
6

The Complexity and Expressive Power of Limit Datalog

MARK KAMINSKI, Department of Computer Science, University of Oxford, UK

EGOR V. KOSTYLEV, Department of Computer Science, University of Oxford, UK and Department of

Informatics, University of Oslo, Norway

BERNARDO CUENCA GRAU, BORIS MOTIK, and IAN HORROCKS, Department of Com-

puter Science, University of Oxford, UK

Motivated by applications in declarative data analysis, in this article, we study DatalogZ—an extension of
Datalog with stratified negation and arithmetic functions over integers. This language is known to be un-
decidable, so we present the fragment of limit DatalogZ programs, which is powerful enough to naturally
capture many important data analysis tasks. In limit DatalogZ, all intensional predicates with a numeric
argument are limit predicates that keep maximal or minimal bounds on numeric values. We show that rea-
soning in limit DatalogZ is decidable if a linearity condition restricting the use of multiplication is satisfied.

In particular, limit-linear DatalogZ is complete for ΔEXP
2 and captures ΔP

2 over ordered datasets in the sense of
descriptive complexity. We also provide a comprehensive study of several fragments of limit-linear DatalogZ.
We show that semi-positive limit-linear programs (i.e., programs where negation is allowed only in front of
extensional atoms) capture coNP over ordered datasets; furthermore, reasoning becomes coNEXP-complete
in combined and coNP-complete in data complexity, where the lower bounds hold already for negation-free
programs. In order to satisfy the requirements of data-intensive applications, we also propose an additional
stability requirement, which causes the complexity of reasoning to drop to EXP in combined and to P in
data complexity, thus obtaining the same bounds as for usual Datalog. Finally, we compare our formalisms
with the languages underpinning existing Datalog-based approaches for data analysis and show that core
fragments of these languages can be encoded as limit programs; this allows us to transfer decidability and
complexity upper bounds from limit programs to other formalisms. Therefore, our article provides a unified
logical framework for declarative data analysis which can be used as a basis for understanding the impact on
expressive power and computational complexity of the key constructs available in existing languages.
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1 INTRODUCTION

Analysing complex datasets is currently a hot topic in information systems. The term “data analy-
sis” covers a broad range of techniques that often involve tasks such as data aggregation, property
verification, and query answering. Although these tasks are currently implemented using code
written in usual imperative programming languages, in recent years there has been a significant
shift towards declarative solutions, where the definition of the task is clearly separated from its
implementation [2, 38, 53, 54, 61]. In declarative data analysis, users describe what the desired out-
put is, rather than how to compute it. For example, instead of computing shortest paths in a graph
by a concrete algorithm, one first describes what a path length is and then selects only paths of
minimum length. Such specification is independent of evaluation details, allowing analysts to fo-
cus on the task at hand rather than implementation details. An evaluation strategy can be chosen
later, and efficient general algorithms can be reused “for free.”

An essential ingredient of declarative data analysis is a suitable logic-based language, such that
the relevant analysis tasks can be reduced to the fact entailment problem in the corresponding
logic. Datalog [1, 14] is a prime candidate since it supports recursion, which is needed, for instance,
to capture shortest path computations. Even basic data analysis tasks, however, also require inte-
ger arithmetic or aggregation to capture quantitative aspects of data (e.g., the length of a shortest
path). Research on extending Datalog with means for capturing numeric computations dates back
to the 1990s [5, 11, 20, 35, 42, 48, 59] and is currently experiencing a revival [19, 39, 63]. This ex-
tensive body of work, however, focuses primarily on integrating recursion with arithmetic and
aggregate functions in a coherent semantic framework, where technical difficulties arise due to
nonmonotonicity of aggregates. Surprisingly, little is known about the computational properties
of such languages, other than the fact that extending Datalog just with arithmetic function symbols
over the integer numbers trivially leads to undecidability of the fact entailment problem as well
as other relevant reasoning tasks [14]. Undecidability also carries over to the formalisms under-
pinning existing Datalog-based data analysis engines such as BOOM [2], DeALS [62], Myria [61],
SociaLite [53], Overlog [37], Dyna [16], and Yedalog [8]. This is a significant issue in practice, since
it implies that no general termination guarantees can be provided for these systems.

Our aim in this article is to lay a sound foundation for Datalog-based declarative data analysis by
developing new extensions of Datalog that are powerful and flexible enough to naturally capture
many important analysis tasks, while at the same time ensure decidability of fact entailment. Such
languages can then establish the formal basis for the development of reasoning engines support-
ing complex analytical tasks, and providing correctness, robustness, scalability and extensibility
guarantees. Furthermore, they can serve as a unified logical framework providing a basis for un-
derstanding the impact of the key constructs available in existing languages on expressive power
and computational complexity.

We take as a starting point DatalogZ—a natural extension of Datalog over a two-sorted signature
with stratified negation as failure, integer arithmetic, and comparisons. This is a very expressive
language, which is powerful enough to capture all the analysis tasks addressed in existing declar-
ative data analysis proposals. Unfortunately, fact entailment (and hence other relevant reasoning
problems) in DatalogZ are trivially undecidable. In Section 2, we introduce the necessary prelimi-
naries on DatalogZ, complexity theory, and integer programming. Then, with the goal of regaining
decidability while retaining the key expressivity of DatalogZ for capturing data analysis tasks, we
present in Section 3 the language of limit DatalogZ, which can be equivalently seen either as a
semantic or as a syntactic restriction of DatalogZ. In limit DatalogZ, all intensional predicates with
a numeric argument are limit predicates that keep maximal or minimal bounds on the numeric
values for each tuple of other arguments. For example, if we encode a directed graph with weighted
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edges using a ternary predicate edge, then rules (1) and (2), where dist is a min limit predicate (i.e.,
a predicate keeping only a minimal bound), compute the cost of a shortest path from a source node
as to each other node in the graph:

→ dist (as, 0), (1)

dist (x ,m) ∧ edge(x ,y,n) → dist (y,m + n). (2)

Intuitively, rule (2) says that, if x is reachable from as with cost at most m and (x ,y) is an edge of
cost n, then a′ is reachable from as with cost at most m + n. If these rules and a dataset entail a
fact dist (a, �), then the length of a shortest path from as to a is at most �; hence, dist (a,k ) holds
for each k ≥ � since the cost of a shortest path is also at most k . This is different from ordinary
DatalogZ, where there is no implicit semantic connection between dist (a, �) and dist (a,k ).

We first provide a direct semantics for limit programs based on limit-closed interpretations, which
are Herbrand interpretations that are closed under entailment of limit facts; for instance, in our
shortest path example, a limit-closed interpretation containing a limit fact dist (a, �) will also con-
tain all limit facts dist (a,k ) for each k ≥ �, thus capturing that existence of a path from as to a of
cost at most � implies the existence of such a path of cost at most k for all such k . We then show
that this model-theoretic semantics can be equivalently axiomatised in ordinary DatalogZ; as a re-
sult, our formalism inherits well-understood properties such as monotonicity of positive programs
and existence of a least fixpoint model [14]. In Section 3.2, we show that fact entailment remains
undecidable for limit DatalogZ programs, if no restrictions are imposed on the use of integer multi-
plication in the program. Towards regaining decidability, we introduce limit-linear DatalogZ where
the use of multiplication is suitably restricted. In Section 3.3, we argue that limit-linear DatalogZ
can capture many relevant data analysis tasks described in the literature.

In Section 4, we establish decidability of fact entailment for limit-linear programs, as well as
design algorithms for positive programs (i.e., negation-free), semi-positive programs (i.e., where
negation appears only in front of extensional atoms), and programs with stratified negation. Our
algorithms are based on a reduction to the evaluation problem for Presburger sentences of a certain
shape. In particular, after introducing an important characterisation of fact entailment by pseudoin-

terpretations in Section 4.1, we show in Section 4.2 that our reduction allows us to design a non-
deterministic fact entailment algorithm for positive limit-linear programs providing coNEXP and
coNP upper bounds in combined and data complexity, respectively. Furthermore, in Section 4.3,
we show that fact entailment for semi-positive programs can be reduced in polynomial time to
fact entailment over positive programs. As a result, the aforementioned coNEXP and coNP com-
plexity upper bounds extend also to semi-positive programs. Finally, we focus our attention on
limit-linear programs with stratified negation and design a fact entailment algorithm that materi-
alises (i.e., computes all facts derived from) the input program stratum-by-stratum, by relying at
each stage on the availability of an oracle for computing the materialisation of a semi-positive pro-
gram corresponding to each stratum. The analysis of our algorithm provides a ΔEXP

2 complexity
upper bound (thus placing the problem within the second level of the weak exponential hierar-
chy), and a ΔP

2 upper bound in data complexity (thus within the second level of the polynomial
hierarchy).

In Section 5, we characterise the expressive power of limit-linear programs and establish com-
plexity lower bounds matching the upper bounds in Section 4. Our main result in Section 5.1 is
that the language of semi-positive limit-linear programs captures (in the sense of descriptive com-
plexity [29]) the complexity class coNP over ordered datasets; in particular, for every problem
in coNP over such datasets, there exists a semi-positive limit-linear program that expresses this
problem. The expressive power of query languages is intimately related to their data complexity:
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6:4 G. Provelengios et al.

since semi-positive limit-linear programs can express all coNP problems, we immediately obtain
coNP-hardness of fact entailment in data complexity for such programs. Moreover, the proof of
our result on expressive power can be easily adapted for showing coNP-hardness in data complex-
ity even for positive limit-linear programs, as well as coNEXP-hardness in combined complexity
for such programs. We then focus our attention in Section 5.2 on stratified limit-linear programs
and show that they can capture, again over ordered datasets, the complexity class ΔP

2 , even when
the number of strata is limited to at most three. The proof of this result can be easily adapted for
showing ΔEXP

2 - and ΔP
2 -hardness in combined and data complexity, respectively, for limit-linear

programs with at most two strata, thus matching the upper bounds in Section 4.
The results of Section 5 establish intractability of reasoning over limit-linear programs, even in

data complexity. In Section 6, we identify fragments of our language for which reasoning becomes
tractable in data complexity and which are therefore well-suited for data-intensive applications.
In particular, using the idea of cyclic dependency detection formalised in Section 6.1, we identify in
Section 6.2 a stability condition and show that reasoning over stable limit-linear programs becomes
EXP-complete in combined complexity and P-complete in data complexity (i.e., no harder than
reasoning in usual Datalog). Stability, however, is a semantic condition that is hard to check; thus,
in Section 6.3, we identify a syntactic type-consistency condition, which implies stability and can
be verified in logarithmic space. We then argue that most of the relevant analysis tasks discussed
in our examples can be captured by type-consistent programs.

The majority of rule-based languages for data analysis proposed in the literature provide ag-
gregation, such as sum and max, in rules as a key feature. The expressive power provided by
aggregation in such languages can be simulated by limit-linear programs using a combination of
recursion and arithmetic. Simulating aggregation in this way, however, may lead to programs that
are not very intuitive; furthermore, the simulation has an additional disadvantage since it depends
on the assumption that datasets are ordered. To address these limitations, in Section 7, we extend
the language of limit-linear programs with explicit aggregation constructs, which allow us to ex-
press certain analytic tasks more naturally and without relying on the order assumption. We then
show that aggregation constructs do not increase the computational complexity of reasoning since
each limit-linear program with aggregation can be polynomially rewritten into an aggregate-free
limit-linear program.

In Section 8, we compare our language with the formalisms that underpin existing rule-based
systems for data analysis. In particular, in Section 8.1, we concentrate on the monotonic programs
of Ross and Sagiv [48], and show that a large class of these programs can be captured by limit-
linear DatalogZ, which implies that reasoning for this class is feasible in ΔEXP

2 in combined and in

ΔP
2 in data complexity. To the best of our knowledge, these are the first decidability results for the

formalism of Ross and Sagiv. In Section 8.2, we discuss other related knowledge representation
and database approaches in a less formal manner and argue that many of them can be captured by
our formalism as well. Therefore, we believe that our article provides a unified logical framework
for declarative data analysis that can be used as a basis for understanding the impact on expressive
power and computational complexity of the key constructs available in existing languages.

Finally, in Section 9, we outline promising directions for future work.
For readability, the article also has an Appendix containing formal proofs of some statements

(e.g., lemmas and theorems) that are relatively straightforward, but require lengthy reasoning; each
such proof is explicitly referenced in the main body.

This article extends the preliminary results reported in two conference publications [31, 32].1

The most significant additions with respect to our conference papers are the results on the

1The first of these papers [31] received the IJCAI-2017 distinguished paper award.
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expressive power of limit-linear programs reported in Section 5, the extension with aggregates
described in Section 7, and the decidability and complexity results for the related formalism by
Ross and Sagiv [48] reported in Section 8.1. In addition, we have tightened all our complexity
lower bounds (e.g., by making them applicable to multiplication-free programs), generalised key
definitions such as that of limit-linearity, and significantly improved the proofs of all our technical
results.

Summary of Main Technical Results. For the convenience of the reader, we conclude this
section by providing a brief guide to the main theorems in our article.

— Theorem 3.8 establishes, using a simple reduction of Hilbert’s tenth problem, that the fact
entailment problem for positive (i.e., negation-free) limit programs is undecidable due to
multiplication of variables. This result motivates our definition of limit-linear programs.

— Theorem 4.21 shows that fact entailment for positive limit-linear programs is decidable in
coNEXP in combined complexity and in coNP in data complexity. In turn, Theorem 4.29 es-
tablishes that these upper bounds extend seamlessly to semi-positive limit-linear programs.
Matching lower bounds are provided by Theorem 5.4 already for positive limit-linear pro-
grams using only 1 as numeric constant (which is tantamount to assuming unary coding of
numbers).

— Theorem 4.31 shows that fact entailment for the full class of limit-linear programs (where
negation is stratified) is in ΔEXP

2 in combined complexity and in ΔP
2 in data complexity. Match-

ing lower bounds are provided by Theorem 5.10, already for limit-linear programs admitting
at most two strata and using only 1 as a numeric constant.

— Theorems 5.3 and 5.9 establish our main results on expressive power. In particular, they re-
spectively show that the language of semi-positive limit-linear programs captures coNP and
the language of all limit-linear-programs captures ΔP

2 , both over ordered datasets. Further-
more, the full expressive power of the languages is available already for limit-linear programs
where 1 is the only numeric constant, and, for capturing ΔP

2 , when programs admit at most
three strata.

— Theorem 6.13 establishes that fact entailment for the restricted class of stable limit-linear pro-
grams is EXP-complete in combined complexity and P-complete in data complexity, which
are both the same as for usual Datalog. Theorem 6.19 then shows that a simple syntactic
type-consistency property is sufficient for stability.

— Theorem 7.9 shows that extending limit programs with aggregation neither adds expressive
power, nor increases the complexity of reasoning.

— Theorem 8.4 establishes a connection between the monotonic programs by Ross and Sagiv
and our formalism, and helps us identify a subclass of monotonic programs for which fact
entailment is decidable in DEXP in combined complexity and in DP in data complexity.

2 PRELIMINARIES

We assume familiarity with the basic concepts of complexity theory, logic, and rule-based query
languages for databases and knowledge representation.

2.1 DatalogZ

We recapitulate the well-known syntax and semantics of Datalog with stratified negation and
arithmetic over the integers, which we call DatalogZ. Our formalism is standard and closely related
to constraint logic programming (CLP) over the structure (Z, ≤, <,+,−,×, 0,±1,±2, . . . ), for
Z the set of integers [13, 14]. We only deviate in a minor way from the standard CLP definitions
by allowing the use of the special symbol∞, which corresponds to a universal quantification over
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all integers as explained later on; the introduction of this symbol will allow us to capture the
formalism of rules with monotonic aggregates by Ross and Sagiv [48], as described in Section 8.1.
None of our main results on expressive power (Theorems 5.3 and 5.9) or complexity lower bounds
(Theorems 5.4, 5.5, and 5.10) rely on the presence of∞ in the language.

Syntax. We assume countably infinite and mutually disjoint sets of objects, object variables, nu-

meric variables, and predicates. Each predicate has an arity from the set N of natural numbers with
zero, and each position of each predicate is of either object or numeric sort. The set of predicates
includes the usual binary comparison predicates ≤ and < with both positions numeric. We refer to
all other predicates as standard to distinguish them from the comparison predicates.

An object term is an object or an object variable. A numeric term is an integer, a numeric variable,
the special symbol ∞, or an expression of the form s1 + s2, s1 − s2 or s1 × s2, where s1 and s2 are
numeric terms not mentioning ∞, while +, − and × are the usual arithmetic functions. A constant

is an object or an integer (note that the special symbol∞ is not considered to be a constant).
A standard atom is an expression of the form A(t1, . . . , tv ), where A is a standard predicate of

arity v and each ti is a term matching the sort of position i of A. A comparison atom is of the form
(s1 � s2), where s1 and s2 are numeric terms different from ∞ and � is a comparison predicate
(i.e., ≤ or <). We use standard abbreviations concerning comparison atoms, such as (s1 ≥ s2) for
(s2 ≤ s1), (s1 � s2) for (s1 ≤ s2) ∧ (s2 ≤ s1), and (s1 ≤ s2 < s3) for (s1 ≤ s2) ∧ (s2 < s3).

A positive literal is a standard atom or a comparison atom, and a negative (standard) literal is an
expression of the form notα , for α a standard atom. A standard literal is a literal over a standard
atom.

A rule ρ is a first-order sentence of the form

∀x.φ → α , (3)

where the body φ of ρ is a conjunction of (positive and negative) literals, the head α of ρ is a
standard atom, and x is the tuple of all variables in φ and α ; the quantifier ∀x is often omitted.

A rule ρ is safe if each variable in ρ occurs in the body of ρ in a positive literal. Safety ensures
(object) domain independence—that is, that the semantics of a set of rules does not depend on
objects in the vocabulary not explicitly mentioned in the rules. Note that, under these definitions,
rules such as (n ≤ n) → C (n) for a numeric variable n and a predicate C with a single numeric
position is considered safe. On the one hand, such rules are convenient and often used in the
article; on the other hand, forbidding such rules would not restrict any of the languages we study:
as we will see, to simulate such rules it suffices to extend a program with the following rules, for
a unary predicate Integer with its only position numeric, and then use Integer (n) whenever we
need to “cover” a numeric variable n (in limit-linear programs Integer should be max or min, see
Definition 3.1):

→ Integer (0), Integer (n) → Integer (n + 1), Integer (n) → Integer (n − 1).

A fact is a (safe) rule with empty body and where all the terms in the head are constants (i.e.,
objects and integers, but not variables, terms with arithmetic functions, or∞). A dataset is a finite
set of facts. In addition to facts, it is often convenient to consider pseudofacts, which are defined
the same as facts except that the special symbol∞ is allowed to occur in the head atom. We do not
usually distinguish between pseudofacts and their head atoms, and often omit → when writing
pseudofacts (including facts).

A stratification of a set P of rules is a function Λ mapping each standard predicate mentioned
in P to a positive natural number such that, for each rule in P with head predicate A and each
standard body literal λ over predicate B in the rule, we have Λ(B) ≤ Λ(A) if λ is positive and
Λ(B) < Λ(A) if λ is negative. Unless explicitly stated (which will be the case only in Section 6),
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none of the results in this article depend on a particular stratification of a set of rules; therefore, we
commit to the unique stratification ΛP of a stratified set P of rules that assigns to each standard
predicate in P the least positive natural number possible. The i-th stratum of P, written P[i], is
the set of rules in P with head predicates A such that ΛP (A) = i . A set P of rules admits h strata

if h is the largest number with P[h] nonempty. A standard predicate A is intensional (IDB) in
a set P of rules if it occurs in P in the head of a rule that is not a pseudofact; otherwise, A is
extensional (EDB) in P; note that ΛP (A) = 1 for every EDB predicate A. Set P of rules is positive

if it does not use negative literals (in which case P admits a single stratum), and it is semi-positive

if the predicate of each negative literal is EDB in P (in which case it admits two strata).
A (DatalogZ) program (with stratified negation as failure) is a finite stratified set of safe rules.

Semantics. We adopt the standard notion of substitutions—that is, sort-compatible partial map-
pings of variables to constants. For E an expression (such as a term, atom, or rule) and σ a substi-
tution, Eσ is the expression obtained by replacing with σ (x ) each occurrence of every variable x
in E on which σ is defined. An expression E ′ is an instance of E if E ′ = Eσ for some substitution σ .
An expression is ground if it mentions no variables (note that each pseudofact is ground by defini-
tion, but not every ground atom is a pseudofact, because it may mention arithmetic functions). A
substitution σ is a grounding of an expression E if Eσ is ground.

A Herbrand interpretation, or just interpretation, is a (possibly infinite) set of facts (e.g., a dataset
is an interpretation). An interpretation I satisfies a ground literal λ, written I |= λ, if one of the
following holds:

— λ is a standard atom and I contains each fact obtained from λ by replacing every occurrence
of∞ by an arbitrary integer (which can be different for different occurrences) and evaluating
all the numeric terms (under the usual semantics of arithmetic functions over integers);

— λ is a comparison atom that evaluates to true (under the usual semantics of arithmetic func-
tions and comparisons); and

— λ is a negative literal notα and I 	|= α .

Note that satisfaction of a comparison atom does not actually depend onI, and this case is included
only for uniformity. The notion of satisfaction extends to conjunctions of ground literals, rules, and
sets of safe rules as in first-order logic. An interpretation I is a model of a program P if I |= P.

We next define the notion of entailment for DatalogZ programs. Analogously to the case of usual
Datalog with stratified negation, it is formulated in terms of the least fixpoint of an immediate

consequence operator S, which is defined as follows: for I an interpretation and P a program,
SP (I) is the interpretation defined as the set of all facts γ for which there exists a ground instance
φ → α of a rule in P such thatI |= φ andγ can be obtained from α by replacing each occurrence of
∞ by an integer and evaluating all numeric terms. By definition, an interpretation I is a model of a
program P if and only ifSP (I) ⊆ I. Also, for each positive program P, operatorSP is monotonic
with respect to set inclusion—that is,SP (I1) ⊆ SP (I2) for every two interpretationsI1 andI2 such
that I1 ⊆ I2; moreover, the same holds when P is semi-positive, while I1 and I2 coincide on the
EDB predicates. Hence we can define the semantics of each stratum of a program as the fixpoint of
the immediate consequence operator for this stratum provided the result for the previous stratum
is added at each step (the existence of this fixpoint is guaranteed by the Knaster–Tarski theorem
due to monotonicity). The presence of atoms involving∞, however, makes the usual definition of
the fixpoint for a (semi-)positive program based on induction over natural numbers insufficient,
as illustrated by the following example.

Example 2.1. Consider a positive program P consisting of the following rules over binary predi-
catesA, with one position of object sort and another of numeric sort, and next, with both positions
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of object sort, which use objects a and a′, an object variable x , and a numeric variablem:

→ A(a, 0), A(x ,m) → A(x ,m + 1), A(x ,∞) ∧ next (x ,y) → A(y, 0),

→ next (a,a′), A(x ,m) → A(x ,m − 1).

Assuming as usual S0
P (I) = I, Si+1

P (I) = SP (Si
P (I)) for each i ∈ N, and S∞P (I) =

⋃
i ∈N Si

P (I),
we then have that S∞P (∅) = {A(a,k ) | k ∈ Z} ∪ {next (a,a′)}. However,

S∞P (S∞P (∅)) = {A(a,k ),A(a′,k ) | k ∈ Z} ∪ {next (a,a′)};
so, the fixpoint of SP is not reached after countably infinite number of iterations. Note that both
predicates in this example have no more than one numeric position, which, as we will see, is the
most relevant situation for this article.

Therefore, we need an extension of the usual fixpoint semantics of entailment to transfinite
induction. Formally, the partial materialisationMκ

i of a program P, for an ordinal κ and natural
number i ≥ 1, is an interpretation that is defined by induction onκ and i as follows, whereω1 is the
smallest uncountable ordinal andMω1

0 = ∅ is assumed for uniformity (we adopt the convention
that ordinal 0 is neither successor nor limit):

M0
i =M

ω1
i−1, Mκ

i = SP[i] (Mκ′
i ) ∪Mω1

i−1 if κ = κ ′ + 1, Mκ
i =
⋃

κ′<κ

Mκ′
i if κ is a limit ordinal.

The materialisationM (P ) of P is then the partial materialisationMω1

h
, where h is the number of

strata P admits. The choice of ω1 in these definitions is justified by the fact that, for each i ,Mω1
i

is a countable set; therefore, there is an ordinal κ < ω1 such thatMκ
i =Mκ′

i for each κ ′ ≥ κ. It is
immediate to check thatM (P ) |= P—that is, the materialisation of a program P is a model of P.

A program P entails a fact γ , written P |= γ , if γ ∈ M (P ).
For positive programs, our definition of entailment coincides with the usual first-order notion—

that is, for a positive program P and a fact γ , we have that P |= γ if and only if γ ∈ I for every
I such that I |= P, or, in other words, thatM (P ) =

⋂
I |=P I. Furthermore, for programs not

involving ∞, our semantics coincides with the conventional semantics in the literature [4, 14]; in
this case, we could also use usual induction based on natural numbers without affecting the results.

We study fact entailment—that is, the problem of checking whether P |= γ for a program P and
a fact γ . It is well known, however, that this problem is undecidable even for positive DatalogZ
programs not mentioning ∞ and using + as the only arithmetic function [14]. However, all unde-
cidability proofs that we know of require programs using standard predicates having at least two
numeric positions. In the context of this article, it will be useful to refine this result to apply also
to programs where no standard predicate has more than one numeric position.

Theorem 2.2. The fact entailment problem is undecidable for positive programs that do not men-

tion ∞, × and −, and that use standard predicates with no object positions and at most one numeric

position.

The proof of this theorem is given in the Appendix.
In light of this undecidability result, our goal is to identify restrictions on programs such that,

on the one hand, the resulting languages are rich enough to capture interesting practical examples
and, on the other hand, they have decidable (and even tractable in some cases) fact entailment.

2.2 Complexity and Expressive Power

We will usually assume that all integers in the input to fact entailment are coded in binary, and
write ‖E‖ for the size of the representation of an expression (e.g., term, atom, and program) E
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assuming this coding of numbers. Our theorems on expressive power and complexity lower bounds
in Section 5, however, hold also under unary encoding of integers, so the choice of encoding is
immaterial for all main results of this article. Additionally, it is sometimes convenient to assume
that each integer is represented in unit (i.e., constant) space, and we write �E� for the size of the
representation of E under this assumption; thus, for each expression E, we have �E� ≤ ‖E‖ and
‖E‖ ≤ �E� ·maxk integer in E ‖k ‖ (the latter assuming that E mentions at least one integer).

Computational Complexity. We assume standard definitions of the basic time computational
complexity classes such as P, NP, coNP, EXP, NEXP, and coNEXP, as well as of the basic space com-
plexity class L. We also recall the complexity class DP, which is the class of all decision problems
P for which there exist problems P1 and P2 in NP such that an instance of a problem is in P if and
only if it is in P1 and not in P2 [44, 45], as well as the complexity class DEXP, which is defined in
the same way but on the basis of NEXP instead of NP.

We assume familiarity with the Ladner–Lynch oracle Turing machine model [36]. As usual,
given a complexity classC , classes PC and NPC consist of decision problems solvable in polynomial
time by a deterministic and nondeterministic, respectively, oracle Turing machine with an oracle
set whose membership problem is in C . In particular, the classes ΔP

i , ΣP
i , and ΠP

i , forming the
polynomial hierarchy, are defined inductively as follows:

ΔP
0 = ΣP

0 = ΠP
0 = P, ΔP

i+1 = PΣP
i , ΣP

i+1 = NPΣP
i , ΠP

i+1 = coNPΣP
i .

The classes ΔEXP
i , ΣEXP

i , and ΠEXP
i of the weak exponential hierarchy [27] are defined analogously

as follows:

ΔEXP
0 = ΣEXP

0 = ΠEXP
0 = EXP, ΔEXP

i+1 = EXPΣP
i , ΣEXP

i+1 = NEXPΣP
i , ΠEXP

i+1 = coNEXPΣP
i .

As already mentioned, our main goal is to study decidability and complexity of the fact en-
tailment problem for several fragments of DatalogZ. Combined complexity assumes that both a
program P and a fact γ form the input of the problem; in contrast, data complexity assumes that
P = P′ ∪ D for P′ a program and D a dataset, and that only D and γ form the input while P′ is
fixed. In the latter case, for technical reasons we silently assume that all predicates used inD and
γ are mentioned also in P′, so maxρ ∈P′�ρ� is always larger than maxγ ′ ∈D�γ ′� and �γ �. Note that
we do not requireD to contain only facts over EDB predicates, as it is often done in the literature;
however, our data complexity lower bounds in Section 5 hold under this requirement as well.

Descriptive Complexity. This branch of computer science studies the relationship between the
expressive power of logical languages and computational complexity [23, 29]. In this setting, a
logical language is a set of sentences each of which evaluates on a dataset to either true or false,
where the considered datasets involve no numeric terms—that is, the datasets whose signatures
contain no predicates with numeric positions. The languages FO and SO of first-order and second-
order Boolean queries, respectively, are canonical examples of logical languages.

As is often done in the studies of descriptive complexity, especially for Datalog-based lan-
guages [17, 29], we shall restrict our attention to the family D of ordered datasets, where a dataset
D is ordered if

— its signature includes a special sub-signature Σord that consists of unary predicates first and
last, and a binary predicate next;

— it mentions at least two objects and contains facts

first (a1), next (a1,a2), . . . , next (ac−1,ac ), last (ac )

for some repetition-free enumeration a1, . . . ,ac of all objects in D; and
— the aforementioned facts are the only facts over Σord in D.
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6:10 G. Provelengios et al.

To study the connections between expressivity of logical languages and computational com-
plexity, we need a way to encode each datasetD ∈ D into a string code(D) forming an input to a
Turing machine (or any other formalism underlying a complexity class); however, the main results
on descriptive complexity are independent of the precise coding details as long as code(D) satisfies
certain reasonable assumptions [23]. A key objective of descriptive complexity is to characterise
a logical language L in terms of the subfamilies of D that L can define. In particular, L captures

a complexity class C (over ordered datasets) if the following conditions hold for each signature Σ
extending Σord:

1. the problem of evaluating a sentenceφ ∈ L on a datasetD ∈ D over Σ is inC ifφ is considered
fixed (i.e., if it is not taken as part of the input); and

2. for each problem P in C , there is a sentence φP ∈ L such that, for every dataset D ∈ D over
Σ, sentence φP evaluates to true on D if and only if code(D) ∈ P .

In other words, L capturesC if, for each signature Σ, the sentences of L define precisely all subfam-
ilies of D over Σ that can be recognised inC . For instance, it is well-known that the language SO of
second-order Boolean queries captures the polynomial hierarchy (i.e., the union of all of its mem-
bers), while its restrictions SO∃ and SO∀ that allow for only existential and universal, respectively,
quantification over second-order variables capture NP and coNP [29].

Moreover, a logical language L closed under first-order reductions (i.e., first-order-expressible
transformations between datasets) satisfies condition 2 above for each signature Σ if and only if L
satisfies this condition for a single signature Σgraph = {edge} ∪Σord, for edge a binary predicate [14,
29]. Datasets over Σgraph in D represent directed graphs with ordered sets of nodes. Given such
a representation D of a graph with c nodes, we can fix code(D) as a binary string of length c2

such that D contains a fact edge(a,b) for objects a and b if and only if the bit number ia · c + ib in
code(D) is 1, where ia , ib ∈ [0, c − 1] are the positions of a and b in the enumeration of the nodes
induced by next in D. Thus, to prove that a logical language captures a complexity class C over
ordered datasets it suffices to show that this language is closed under first-order reductions and
satisfies condition 2 for such encodings of datasets over Σgraph in D.

We next apply these definitions to DatalogZ. To this end, we consider a distinct nullary predicate
goal and define a DatalogZ program P to be true on a dataset D ∈ D over EDB predicates in P
if P ∪ D |= goal. Note that the signature of dataset D contains only EDB predicates of program
P; thus, whileD cannot contain predicates with numeric positions, program P can—that is, such
predicates are treated as “internal” to P.

The ability of a DatalogZ fragment to capture a complexity class immediately implies hardness
of the corresponding fact entailment problem for this class in data complexity.

Proposition 2.3. If a fragment L of DatalogZ captures a complexity classC over ordered datasets,

then the fact entailment problem for L is C-hard in data complexity.

2.3 Presburger Arithmetic, Integer Programs, and Semi-Linear Sets

In this section, we summarise several results on linear arithmetic, which we later use to design
fact entailment algorithms for our fragments of DatalogZ.

Presburger Arithmetic. This is the language of first-order logic over a special signature, which
consists of constants 0 and 1, the binary addition and subtraction functions + and −, and the binary
comparison predicates < and ≤. Formulas in this language are always evaluated over integers Z
with the usual interpretation of the signature [7, 22, 26, 51]. For convenience, we slightly extend
the signature of Presburger formulas by allowing the use of all integers (and not just 0 and 1) as
constants (coded in binary) as well as multiplication × with at least one argument variable-free.
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These extensions of the syntax have no effect on the expressive power of the language or on any
result in this article, because each integer can be axiomatised using 1, + and −, and multiplication
by a variable-free numeric term can be rewritten as addition. Finally, we use truth values false

and true as aliases for constants 0 and 1, respectively, in Presburger formulas, as well as allow
for Boolean (i.e., ranging over {false, true}) variables, which can be axiomatised using numeric
variables in a straightforward way.

A solution to a Presburger formula ξ is an assignment σ of integers (and truth values) to the
free variables of ξ such that ξσ evaluates to true; ξ is satisfiable if it has a solution. Solutions to a
Presburger formula with v free variables (ordered in some way) can also be seen as vectors in Zv .

Integer Programming. A numeric term (different from ∞) is linear if each multiplication in it
has at least one argument that is variable-free (note that usually only multiplication by a constant
is allowed; our slight relaxation will be convenient later on and does not change any essential
properties of linear terms). An integer (linear) program (IP) is a conjunction of comparison atoms
where all numeric terms are linear. Note that every IP is a quantifier-free Presburger formula. By
evaluating variable-free subterms and factoring out variables, each IP ψ with r conjuncts and v
variables n (when seen as a system of inequalities rather than a formula) can be polynomially
rewritten into an equivalent normal form Mn ≤ k, where M is an integer matrix in Zr×v and k is
an integer vector in Zr . Moreover, if the maximal magnitude (i.e., the absolute value) of an integer
inψ isb ∈ N, then the magnitudes of all integers in the normal form ofψ are bounded by bu , where
u is the maximal number of integers in a comparison atom in ψ (and hence the maximal size of
the binary representations of integers increases at most polynomially). Further, every normal IP
with r inequalities over v variables can be transformed, by introducing r “slack” variables, to an
equivalent augmented form—that is, a system M ′n = k′ of equations, for M ′ ∈ Zr ′×v ′ and k′ ∈ Zr ′ ,
with r ′ = 2r , v ′ = r + v , and the same maximal magnitude of an integer as in the normal IP. An
augmented IP is still an IP, because equalities can be seen as abbreviations of inequalities as usual.
A linear program (LP) is defined as an IP but with constants and solutions ranging over real
numbers rather than integers.

As shown by Papadimitriou [43], a system M ′n = k′ of equations (i.e., an augmented IP), for
M ′ ∈ Zr ′×v ′ and k′ ∈ Zr ′ , has a solution in natural numbers if and only if it has a solution in
natural numbers bounded by v ′(r ′b)2r ′+1, where b is the maximal magnitude of an integer in M ′

and k′. It immediately follows that such a system has a solution in integers if and only if it has a
solution in integers of magnitudes bounded by v ′(r ′b)2r ′+1. Combining this observation with the
properties of IPs, we obtain the following corollary of Papadimitriou’s result.

Proposition 2.4. If a normal IP Mn ≤ k with M ∈ Zr×v and k ∈ Zr has a solution, then it has

a solution over integers whose magnitudes are bounded by (r + v ) (2rb)4r+1, where b is the maximal

magnitude of an integer in M and k.

Papadimitriou’s result implies that checking satisfiability of an augmented IP is NP-complete.
By the above observations, we conclude the same for arbitrary IPs.

Corollary 2.5. The IP satisfiability problem is NP-complete.

Kannan [34] showed that checking satisfiability of a normal IP is fixed-parameter tractable in
the number of variables. His algorithm can decide satisfiability of a normal IP ψ with v variables
in O (v9v/2 · ‖ψ ‖) arithmetic operations, while the size of each integer produced by the algorithm
is inO (v2v · ‖ψ ‖) [34, Theorem 5.4]. Since IPs can be converted to normal form without increasing
the number of variables, this implies the following proposition.

Proposition 2.6. There exists a polynomial p such that satisfiability of an IP ψ with v variables

can be checked in time polynomial in 2p (v ) + ‖ψ ‖.
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In this proposition, we also silently claim that both the polynomials not only exist, but can be
efficiently (in polynomial time) computed; this silent assumption applies to all such statements in
this article.

Integer Optimisation. An integer optimisation program (IOP) has the form (ψ , op s ) forψ an
IP, op ∈ {max,min}, and s a linear numeric term (different from ∞); a solution to ψ is optimal for
max s or min s if it maximises or minimises, respectively, the value of s over all solutions toψ ; this
value of s is the optimal value of the IOP. An IOP (ψ , op s ) is bounded if it has an optimal solution;
the IOP is satisfiable, normal, or augmented if so is ψ . A linear optimisation program (LOP) is
defined analogously to an IOP but with constants and solutions ranging over the real numbers.

As shown by Meyer [40, Corollary 5.2], an IOP (ψ , op s ) with ψ a satisfiable augmented IP is
bounded if and only if so is its linear relaxation, which is the LOP obtained from (ψ , op s ) by omit-
ting the requirement that solutions range over integers. Checking boundedness of a LOP can be
reduced to checking satisfiability of a LP (via the duality theorem; see, e.g., [52]), which, in turn,
is known to be tractable. Thus, we obtain the following proposition.

Proposition 2.7. The boundedness problem for satisfiable IOPs is in P.

As a corollary of his main result, Papadimitriou [43] obtained a pseudopolynomial algorithm
for finding the optimal value of a satisfiable and bounded augmented IOP (ψ , op

∑v
i=1 kini ) with

r equalities over variables n1, . . . ,nv in ψ , provided that r is fixed. The algorithm determines the
optimal valuek for which the IPψ∪{∑v

i=1 kini = k } is satisfiable by trying out all possible values for
k in the interval [−�, �], for � = v2 (rb2)2r+3 ·∑v

i=1 |ki | + 1, where b is the maximal magnitude of an
integer in the IOP. Moreover, by exploiting binary search, the number of such satisfiability checks
can be reduced to logarithmically many in the length of the interval—that is, to polynomially many
in the size of the IOP—even if r is part of the input. Since every linear term can be normalised to the
form

∑v
i=1 kini in polynomial time by evaluating variable-free subterms and factoring out variables,

the result transfers to our setting as follows (using Proposition 2.6 for the deterministic bound).

Proposition 2.8. There exists a polynomial p such that the optimal value of a satisfiable and

bounded IOP (ψ , op s ) withv variables can be computed in polynomial time using satisfiability checks,

each of which can be done in NP and in time polynomial in 2p (v ) + ‖ (ψ , op s )‖.

Semi-Linear Sets. Given a vector � ∈ Zv and a finite set L = {m1, . . . ,mt } ⊆ Zv of such
vectors, let

S (�,L) =
⎧⎪⎨⎪⎩
� +

t∑
i=1

dimi

������
d1, . . . ,dt ∈ N

⎫⎪⎬⎪⎭
.

A set of vectors from Zv is linear if it is equal to S (�,L), for some � and L as above. A set of
vectors is semi-linear if it is a finite union of linear sets. It is known that the set of all solutions to
a Presburger formula is semi-linear. Moreover, Chistikov and Haase [9] recently observed, based
on results of von zur Gathen and Sieveking [60], that the set of solutions to an IP can be bounded
as follows.

Proposition 2.9 ([9, Proposition 3]). The set of all solutions to a satisfiable normal IP Mn ≤ k

with v = |n| variables is a union of 2v linear sets S (�i ,Li ), i ∈ [1, 2v ], of vectors in Zv with the

magnitudes of integers in all �i and Li bounded by 2O (v log v ) · bv−1 ·max(b,b ′), where b and b ′ are

the maximal magnitudes of integers in M and k, respectively.

This proposition implies that the maximal value of each variablem in n over all solutions to the
IP Mn ≤ k is either equal to the value of m in some �i or does not exist (i.e., is unbounded), and
the same holds for the minimal value. Hence optimal values of IOPs can be bounded as follows.
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Corollary 2.10. There exists a polynomial p such that, for each satisfiable and bounded normal

IOP (Mn ≤ k, opm) with m a variable in n such that the maximal magnitudes of integers in M and

k are bounded by b > 1 and b ′ > 0, respectively, the magnitude of the optimal value of the IOP is

bounded by bp (v ) · b ′, where v = |n|.
Semi-linear sets are closed under projection, union, intersection, and complement. Chistikov

and Haase [9] established the following bound on the complement of a semi-linear set.

Theorem 2.11 ([9, Theorem 21]). If R is the union of h linear sets S (�i ,Li ) ⊆ Zv , for i ∈ [1,h],
then the complement of R is the union of linear sets S (�′j ,L

′
j ) ⊆ Zv with magnitudes of integers in all

�′j and L′j bounded by (max(b, 2))h ·O (v4 ) , for b the maximal magnitude of an integer in all �i and Li .

3 LIMIT AND LIMIT-LINEAR PROGRAMS

In this section, we propose the language of limit DatalogZ programs, which can be seen either as a
semantic or as a syntactic restriction of DatalogZ. Then, we further restrict the use of multiplication
to avoid trivial undecidability of fact entailment, arriving to the main object of study in this article—
limit-linear programs. Finally, we provide application examples of limit-linear programs.

3.1 Syntax and Semantics of Limit Programs

The key feature of limit programs is that their IDB predicates are partitioned into object and limit

predicates: object predicates are characterised by the fact that they only have object positions,
while limit predicates have a distinguished numeric position that keeps a limit (i.e., a maximal or
minimal bound) of integers. For instance, consider again rules (1) and (2) given in the introduction,
where dist is a min limit predicate. The semantics of limit DatalogZ is defined in such a way that a
fact dist (a,k ) is entailed from these rules and a dataset if and only if the distance from the source
node as to a is at mostk ; as a result, all facts dist (a, �) with � ≥ k are also entailed. This is in contrast
to ordinary numeric predicates, where there is no semantic relationship between dist (a,k ) and
such dist (a, �). The intended semantics of limit predicates can either be defined model-theoretically
or axiomatised using rules over ordinary predicates; in particular, our example limit program is
equivalent to an ordinary DatalogZ program consisting of rules (1), (2), and the following rule (4),
where dist is now treated as an ordinary predicate:

dist (x ,m) ∧ (m ≤ n) → dist (x ,n). (4)

In the rest of this section, we make this intuition precise by formally specifying the syntax and
semantics of limit DatalogZ programs and establishing their key semantic properties.

Definition 3.1. A limit (DatalogZ) program is a pair (P,τ ) such that

— P is a DatalogZ program where each standard predicate is either an object predicate with only
object positions, or a numeric predicate with its last position numeric and all other positions
object; and

— τ is a partial function from numeric predicates inP to {max,min} that is total on the numeric
IDB predicates and the numeric predicates of atoms mentioning∞ in P.

The numeric predicates of (P,τ ) in the domain of τ are limit predicates and all other numeric pred-
icates are exact. A limit predicate C is max or min when τ (C ) = max or τ (C ) = min, respectively.
A limit program is homogeneous if its limit predicates are either all max or all min.

All syntactic notions defined on ordinary programs (EDB or IDB predicate, stratification, and so
on) extend to a limit program (P,τ ) by applying them to P. For C a limit predicate, we write �τ

C
for ≤ if τ (C ) = max, and for ≥ if τ (C ) = min, with ≺τ

C
, �τ

C
, and �τ

C
defined accordingly; similarly,
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for S a set of integers, we write maxτ
C
S for max S if τ (C ) = max, and for min S if τ (C ) = min. All

notions introduced in Definition 3.1 for predicates directly propagate to atoms, literals, and facts.

Example 3.2. Consider the limit program (P,τ ), where P consists of rules (1) and (2) and τ
labels the numeric IDB predicate dist as min. The EDB predicate edge is an exact predicate, and
the program contains no object predicates. The program is homogeneous, as it contains only min
limit predicates, and positive, as it is negation-free.

We conclude the definition of the syntax by introducing an abbreviation that captures a recur-
rent use of stratified negation in examples and will play an important role in the rest of the article.
ForC a limit predicate, t a tuple of object terms of appropriate size, and s a numeric term different
from∞, a least upper bound (LUB) expression �C (t, s )� is an abbreviation for the conjunction of
literals C (t, s ) ∧ notC (t, s + k ), where k = 1 if C is max and k = −1 if C is min.

We next define the direct model-theoretic semantics of limit DatalogZ. In this semantics, the
intended meaning of limit predicates is captured by requiring all the models I of a program to
be closed for limit predicates—that is, whenever I contains a limit fact γ , it also contains all facts
implied by γ according to the predicate type.

Definition 3.3. An interpretation I is limit-closed for a limit program (P,τ ) if C (a,k ′) ∈ I for
each limit fact C (a,k ) ∈ I and each integer k ′ such that k ′ �τ

C
k .

Note that a ground LUB expression �C (a, s )� with max or min predicateC is satisfied by a limit-
closed interpretation I if and only if s evaluates to the greatest or least, respectively, integer k
such that C (a,k ) ∈ I.

The semantics of fact entailment is then defined in terms of an immediate consequence operator
acting on limit-closed interpretations, as specified next.

Definition 3.4. Given a limit program (P,τ ) and an interpretationI that is limit-closed for (P,τ ),
let S(P,τ ) (I) be the least limit-closed superset of SP (I) (where SP is the ordinary immediate
consequence operator, see Section 2.1).

Same as the immediate consequence operator SP for ordinary DatalogZ programs, operator
S(P,τ ) for limit programs is then used to define (partial) materialisations of limit programs. The
following proposition establishes that S(P,τ ) inherits the main properties of SP .

Proposition 3.5. The following hold:

1. I |= P if and only if S(P,τ ) (I) ⊆ I, for each limit program (P,τ ) and each interpretation I
that is limit-closed for (P,τ ); and

2. S(P,τ ) (I1) ⊆ S(P,τ ) (I2) for each semi-positive limit program (P,τ ) and interpretations I1 and

I2 that are limit-closed for (P,τ ), satisfy I1 ⊆ I2, and coincide on the EDB predicates.

The proof of this proposition is given in the Appendix.
Claim 2 of Proposition 3.5 and the Knaster–Tarski theorem guarantee the existence of the least

fixpoint of the immediate consequence operator S(P,τ ) for each stratum of a limit program [12],
and hence we can define materialisations and fact entailment for limit programs in the same way
as for ordinary programs.

Definition 3.6. The partial materialisations and the materialisationM (P,τ ) of a limit program
(P,τ ) are defined as the partial materialisations and materialisation of an ordinary program
(see Section 2.1) but using S(P,τ ) instead of SP . A limit program (P,τ ) entails a fact γ , written
(P,τ ) |= γ , if and only if γ ∈ M (P,τ ).
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Having direct semantics of limit programs at hand, we next argue that they can be easily rewrit-
ten to ordinary DatalogZ programs. As illustrated by rule (4) in the beginning of this section, the
semantics of limit predicates in a limit program (P,τ ) can be equivalently axiomatised by means
of the ordinary program P ∪ Aτ , where Aτ contains the following rule for each predicate C in
the domain of τ and for x a tuple of distinct object variables of appropriate size:

C (x,m) ∧
(
n �τ

C m
)
→ C (x,n).

Then, for every semi-positive limit program (P,τ ) and every interpretation I limit-closed for
(P,τ ), operator S(P,τ ) is such that S(P,τ ) (I) = SP (I) ∪ SAτ

(SP (I)). Thus, S(P,τ ) merely im-
poses a restriction on the order in which the rules are applied when computing the materialisation
of P∪Aτ . Since we are interested in a transfinite number of applications, this order is immaterial;
in particular, it is easily seen thatM (P,τ ) =M (P∪Aτ ) for each limit program (P,τ ), and hence
we can see a limit program as an ordinary program where rules Aτ are implicitly assumed.

To conclude this section, we next argue that each limit program can be equivalently rewritten as
a homogeneous program without increasing the size of the program. This is achieved by replacing
all min (or all max) predicates in the original program with fresh max (min, respectively) predicates
and negating their numeric arguments. For the sake of generality, however, in our technical results
we will not require limit programs to be homogeneous.

Proposition 3.7. For each limit program (P,τ ) and each fact γ , we can compute in linear time a

homogeneous program (P′,τ ′) and a fact γ ′ such that (P,τ ) |= γ if and only if (P′,τ ′) |= γ ′.

In this section, we have established a formal connection between the direct model-theoretic
semantics of limit programs and their semantics via axiomatisation. To avoid notational clutter, in
the rest of the article, we will abuse notation and write a limit program (P,τ ) as just P, assuming
that τ is given implicitly. Moreover, we will write �C instead of �τ

C
, maxC S instead of maxτ

C
S , SP

instead of S(P,τ ) , and so on; this should not lead to any confusion since all programs mentioned
from now onwards will be limit programs. Also, whenever we consider a union of several limit
programs (or rules, considered as singleton programs), we silently assume that their respective τ
coincide on shared predicates.

3.2 Undecidability and Limit-Linear Programs

We now start our investigation of the computational properties of limit DatalogZ. However, our
first result is negative: without further restrictions, fact entailment remains undecidable.

Theorem 3.8. The fact entailment problem for positive limit programs is undecidable.

Proof. The proof is by reduction of Hilbert’s tenth problem, which is to determine, given a
polynomial p (m1, . . . ,mv ) over variables m1, . . . ,mv with integer coefficients, whether the equa-
tion p (m1, . . . ,mv ) = 0 has an integer solution. For each such polynomial p, let Pp be the positive
limit program consisting of single rule (5) with A a nullary object predicate:

(p (m1, . . . ,mv ) � 0) → A. (5)

By construction, Pp |= A if and only if p (m1, . . . ,mv ) = 0 has an integer solution. �

The main reason for undecidability in Theorem 3.8 is that, due to multiplication, checking
whether the body of a rule matches an interpretation (i.e., checking rule applicability) amounts
to finding integer roots of arbitrary polynomials. However, we will see that when all numeric
terms are linear (i.e., if we prohibit multiplying variables), checking rule applicability boils down
to IP satisfiability, which can be done, by Corollary 2.5, in NP and, by Proposition 2.6, in P if the
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number of variables is fixed. Thus, to ensure decidability, we next restrict limit programs so that
each of their strata can be equivalently restated as a positive program with linear numeric terms.

Definition 3.9. A numeric variablem is stratification-guarded, or simply guarded,2 in a rule (of a
limit program) if it occurs in the rule body either in a function-free positive exact literal or in an
LUB expression of the form �C (t,m)�. A limit-linear rule (LL-rule) is a rule where at most one
argument of each multiplication mentions unguarded variables. A limit program is limit-linear

(LL-program) if so is each of its rules.

The definition of guardedness can be expanded as follows: a numeric variable m is guarded in
a rule ρ if the body of ρ contains either a literal of the form B (t,m) with B an exact predicate or
a conjunction of the form C (t,m) ∧ notC (t,m + k ) with C a limit predicate and k = 1 if C is max
and k = −1 if C is min. Note, however, that atoms with any other numeric terms involving m, for
instance B (t,m+1), do not satisfy the requirements of the definition. Intuitively, guarded variables
may only be assigned a finite number of possible values provided that we have computed the par-
tial materialisation of all lower strata. Thus, each LL-rule has only finitely many nontautologous
instances that can be obtained by grounding its guarded variables with values from a partial mate-
rialisation; moreover, all numeric terms other than∞ in each such instance are linear (recall that,
under our definitions, a linear numeric term is linear if at most one argument of each multiplication
mentions a variable, which is more general that usual). As we will see, this property allows us to
represent the result of applying each such rule instance to a partial materialisation as the optimal
solution to an IOP—that is, LL-programs lack the property causing undecidability in Theorem 3.8.

In fact, each LL-program can be normalised to an LL-program in which all positive exact literals
in rule bodies are function-free: we just need to replace each such literal B (a, s ) where s is complex
(i.e., uses functions) by the conjunction B (a,m) ∧ (m � s ), for m a fresh numeric variable. As
a result, all the variables in such literals become guarded. Moreover, such normalisation can be
done in linear time and independently for each rule. Hence, for convenience and without loss of
generality, we can assume in the rest of the article that all LL-programs are normalised in this way.
(Note also that all exact atoms in rule heads are function-free by definition, because the predicates
in all these atoms are EDB, and hence all such rules are facts; however, negative exact literals in rule
bodies may still have complex numeric terms after normalisation.) Of course, this normalisation
could be extended to limit literals and negative literals; doing so, however, would not be helpful
and may even be harmful; for instance, the type-consistency condition, which is introduced in
Section 6.3 and guarantees tractability of fact entailment, is not preserved under normalisation of
limit literals.

LL-programs are our main object of study in this article. In what follows, we will investigate
their computational properties and expressive power.

3.3 Application Examples

The running example in the previous sections illustrates a simple declarative formulation of the
single-source shortest paths problem using limit DatalogZ. In this section, we show a wider range
of practical analytics tasks that can be naturally formulated using limit-linear DatalogZ programs.
In several examples we use the ordering sub-signature Σord (introduced in Section 2.2); in these
cases, we assume that input datasets are ordered.

Example 3.10 (All-Pairs Shortest Paths). Assume that a directed graph with weighted edges is
represented as a dataset Dapsp over a ternary exact predicate edge and a unary object predicate
node in the obvious way. The following LL-program Papsp encodes the all-pairs shortest paths

2This notion is unrelated to the guarded fragment of first-order logic.
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problem, where the ternary min predicate dist encodes the distance from any node to any node as
the length of a shortest path between them:

node(x ) → dist (x ,x , 0), (6)

dist (x ,y,m) ∧ edge(y, z,n) → dist (x , z,m + n). (7)

Then, Papsp ∪ Dapsp |= dist (a,a′,k ) if and only if the distance from node a to node a′ is at most k .

Example 3.11 (Diffusion in Social Networks). Consider a social network where agents are con-
nected by the “follows” relation. A first agent as introduces (“tweets”) a message, and each agent a
“retweets” the message if at least ka agents that a follows tweet this message, where ka is a positive
threshold associated with a. Our goal is to determine which agents tweet the message eventually.
To achieve this using limit DatalogZ, we encode the network structure in a dataset Dtw, which
contains object fact tweet (as ) saying that as introduces a message, object facts follows(a,a′) repre-
senting that a follows a′, and exact facts threshold (a,ka ) representing that the threshold of a is ka .
The LL-program Ptw consisting of rules (8)–(12) encodes message propagation. Here, acc is an “ac-
cumulating” max predicate such that acc(a,a′,m) is true if there are at leastm agents tweeting the
message among the agents that a follows and that (inclusively) precede a′ according to the dataset
order. In particular, rules (8) and (9) initialise acc for the first agent in the order; note that acc is
a max predicate, so if the first agent tweets the message, rule (9) “overrides” rule (8). Rules (10)
and (11) recurse over the order to compute acc as stated above:

follows(x ,y ′) ∧ first (y) → acc(x ,y, 0), (8)

tweet (y) ∧ follows(x ,y) ∧ first (y) → acc(x ,y, 1), (9)

acc(x ,y ′,m) ∧ next (y ′,y) → acc(x ,y,m), (10)

tweet (y) ∧ follows(x ,y) ∧ acc(x ,y ′,m) ∧ next (y ′,y) → acc(x ,y,m + 1), (11)

threshold (x ,m) ∧ acc(x ,y,m) → tweet (x ). (12)

Then, Ptw ∪ Dtw |= tweet (a) if and only if agent a tweets the message according to Dtw.

Example 3.12 (Counting Paths). Limit-linear DatalogZ can also solve the problem of counting
paths between pairs of nodes in a directed acyclic graph. We encode such a graph in the obvious
way as a dataset Dcp that uses a unary object predicate node and a binary object predicate edge.
The LL-program Pcp, consisting of rules (13)–(18) with max predicates path-num and acc, then
counts the paths. Intuitively, acc(a,a′,b,k ) is true if the sum of the numbers of paths from each
node b ′ preceding node b (according to the dataset order) to node a′ for which there exists an
edge from node a to b ′ is at least k . Rule (13) says that each node has one path to itself. Rule (14)
initialises aggregation by saying that, for the first (in the order) node z, there are zero paths from
any x to any y, and rule (15) overrides this if there exists an edge from x to z. Finally, rule (16)
propagates the sum for x to the next z in the order, and rule (17) overrides this if there is an edge
from x to z by adding the number of paths from z to y to the sum:

node(x ) → path-num(x ,x , 1), (13)

node(x ) ∧ node(y) ∧ first (z) → acc(x ,y, z, 0), (14)

edge(x , z) ∧ path-num(z,y,n) ∧ first (z) → acc(x ,y, z,n), (15)

acc(x ,y, z ′,m) ∧ next (z ′, z) → acc(x ,y, z,m), (16)

edge(x , z) ∧ path-num(z,y,n) ∧ acc(x ,y, z ′,m) ∧ next (z ′, z) → acc(x ,y, z,m + n), (17)

acc(x ,y, z,m) → path-num(x ,y,m). (18)

Then,Pcp ∪ Dcp |= path-num(a,a′,k ) if and only if there are at leastk paths from nodea to nodea′.
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Example 3.13 (Counting Paths under Bandwidth Constraints). Assume that in the graph from
Example 3.12, each node a is associated with a “bandwidth”—that is, a positive integer ka limiting
the number of distinct paths going out of a to at most ka . To count the paths compliant with the
bandwidth requirements, we extendDcp to the datasetDbcp that additionally contains an exact fact
bandwidth(a,ka ) for each node a, and define the LL-program Pbcp by replacing rules (15) and (17)
in Pcp with the following rules:

edge(x , z) ∧ path-num(z,y,n) ∧ first (z) ∧
bandwidth(z,m′) ∧ (n ≤ m′) → acc(x ,y, z,n),

edge(x , z) ∧ path-num(z,y,n) ∧ acc(x ,y, z ′,m) ∧ next (z ′, z) ∧
bandwidth(z,m′) ∧ (n ≤ m′) → acc(x ,y, z,m + n).

Then, Pbcp ∪ Dbcp |= path-num(a,a′,k ) if and only if there exist at least k paths from node a to
node a′, where the bandwidth requirement is satisfied for all nodes on each such path.

Example 3.14 (Bill of Materials). Let a dataset Dbm contain, for each direct or indirect part a
needed to manufacture an end product, an object fact part (a), and, for each direct subpart a′ of
each part a, an exact fact dirpart (a,a′,k ) indicating that a uses k copies of a′ as direct subparts.
Clearly, the graph formed by the dirpart relation is acyclic and has positive edge weights. The
program Pbm, consisting of rules (19)–(24) with max predicates acc and subpart, then computes
how many copies of each subpart are used in total for each part. Intuitively, acc(a,a′,b,k ) is true if
the part a contains at least k copies of the subpart a′ in all of the direct subparts of a that precede
part b according to the dataset order. Rules (20) and (21) initialise aggregation for b the first part
in the order. Rule (22) propagates the value to the next part in case b is not a direct subpart of a; if
b is a direct subpart occurring n1 ≥ 1 times in a while a′ occurs n2 ≥ 0 times in b, then rule (23)
increments k by n1 × n2 to account for all occurrences of a′ in a in copies of b. Finally, rule (19)
asserts that each part is a subpart of itself, while rule (24) defines k in subpart (a,a′,k ) for a part a
and a subpart a′ as the maximum k in acc(a,a′,b,k ) over all b:

part (x ) → subpart (x ,x , 1), (19)

part (x ) ∧ part (y) ∧ first (z) → acc(x ,y, z, 0), (20)

dirpart (x , z,n1) ∧ subpart (z,y,n2) ∧ first (z) → acc(x ,y, z,n1 × n2), (21)

acc(x ,y, z ′,m) ∧ next (z ′, z) → acc(x ,y, z,m), (22)

dirpart (x , z,n1) ∧ subpart (z,y,n2) ∧
acc(x ,y, z ′,m) ∧ next (z ′, z) → acc(x ,y, z,m + n1 × n2). (23)

acc(x ,y, z,m) → subpart (x ,y,m). (24)

We have Pbm∪Dbm |= subpart (a,a′,k ) if and only if a contains at least k copies of a′ in total. Note
also that Pbm is limit-linear because variable n1 occurs in positive exact literals over dirpart and is
hence guarded in rules (21) and (23).

All examples provided thus far are captured using positive limit-linear DatalogZ programs. In
the following two examples, we demonstrate the use of stratified negation.

Example 3.15 (Computing Shortest Paths). In the introduction, we discussed a program comput-
ing the length of a shortest path from a given source node to every node in a directed graph with
weighted edges. We now extend this program to compute the paths themselves (concentrating on
a distinguished target node as well). Given a datasetDcsp encoding a directed graph with positive
edge weights using a ternary exact predicate edge as before and encoding a source node as and a
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target node at using object facts source(as ) and target (at ), respectively, our LL-program Pcsp will
compute a directed acyclic graph G with source as and target at , encoded using a binary object
predicate sp-edge, such that every maximal path inG is a shortest path from as to at in the original
graph. Program Pcsp consists of rule (2) and rules (25)–(27), where rule (25) extends rule (1). The
first stratum consists of rules (2) and (25), and computes the length of a shortest path from as to
each other node using the min predicate dist; in particular, Pcsp ∪ Dcsp |= �dist (a,k )� if and only
if k is the length of a shortest path from as to a. Then, the second stratum, consisting of rules (26)
and (27), computes the predicate sp-edge such that Pcsp ∪ Dcsp |= sp-edge(a,a′) if and only if the
edge (a,a′) is part of a shortest path from as to at :

source(x ) → dist (x , 0), (25)

�dist (x ,m)� ∧ edge(x ,y,n) ∧ �dist (y,m + n)� ∧ target (y) → sp-edge(x ,y), (26)

�dist (x ,m)� ∧ edge(x ,y,n) ∧ �dist (y,m + n)� ∧ sp-edge(y, z) → sp-edge(x ,y). (27)

Example 3.16 (Closeness Centrality). The closeness centrality of a node in a strongly connected
directed graphG with weighted edges is a measure of how central the node is in the graph [49]; vari-
ants of this measure are useful, for instance, for the analysis of market potential. Most commonly,
closeness centrality of a node a is defined as 1 /

∑
a′ node in G Ω(a,a′), where Ω(a,a′) is the length

of a shortest path from a to a′; the sum in the denominator is often called the farness centrality of a.
We next give an LL-program computing a node of maximal closeness centrality in a given strongly
connected directed graph with weighted edges. We encode such a graph as a dataset Dcc using,
as before, a unary object predicate node and a ternary exact predicate edge. Program Pcc consists
of rules (28)–(36), where dist, fness and fness′ are min predicates, and centre and centre′ are object
predicates. The first stratum consists of rules (28)–(32). Rules (28) and (29) compute the distance
(i.e., the length of a shortest path) between any two nodes. Rules (30)–(32) then compute the far-
ness centrality of each node based on the aforementioned distances; for this, the program exploits
the order predicates to iterate over the nodes in the graph while recording the best value obtained
so far in the iteration using an auxiliary predicate fness′. In the second stratum (rules (33)–(36)),
the program uses negation (abbreviated in the LUB expressions �fness(z,m)� and �fness(y,n)�) to
compute a node of minimal farness centrality (and hence of maximal closeness centrality), which
is recorded using the centre predicate; the order is again exploited to iterate over nodes, and an
auxiliary predicate centre′ is used to record the current node of the iteration and the node with the
best centrality encountered so far:

node(x ) → dist (x ,x , 0), (28)

dist (x ,y,m) ∧ edge(y, z,n) → dist (x , z,m + n), (29)

node(x ) ∧ first (y) ∧ dist (x ,y,n) → fness′(x ,y,n), (30)

fness′(x ,y,m) ∧ next (y, z) ∧ dist (x , z,n) → fness′(x , z,m + n), (31)

fness′(x ,y,n) ∧ last (y) → fness(x ,n), (32)

first (x ) → centre′(x ,x ), (33)

centre′(x , z) ∧ next (x ,y) ∧ �fness(z,m)� ∧ �fness(y,n)� ∧ (n < m) → centre′(y,y), (34)

centre′(x , z) ∧ next (x ,y) ∧ �fness(z,m)� ∧ �fness(y,n)� ∧ (m ≤ n) → centre′(y, z), (35)

centre′(x , z) ∧ last (x ) → centre(z). (36)
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4 DECIDABILITY AND COMPLEXITY UPPER BOUNDS FOR LL-PROGRAMS

In this section, we begin our study of limit-linear DatalogZ. In particular, we show that fact en-
tailment for the language of LL-programs is decidable and provide complexity upper bounds for
the full language, as well as for its positive and semi-positive fragments. We show that, for the
full language, the problem is in ΔEXP

2 in combined and in ΔP
2 in data complexity, while, for the

(semi-)positive fragment, it is in coNEXP in combined and in coNP in data complexity. Later on,
in Section 5, we show that all these bounds are tight.

We start, in Section 4.1, by establishing a useful characterisation of fact entailment that allows
us to manipulate only finite structures when computing materialisations. We next study, in Sec-
tion 4.2, the case of positive LL-programs, where we show decidability via a reduction to the eval-
uation problem for Presburger sentences and then provide complexity upper bounds by analysing
the shape of the Presburger formulas computed by our reduction. In Section 4.3, we first show
that the bounds in Section 4.2 also apply to semi-positive LL-programs, and then propose a fact en-
tailment algorithm for arbitrary LL-programs that relies on an entailment oracle for semi-positive
LL-programs.

4.1 Characterising Entailment Using Pseudointerpretations

The definition of fact entailment is formulated in terms of the immediate consequence operator S.
Unlike usual Datalog, however, this definition cannot be used directly for deciding fact entailment,
because all limit-closed interpretations containing at least one limit fact are infinite. In this section,
we prove a characterisation of fact entailment in terms of pseudointerpretations—that is, certain
sets of pseudofacts (recall that pseudofacts are “facts” where ∞ may occur in place of integers).
Pseudointerpretations have a one-to-one correspondence with limit-closed interpretations, and
we will see that it is enough to consider only finite pseudointerpretations when deciding fact
entailment. Our characterisation is directly applicable only to positive LL-programs, so in this
section we assume that all programs are positive.

Positive LL-programs admit an important property analogous to the grounding property of usual
(function-free) positive Datalog: all object and guarded numeric (i.e., appearing in positive exact
literals) variables may be grounded to constants occurring in the program without affecting the
outcomes of fact entailment checks.

Definition 4.1. A positive LL-rule or LL-program is object-and-guarded-ground (OG-ground)

if it has neither object nor guarded numeric variables. The (result of the) canonical OG-grounding

of a positive LL-program P, denoted by G (P ), is the OG-ground program that consists of all OG-
ground instances ρσ of rules ρ in P with σ a substitution mapping all object and guarded numeric
variables of ρ to constants mentioned in P.

The first immediate property of OG-ground programs is that all of their numeric terms are either
linear or ∞. Moreover, since we consider only normalised programs, in which all positive exact
body literals use no unguarded variables or function symbols, all numeric terms in exact body
literals in the canonical OG-grounding are integers. As follows directly from the definitions and is
formalised next in Lemmas 4.2 and 4.4, positive LL-programs and their canonical OG-groundings
are semantically interchangeable, and the sizes of such OG-groundings can be bounded.

Lemma 4.2. For every positive LL-program P,M (P ) =M (G (P )).

The proof of this lemma is given in the Appendix.
This lemma implies that fact entailment can be checked on the canonical OG-grounding instead

of the original program.

Corollary 4.3. For every positive LL-program P and fact γ , P |= γ if and only if G (P ) |= γ .
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The following bounds on the canonical OG-grounding immediately follow from the definitions
(recall that �E� is the size of an expression E assuming that each integer takes unit space).

Lemma 4.4. The following hold for every positive LL-program P with c distinct constants, where

u = maxρ ∈P�ρ�:

1. G (P ) can be computed in time polynomial in cu + ‖P‖; and

2. maxρ ∈G (P)�ρ� is linearly bounded in u.

Note that Lemma 4.4 immediately implies that ‖G (P )‖ and hence also |G (P ) |—that is, the num-
ber of rules in G (P )—are polynomially bounded in cu + ‖P‖. Lemmas 4.2 and 4.4 allow us to
concentrate on OG-ground programs when studying positive LL-programs in this and the next
section (keeping in mind the exponential blow-up in the number of rules).

We proceed to the definition of pseudointerpretations. Recall that if a limit-closed interpretation
I contains a limit fact C (a,k ), then either a limit integer � �C k exists such that C (a, �) ∈ I and
C (a,k ′) � I for all k ′ �C �, or C (a,k ′) ∈ I for all k ′ ∈ Z. Thus, to characterise the value of C on
a tuple of objects a in I, we just need the corresponding limit integer or the information that no
such integer exists.

Definition 4.5. A pseudointerpretation is a set J of pseudofacts such that �1 = �2 for all limit
pseudofacts C (a, �1) and C (a, �2) in J with �1, �2 ∈ Z ∪ {∞}.

Limit-closed interpretations correspond naturally and one-to-one to pseudointerpretations, so
we can equivalently recast the notions of satisfaction and model using pseudointerpretations.

Definition 4.6. A limit-closed interpretation I and a pseudointerpretation J correspond to each
other if the following hold for each predicate A and each tuple of objects a of appropriate size:

— when A is object, A(a) ∈ I if and only if A(a) ∈ J ;
— when A is exact and k ∈ Z, A(a,k ) ∈ I if and only if A(a,k ) ∈ J ;
— when A is limit and � ∈ Z, A(a,k ) ∈ I for all k �A � and A(a,k ) � I for all k �A � if and

only if A(a, �) ∈ J ; and
— when A is limit, A(a,k ) ∈ I for all k ∈ Z if and only if A(a,∞) ∈ J .

It is easily seen that the notion of correspondence defines a bijection—that is, each limit-closed
interpretation corresponds to one and only one pseudointerpretation, and vice versa. Hence, we
can transfer all the definitions and notations for (limit-closed) interpretations to pseudointerpre-
tations: for example, a pseudointerpretation J satisfies a ground literal λ, written J |= λ, if the
corresponding limit-closed interpretation I satisfies λ, and J is a pseudomodel of a program P,
written J |= P, if I |= P. Also, we write J1 � J2 for pseudointerpretations J1 and J2 if I1 ⊆ I2
for the corresponding limit-closed interpretations I1 and I2. When one or both Ji are singleton,
we may sometimes abuse notation and omit the set braces: for example, for a pseudofact γ and
pseudointerpretation J , we write γ � J instead of {γ } � J (which holds if and only if J |= γ ).

Example 4.7. Let I be the limit-closed interpretation with facts B (1), B (2),C (a1,k ) for all k ≤ 5,
and C (a2,k ) for all k ∈ Z, where B is an exact predicate, C is a max predicate, and a1 and a2 are
objects. Then {B (1),B (2),C (a1, 5),C (a2,∞)} is the pseudointerpretation corresponding to I.

We next show how the computation of the materialisations of OG-ground programs can be sim-
ulated on pseudointerpretations. In particular, we introduce the immediate consequence operator
TP of an OG-ground program P, which works on pseudointerpretations and is defined in terms
of IP satisfiability. We then show that TP simulates the ordinary operator SP for limit-closed in-
terpretations. In particular, the transfinite closure N (P ) of TP , called pseudomaterialisation, is
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the pseudointerpretation corresponding to the materialisationM (P ). Importantly, we show that
N (P ) is always finite, and that its size can be bounded in terms of the size of P.

Definition 4.8. For ρ an OG-ground (and thus positive and limit-linear) rule with body φ and J
a pseudointerpretation, letψ (ρ,J ) be the IP defined as the conjunction of the following compari-
son atoms:

1. (0 < 0) if φ contains
— an object or exact atom that is not in J ,
— a limit atom C (a, s ) such that C (a, �) � J for each � ∈ Z ∪ {∞}, or
— a limit atom C (a,∞) such that C (a,∞) � J ;

2. (s �C �) for each limit atom C (a, s ) in φ with C (a, �) ∈ J , s � ∞, and � � ∞; and
3. each comparison atom in φ.

Rule ρ is applicable to pseudointerpretation J if the IPψ (ρ,J ) is satisfiable.
For an OG-ground rule ρ with head α applicable to a pseudointerpretation J , we write δ (ρ,J )

for the pseudofact defined as follows:

δ (ρ,J ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

α if α is an object or exact atom,
C (a,k ) if α = C (a, s ) is a limit atom with s � ∞

and the IOP (ψ (ρ,J ),maxC s ) has k as the optimal value,
C (a,∞) if α = C (a, s ) is a limit atom with s = ∞

or the IOP (ψ (ρ,J ),maxC s ) is unbounded.

For P an OG-ground program and J a pseudointerpretation, let TP (J ) be the smallest (with
respect to �) pseudointerpretation satisfying the pseudofact δ (ρ,J ) for each rule ρ inP applicable
to J . A partial pseudomaterialisationN κ of P, for κ an ordinal, is a pseudointerpretation defined
by induction on κ as follows, where supκ′<κ N κ′ is the supremum of all N κ′ with κ ′ < κ, with
respect to �:

N 0 = ∅, N κ = TP (N κ′ ) if κ = κ ′ + 1, N κ = supκ′<κ N κ′ if κ is a limit ordinal.

The pseudomaterialisation N (P ) of P is the pseudointerpretation Nω1 .

Example 4.9. Let ρ be OG-ground rule (37), where C1 and C2 are max predicates:

C1 (m) ∧ (2 ≤ m) → C2 (m + 1). (37)

Then, ψ (ρ, ∅) = (0 < 0) ∧ (2 ≤ m), where the first comparison atom is derived by condition 1
in Definition 4.8 from the literal C1 (m), and the second comparison atom by condition 3 from
(2 ≤ m). Clearly, IP ψ (ρ, ∅) does not have a solution, and hence rule ρ is not applicable to the
empty pseudointerpretation ∅. However, for the pseudointerpretation J = {C1 (3)}, we have that
ψ (ρ,J ) = (m ≤ 3) ∧ (2 ≤ m), where the comparison atoms are derived from the corresponding
body literals by conditions 2 and 3. IP ψ (ρ,J ) has two solutions, one assigning 2 to m and the
other assigning 3; thus, rule ρ is applicable to J . Finally, C2 is max, and the optimal value of the
IOP is max{2 + 1, 3 + 1} = 4; hence δ (ρ,J ) = C2 (4). Thus, T{ρ } (J ) = {C2 (4)}.

Our next goal is to establish a correspondence between (partial) materialisations and (partial)
pseudomaterialisations. The following lemma characterises rule applicability in terms of solutions
to the corresponding IP.

Lemma 4.10. For each OG-ground rule ρ with body φ and each pseudointerpretation J , a ground-

ing σ of ρ is a solution to the IPψ (ρ,J ) if and only if J |= φσ .
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The proof of this lemma is given in the Appendix.
Using Lemma 4.10, we next show that, for each OG-ground program P, operator TP on pseu-

dointerpretations faithfully simulates the behaviour of operator SP on corresponding limit-closed
interpretations.

Lemma 4.11. For each OG-ground program P and each ordinal κ, the partial materialisationMκ
1

of P and the partial pseudomaterialisation N κ of P correspond to each other.

The proof of this lemma is also given in the Appendix.
Lemma 4.11 immediately implies that, for each OG-ground program P, materialisationM (P )

corresponds to pseudomaterialisation N (P ). Therefore, N (P ) is the smallest pseudomodel of P
with respect to �, and P |= γ if and only if N (P ) |= γ for every fact γ . Also, Lemma 4.11 and
Proposition 3.5 imply a useful monotonicity property of the operator TP .

Corollary 4.12. The following hold for each OG-ground program P:

1. J |= P if and only if TP (J ) � J for each pseudointerpretation J ; and

2. TP (J1) � TP (J2) for each two pseudointerpretations J1 and J2 such that J1 � J2.

We next discuss the computational properties of the immediate consequence operator and (par-
tial) pseudomaterialisations, which will be useful in the following sections. We begin by establish-
ing fine-grained complexity of applying the immediate consequence operator for pseudointerpre-
tations and bounding the growth of the magnitudes of integers.

Lemma 4.13. There exist polynomials p1 and p2 such that, for every OG-ground program P and

finite pseudointerpretation J with the maximal magnitudes of integers bounded by b > 1 and b ′ > 0,

respectively, the following hold, where u = maxρ ∈P�ρ�:

1. the magnitudes of integers in TP (J ) are bounded by bp1 (u ) · b ′; and

2. TP (J ) can be computed in polynomial time with access to an NP oracle and in time polynomial

in 2p2 (u ) + ‖P‖ + ‖J ‖.

Proof. We start by proving claim 1. We need to show that there exists a polynomial p1 such
that the magnitude of the optimal value k of the IOP (ψ (ρ,J ),maxC s ) is bounded by bp1 (u ) · b ′
for each rule ρ = φ → C (a, s ) in P applicable to J , assuming C is a limit predicate and the IOP is
bounded. Consider such a rule ρ ∈ P, the IPψ ′ = ψ (ρ,J )∧ (s � m), form a fresh variable, and the
normal form Mn ≤ k of ψ ′. On the one hand, k is the optimal value of IOP (Mn ≤ k,maxC m) by
construction. On the other hand, the maximal magnitudes of integers in M and k are bounded by
bu and bu + b ′, respectively, because all the integers in M depend only on the integers in ρ, while
integers from J contribute only to k and do not occur in multiplications (i.e., do not contribute
to the magnitude blow-up during normalisation). Hence, by Corollary 2.10, there is a polynomial
q such that the magnitude of k is bounded by (bu )q (v ) · (bu + b ′), where v = |n| is the number of
variables in ρ plus one. Since v ≤ �ρ� + 1 ≤ u + 1, the claim follows.

We proceed to claim 2. Let E be the set of all pseudofacts δ (ρ,J ) such that ρ is a rule in P
applicable to J . By Definition 4.8, TP (J ) is the smallest pseudointerpretation with respect to
� such that TP (J ) |= E, so it can be easily (in polynomial time) computed from E by removing
subsumed limit pseudofacts. Hence, to complete the proof of the lemma, we next argue that set E
can be computed within the required time bounds.

A rule ρ in P is applicable to J if and only if the IPψ (ρ,J ) is satisfiable, and, by construction,
ψ (ρ,J ) can be computed in time polynomial in ‖ρ‖ + ‖J ‖, while ‖ψ (ρ,J )‖ is linearly bounded
in ‖ρ‖ · b ′. Moreover, IP ψ (ρ,J ) and rule ρ have the same variables. Therefore, by Corollary 2.5,
applicability of ρ to J can be checked in NP. Also, by Proposition 2.6, there is a polynomial q
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such that satisfiability of ψ (ρ,J ) can be checked in time polynomial in 2q (v ) + ‖ρ‖ · b ′, where v
is the number of variables in ρ; since v ≤ �ρ� and b ′ ≤ ‖J ‖, applicability of ρ to J can then be
checked in time polynomial in 2q (�ρ�) + ‖ρ‖ ·max(‖J ‖, 1) and hence in 2q (�ρ�) + ‖ρ‖ + ‖J ‖.

Now assume that a rule ρ = φ → α is applicable to J . According to Definition 4.8, computing
δ (ρ,J ) is either trivial, when α is object, exact or of the form C (a,∞) with limit C , or requires
checking the IOP (ψ (ρ,J ),maxC s ) with s the numeric term from α for boundedness and, if it is
bounded, computing its optimal value. By Proposition 2.7, the former can be done in time polyno-
mial in ‖ρ‖ + ‖J ‖ (recall thatψ (ρ,J ) is satisfiable since ρ is applicable), and, by Proposition 2.8,
the latter can be done in time polynomial in ‖ρ‖ + ‖J ‖ with satisfiability checks, each of which
is in NP, and in time polynomial in 2q′ (�ρ�) + ‖ρ‖ + ‖J ‖ for some polynomial q′. Thus, overall,
δ (ρ,J ) can be computed with the same bounds.

Finally, to compute E, we need to check applicability of each rule ρ in P to J and, if successful,
to compute δ (ρ,J ). Since program P is OG-ground, each rule of P can contribute at most one
fact to E. Hence |E | ≤ |P|, and the rules can be processed one by one, which gives us, together
with the previous results, a procedure for computing the immediate consequence TP (J ) within
the required time bounds. �

Next, we establish an important property of (partial) pseudomaterialisations: they are always
finite, and the number of pseudofacts in each of them can be bounded.

Proposition 4.14. For each partial pseudomaterialisationN κ of an OG-ground program P, with

κ an ordinal, |N κ | ≤ |P|.

Proof. Since P is OG-ground, all pseudofacts produced by a single rule coincide on their pred-
icate and object arguments. The claim follows from the fact thatN κ is a pseudointerpretation and
hence has at most one pseudofact per combination of an object or limit predicate and a tuple of
objects of appropriate size, while all exact facts in N κ are taken from P. �

Note that the bound established in Proposition 4.14 does not yet imply decidability of
fact entailment as it does not restrict the size of the binary representation of a (partial)
pseudomaterialisation—it does not bound the magnitudes of the integers that may be involved.

4.2 Positive Programs

In this section, we establish decidability and complexity of fact entailment for positive LL-programs
via an encoding of each OG-ground program P and fact γ as a Presburger sentence that holds if
and only if P |= γ . Our reduction is based on three main ideas.

1. For each limit atom C (a, s ) in P, we introduce a Boolean variable defCa to indicate that an
atom of the form C (a, �) exists in a pseudomodel of P, a Boolean variable finCa to indicate
whether � is a (finite) integer or∞, and a numeric variable valCa to capture � if it is finite.

2. Each rule of P is encoded as a universally quantified Presburger formula by replacing each
standard atom with its encoding.

3. Entailment of γ by P is encoded as a Presburger sentence stating that, for every limit-closed
interpretation I, either I does not satisfy some rule in P or I satisfies γ .

We begin the description of our encoding by formally introducing the variables defCa, finCa, and
valCa for limit atoms, as well as analogous variables for other types of atoms, and relating them to
the satisfaction of the atoms in a pseudointerpretation.

Definition 4.15. For every v-tuple a of objects, consider the following variables: Boolean defAa

for each object predicate A of arity v ; Boolean defBak for each exact predicate B of arity v + 1 and
each integer k ; Boolean defCa and finCa, and numeric valCa for each limit predicateC of arityv +1.
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The encoding ξρ of an OG-ground rule ρ is the Presburger formula (with the same quantifier
block as ρ) that is obtained from ρ by replacing each atom α (both in the body and in the head) by
the formula ξα , defined as follows:

— ξα = defAa if α is an object atom A(a);
— ξα = defBak if α is an exact atom B (a,k ) (recall that this is the only possible form for exact

atoms because ρ is normalised and OG-ground);
— ξα = defCa ∧ ((s �C valCa) ∨ ¬finCa) if α is a limit atom C (a, s ) with s � ∞;
— ξα = defCa ∧ ¬finCa if α is a limit atom C (a,∞); and
— ξα = α if α is a comparison atom.

The encoding ξP of an OG-ground program P is the Presburger formula
∧

ρ ∈P ξρ .
Let J be a pseudointerpretation, and let σ be an assignment of all such variables defAa, defBak ,

defCa, finCa, and valCa for the predicates and constants in J . Then, J and σ correspond to each
other if the following hold for all A, B, C , a, and k as above:

— σ (defAa) = true if and only if A(a) ∈ J ;
— σ (defBak ) = true if and only if B (a,k ) ∈ J ;
— σ (defCa) = true if and only if there exists � ∈ Z ∪ {∞} such that C (a, �) ∈ J ; and
— σ (finCa) = true and σ (valCa) = � if and only if C (a, �) ∈ J , for every � ∈ Z.

Note that � in the last case of Definition 4.15 ranges over all integers but not ∞, and J is
a pseudointerpretation and thus cannot contain both C (a,∞) and C (a, �) for an integer � ∈ Z;
therefore, σ (defCa) = true and σ (finCa) = false if and only if C (a,∞) ∈ J .

Also note that each assignment corresponds to exactly one pseudointerpretation. However, each
pseudointerpretation may correspond to several assignments since two assignments correspond-
ing to the same pseudointerpretation may differ, for a limit predicateC and objects a, on the value
of valCa, if defCa or finCa is set to false in both assignments.

Example 4.16. Consider the OG-ground program P consisting of the following rules, for B an
exact and C a max predicate:

→ B (1), B (1) ∧C (m) ∧ (1 ≤ m) → C (m + 1).

Then ξP is the following Presburger formula:

defB1 ∧
∀m. defB1 ∧ (defC ∧ ((m ≤ valC ) ∨ ¬finC )) ∧ (1 ≤ m) → defC ∧ ((m + 1 ≤ valC ) ∨ ¬finC ).

The following lemma shows how the correspondence between pseudointerpretations and as-
signments transfers to the correspondence between programs and their encodings. (Note that in
this lemma we abuse terminology and sometimes say that an assignment σ is a solution to a Pres-
burger formula ξ meaning that the restriction of σ to the free variables of ξ is such a solution.)

Lemma 4.17. Let P be an OG-ground program, and let J and σ be a pseudointerpretation and a

variable assignment, respectively, such that J and σ correspond to each other. Then, J |= P if and

only if σ is a solution to ξP .

The proof of this lemma is given in the Appendix.
We are now ready to summarise the main properties of our Presburger encoding (we remind

here that an IP is a conjunction of comparison atoms with linear numeric terms).

Lemma 4.18. For P an OG-ground program and γ a fact, there exists a Presburger sentence

ξ = ∀n. ∃m.
∨h

i=1ψi with eachψi an IP such that the following hold, forv = |n|, d = maxi ∈[1,h]�ψi �,
r = |P |, and u = maxρ ∈P�ρ� :
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— ξ holds if and only if P |= γ ;

— v , h, and d are linearly bounded in ru, r · 2u , and u, respectively; and

— each integer in ξ appears in P or γ .

Proof. Since fact entailment for positive programs coincides with classical first-order entail-
ment, Lemma 4.17 implies that P |= γ if and only if the Presburger sentence

ξ0 = ∀n.¬ξP ∨ ξγ

holds, where n is the tuple of all variables defAa, defBak , defCa, finCa, and valCa occurring in ξP
and ξγ . Next, we transform, in several equivalence-preserving steps, ξ0 to a Presburger sentence ξ
that satisfies the required properties.

Let first ξ1 be the Presburger sentence obtained from ξ0 by converting each top-level conjunct
ξρ of ξP , for ρ ∈ P, into the form

∀mρ .

hρ∧
i=1

ζ i
ρ

with each ζ i
ρ a disjunction of literals, where mρ are all the (numeric) variables of ρ (i.e., the

quantifier-free part of each ξρ is converted to conjunctive normal form). By moving all quanti-
fiers in ξ1 to the front and pushing negations inwards, we obtain the sentence

ξ2 = ∀n. ∃m.

�
�

∨
ρ ∈P

hρ∨
i=1

χ i
ρ

�
�
∨ ξ ′γ ,

where m is the (disjoint) union of all mρ (assuming without loss of generality that different rules
in P use different variables), each χ i

ρ is the negation normal form of ¬ζ i
ρ , and ξ ′γ is the disjunctive

normal form of ξγ . Finally, let ξ be obtained from ξ2 by rewriting each negated comparison atom
to the equivalent (positive) comparison atom (e.g., ¬(s1 ≤ s2) is rewritten to (s2 < s1)).

We next claim that ξ satisfies all the required properties. First, ξ is of the required form, be-
cause P is an OG-ground program and hence all the terms are linear. Second, ξ holds if and
only if P |= γ because ξ is equivalent to ξ0 by construction. Third, v = |n| is linearly bounded
in ru = |P | · (maxρ ∈P�ρ�), because it is bounded by �P� and �P� ≤ |P| · (maxρ ∈P�ρ�). Fourth,
by construction, Σρ ∈P hρ plus the constant number of conjunctions in ξ ′γ —that is, h—is linearly

bounded in r ·2u , while each �χ i
ρ � and each �χ� for χ a conjunction in ξ ′γ —and henced—is linearly

bounded in u. Finally, also by construction, each integer in ξ appears in P or γ . �

The following lemma bounds the magnitudes of variable values in the Presburger sentence from
Lemma 4.18.3

Lemma 4.19. There exist polynomials p1 and p2 such that, for every Presburger sentence

ξ = ∀n. ∃m.

h∨
i=1

ψi

with each ψi an IP and the maximal magnitude of an integer in ξ bounded by b > 1, ξ holds if and

only if it holds over integers with magnitudes bounded by

bp1 (h+v ) ·2p2 (d )
,

where v = |n| and d = maxi ∈[1,h]�ψi �.

3The proof of Lemma 4.19 was provided by Christoph Haase in private communication.
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Proof. Note first that the number of comparison atoms, the number of variables, and the num-
ber of integers in each comparison atom in each ψi with i ∈ [1,h] are all bounded by d . So, as
mentioned in Section 2.3, each IP ψi can be rewritten to an IP ψ ′i in normal form that has at most

d inequalities, at most d variables, and the magnitudes of all integers bounded by bd . By Propo-
sition 2.9, the set of solutions to each ψ ′i —and hence ψi —is a semi-linear set of vectors from Zd

that can be represented as the union of 2d linear sets S (�j ,Lj ), j ∈ [1, 2d ], where the magnitudes

of integers in each �j and Lj are bounded by 2O (d log d ) · bd2
and hence by bO (d2 ) . Consequently,

solutions to the disjunction
∨h

i=1ψi form a semi-linear set R made up of h · 2d linear sets of vectors

from Zv+ |m | , each of which can again be represented as a linear set S (�,L) with the magnitudes of

integers in � and L bounded by 2O (d log d ) · bd2
and hence by bO (d2 ) . Hence, solutions to the Pres-

burger formula χ = ∃m.
∨h

i=1ψi are the projections of all vectors in R on variables n, and hence

are a union R′ of h · 2d linear sets of vectors from Zv , where the integers in the representation of
each of these sets satisfy the same bounds as for R. Now, Theorem 2.11 implies that the set of all
satisfying assignments to the formula ¬χ—that is, the complement of R′—is a union R′′ of linear

sets in whose representations the magnitudes of all integers can be bounded by (bO (d2 ) )h ·2d ·O (v4 ) .
Since ¬χ has a satisfying assignment if and only if it has a satisfying assignment involving only
numbers from the representation of R′′, it follows that ¬ξ holds if and only if it holds over integers

with magnitudes bounded by (bO (d2 ) )h ·2d ·O (v4 ) . This implies the claim since ξ is a sentence. �

We now combine the above results to establish upper bounds to the complexity of fact entail-
ment. Lemmas 4.18 and 4.19 provide us with bounds on the size of counter-pseudomodels for
entailment.

Lemma 4.20. There exist polynomials p1 and p2 such that, for every OG-ground program P and

fact γ with the maximal magnitude of an integer in P and γ bounded by b > 1, P 	|= γ if and only if

there is a pseudomodel J of P such that J 	|= γ , |J | ≤ r , and the magnitude of each integer in J
is bounded by

bp1 (r ) ·2p2 (u )
,

where r = |P | and u = maxρ ∈P�ρ�.

Proof. The backward direction is trivial since P is positive, so we concentrate on the for-
ward direction. To this end, consider an OG-ground program P and a fact γ such that P 	|= γ .

By Lemma 4.18, there exists a Presburger sentence ξ = ∀n. ∃m.
∨h

i=1ψi that does not hold and
satisfies the following properties, for v = |n| and d = maxi ∈[1,h]�ψi �:

— v , h, and d are linearly bounded by ru, r · 2u , and u, respectively; and
— each integer in ξ appears in P or γ .

The latter property guarantees that b is a bound on magnitudes of all integers in ξ . Therefore, by
Lemma 4.19, there are polynomials q1 and q2, and an assignment σ to variables n such that σ is

not a solution to ∃m.
∨h

i=1ψi and the magnitudes of all numbers in the range of σ are bounded by

bq1 (h+v ) ·2q2 (d )
,

which immediately implies existence of polynomials p1 and p2 with the required properties.
We are left to show how to construct a pseudomodel J with |J | ≤ r = |P | and the same bound

on integers. By construction of ξ in Lemma 4.18, σ is a solution to ξP and not a solution to ξγ . Now,
let σ ′ be the extension of σ to all variables introduced in Definition 4.15 that assigns false to all
Boolean and 0 to all integer variables outside of the domain of σ , and let J ′ be the pseudomodel
corresponding to σ ′. By Lemma 4.17, J ′ |= P and J ′ 	|= γ . Moreover, by definition, the bound on
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ALGORITHM 1: Fact Entailment for Positive LL-Programs

Input: positive LL-program P and fact γ
Output: true if and only if P |= γ
1 compute the canonical OG-grounding G (P) of P
2 universally guess a pseudointerpretation J with bounds given in Lemma 4.20 for G (P) as P
3 return true if J 	|= G (P) or J |= γ and false otherwise

the magnitudes of integers propagates from σ to J ′. Let J be the subset of J ′ consisting of all
pseudofacts that are either identical to the head of some rule in P or differ from such a head only
in the numeric position of a limit atom. On the one hand, we still have J |= P and J 	|= γ . On the
other hand, |J | ≤ r by construction. So, J satisfies all the required properties. �

We are ready to present our first algorithm for fact entailment: by Corollary 4.3 and Lemma 4.20,
nondeterministic Algorithm 1 decides fact entailment for positive LL-programs. Next, we show
that the algorithm works within the announced upper complexity bounds for the problem. As
already mentioned, in Section 5 (Theorem 5.4), we will see that these bounds are tight.

Theorem 4.21. The fact entailment problem for positive LL-programs is in coNEXP in combined

and in coNP in data complexity.

Proof. As discussed before the theorem, we are left to show that Algorithm 1 runs within the
required complexity bounds.

We start with combined complexity. First, by claim 1 of Lemma 4.4, line 1 requires, for c , the
number of distinct constants in P and u = maxρ ∈P�ρ�, time polynomial in cu + ‖P‖—that is,
exponential in ‖P‖—and hence produces an OG-ground program G (P ) such that ‖G (P )‖ is expo-
nentially bounded in ‖P‖. Moreover, since maxρ ∈G (P)�ρ� is linearly bounded in u by claim 2 of
Lemma 4.4 and each integer inG (P ) is inherited fromP, the magnitude of the integers in pseudoin-
terpretation J guessed in line 2 is doubly-exponentially bounded in ‖P‖ + ‖γ ‖ by Lemma 4.20;
representing such integers requires exponentially many bits. Furthermore, since |J | ≤ |G (P ) |
also by Lemma 4.20, the size ‖J ‖ can be exponentially bounded in ‖P‖ + ‖γ ‖. Recall here that
all the polynomials existence of which is claimed in this article (e.g., in Lemmas 4.4 and 4.20), are
computable in polynomial time. Finally, by claim 1 of Corollary 4.12, line 3 amounts to checking
TG (P) (J ) � J and γ � J , which can both be done in time polynomial in ‖TG (P) (J )‖+ ‖J ‖ in a
straightforward way (when TG (P) (J ) is computed); moreover, TG (P) (J ) can be computed in time

polynomial in 2p (maxρ∈G (P )�ρ�) + ‖G (P )‖ + ‖J ‖, for some polynomial p, by claim 2 of Lemma 4.13,
which is exponential in ‖P‖ + ‖γ ‖ by Lemma 4.4 and the above observation on ‖J ‖. Hence, we
conclude that line 3 requires exponential time in ‖P‖ + ‖γ ‖. Therefore, overall, the algorithm
works in coNEXP, as required.

We are left to show the coNP data complexity bound of the algorithm, in which caseP = P′∪D,
for a positive LL-programP′ and a datasetD, and onlyD andγ are considered as input. The bound
can be shown in the same way as the combined complexity bound, except that ‖G (P )‖ and ‖J ‖
can now be polynomially bounded in ‖D‖, because u = maxρ ∈P�ρ� = maxρ ∈P′�ρ� does not
depend on D and γ (recall that we assume that all predicates used in D and γ are also mentioned
in P′); in particular, since the only parameter in the second exponent in the bound of Lemma 4.20
is u, the magnitudes of integers in J are bounded only exponentially in ‖D‖ + ‖γ ‖, and hence
these integers can be represented using polynomially many bits. �

In the following corollary, which will be useful later when analysing programs with negation,
we emphasise that we do not need to fix the whole program P′ to obtain the coNP upper bound,
since it is enough to bound only the maximal size of a rule.
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Corollary 4.22. There exists a polynomial p such that entailment of a fact γ by an OG-ground

program P can be decided in coNP, provided the input consists of P, γ , and the number 2p (u ) written

in unary, for u = maxρ ∈P�ρ�.

To prove the complexity bounds for positive LL-programs in Theorem 4.21, it was enough to
guarantee the existence of a pseudointerpretation of appropriate size that witnesses nonentail-
ment. To obtain the bounds for arbitrary LL-programs in Section 4.3, however, we will also re-
quire that the smallest (with respect to �) pseudomodel of an OG-ground program—that is, the
pseudomaterialisation—possesses similar size bounds, and, moreover, that this pseudomodel can
be effectively computed. Note that the former is not an immediate consequence of Lemma 4.20,
because the pseudomaterialisation may have integers in places where the pseudointerpretation
from Lemma 4.20 has ∞; furthermore, the pseudomaterialisation may have integers with magni-
tudes larger than those of the corresponding integers in the pseudointerpretation, even if they are
smaller according to the order �C . Therefore, we devote the rest of this section to establishing the
properties of pseudomaterialisations. We start by extending the bounds of Lemma 4.20.

Lemma 4.23. There exist polynomials p1 and p2 such that, for every OG-ground program P with

the maximal magnitude of an integer in P bounded by b > 1, the magnitudes of all integers in the

pseudomaterialisation N (P ) are bounded by

bp1 (r ) ·2p2 (u )
,

where r = |P | and u = maxρ ∈P�ρ�.

Proof. Consider an arbitrary OG-ground program P. We first claim that P has a pseudomodel
J with magnitudes of all integers bounded by

f (b, r ,u) = bp′1 (r ) ·2p′2 (u )

,

for some polynomials p ′1 and p ′2, and such that for each pseudofact C (a,∞) in J we have that
C (a,k ) � N (P ) for all k ∈ Z (i.e., either C (a,∞) ∈ N (P ) or C (a,k ) � N (P ) for all k ∈ Z ∪ {∞}).
This can be proven in a way that is very similar to the proof of Lemma 4.20. The only differences
are as follows:

— to simulate fact entailment, we use a dummy fact γ = A over a nullary predicate A that is
not used in P, which implies, in particular, P 	|= A; and

— to guarantee the requirement on pseudofacts with∞, instead of the Presburger formula ξP
as in Definition 4.15, we use the formula ξ ′P that is defined in exactly the same way as ξP ,
except that ξ ′α , for a limit atom α = C (a, s ) with s � ∞ that occurs in the head of a rule, is
defined not as ξα = defCa ∧ ((s �C valCa) ∨ ¬finCa), but in a more restrictive way:

ξ ′α =

{
defCa ∧ finCa ∧ (s �C valCa) if C (a,∞) � N (P ),
defCa ∧ ¬finCa otherwise.

Since each assignment corresponding toN (P ) is easily seen to be a solution to ξ ′P , ξ ′P is satisfiable.
Hence, the sentence ξ ′0 = ∀n.¬ξ ′P ∨ ξγ , defined analogously to ξ0 in the proof of Lemma 4.18, does
not hold, and, by an argument analogous to the one in the proofs of Lemmas 4.18 and 4.20, there
is a solution to ξ ′P whose corresponding pseudointerpretation J satisfies the required bound on
the magnitudes of integers as well as the requirement on pseudofacts with ∞. Finally, since ξ ′P is
a strengthening of ξP , by Lemma 4.17, J is a pseudomodel of P. Note that, by Lemma 4.11 and
monotonicity of positive programs, N (P ) � J ; thus, for each limit pseudofact C (a,k ) ∈ N (P )
with k ∈ Z there is some C (a,k ′) ∈ J such that k ′ ∈ Z and k �C k ′. This implies that the
magnitude of k is bounded by that of k ′, and hence by f (b, r ,u), but only if both numbers are on
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ALGORITHM 2: Pseudomaterialisations of OG-Ground Programs

Input: OG-ground program P
Output: pseudomaterialisation N (P)
1 compute the bound b ′ on the magnitudes of integers in N (P) as in Lemma 4.23

2 set J � ∅
3 foreach rule φ → γ in P with object or exact fact γ such that P |= γ do

4 add γ to J
5 foreach rule φ → C (a, s ) in P with C a limit predicate do

6 search for the greatest, with respect to �C , integer k ∈ [−b ′ − 1,b ′ + 1] such that P |= C (a,k )

7 if such k exists then

8 if k ∈ [−b ′,b ′] then add C (a,k ) to J
9 else add C (a,∞) to J

10 return J

the same side of 0. In the rest of the proof, we show that we can also bound the magnitude of k if
k and k ′ are on the opposite sides of 0.

Consider now the OG-ground program P′ that extends P with all pseudofacts with∞ inN (P )
(recall that N (P ) is a finite set by Proposition 4.14, so P′ is indeed a program). On the one hand,
P and P′ are semantically equivalent—that is, N (P ) = N (P′)—so we can concentrate on P′
when proving this lemma. On the other hand, P′ has the following important property: for every
partial pseudomaterialisation N κ of P′ with κ > 0, a pseudofact with ∞ is in N κ if and only if
it is in P′. This property, together with the fact that N κ � N (P′) � J and the restrictions on
J , implies that k ≺C 0 for every limit fact C (a,k ) in N κ such that k ∈ Z and |k | > f (b, r ,u).
Therefore, since C (a,k ) ∈ N κ implies k �C k ′ for all C (a,k ′) ∈ N κ′ with κ < κ ′ by monotonicity
of TP′ , f (b, r ,u) < bκ < bκ+1 for the maximal magnitudes bκ and bκ+1 of integers inN κ andN κ+1,

respectively, may happen only if there is a limit factC (a,k ) inN κ+1 such that |k | = bκ+1 and there
is no � ∈ Z∪{∞} withC (a, �) ∈ N κ —that is, the maximal magnitude can grow beyond f (b, r ,u) in
the sequence of partial pseudomaterialisations only when a new tuple of objects is introduced to a
limit predicate by the immediate consequence operator (note here that all integers inN κ with κ a
limit ordinal are inherited from the previous partial pseudomaterialisations). However, the number
of such introductions is bounded by r = |P |, because each such predicate-tuple pair in N (P ) is
also present in the head of a rule in P. Let κ0 denote the last ordinal with bκ0 ≤ f (b, r ,u) and by
κi , for i ∈ [1, r ′] with r ′ ≤ r , all the ordinals for which bκi−1 < bκi . To conclude, by claim 1 of
Lemma 4.13, there exists a polynomial q such that bκi ≤ bq (u ) ·max(bκi−1 , 1). Thus, the maximal
magnitude of an integer in N (P ) is bounded by

bκr ′ ≤ (bq (u ) )r · f (b, r ,u) = br ·q (u ) · bp′1 (r ) ·2p′2 (u )

,

which implies the claim of the lemma. �

We are ready to present Algorithm 2 for computing the pseudomaterialisation of an OG-ground
program. Its correctness is immediate by Lemma 4.23 and the definition of pseudomaterialisations.
Next, we establish the complexity bounds for this algorithm.

Theorem 4.24. There exists a polynomial p such that, for every OG-ground program P, the pseu-

domaterialisation N (P ) can be computed in time polynomial in 2p (u ) + ‖P‖ with access to an NP

oracle, where u = maxρ ∈P�ρ�.

Proof. As already seen, Algorithm 2 computes the pseudomaterialisation N (P ) of an input
OG-ground program P. Next, we show that the algorithm can be run within the stated time
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bounds. First, the computation of the bound b ′ = bp1 (r ) ·2p2 (u )
in line 1, for b the maximum of 2

and the maximal magnitude of an integer in P, and for r = |P |, can be done in time polynomial
in logb · p1 (r ) · 2p2 (u )—that is, polynomial in 2p2 (u ) + ‖P‖—by a standard exponentiation method
(e.g., using exponentiation by squaring). Moreover, the greatest k in line 6 can be found by binary
search (if such k exists), which requires logarithmically many fact entailment checks in b ′—that is,
polynomially many in logb · p1 (r ) · 2p2 (u ) and hence in 2p2 (u )+‖P‖. Since this should be done once
for each rule in P whose head is a limit atom, the algorithm boils down to polynomially many fact
entailment checks in 2p2 (u )+‖P‖, each of which can be done by an NP oracle by Corollary 4.22. �

4.3 Semi-Positive and Arbitrary LL-Programs

In this section, we first extend the upper bounds from the previous section to semi-positive LL-
programs by showing that each such program can be transformed into an OG-ground (and hence
positive) program while preserving fact entailment. Building on these results, we then develop a
fact entailment algorithm for arbitrary LL-programs.

To this end, we next introduce the notion of a reduct of a semi-positive LL-program P. This
notion builds upon a direct extension of the canonical OG-grounding to semi-positive programs,
which is also denoted by G (P ). The reduct of P is then obtained by first computing G (P ) and
consequently eliminating all negative literals using entailment-preserving transformations.

Definition 4.25. For P a semi-positive LL-program, let G (P ) be the set of all rules ρσ with ρ ∈ P
and σ a substitution mapping all object and guarded numeric variables of ρ to constants in P. The
reduct R (P ) of P is the OG-ground program obtained from G (P ) by modifying it as follows, for
each negative literal notα in each rule ρ in G (P ):

— if α is an object atom, then
— if α ∈ G (P ) then delete ρ,
— otherwise delete notα from ρ;

— if α = B (a, s ) is an exact atom, then consider all integers k1 < · · · < kh , h ∈ N, such that
B (a,ki ) ∈ G (P ) for each i ∈ [1,h] and

— if h > 0 then replace ρ with h + 1 rules obtained from ρ by replacing notα with the
comparison atoms (s < k1), (ki−1 < s < ki ) for i ∈ [2,h], and (kh < s ),

— otherwise delete notα from ρ;
— if α = C (a, s ) is a limit atom, then

— if C (a,∞) ∈ G (P ) then delete ρ,
— otherwise if s � ∞ and there is C (a, �) ∈ G (P ) with � ∈ Z then replace notα in ρ with

the comparison atom (k ≺C s ) for k = maxC {� ∈ Z | C (a, �) ∈ G (P )},
— otherwise delete notα from ρ.

Note that, while we could already call the semi-positive program G (P ) OG-ground—after all, it
is produced by a direct extension of the canonical OG-grounding to semi-positive programs—it will
be more convenient to maintain the convention from Section 4.1 and restrict the term OG-ground
to positive programs. Note also that R (P ) = G (P ) for each positive LL-program P.

We next show that reducts play the same role for semi-positive LL-programs as canonical OG-
groundings for positive LL-programs, in the sense that reducts are interchangeable with the origi-
nal programs and can be used for checking fact entailment within the required complexity bounds.

The following lemma extends the result of Lemma 4.2 for positive LL-programs by showing that
reducts preserve the semantics of semi-positive LL-programs.

Lemma 4.26. For every semi-positive LL-program P,M (P ) =M (R (P )).

The proof of this lemma is given in the Appendix.
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Similarly to Corollary 4.3 for positive LL-programs, the following corollary establishes that fact
entailment can be checked on the reduct instead of the original semi-positive LL-program.

Corollary 4.27. For every semi-positive LL-program P and fact γ , P |= γ if and only if

R (P ) |= γ .

Having established a semantic connection between semi-positive LL-programs and their reducts,
we next extend the results of Lemma 4.4, showing that reducts have the same computational prop-
erties as canonical OG-groundings.

Lemma 4.28. The following hold for every semi-positive LL-program P with c distinct constants,

where u = maxρ ∈P�ρ�:

1. R (P ) can be computed in time polynomial in cu + ‖P‖; and

2. maxρ ∈R (P)�ρ� is linearly bounded in u.

Proof. We start with claim 1. Note that ‖R (P )‖ is linearly bounded in |R (P ) | ·maxρ ∈R (P) ‖ρ‖
and hence polynomially bounded in |R (P ) |+ ‖P‖, since maxρ ∈R (P) ‖ρ‖ is polynomially bounded
in ‖P‖ by construction. We next show that |R (P ) | is polynomially bounded in cu + |P |. Indeed,
for every rule ρ ∈ G (P ), reduct R (P ) contains at most (h + 1)d rules, where d is the number of
negative exact literals in the body of ρ and h is the maximal number of distinct facts in G (P ) over
a fixed exact predicate and a fixed tuple of objects; note that h is bounded by c since each exact
predicate has just one numeric position. Furthermore, G (P ) has at most cv rules for every rule in
P, where v is the maximal number of variables in such a rule, and hence |G (P ) | is bounded by
|P | · cv . Since d and v are both bounded by u, |R (P ) | ≤ |P| · cv · (c + 1)d is polynomially bounded
in cu + |P |, as required, and hence ‖R (P )‖ is polynomial in cu + ‖P‖. Finally, we can compute
R (P ) in time polynomial in ‖R (P )‖ by directly applying the definition.

For claim 2, maxρ ∈R (P)�ρ� is linearly bounded in maxρ ∈G (P)�ρ�, and hence in u, since each
rule in R (P ) is obtained from a rule in G (P ) by either removing literals or substituting literals
with (conjunctions of) comparison atoms with a fixed structure, while every rule in G (P ) is an
instance of a rule in P. �

Corollary 4.27 and Lemma 4.28 imply that, essentially, we can use Algorithm 1 for deciding
fact entailment for semi-positive LL-programs, and, moreover, both complexity bounds of Theo-
rem 4.21 transfer to the semi-positive case.

Theorem 4.29. The fact entailment problem for semi-positive LL-programs is in coNEXP in com-

bined and in coNP in data complexity.

Proof. The claim is shown in exactly the same way as Theorem 4.21; the only difference is that
we use R (P ) instead of G (P ) in Algorithm 1, and apply Corollary 4.27 and Lemma 4.28 instead
of Corollary 4.3 and Lemma 4.4, respectively, for justification (note that, same as in G (P ), all the
integers in the reduct R (P ) are inherited from the input program P). �

Before proceeding to arbitrary LL-programs, we briefly discuss the problem of entailment of an
LUB expression by a semi-positive LL-program, which will be useful when expressing Ross and
Sagiv’s monotonic programs in Section 8.1, but is also interesting in its own right. In particular, in
the following proposition, we provide a DEXP combined and a DP data complexity upper bound
for this problem. Later on, in Section 5 (Theorem 5.5), we will show matching lower bounds that
hold already for positive programs, which imply that extending the query language of facts with
negation and conjunction leads to a significant complexity jump (under usual complexity-theoretic
assumptions).

Journal of the ACM, Vol. 69, No. 1, Article 6. Publication date: December 2021.



The Complexity and Expressive Power of Limit Datalog 6:33

ALGORITHM 3: Fact Entailment for LL-Programs

Input: LL-program P and fact γ
Output: true if and only if P |= γ
1 set J0 � ∅
2 compute the number h of strata admitted by P
3 for i � 1 to h do

4 set Ji � N (R (P[i] ∪ Ji−1))

5 return true if γ � Jh and false otherwise

Proposition 4.30. The problem of entailment of a ground LUB expression by a semi-positive LL-

program is in DEXP in combined and in DP in data complexity.

Proof. By definition, for a semi-positive LL-program P, a limit predicateC , a tuple of objects a,
and a ground numeric term s , we have P |= �C (a, s )� if and only if P |= C (a, s ) and P 	|= C (a, s+k ),
where k = 1 if C is max and k = −1 if C is min. So, the claim follows from the fact that terms s
and s + k can be evaluated to integers in polynomial time and Theorem 4.29, which says that
fact entailment for semi-positive LL-programs is in coNEXP in combined and in coNP in data
complexity. �

We conclude this section by considering arbitrary LL-programs, for which we establish ΔEXP
2

and ΔP
2 upper bounds for the fact entailment problem in combined and data complexity, respec-

tively. Later on, in Section 5 (Theorem 5.10), we will show that these bounds are tight and hence
fact entailment becomes harder when generalising semi-positive to arbitrary LL-programs. Such
a complexity jump should not come as a surprise in light of the discussion preceding Proposi-
tion 4.30: entailment of LUB expressions by positive programs can be easily reduced to entailment
of facts by arbitrary programs, which is already DP-hard.

Algorithm 3 decides entailment of a fact γ by an arbitrary LL-program P. In line 4, the algo-
rithm calls a subroutine that computes the pseudomaterialisation Ji of the semi-positive program
R (P[i] ∪ Ji−1), which is the reduct of the current stratum P[i] and the pseudomaterialisation
Ji−1 computed for the previous stratum; the existence of such a subroutine and its computational
bounds are established by Algorithm 2 and Theorem 4.24. Therefore, the algorithm constructs
the pseudointerpretation Jh corresponding to the materialisation of P stratum by stratum in a
bottom-up fashion. Once Jh has been constructed, entailment of γ is checked directly over Jh .

The following theorem justifies the correctness of the algorithm and its complexity bounds.

Theorem 4.31. The fact entailment problem for LL-programs is in ΔEXP
2 in combined and in ΔP

2 in

data complexity.

Proof. We first show partial correctness of Algorithm 3. SinceM (P ) is the partial materiali-
sation Mω1

h
of P, for h the number of strata P admits, and P |= γ if and only if γ ∈ M (P ), it

is enough to show that Jh corresponds toM (P ) in the end of the loop in lines 3–4. To this end,
we prove, by induction on i , that the partial materialisationMω1

i and the pseudointerpretation Ji

correspond to each other for each i ∈ N. First, for i = 0, we haveMω1
0 = J0 = ∅ by definition. Let

nowMω1
i−1 and Ji−1 correspond to each other for some i ≥ 1. For convenience, in the reasoning

below, we slightly abuse our definitions and view possibly infinite (partial) materialisations as pro-
grams (which should be finite by definition); this is done without loss of generality because all the
relevant notions lift to infinite sets of rules without any changes. First, in the program P[i]∪Mω1

i−1,
the first stratum isMω1

i−1 and the second is P[i], so

Mω1
i =M (P[i] ∪Mω1

i−1).
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Note that Definitions 3.6 (materialisation for limit programs) and 4.6 (correspondence between
limit-closed interpretations and pseudo-interpretations) imply thatMω1

i−1 =M (Ji−1), and hence

M (P[i] ∪Mω1
i−1) =M (P[i] ∪M (Ji−1)).

However, Ji−1 is in the first stratum of P[i] ∪ Ji−1, and hence

M (P[i] ∪M (Ji−1)) =M (P[i] ∪ Ji−1).

Next, by Lemma 4.26, we have

M (P[i] ∪ Ji−1) =M (R (P[i] ∪ Ji−1)).

Finally, by Lemma 4.11,

M (R (P[i] ∪ Ji−1)) corresponds to N (R (P[i] ∪ Ji−1)) = Ji .

So, Mω1
i and Ji correspond to each other. In particular, M (P ) corresponds to Jh , and hence

Jh = N (P ), as required.

We next show that Algorithm 3 works within the required complexity bounds—that is, in ΔEXP
2

and in ΔP
2 in data complexity.

To this end, first note that the stratification ΛP of P, as well as the number of strata h in this
stratification in line 2, can be computed in polynomial time.

Then, for each i ∈ [1,h], the number of distinct constants in P[i]∪Ji−1 is bounded by c +cv ·d ,
where c , d , andv are the number of distinct constants, the number of distinct limit predicates, and
the maximal arity of a predicate in P, respectively, and hence it is linearly bounded in (cd )u , where
u = maxρ ∈P�ρ�. Therefore, by claim 1 of Lemma 4.28, there are polynomials p1 and p2 such that
each reduct R (P[i] ∪ Ji−1) can be computed in time

p1 ((cd )p2 (u ) + ‖P[i] ∪ Ji−1‖); (38)

moreover, the size ‖R (P[i] ∪ Ji−1)‖ of the reduct is bounded by the same number.
Note also that, by claim 2 of Lemma 4.28, maxρ ∈R (P[i]∪Ji−1 )�ρ� is linearly bounded inu for each

i ∈ [1,h]. Hence, by Theorem 4.24, there are polynomials q1 and q2 such that each pseudomateri-
alisation Ji = N (R (P[i] ∪ Ji−1)) can be computed in time

q1 (2q2 (u ) + ‖R (P[i] ∪ Ji−1)‖), (39)

with an access to an NP oracle; moreover, the size ‖Ji ‖ of the pseudomaterialisation is bounded
by the same number.

Plugging expression (38) into expression (39), we conclude that there exist polynomials p and
p ′ such that each Ji can be computed in line 4 of the algorithm in time

p ((cd )p′(u ) + ‖P‖ + ‖Ji−1‖)

with an access to an NP oracle, and the size of Ji is bounded by the same number. So, overall, the
pseudomaterialisation N (P ) = Jh can be computed by the loop in lines 3–4 in time bounded by

qh ((cd )p′(u ) + ‖P‖) (40)

with an access to an NP oracle, where q(k ) = k + p (k ) for every k ∈ N and qh is q iterated h
times (e.g., q3 (k ) is q(q(q(k )))). The other lines of the algorithm are easy to evaluate, so bound (40)
implies both of the required complexity bounds (note that for data complexity, both h and u are
fixed). �
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5 EXPRESSIVE POWER AND COMPLEXITY LOWER BOUNDS FOR LL-PROGRAMS

In this section, we study the expressive power of LL-programs and establish lower bounds on the
complexity of fact entailment matching the upper bounds established in Section 4.

Our main results on expressive power are that the language of semi-positive LL-programs cap-
tures the complexity class coNP and the language of all LL-programs captures ΔP

2 = PNP, both
over ordered datasets (Theorems 5.3 and 5.9, respectively). We also show that the full expressive
power of the languages is available already when the programs do not mention ∞, × or −, when
all the integers are represented in unary (in fact, the only integer used is 1), and, for capturing ΔP

2 ,
when the programs are restricted to admit at most three strata. Thus, semi-positive LL-programs
have the same expressive power as usual answer set programming (ASP) formalisms based on
stable models [50] and as the language SO∀ of second-order Boolean queries allowing only for
universal quantification over second-order variables [29], but one level above usual semi-positive
Datalog, which captures over ordered datasets P [14]. Furthermore, our result for the language of
all LL-programs places them in-between usual ASP formalisms and their disjunctive versions, such
as disjunctive Datalog, which is known to capture ΠP

2 = coNPNP [17]. Note that logical character-

isations of ΔP
2 have been described in the literature [15, 18, 55]; these characterisations, however,

usually rely on rather artificial logical languages consisting of a P formalism (e.g., first-order logic
with fixed-point) with access to an NP operator (e.g., Hamiltonian path quantifier).

Our complexity lower bounds—that is, coNEXP- and coNP-hardness for positive and semi-
positive LL-programs (Theorem 5.4) and ΔEXP

2 - and ΔP
2 -hardness for arbitrary LL-programs (Theo-

rem 5.10)—hold under the same restrictions as the expressivity results; moreover, the second result
holds even for programs that admit at most two strata.

5.1 Positive and Semi-Positive LL-Programs

We start this section with the main ideas underlying our coNP capturing result for semi-positive
LL-programs. In general, we need to check, by means of a fixed semi-positive LL-program, whether
a polynomial-time non-deterministic Turing machine applied to a given input yields a computa-
tion tree where all branches are rejecting. This computation tree is of polynomial depth, but may
have an exponential number of leaves. DatalogZ is not equipped with any non-deterministic con-
structs, so the (single) evaluation of a simulating LL-program should essentially traverse, in search
for an accepting branch, all the branches of the tree according to some strategy. Assuming for sim-
plicity that all branches have the same length, the most straightforward strategy is to traverse the
branches in parallel, from the leaves to the root, taking the logical OR of the acceptance bits in
the branching nodes. This strategy, however, requires remembering a bit for every node of depth
currently examined by the traversal, and the number of such nodes can be exponential in the size
of the input (e.g., for the nodes immediately preceding the leaves). This is problematic for a fixed
DatalogZ program; indeed, there is a fixed number of predicates of fixed arity, and thus we cannot
remember an exponential amount of information using polynomially many facts in a pseudoint-
erpretation (note that exponentially-sized integers would not help here, because, by Lemma 4.23,
if such an integer appears in a derivation, it can be treated as infinity). So, we adopt an alternative
strategy where branches are explored one by one in a left-first depth-first manner. In particular,
the (polynomial) depth of the currently explored node is encoded by a tuple of objects, while the
branch number is encoded as an integer (of polynomial size) whose binary encoding represents
the sequence of guesses made by the machine along the branch from the root to the current node.
Thus, for a fixed depth, the integer encodings strictly increase along the exploration, which is nec-
essary, since the predicates we use have to be limit predicates and so only their maximal values
are meaningful. Then, we ensure correct simulation as follows: if a branch is rejecting we proceed

Journal of the ACM, Vol. 69, No. 1, Article 6. Publication date: December 2021.



6:36 G. Provelengios et al.

to the next branch, and if it is accepting we block further derivation. The machine returns true if
and only if the last branch is unsuccessfully explored.

To make these ideas precise, we begin by providing a definition of a Turing machine deciding
an NP problem. Consider a problem P ∈ NP over alphabet {0, 1}. There exists a nondeterministic
Turing machine MP and a number d ∈ N—called the degree of MP —with the following properties.
Machine MP has a set of statesQ that contains the initial state qinit, the setQacc of accepting states,
and the setQ rej of rejecting states; it has a work tape, infinite to the right, over alphabet Γ = {0, 1, ␣ }
with ␣ the blank symbol, and a transition function

δ : (Q \ (Qacc ∪Q rej)) × Γ × {0, 1} → Q × Γ × {left, right}.

The nondeterminism of MP is realised by the third argument of the transition function—that is, in
each step, computation of MP splits into two branches, one for 0 as the argument and one for 1;
on each branch, MP enters a new state, writes a new symbol into the tape cell under the head,
and moves the head left or right, which is represented by symbols left and right, respectively.
Without loss of generality, it is convenient to require that the two transitions for 0 and 1 always
end in different states, and that MP never moves the head to the left of the first cell of the tape and
terminates (i.e., accepts or rejects by entering a state in Qacc or in Q rej, respectively) on an input
w in exactly (max( |w |, 2))d steps, for |w | the length of w . A partial run of MP on an input w is a
sequence of configurations of MP (i.e., triples of a state, a position of the head, and contents of the
tape) starting in the initial configuration for w (i.e., a configuration with state qinit, the head over
the left-most cell, and w on the tape) that agrees with δ at all steps. We have w ∈ P if and only if
there is an accepting run (i.e., a partial run ending in a configuration with a state in Qacc). In the
rest of this section, by a machine deciding a problem P ∈ NP we mean a Turing machine MP with
a degree d as described above.

Note that, since, by assumption, two transitions differing only in the guessed bit always lead
to different states, each partial run Π = C0, . . . ,Cj of machine MP on an input w has a one-to-
one correspondence with the sequence of guesses from {0, 1} of length j. Since j ≤ h for {h =
(max( |w |, 2))d }, this sequence is the binary representation of a number in [0, 2h −1]; thus, let �(Π)
denote the number obtained from this representation by prepending 1 to it (i.e., adding 1 as the
most significant bit). This plays a technical role: it ensures that each number represents a unique
partial run; moreover, we can model a 0 guess by doubling the number, and a 1 guess by doubling
and adding 1.

The following definition reflects the main idea for the simulation of a nondeterministic Turing
machineMP by a semi-positive LL-program: to decide whether an inputw is in P , it is enough to go
through the terminating runs Π of MP on w in increasing order of �(Π) until finding an accepting
run or completing the pass at the rejecting run Π with �(Π) consisting of |Π | = (max( |w |, 2))d + 1
ones; then, w ∈ P if and only if the last explored run is accepting. Here and in what follows, |Π | is
the number of configurations in a partial run Π, which equals the number of guesses plus one.

Definition 5.1. For P ∈ NP, a partial run Π of MP is searching if one of the following holds:

— Π consists of a single initial configuration;
— the last digit of �(Π) is 0 and Π = Π′,C for a searching partial run Π′ and configuration C;

and
— the last digit of �(Π) is 1, the partial run Π′′ with �(Π′′) = �(Π) − 1 is searching, and all

terminating extensions of Π′′ are rejecting.

The following lemma establishes that it is enough to go through all searching partial runs when
looking for the accepting one.
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Lemma 5.2. For P ∈ NP, whenever a searching partial run Π of MP on an inputw satisfies {�(Π) ≥
�(Π′)} for each searching partial run Π′ of MP on w with |Π | = |Π′ |, then there is an accepting

extension of Π if and only if w ∈ P .

Proof. The lemma follows from Definition 5.1. Indeed, if all extensions of a searching partial run
Π′ are rejecting, then either there is a searching partial run Π′′with |Π′′ | = |Π′ | and �(Π′′) > �(Π′),
or �(Π′) is the sequence of ones of length |Π′ |—that is, Π′ is the last partial run of this length (with
respect to the order); conversely, if Π′ has an accepting extension, then all partial runs Π′′ with
|Π′′ | = |Π′ | and �(Π′′) > �(Π′) are not searching. �

The following theorem on the expressive power of semi-positive LL-programs is one of our main
results. Roughly speaking, it says that adding “limit” arithmetic and negation over EDB predicates
to usual Datalog provides the same power as adding unrestricted, not necessary stratified, negation
under the stable model semantics (which yields usual ASP based on stable models) in the sense
that both languages capture coNP over ordered datasets [50]. Importantly, we cannot expect the
same result for positive LL-programs as they lack any form of negation, which is necessary for
capturing any reasonable complexity class. Note also that we explicitly require homogeneity in the
formulation of the theorem (as well as analogous theorems below), because it makes the statement
stronger even in light of Proposition 3.7—the reduction from nonhomogeneous to homogeneous
programs may introduce subtraction, which is not allowed in the theorem.

Theorem 5.3. The language of semi-positive LL-programs captures coNP over ordered datasets; the

result already holds for the language of homogeneous semi-positive LL-programs that do not mention

∞, × or −, and use only 1 as a numeric constant.

Proof. As shown in Theorem 4.29, fact entailment for semi-positive LL-programs is in coNP

in data complexity. Therefore, the problem of evaluating a fixed semi-positive LL-program P on a
datasetD from the family of ordered datasetsD (i.e., checking whether P ∪ D |= goal for a special
nullary predicate goal) is also in coNP, which means that condition 1 for capturing a complexity
class given in Section 2.2 holds for the language of semi-positive LL-programs. Thus, it remains
to show that condition 2 holds for the language of semi-positive LL-programs without ∞, ×, −,
or numbers other than 1. This language is easily seen to be closed under first-order reductions
following exactly the same reasoning as for usual semi-positive Datalog [14, 29] (note that first-
order reductions between datasets in D involve no numeric predicates or arithmetic). Hence, as
argued in Section 2.2, it suffices to show that condition 2 is satisfied for signature {Σgraph = {edge}∪
Σord}—that is, that for each problem P ∈ coNP there is a semi-positive LL-program PP with EDB
predicates from Σgraph that satisfies the aforementioned restrictions and such that, for every dataset
D ∈ D over Σgraph, PP ∪ D |= goal if and only if code(D) ∈ P .

Consider an arbitrary problem P ′ ∈ coNP. Let MP be a nondeterministic Turing machine with a
degreed deciding the complement P of P ′ (which is in NP) as described above, and let the encoding
code(D) of a dataset D ∈ D representing a graph with c nodes be a binary string of length c2 as
defined in Section 2.2. Since c ≥ 2 by the definition of family D, machine MP running on code(D)
always terminates in exactly h = c2d steps and uses at most h cells on its tape. Therefore, given a
partial run ofMP on code(D), we can refer to each configuration in this run by a number requiring
2d digits in c-ary representation—that is, by a 2d-tuple of objects inD (i.e., graph nodes); similarly,
we can address each cell used by MP by a 2d-tuple of objects. As a result, we can encode the
configuration C concluding each partial run Π of MP on code(D) using the following facts over
(4d + 1)-ary max predicates headq , for each state q of MP , and tapeu , for each symbol u ∈ Γ:
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— headq (at; ax; �(Π)), where q is the state in C , while at and ax are the 2d-tuples of objects in
D encoding |Π | − 1 and the head position in C , respectively; and

— tapeu (at; ax; �(Π)), for each i ∈ [0,h − 1], where u is the symbol in the i-th tape cell in C , at

is as above, and ax is the 2d-tuple encoding i .

Note that we use “;” instead of “,” to separate tuples of arguments when writing these atoms. We
will use this notational convention in this and some following proofs to avoid ambiguity when
concatenating several such tuples without explicitly mentioning their sizes.

The idea behind the semi-positive LL-program PP constructed below based onMP is to populate
predicates headq and tapeu so that they encode all and only searching partial runs on an input
graph; then, we can apply Lemma 5.2 and extract the answer of MP from the encoding of the
searching partial run Π with the greatest �(Π).

Program PP consists of rules (41)–(54) given next. First, it is convenient to have a uniform way
of accessing all objects in the dataset. This is achieved by the unary object predicate object, defined
by rules (41) from EDB predicates first and next, which encode a total order on the objects in D:

first (z0) → object (z0), next (z, z ′) → object (z ′). (41)

Rules (42), where i ∈ [0, 2d−1], define the 4d-ary object predicate succ to denote the immediate suc-
cessor relation on numbers encoded as 2d-tuples of objects, as explained above, by a lexicographic
extension of the order given by next to 2d-tuples of objects:

object (z1) ∧ · · · ∧ object (zi ) ∧ next (z, z ′) ∧ first (z0) ∧ last (zmax) →
succ(z1, . . . , zi , z, zmax, . . . , zmax; z1, . . . , zi , z

′, z0, . . . , z0). (42)

It is also convenient to have access to the transitive closure succ+ of succ, defined by rules (43), and
the the symmetric closure differ of succ+—that is, the inequality relation,—defined by rules (44):

succ(z; z′) → succ+ (z; z′), succ+ (z; z′) ∧ succ(z′; z′′) → succ+ (z; z′′), (43)

succ+ (z; z′) → differ (z; z′), succ+ (z; z′) → differ (z′; z). (44)

The simulation ofMP starts with rules (45)–(48), which read the input graph and initialise the state,
head, and tape of MP —that is, encode the partial run Π consisting of a single initial configuration.
In rules (45)–(48), z0 and z′0 are tuples consisting of variable z0 repeated 2d and 2d − 2 times,
respectively. In particular, the rules initialise the first 2d arguments of the predicates headq init and
tapeu , for u ∈ Γ, by the first object in D, which encodes 0 = |Π | − 1. Similarly, rule (45) initialises
each component of the second 2d-tuple in headq init by the first object inD, thus encoding that the
head ofMP initially points to the left-most tape cell. Rules (46) and (47) load the graph into the tape
predicates tape1 and tape0: the two least significant positions of the second argument tuple in facts
over tape1 encode edges in the input graph, while the same positions in facts over tape0 encode
the absence of edges; rule (48) then pads all remaining tape cells with the blank symbol. Finally,
the last argument of each predicate initialised by rules (45)–(48) is set to �(Π) = 1, as explained
earlier:

first (z0) → headq init (z0; z0; 1), (45)

first (z0) ∧ edge(x1,x2) → tape1 (z0; z′0,x1,x2; 1), (46)

first (z0) ∧ not edge(x1,x2) ∧ object (x1) ∧ object (x2) → tape0 (z0; z′0,x1,x2; 1), (47)

first (z0) ∧ last (zmax) ∧ succ+ (z′0, zmax, zmax; x) → tape ␣ (z0; x; 1). (48)

Each transition δ (q,u,G ) = (q′,u ′,X ) withX ∈ {left, right} andG ∈ {0, 1} is simulated by rules (49)
ifG = 0 and (50) ifG = 1; for brevity, we again use conjunctions in rule heads, which can be easily
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rewritten away as argued in the proof of Theorem 2.2 (given in the Appendix). Rules (49) extend
the encoding of a searching partial run Π′ to the encoding of the searching partial run Π = Π′,C
in the case when the last digit of �(Π) is 0. Rules (49) have an instance for each q ∈ Q \Qacc ∪Q rej,
each u ∈ Γ, and each v ∈ Γ; furthermore, S (x; x′) denotes succ(x′; x) if X is left and succ(x; x′) if X
is right, and hence x′ encodes the head position after the transition provided x does so before the
transition. To encode the step from Π′ to Π, all atoms in the head of (49) have variables t′ as their
first 2d arguments, which are related to variables t in the respective body atoms by succ(t, t′). The
atoms with variables y, which must be different from the head position x by differ (x; y), propagate
the unaffected contents of the tape to both sides of the head. Finally, sinceG = 0, we have {�(Π) =
2 · �(Π′)}, which is reflected by doubling the numeric argument of the head atoms compared to
the body:

headq (t; x;m) ∧ tapeu (t; x;m) ∧ tapev (t; y;m) ∧
succ(t; t′) ∧ S (x; x′) ∧ differ (x; y) ∧ (m +m � m′) →

headq′ (t
′; x′;m′) ∧ tapeu′ (t

′; x;m′) ∧ tapev (t′; y;m′). (49)

Similarly, rules (50) extend the encoding of a searching partial run Π′ to the encoding of the
searching partial run Π when the last digit of �(Π) is 1. The main difference here is that, by Defini-
tion 5.1, we need to ensure that all terminating extensions of Π′ starting with a step corresponding
to a 0 guess are rejecting. This is achieved by the atom allreject0 (t;m), for allreject0 a max predicate
defined by rules (51)–(53) as explained below. Moreover, sinceG = 1, we have �(Π) = 2 · �(Π′) + 1,
which is reflected by increasing the numeric argument of the head atoms accordingly:

headq (t; x;m) ∧ tapeu (t; x;m) ∧ tapev (t; y;m) ∧ allreject0 (t;m) ∧
succ(t; t′) ∧ S (x; x′) ∧ differ (x; y) ∧ (m +m + 1 � m′) →

headq′ (t
′; x′;m′) ∧ tapeu′ (t

′; x;m′) ∧ tapev (t′; y;m′). (50)

Predicate allreject0 is defined by rules (51)–(53) so that a fact of the form allreject0 (at; �(Π)) is
derived if and only if all terminating extensions of Π′ starting with a step corresponding to a 0—
that is, all terminating runs Π′,C1, . . . ,Cj with �(Π′,C1) even—are rejecting; this is done with the
help of a max predicate allreject such that allreject (at; �(Π)) is derived if and only if all terminating
extensions of Π (including Π itself, if it is terminating) are rejecting. Rule (51), which instantiated
for eachqrej ∈ Q rej, covers the case when the last configuration is rejecting, while rules (52) and (53)
propagate information one step back in the run when the last guess is 0 and 1, respectively. It is
important to note that a propagation along a 1 guess is only possible after the corresponding
propagation along a 0 guess—that is, for each at and each k , fact allreject0 (at;k ) is always derived
before allreject (at;k ):

headqrej (t; x;m) → allreject (t;m), (51)

allreject (t′;m′) ∧ succ(t; t′) ∧ (m +m � m′) → allreject0 (t;m), (52)

allreject (t′;m′) ∧ succ(t; t′) ∧ (m +m + 1 � m′) → allreject (t;m). (53)

Finally, rule (54) checks whether all runs are rejecting—that is, whether MP rejects the input, and
hence the input is in P ′. The rule triggers if and only if we can derive allreject for the run consisting
of only the initial configuration, which, by Lemma 5.2 and the explanation above, happens precisely
when all runs are explored and found rejecting:

first (z0) ∧ allreject (z0; 1) → goal. (54)
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Having completed the construction of PP , we next argue its correctness. To this end, for conve-
nience, we assume that stratification ΛPP

assigns 1 to all EDB predicates, object, succ, and succ+,
and 2 to all other IDB predicates; this can be achieved by adding semantically redundant rules
involving negation, which we omit here. Consider an arbitrary ordered datasetD ∈ D over Σgraph

and the partial materialisationsMκ
j of PP ∪ D, for numbers j ≥ 1 and ordinals κ. Note that, by

assumption,Mω1
1 is the closure of D with respect to predicates object, succ, and succ+, and, since

the program does not use ∞, we haveM (PP ∪ D) =Mω
2 , for ω the first infinite ordinal. Hence,

we can use ordinary induction over natural numbers for proving properties of PP rather than
transfinite induction. Next, by construction, for every number i ∈ N, every tuple of objects at, and
every � ∈ Z, there are q ∈ Q and a tuple ax such thatMi

2 |= �headq (at; ax; �)� if and only if there
are u ∈ Γ and a tuple a′x such thatMi

2 |= �tapeu (at; a′x; �)�; moreover, the latter implies that for
every tuple a′′x , there is someu ∈ Γ such thatMi

2 |= �tapeu (at; a′′x ; �)�. In other words, the maximal
facts encoding a configuration are either all derived by a partial materialisation or none of them
is derived; moreover, the represented configuration is the last one in the partial run Π of MP on
code(D) represented by �, and |Π | is encoded by at. Since, by construction, � = �(Π) uniquely
identifies Π, we can say that Π is derived byMi

2. Next, we prove that a partial run Π is derived by
Mi

2 for a number i ∈ N if and only if Π is searching.
We prove the forward direction of this claim—that is, show that if a partial run Π is derived by
Mi

2 for a number i ∈ N then Π is searching. The proof is by induction on i > 0 (the case i = 0 is
trivial asM0

2 =M
ω1
1 does not derive any partial run). For the base case,M1

2 derives, by rules {(45)–
(48)}, only the run consisting of the initial configuration of MP on code(D), which is searching by
the first case of Definition 5.1. For the inductive step, we prove the claim for i + 1 assuming that it
holds for i . Consider a partial run Π derived byMi+1

2 . There are two cases: either the last guess of
Π is 0 and the maximal facts representing Π are obtained by application of rules (49) toMi

2, or the
last guess is 1 and the maximal facts are obtained by application of rules (50) toMi

2. In the first case,
the rule bodies in (49) ensure thatMi

2 derives the partial run Π′ such that Π = Π′,C , which, by the
inductive hypothesis, implies that Π′ is searching, and hence, by Definition 5.1, that Π is searching.
In the second case, similar reasoning applies, except that, additionally, the rule bodies in (50) ensure
thatMi

2 |= allreject0 (a′t; �(Π
′)) for the tuple of objects a′t encoding |Π′ | = |Π | − 1, which means,

by rules (51)–(53), that all terminating runs of MP extending Π′ first by a 0 guess and then in an
arbitrary way until termination are rejecting, and hence, by Definition 5.1, Π is searching.

We next prove the backward direction of the claim—that is, show that if a partial run Π is search-
ing then it is derived byMi

2 for a number i ∈ N. The proof is by induction on the definition of
searching partial runs (Definition 5.1). For the base case, consider a partial run Π consisting of only
the initial configuration of machineMP on code(D). Then, Π is derived byM1

2 according to the ini-
tialisation rules (45)–(48). For the inductive step, consider first a partial run Π such that the last digit
of �(Π) is 0 and Π = Π′,C , for Π′ a searching partial run andC a configuration. Since Π′ is search-
ing, by the inductive hypothesis, it is derived byMi

2 for some i . Hence, by rules (49), Π is derived
byMi+1

2 , as required. Finally, consider a partial run Π such that the last digit of �(Π) is 1, the partial
run Π′′with �(Π′′) = �(Π)−1 is searching, and all terminating extensions of Π′′ are rejecting. Since
Π′′ is searching, by the inductive hypothesis, it is derived byMi′

2 for some i ′; moreover, since all

terminating extensions of Π′′ are rejecting and each such extension is derived by someMi′′
2 with

i ′′ ≥ i ′, rules (51)–(53) ensure thatMi
2 |= allreject0 (a′t; �(Π

′′)) for the tuple of objects a′t encoding
|Π′′ | and for some i greater than all i ′′. Hence, by rules (50), Π is derived byMi+1

2 , as required.
We conclude that a partial run Π is derived byMi

2 for some i ∈ N if and only if Π is searching.
Then, by Lemma 5.2, all terminating runs ofMP on code(D) are rejecting if and only if each of them
is searching, and hence is derived by some partial materialisation. Therefore, allreject (c0, . . . , c0; 1)
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is inM (PP ), for c0 the first object in D—and hence rule (54) derives goal—if and only if all termi-
nating runs ofMP on code(D) are rejecting—that is, if and only ifMP does not accept code(D). �

By Theorem 5.3 and Proposition 2.3, fact entailment for homogeneous semi-positive LL-
programs without ∞, × or −, and using only 1 as a numeric constant is coNP-hard in data com-
plexity, which matches the upper bound in Theorem 4.29. Moreover, we can adapt the proof of
Theorem 5.3 to show that even for positive LL-programs with the same restrictions, fact entail-
ment is coNEXP-hard in combined and coNP-hard in data complexity, which matches the upper
bounds in Theorems 4.21 and 4.29.

Theorem 5.4. The fact entailment problem for homogeneous positive LL-programs that do not

mention ∞, × or −, and use only 1 as a numeric constant is coNEXP-hard in combined and coNP-

hard in data complexity.

Proof. We start with the data complexity bound. First, note that if a problem P ′ over {0, 1} is
coNP-complete, then so is the problem

P = {ww0 | w ∈ P ′ and w0 is a tuple of ( |w | + 2)2 − |w | zeros}. (55)

Moreover, negation is used in the proof of Theorem 5.3 only in rule (47), where the absence of
an edge between two nodes is propagated to predicate tape0. So, we can reduce a coNP-complete
problem P as above to the fact entailment problem for fixed homogeneous positive LL-programs
without ∞, × or −, and using only numeric constant 1 as follows. First, the fixed positive LL-
program P′P is the same as PP in the proof of Theorem 5.3 except that it uses the positive literal
noedge(x1,x2), for noedge a binary object predicate, instead of the negative literal not edge(x1,x2)
in rule (47). Then, each instancew of P such that |w | = c2 for c ≥ 2 is reduced to an ordered dataset
Dw over Σgraph ∪ {noedge} that extends the dataset D over Σgraph satisfying code(D) = w by a
fact noedge(a1,a2) for each pair of nodes a1,a2 such that edge(a1,a2) � D (i.e., noedge encodes the
complement of the graph given by edge). Finally, each instance w with |w | � c2, which is not in P
by definition, is reduced toDw = ∅. By construction, P′P satisfies all claimed syntactic restrictions
and P′P ∪ Dw |= goal if and only if w ∈ P , as required.

For the coNEXP combined complexity bound, we can use the same construction; the only differ-
ence is that a machine deciding a problem in NEXP, defined in exactly the same way as a machine

deciding a problem in NP, terminates on input w in exactly (max( |w |, 2)) (max( |w |,2))d
steps, for

a fixed degree d ∈ N, and uses at most this number of tape cells, so the arities of the relevant
predicates become polynomially dependent on |w | (e.g., the arity of headq and tapeu becomes

4c2d + 1 = 4|w |d + 1) and rules (42) have 2c2d = 2|w |d (i.e., polynomially many) instantiations. �

In addition to the above lower bounds, by further modifying the program in the proof of The-
orem 5.3, we can show that entailment of ground LUB expressions by positive LL-programs is
DEXP-hard in combined and DP-hard in data complexity, which matches the upper bounds estab-
lished in Proposition 4.30.

Theorem 5.5. The problem of entailment of a ground LUB expression by a homogeneous positive

LL-program, where neither the expression nor the program mentions ∞, × or − and both use only 1

as a numeric constant, is DEXP-hard in combined and DP-hard in data complexity.

Proof. As in Theorem 5.4, we start with the data complexity bound. Once again, if a problem P ′

is DP-complete, then so is the problem P defined as in Problem (55). Therefore, we can reduce any
such DP-complete problem to the entailment problem as stated for a ground LUB expression and a
fixed homogeneous positive LL-program without∞, × or −, and using only numeric constant 1 as
follows. Let P1 and P2 be problems in NP such that w ∈ P if and only if w ∈ P1 and w � P2, which
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exist by the definition of the class DP. Let PP1 and PP2 be the (fixed) LL-programs constructed
as in the proof of Theorem 5.3 for P1 and P2, respectively, and let P′P1

and P′P2
be the positive

programs constructed from PP1 and PP2 , respectively, in the same way as P′P is constructed from
PP in the proof of Theorem 5.4. Then, let P′′P1

and P′′P2
be the programs obtained from P′P1

and P′P2
,

respectively, by renaming apart all common standard predicates except those in Σgraph ∪ {noedge}
by adding to their names subscripts 1 and 2, respectively. Finally, let P′′P be the program consisting
of all rules in P′′P1

∪ P′′P2
as well as the following two rules, where lub is a unary max predicate:

goal1 → lub(1 + 1), (56)

goal2 → lub(1). (57)

Also, each input w to P is reduced to an ordered dataset Dw over Σgraph ∪ {noedge} in exactly the
same way as in the proof of Theorem 5.4. As a result, P′′P satisfies all the required properties and
P′′P ∪ Dw |= �lub(1)� if and only if w ∈ P : indeed, if w ∈ P1 and w � P2, then, as shown in the
proof of Theorem 5.4, P′′P ∪ Dw 	 |= goal1 and P′′P ∪ Dw |= goal2, which implies, by rule (57), that
P′′P ∪ Dw |= �lub(1)�; otherwise, either P′′P ∪ Dw |= goal1 or P′′P ∪ Dw 	 |= goal2, which implies
that P′′P ∪ Dw 	 |= �lub(1)�.

The DEXP bound then follows in the same way as the coNEXP bound in Theorem 5.4. �

5.2 Arbitrary LL-Programs

Our encoding of a ΔP
2 Turing machine (a deterministic polynomial time machine with access to

an NP oracle) as an LL-program generalises the idea for NP problems in Section 5.1. The main
difficulty is that we now need to simulate not just one run of an NP machine but several consecutive
calls to such a machine. Similarly to the coNP case, the behaviour of the main machine on an input
word with the runs of the oracle calls expanded can be seen as a single tree of polynomial depth but
exponential size, where each branch of an oracle call feeds back to the main machine, assuming that
the answer to the call is the answer for this particular branch. This representation thus considers
not only the correct run of the main machine, but also all the “runs” that have some answers of the
calls wrong, which will be convenient for our encoding of the machine as an LL-program. As in
the coNP case, our encoding explores this tree in a depth-first left-first manner, proceeding to the
next branch in every call only if the current branch is rejecting. This again enables consecutive
exploration of an exponential number of branches by means of (carefully incremented) “limit”
integers of polynomial size.

Similarly to Section 5.1, we start the formalisation of the ideas above with a precise definition of
a Turing machine deciding a problem in ΔP

2 , which we rely on in this section. To this end, consider

a problem P ∈ ΔP
2 over alphabet {0, 1}. There exists a deterministic Turing machine MP deciding

P with access to a nondeterministic Turing machine O as an oracle and with a degree d ∈ N such
that the following holds. Machine MP has a set of states Q that contains the initial state qinit, the
setQacc of accepting states, and the setQ rej of rejecting states; the work tape is infinite to the right
and has alphabet Γ = {0, 1, ␣ } with ␣ the blank symbol; finally, the transition function is as follows:

δ : (Q \ (Qacc ∪Q rej)) × Γ × {yes, no} → Q × Γ × {left, right}.
Machine MP starts in state qinit with the head over the left-most cell of the tape and with an input
word w on the tape. Transitions of MP are defined as usual except that they depend not only on
the state in Q and the symbol in Γ in the cell under the head, but also on the answer to a call
to the oracle machine O with the contents of the tape as input: the third argument of δ is the
oracle answer—that is, yes or no; machine MP then enters a new state, writes a new symbol on
the tape under the head, and moves the head left or right, as determined by δ . Moreover, for M ′P
the nondeterministic version of MP —that is, the NP Turing machine obtained from MP by replacing
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each oracle call with a nondeterministic guess of yes or no—we assume that M ′P never moves the
head to the left of the first tape cell and terminates (i.e., accepts or rejects in a state in Qacc or
Q rej, respectively) in exactly h = (max( |w |, 2))d steps on each run. Essentially, M ′P captures the
behaviour of MP even when some of oracle answers are wrong, and, as will become clear later on,
we need to state the assumption for M ′P rather than just for MP because we simulate the behaviour
of MP even in such cases. Finally, w ∈ P if and only if MP accepts w .

The oracle machine O follows the definition of a machine deciding a problem in NP from Sec-
tion 5.1: it has a set of states QO containing the initial state qinit

O
, the set Qacc

O
of accepting states,

and the set Q
rej

O
of rejecting states, a work tape over alphabet Γ that is infinite to the right, and a

transition function

δO :
(
QO \

(
Qacc

O ∪Q rej

O

))
× Γ × {0, 1} → QO × Γ × {left, right}.

The nondeterminism of O is again realised by the third argument of the transition function. We
make the following assumption on the running time of the oracle: for each step of each run of
M ′P on an input w , oracle O terminates on the tape contents of M ′P in this step (i.e., accepts or

rejects the tape contents by entering a state in Qacc
O

or in Q
rej

O
, respectively) in exactly hd steps, for

h = (max( |w |, 2))d —note that, since MP terminates onw in h steps, the input toO in all these cases
is of size at most h (in other words, all calls to O by MP terminate in hd steps even if some oracle
answers are wrong). The oracle answer is yes if there is an accepting run of O and no otherwise.

The definition of MP is nonstandard—it is usually assumed that the main machine MP calls the
oracle only when it is in a special query state, and that the input to the oracle is composed on a
separate write-only tape of MP , which is flushed after each call. Our definition, however, will be
more convenient for our proof, and is equivalent to the standard one in the sense that our machine
is reducible to a standard oracle machine and vice versa. Therefore, in the rest of this section, by a
machine deciding a problem P ∈ ΔP

2 we mean a Turing machine MP with an oracle O and degree
d as described above.

To simulate several consecutive calls to an NP machine from the main machine, we will use
max predicates, the values of whose numeric arguments are formed by concatenating the numbers
representing all guesses made by all runs ofO in a partial run of MP . Importantly, we will continue
simulation of MP even if the answer returned by a particular run ofO is wrong because a run with
the correct answer has not yet been found—this is harmless as we will also continue searching for
a run with the correct answer by increasing the numeric argument; the bits corresponding to a
given oracle call are more significant than those corresponding to all subsequent calls, and hence
derivations where the numeric argument encodes correct guesses of O will override derivations
where the numeric argument encodes wrong guesses. The following notion generalises the usual
notion of a run to several oracle calls by “concatenating” their runs.

Definition 5.6. Given a machine MP with an oracle O and degree d deciding a problem P ∈ ΔP
2 ,

a partial (expanded) quasirun of MP on an input w is a sequence

(C0,B
0
0), . . . , (C0,B

e0
0 ), (C1,B

0
1), . . . , (C1,B

e1
1 ), . . . (Cj ,B

0
j ), . . . , (Cj ,B

ej

j ), (58)

where j ∈ [0,h] for h = (max( |w |, 2))d , e0 = · · · = ej−1 = h
d , ej ∈ [0,hd ], and

— each Ci , for i ∈ [0, j], is a configuration of MP , where C0 is the initial configuration for
input w ;

— each sequence B0
i , . . . ,B

ei

i , for i ∈ [0, j − 1], is a terminating run of O on the contents of the
tape of MP in Ci , while Ci+1 is the result of the transition from Ci according to δ assuming
the third argument of δ is Y if Bei

i is accepting and N otherwise; and
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— sequence B0
j , . . . ,B

ej

j is a partial run of O on the contents of the tape of MP in Cj .

A partial quasirun of form (58) is terminating if both Cj and B
ej

j are terminating.

Note that, by the properties ofMP andO , configurationCi in each partial quasirun Ψ of form (58)
on an input w is terminating if and only if i = j = h = (max( |w |, 2))d , while B

ej

j is terminating

if and only if ej = hd . Note also that, by definition, a terminating quasirun includes a run of the
oracle O immediately after each step of the main machine MP , including the last one, when the
main machine is in a terminating state and the result of the overall quasirun is already known; this
redundant oracle call is harmless and is included for uniformity.

As in Section 5.1, each partial run B0
i , . . . ,B

ei

i ofO with i ∈ [0, j] in Ψ corresponds to a sequence

of guesses from {0, 1} of length ei , which is the binary representation of a number in [0, 2hd − 1].
Since MP is deterministic and transitions of O for 0 and 1 lead to different states, each partial
quasirun Ψ of form (58) has a one-to-one correspondence with the tuple consisting of w , |Ψ|, and
the concatenation of the guess sequences for all B0

i , . . . ,B
ei

i of total length j ·hd + ej (for fixed MP

and O). This concatenation is the binary representation of a number in [0, 2j ·hd+ej − 1], and, same
as in Section 5.1, �(Ψ) denotes the number obtained from this representation by prepending 1 to
it.

We next adapt Definition 5.1 of searching partial runs to quasiruns as follows.

Definition 5.7. For P ∈ ΔP
2 , a partial quasirun Ψ of MP of form (58) is searching if one of the

following holds:

— j = ej = 0 (i.e., Ψ = (C0,B
0
0));

— ej > 0, the last digit of �(Ψ) is 0, and (C0,B
0
0), . . . , (Cj ,B

ej−1
j ) is searching;

— ej > 0, the last digit of �(Ψ) is 1, the partial quasirun Ψ′ with �(Ψ′) = �(Ψ) − 1 is searching,

and all terminating extensions of the partial run B0
j , . . . ,B

ej

j are rejecting; and

— j > 0, ej = 0, and (C0,B
0
0), . . . , (Cj−1,B

ej−1

j−1 ) is searching.

The following lemma is an analogue of Lemma 5.2 for partial quasiruns. Here and in what
follows, |Ψ| is the number of pairs in a quasirun Ψ.

Lemma 5.8. For P ∈ ΔP
2 , if a searching partial quasirun Ψ of a machine MP on an input w has

form (58) and satisfies �(Ψ) ≥ �(Ψ′) for each searching partial quasirun Ψ′ of MP on w with

|Ψ′| = |Ψ|, then C0, . . . ,Cj is the (unique) partial run of MP on w of length j.

Proof. The claim follows by a straightforward induction on j. For the base case, j = 0 and the
claim holds by definition. For the inductive step, let the claim hold for j ∈ N. Then it follows for
j + 1 by Lemma 5.2, Definition 5.7, and the fact that the bits for j in �(Ψ) are more significant than
the bits for j + 1. �

The following theorem establishes that the language of all LL-programs captures ΔP
2 over or-

dered datasets, complementing the result for semi-positive programs in Theorem 5.3.

Theorem 5.9. The language of LL-programs captures ΔP
2 over ordered datasets; the result already

holds for the language of homogeneous LL-programs that admit at most three strata, do not mention

∞, × or −, and use only 1 as a numeric constant.

Proof. Note that condition 1 for capturing a complexity class given in Section 2.2 follows from
Theorem 4.31 for the language of LL-programs and class ΔP

2 in exactly the same way as the corre-
sponding claim in the proof of Theorem 5.3 follows from Theorem 4.29. Hence, it remains to show
that condition 2 holds for the language of LL-programs with at most three strata and without ∞,
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×, −, or numbers other than 1. This language is again closed under first-order reductions, and thus,
as argued in Section 2.2, it suffices to show that it satisfies condition 2 for Σgraph—that is, for each

problem P ∈ ΔP
2 , there is an LL-program PP with EDB predicates from Σgraph that satisfies the

aforementioned restrictions and such that, for each dataset D ∈ D over Σgraph, PP ∪ D |= goal if
and only if code(D) ∈ P .

Consider an arbitrary problem P ∈ ΔP
2 . Let MP be a machine with an oracle O and degree d

deciding P as described above, and let the encoding code(D) of a dataset D ∈ D representing a
graph with c nodes be a binary string of length c2 as defined in Section 2.2. Since c ≥ 2 by the
definition of D, the nondeterministic version M ′P of MP running on code(D) always terminates

in exactly h = c2d steps and uses at most h cells on its tape; moreover, oracle O running on the
contents of the tape of M ′P in each step of each run on code(D) terminates in exactly hd steps and

uses at most hd cells on its tape. Therefore, there are h · hd = c2(d+d2 ) possible configurations in
a partial quasirun of MP on code(D), and we can refer to each such pair by a number requiring
2(d + d2) digits in c-ary representation—that is, by a 2(d + d2)-tuple of objects; similarly, we can
refer to each used cell of MP and O by 2(d + d2)-tuples of objects (only 2d and 2d2 such objects
are required, respectively, but it is convenient to have all tuples be of the same size). Thus, we
can encode the pair of configurations (Cj ,B

ej

j ) concluding each partial quasirun Ψ, of form (58), of

machine MP on input code(D) using the following facts over (4(d + d2) + 1)-ary max predicates
headq , for each state q of MP , tapeu , for each symbol u ∈ Γ, oheadqO

, for each state qO of O , and
otapeu , for each symbol u ∈ Γ:

— headq (at; ax; �(Ψ)), where q is the state in Cj , while at and ax are the 2(d + d2)-tuples of

objects in D encoding |Ψ| − 1 = j · (hd + 1) + ej and the head position in Cj , respectively;
— tapeu (at; ax; �(Ψ)), for each i ∈ [0,h − 1], where u is the symbol in the i-th tape cell inCj , at

is as above, and ax is the 2(d + d2)-tuple encoding i;
— oheadqO

(at; ax; �(Ψ)), where qO is the state in B
ej

j , at is as above, and ax is the 2(d +d2)-tuple

encoding the head position in B
ej

j ; and

— otapeu (at; ax; �(Ψ)), for each i ∈ [0,hd − 1], where u is the symbol in the i-th tape cell in B
ej

j ,

at is as above, and ax is the 2(d + d2)-tuple of objects encoding i .

The idea behind the LL-program PP constructed below based on MP is to populate predicates
headq , tapeu , oheadqO

, and otapeu so that they encode all searching partial quasiruns, where,
for each rejecting quasirun Ψ with nonmaximal �(Ψ), there is a searching quasirun Ψ′ with
�(Ψ′) > �(Ψ); then, we can apply Lemma 5.8 to extract the result of the terminating run of MP

from the encoding of the quasirun Ψ with the greatest �(Ψ).
First, program PP includes rules (41) from the proof of Theorem 5.3, populating predicate object,

as well as rules populating 4(d +d2)-ary object predicates succ, succ+, and differ that are the same
as rules (42)–(44) except for the predicate arities.

Program PP also includes rules (59)–(72) given next. The simulation of MP starts with rules
(59)–(62), which read the input graph and initialise the states, heads, and tapes of MP and O (for
the first call to O), thus encoding the partial quasirun Ψ = (C0,B

0
0). These rules are very similar to

rules (45)–(48) in the proof of Theorem 5.3—the only difference is that the sizes of tuples z0 and z′0
(which repeat variable z0) are 2(d + d2) and 2(d + d2) − 2, respectively:

first (z0) → headq init (z0; z0; 1) ∧ oheadq init
O

(z0; z0; 1), (59)

first (z0) ∧ edge(x1,x2) → tape1 (z0; z′0,x1,x2; 1) ∧ otape1 (z0; z′0,x1,x2; 1), (60)

first (z0) ∧ not edge(x1,x2) ∧
object (x1) ∧ object (x2) → tape0 (z0; z′0,x1,x2; 1) ∧ otape0 (z0; z′0,x1,x2; 1), (61)
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first (z0) ∧ last (zmax) ∧
succ+ (z′0, zmax, zmax; x) → tape ␣ (z0; x; 1) ∧ otape ␣ (z0; x; 1). (62)

Each transition δO (qO ,uO ,G ) = (q′O ,u
′
O ,X ) of O is simulated by rules (63) if G = 0 and (64)

if G = 1. More formally, rules (63), where S is defined as in (49), extend the encoding of each

searching partial quasirun Ψ′ = (C0,B
0
0), . . . , (Cj ,B

ej−1
j ) to the encoding of the searching partial

quasirun Ψ = Ψ′, (Cj ,B
ej

j ) provided the last digit of �(Ψ) is 0. These rules are analogous to rules (49)

but simulate a step of O rather than MP , while the configuration Cj of MP remains unchanged:

headq (t; x;m) ∧ tapev (t; y;m) ∧
oheadqO

(t; xO ;m) ∧ otapeuO
(t; xO ;m) ∧ otapevO

(t; yO ;m) ∧
succ(t; t′)∧S (xO ; x′O )∧differ (xO ; yO )∧ (m+m � m′) →

headq (t′; x;m′) ∧ tapev (t′; y;m′) ∧
oheadq′

O
(t′; x′O ;m′) ∧ otapeu′

O
(t′; xO ;m′) ∧ otapevO

(t′; yO ;m′). (63)

Similarly, rules (64) extend the encoding of each searching partial quasirun Ψ′ to the encoding of
the searching partial quasirun Ψ as above provided the last digit of �(Ψ) is 1. These rules are related
to (50) in the same way as (63) are to (49). The atom over a max predicate oallreject0, populated
by rules (65)–(67) as explained below, ensures that all terminating extensions of the partial run

B0
j , . . . ,B

ej−1
j of O in Ψ′ starting with a 0 guess are rejecting:

headq (t; x;m) ∧ tapev (t; y;m) ∧
oheadqO

(t; xO ;m) ∧ otapeuO
(t; xO ;m) ∧ otapevO

(t; yO ;m) ∧ oallreject0 (t;m) ∧
succ(t; t′) ∧ S (xO ; x′O ) ∧ differ (xO ; yO ) ∧ (m +m + 1 � m′) →

headq (t′; x;m′) ∧ tapev (t′; y;m′) ∧
oheadq′

O
(t′; x′O ;m′) ∧ otapeu′

O
(t′; xO ;m′) ∧ otapevO

(t′; yO ;m′). (64)

Rules (65)–(67), where (65) is instantiated for each q
rej

O
∈ Q

rej

O
, populate predicate oallreject0 in

exactly the same way as rules (51)–(53), so that a fact of the form oallreject0 (at; �(Ψ)) is derived if
and only if all terminating runs of O extending the last such run in Ψ first by a 0 guess and then
by an arbitrary sequence of guesses are rejecting; this is achieved, as in (51)–(53), with the help
of a max predicate oallreject such that oallreject (at; �(Ψ)) is derived if and only if all terminating
extensions of the last run of O in Ψ (including the run itself, if it is terminating) are rejecting.
Note that such a propagation along a 1 guess is only possible after the corresponding propagation
along a 0 guess. Also, as we will see in the following, backward propagation beyond the initial
configuration of the oracle call is harmless since the numeric argument becomes insignificantly
small:

ohead
q

rej
O

(t; xO ;m) → oallreject (t;m), (65)

oallreject (t′;m′) ∧ succ(t; t′) ∧ (m +m � m′) → oallreject0 (t;m), (66)

oallreject (t′;m′) ∧ succ(t; t′) ∧ (m +m + 1 � m′) → oallreject (t;m). (67)

Next, rules (68) (which have no analogue in the proof of Theorem 5.3) simulate each transition
δ (q,u,A) = (q′,u ′,X ) of the main machine MP with A ∈ {yes, no} and X ∈ {left, right} once a run
ofO terminates with a result, where, as before, S (x; x′) denotes succ(x′; x) ifX is left and succ(x; x′)

if X is right, and qans
O

is instantiated by each state in Qacc
O

if A is yes and by each state in Q
rej

O
if A is

no. Note that the rules also reinitialise the oracle by setting the state to qinit
O

, the head to the first

Journal of the ACM, Vol. 69, No. 1, Article 6. Publication date: December 2021.



The Complexity and Expressive Power of Limit Datalog 6:47

cell, and the contents of the tape to a copy of the contents of the tape of MP (where z0 is again
a 2(d + d2)-fold repetition of z0). Finally, this transition is deterministic, and hence the numeric
arguments are the same in the body and the head (note that �(Ψ) = �(Ψ′) for a partial quasirun
Ψ of the form Ψ′, (Cj ,B

0
j )). The latter guarantees that the backward propagation of oallreject0 and

oallreject beyond the initial configuration of an oracle call is harmless as the numeric arguments
of the facts derived in this way are smaller than those of any fact encoding a partial quasirun with
strictly fewer calls to O :

headq (t; x;m) ∧ tapeu (t; x;m) ∧ tapev (t; y;m) ∧ oheadqans
O

(t; xO ;m) ∧
succ(t; t′) ∧ S (x; x′) ∧ differ (x; y) ∧ first (z0) →

headq′ (t
′; x′;m) ∧ tapeu′ (t

′; x;m) ∧ tapev (t′; y;m) ∧
oheadq init

O
(t′; z0;m) ∧ otapeu′ (t

′; x;m) ∧ otapev (t′; y;m). (68)

Note that the transition is simulated not only for the real answer of the oracle call, but for
all terminating runs of O whose guess sequence encodes a number that does not exceed the
least number corresponding to an accepting run (or for all terminating runs if no accepting
run exists); in other words, rules (68) extend the encoding of each searching partial quasirun
Ψ′ = (C0,B

0
0), . . . , (Cj−1,B

ej−1

j−1 ) where B
ej−1

j−1 is a final configuration of O to a searching partial

quasirun Ψ = Ψ′, (Cj ,B
0
j ). As a result, the oracle run with the greatest guess sequence among all

runs simulated by PP accepts if and only if the answer to the call is yes, or, in other words, a partial
quasirun is simulated if and only if it is searching. By Lemma 5.8, the latter implies that we can
extract the real run from the partial quasirun with the greatest guess sequence. This is realised by
rules (69)–(72) over unary max predicates accept and reject, which extract and compare �(Ψaccept)
and �(Ψreject), for Ψaccept the accepting and Ψreject the rejecting quasiruns with the maximal guess
sequences over all searching quasiruns. The nullary predicate goal is derived by rule (72) if and
only if �(Ψreject) < �(Ψaccept)—that is, by Lemma 5.8, if the run of MP is accepting:

→ reject (0), (69)

headqrej (t; x;m) → reject (m), (70)

headqacc (t; x;n) → accept (n), (71)

�reject (m)� ∧ �accept (n)� ∧ (m < n) → goal. (72)

Next, we argue the correctness of the construction. Consider an arbitrary ordered dataset
D ∈ D over Σgraph and the partial materialisations Mκ

j of PP ∪ D, for numbers j ≥ 1 and or-

dinals κ. As in Theorem 5.3, without loss of generality, we assume that stratification ΛPP
maps

object, succ, and succ+ to 1, goal to 3, and all other IDB predicates to 2. Furthermore, we have
M (PP [1] ∪ PP [2] ∪ D) = Mω

2 , and hence we can use ordinary induction over natural numbers
for proving properties of PP . Next, by construction, for every i ∈ N, every tuple of objects at, and
every � ∈ Z, each of the following claims are equivalent:

—there are q ∈ Q and a tuple ax such thatMi
2 |= �headq (at; ax; �)�;

—there are u ∈ Γ and a tuple ax such thatMi
2 |= �tapeu (at; ax; �)�;

—there are qO ∈ QO and a tuple ax such thatMi
2 |= �oheadqO

(at; ax; �)�; and
—there are u ∈ Γ and a tuple ax such thatMi

2 |= �otapeu (at; ax; �)�;

moreover, the second claim implies that for each ax there isu ∈ Γ such thatMi
2 |= �tapeu (at; ax; �)�,

while the last claim implies that for each ax there is u ∈ Γ such that Mi
2 |= �otapeu (at; ax; �)�.

In other words, the maximal facts encoding a pair of configurations of MP and O are either all
derived by a partial materialisation or none of them is derived; moreover, this pair is the last one

Journal of the ACM, Vol. 69, No. 1, Article 6. Publication date: December 2021.



6:48 G. Provelengios et al.

in the partial quasirun Ψ of MP on code(D) represented by �, and |Ψ| is encoded by at. Since �(Ψ)
uniquely identifies Ψ, we say that Ψ is derived byMi

2. Next, we prove that a partial quasirun Ψ is
derived byMi

2 for a number i ∈ N if and only if Ψ is searching.
We prove the forward direction by induction on i > 0 (the case i = 0 is trivial asM0

2 = M
ω1
1

does not derive any partial run). For the base case, we have thatM1
2 derives, by rules (59)–(62),

only the quasirun (C0,B
0
0), for C0 and B0

0 the initial configurations of MP and O , respectively, on
code(D); this quasirun is searching by Definition 5.7. For the inductive step, we show the claim
for i + 1 assuming that it holds for i . Consider a partial quasirun Ψ derived byMi+1

2 . There are the
following three cases, depending on the last transition in Ψ:

— it is an oracle transition guessing 0 and the maximal facts representing Ψ are obtained by
application of rules (63) toMi

2;
— it is an oracle transition guessing 1 and the maximal facts are obtained by rules (64); and
— it is a transition of MP and the maximal facts are obtained by rules (68).

The first two cases are essentially the same as the respective cases in Theorem 5.3 except that they
use Definition 5.7 instead of Definition 5.1; note that, in the second case, the backward propagation
of oallreject0 and oallreject beyond the initial configuration of an oracle call decreases the numeric
argument, and hence does not affect the maximal values of numeric arguments. In the third case,
the bodies of rules (68) ensure thatMi

2 derives the partial quasirun Ψ′ such that Ψ = Ψ′, (C,B),
which, by the inductive hypothesis, implies that Ψ′ is searching, and hence, by the fourth case of
Definition 5.7, that Ψ is searching.

We next prove the backward direction of the claim by induction on the definition of searching
partial quasiruns (Definition 5.7). For the base case, consider a partial quasirun Ψ consisting of only
the pair of the initial configurations of MP andO on code(D). Then, Ψ is derived byM1

2 according
to the initialisation rules (59)–(62). For the inductive step, consider first a partial quasirun Ψ such
that the last transition of Ψ is an oracle transition, the last digit of �(Ψ) is 0, and Ψ = Ψ′, (Cj ,B

ej

j )

for Ψ′ a searching partial quasirun. Since Ψ′ is searching, by the inductive hypothesis, it is derived
byMi

2 for some i . Hence, by rules (63), Ψ is derived byMi+1
2 , as required. Next, consider a partial

quasirun Ψ such that the last transition of Ψ is an oracle transition, the last digit of �(Ψ) is 1, the
partial quasirun Ψ′ with �(Ψ′) = �(Ψ) − 1 is searching, and all terminating extensions of its last
partial run of oracleO are rejecting. Since Ψ′ is searching, by the inductive hypothesis, it is derived
byMi′

2 for some i ′; moreover, since all terminating extensions of the last partial run ofO in Ψ′ are

rejecting and each such extension is derived by someMi′′
2 with i ′′ ≥ i ′, rules (65)–(67) ensure that

Mi
2 |= allreject0 (bt; �(Ψ

′)) for the tuple bt of objects encoding |Ψ′| and for some i greater than all i ′′.
Hence, by rules (64), Ψ is derived byMi+1

2 , as required. Finally, consider a partial quasirun Ψ such
that the last transition of Ψ is a transition of MP , and the partial quasirun Ψ′ with Ψ = Ψ′, (Cj ,B

0
j )

is searching. Since Ψ′ is searching, by the inductive hypothesis, it is derived byMi
2 for some i and

hence, by rules (68), Ψ is derived byMi+1
2 , as required.

We conclude that a partial quasirun Ψ is derived by Mi
2 for some i ∈ N if and only if Ψ is

searching. However, by Lemma 5.8, the searching quasirun Ψ with maximal �(Ψ) contains the run
of MP on code(D), and hence rules (69)–(72) derive goal if and only if the run is accepting. �

By Theorem 5.9 and Proposition 2.3, fact entailment for homogeneous LL-programs with at
most three strata, without ∞, × or −, and using only 1 as a numeric constant is ΔP

2 -hard in data

complexity, which matches the upper bound in Theorem 4.31. A tight ΔEXP
2 lower bound in com-

bined complexity could then, in principle, be obtained by complexity upgrade techniques developed
by Gottlob et al. [21]. Instead, however, we can simply adapt the proof of Theorem 5.9 in exactly
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the same way as the proof of Theorem 5.4 adapts the proof of Theorem 5.3, showing ΔEXP
2 - and

ΔP
2 -hardness even for the language allowing for only two strata.

Theorem 5.10. The fact entailment problem for homogeneous LL-programs that admit at most two

strata, do not mention∞, × or −, and use only 1 as a numeric constant is ΔEXP
2 -hard in combined and

ΔP
2 -hard in data complexity.

6 TRACTABILITY OF FACT ENTAILMENT

Tractability of reasoning in data complexity is important for problems involving large datasets.
Therefore, in this section, we introduce a stability condition on LL-programs, which brings the
complexity of fact entailment down to EXP in combined and to P in data complexity, thus match-
ing the complexity bounds for usual positive Datalog. We then introduce an efficiently checkable
syntactic sufficient condition for stability, which we call type-consistency.

6.1 Cyclic Dependencies in Limit-Linear Programs

The standard fact entailment algorithm for usual positive Datalog relies essentially on direct mate-
rialisation of the fixpoint, which can be done in polynomial time in the size of data. As illustrated
by Example 2.1, however, a naive computation of the pseudomaterialisation of an LL-program P
may not terminate since repeated application of TP can produce larger and larger numbers. Thus,
we need a way to identify when the numeric argument of a limit atom diverges—that is, increases
or decreases without a bound; moreover, to obtain a procedure that is tractable in data complexity,
divergence should be detected after polynomially many steps. Example 6.1 illustrates that this can
be achieved by analysing cyclic dependencies.

Example 6.1. Consider an LL-program Pst with the following rules over max predicates C1

and C2:

→ C1 (0), C1 (m) → C2 (m), C2 (m) → C1 (m + 1).

The second rule copies the value of C1 into C2, and the third rule increases the value of C1; thus,
bothC1 andC2 diverge when computingN (Pst). The existence of a cyclic dependency betweenC1

and C2, however, does not necessarily lead to divergence. Let P′st be obtained from Pst by adding
a fact C (5), for C a max predicate, and replacing the second rule with the following one:

C1 (m) ∧C (m) → C2 (m).

While a cyclic dependency betweenC1 andC2 still exists, the increase in the values ofC1 andC2 is
bounded by the value of C , which is independent of the values of C1 and C2; thus, neither C1 nor
C2 diverges.

In the rest of this section, we formalise the notion of dependency and establish some basic
properties needed later on. For now, we focus on OG-ground (and hence positive) programs.

Definition 6.2. A numeric variable m depends on a numeric variable n in an OG-ground rule ρ
if either m is n or m occurs in an atom in ρ with a variable that depends on n. A numeric term s2

depends on a numeric term s1 if s2 mentions a variable that depends on a variable mentioned in s1.

In other words, the dependency relation on the variables of a rule is reflexive, symmetric, and
transitive; moreover, it is the transitive closure of the relation saying that two variables occur in
the same atom.

The following proposition establishes a first immediate property of dependent terms (recall that
δ (ρ,J ) is the pseudofact resulting from the application of an OG-ground rule ρ to a pseudointer-
pretation J , see Definition 4.8).
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Proposition 6.3. Let ρ = φ → C (a, s ) be an OG-ground rule withC a limit predicate and s a term

not depending on the numeric term of any limit atom in φ. Then, for each two pseudointerpretations

J and J ′ such that ρ is applicable to both, the pseudofacts δ (ρ,J ) and δ (ρ,J ′) coincide.

The following definition formalises the intuitions behind Example 6.1, providing the basis for
the notion of stability. It introduces graphs describing how integers propagate when evaluating
the immediate consequence operator. As we will see, certain cycles in such a graph guarantee
divergence of all participating numeric arguments. In this definition and the rest of the section,
we extend the set Z ∪ {∞} with a new symbol ⊥, intuitively representing that a fact holds for no
integer. This symbol, of course, cannot appear in DatalogZ programs or during their evaluation,
but is merely introduced for convenience of presentation. To avoid bulky case analysis, we also
assume that ⊥ < k < ∞ for all k ∈ Z, and ⊥ + � = ⊥ and ∞ + � = ∞ for all � ∈ Z ∪ {∞} (in
particular, ⊥ +∞ = ⊥—that is, ⊥ takes priority over∞).

Definition 6.4. The value propagation graph of an OG-ground program P over a pseudointerpre-
tation J is the weighted directed graph (V ,E,Ω) defined as follows:

— the set of nodes V contains 〈Ca〉 for each limit atom C (a, s ) in the head of a rule in P;
— the set of edges E contains (〈C1a1〉, 〈C2a2〉) if there is a rule in P applicable to J producing

the edge—that is, having an atom C1 (a1, s1) in the body and an atom C2 (a2, s2) in the head
such that s2 depends on s1; and

— the weight Ω(e ) of each edge e = (〈C1a1〉, 〈C2a2〉) in E is an element from Z∪ {⊥,∞} defined
as

Ω(e ) = max{Ωρ (e ) | ρ ∈ P produces e},
where, for � ∈ Z ∪ {∞} such that C1 (a1, �) ∈ J and for each ρ = φ → C2 (a2, s ) in P
producing e ,

Ωρ (e ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∞ if the IOP (ψ (ρ,J ),maxC2 s ) is unbounded,

⊥ if (ψ (ρ,J ),maxC2 s ) is bounded and � = ∞,
d2 · k − d1 · � if (ψ (ρ,J ),maxC2 s ) has optimal value k and � ∈ Z

where, for each i ∈ {1, 2}, di is 1 if Ci is max and −1 if Ci is min.

The weight Ω(Π) of a path Π in a value propagation graph is the sum of the weights of all the
edges in Π; path Π has positive weight if Ω(Π) is either a positive integer or∞.

Intuitively, the value propagation graph (V ,E,Ω) of an OG-ground program P over a pseudoint-
erpretation J describes how, for each limit predicateC1 and objects a1 with a pseudofactC1 (a1, �1)
in J , operator TP propagates �1 to other pseudofacts. In particular, an edge e = (〈C1a1〉, 〈C2a2〉)
in E indicates that at least one rule ρ ∈ P is applicable to J with atom C1 (a1, s1) in the body and
C2 (a2, s2) in the head such that s2 depends on s1; moreover, applying TP to J yields a pseudofact
C2 (a2, �2) with �1 + Ω(e ) ≤ �2 if both C1 and C2 are max predicates, and analogously for C1 or C2

a min predicate. In other words, edge e indicates that the application of TP to J propagates the
value of 〈C1a1〉 to 〈C2a2〉 while increasing it by at least Ω(e ). The next lemma extends this prop-
erty from edges to paths, which formalises the intuition that a positive-weight cycle indicates a
possibly unbounded increase or decrease of the integers along the cycle.

Lemma 6.5. For every path Π = 〈C1a1〉, . . . , 〈Cj aj 〉 in the value propagation graph (V ,E,Ω) of an

OG-ground program P over a pseudomodel J of P such that Ω(Π) � ⊥, the following hold:

— if Ω(Π) = ∞ or C1 (a1,∞) ∈ J , then Cj (aj ,∞) ∈ J ; and

— otherwise, either �j = ∞ or dj · (d1 · �1 + Ω(Π)) �Cj
�j , where, for each i ∈ {1, j}, �i is the

integer such that Ci (ai , �i ) ∈ J , and di is 1 if Ci is max and −1 if Ci is min.
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Proof. To avoid notational clutter, we focus on the case when P is a homogeneous program
where all limit predicates are max, in which case the inequality in the claim boils down to
�1 + Ω(Π) ≤ �j ; the proof for the general case additionally manipulates several −1 factors in a
straightforward way. We proceed by induction on the length of Π.

The base case, where Π consists of a single node and 〈C1a1〉 = 〈Cj aj 〉, is immediate.
For the inductive step, assume that Π = Π′, 〈Cj aj 〉 with Π′ = 〈C1a1〉, . . . , 〈Cj−1aj−1〉 and the

claim holds for Π′. Let e be the edge (〈Cj−1aj−1〉, 〈Cj aj 〉), let ρ = φ → Cj (aj , s ) be the rule such that
Ω(e ) = Ωρ (e ), and let �j−1 be such that Cj−1 (aj−1, �j−1) ∈ J . Since Ω(Π) � ⊥, by Definition 6.4,
we know that �j−1 ∈ Z whenever (ψ (ρ,J ),max s ) is bounded, and thus have the following possi-
bilities:

—if (ψ (ρ,J ),max s ) is unbounded, then Ω(e ) = ∞;and
—if (ψ (ρ,J ),max s ) has optimal value k , then �j−1 ∈ Z and Ω(e ) = k − �j−1.

In the first case, Ω(Π) = ∞; moreover, since J is a pseudomodel of P, we have TP (J ) � J
by claim 1 of Corollary 4.12, and therefore Cj (aj ,∞) ∈ J by the definition of operator TP , which
implies �1 + Ω(Π) ≤ �j , as required.

In the second case, �1 + Ω(Π′) ≤ �j−1 by the inductive hypothesis, and hence

�1 + Ω(Π) = �1 + Ω(Π′) + Ω(e ) = �1 + Ω(Π′) + k − �j−1 ≤ k .

As before, we have TP (J ) � J , and hence Cj (aj , �1 + Ω(Π)) � Cj (aj ,k ) � Cj (aj , �j ) by the defi-
nition of operator TP , which again implies �1 + Ω(Π) ≤ �j . �

We conclude this section with the following monotonicity property of value propagation graphs,
which is immediate by construction and monotonicity of TP (i.e., claim 2 of Corollary 4.12).

Proposition 6.6. For every OG-ground program P and pseudointerpretations J and J ′, let

(V ,E,Ω) and (V ′,E ′,Ω′) be the value propagation graphs of P over J and over J ′, respectively.

Then V = V ′, and J � J ′ implies E ⊆ E ′.

6.2 Stable Programs

As already argued, the presence of a positive-weight cycle in the value propagation graph may
cause an infinite sequence of rule applications. As Example 6.1 shows, however, such a cycle per
se does not imply the divergence of the integer values along the cycle, since the cycle weight may
decrease with applications of TP , eventually becoming zero or negative. This motivates the follow-

ing stability4 condition, which guarantees that the edge weights in the value propagation graph
may only increase with rule application. Hence, once the weight of a cycle becomes positive, it will
remain positive, ensuring divergence of the numeric arguments in the pseudofacts corresponding
to all nodes on the cycle. We first define the condition for OG-ground programs, leaving the gen-
eral case to the end of this section; furthermore, the definition exploits monotonicity of value
propagation graphs as established in Proposition 6.6.

Definition 6.7. An OG-ground program P is stable if Ω(e ) ≤ Ω′(e ) for all pseudointerpretations
J and J ′ such that J � J ′ and all edges e ∈ E, where (V ,E,Ω) and (V ,E ′,Ω′) are the value
propagation graphs of P over J and over J ′, respectively.

Example 6.8. Program Pst in Example 6.1 is stable, while program P′st is not. Indeed, consider
pseudointerpretations J = {C1 (0),C (0)} and J ′ = {C1 (1),C (0)}; then, J � J ′ but, for the edge
e = (〈C1〉, 〈C2〉) in the corresponding value propagation graphs (V ,E,Ω) and (V ,E ′,Ω′), we have
Ω(e ) = 0 and Ω′(e ) = −1.

4This notion is unrelated to stable models considered in the context of ASP.
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The following lemma formulates a key property of stable OG-ground programs: a positive-
weight cycle for a program P and pseudointerpretation J guarantees divergence of numeric ar-
guments along the cycle by repeated application of TP to J .

Lemma 6.9. For each node 〈Ca〉 on a positive-weight cycle in the value propagation graph of a

stable OG-ground program P over a pseudointerpretation J and for every pseudomodel J ′ of P
such that J � J ′, we have C (a,∞) ∈ J ′.

Proof. Let (V ,E,Ω) and (V ,E ′,Ω′) be the value propagation graphs of P over J and J ′, re-
spectively; these graphs have the same sets of nodes and E ⊆ E ′ by Proposition 6.6. Consider a
node 〈Ca〉 ∈ V on a positive-weight cycle Π in (V ,E,Ω). Since P is stable and Π is a cycle in
(V ,E ′,Ω′) as well, we have Ω′(Π) ≥ Ω(Π) > 0. On the one hand, there exists � ∈ Z ∪ {∞} such
that C (a, �) ∈ J by Definition 6.4. On the other hand, the case � ∈ Z is not possible, because, by
Lemma 6.5, this would imply Ω′(Π) ∈ Z and �+d ·Ω′(Π) �C �, where d = 1 ifC is max and d = −1
if C is min, contradicting the positivity of Ω′(Π). �

While Lemma 6.9 ensures that a positive-weight cycle leads to divergence along this cycle, it
does not bound the number of applications of the immediate consequence operator needed to
obtain such a cycle. The following lemma closes this gap.

Lemma 6.10. For each stable OG-ground program P and each pseudointerpretation J , there is

i ∈ [1, |P |] such that one of the following holds, where J0 = J and Jj = TP (Jj−1) for each j ≥ 1:

1. Ji = Ji−1;

2. there is a rule in P that is applicable to Ji but not to Ji−1; and

3. there is a node 〈Ca〉 on a positive-weight cycle in the value propagation graph of P over Ji

such that C (a,∞) � Ji .

The proof of this lemma is given in the Appendix.
We are now ready to present Algorithm 4, which computes the pseudomaterialisation of a sta-

ble OG-ground program P in polynomial time in data complexity. The algorithm iteratively ap-
plies TP . After each application, however, it computes the corresponding value propagation graph
(line 5) and replaces all integers by∞ along all positive-weight cycles in the graph (lines 6–7); by
Lemma 6.9, such replacements are always sound. Moreover, Lemma 6.10 guarantees termination
of the algorithm—indeed, the lemma says that, until we reach the fixpoint, every |P | iterations
either a new rule becomes applicable or a new pseudofact involving∞ is introduced to the partial
pseudomaterialisation; since P is OG-ground, each of the two cases can happen at most |P | times.
We next make this argument formal in the proof of the following theorem.

Theorem 6.11. There exists a polynomial p such that, for every stable OG-ground program

P, the pseudomaterialisation N (P ) can be computed in time polynomial in 2p (u ) + ‖P‖, where

u = maxρ ∈P�ρ�.

Proof. We claim that Algorithm 4 computes N (P ) for a stable OG-ground program P within
the required complexity bounds. To this end, first note that Lemma 6.9 guarantees that J � N (P )
throughout the computation; moreover, the algorithm terminates only ifJ = TP (J )—that is, only
if J is a pseudomodel of P. Since the pseudomaterialisation N (P ) is the minimal pseudomodel
of P with respect to �, these two observations imply that whenever the algorithm terminates, it
outputs N (P ). Thus, it remains to argue that the algorithm terminates within the stated time.

First, note that the pseudointerpretation J monotonically increases with respect to � during
the execution of the main loop in lines 2–8 of the algorithm; hence, once a rule becomes applicable
to J , it remains applicable in all consequent iterations, and once a pseudofact C (a,∞) is in J , it
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ALGORITHM 4: Pseudomaterialisation of Stable OG-Ground Programs

Input: stable OG-ground program P
Output: pseudomaterialisation N (P)
1 set J � ∅
2 repeat

3 set Jold � J
4 set J � TP (J )

5 compute value propagation graph (V ,E,Ω) of P over J
6 foreach node 〈Ca〉 in V on a positive-weight cycle in (V ,E,Ω) do

7 replace C (a, �) in J with C (a,∞)

8 until J = Jold

9 return J

remains in J in all consequent iterations. Then, Lemma 6.10 guarantees that after at most r = |P |
iterations of the main loop, either the algorithm terminates by reaching a fixpoint, or a new rule
becomes applicable, or a new pseudofactC (a,∞) appears in J . Since both the number of rules and
the number of pseudofacts are bounded by r , the algorithm terminates after at most 2r 2 iterations
of the loop. Next, we analyse the complexity of each iteration.

Claim 1 of Lemma 4.13 implies that there are polynomials p1 and p2 such that the magnitudes of
integers in TP (J ′) for every finite pseudointerpretation J ′ are bounded by p1 (b)p2 (u ) ·max(b ′, 1),
where b and b ′ are the maximal magnitudes of integers in P and J ′, respectively. Therefore, the
magnitudes of integers in J during the execution of the algorithm are bounded by p1 (b)p′2 (r+u ) ,
for some polynomial p ′2. Thus, since the number |J | of pseudofacts in J is bounded by r , ‖J ‖ is
polynomially bounded in ‖P‖ in each iteration. Therefore, by claim 2 of Lemma 4.13, computation
of TP (J ) in line 4 can be done in time polynomial in 2p (u ) + ‖P‖, for some polynomial p.

Finally, computing the value propagation graph in line 5 boils down to checking applicability of r
OG-ground rules, which is polynomial in 2p (u )+‖P‖ by Proposition 2.6 since the IPs involved have
no more thanu variables, while detecting whether a node is on a positive-weight cycle in line 6 can
be done in polynomial time using, for example, a variant of the Floyd-Warshall algorithm [28]. �

Algorithm 4 allows us to decide fact entailment for stable OG-ground programs in EXP in com-
bined and in P in data complexity—that is, with the same complexity as for usual Datalog. In the
rest of this section, we show how to extend this result to LL-programs that are not OG-ground.
First of all, we generalise the notion of stability (see Definition 6.12 below). Our generalisation,
however, depends on how the program is stratified: for example, the following LL-program over
max predicatesC1 andC2 is not stable if both rules belong to the same stratum, but becomes stable
if they are split into two different strata:

→ C1 (0), C1 (m) ∧ (m ≤ 5) → C2 (m).

Definition 6.12. An LL-program P is stable for a stratification Λ of P if, for each stratum P[i] of
P over Λ and for the pseudointerpretation Ji−1 corresponding to the partial materialisationMω1

i−1
of P, the reduct R (P[i] ∪ Ji−1) is stable.

It is not difficult to see, however, that an LL-program stable for a stratification Λ is also stable
for each stratification Λ′ such that Λ′(A) = Λ′(B) implies Λ(A) = Λ(B). Thus, it is reasonable to
consider stratifications with the maximal number of nonempty strata; although such stratifications
are not unique, they are all linearisations of a unique partial order on predicates, and thus they
either all yield stable programs or all yield nonstable ones. For example, nonrecursive programs

Journal of the ACM, Vol. 69, No. 1, Article 6. Publication date: December 2021.



6:54 G. Provelengios et al.

(i.e., programs allowing for a distinct stratum for each standard predicate) are always stable for
such “maximal” stratifications. In the following, when talking about stable LL-programs without
mentioning a stratification, we silently assume stability for stratifications with the maximal num-
ber of nonempty strata.

It is possible to check that the programs in Examples 3.10–3.12 and 3.14–3.16 are stable for all
possible stratifications (we will see this formally in Section 6.3). However, the program in Exam-
ple 3.13 (for a nonempty graph) is not stable for any stratification—comparisons (n ≤ m′) bound
the growth of numeric arguments in the same way as done by the atom C (m) in Example 6.1.

We are now ready to establish the complexity of fact entailment for stable programs; the desired
bounds follow by adapting Algorithm 3 to use Algorithm 4 as a subroutine instead of Algorithm 2
for computing the pseudomaterialisation of each stratum.

Theorem 6.13. The fact entailment problem for stable LL-programs is EXP-complete in combined

and P-complete in data complexity.

Proof. The lower bounds are inherited from usual Datalog with stratified negation [14]. The
upper bounds can be shown in the same way as Theorem 4.31 for arbitrary LL-programs; the only
differences are that we now use Theorem 6.11 instead of Theorem 4.24 to compute the pseudoma-
terialisation of each stratum in line 4 of Algorithm 3 (thus avoiding calls to an NP oracle), and that
we now consider a stratification with the maximal number of nonempty strata instead of ΛP . �

6.3 Type-Consistent Programs

Stability identifies a large subclass of LL-programs that covers most of our examples in Section 3.3
and enjoys favourable computational properties.

We next show, however, that checking stability is a computationally hard problem, which makes
recognising stable programs challenging in practice. We start by showing intractability of stability
checking already for OG-ground (and hence positive) programs.

Proposition 6.14. The problem of checking stability of an OG-ground program is coNP-hard.

Proof. We reduce the complement of the IP satisfiability problem, which is NP-complete by
Corollary 2.5. To this end, for each IP ψ consider the OG-ground program Pψ consisting of the
following single rule over a max predicate C , wherem is a numeric variable not mentioned inψ :

ψ ∧C (m) ∧ (m ≤ 1) → C (m + 1).

It is immediate that ifψ is satisfiable, then Pψ is not stable by the same reasons as program P′st in
Examples 6.1 and 6.8; ifψ is unsatisfiable, however, the rule never becomes applicable, and hence
Pψ is trivially stable. �

Furthermore, as we show next, it is undecidable to check whether a given LL-program is stable
for all possible datasets, and hence stability would need to be rechecked every time data changes
in an application.

Proposition 6.15. The problem of checking, for a positive LL-program P, whether P∪D is stable

for every dataset D is undecidable.

Proof. As in the proof of Theorem 3.8, we use a reduction of Hilbert’s tenth problem. For each
polynomialp (m1, . . . ,mv ) over variablesm1, . . . ,mv , let Pp be the positive LL-program consisting
of the following rule over exact predicates B1, . . . ,Bv and a max predicate C:

B1 (m1) ∧ · · · ∧ Bv (mv ) ∧ (p (m1, . . . ,mv ) � 0) ∧C (m) ∧ (m ≤ 1) → C (m + 1).
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Note that program Pp is indeed limit-linear since variables m1, . . . ,mv are all guarded. On one
hand, if the equation p (m1, . . . ,mv ) = 0 has an integer solution, then on the basis of this solution,
we can construct a datasetD over B1, . . . ,Bv such that P∪D is not stable by the same reasons as
program P′st in Examples 6.1 and 6.8. On the other hand, if the equation does not have a solution,
then the rule is never applicable and hence P ∪ D is stable for every D. �

To overcome these difficulties, we next propose in Definition 6.16 a sufficient condition for sta-
bility, which can be checked syntactically rule by rule and which is rich enough to capture a wide
range of stable programs such as those in Examples 3.10–3.12 and 3.14–3.16 (recall that the pro-
gram in Example 3.13 is not stable). Intuitively, the requirements in Definition 6.16 syntactically
prevent certain interactions between numeric arguments matching min and max atoms, thus elim-
inating cases that can be problematic for stability. For instance, in the new rule of program P′st

from Example 6.1, stability is violated because there is a numeric variable, m, that occurs in the
head and in two positive max literals in the body.

Definition 6.16. A min-max typing of variables in an LL-rule is a partitioning of all unguarded
numeric variables that occur in positive limit literals in the rule into max and min types. Given a
min-max typing, a numeric term is of type max if it is either∞ or has the form

s + 

�

v∑
i=1

ki ×mi


�
− 
�
�

w∑
j=1

�j × nj

�
�
,

where s is a numeric term not mentioning any max or min variables, v ∈ N, w ∈ N, each mi is
a max variable with coefficient ki ≥ 1, and each nj is a min variable with coefficient �i ≥ 1; a
numeric term is of type min if the same holds except that eachmi is min and each nj is max.

Rule ρ = φ → α is type-consistent if it has a min-max typing with the following properties:

— each numeric variable in each negative exact literal in φ is guarded;
— the numeric term of each max and each min atom in ρ is of type max and min, respectively;
— each comparison atom in φ has the form (s1 < s2) or (s1 ≤ s2), for term s1 of type min and

term s2 of type max; and
— if α = C2 (a2, s2) is a limit atom, then, for each positive limit literal C1 (a1, s1) in φ with s2

depending on s1, terms s1 and s2 have a common unguarded variable that has coefficient 1 in
s1 and does not appear in any other positive limit literals in φ, where dependency is defined
as in Definition 6.2 except that only unguarded numeric variables are taken into account.

An LL-program is type-consistent if so are all of its rules.

Note that in our previous definition a numeric term that mentions only integers and guarded
variables is both of type max and of type min.

Type consistency is a syntactic property that, by definition, can be checked rule by rule; more-
over, it can be checked efficiently, as established by the following proposition.

Proposition 6.17. Checking whether an LL-program is type-consistent is L-complete.

Proof. We start with an L algorithm. By definition, type-consistency of an LL-program can
be checked by considering each of its rules in separation. Given an LL-rule ρ = φ → α , checking
whether a numeric variable is guarded in ρ can be done in L. The same applies to checking whether
a numeric term in a positive limit literal has the right shape; if so, the shape of the term and the
type of the respective predicate uniquely determine the types of all unguarded variables in the term.
The rest of the type-consistency check boils down to checking dependency between unguarded
variables, which is essentially reachability in an undirected graph (with unguarded variables as
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nodes and edges defined by co-occurrence of two such variables in an atom). This is doable in
symmetric logarithmic space, and hence in L by the result of Reingold [47].

We next show L-hardness by reduction of the complement of the undirected graph reachability
problem (which is L-complete [47]). LetG be an undirected graph, and letv1 andv2 be two distinct
nodes in G. Consider the following LL-rule ρ, where C1 and C2 are max predicates, for each node
v inG,mv is a numeric variable uniquely associated with v , and φ is a conjunction of comparison
atoms (0 < mv +mv ′ ) for each edge {v,v ′} in G:

C1 (mv1 ) ∧ φ → C2 (mv2 ).

By construction, v2 is reachable from v1 in G if and only if mv2 depends on mv1 in ρ, and so ρ is
type-consistent if and only if the reachability does not hold. �

It is easily seen that the LL-programs in Examples 3.10–3.12 and 3.14–3.16 are type-consistent.
In the rest of the section, we show that all type-consistent LL-programs are stable, which, by
Theorem 6.13, implies that such programs have the same complexity of fact entailment as usual
Datalog programs. We first show the claim for OG-ground programs.

Lemma 6.18. Each type-consistent OG-ground program is stable.

Proof. As before, to avoid notational clutter, we focus on homogeneous limit programs all of
whose limit predicates are max.

Consider an arbitrary type-consistent OG-ground program P. It suffices to show that, for each
rule ρ = φ → C2 (a2, s2) inP with a literalC1 (a1, s1) inφ such thatC1 andC2 are limit predicates and
s2 depends on s1, and for all pseudointerpretations J and J ′ such that J � J ′ and ρ is applicable
to J , we have Ωρ (e ) ≤ Ω′ρ (e ), where e = (〈C1a1〉, 〈C2a2〉) is an edge in the value propagation

graphsG = (V ,E,Ω) andG ′ = (V ,E ′,Ω′) of P over J and over J ′, respectively (note thatG and
G ′ have the same set of nodes and e ∈ E ⊆ E ′ by Proposition 6.6). To this end, consider arbitrary
such ρ,C1 (a1, s1),C2 (a2, s2), J , J ′,G, andG ′. Note that, since ρ is OG-ground and type-consistent,
and s2 depends on s1, terms s1 and s2 are different from∞ and, moreover, either s1 = s

′
1 + 1 ×m and

s2 = s
′
2 + km ×m for km ≥ 1 andm a max variable that occurs neither in s ′1 nor in other limit atoms

in ρ, or s1 = s
′
1 − 1 × n and s2 = s

′
2 − �n × n for �n ≥ 1 and n a min variable that appears neither in

s ′1 nor in other limit atoms in ρ. We next focus on the first case; the second case is symmetric.
First, note that if C1 (a1,∞) ∈ J , then the IOP (ψ (ρ,J ),max s2) is unbounded. Indeed, if

C1 (a1,∞) ∈ J then, for each solution σ to ψ (ρ,J ) mapping m to some k ∈ Z and each inte-
ger k ′ > k , the function σ ′ mappingm to k ′ and all other variables to the same values as σ is also
a solution, because

— m occurs only negatively on the left-hand side of each comparison atom in φ;
— m occurs only positively on the right-hand side of each comparison atom; and
— m does not occur in any standard literal in φ except C1 (a1, s1);

consequently, increasing the value ofm tok ′ does not invalidate any literal inφ. Furthermore, since
m does not occur in s ′2, we have s2σ

′ = s2σ + km · (k ′ − k ) ≥ s2σ + (k ′ − k ); clearly, this allows us,
for each � ∈ Z, to pick σ ′ such that s2σ

′ ≥ �. For the same reasons, (ψ (ρ,J ′),max s2) is unbounded
whenever C1 (a1,∞) ∈ J ′. Therefore, Ωρ (e ) � ⊥ and Ω′ρ (e ) � ⊥ for e = (〈C1a1〉, 〈C2a2〉), and we
have two cases: either Ωρ (e ) = ∞ or Ωρ (e ) ∈ Z.

If Ωρ (e ) = ∞ then (ψ (ρ,J ),max s2) is unbounded. Since J � J ′, each solution to ψ (ρ,J ) is
also a solution toψ (ρ,J ′). Thus, (ψ (ρ,J ′),max s2) is also unbounded and Ω′ρ (e ) = ∞, as required.

Consider now the case Ωρ (e ) ∈ Z—that is, Ωρ (e ) = k − � for � ∈ Z with C1 (a1, �) ∈ J and
k the optimal value of the IOP (ψ (ρ,J ),max s2). If C1 (a1,∞) ∈ J ′ then, as already argued,
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(ψ (ρ,J ′),max s2) is unbounded; hence Ω′ρ (e ) = ∞, and so Ωρ (e ) ≤ Ω′ρ (e ), as required. Other-
wise, let C1 (a1, �

′) ∈ J ′ for �′ ∈ Z and consider the solution σ to ψ (ρ,J ) such that s2σ is the
optimal value of the IOP—that is, such that s2σ = s

′
2σ +km ·mσ = k . In particular, we have s1σ ≤ �.

Let σ ′ be a function mapping m to mσ + �′ − � and all other variables to the same values as σ .
Function σ ′ is a solution toψ (ρ,J ′), because

— s1σ
′ = s ′1σ

′ +mσ ′ = s ′1σ +mσ + �′ − � = (s1σ − �) + �′ ≤ �′ and hence J ′ |= C1 (a1, s1σ
′);

— pseudointerpretation J ′ satisfies all other standard literals in φσ ′ since they do not mention
m and J � J ′; and

— J ′ satisfies all comparison literals in φσ ′ sincem occurs only negatively in terms on the left
and only positively in those on the right of each comparison.

Since J � J ′ and hence � ≤ �′, the following holds, for k ′ the optimal value of (ψ (ρ,J ′),max s2):

Ωρ (e ) = k − � = s ′2σ + km ·mσ − � = s ′2σ + km ·mσ − km · � + (km − 1) · � ≤
s ′2σ + km ·mσ − km · � + (km − 1) · �′ = s ′2σ + km · (mσ + �′ − �) − �′ =

s ′2σ + km ·mσ ′ − �′ ≤ s ′2σ
′ + km ·mσ ′ − �′ = s2σ

′ − �′ ≤ k ′ − �′ = Ω′ρ (e );

note that s ′2σ ≤ s ′2σ
′ becausem is max and may appear in s ′2 only positively. �

Finally, we extend the result of Lemma 6.18 to arbitrary LL-programs.

Theorem 6.19. Each type-consistent LL-program is stable.

Proof. By Lemma 6.18, we only need to show that, for each stratum P[i] of a type-consistent
LL-program P and for Ji−1 the pseudointerpretation corresponding to the partial materialisation
Mω1

i−1 of P, the reduct R (P[i] ∪ Ji−1) is type-consistent. Consider an arbitrary rule ρ = φ → α
in the reduct R (P[i] ∪ Ji−1), for P[i] and Ji−1 as above, as well as the rule ρ ′ = φ ′ → α in
G (P[i]∪Ji−1) from which ρ was obtained. Note that ρ ′ is type-consistent because Definition 6.16
does not distinguish between constants, object variables, and guarded numeric variables. We next
check that the four conditions of Definition 6.16 hold for ρ.

First, ρ is OG-ground and hence positive, so it does not have any negative exact literals. There-
fore, the first condition holds vacuously.

Second, all limit atoms in ρ are inherited from ρ ′, so the second condition also holds.
Third, consider a comparison atom β inφ. If β is inherited fromφ ′, then the third condition holds

for β since ρ ′ is type-consistent. If β is obtained by replacing a negative exact literal in φ ′, then,
since all numeric variables in negative exact literals in P are guarded by the first type-consistency
condition, β is variable-free and hence also satisfies the third condition (recall that variable-free
terms are both of type max and min). Finally, if β = (k ≺C s ) is obtained by replacing a negative
limit literal notC (a, s ) in φ ′, then s is of type max if C is max and of type min if C is min by the
second type-consistency condition, and so, since k is a constant, β also satisfies the third condition.

Finally, by construction, no variable in ρ or ρ ′ is guarded and, for each literal in ρ, rule ρ ′

contains a literal with the same numeric variables. Therefore, if a term s2 depends on a term s1 in ρ
then s2 depends on s1 in ρ ′ as well. So, the fourth condition holds because all positive limit literals
in φ and the head α of ρ are inherited from ρ ′. �

7 AGGREGATION

As illustrated in Examples 3.11–3.14, aggregation can often be simulated via recursion and arith-
metic. This simulation is, however, rather low-level and may yield programs that are not very
intuitive. Moreover, the encodings in our examples rely on the assumption that input datasets are
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ordered. In this section, we extend limit(-linear) DatalogZ to a language that can handle aggrega-
tion with grouping natively, which we call limit(-linear) Datalog

agg
Z

. On the one hand, limit(-linear)

Datalog
agg
Z

will allow us to express programs such as those in our examples in a more intuitive way
and without assuming an order on datasets; on the other hand, the language can be polynomially
translated to limit(-linear) DatalogZ over ordered datasets.

For aggregation to be meaningful, however, the definition of limit Datalog
agg
Z

should satisfy
certain properties, which we summarise next.

1. Whenever a limit-closed interpretation contains a fact over a given limit predicate for a given
tuple of objects, it contains infinitely many such facts; thus, it makes little sense to aggregate
over all such facts as, for typical aggregate functions, the outcome will be either infinite or
equal to the greatest or the least numeric value; hence, in our definition, it should suffice to
consider a single ‘representative’ fact for each predicate and tuple of objects.

2. Our semantics assumes that the immediate consequence operator is monotone; hence, our
definition should guarantee that Proposition 3.5 extends to Datalog

agg
Z

.
3. When applying a rule, it should be possible to compare the result of an aggregation with a

numeric term or use it in the head of a rule; so, such a result should always be an integer.

As demonstrated by the following example, the second property can be violated even by such
seemingly innocuous aggregation operations as summation over a set of facts.

Example 7.1. Consider the pseudointerpretations J = {C (a, 1)}, J ′ = J ∪ {C (b,−1)}, and
J ′′ = J ∪ {C (b, 1)}, for C a max predicate. Clearly, it makes little sense to sum up the integers
in all the infinitely many facts in the limit-closed interpretations corresponding to J , J ′, and
J ′′, as in all three cases the result would be infinitely small (i.e., smaller than any integer). More
meaningful, and more in line with the examples in Section 3.3, is to aggregate over all facts that are
maximal with respect to�. This, however, leads to nonmonotonicity of the immediate consequence
operator: note that J � J ′ and J � J ′′ but the sum k of the integers in all facts over C is 1 for
J , 0 for J ′, and 2 for J ′′; thus, for a rule deriving a limit factC ′(k ), the immediate consequence
operator would be nonmonotonic regardless of whether the predicate C ′ is min or max.

To avoid this issue, we introduce two aggregate functions for summation: one for positive inte-
gers (where negative numbers are ignored) and one for negative integers (where positive numbers
are ignored). Similarly, the second property is easily seen to rule out recursive use of the average
aggregate function, which is therefore not included in our language (nonrecursive use of integer
average is unproblematic but is not discussed in this article). The third property implies that we
should avoid aggregating over infinite multisets; this is, however, not an issue if the first prop-
erty is satisfied. The third property also implies that we should avoid taking the maximum or the
minimum over an empty multiset, which will be ensured by our semantics.

We begin our formalisation of limit Datalog
agg
Z

by defining the following aggregate functions.

Definition 7.2. An aggregate function is one of count, max, min, sum+, and sum−. It maps each
finite multiset M of integers to an integer as follows, where duplicates in M are considered
separately:

— count(M ) is the number of elements in M ;
— max(M ) and min(M ) are undefined when M is empty, and are otherwise the maximum and

the minimum of all elements in M , respectively; and
— sum+ (M ) and sum− (M ) are the sums of all positive and all negative elements in M ,

respectively.
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Next, we define the syntax of limit and limit-linear Datalog
agg
Z

. For simplicity, we allow aggre-
gation with grouping only over a single limit atom; aggregation over other types of atoms (e.g.,
counting over object atoms) as well as over conjunctions of atoms can be handled in a similar way.

Definition 7.3. An aggregate atom has the form

(s � aggC (t, -) group by t′),

where s is a numeric term different from ∞; agg is an aggregate function; � is ≤ or < when agg
is count, max or sum+, and ≥ or > when agg is min or sum−; C is a v-ary numeric predicate; t is
a (v − 1)-tuple of object terms; t′ is a subset of the terms in t, called grouping terms, while all
other terms in t are called local; and - is a special symbol (whose only role is to match the arity
of C).

A Datalog
agg
Z

rule is defined as an ordinary DatalogZ rule in form (3) except that literals in the
body can also be aggregate atoms, where each local variable in an aggregate atom appears only
in that atom and is not mentioned in the universal quantifier of the rule. Limit and limit-linear

Datalog
agg
Z

programs are defined in the same way as for DatalogZ, with aggregate atoms in rule
bodies regarded as positive literals for the definitions of stratification and safety, and with the
additional requirement that only limit predicates are allowed in aggregate atoms.

We emphasise that, in this definition, t is a tuple of object terms, while t′ is a subset of the set of
terms of t—that is, does not have an order and repetitions (and may contain objects, which, as we
will see, do not influence the result but are useful for the uniformity of the following definitions).
Using similar notation here should not lead to any confusion, because the position of an expression
t uniquely identifies whether t is a tuple or a set.

Having formally defined the syntax of limit Datalog
agg
Z

, we next move to its semantics.

Definition 7.4. An aggregate atom is ground if all of its variables are local. An interpretation
is object-finite if it mentions only a finite number of objects. A sample of a limit predicate C in
a object-finite limit-closed interpretation I is a (finite) subset of I containing exactly one fact
C (a,k ) for each C and a such that {C (a,k ′) | k ′ ∈ Z} ∩ I is nonempty. Interpretation I satisfies a
ground aggregate atom β = (s � aggC (t, -) group by a), written I |= β , if there exists a sampleK
ofC in I such that s � agg(M ) evaluates to true, where M is the multiset of all integers � for each
of which there is a distinct substitution σ of all (local) variables in t such that C (tσ , �) ∈ K .

The immediate consequence operator S(P,τ ) for a limit Datalog
agg
Z

program (P,τ ) is then de-
fined in the same way as for ordinary DatalogZ in Definition 3.4; we will continue to use the
notation SP instead of S(P,τ ) , as discussed at the end of Section 3.1.

This definition requires several clarifications. First, note that the definition of a ground aggregate
atom is an instantiation of our general definition of a ground expression in Section 2.1, under the
assumption that local variables are not treated as usual. Second, grounding of the set of grouping
terms used in the definition of operator SP implicitly assumes duplicate elimination: for example,
for a substitution σ assigning object a to object variable x and the set {a,b,x } with an object b,
we have {a,b,x }σ = {a,b}. Third, note that objects in the set of grouping terms are essentially
irrelevant: they simply ensure that the grounding of an aggregate atom remains an aggregate
atom. Finally, since functions max and min are undefined on empty inputs, multisets involved in
the evaluation of a ground aggregate atom β using max or min on an object-finite limit-closed
interpretation I must be nonempty whenever I |= β .

The following result generalises Proposition 3.5 to Datalog
agg
Z

, establishing that the immediate
consequence operator still has the desired monotonicity properties.
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Proposition 7.5. The following hold:

1. I |= P if and only if SP (I) ⊆ I, for each limit Datalog
agg
Z

program P and each object-finite

limit-closed interpretation I; and

2. SP (I1) ⊆ SP (I2) for each semi-positive limit Datalog
agg
Z

program P and each object-finite

limit-closed interpretations I1 and I2 that satisfy I1 ⊆ I2 and coincide on the EDB predicates.

The proof of this proposition is given in the Appendix.
As for ordinary DatalogZ programs, claim 2 of Proposition 7.5 and the Knaster–Tarski theorem

guarantee the existence of the least fixpoint of the immediate consequence operator for each stra-
tum of a limit Datalog

agg
Z

program, and hence we can define materialisations and fact entailment
for such programs in the same way as before.

Definition 7.6. The partial materialisations and the materialisationM (P ) of a limit Datalog
agg
Z

program P are defined in the same way as for limit DatalogZ (see Section 2.1 and Definition 3.6).
A limit Datalog

agg
Z

program P entails a fact γ , written P |= γ , if and only if γ ∈ M (P ).

Note that, according to this definition, the (partial) materialisations are object-finite since they
mention only objects in the program.

We next illustrate how aggregates can be used to obtain more concise, natural and order-
unaware formulations of the analysis tasks in Examples 3.11 and 3.12 (Examples 3.13 and 3.14
can be reformulated using aggregates in a similar way).

Example 7.7 (Diffusion in Social Networks). Consider again the setting of Example 3.11, where
a dataset Dtw contains an object fact tweet (as ), representing that agent as introduces a tweet,
object facts follows(a,a′), representing that a follows a′, and exact facts threshold (a,ka ), encoding
the threshold ka > 0 of a, and where the goal is to check how the tweet propagates through the
network. We can now restate program Ptw in Example 3.11 in a much simpler way as a limit-linear
Datalog

agg
Z

program Pagg
tw consisting of rules (73) and (74). Rule (73) defines a max predicate sees

such that a fact sees(a,a′, 1) is true if an agent a follows an agent a′ while a′ tweets the message,
and so a sees a′ tweeting the message (the numeric value 1 is inessential, and any other can be
used instead). Rule (74) then counts how many agents are seen tweeting the message by an agent
and compares it to the agent’s threshold:

follows(x ,y) ∧ tweet (y) → sees(x ,y, 1), (73)

threshold (x ,m) ∧ (m ≤ count sees(x ,y, -) group by x ) → tweet (x ). (74)

We have that Pagg
tw ∪ Dtw |= tweet (a) if and only if agent a tweets the message.

Example 7.8 (Counting Paths). Consider the setting of Example 3.12, where a datasetDcp encodes
a directed acyclic graph using a unary object predicate node and a binary object predicate edge, and
the goal is to compute the number of paths between each two nodes. We can restate program Pcp

in Example 3.12 as the limit-linear Datalog
agg
Z

program Pagg
cp consisting of rules (75)–(77), where

path-num and path-num-z are max predicates. Intuitively, path-num-z(a,a′,b,k ) is true if there
are at least k paths from a node a to a node a′ that begin with the edge (a,b); see rule (76). For a
and a′ distinct nodes, rule (77) then defines � in path-num(a,a′, �) as the sum of all values k for
which path-num-z(a,a′,b,k ) holds, while, for the case a = a′, � is defined by rule (75):

node(x ) → path-num(x ,x , 1), (75)

edge(x , z) ∧ path-num(z,y,m) → path-num-z(x ,y, z,m), (76)

(m ≤ sum+ path-num-z(x ,y, z, -) group by x ,y) → path-num(x ,y,m). (77)

We have Pagg
cp ∪ Dcp |= path-num(a,a′,k ) if and only if there are at least k paths from a to a′.
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Next, we establish the main theorem of this section, which states that limit Datalog
agg
Z

neither
adds expressive power to DatalogZ nor increases the complexity of reasoning.

Theorem 7.9. For each limit Datalog
agg
Z

program P, there exists a limit DatalogZ program P′,
which is limit-linear if so is P, such that P |= γ if and only if P′ |= γ for every fact γ over a predicate

in P; furthermore, ‖P′‖ is polynomial in ‖P‖.

Proof. Let P be a limit Datalog
agg
Z

program. Let Dord be a dataset encoding an order on all
objects a1, . . . ,av in P using the following facts over Σord:

→ first (a1), → next (a1,a2), · · · → next (av−1,av ) → last (av ).

Let Psucc be the program consisting of rules (41) from the proof of Theorem 5.3 and, for each
number w such that P has an aggregate atom with w local variables, rules (42), but for each i ∈
[0,w − 1] and using a predicate succw of arity 2w instead of succ; program Psucc extends the order
in Dord to w-tuples of objects.

Then, for each aggregate atom β = (s � aggC (t, -) group by t′) in P, we construct a program
Pβ . If agg = count, then Pβ is defined as follows, where x = x1, . . . ,xu and y = y1, . . . ,yw are the
grouping and the local variables of β , respectively, while accβ and aggβ are fresh max predicates
of arities u +w + 1 and u + 1, respectively:

object (x1) ∧ · · · ∧ object (xu ) ∧ first (y1) ∧ · · · ∧ first (yw ) → accβ (x, y, 0), (78)

object (x1) ∧ · · · ∧ object (xu ) ∧ first (y1) ∧ · · · ∧ first (yw ) ∧C (t,n) → accβ (x, y, 1), (79)

accβ (x, y′,m) ∧ succw (y′, y) → accβ (x, y,m), (80)

accβ (x, y′,m) ∧ succw (y′, y) ∧C (t,n) → accβ (x, y,m + 1), (81)

accβ (x, y,m) ∧ last (y1) ∧ · · · ∧ last (yw ) → aggβ (x,m). (82)

If agg ∈ {max, min}, let Pβ be the program consisting of the following rule, where x is as above,
while aggβ is a fresh predicate of arity u + 1 that has the same type (max or min) as C:

C (t,n) → aggβ (x,n).

If agg ∈ {sum+, sum−}, let Pβ be the program consisting of rules (78), (80), (82), and the following
rules in place of (79) and (81), where x and y are as before, accβ and aggβ are fresh predicates of

arities u +w + 1 and u + 1, respectively, that are max if agg = sum+ and min otherwise:

object (x1) ∧ · · · ∧ object (xu ) ∧
first (y1) ∧ · · · ∧ first (yw ) ∧C (t,n) ∧ (0 ≺accβ

n) → accβ (x, y,n),

accβ (x, y′,m) ∧ succw (y′, y) ∧C (t,n) ∧ (0 ≺accβ
n) → accβ (x, y,m + n).

Finally, let P′ be obtained from P by adding Dord, Psucc, and, for each aggregate atom β in P,
adding Pβ and replacing β with the conjunction aggβ (x,mβ ) ∧ (s �mβ ), with x as before, mβ a

fresh numeric variable uniquely associated with β , and � the comparison predicate in β .
Having completed the construction of P′, we next argue that it has the claimed properties. First,
P′ is limit-linear whenever so is P, and ‖P′‖ is polynomial in ‖P‖ by construction. So, it is left
to show that P |= γ if and only if P′ |= γ for every fact γ over a predicate in P. By construction,
it suffices to prove that, for each aggregate atom β = (s � aggC (t, -) group by t′) in P with
grouping variables x and each grounding σ of the nonlocal variables in β , we have P |= βσ if
and only if there is an integer kβ ∈ Z such that P′ |= aggβ (xσ ,kβ ) ∧ (sσ � kβ ). For this, in

turn, it suffices to show that, for each ground aggregate atom β = (s � aggC (t, -) group by a)
and each (object-finite) limit-closed interpretation I over predicates and objects of P, we have
I |= β if and only if there is kβ ∈ Z such that s � kβ and Dorder ∪ Psucc ∪ Pβ ∪ I |= aggβ (a,kβ )
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(where, as in the proof of Theorem 4.31, we abuse notation and treat I as an “infinite program”);
in other words, we claim that there is a sampleK ofC in I, with M the multiset of all � for which
C (tσ , �) ∈ K for some σ , such that s � agg(M ) if and only if there is some kβ ∈ Z with s � kβ and
aggβ (a,kβ ) ∈ M (Dord ∪ Psucc ∪ Pβ ∪ I). To see this, consider β and I as above. We have five
cases, depending on the aggregate function agg.

If agg = count, then agg(M ) does not depend on the choice of K and the claim follows by
construction since aggβ is max and � ∈ {≤, <}.

If agg = max, we have two cases: eitherC , and hence aggβ , are max or both are min. In the first

case, the claim follows as both max(K ) and kβ range from −∞ to the largest � for which there
is a substitution σ with C (tσ , �) ∈ I, if such � exists, or to +∞ otherwise. The second case is
symmetric.

If agg = min, the claim follows analogously to the previous case.
If agg = sum+, the claim follows analogously to the case of max, except for the following: ifC is

max, then sum+ (K ) and kβ range from 0 to the sum of all positive � with C (tσ , �) ∈ I for some
σ when this sum exists (i.e., is finite), and to +∞ otherwise; if C is min, both numbers range from
the sum of all such negative � when the sum exists, or from −∞ otherwise, to 0.

If agg = sum−, the claim follows analogously to the previous case. �

The immediate corollary of Theorem 7.9 is that the upper bounds of Theorems 4.29 and 4.31
extend to Datalog

agg
Z

; note that the data complexity bounds transfer because, according to the

construction in the proof of Theorem 7.9, all facts in a limit Datalog
agg
Z

program P are copied to its
translation P′ without influencing the rest of P′. These upper bounds are tight by Theorems 5.4
and 5.10 since each limit-linear DatalogZ program is also a limit-linear Datalog

agg
Z

program.

Corollary 7.10. The fact entailment problem is

1. in coNEXP in combined and in coNP in data complexity for semi-positive limit-linear

Datalog
agg
Z

programs; and

2. in ΔEXP
2 in combined and in ΔP

2 in data complexity for limit-linear Datalog
agg
Z

programs.

Finally, note that the results of Section 6 straightforwardly extend to Datalog
agg
Z

. In particular,

a limit-linear Datalog
agg
Z

program P is stable or type-consistent if so is its DatalogZ translation
P′; Theorems 6.13 and 6.19 (including tractability in data complexity) then immediately extend to
Datalog

agg
Z

. Proposition 6.17 also extends as the translation can be done in logarithmic space.

8 RELATED WORK

In this section, we compare limit DatalogZ with other formalisms underpinning rule-based systems
for data analysis. We first focus on the “monotonic programs” proposed by Ross and Sagiv [48],
which are the closest to our work; afterwards, we discuss other approaches in a less formal manner.

8.1 Ross and Sagiv’s Monotonic Programs

We begin by defining the formalism of Ross and Sagiv [48]. To facilitate comparison with our
language, we adapt some of their original notation. To avoid excessive notation, we consider only
an essential core of the formalism and leave the discussion of additional features, such as negation
and default values, for the end of the section. Finally, to avoid ambiguity, we rename some of their
notions by prepending the prefix “rs-” to their name (e.g., we speak of rs-atoms and rs-programs).

Rs-Programs. A cost domain is a complete lattice—that is, a partially ordered set having a supre-
mum and an infimum for each subset. Each cost domain (D,�) with a carrier set D and partial
order � is associated with built-in functions Dv → D, forv ∈ N, and aggregate functionsND → D,
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whereND is the set of all multisets overD. The cost domains relevant for our comparison are given
next, where +, −, and × are binary functions with the usual semantics (extended to +∞ and −∞
in a way yet to be discussed), and all aggregate functions also have the usual semantics:

— (Z ∪ {−∞,+∞}, ≤) with built-in functions +, − and ×, and aggregate functions count and
max;

— (Z ∪ {−∞,+∞}, ≥) with built-in functions +, − and ×, and aggregate functions count and
min; and

— (N ∪ {+∞}, ≤) with built-in functions + and ×, and aggregate functions count and sum.

We consider a vocabulary consisting of rs-constants, rs-functions, and rs-predicates, which are
as usual except the following: rs-constants include Z ∪ {−∞,+∞}, rs-functions are precisely the
built-in functions of the cost domains, and rs-predicates include the binary equality predicate ≡
and, for each cost domain, the binary built-in rs-predicates �, � denoting the partial order in this
cost domain and its strict version, respectively, as well as cost rs-predicates with positive arities
associated with the cost domain. The last position of a cost rs-predicate is called cost position. An
rs-atom is one of the following:

— a standard rs-atom of the form A(t), where A is a v-ary non-built-in rs-predicate and t is a
v-tuple of rs-constants and variables such that, if A is a cost rs-predicate and the last term
in t is an rs-constant, then this rs-constant belongs to the cost domain associated with A;

— a built-in rs-atom of the form (s1 ≡ s2), (s1 � s2), or (s1 � s2), where � and � are the built-in
predicates of a cost domain (D,�) and s1, s2 are numeric terms constructed from elements
of D, variables, and the built-in functions associated with (D,�); and

— an aggregate rs-atom of the form (s
rs
= aggC (t, -) group by t′), where C is a v-ary cost

rs-predicate, agg is an aggregate function associated with the cost domain (D,�) of C , the
aggregate rs-term s is a variable or an rs-constant from D, t is a (v − 1)-tuple of rs-constants
and variables, tuple t′ of grouping rs-terms is a subset of the set of terms in t, and - is a special
symbol (which is added just to match the arity of C); the variables in t that are not in t′ are
local and should be different from s .

An rs-rule is an expression of the form ψ → β , where the body ψ is a conjunction of rs-
atoms such that all local variables of each aggregate rs-atom appear only in this rs-atom, and
the head β is a standard rs-atom. An rs-rule is range-restricted if each of its nonlocal variables
x is quasi-limited—that is, appears in the body in a standard rs-atom, in an equality built-in rs-
atom (x ≡ s ) such that all variables in s are quasi-limited, or in an aggregate rs-atom as the
aggregate rs-term. An rs-program is a finite set of range-restricted rs-rules. An rs-fact is an rs-rule
whose body is empty; usually, we do not distinguish between rs-facts and the rs-atoms in their
heads.

An rs-interpretation is a set of rs-facts that does not contain two rs-facts that differ only in their
cost positions (thus, Ross and Sagiv’s notion of interpretations is similar to our pseudointerpre-
tations). The partial orders of the cost domains extend to a partial order on rs-interpretations:
H1 �rs H2 for two rs-interpretations H1 and H2 if, for each rs-fact δ1 ∈ H1, there is an rs-fact
δ2 ∈ H2 such that δ1 �rs δ2—that is, such that either δ1 = δ2, or δ1 = C (a,k1) and δ2 = C (a,k2)
where C is a cost rs-predicate and k1 � k2, for � the partial order of the cost domain of C . In fact,
�rs induces a complete lattice on rs-interpretations [48, Theorem 3.1].

An rs-atom (or rs-rule) is ground if all of its variables are local (which implies that the head
of an rs-fact is a ground rs-atom). An rs-interpretation H satisfies a ground rs-atom β , written
H |=rs β , if
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— β is a standard rs-atom that is contained inH ;
— β is a built-in rs-atom that evaluates to true under the semantics of the cost domain and the

standard semantics of equality; and

— β is an aggregate rs-atom (k
rs
= aggC (t, -) group by a) such that k = agg(M ), for M the

multiset of all integers � having distinct substitutions σ of the local variables in t such that
C (tσ , �) ∈ H .

An rs-interpretationH satisfies a conjunction of ground rs-atomsψ , writtenH |=rs ψ , ifH satisfies
each rs–atom in ψ . The immediate consequence RQ (H ) of an rs-interpretationH with respect to
an rs–program Q is the set of all rs-facts δ for which there are ground instancesψ → δ of rules in
Q such thatH |=rs ψ . An rs–program Q is cost-consistent if, for each rs-interpretationH , RQ (H )
is also an rs-interpretation. A cost-consistent rs-programQ is rs-monotonic ifRQ (H1) �rs RQ (H2)
for each two rs-interpretationsH1 andH2 such thatH1 �rs H2.

Example 8.1. Not every rs-program is cost-consistent. For instance, consider the following rs-
program Q, where C is a cost rs-predicate with associated cost domain (Z ∪ {−∞,+∞}, ≤).

→ C (0) C (m) ∧ (n ≡m + 1) → C (n).

Rs-program Q is not cost-consistent: for J = {C (0)}, the set RQ (J ) = {C (0),C (1)} is not an
rs-interpretation.

Similarly, not every cost-consistent rs-program is rs-monotonic. For instance, the following cost-
consistent rs-program, for C as above, is not rs-monotonic.

C (m) ∧ (n ≡ −m) → C (n).

The main property of rs-monotonic rs-programs is that each such program Q has a unique
minimal modelL (Q) with respect to �rs, which is the least fixpoint of the immediate consequence
operatorRQ [48, Corollary 3.5]. An rs-programQ entails an rs-fact δ , writtenQ |=rs δ , if δ ∈ L (Q).

Checking cost consistency and rs-monotonicity of an rs-program can both be shown undecid-
able in general. Hence, Ross and Sagiv define sufficient conditions for both cost consistency and
rs-monotonicity, which are, however, outside the scope of this summary. Nonetheless, knowing
that an rs-program is rs-monotonic and thus has a least model does not guarantee decidability
of fact entailment; in fact, an argument similar to the one in the proof of Theorem 3.8 can be
used to show undecidability of fact entailment for rs-monotonic rs-programs with the cost do-
main (Z ∪ {−∞,+∞}, ≤).

Expressibility by Limit Programs. We next show that a core class of rs-monotonic rs-programs
can be captured by our limit Datalog

agg
Z

programs. We start by formally defining this class, after

which we give a translation from rs-programs into the class to positive limit Datalog
agg
Z

programs.
Observe that, unlike limit DatalogZ programs, rs-programs do not make a strict distinction be-

tween elements of cost domains and other rs-constants. To overcome this mismatch, we concen-
trate on strict rs-programs—that is, rs-programs satisfying the following restrictions:

— elements of cost domains do not appear in noncost positions; and
— each variable of an rs-rule is either a noncost variable or a cost variable, where a variable

is noncost if it occurs only in noncost positions of non-built-in rs-predicates, and it is a cost

variable if it occurs only in cost positions and in built-in rs-atoms.

These restrictions ensure that all rs-terms can be partitioned in a similar way to how terms in
DatalogZ programs are partitioned into object and numeric terms.

Furthermore, we restrict our attention to predicate-nonrepeating rs-programs—that is, rs-
programs in each of whose rules each pair of distinct rs-atoms in the rule body have distinct
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predicates. We discuss rs-programs with repeated predicates in rule bodies in the end of this
section.

Finally, we only present the translation for programs over cost domains (Z ∪ {−∞,+∞}, ≤) and
(N ∪ {+∞}, ≤); as we will discuss later on, the cost domain (Z ∪ {−∞,+∞}, ≥) can be easily simu-
lated by the other two.

Before proceeding to the translation, it remains to complete the definitions of the remaining
two cost domains by fixing the behaviour of arithmetic functions +, −, and × on elements −∞ and
+∞. Ross and Sagiv do not specify the semantics of terms with −∞ or +∞; in particular, it is not
clear from [48] how to interpret terms containing both −∞ and +∞, such as (−∞) + (+∞). One
of the ways would be to treat −∞ and +∞ symmetrically, in particular, having (−∞) + (+∞) = 0.
This, however, would make addition not associative:

((+∞) + (+∞)) + (−∞) = (+∞) + (−∞) = 0 � (+∞) = (+∞) + 0 = (+∞) + ((+∞) + (−∞)).

Thus, to simplify our translation, we adopt a different, nonsymmetric extension of arithmetic to
−∞ and +∞. Specifically, we assume that the expression �1 ∗ �2 evaluates as follows, for every
∗ ∈ {+,×} and �1, �2 ∈ Z ∪ {−∞,+∞} such that {�1, �2} ∩ {−∞,+∞} � ∅:

�1 ∗ �2 =
{
+∞ if either �1 = �2 = −∞ and ∗ is ×, or at least one of �1, �2 is +∞,
−∞ otherwise;

furthermore, �1−�2 = �1+ (−�2) for all such �1 and �2. This extension has the following convenient
property, which can be proved by a straightforward induction on the structure of rs-terms.

Proposition 8.2. Each ground rs-term t mentioning −∞ or +∞ evaluates either to −∞ or to +∞;

furthermore, the result of the evaluation does not depend on the integers in t—that is, the value of t
equals the value of each term obtained from t by substituting any integer in t with any other integer.

We are ready to define our translation from predicate-nonrepeating strict rs-programs to posi-
tive limit Datalog

agg
Z

programs. The main idea is to represent rs-facts C (a,−∞), C (a,k ) for k ∈ Z,
and C (a,+∞) over a cost rs-predicate C by pseudofacts C−∞ (a, 0), C ′(a,k ), and C ′(a,∞), respec-
tively, where C−∞ and C ′ are fresh max predicates corresponding to C , and then to “manually”
simulate assignments of −∞ and +∞ to variables (predicate C−∞ needs to be max and not object
only so we can count over it; the choice of 0 in C−∞ (a, 0) is thus inessential).

Definition 8.3. Given a strict rs-program Q, let Qsum be the strict rs-program obtained from Q
by adding an rs-atom (0 ≤ m) to the body of each rs-rule in Q whose head has the form C (t,m),
where C is a cost rs-predicate with cost domain (N ∪ {+∞}, ≤).

For each noncost rs-predicate A in Q, let A′ be an object predicate of the same arity as A, and,
for each cost rs-predicate C in Q, let C−∞ and C ′ be max predicates of the same arity as C . For
each rs-rule π in Qsum and each pair m, n of disjoint subsets of the cost variables in π , let ρm,n

π be
the Datalog

agg
Z

rule obtained from π by first replacing each variable in m and n by −∞ and +∞,
respectively, and then replacing each rs-atom β , both in the body and in the head, by the atom αβ ,
defined as follows:

—if β is A(t) with A a noncost rs-predicate, then αβ is A′(t);
—if β is C (t, s ) with C a cost rs-predicate, then

—if s = −∞ then αβ is C−∞ (t, 0),
—if s � {−∞,+∞} then αβ is C ′(t, s ),
—if s = +∞ then αβ is C ′(t,∞);

—if β is a built-in rs-atom, then
—if β involves neither −∞ nor +∞ then αβ = β ,
—if β involves −∞ or +∞ and evaluates to true (see Proposition 8.2) then αβ is (0 ≤ 0),
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—if β involves −∞ or +∞ and evaluates to false then αβ is (0 < 0); and

—if β is an aggregate rs-atom (s
rs
= aggC (t, -) group by t′), then

—if agg is aggregate function count, and s � {−∞,+∞} or s ∈ {−∞,+∞}, then αβ is the
atom (s ≤ countC−∞ (t, -) group by t′) or (0 < 0), respectively,

—if agg is aggregate function max, and s = −∞, s � {−∞,+∞} or s = +∞, then αβ is the
atom (0 ≤ 0), C ′(t, s ) or C ′(t,∞), respectively,

—if agg is aggregate function sum, and s = −∞, s � {−∞,+∞} or s = +∞, then αβ is the
atom (0 < 0), (s ≤ sum+C ′(t, -) group by t′) or C ′(t,∞), respectively.

The translationP (Q) ofQ is the positive Datalog
agg
Z

program containing a rule ρm,n
π for each rs-rule

π in Qsum and each pair m, n of disjoint subsets of the cost variables in π , as well as the following
rule for each cost rs-predicate C , where x is a tuple of distinct object variables of appropriate
arity:

C ′(x,m) → C−∞ (x, 0). (83)

It is immediate that this definition is syntactically correct in the sense that P (Q) is indeed a
positive limit Datalog

agg
Z

program. Note also that Q and Qsum are equivalent; the atoms (0 ≤ m)
merely preclude negative numbers to appear in the numeric atoms over C ′ when C has the cost
domain (N ∪ {+∞}, ≤), which corresponds to the semantics of C .

The following theorem establishes correctness of the translation, where, for uniformity, we ex-
tend the entailment relation to pseudofacts and write, for P a Datalog

agg
Z

program and γ a pseud-
ofact, P |= γ ifM (P ) |= γ (note that until now we have used such notation only for facts).

Theorem 8.4. The following hold for each predicate-nonrepeating strict rs-monotonic rs-program

Q and each rs-fact δ :

— if δ is A(a) with A a noncost rs-predicate, then Q |=rs δ if and only if P (Q) |= A′(a); and

— if δ is C (a, �) with C a cost rs-predicate, then

— if � = −∞ then Q |=rs δ if and only if P (Q) |= C−∞ (a, 0) and P (Q) 	 |= C ′(a,k ) for all k ∈ Z,

— if � ∈ Z then Q |=rs δ if and only if P (Q) |= �C ′(a, �)�, and

— if � = +∞ then Q |=rs δ if and only if P (Q) |= C ′(a,∞).

The proof of this theorem is given in the Appendix.
Theorem 8.4 establishes a connection between fact entailment for rs-programs and the tech-

niques developed in this article. In particular, note that all numeric terms with arithmetic functions
in the Datalog

agg
Z

program P (Q) are inherited from the rs-program Q. Hence, if all cost terms in
Q are linear, then program P (Q) is limit-linear.

Proposition 8.5. The rs-fact entailment problem for predicate-nonrepeating strict rs-monotonic

rs-programs with linear cost terms is in DEXP in combined and in DP in data complexity; moreover,

if the rs-fact is noncost or has the cost value +∞, the problem is in coNEXP and in coNP, respectively.

Proof. Consider an arbitrary predicate-nonrepeating strict rs-monotonic rs-program Q and
the positive limit-linear DatalogZ program P′ obtained by first translating Q to the Datalog

agg
Z

program P (Q) and then translating P (Q) to DatalogZ as in the proof of Theorem 7.9. By con-
struction, the canonical OG-grounding G (P′) of P′ possesses the same computational properties
as canonical OG-groundings of positive LL-programs given in Lemma 4.4, for c the number of
distinct rs-constants in Q and u = maxπ ∈Q�π �:

1. G (P′) can be computed in time polynomial in cu + ‖Q‖; and
2. maxρ ∈G (P′)�ρ� is linearly bounded in u.
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Thus, we can once again use Algorithm 1, which decides fact entailment for positive LL-programs
in coNP in data and in coNEXP in combined complexity (see Theorem 4.21), to decide fact entail-
ment for P′ within the same complexity bounds. Moreover, by Theorems 7.9 and 8.4 as well as
Proposition 4.30, rs-fact entailment for Q boils down to fact entailment and, in some cases, fact
nonentailment for P′, which implies our claims. �

To the best of our knowledge, Proposition 8.5 provides the first decidability results for the for-
malism of Ross and Sagiv [48].

Discussion. The reduction in Theorem 8.4 makes several simplifying assumptions about Ross
and Sagiv’s formalism. In what follows, we discuss these assumptions in more detail.

First, Ross and Sagiv allow for stratified negation in rule bodies in essentially the same way as
we do for DatalogZ (it is also noted that any rule with nonstratified negation either never applies or
violates rs-monotonicity of the program strata). We can extend our encoding in Definition 8.3 in a
straightforward way to capture predicate-nonrepeating strict rs-programs with stratified negation
and rs-monotonic strata. This would yield ΔEXP

2 upper bound for the rs-fact entailment problem in

combined complexity and ΔP
2 upper bound in data complexity.

Second, entailment is only defined for the class of rs-monotonic—and hence cost-consistent—rs-
programs, which do not include simple programs such as the ones in Example 8.1. To somewhat
alleviate the restrictions caused by the cost consistency requirement, Ross and Sagiv allow default

value declarations, which can be used to assign “default” numeric values to predicates that can be
“overridden” by rules. For instance, the intention behind the first program in Example 8.1 can be
realised by the following rs-program where, intuitively, the declaration on the left asserts that the
value of C is initially 0, but is disregarded if some rule yields a different value:

declare default C (0), C (m) ∧ (n ≡m + 1) → C (n).

Default value declarations can be easily simulated in limit DatalogZ by extending the encoding
in Definition 8.3: for instance, to simulate a declaration declare default C (t, 0), it suffices to iterate
through all possible instances of t over the objects mentioned in the program (using a predicate
succ defined as in the proof of Theorem 5.3) and assign 0 to C for each such instance.

Third, we only present a translation for the cost domains (Z∪ {−∞,+∞}, ≤) and (N∪ {+∞}, ≤),
leaving aside the cost domain (Z∪ {−∞,+∞}, ≥); thus, we intuitively focus on “homogeneous” rs-
programs. This is, however, not a major restriction since we can easily transform any rs-program
over all three cost domains into an rs-program over the first two domains using a technique sim-
ilar to that in Proposition 3.7. Furthermore, Ross and Sagiv also consider cost domains over real
numbers, Booleans, and finite sets, which are outside the scope of our formalism.

Finally, we assume that rs-programs are predicate-nonrepeating, and the backward direction
of Theorem 8.4 relies on this property. On the one hand, note that each rs-program can be trans-
formed to a predicate-nonrepeating rs-program by introducing extra rs-predicates: for example,
an rs-program consisting of a single rs-rule C (3) ∧ C (4) → A can be rewritten as the following
rs-program.

C (3) ∧C ′(4) → A, C (m) → C ′(m).

On the other hand, while the original rs-program is vacuously rs-monotonic, the rewritten rs-
program is not (to see this, consider rs-interpretationsH1 = {C (3),C ′(4)} andH2 = {C (3),C ′(5)}).

8.2 Other Related Work

Mazuran et al. [39] propose DatalogFS, which extends usual stratified Datalog with so-called fre-

quency support goals and provides the formal underpinning for the DeALS system [62, 63]. The
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semantics of DatalogFS is given by translation to logic programs with arithmetic, tuples, and lists.
Mazuran et al. show that DatalogFS can express various analytical queries involving arithmetic
and aggregation. Frequency support goals in DatalogFS provide the ability to count the number of
distinct variable assignments satisfying a given goal atom; their semantics is similar to that of max
predicates in limit DatalogZ in that, whenever a frequency support goal holds for a given number,
it also holds for all smaller numbers. Moreover, Mazuran et al. discuss an optimisation strategy for
DatalogFS programs, called max-based optimisation, which bears some resemblance to our stabil-
ity condition. In contrast to LL-programs, and similarly to unrestricted DatalogZ, fact entailment

in DatalogFS is undecidable, and no practical decidable fragment has been identified, to the best
of our knowledge. Identifying such fragments could potentially be accomplished by transferring
some of the ideas in our work to the formalism of Mazuran et al. [39].

Zaniolo et al. [63] identify an extension of Datalog1S, a language proposed by Chomicki and
Imielinski [10] in the context of temporal reasoning, with min and max aggregates, where each pro-
gram can be rewritten into ordinary Datalog1S with stratified negation as failure. Zaniolo et al. [63]
show that the proposed language is powerful enough to encode some optimisation problems such
as shortest paths from a given source node as, as illustrated by the following program in their
language [63]:

edge(as,x ,m) ∧ (m ≥ 0) → dist (x ,m), (84)

dist (x ,m) ∧ edge(x ,y,n) ∧ (n ≥ 0) ∧ (m′ � m + n) → dist (y,m′), (85)

dist (x ,m) ∧ min((x ), (m)) → s-dist (x ,m). (86)

In this program, edge is an EDB predicate encoding an input graph as in the program of rules (1)–(2)
in the introduction, dist and s-dist are ordinary (i.e., without any limit semantics) IDB predicates,
and min is a special predicate whose extension is obtained from the extension of dist by grouping
according to the first argument and then selecting the minimum value for each group. The intended
meaning of this special predicate is then formalised by rewriting rule (86) as the following rules
with negation:

dist (x ,m) ∧ dist (x ,n) ∧ (n < m) → lesser (x ,m), (87)

dist (x ,m) ∧ not lesser (x ,m) → s-dist (x ,m). (88)

It is worth noting that rule (85) is not in Datalog1S since it contains the term m + n involving
addition of two variables, whereas Datalog1S only allows addition of a constant represented in
unary (allowing arbitrary addition of variables would make Datalog1S undecidable by Theorem 2.2).
Since edge is an EDB predicate, rule (85) can, however, be rewritten into a set of Datalog1S rules
by grounding variable n against the input graph.

When compared to ours, the approach by Zaniolo et al. [63] has several disadvantages. First,
bottom-up evaluation on the aforementioned program will not terminate if the input graph is
cyclic, and Zaniolo et al. [63] do not provide a mechanism for ensuring termination in such cases;
in contrast, the type-consistent and positive LL-program (1)–(2) encodes the problem and can be
evaluated in polynomial time in the size of data for any input graph. Second, when evaluating
special predicates they rely on rewriting via negation, whereas our formulations of problems such
as shortest path are negation-free. Finally, our approach offers more favourable computational
properties in general; indeed, as we have shown, reasoning in limit-linear DatalogZ is in ΔP

2 in
data complexity, whereas the computational properties for the language of Zaniolo et al. [63] is
unknown (and even in positive Datalog1S reasoning is PSPACE-hard in data complexity [10]).

The primary motivation for the work of Ross and Sagiv [48], Mazuran et al. [39], and Zaniolo
et al. [63] was to provide a generic, uncontentious semantics for aggregation in recursive rules.
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Earlier research on the topic yielded solutions for restricted classes of programs that are either
subject to strong monotonicity assumptions, only use min and max aggregate functions, or can be
expressed as optimisation problems on closed semirings [11, 20, 42, 56]. Furthermore, well-founded
and stable model semantics for aggregation in expressive logic programming languages with un-
restricted arithmetic and undecidable fact entailment were proposed by Kemp and Stuckey [35]
and further extended later on [6, 46, 57, 59]. Decidable recursive languages with aggregation—and
hence with a restricted form of arithmetic—were studied in the context of ASP by Faber et al. [19].
In contrast to limit-linear DatalogZ, however, Faber et al. achieve decidability by disallowing nu-

meric value invention—that is, deriving any facts with numeric arguments that do not appear in
the input program.

DatalogZ is closely related to CLP [3, 13]. Although a number of decidable CLP languages have
been identified, including the formalism of Cox et al. [13], none of them allow for recursive numeric
value invention, same as the language of Faber et al. [19].

Our formalism is also related to query languages studied in the field of constraint databases [24,
25, 33]. In contrast to our work, which is motivated by optimisation problems, the emphasis in
constraint databases is on finitely representing relations with temporal and spatial data; such re-
lations are naturally infinite, and constraint database formalisms represent them in a finite way
using quantifier-free formulas over a suitable background structure (e.g., the rational numbers
equipped with comparison and addition). It is well-known, however, that adding recursion to con-
straint query languages equipped with addition immediately leads to undecidability (e.g., see [25]).
Decidability results in the context of recursive queries over constraint databases mostly apply to
query languages without arithmetic operators. For instance, Toman and Chomicki [58] propose an
extension of usual Datalog with comparison operators over the integers and periodicity constraints
(but no arithmetic operators); such periodicity constraints are especially useful in the context of
temporal constraint databases, where the proposed extended Datalog rules can be used to identify
events happening with certain periodicity (e.g., flights between two cities departing twice a week,
or buses running every 10 minutes).

Finally, while this article was under review, we studied the complexity and expressive power
of limit Datalog programs extended with disjunction in the heads of rules and non-monotonic
(non-stratified) negation under the stable model semantics [30]. We showed that allowing for un-
restricted use of negation leads to undecidability of reasoning, while decidability can be restored
by stratifying the use of negation over predicates carrying numeric values: the resulting language
is ΠEXP

2 complete in combined complexity and captures ΠP
2 over ordered structures. In that article,

we have also studied several fragments of this language: we show that the complexity and ex-
pressive power of the full language are already reached for disjunction-free programs, while the
semi-positive disjunctive programs are coNEXP-complete and capture coNP.

9 CONCLUSION AND FUTURE WORK

Using Datalog with stratified negation and integer arithmetic as a foundation, we have presented
in this article the formalism of limit DatalogZ programs, which is flexible and powerful enough to
capture in a natural way a wide range of data analysis tasks. We have then identified a number
of classes of limit DatalogZ programs with decidable fact entailment and established their compu-
tational complexity and expressive power. The complexity of fact entailment for these fragments
ranges from EXP in combined and P in data complexity in the case of stable programs, to ΔEXP

2 in

combined and ΔP
2 in data complexity in the case of unrestricted limit-linear programs. Furthermore,

the language of limit-linear programs captures the complexity class ΔP
2 over ordered datasets in

the sense of descriptive complexity, thus providing (to the best of our knowledge) the first logical
characterisation of ΔP

2 .
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We see many avenues for future work. For instance, from a theoretical perspective it would be
very interesting to study the natural extension of limit-linear programs with disjunction in rule
heads and unstratified negation under the well-founded semantics, thus complementing the re-
sent results for stable model semantics [30]. Another direction for future research is to study the
ability of limit DatalogZ to actually solve various optimisation problems (rather than the associ-
ated decision problems) by identifying the relationship of the language with known optimisation
complexity classes. We also believe that our languages, especially the fragments with tractable
data complexity, are practical and can be exploited in data-intensive applications; therefore, we
are planning to implement our materialisation-based algorithms as an extension of the RDFox
Datalog engine [41], which already provides support for stratified aggregation and negation as
failure.

APPENDIX

This appendix contains the proofs of the statements that have been omitted in the main body.

Theorem 2.2. The fact entailment problem is undecidable for positive programs that do not men-

tion ∞, × and −, and that use standard predicates with no object positions and at most one numeric

position.

Proof. We prove the theorem by reduction of the halting problem for deterministic Turing
machines on the empty tape. To this end, consider an arbitrary deterministic Turing machine M
with the set of states Q containing an initial state qinit and a halting state qhalt, the tape alphabet Γ
containing the blank symbol ␣ , and the transition function δ : Q × Γ → Q × Γ × {left, right}, where
left and right encode the left and right directions of the head moves, respectively. We assume that
M works on a tape that is infinite to the right, starts with the empty tape (i.e., with ␣ in all cells)
and the head positioned on the leftmost cell, and never moves the head off the left edge of the tape.

We encode each time point t ∈ N as the integer 2t . Thus, at time point t , each cell with number
i ≥ 2t is necessarily blank, so we can unambiguously encode a combination of a time point t
and a nonblank cell with number i using a single integer 2t + i . We use this idea to encode the
computation of M by the following facts, where the last (an the only) position of every predicate
except nullary halts is numeric:

— time(k ) says that k = 2t and so k encodes a time point t ;
— tapea (2t + i ) says that symbol a ∈ Γ occupies the cell with number i of the tape at time

point t ;
— headq (2t + i ) says that the head is over the cell with number i and the machine is in state

q ∈ Q at time point t ; and
— halts says that the machine has halted.

We next construct a program PM that simulates the computation of M on the empty tape. First,
PM contains rules (89), which initialise time so that it holds for each integer k = 2t with t ∈ N:

→ time(1), time(m) → time(m +m). (89)

Then PM contains rules (90), which encode the initial configuration of M :

→ tape ␣ (1), → headq init (1). (90)

Rule (91) in PM derives halts if at any point the Turing machine enters the halting state qhalt:

headqhalt (m) → halts. (91)

Program PM also contains inertia rules (92) and (93), whose role will be clear later, where (92)
is actually a family of rules, one for each for each symbol a ∈ Γ, each state q ∈ Q , and each �
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among < and > (note that q does not play any role except of being a part of headq , which is used
to retrieve to the head position):

time(m) ∧ tapea (n) ∧ headq (n′) ∧
(m ≤ n < m +m) ∧ (m ≤ n′ < m +m) ∧ (n � n′) → tapea (m + n), (92)

time(m) ∧ (m +m +m ≤ n + n < m +m +m +m) → tape ␣ (n). (93)

Moreover, for each alphabet symbol a ∈ Γ and each state q ∈ Q with δ (q,a) = (q′,a′,X ) for a
direction X ∈ {left, right}, program PM contains rule (94), where β is (n′ + 1 � m + n) if X is
left and (n′ � m + n + 1) if X is right; note that, for conciseness, in (94) we allow conjunctions
in rule heads: each generalised rule φ → ψ with ψ a conjunction of atoms abbreviates the set
{φ → α | α atom inψ } of conventional rules:

time(m) ∧ tapea (n) ∧ headq (n) ∧ (m ≤ n < m +m) ∧ β → tapea′ (m + n) ∧ headq′ (n
′). (94)

Rules (92)–(94) encode the computation of M , and they are based on the following idea: if variable
m encodes a time point t using integer 2t , then variable n encodes a cell with number i at time
point t whenever m ≤ n < m +m; moreover, for such n, the cell at time point t + 1 is encoded as
2t+1 + i = 2t + 2t + i and can be obtained asm + n, while the encodings of the cells to the left and
to the right of this cell at this time point can be obtained as m + n − 1 and m + n + 1, respectively.
Since our goal is to prove undecidability using only +, we simulate subtraction by looking for a
number n′ such that m + n = n′ + 1. With these observations in mind, one can see that rule (92)
copies the unaffected part of the tape from time point t to time point t + 1. Moreover, rule (93)
pads the tape by filling all cells with numbers i ∈ [1.5 · 2t , 2 · 2t − 1] with blank symbols; since
division is not supported in our language, we express this condition as 3 · 2t ≤ 2 · i < 4 · 2t . Finally,
rule (94) updates the state and the tape at the position of the head, and moves the head left or right
according to the transition function. Thus,PM |= halts if and only ifM halts on the empty tape. �

Proposition 3.5. The following hold:

1. I |= P if and only if S(P,τ ) (I) ⊆ I, for each limit program (P,τ ) and each interpretation I
that is limit-closed for (P,τ ); and

2. S(P,τ ) (I1) ⊆ S(P,τ ) (I2) for each semi-positive limit program (P,τ ) and interpretations I1 and

I2 that are limit-closed for (P,τ ), satisfy I1 ⊆ I2, and coincide on the EDB predicates.

Proof. For claim 1, consider an interpretation I limit-closed for (P,τ ). Assume first that
S(P,τ ) (I) ⊆ I and let ρ = φ → α be a ground instance of a rule in P. If I |= φ, then the
definition of S(P,τ ) (I) ensures that I |= ρ, as required. For the converse direction, assume that
S(P,τ ) (I) � I. Since I is limit-closed for (P,τ ), there must be a ground instance φ → α of a rule
ρ ∈ P such that I |= φ but I 	|= α , meaning that I 	|= ρ and I 	|= P as a result.

For claim 2, simply recall that S(P,τ ) (I) is the limit-closure of SP (I) for every limit-closed
interpretation I, and that both SP and the closure operator are monotonic for interpretations
coinciding on the EDB predicates in P with respect to set inclusion when P is semi-positive. �

Proposition 3.7. For each limit program (P,τ ) and each fact γ , we can compute in linear time a

homogeneous program (P′,τ ′) and a fact γ ′ such that (P,τ ) |= γ if and only if (P′,τ ′) |= γ ′.

Proof. Let (P,τ ) be an arbitrary limit program. We construct a limit program (P′,τ ′) with all
limit predicates max (a program with all limit predicates min would be constructed in a similar
way). Let, for each min predicateC in (P,τ ), program (P′,τ ′) use a fresh max predicateC ′ of the
same arity and uniquely associated to C . Then, let P′ be constructed from P by replacing each
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min atom C (t, s ) by the max atom C ′(t,−s ), if s � ∞, and by C ′(t,∞) otherwise. Finally, let γ ′ be
obtained from γ in the same way (assuming that −0 is 0 and −(−k ) is k for k a positive integer); in
particular, unless γ is a min fact, we have γ ′ = γ .

Consider an interpretation I limit-closed for (P,τ ), and let I′ be an interpretation limit-closed
for (P′,τ ′) that is obtained from I by replacing each min factC (a,k ) withC ′(a,−k ); it is straight-
forward to see that I |= P if and only if I′ |= P′, and that I |= γ if and only if I′ |= γ ′. By induc-
tion on the construction ofM (P,τ ), it follows that (P,τ ) |= γ if and only if (P′,τ ′) |= γ ′. �

Lemma 4.2. For every positive LL-program P,M (P ) =M (G (P )).

Proof. Consider the partial materialisations Mκ
i of a positive LL-program P, for ordinals κ

and numbers i ≥ 1. Since P is positive,M (P ) = Mω1
1 , and it is enough to prove, by transfinite

induction on κ, that eachMκ
1 is also the partial materialisation of G (P ) for the same ordinal κ

and stratum 1. To this end, note thatM0
1 = M

ω1
0 = ∅ is also the partial materialisation of G (P )

for ordinal 0, and hence we need to show that SP (Mκ
1 ) = SG (P) (Mκ

1 ) for every κ > 0. On the
one hand, we have SP (Mκ

1 ) ⊆ SG (P) (Mκ
1 ) because each object and each integer in an exact fact

inMκ
1 is also mentioned in P (the latter holds since all exact predicates are EDB); on the other

hand, SG (P) (Mκ
1 ) ⊆ SP (Mκ

1 ) because each ground instance of a rule in G (P ) is also an instance
of a rule in P. �

Lemma 4.10. For each OG-ground rule ρ with body φ and each pseudointerpretation J , a ground-

ing σ of ρ is a solution to the IPψ (ρ,J ) if and only if J |= φσ .

Proof. We first argue the forward direction of the claim. Let σ be a solution toψ (ρ,J ) and let
α be an atom in φ. We show that J |= ασ by distinguishing the following cases.

First, if α is object or exact, then, sinceψ (ρ,J ) has a solution, α ∈ J and hence J |= α .
Next, if α is limit, then, sinceψ (ρ,J ) has a solution,

— α = C (a, s ) for s � ∞ and there exists � ∈ Z with (s �C �) inψ (ρ,J ) and C (a, �) ∈ J ;
— α = C (a, s ) for s � ∞ and C (a,∞) ∈ J ; or
— α = C (a,∞) and α ∈ J .

In the first case, we have sσ �C � since σ is a solution, and hence J |= C (a, sσ ). In the second case,
J |= C (a, sσ ) due to C (a, sσ ) � C (a,∞). In the third case, J |= α by construction.

Finally, if α is a comparison atom, then α is inψ (ρ,J ), and the claim trivially follows.
The converse direction of the lemma is analogous to the forward direction. �

Lemma 4.11. For each OG-ground program P and each ordinal κ, the partial materialisationMκ
1

of P and the partial pseudomaterialisation N κ of P correspond to each other.

Proof. The lemma follows by a simple transfinite induction based on the following claims.

1. Let I be a limit-closed interpretation and let J be its corresponding pseudointerpretation.
Then the limit-closed interpretation SP (I) corresponds to the pseudointerpretation TP (J ).

2. Let I be a set of limit-closed interpretations and let J be the set of their corresponding pseu-
dointerpretations. Then the limit-closed interpretation

⋃
I corresponds to the pseudointer-

pretation sup J .

We start by showing claim 1. For this, consider a limit-closed interpretationI, the corresponding
pseudointerpretation J , and a pseudofact γ . We distinguish the cases given next.

Let γ be an object fact. We show that γ ∈ SP (I) if and only if γ ∈ TP (J ). Assume first that
γ ∈ SP (I). Then, there exists a grounding σ of a rule ρ = φ → γ in P such that I |= φσ . Since
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J corresponds to I, J |= φσ , and Lemma 4.10 ensures that σ is a solution toψ (ρ,J ). Moreover,
δ (ρ,J ) = γ , and thus γ ∈ TP (J ) as required. For the converse direction, assume that γ ∈ TP (J ).
Then, there exist a rule ρ = φ → γ in P and a solution σ toψ (ρ,J ). Lemma 4.10 then ensures that
J |= φσ , and so I |= φσ as well. Therefore, γσ = γ ∈ SP (I).

Let γ be an exact fact. It immediately follows that γ ∈ SP (I) if and only if γ ∈ TP (J ), because
both memberships hold if only if γ ∈ P.

Let γ be a limit fact of the form C (a,k ) with k ∈ Z. We show that γ ∈ SP (I) if and
only if γ � TP (J ). Assume first that γ ∈ SP (I). Then, there exists a grounding σ of a rule
ρ = φ → C (a, s ) in P such that I |= φσ and either s = ∞ or k �C sσ . Analogously to the case
where γ is an object fact, Lemma 4.10 ensures that σ is a solution to ψ (ρ,J ). Therefore, in the
case when s � ∞, either the IOP (ψ (ρ,J ),maxC s ) is unbounded, or sσ �C �, for � the optimal
value of the IOP. Since ρ ∈ P, γ � δ (ρ,J ) = C (a, �′) � TP (J ) as required, where �′ = ∞ if
s = ∞ or the IOP is unbounded, or �′ = � otherwise. For the converse direction, assume that
γ � TP (J ). Then there exist a rule ρ = φ → C (a, s ) in P and a solution σ to the IP ψ (ρ,J ) such
that γ = C (a,k ) � δ (ρ,J ) = C (a, �), where � is either∞ if s = ∞, or � is the value of sσ otherwise.
Lemma 4.10 then ensures J |= φσ , and so I |= φσ as well. Hence, either C (a,k ′) ∈ SP (I) for all
k ′ ∈ Z (if s = ∞) or C (a, �) ∈ SP (I) (if s � ∞), and the fact that SP (I) is limit-closed ensures
that γ = C (a,k ) ∈ SP (I).

Let γ be a limit pseudofact of the formC (a,∞). We show that, for the setK = {C (a,k ) | k ∈ Z},
K ⊆ SP (I) if and only ifγ ∈ TP (J ). Assume first thatK ⊆ SP (I). SinceP is finite, the infinitely
many facts of K in SP (I) can be produced in only two ways:

— by a rule ρ = φ → C (a,∞) in P and a grounding σ of ρ such that I |= φσ ; or
— by a rule ρ = φ → C (a, s ) with s � ∞ in P and an infinite sequence σi , i ∈ N, of groundings

of ρ such that, for each i , we have I |= φσi and sσi ≺C sσi+1.

In the former case, γ ∈ TP (J ) follows analogously to the case of γ an object fact. In the latter
case, J |= φσi and Lemma 4.10 ensures that each σi is a solution to ψ (ρ,J ). Moreover, since
the sequence sσi , i ∈ N, is strictly ascending with respect to ≺C , the IOP (ψ (ρ,J ),maxC s ) is
unbounded. Since ρ ∈ P, we then have γ = δ (ρ,J ) ∈ TP (J ), as required. For the converse
direction, assumeC (a,∞) ∈ TP (J ). Then, a rule ρ = φ → C (a, s ) exists inP such that either s = ∞
or (ψ (ρ,J ),maxC s ) is unbounded. Again, in the former case, the proof proceeds analogously to
the case of γ an object fact. In the latter case, an infinite sequence σi , i ∈ N, of solutions toψ (ρ,J )
exists such that sσi ≺C sσi+1, for i ∈ N. Lemma 4.10 ensures J |= φσi , for i ∈ N, and so I |= φσi as
well. Thus, for each k ∈ Z, some i ∈ N exists such that k ≺C sσi . Then limit-closedness of SP (I)
ensures that K ⊆ SP (I), as required.

We now turn to claim 2. Again, it suffices to consider an arbitrary pseudofact γ and the cases
specified next.

Let γ be an object or exact fact. We show that γ ∈ ⋃ I if and only if γ ∈ sup J . If γ ∈ ⋃ I , then
γ ∈ I for some I ∈ I , and hence γ ∈ J for J ∈ J corresponding to I; thus, γ ∈ sup J as required.
The converse direction is analogous.

Let γ be a limit factC (a,k ) where k ∈ Z. We show that γ ∈ ⋃ I if and only if γ � sup J . Assume
first γ ∈ ⋃ I . Then γ ∈ I for some I ∈ I , and γ � J for J ∈ J corresponding to I. Thus,
γ � sup J , as required. The converse direction is analogous.

Let γ be a limit pseudofact of the form C (a,∞). We show that, for K = {C (a,k ) | k ∈ Z},
K ⊆ ⋃ I if and only if γ ∈ sup J . Assume K ⊆ ⋃ I . Then, for each k ∈ Z there is Ik ∈ I such
that C (a,k ) ∈ Ik , and hence C (a,k ) � Jk for Jk ∈ J corresponding to Ik . Therefore, γ ∈ sup J , as
required. The converse direction is analogous. �
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Lemma 4.17. Let P be an OG-ground program, and let J and σ be a pseudointerpretation and a

variable assignment, respectively, such that J and σ correspond to each other. Then, J |= P if and

only if σ is a solution to ξP .

Proof. We first prove that J |= α if and only if σ is a solution to ξα for every function-free
ground atom α that is∞-free whenever it is exact. Let us consider all possible forms of α .

Let α = A(a) be an object atom. Then, ξα = defAa, and σ (defAa) = true if and only if α ∈ J ; so
the claim follows.

Let α = B (a,k ) be an exact atom with k ∈ Z. Then, ξα = defBak and σ (defBak ) = true if and only
if B (a,k ) ∈ J ; so the claim follows.

Let α = C (a, s ) be a limit atom with s � ∞. If J |= α , then either C (a,∞) ∈ J or an integer �
exists such that C (a, �) ∈ J and s �C �. Either way, σ (defCa) = true; moreover, σ (finCa) = false

in the former and σ (valCa) = � in the latter case. Thus, σ is a solution to ξα by definition. The
converse direction is analogous.

Let α = C (a,∞) be a limit atom. The proof is analogous to the previous case.
Let α be a comparison atom. Then, ξα = α , and the truth of α is independent of J and σ ; so the

claim is immediate.
Consider now the limit-closed interpretation I corresponding to J . By definition, for each rule

ρ ∈ P, J |= ρ if and only if I |= ρ, and the latter is equivalent to I |= ρ ′ for each ground instance
ρ ′ of ρ by the semantics of universal quantification in first-order logic. Hence, the claim can be
restated as follows: for each ρ ∈ P and each grounding σ ′ of ρ, J |= ρσ ′ if and only if σ ′ is
a solution to ξρ . Now note that, by construction, ξρσ ′ = (ξρ )σ ′ for each grounding σ ′ of ρ, and
groundings of rules ρ ∈ P can be equivalently seen as assignments to the universally quantified
numeric variables in ξρ ; so the claim of the lemma follows immediately from the fact that J |= α
if and only if σ is a solution to ξα for every ground atom α . �

Lemma 4.26. For every semi-positive LL-program P,M (P ) =M (R (P )).

Proof. Consider a semi-positive LL-program P. First, note that M (P ) = M (G (P )) by the
same argument as in the proof of Lemma 4.2. Thus, it remains to showM (G (P )) =M (R (P )).

We first prove that M (G (P )) ⊆ M (R (P )). For each number i ≥ 1 and ordinal κ, let Mκ
i

be the corresponding partial materialisation of G (P ). Since G (P ) is semi-positive, {M (G (P )) =
Mω1

2 }, and thus it is enough to show, by transfinite induction on κ, thatMκ
2 ⊆ M (R (P )) for each

ordinal κ.
Consider first the case when κ = 0. Then, by definition,M0

2 =M
ω1
1 =M (G (P )[1]) (it is worth

reminding that G (P )[1] is the first stratum of G (P )). However, G (P )[1] is a positive LL-program
and hence G (P )[1] ⊆ R (P ) by construction, which impliesM (G (P )[1]) ⊆ M (R (P )).

Let now κ = κ ′ + 1 and the claim hold for κ ′. Consider a fact γ ∈ Mκ
2 ; we need to show that

γ ∈ M (R (P )). By definition, Mκ
2 = SG (P)[2] (Mκ′

2 ) ∪ Mω1
1 . If γ ∈ Mω1

1 , then γ ∈ M (R (P ))

follows as shown in the base case. Consider now the case γ ∈ SG (P)[2] (Mκ′
2 ). By definition, there

is a rule ρ = φ → α in G (P )[2], a grounding σ such thatMκ′
2 |= φσ , and a fact γ ′ that can be

obtained from ασ by replacing occurrences of∞with integers and evaluating numeric terms such
that γ � γ ′. SinceM (R (P )) |= R (P ), it suffices to show that there is a rule ρ ′ = φ ′ → α in R (P )
obtained from ρ as in Definition 4.25 such thatM (R (P )) |= φ ′σ . To this end, let φ ′ be obtained
from φ by

— deleting all negative object literals;
— deleting all negative exact literals notB (a, s ) such that B (a,k ) � G (P ) for each k ∈ Z and re-

placing all other such literals with comparison atoms (s < k1) if sσ < k1, with (ki−1 < s < ki )
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if ki−1 < sσ < ki for i ∈ [2,h], and with (kh < s ) if kh < sσ , where k1 < · · · < kh are all
integers such that B (a,ki ) ∈ G (P ), for i ∈ [1,h];

— deleting all negative limit predicates of the form notC (a,∞); and
— deleting all negative limit literals notC (a, s ) with s � ∞ such that C (a, �) � G (P ) for each
� ∈ Z and replacing all other such literals with a single comparison atom (k ≺C s ) for
k = maxC {� ∈ Z | C (a, �) ∈ G (P )}.

Note that, in the second case, we have sσ � ki for each i ∈ [1,h] sinceMκ′
2 |= notB (a, sσ ) by

assumption, and all facts in G (P ) are contained inMκ′
2 ; thus, φ ′ is always defined. We next show

that the rule ρ ′ = φ ′ → α is obtained from ρ according to Definition 4.25 and hence belongs to
R (P ). Indeed, by definition, the only possibility why this may not be the case is that ρ is deleted,
which implies that φ contains a negative literal notα ′ such that one of the following holds:

— α ′ is object and α ′ ∈ G (P ); or
— α ′ = C (a, s ) is limit and C (a,∞) ∈ G (P );

none of these cases, however, is possible sinceMκ′
2 |= φσ by assumption, G (P ) is semi-positive,

and the predicate in α is EDB. We are left to show that M (R (P )) |= φ ′σ . Since Mκ′
2 |= φσ

and, by the inductive hypothesis,Mκ′
2 ⊆ M (R (P )),M (R (P )) satisfies all positive literals in φσ ,

which are in φ ′σ by construction. Hence, we only need to check that βσ evaluates to true for each
comparison atom β in φ ′ replacing a negative literal notα ′ in φ. By construction, there are two
cases:

— if β is one of (s < k1), (ki−1 < s < ki ) for i ∈ [2,h], and (kh < s ), with α ′ = B (a, s ) exact and
h as above, then βσ evaluates to true by the choice of β in the construction of φ ′; and

— if β = (k ≺C s ), α ′ = C (a, s ) is limit, and k = maxC {� ∈ Z | C (a, �) ∈ G (P )}, then βσ
evaluates to true becauseMκ′

2 |= notα ′σ (sinceMκ′
2 |= φσ ) and C is EDB.

Finally, let κ be a limit ordinal and, by the inductive hypothesis,Mκ′
2 ⊆ M (R (P )) for all κ ′ < κ.

ThenMκ
2 ⊆ M (R (P )) follows sinceMκ

2 =
⋃

κ′<κMκ′
2 by definition.

We next prove that M (R (P )) ⊆ M (G (P )). Let now, for every i ≥ 1 and ordinal κ, Mκ
i be

the partial materialisations of R (P ). Since R (P ) is positive,M (R (P )) =Mω1
1 , and therefore it is

enough to show thatMκ
1 ⊆ M (G (P )) for every ordinal κ by transfinite induction on κ.

If κ = 0, then the claim is immediate, becauseM0
1 = ∅ by definition.

Let now κ = κ ′ + 1 and the claim hold for κ ′. Consider a fact γ ∈ Mκ
1 ; we need to show that

γ ∈ M (G (P )). SinceMκ
1 = SR (P) (Mκ′

1 ), there is a rule ρ ′ = φ ′ → α in R (P ), a grounding σ such

thatMκ′
1 |= φ ′σ , and a fact γ ′ that can be obtained from ασ by replacing occurrences of ∞ with

integers and evaluating numeric terms such that γ � γ ′. Consider the rule ρ = φ → α in G (P )
that yields ρ ′ in R (P ). SinceM (G (P )) |= G (P ), it suffices to show thatM (G (P )) |= φσ . Since
Mκ′

1 |= φ ′σ and, by the inductive hypothesis,Mκ′
1 ⊆ M (G (P )),M (G (P )) satisfies all positive

literals in φ ′σ , which are copied from φσ . Thus, we only need to check thatM (G (P )) |= notα ′σ
for each negative literal notα ′ in φ. By construction, we have the following cases:

— if α ′ is an object atom, then, since ρ is not deleted, α ′ � G (P ) by the definition of the reduct;
therefore, the claim follows because P is semi-positive and hence the predicate of α ′ is EDB;

— if α ′ = B (a, s ) is an exact atom with B (a,k ) ∈ G (P ) for some k ∈ Z, then sσ � k for each
such k since the comparisons replacing notα ′ in φ ′ hold in Mκ′

1 under σ , and the claim
follows by the same reasons as in the preceding case;

— if α ′ = B (a, s ) is an exact atom with B (a,k ) � G (P ) for all k ∈ Z, then the claim follows as
above;
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— if α ′ = C (a, s ) is a limit atom with s � ∞ and C (a, �) ∈ G (P ) for some � ∈ Z, then, since ρ
is not deleted, C (a,∞) � G (P ); moreover, maxC {� ∈ Z | C (a, �) ∈ G (P )} ≺C sσ since the
comparison atom replacing notα ′ in φ ′ holds inMκ′

1 under σ ; hence, the claim then follows
as above; and

— if α ′ = C (a, s ) is a limit atom with either s = ∞ or C (a, �) � G (P ) for all � ∈ Z ∪ {∞}, then
the claim follows as above.

Finally, let κ be a limit ordinal and, by the inductive hypothesis,Mκ′
1 ⊆ M (G (P )) for all κ ′ < κ.

ThenMκ
1 ⊆ M (G (P )) follows sinceMκ

1 =
⋃

κ′<κMκ′
1 . �

Lemma 6.10. For each stable OG-ground program P and each pseudointerpretation J , there is

i ∈ [1, |P |] such that one of the following holds, where J0 = J and Jj = TP (Jj−1) for each j ≥ 1:

1. Ji = Ji−1;

2. there is a rule in P that is applicable to Ji but not to Ji−1; and

3. there is a node 〈Ca〉 on a positive-weight cycle in the value propagation graph of P over Ji

such that C (a,∞) � Ji .

Proof. As before, we focus on homogeneous programs all of whose limit predicates are max.
We also use the following standard notions: a path in a graph is simple if it has no repeated nodes,
and the length of a path is the number of edges on the path.

Let P be a homogeneous program as above, and let J , Jj , j ≥ 0, be pseudointerpretations as
above. Note that the length of the longest simple path in the value propagation graph of P over a
pseudointerpretation is bounded by |P |. Therefore, it is enough to show the following claim: if a
number j ∈ N is such that there is no i ∈ [1, j] for which properties 1–3 hold, then, for every node
〈Ca〉 in the value propagation graphG = (V ,E,Ω) of P over Jj such that � < �′ for the pseudofacts
C (a, �) ∈ Jj andC (a, �′) ∈ Jj+1, there is a simple path Π = 〈C1a1〉, . . . , 〈Cj aj 〉, 〈Ca〉 inG (of length
j) such that �′ ≤ �i + Ω(Πi ) for each i ∈ [1, j] withCi (ai , �

i ) ∈ Jj and Πi = 〈Ci ai 〉, . . . , 〈Cj aj 〉, 〈Ca〉.
Indeed, the claim for j = |P | implies that there is no node 〈Ca〉 with � < �′ as there is no simple
path of length more than |P |; the lack of such a node, however, implies, together with property 2,
that Jj = Jj−1—that is, property 1.

We next prove this claim by induction on j. If j = 0, then the claim is vacuous as [1, j] is empty;
so suppose j > 0 and the claim holds for j−1. Consider a node 〈Ca〉 in the value propagation graph
G = (V ,E,Ω) of P over Jj such that � < �′ for the pseudofacts C (a, �) ∈ Jj and C (a, �′) ∈ Jj+1.
Then, there is a rule ρ = φ → C (a, s ) in P applicable to Jj such that δ (ρ,Jj ) = C (a, �′)—that is,
such that �′ is ∞ if the IOP (ψ (ρ,Jj ),max s ) is unbounded, and �′ is the optimal value of the IOP
otherwise. Since property 2 does not hold, rule ρ is also applicable toJj−1 and so, by Proposition 6.3,
there is an atom Cj (aj , sj ) in φ with pseudofacts Cj (aj , �j ) ∈ Jj−1 and Cj (aj , �

′
j ) ∈ Jj such that

s depends on sj and �j < �
′
j . Hence, ρ produces the edge e = (〈Cj aj 〉, 〈Ca〉) in G. Moreover, by

Definitions 4.8 and 6.4, Ω(e ) = Ωρ (e ), while Ωρ (e ) = ∞ if the IOP if unbounded, Ωρ (e ) = ⊥ if
it is bounded and �′j = ∞, and Ωρ (e ) = �′ − �′j if it is bounded and �′j ∈ Z. In fact, Ωρ (e ) = ⊥
is not possible, because stability of P would then imply Ω′(e ) = ⊥ for G ′ = (V ,E,Ω′) the value
propagation graph of P over Jj−1 (which has the same set of edges asG since property 2 does not
hold) and hence �′j = �j = ∞ by the definition of Ω′(e ), contradicting the choice of Cj (aj , sj ). In

the two remaining cases (i.e., Ωρ (e ) = ∞ and Ωρ (e ) = �′ − �′j ), we have �′j +Ω(e ) = �′j +Ωρ (e ) = �′.
By the inductive hypothesis for node 〈Cj aj 〉, there is a simple path Πj = 〈C1a1〉, . . . , 〈Cj aj 〉 in

G ′ of length j − 1 such that �′j ≤ �ij + Ω′(Πi
j ) for each i ∈ [1, j − 1] with Ci (ai , �

i
j ) ∈ Jj−1 and

Πi
j = 〈Ci ai 〉, . . . , 〈Cj aj 〉. Next, we show that the path Π = Πj , 〈Ca〉 in G satisfies the required

conditions for 〈Ca〉. We first consider an arbitrary i ∈ [1, j] and show that �′ ≤ �i + Ω(Πi ) for
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the pseudofact Ci (ai , �
i ) ∈ Jj and subpath Πi = Πi

j , 〈Ca〉. Indeed, on the one hand, if i = j, then

�′ ≤ �i + Ω(Πi ) because �′ = �′j +Ω(e ), as shown above, �′j = �
i
j ≤ �i by monotonicity of TP (claim

2 of Corollary 4.12), and Ω(Πi ) = Ω(e ). On the other hand, if i ∈ [1, j − 1] then �′ ≤ �i + Ω(Πi )
since, again, �′ = �′j +Ω(e ), �′j ≤ �ij +Ω′(Πi

j ) by the inductive hypothesis, �ij ≤ �i by monotonicity,

and Ω′(Πi
j ) + Ω(e ) ≤ Ω(Πi

j ) + Ω(e ) = Ω(Πi ) by stability of P. To complete the proof, it remains

to show that Π is simple. For the sake of contradiction, assume that this is not the case and Πi is a
cycle for some i ∈ [1, j]—that is, 〈Ca〉 = 〈Ci ai 〉. Then �i = � and, as we just proved, �′ ≤ � + Ω(Πi ).
However, � < �′ by assumption, and so Πi is a positive-weight cycle in G, which implies, since
property 3 does not hold, that � = ∞, contradicting � < �′. We conclude that Π is indeed simple,
as required. �

Proposition 7.5. The following hold:

1. I |= P if and only if SP (I) ⊆ I, for each limit Datalog
agg
Z

program P and each object-finite

limit-closed interpretation I; and

2. SP (I1) ⊆ SP (I2) for each semi-positive limit Datalog
agg
Z

program P and each object-finite

limit-closed interpretations I1 and I2 that satisfy I1 ⊆ I2 and coincide on the EDB predicates.

Proof. Claim 1 follows in the same way as claim 1 of Proposition 3.5. For claim 2, note that the
limit-closure operator is monotonic with respect to set inclusion, so we only need to show that so
is the immediate consequence operator S. In particular, it suffices to prove that if an object-finite
limit-closed interpretation I1 satisfies a literal in the body of a ground rule in a semi-positive limit
Datalog

agg
Z

program, then so does each object-finite limit-closed interpretation I2 containing I1
and coinciding with I1 on the EDB predicates. The statement is straightforward for nonaggregate
literals, so we focus on aggregation. Consider I1 and I2 as above, and a ground aggregate atom
β = (s � aggC (t, -) group by a) such that I1 |= β . If agg is count, then, by construction, the aggre-
gation values in I1 and I2 do not depend on particular samples, and I2 |= β follows since I1 ⊆ I2
and � ∈ {≤, <}. If agg is max, then, since I1 ⊆ I2, for each sample of C in I1 we can find a sample
of C in I2 with the same or greater aggregation value, and I2 |= β follows since � ∈ {≤, <}. The
case when agg is sum+ is analogous to the case of max, while the cases when agg is min or sum−

are symmetric to the cases of max and sum+, respectively. �

Theorem 8.4. The following hold for each predicate-nonrepeating strict rs-monotonic rs-program

Q and each rs-fact δ :

— if δ is A(a) with A a noncost rs-predicate, then Q |=rs δ if and only if P (Q) |= A′(a); and

— if δ is C (a, �) with C a cost rs-predicate, then

— if � = −∞ then Q |=rs δ if and only if P (Q) |= C−∞ (a, 0) and P (Q) 	 |= C ′(a,k ) for all k ∈ Z,

— if � ∈ Z then Q |=rs δ if and only if P (Q) |= �C ′(a, �)�, and

— if � = +∞ then Q |=rs δ if and only if P (Q) |= C ′(a,∞).

Proof. An rs-interpretation H and a limit-closed interpretation I correspond to each other if
the following hold:

— A(a) ∈ H with A noncost if and only if A′(a) ∈ I;
— C (a,−∞) ∈ H with C cost if and only if C−∞ (a, 0) ∈ I and C ′(a,k ) � I for all k ∈ Z;
— C (a,k ) ∈ H with C cost and k ∈ Z if and only if C ′(a,k ) ∈ I and C ′(a,k + 1) � I; and
— C (a,+∞) ∈ H with C cost if and only if C ′(a,k ) ∈ I for all k ∈ Z.

It is straightforward to check that each rs-interpretation has a unique corresponding limit-closed
interpretation, and thatH1 �rs H2 if and only if I1 ⊆ I2 for the limit-closed interpretations I1 and
I2 corresponding to rs-interpretationsH1 andH2, respectively; moreover, due to rs-atoms (0 ≤ m)
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introduced in the step from Q to Qsum of the translation of a strict rs-program Q in Definition 8.3,
each partial materialisation of translation P (Q) has a unique corresponding rs-interpretation.

Consider an rs-program Q and an rs-fact δ as in the statement of the theorem. Recall that rs-
programs Q and Qsum are equivalent, and hence Qsum is rs-monotonic; moreover, same as Q, Qsum

is predicate-nonrepeating. Therefore, by construction, the materialisationM (P (Q)) is a model of
the setP−∞ of all rules (83), and it suffices to prove thatL (Qsum) andM (P (Q)) correspond to each
other. To this end, we first show that the limit-closed interpretation I corresponding to L (Qsum)
satisfiesI ⊆ M (P (Q)) and then that the rs-interpretationH corresponding toM (P (Q)) satisfies
H �rs L (Qsum).

To show I ⊆ M (P (Q)), consider the rs-interpretation Lκ defined as follows for each ordinal
κ, where sup is the supremum in the complete lattice of rs-interpretations:

L0 = ∅, Lκ = RQsum (Lκ′ ) if κ = κ ′ + 1, Lκ = sup
κ′<κ

Lκ′ if κ is a limit ordinal.

Consider also, for each κ, the limit-closed interpretation Iκ corresponding to Lκ . It is enough to
show, by transfinite induction on κ, that Iκ ⊆ M (P (Q)) for each κ.

If κ = 0, the claim is immediate because I0 = L0 = ∅.
Let κ = κ ′ + 1 and Iκ′ ⊆ M (P (Q)). It suffices to show that, for each fact γ ∈ Iκ , we have

γ ∈ M (P (Q)). So, let γ ∈ Iκ be arbitrary. Then, there is a grounding σ of an rs-rule π = ψ → β
in Qsum such that Lκ′ |= ψσ and

— if βσ = A(a) with A noncost, then γ = A′(a);
— if βσ = C (a,−∞) with C cost, then γ = C−∞ (a, 0);
— if βσ = C (a,k ) with C cost and k ∈ Z, then γ = C−∞ (a, 0) or γ = C ′(a,k ′) for some k ′ ≤ k ;

and
— if βσ = C (a,+∞) with C cost, then γ = C−∞ (a, 0) or γ = C ′(a,k ) for some k ∈ Z.

Consider the rule ρm,n
π = φ → α in P (Q), where m and n are the variables of π that are sent

by σ to −∞ and +∞, respectively. Then, by construction (in particular, sinceM (P (Q)) is limit-
closed and satisfies P−∞—that is, rules (83)), it suffices to show thatM (P (Q)) satisfies ασ (i.e.,
that ασ ∈ M (P (Q)) if ασ is a fact or C ′(a,k ) ∈ M (P (Q)) for each k ∈ Z if ασ = C ′(a,∞)). To
this end, we claim that there exists an extension σ ′ of σ to all the nonlocal variables in φ that are
local inψ (all such variables are in the max and sum aggregate rs-atoms inψ ) such that Iκ′ |= φσ ′.
Indeed, consider any atom α ′ in φ, which is the translation of an rs-atom β ′ in ψ . Depending on
the shape of α ′, we have the following cases:

— if α ′ = A′(t) with A′ object and β ′ = A(t), then α ′σ ∈ Iκ′ since β ′σ ∈ Lκ′ ;
— if α ′ is one of C−∞ (t, 0), C ′(t,k ) for k ∈ Z, or C ′(t,∞) with C cost, and β ′ = C (t, s ) with

sσ = −∞, sσ = k or sσ = +∞, respectively, then α ′σ ∈ Iκ′ since β ′σ ∈ Lκ′ ;
— if α ′ is a comparison atom and β ′ is built-in, then α ′σ evaluates to true since so does β ′σ ;

— if α ′ = (s ≤ countC−∞ (t, -) group by t′) and β ′ = (s
rs
= countC (t, -) group by t′) with

sσ ∈ Z, then Iκ′ |= α ′σ since Lκ′ |=rs β
′σ and Iκ′ satisfies P−∞;

— if α ′ = (0 ≤ 0) and β ′ = (s
rs
= maxC (t, -) group by t′) with sσ = −∞, then α ′σ evaluates to

true;

— if α ′ = C ′(t, s ) and β ′ = (s
rs
= maxC (t, -) group by t′) with sσ ∈ Z, then α ′σ ′ ∈ Iκ′ , for

σ ′ the extension of σ to the variables in t such that C (tσ ′, sσ ) ∈ Lκ′ , which exists since
Lκ′ |=rs β

′σ ;

— if α ′ = C ′(t,∞) and β ′ = (s
rs
= maxC (t, -) group by t′) with sσ = +∞, then Iκ′ |= α ′σ ′

(i.e., C ′(tσ ′,k ) ∈ Iκ′ for all k ∈ Z), for σ ′ the extension of σ to the variables in t such that
C (tσ ′,+∞) ∈ Lκ′ , which exists since Lκ′ |=rs β

′σ ;
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— if α ′ = (s ≤ sum+C ′(t, -) group by t′) and β ′ = (s
rs
= sumC (t, -) group by t′) with sσ ∈ Z,

then Iκ′ |= α ′σ since Lκ′ |=rs β
′σ and Iκ′ corresponds to Lκ′ ; and

— if α ′ = C ′(t,∞) and β ′ = (s
rs
= sumC (t, -) group by t′) with sσ = +∞, then Iκ′ |= α ′σ ′ (i.e.,

C ′(tσ ′,k ) ∈ Iκ′ for all k ∈ Z), for σ ′ the extension of σ to the local variables of β ′ such
that C (tσ ′,+∞) ∈ Lκ′ , which exists since Lκ′ |=rs β

′σ and t has only finitely many ground
instances.

Note that the case α ′ = (0 < 0) and β ′ = (s
rs
= countC (t, -) group by t′) with sσ ∈ {−∞,+∞} is

not possible, because Lκ′ |=rs β
′σ and count ranges over natural numbers (count cannot output

+∞ because t has only finitely many possible ground instances over constants in Lκ′). Also, the

case α ′ = (0 < 0) and β ′ = (s
rs
= sumC (t, -) group by t′) with sσ = −∞ is not possible, because

Lκ′ |=rs β
′σ while the cost domain of sum is over N.

We conclude that there is an extension σ ′ of σ such that Iκ′ |= α ′σ ′ for every atom α ′ in φ, and
hence Iκ′ |= φσ ′. Therefore, SP (Q) (Iκ′ ) satisfies ασ ′ = ασ . Furthermore, Iκ′ ⊆ M (P (Q)) by

the inductive hypothesis, andM (P (Q)) is a model of P (Q); therefore, SP (Q) (Iκ′ ) ⊆ M (P (Q)).
HenceM (P (Q)) satisfies ασ , which implies Iκ ⊆ M (P (Q)), as required.

Finally, let κ be a limit ordinal and Iκ′ ⊆ M (P (Q)) for all κ ′ < κ. Then, Iκ ⊆ M (P (Q)) since
Iκ is the union of all Iκ′ with κ ′ < κ by the correspondence of �rs and ⊆, and the definition of
the correspondence relation between rs-interpretations and limit-closed interpretations.

To showH �rs L (Qsum) for the rs-interpretationH corresponding toM (P (Q)), consider, for
each ordinal κ, the limit-closed interpretation K κ defined as follows:

K 0 = ∅, K κ = SP−∞ (SP (Q) (K κ′ )) if κ = κ ′ + 1, K κ =
⋃

κ′<κ

K κ′ if κ is a limit ordinal.

In other words, each K κ is the closure of the partial materialisationMκ
1 of P (Q) with the rules

in P−∞. Since P (Q) is positive and includes P−∞,M (P (Q)) = K ω1 . Hence, it suffices to show,
by transfinite induction on κ, thatH κ �rs L (Qsum) for each κ, whereH κ is the rs-interpretation
corresponding to K κ .

If κ = 0, the claim is immediate becauseH 0 = K 0 = ∅.
Let κ = κ ′ + 1 and H κ′ �rs L (Qsum). It suffices to show that, for each rs-fact δ ∈ H κ , there is

some δ ′ ∈ L (Qsum) such that δ �rs δ
′. So, let δ ∈ H κ be arbitrary. Then, there is a grounding σ of a

rule ρ = φ → α inP (Q) such thatK κ′ |= φσ , and δ isA(a),C (a,−∞),C (a,k ) fork ∈ Z, orC (a,+∞)
whenever ασ is A′(a),C−∞ (a, 0),C ′(a,k ), orC ′(a,∞), respectively (note that ρ cannot come from
P−∞ since rules (83) of P−∞ derive only facts corresponding to rs-facts that are strictly subsumed
by rs-facts in H κ with respect to �rs). Consider a minimal limit-closed sub-interpretation I′ of
K κ′ such that I′ |= P−∞ and I′ |= φσ , the rs-interpretation H′ corresponding to I′ , and the
rs-rule π = ψ → β in Qsum such that ρ = ρm,n

π for cost variables m and n of π . Note that δ = βσ ′,
where σ ′ is the substitution obtained from σ by assigning −∞ to all m and +∞ to all n. We claim
that H′ |=rs ψσ

′. Indeed, consider any rs-atom β ′ in ψ and its translation αβ ′ in φ. Depending of
the shape of β ′, we have the following cases:

— if β ′ = A(t) with A noncost, then αβ ′ = A′(t) and so β ′σ ′ ∈ H ′ since αβ ′σ ∈ I′ and
β ′σ ′ = β ′σ ;

— if β ′ = C (t, s ) withC cost and sσ ′ = −∞, then αβ ′ = C
−∞ (t, 0) and so β ′σ ′ = C (tσ ,−∞) ∈ H ′

since αβ ′σ ∈ I′;
— if β ′ = C (t, s ) withC cost and sσ ′ ∈ Z, then αβ ′ = C

′(t, s ) and so β ′σ ′ ∈ H ′ since αβ ′σ ∈ I′,
interpretation I′ is a minimal limit-closed subset of K κ such that I′ |= φσ , Q is predicate-
nonrepeating and hence C ′ does not occur in any other atom in φ, and β ′σ ′ = β ′σ ;
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— if β ′ = C (t, s ) withC cost and sσ ′ = +∞, then αβ ′ = C
′(t,∞) and so β ′σ ′ = C (tσ ,+∞) ∈ H ′

since I′ |= αβ ′σ and hence C ′(tσ ,k ) ∈ I′ for all k ∈ Z;
— if β ′ is a built-in rs-atom, then β ′σ ′ evaluates to true since αβ ′σ evaluates to true by con-

struction and Proposition 8.2;

— if β ′ = (s
rs
= countC (t, -) group by t′) with sσ ′ ∈ Z, then αβ ′ = (s ≤

t′(C−∞, t) group by count-) and so H′ |=rs β ′σ ′ since I′ |= αβ ′σ , I′ |= P−∞, interpre-
tation I′ is a minimal limit-closed subset of K κ such that I′ |= φσ , and C ′ does not occur
in any other atom in φ;

— if β ′ = (s
rs
= maxC (t, -) group by t′) with sσ ′ = −∞ then αβ ′ = (0 ≤ 0) and so H′ |=rs β

′σ ′

since C−∞ and C ′ do not occur in any atom in φ—as interpretation I′ is a minimal limit-
closed subset of K κ such that I′ |= φσ , it thus contains no facts over C−∞ or C ′, which, in
turn, implies thatH′ contains no facts over C;

— if β ′ = (s
rs
= maxC (t, -) group by t′) with sσ ′ ∈ Z, then αβ ′ = C ′(t, s ) and so H′ |=rs β ′σ ′

since αβ ′σ ∈ I′, interpretation I′ is a minimal limit-closed subset ofK κ such that I′ |= φσ ,
and C ′ does not occur in any other atom in φ;

— if β ′ = (s
rs
= maxC (t, -) group by t′) with sσ ′ = +∞, then αβ ′ = C

′(t,∞) and soH′ |=rs β
′σ ′

since I′ |= αβ ′σ and henceC ′(tσ ,k ) ∈ I′ for all k ∈ Z, which implies thatC (tσ ′,+∞) ∈ H ′;
— if β ′ = (s

rs
= sumC (t, -) group by t′) with sσ ′ ∈ Z, then αβ ′ = (s ≤ sum+C ′(t, -) group by t′)

and so H′ |=rs β ′σ ′ since I′ |= αβ ′σ , interpretation I′ is a minimal limit-closed subset
of K κ such that I′ |= φσ , C ′ does not occur in any other atom in φ, and since H′ has
no negative numbers or −∞ in rs-facts over C (which, once again, is a consequence of the
minimality of I′); and

— if β ′ = (s
rs
= sumC (t, -) group by t′) with sσ ′ = +∞, then αβ ′ = C

′(t,∞) and soH′ |=rs β
′σ ′

since I′ |= αβ ′σ and henceC ′(tσ ,k ) ∈ I′ for all k ∈ Z, which implies thatC (tσ ′,+∞) ∈ H ′.

Note also that the cases of β ′ = (s
rs
= countC (t, -) group by t′) with sσ ′ ∈ {−∞,+∞} and β ′ =

(s
rs
= sumC (t, -) group by t′) with sσ ′ = −∞ are not possible, because then αβ ′ = (0 < 0) and

hence I′ 	|= αβ ′σ .
So,H′ |=rs β

′σ ′ for each rs-atom β ′ inψ and henceH′ |=rs ψσ
′. Therefore, δ ∈ RQsum (H′).

Since I′ ⊆ K κ′ by construction, H′ corresponds to I′, and H κ′ to K κ′ , we also
have H′ �rs H κ′ , and hence RQsum (H′) �rs RQsum (H κ′ ) by rs-monotonicity of Qsum. Also,
RQsum (H κ′ ) �rs L (Qsum) since H κ′ �rs L (Qsum) by the inductive hypothesis, and L (Qsum) is the
least fixpoint if RQ . Finally, since δ ∈ RQsum (H′) and RQsum (H′) �rs RQsum (H κ′ ) �rs L (Qsum),
there is some δ ′ ∈ L (Qsum) such that δ �rs δ

′, as required.
Finally, let κ be a limit ordinal and H κ′ �rs L (Qsum) for all κ ′ < κ. It suffices to show that, for

each rs-fact δ ∈ H κ , there is an rs-fact δ ′ ∈ L (Qsum) such that δ �rs δ
′. SinceH κ corresponds to

K κ and K κ is the union of all K κ′ for κ ′ < κ, we have the following cases for δ :

— if δ = A(a) with A noncost, then A′(a) ∈ K κ and hence A′(a) ∈ K κ′ for some κ ′ < κ;
therefore, δ ∈ H κ′ , and hence δ ∈ L (Qsum) by the inductive hypothesis;

— if δ = C (a,−∞) with C cost, then C−∞ (a, 0) ∈ K κ , and the inductive hypothesis implies the
existence of δ ′ ∈ L (Qsum) with δ �rs δ

′ analogously to the previous case;
— if δ = C (a,k ) with C cost and k ∈ Z, then C ′(a,k ) ∈ K κ and the argument proceeds as

before; and
— if δ = C (a,+∞) with C cost, then C ′(a,k ) ∈ K κ for all k ∈ Z, and we distinguish two cases:

— if there is κ ′ < κ such that C ′(a,k ) ∈ K κ′ for all k ∈ Z, then δ ∈ H κ′ and hence {δ ∈
L (Qsum)}, and
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— otherwise, for every k ∈ Z there are κ ′
k
< κ and k ′ ≥ k such that C (a,k ′) ∈ H κ′

k and

δ ∈ L (Qsum) follows since, by the inductive hypothesis,H κ′
k �rs L (Qsum) for all k . �
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