ‘design-time’ and ‘run-time’ stages in the lifecycle of a trial. In the
first stage, a scientist is designing a trial protocol, following the guidelines set
out in the CONSORT statement; in the second stage, a clinician is conducting a
trial, following the guidelines set out in the trial protocol. Both cases involve in-
stantiating a schema: the trial protocol instantiates the CONSORT class model,
but it determines schemas for data collection and reporting at significant events
during the trial, which are themselves instantiated by the clinician when entering
data. We therefore call our model of the CONSORT statement the metamodel,
because each protocol that instantiates it is itself a model of a particular trial.
This parallel is discussed in more detail in Section 4, where the workflow of trial
design and execution is presented.

Much of the interoperability requirement pivots on some kind of consensus
on—or at least, machine-processable documentation of—the common data ele-
ments (CDEs) being recorded. There can be no magic here: if two trials have
collected incompatible data, or one of them has provided insufficient metadata
to determine compatibility, then their results cannot usefully be integrated. On
the other hand, it is very difficult to arrange for prior universal agreement on
compatible data elements across a large, heterogeneous, and long-lived commu-
nity.

The approach to this dilemma that we have taken on the CancerGrid project
is realist rather than idealist. We have developed tools to support communities
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in deciding on, recording, and disseminating data standards; but there is no
need for all parties to commit to using the same standard. We have developed
the CancerGrid Metadata Registry (cgMDR) [8], an open-source implementa-
tion of the ISO 11179 metadata registry standard [20]. This is robust enough for
widespread use—it is currently being adopted by the US National Cancer Insti-
tute (http://www.cagrid.org/display/MDR/), for example—while still being
lightweight enough for individual trials units to install their own copy to support
local practice and customization. Data elements (for example, ‘blood pressure
on induction into study, measured at rest’) are curated in the metadata reg-
istry, and referenced in the trial protocol; the metadata reference is preserved in
the software artifacts generated from the protocol—data entry forms, database
schemas, spreadsheets, and so on—ensuring that all the data maintain their
semantic annotations throughout their journey through the system.

As the name suggests, the original plan in 2005 was to use the then-emerging
‘grid’ technologies as a basis for the implementation. This turned out to be im-
practical: the toolkits were relatively unsophisticated, requiring considerable pro-
gramming effort to duplicate the functionality of applications that were already
available to our target users; moreover, ‘grid computing’ in the sense of large-
scale computational or storage clusters is not relevant to this particular problem.
The development activity was thus refocussed upon the production of software
that worked to extend and configure applications that are widely used and avail-
able within the UK National Health Service (and, indeed, throughout govern-
ment and industry): specifically, Microsoft Office and SharePoint Server. The
project’s focus upon the requirements of clinical researchers, and the recognition
that these requirements can be met partly through the (automated) enhance-
ment and configuration of office productivity applications, has led to changes in
attitudes. As one team member put it: “We used to be hung up on open source;
now we’re really focussed on open standards.”

Also as suggested by the name, the initial focus was on cancer clinical trials;
the first validations were on three breast cancer trials [28, 29, 16]. The tools have
also been demonstrated in an Anglo-Canadian cancer clinical study, in which
clinical data and tissue sample metadata from five centres were integrated au-
tomatically on the basis of declared semantics in cgMDR, allowing an analysis
across 4000 samples that would have been impractical under existing approaches;
and in a proof-of-concept usage on the US Veterans’ Health Administration Co-
operative Studies Program, where forms have been generated for serious adverse
event reporting in a rheumatoid arthritis study that allow the incorporation of
metadata directly from the US National Cancer Institute Thesaurus.

Current applications of the CancerGrid approach include: Accelerating Can-
cer Research Using Semantics-Driven Technology [3], funded by Microsoft Re-
search, exploring the extension from phase III to early-phase studies; Evolving
Health Informatics [14], funded by Research Councils UK, working with col-
leagues in the Centre for Clinical Vaccinology and Tropical Medicine at the
University of Oxford to demonstrate applicability to infectious disease control;
Hospital of the Future, aiming to improve patient outcomes through information-
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driven management; the Data Support Service, funded by the UK Medical Re-
search Council (MRC), to retrospectively catalogue the data collected in some
of the MRC’s valuable long-running studies; and the Union of Light-Ion Centres
in Europe, funded by the European Union Seventh Framework Programme, to
curate experimental results in particle therapy.

3 Forms-Based Model-Driven Engineering

The Object Management Group’s Model-Driven Architecture [26] aims to raise
the level of abstraction in software development, by separating higher-level speci-
fications of system functionality from lower-level descriptions of the implementa-
tion of that functionality on a particular platform. Platform-independent models
(PIMs) abstract away from technical details of implementation, such as represen-
tation in terms of CORBA objects or SOAP-based web services; these technical
details only appear in platform-specific models (PSMs). The transformations
from PIMs to PSMs (and for that matter, between PIMs and between PSMs)
might be fully automated, or might require some degree of human intervention.

Models must be expressed in some structured notation, such as UML or XML.
The construction of models has a number of benefits over going straight to code.
Firstly, a higher-level PIM is, presumably, simpler than a lower-level PSM, being
less cluttered with details; this makes it easier to analyse, to test, and to reason
about. Secondly, the effort involved in constructing and refining PIMs may be
amortized over multiple PSMs, encouraging investment in reusable assets. And
thirdly, interoperability between systems can be more clearly specified in terms
of PIMs, with integration mechanisms consequently inferred from PSMs. If all
one has is code, then all one can do is to execute it; whereas higher-level models
may be put to multiple uses.

The approach to model-driven engineering taken in the CancerGrid project
is a document-centric one: data models as document schemas; entities as confor-
mant documents; authoring as form completion; and model transformations as
schema mappings. Moreover, there is a pleasing symmetry between design-time
and run-time activities: the former consists of constructing a system model as a
document that conforms to a domain metamodel, the latter consists of recording
an event as a document that conforms to a data model, and both involve instan-
tiation via form completion. This view is perhaps not a universally appropriate
approach to model-driven engineering—more complex modelling notations might
not be readily viewed as document formats, and form-filling might not be the
most convenient way of authoring models in such notations—but it works in
restricted domains, and in particular in clinical trial design.

In a way, we are heading in the opposite direction to that taken by the Exe-
cutable UML camp [23]. Rather than thinking of models as programs written in a
high-level programming language, we think of them as plain data; the programs
are simple generic interpreters of this data, written once and reused many times.
For example, the trial metamodel is manifested as an XML Schema, and the
‘trial designer’ application is simply an off-the-shelf tool (in our case, Microsoft
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InfoPath) that allows a scientist to design a trial by completing a form derived
from that schema. In this sense, we are following Brooks’ advice [4]: “Show
me your flowchart and conceal your tables, and I shall continue to be mystified.
Show me your tables, and I won’t usually need your flowchart; it’ll be obvious”,
or, as later pithily paraphrased by Steele [31]: “Smart data structures and dumb
code works a lot better than the other way around.”

4 Implementation Approaches

The general principles of data models as document schemas, entities as confor-
mant documents, authoring as form completion, and model transformations as
schema mappings can be realized in a variety of ways. Our current implemen-
tation uses an off-the-shelf product for form-filling—namely Microsoft InfoPath
[24], an application that supports the design and completion of XML-based data
entry forms, forming part of the Microsoft Office productivity suite. This has
turned out to be the approach most attractive to our target audience of medical
researchers and clinicians, because they are all familiar with the Microsoft Office
interface, and they all have the software pre-installed on their desktop comput-
ers. This approach is described in Section 4.1. However, the general principles are
in no way tied to this particular realization, and in Section 4.2 we briefly discuss
an alternative implementation approach constructed from first principles.

4.1 Off-the-Shelf Implementation

Fig. 1. The forms-based workflow of clinical trial design and execution; icons denote
artifacts, and solid arrows denote transformations between artifacts

The workflow entailed by trial design and execution is illustrated in Figure 1.
The steps involved are expanded below, and illustrated by means of a paediatric
vaccinology study in Kathmandu [13] that we are currently supporting.
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First, representatives of the data community design a metamodel of the kinds
of experiment in which they are interested, capturing the design in the form of
an XML schema; this may be done once and for all, or more realistically, it is
subject to relatively infrequent updates. In our case, the general discussion had
already taken place in the medical research community, resulting in the existing
CONSORT statement [27], which has remained stable for over a decade. We
expressed the CONSORT metamodel as a UML class model, and exported the
metamodel as an XML schema. This metamodel is quite elaborate, but is parti-
tioned into packages defining trial description, patient eligibility, randomization,
treatments, case report forms and form controls, and security policy; a fragment
representing form controls is shown in Figure 2. This aspect of the CancerGrid
philosophy is described in more detail elsewhere [12]. (In addition, but also once
and for all, we developed a number of trial-independent software artifacts, such
as generic randomization and case report form management web services. And of
course, we are exploiting off-the-shelf applications such as InfoPath and Share-
Point.)

Second, a medical researcher planning a clinical trial designs the trial pro-
tocol. The trial designer application that they use to do so is just InfoPath
configured with the trial metamodel. Designing a trial amounts to completing
the forms that InfoPath presents; the result is an XML document modelling
this particular trial that, by construction, conforms to the schema from the first
step—and hence also to the CONSORT statement. (In contrast, CONSORT
conformance is not guaranteed with the current practice of writing the protocol
in plain English.) Figure 3 shows a screenshot of InfoPath being used to design
a case report form for recording study participant registration; the highlighted
element is the ‘study group’ (a three-way enumeration) into which the partici-
pant is placed, and a version of the underlying XML representation of this piece
of the form, heavily edited for space and readability, is shown in Figure 4(a).

Third, the XML document recording the trial protocol determines numerous
software artifacts relating to the trial: clinical interventions, datasets and collec-
tion procedures, software configurations for services such as randomization and
validation, documentation, and so on. Each trial-specific artifact essentially in-
stantiates the template for such artifacts included in the metamodel—hence the
dashed realization arrow in Figure 1 stereotyped ‘〈〈instance〉〉’, in a slight abuse
of notation. (To avoid clutter, the only trial-specific artifact shown in the figure
is the model of a case report form (CRF). Other artifacts are also models, but
may be models of entities such as services, documents, or workflows, rather than
of forms.) The specification of each artifact is obtained by traversing the XML
document, extracting the corresponding parts, and transforming them into the
appropriate format: XML Schema, XSL Formatting Objects, WSDL, and so on.
Traversal, extraction, and transformation is specified as a collection of XSLT
stylesheets, written once only, for all trials based on the same version of the
metamodel. In particular, the data to be collected by the clinician conducting
the trial—and hence the structure of the form on which this data is recorded—
is specified by an XML schema. The data manager in the trials unit generates
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Fig. 2. UML class model of the Form Control package of the CancerGrid metamodel

all these artifacts automatically, and deploys them in the unit’s web portal for
access by clinicians. Continuing the example, the XML defining the participant
study group is used to generate an XML Schema for the data that should be
collected; the corresponding portion of that schema, again heavily edited for
readability, is shown in Figure 4(b).

Finally, the clinician in the unit running the trial conducts a consultation
with a participant in the trial, makes some clinical observations, and needs to
record the data so obtained. The data entry application that they use to do
so is just InfoPath configured with the model of the relevant data. Data entry
amounts to completing the form that InfoPath presents; the result is an XML
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Fig. 3. Using InfoPath to design a case report form
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(a)

(b)

(c)

Fig. 4. Fragments of XML representing (a) a trial model, (b) a data schema derived
from the model, and (c) recorded results conforming to the schema

document recording this event that, by construction, conforms to the appropriate
schema from the third step, and which may be stored in an XML database for
subsequent analysis and study. In the example, choices for the participant study
group are presented as a dropdown list; selection from this list results in the
creation of the XML in Figure 4(c).

Notice especially that the execution-time actions of the clinician filing a case
report closely mirror the design-time actions of the scientist modelling the trial:
both actions are manifested as completion of a form to generate a document
that conforms to a certain schema. The actors may play different roles in the
overall process, but both are domain specialists rather than software profession-
als, and for both participants a familiar generic application configured with an
appropriate model is a suitable tool.

Notice also a significant benefit of the model-driven approach: the model can
be used for other purposes than just ‘execution’. For example, as well as the
software artifacts derived from a trial protocol, a textual description has to be
generated for submission to the relevant regulatory bodies. We have implemented
a simple ‘reporting tool’ to generate such a description.
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4.2 Implementation from First Principles

The implementation approach described in Section 4.1 is straightforward and ro-
bust (on account of being a simple specialization of a proven off-the-shelf frame-
work), and is attractive to our particular end users (on account of their familiar-
ity with this framework). However, a closed commercial off-the-shelf framework
may not be appropriate for all environments; so as an exercise in risk mitigation,
we also developed a proof-of-concept implementation from first principles. We
present a brief outline here; space limitations preclude a more detailed descrip-
tion.

The thoroughness with which the CONSORT statement specifies the require-
ments for randomized clinical trials enabled us to develop, once and for all,
trial-independent software artifacts for managing clinical trial data. We used
generic programming techniques to implement these artifacts as .NET web ser-
vices parametrized by form models. This specialization of the generic trial ser-
vices using trial-specific form datatypes is analogous to the configuration of
Microsoft InfoPath using form schemas.

Fig. 5. The forms-based workflow of clinical trial service generation; as in Figure 1,
icons denote artifacts, and solid arrows denote intermediate transformations

Figure 5 illustrates the workflow involved in generating CRF management
services for a clinical trial. The first part—leading to the generation of an XML
schema model of the case report form—is identical to the first part of the work-
flow presented in Section 4.1 (see Figure 1). For the second part of the service
generation workflow, the off-the-shelf XML Schema Definition Tool (Xsd.exe)
[25] is used to produce a C# class corresponding to the XML schema model of
the case report form—in other words, a C# model of the form. This C# CRF
model is then used to specialize the generic CRF management service, and thus
to obtain the trial-specific CRF management service.
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The same process is entailed by the generation of other similar run-time
artifacts, including services for the management of patients, staff (e.g., clinicians,
research nurses and statisticians) and locations (i.e., the healthcare research units
involved in the clinical trial). Indeed, the same process could be used at design
time as well, for authoring the trial protocol: this could use a generic data entry
form completion application, analogous to InfoPath but parametrized by a C#
class rather than by an XSL schema.

5 Evaluation

The approach to model-driven engineering of clinical trials management soft-
ware that we have described—representing data models as document schemas,
software artifacts as conformant documents, authoring as form completion, and
model transformations as schema mappings—has been validated in a number of
experiments, as outlined in Section 2. These have included both highly regular
phase III trials and more exploratory early-phase studies; both metadata-only
and metadata-plus-data exercises; both prospective data capture and retrospec-
tive data cataloguing; and both national and international communities. The
results are promising, although still on a small scale; we have in gestation some
more ambitious experiments for larger-scale validation.

We have been able to demonstrate, for a wide variety of types of clinical
study, that bespoke applications, tailored to specific study designs, can be deliv-
ered quickly through the automatic configuration of (relatively) low-cost general-
purpose software, and that the approach can be validated for the purposes of
regulatory submissions. Anecdotal evidence suggests that the reduction in devel-
opment time may range between 20% and 80%, depending upon the organiza-
tional context. Based on the early evaluations mentioned in Section 2, it seems
that the reduction in licensing costs can be measured in terms of the cost of a
Microsoft Office SharePoint Server select license (of the order of £1000, covering
arbitrarily many studies) against that for a typical solution based on commercial
domain-specific tools (which “would cost in the range of hundreds of thousands
of dollars” [17]).

The major benefit of our forms-based model-driven approach is that it en-
ables the domain expert (i.e., the scientist modelling the trial) to take part in
the development of the software, reducing the errors and delays that often occur
when informal models are interpreted by an IT expert who lacks domain knowl-
edge. Additionally, both the effort to bring a live software system back into line
with a new version of a trial protocol, and the risk of introducing defects in doing
so, are eliminated almost completely by automating the process. Another (still
unexplored, but nevertheless considered) benefit is the ability to use software in-
stances generated from preliminary protocol versions for testing and iteratively
improving the protocol, with minimal development effort; in contrast, current
practice delays the identification of flaws in the trial protocol until very late in
the development cycle.
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6 Conclusions

We have described an approach to model-driven engineering for information-rich
domains that can be characterized by a domain metamodel. Model-building is
a matter of instantiating the metamodel; when the metamodel is sufficiently
regular, that process can reduce to simple form-filling, and can be conducted by
domain experts with no programming skills. For many tasks, the same process
is applicable a second time when running the application: the model determines
a data format, and data gathering again reduces to form-filling, constructing
data items that conform to the model. What is most interesting is that modern
productivity frameworks—such as the SharePoint and InfoPath components of
Microsoft Office—are sufficiently powerful and flexible to support this kind of
application, almost without having to resort to low-level implementation in a
general-purpose programming language. This is evidence of a raise in the level
of abstraction provided by current mainstream software tools.

It has been gratifying to see that the ideas we have developed are much more
widely applicable than originally envisaged. Of course, we expected that software
engineering efforts related to breast cancer ought to be readily translatable to
other types of cancer, and we hoped that its area of applicability would also
embrace other diseases; our results with communities working on rheumatoid
arthritis and in vaccinology have vindicated that hope.

But we have been pleasantly surprised to learn that essentially the same
approach is also highly relevant in the field of electronic government. This too
turns out to be largely a problem of data integration: the former UK Prime
Minister Tony Blair coined the term ‘joined-up government’ as a vision for how
different government departments ought to—but generally do not at present—
interact [1]. Moreover, electronic governance is also a domain in which model-
driven generation of software artifacts would be extremely helpful: accountability
of public servants requires government information systems to be transparent,
and the monopoly typically held by the incumbent government requires the
systems to be trustworthy. Our ideas in this area are still under development,
but we have some preliminary results [10, 15, 11], and we are discussing further
progress with the UK Public Sector Object Model group and with the Scottish
Government.

Broadly speaking, we expect the approach to be applicable to any semanti-
cally rich domain in which there is: a relatively stable metamodel of the domain;
a ‘design phase’ consisting of instantiating the metamodel to yield a model of a
particular instance, which can be used to configure generic software tools; and
an ‘execution phase’ in which entities conforming to the model are created. For
example, one could use the approach for a generic conference management sys-
tem. The basis is a metamodel of academic conferences. The conference chair
‘designs’ the particular conference by instantiating the metamodel, specifying
properties such as whether there is an author response period, whether reviews
are double-blinded, how many reviewers each paper should have, and so on.
‘Execution’ consists of creating entities such as ‘submissions’ and ‘reviews’ that
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conform to conference-specific aspects of the model. The reader can doubtless
think of many similar configurable information-gathering exercises.

One aspect of ongoing work is to extend the scope of the metamodel to cover
also the temporal aspects of a clinical trial. Although the trial protocol provides
structured specifications of static aspects, in terms of common data elements, the
dynamic aspects—when interventions should occur—are described only in free
text (see the ‘meaning’ fields in Figure 3). These too could be specified in a struc-
tured format in the protocol, in a workflow modelling notation such as BPEL or
BPMN, and then used to generate scheduling tools for trial execution. We have
conducted some preliminary studies on using such workflow notations to specify
and check trial safety properties such as drug interactions [38, 40], but have not
yet integrated this work with the rest of the CancerGrid toolchain. The biggest
challenge will be to allow the trial designer to describe the temporal aspects of
the trial in sufficient detail, without degenerating into a full-blown programming
exercise; we hope that workflow patterns [37] and property specification patterns
[39] will be helpful in this regard.

7 Related Work

The US cancer Biomedical Informatics Grid (caBIG) [36] have a metamodel
of clinical trials [21], and have the sharing of cancer clinical data as a primary
objective. However, their caCORE software development kit [35] handles only the
generation of web service stubs for some aspects of cancer informatics, requiring
manual intervention by software developers in order to fill out the logic. Their
trial models, in contrast to ours, are not detailed enough to specify the behaviour
of these services, and so their generation process can only go as far as an outline
rather than a complete implementation.

There are many data interchange formats for medical data, especially for
healthcare records—the EN 13606 standard for electronic health record com-
munication (www.en13606.org), the Health Level Seven messaging standards
(www.hl7.org), the CDISC Operational Data Model for interchange of clini-
cal data (http://www.cdisc.org/odm), and so on; any of them could be used
in conjunction with the CancerGrid metamodel-based tools. Other medical in-
formatics projects are concerned with the integration of data from multiple,
distributed databases. For example, VOTES [32] integrates distributed medical
data pertaining to a single patient, so that candidate patients for new clinical
trials can be identified easily; the query forms used by the VOTES portal resem-
ble those discussed here, but they are encoded manually by software developers
familiar with the internal structure of the data sources, rather than being gen-
erated from a higher-level model. The PRATA system [9] addresses the XML
integration of data extracted from multiple, distributed databases, but based on
a user-specified XML schema that requires inside knowledge of the data sources.

Sierra et al. [30] describe a document-centric approach to application devel-
opment, similar to ours in the sense of involving a domain metamodel, models
as structured documents, and model-driven generation of software artifacts; but
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they expect domain experts to author models in markup languages like XML
rather than by simpler form completion. McLaren and Wicks [22] discuss a gen-
erative framework using XML; they present an ‘indirect’ approach using XSLT
to turn an XML model into an XML—or other format of—software artifact, and
a ‘direct’ approach using traditional (for example, Java) code to parse and in-
terpret XML on the fly. (Indeed, there is a continuum of approaches; it is really
a question of how much of the behaviour may be precomputed, and how much
is left until runtime.) The indirect approach is more agile, and is better while
requirements are evolving rapidly; but with a large system, the transformation
process may take considerable time, and McLaren and Wicks argue that the
‘faster direct implementation is necessary once requirements are well defined’.
Our approach is at the indirect end of the spectrum, with very little hand-crafted
code; even with our two-stage process, in which end users rather than software
engineers initiate model transformations, we do not find the transformation pro-
cess too time-consuming: maybe the technological landscape has changed enough
since 2001 for processing speed no longer to be quite such a concern.

Finally, it is interesting to view our forms-based approach from the per-
spective of domain-specific languages [18]: one might say that forms present a
third style of DSL, in addition to—perhaps in between—the familiar textual and
graphical styles.
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nal ideas turned out to be unworkable in practice, and the project soon changed
direction. A pair of related papers [5, 6] present formal specifications of an early
prototype of our form-based approach, but programmed from scratch in Java
rather than by configuring an off-the-shelf application (analogous to the first-
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focusses on the metadata aspects supporting shared semantics, rather than on
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discusses the Kathmandu vaccinology study used as a running example in Sec-
tion 4.
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