
Computing Datalog Rewritings Beyond Horn Ontologies∗

Bernardo Cuenca Grau1 and Boris Motik1 and Giorgos Stoilos2 and Ian Horrocks1

1Department of Computer Science 2School of Electrical and Computer Engineering
University of Oxford, UK National Technical University of Athens, Greece

Abstract
Rewriting-based approaches for answering queries
over an OWL 2 DL ontology have so far been de-
veloped mainly for Horn fragments of OWL 2 DL.
In this paper, we study the possibilities of answer-
ing queries over non-Horn ontologies using dat-
alog rewritings. We prove that this is impossi-
ble in general even for very simple ontology lan-
guages, and even if PTIME = NP. Furthermore, we
present a resolution-based procedure for SHI on-
tologies that, in case it terminates, produces a data-
log rewriting of the ontology. We also show that our
procedure necessarily terminates on DL-LiteH,+

bool
ontologies—an extension of OWL 2 QL with tran-
sitive roles and Boolean connectives.

1 Introduction
Answering conjunctive queries (CQs) over OWL 2 DL on-
tologies is a computationally hard [Glimm et al., 2008; Lutz,
2008], but key problem in many applications. Thus, consid-
erable effort has been devoted to the development of OWL 2
DL fragments for which query answering is tractable in data
complexity, which is measured in the size of the data only.
Most languages obtained in this way are Horn: ontologies in
such languages can always be translated into first-order Horn
clauses. This includes the families of ‘lightweight’ languages
such as DL-Lite [Calvanese et al., 2007], EL [Baader et al.,
2005], and DLP [Grosof et al., 2003] that underpin the QL,
EL, and RL profiles of OWL 2, respectively, as well as more
expressive languages, such as Horn-SHIQ [Hustadt et al.,
2005] and Horn-SROIQ [Ortiz et al., 2011].

Query answering can sometimes be implemented via query
rewriting: a rewriting of a query Q w.r.t. an ontology T is
another query Q′ that captures all information from T nec-
essary to answer Q over an arbitrary data set. Unions of
conjunctive queries (UCQs) and datalog are common target
languages for query rewriting. They ensure tractability w.r.t.
data complexity, while enabling the reuse of optimised data
management systems: UCQs can be answered using rela-
tional databases [Calvanese et al., 2007], and datalog queries

∗Work supported by the Royal Society, the EPSRC projects
Score!, Exoda, and MaSI3, and an FP7 Marie Curie Fellowship.

can be answered using rule-based systems such as OWLim
[Bishop et al., 2011] and Oracle’s Semantic Data Store [Wu
et al., 2008]. Query rewriting algorithms have so far been de-
veloped mainly for Horn fragments of OWL 2 DL, and they
have been implemented in systems such as QuOnto [Accia-
rri et al., 2005], Rapid [Chortaras et al., 2011], Presto [Rosati
and Almatelli, 2010], Quest [Rodriguez-Muro and Calvanese,
2012], Clipper [Eiter et al., 2012], Owlgres [Stocker and
Smith, 2008], and Requiem [Pérez-Urbina et al., 2010].

Horn fragments of OWL 2 DL cannot capture disjunctive
knowledge, such as ‘every student is either an undergraduate
or a graduate’. Such knowledge occurs in practice in ontolo-
gies such as the NCI Thesaurus and the Foundational Model
of Anatomy, so these ontologies cannot be processed using
known rewriting techniques; furthermore, no query answer-
ing technique we are aware of is tractable w.r.t. data com-
plexity when applied to such ontologies. These limitations
cannot be easily overcome: query answering in even the basic
non-Horn language ELU is co-NP-hard w.r.t. data complex-
ity [Krisnadhi and Lutz, 2007], and since answering datalog
queries is PTIME-complete, it may not be possible to rewrite
an arbitrary ELU ontology into datalog unless PTIME = NP.
Furthermore, Lutz and Wolter [2012] showed that tractability
w.r.t. data complexity cannot be achieved for an arbitrary non-
Horn ontology T with ‘real’ disjunctions: for each such T , a
query Q exists such that answering Q w.r.t. T is co-NP-hard.

The result by Lutz and Wolter [2012], however, depends
on an interaction between existentially quantified variables
in Q and disjunctions in T . Motivated by this observation,
we consider the problem of computing datalog rewritings of
ground queries (i.e., queries whose answers must map all the
variables in Q to constants) over non-Horn ontologies. Apart
from allowing us to overcome the negative result by Lutz and
Wolter [2012], this also allows us to compute a rewriting of
T that can be used to answer an arbitrary ground query. Such
queries form the basis of SPARQL, which makes our results
practically relevant. We summarise our results as follows.

In Section 3, we revisit the limits of datalog rewritability
for a language as a whole and show that non-rewritability
of ELU ontologies is independent from any complexity-
theoretic assumptions. More precisely, we present an ELU
ontology T for which query answering cannot be decided by
a family of monotone circuits of polynomial size, which con-
tradicts the results by Afrati et al. [1995], who proved that

fact entailment in a fixed datalog program can be decided us-
ing monotone circuits of polynomial size. Thus, instead of
relying on complexity arguments, we compare the lengths of
proofs in ELU and datalog and show that the proofs in ELU
may be considerably longer than the proofs in datalog.

In Section 4, we present a three-step procedure that takes
a SHI-ontology T and attempts to rewrite T into a datalog
program. First, we use a novel technique to rewrite T into a
TBox ΩT without transitivity axioms while preserving entail-
ment of all ground atoms; this is in contrast to the standard
techniques (see, e.g., [Hustadt et al., 2007]), which preserve
entailments only of unary facts and binary facts with roles not
having transitive subroles. Second, we use the algorithm by
Hustadt et al. [2007] to rewrite ΩT into a disjunctive data-
log program DD(ΩT). Third, we adapt the knowledge com-
pilation technique by del Val [2005] and Selman and Kautz
[1996] to transform DD(ΩT) into a datalog program. The fi-
nal step is not guaranteed to terminate in general; however, if
it terminates, the resulting program is a rewriting of T .

In Section 4.4, we show that our procedure always termi-
nates if T is a DL-LiteH,+

bool -ontology—a practically-relevant
language that extends OWL 2 QL with transitive roles and
Boolean connectives. Artale et al. [2009] proved that the data
complexity of concept queries in this language is tractable
(i.e., NLOGSPACE-complete). We extend this result to all
ground queries and thus obtain a goal-oriented rewriting al-
gorithm that may be suitable for practical use.

Our technique, as well as most rewriting techniques known
in the literature, is based on a sound inference system and thus
produces only strong rewritings—that is, rewritings entailed
by the original ontology. In Section 5 we show that non-Horn
ontologies exist that can be rewritten into datalog, but that
have no strong rewritings. This highlights the limits of tech-
niques based on sound inferences. It is also surprising since
all known rewriting techniques for Horn fragments of OWL
2 DL known to us produce only strong rewritings.

The proofs of all of our technical results are given in the
accompanying technical report [Cuenca Grau et al., 2013].

2 Preliminaries
We consider first-order logic without equality and function
symbols. Variables, terms, (ground) atoms, literals, formu-
lae, sentences, interpretations I = (∆I , ·I), models, and en-
tailment (|=) are defined as usual. We call a finite set of facts
(i.e., ground atoms) an ABox. We write ϕ(~x) to stress that a
first-order formula ϕ has free variables ~x = x1, . . . , xn.

Resolution Theorem Proving
We use the standard notions of (Horn) clauses, substitutions
(i.e., mappings of variables to terms), and most general uni-
fiers (MGUs). We often identify a clause with the set of its
literals. Positive factoring (PF) and binary resolution (BR)
are as follows, where σ is the MGU of atoms A and B:

PF:
C ∨A ∨B
Cσ ∨Aσ

BR:
C ∨A D ∨ ¬B

(C ∨D)σ

A clause C is a tautology if it contains literals A and ¬A.
A clause C subsumes a clause D if a substitution σ exists
such that each literal in Cσ occurs in D. Furthermore, C

θ-subsumes D if C subsumes D and C has no more literals
than D. Finally, C is redundant in a set of clauses S if C is a
tautology or if C is θ-subsumed by another clause in S.

Datalog and Disjunctive Datalog
A disjunctive rule r is a function-free first-order sentence of
the form ∀~x∀~z.[ϕ(~x, ~z)→ ψ(~x)], where tuples of variables
~x and ~z are disjoint, ϕ(~x, ~z) is a conjunction of atoms, and
ψ(~x) is a disjunction of atoms. Formula ϕ is the body of r,
and formula ψ is the head of r. For brevity, we often omit
the quantifiers in a rule. A datalog rule is a disjunctive rule
where ψ(~x) is a single atom. A (disjunctive) datalog program
P is a finite set of (disjunctive) datalog rules. Rules obviously
correspond to clauses, so we sometimes abuse our definitions
and use these two notions as synonyms. The evaluation of P
over an ABox A is the set P(A) of facts entailed by P ∪ A.

Ontologies and Description Logics
A DL signature is a disjoint union of sets of atomic concepts,
atomic roles, and individuals. A role is an atomic role or
an inverse role R− for R an atomic role; furthermore, let
inv(R) = R− and inv(R−) = R. A concept is an expression
of the form >, ⊥, A, ¬C, C1 u C2, C1 t C2, ∃R.C, ∀R.C,
or ∃R.self, where A is an atomic concept, C(i) are con-
cepts, and R is a role. Concepts ∃R.self correspond to atoms
R(x, x) and are typically not included in SHI; however, we
use this minor extension in Section 4.1. A SHI-TBox T ,
often called an ontology, is a finite set of axioms of the form
R1 v R2 (role inclusion axioms or RIAs), Tra(R) (transi-
tivity axioms), and C1 v C2 (general concept inclusions or
GCIs), where R(i) are roles and C(i) are concepts. Axiom
C1 ≡ C2 abbreviates C1 v C2 and C2 v C1. Relationv∗T is
the smallest reflexively–transitively closed relation such that
R v∗T S and inv(R) v∗T inv(S) for each R v S ∈ T . A role
R is transitive in T if Tra(R) ∈ T or Tra(inv(R)) ∈ T . Sat-
isfaction of a SHI-TBox T in an interpretation I = (∆I , ·I),
written I |= T , is defined as usual [Baader et al., 2003].

AnALCHI-TBox is a SHI-TBox with no transitivity ax-
ioms. An ELU-TBox is an ALCHI-TBox with no role in-
clusion axioms, inverse roles, concepts ∃R.self, or symbols
⊥, ∀, and ¬. A DL-LiteH,+

bool -TBox is a SHI-TBox that does
not contain concepts of the form ∀R.C, and where C = >
for each concept of the form ∃R.C. The notion of acyclic
TBoxes is defined as usual [Baader et al., 2003].

A SHI-TBox T is normalised if ∀ does not occur in T ,
and ∃ occurs in T only in axioms of the form ∃R.C v A,
∃R.self v A, A v ∃R.C, or A v ∃R.self. Each SHI-TBox
T can be transformed in polynomial time into a normalised
SHI-TBox that is a model-conservative extension of T .

Queries and Datalog Rewritings
A ground query (or just a query) Q(~x) is a conjunction of
function-free atoms. A substitution σ mapping ~x to constants
is an answer toQ(~x) w.r.t. a setF of first-order sentences and
an ABox A if F ∪A |= Q(~x)σ; furthermore, cert(Q,F ,A)
is the set of all answers to Q(~x) w.r.t. F and A.

Let Q be a query. A datalog program P is a Q-rewriting of
a finite set of sentences F if cert(Q,F ,A) = cert(Q,P,A)
for each ABox A. The program P is a rewriting of F if P

is a Q-rewriting of F for each query Q. Such rewritings are
strong if, in addition, we also have F |= P .

3 The Limits of Datalog Rewritability
Datalog programs can be evaluated over an ABox A in poly-
nomial time in the size of A; hence, a co-NP-hard property
of A cannot be decided by evaluating a fixed datalog pro-
gram overA unless PTIME = NP. Krisnadhi and Lutz [2007]
showed that answering ground queries is co-NP-hard in data
complexity even for acyclic TBoxes expressed in ELU—the
simplest non-Horn extension of the basic description logic
EL. Thus, under standard complexity-theoretic assumptions,
an acyclic ELU-TBox and a ground query Q exist for which
there is no Q-rewriting of T . In this section, we show that
this holds even if PTIME = NP.

Theorem 1. An acyclic ELU-TBox T and a ground CQ Q
exist such that T is not Q-rewritable.

Our proof uses several notions from circuit complexity
[Wegener, 1987], and results of this flavour compare the sizes
of proofs in different formalisms; thus, our result essentially
says that proofs in ELU can be significantly longer than
proofs in datalog. Let < be the ordering on Boolean values
defined by f < t; then, a Boolean function f with n inputs
is monotone if f(x1, . . . , xn) ≤ f(y1, . . . , yn) holds for all
n-tuples of Boolean values x1, . . . , xn and y1, . . . , yn such
that xi ≤ yi for each 1 ≤ i ≤ n. A decision problem can be
seen as a family of Boolean functions {fn}, where fn decides
membership of each n-bit input. If each function fn is mono-
tone, then fn can be realised by a monotone Boolean circuit
Cn (i.e., a circuit with n input gates where all internal gates
are AND- or OR-gates with unrestricted fan-in); the size of
Cn is the number of its edges. The family of circuits {Cn}
corresponding to {fn} has polynomial size if a polynomial
p(x) exists such that the size of each Cn is bounded by p(n).

We recall how non-3-colorability of an undirected graph G
with s vertices corresponds to monotone Boolean functions.
The maximum number of edges in G is m(s) = s(s− 1)/2,
so graph G is encoded as a string ~x of m(s) bits, where bit
xi,j , 1 ≤ i < j ≤ s, is t if and only if G contains an edge be-
tween vertices i and j. The non-3-colorability problem can
then be seen as a family of Boolean functions {fm(s)}, where
function fm(s) handles all graphs with s vertices and it eval-
uates to t on an input ~x iff the graph corresponding to ~x is
non-3-colourable. Functions fn such that n 6= m(s) for all s
are irrelevant since no graph is encoded using that many bits.

We prove our claim using a result by Afrati et al. [1995]: if
a decision problem cannot be solved using a family of mono-
tone circuits of polynomial size, then the problem also cannot
be solved by evaluating a fixed datalog program, regardless of
the problem’s complexity. We restate the result as follows.

Theorem 2. [Adapted from Afrati et al. 1995]

1. Let P be a fixed datalog program, and let α be a fixed
fact. Then, for an ABox A, deciding P ∪ A |= α can be
solved by monotone circuits of polynomial size.

2. The non-3-colorability problem cannot be solved by
monotone circuits of polynomial size.

Table 1: Example TBox Tex
γ1 Student v GrSt t UnGrSt
γ2 Course v GrCo t UnGrCo
γ3 PhDSt v ∃takes.PhDCo
γ4 PhDCo v GrCo
γ5 ∃takes.GrCo v GrSt
γ6 UnGrSt u ∃takes.GrCo v ⊥

To prove Theorem 1, we present a TBox T and a ground
CQQ that decide non-3-colorability of a graph encoded as an
ABox. Next, we present a family of monotone Boolean func-
tions {gn(u)} that decide answering Q w.r.t. T an arbitrary
ABox A. Next, we show that a monotone circuit for arbi-
trary fm(s) can be obtained by a size-preserving transforma-
tion from a circuit for some gn(u); thus, by Item 2 of Theorem
2, answeringQ w.r.t. T cannot be solved using monotone cir-
cuits of polynomial size. Finally, we show that existence of a
rewriting for Q and T contradicts Item 1 of Theorem 2.

4 Computing Rewritings via Resolution
Theorem 1 is rather discouraging since it applies to one of the
simplest non-Horn languages. The theorem’s proof, however,
relies on a specific TBox T that encodes a hard problem (i.e.,
non-3-colorability) that is not solvable by monotone circuits
of polynomial size. One can expect that non-Horn TBoxes
used in practice do not encode such hard problems, and so it
might be possible to rewrite such TBoxes into datalog.

We illustrate this intuition using the TBox Tex shown in
Table 1. Axioms γ4–γ6 correspond to datalog rules, whereas
axioms γ1–γ3 represent disjunctive and existentially quanti-
fied knowledge and thus do not correspond to datalog rules.
We will show that Tex can, in fact, be rewritten into data-
log using a generic three-step method that takes a normalised
SHI-TBox T and proceeds as follows.
S1 Eliminate the transitivity axioms from T by transform-

ing T into an ALCHI-TBox ΩT and a set of data-
log rules ΞT such that facts entailed by T ∪ A and
ΩT ∪ ΞT (A) coincide for each ABox A. This step ex-
tends the known technique to make it complete for facts
with roles that have transitive subroles in T .

S2 Apply the algorithm by Hustadt et al. [2007] to trans-
form ΩT into a disjunctive datalog program DD(ΩT).

S3 Transform DD(ΩT) into a set of datalog rules PH using
a variant of the knowledge compilation techniques by
Selman and Kautz [1996] and del Val [2005].

Step S3 may not terminate for an arbitrary SHI-TBox T ;
however, if it terminates (i.e., if PH is finite), then PH ∪ ΞT
is a rewriting of T . Furthermore, in Section 4.4 we show that
step S3 always terminates if T is a DL-LiteH,+

bool -TBox. We
thus obtain what is, to the best of our knowledge, the first
goal-oriented rewriting algorithm for a practically-relevant
non-Horn fragment of OWL 2 DL.

4.1 Transitivity
We first recapitulate the standard technique for eliminating
transitivity axioms from SHI-TBoxes.

Definition 3. Let T be a normalised SHI-TBox, and let ΘT
be obtained from T by removing all transitivity axioms. If T
is a DL-LiteH,+

bool -TBox, then let ΥT = ΘT ; otherwise, let ΥT
be the extension of ΘT with axioms

∃R.A v CB,R ∃R.CB,R v CB,R CB,R v B
for each axiom ∃S.A v B ∈ T and each transitive role R in
T such that R v∗T S, where CB,R is a fresh atomic concept
unique for B and R.

This encoding preserves entailment of all facts of the form
C(c) and U(c, d) if U has no transitive subroles: this was
proved by Artale et al. [2009] for DL-LiteH,+

bool , and by Siman-
cik [2012] for SHI. Example 4, however, shows that the
encoding is incomplete if U has transitive subroles.
Example 4. Let T be the TBox below, and let A = {A(a)}.

A v ∃S.B S v R S v R− Tra(R)

Then, ΥT = T \ {Tra(R)}, and one can easily verify that
T ∪ A |= R(a, a), but ΥT ∪ A 6|= R(a, a). Note, however,
that the missing inference can be recovered by extending ΥT
with the axiom A v ∃R.self, which is a consequence of T .

The intuitions from Example 4 are formalised in Defini-
tion 5. Roughly speaking, we transform the transitivity and
role inclusion axioms in T into a datalog program ΞT , which
we apply to A ‘first’—that is, we compute ΞT (A) indepen-
dently from any GCIs. To recoup the remaining consequences
of the formR(a, a), we extend ΥT with sufficiently many ax-
ioms of the form A v ∃R.self that are entailed by T ; this is
possible since we assume that T is normalised.
Definition 5. Let T be a normalised SHI-TBox. Then,
ΩT is the TBox obtained by extending ΥT with an axiom
A v ∃R.self for each atomic conceptA and each atomic role
R such thatR is transitive in T , andA v ∃S.B ∈ T for some
concept B and role S with S v∗T R and S v∗T R−. Further-
more, ΞT is the set of datalog rules corresponding to the role
inclusion and transitivity axioms in T .

Theorem 6. Let T be a normalised SHI-TBox, let A be an
ABox, and let α be a fact. Then, T ∪ A |= α if and only if
ΩT ∪ ΞT (A) |= α.

Note that, if T is normalised, so is ΩT . Furthermore, to
ensure decidability, roles involving transitive subroles are not
allowed occur in T in number restrictions, and so Theorem 6
holds even if T is a SHOIQ-TBox.

4.2 From DLs to Disjunctive Datalog
Step S2 of our rewriting algorithm uses the technique by Hus-
tadt et al. [2007] for transforming anALCHI-TBox T into a
disjunctive datalog program DD(T) such that, for each ABox
A, the facts entailed by T ∪ A and DD(T) ∪ A coincide.
By eliminating the existential quantifiers in T , one thus re-
duces a reasoning problem in T ∪ A to a reasoning prob-
lem in DD(T) ∪ A. The following definition summarises the
properties of the programs produced by the transformation.
Definition 7. A disjunctive datalog program P is nearly-
monadic if its rules can be partitioned into two disjoint sets,
Pm and Pr, such that

Table 2: Example Disjunctive Program DD(Tex)
C1 ¬Student(x) ∨ GrSt(x) ∨ UnGrSt(x)
C2 ¬Course(x) ∨ GrCo(x) ∨ UnGrCo(x)
C3 ¬PhDSt(x) ∨ GrSt(x)
C4 ¬PhDCo(x) ∨ GrCo(x)
C5 ¬takes(x, y) ∨ ¬GrCo(y) ∨ GrSt(x)
C6 ¬UnGrSt(x) ∨ ¬takes(x, y) ∨ ¬GrCo(y)

1. each rule r ∈ Pm mentions only unary and binary pred-
icates and each atom in the head of r is of the formA(z)
or R(z, z) for some variable z, and

2. each rule r ∈ Pr is of the form R(x, y)→ S(x, y) or
R(x, y)→ S(y, x).

A disjunctive rule r is simple if there exists a variable x
such that each atom in the body of r is of the form Ai(x),
Ri(x, x), Si(x, yi), or Ti(yi, x), each atom in the head of r
is of the form Ui(x, x) or Bi(x), and each variable yi occurs
in r at most once. Furthermore, a nearly-monadic program
P is simple if each rule in Pm is simple.

Theorem 8 follows mainly from the results by Hustadt et
al. [2007]; we just argue that concepts ∃R.self do not affect
the algorithm, and that DD(T) satisfies property 1.
Theorem 8. For T a normalisedALCHI-TBox, DD(T) sat-
isfies the following:

1. program DD(T) is nearly-monadic; furthermore, if T is
a DL-LiteH,+

bool -TBox, then DD(T) is also simple;
2. T |= DD(T); and
3. cert(Q, T ,A) = cert(Q,DD(T),A) for each ABox A

and each ground query Q.

Example 9. When applied to the TBox Tex in Table 1, this
algorithm produces the disjunctive program DD(Tex) shown
(as clauses) in Table 2. In particular, axiom γ3 is eliminated
since it contains an existential quantifier, but its effects are
compensated by clause C3. Clauses C1–C2 and C4–C6 are
obtained from axioms γ1–γ2 and γ4–γ6, respectively.

4.3 From Disjunctive Datalog to Datalog
Step S3 of our rewriting algorithm attempts to transform the
disjunctive program obtained in Step S2 into a datalog pro-
gram such that, for each ABoxA, the two programs entail the
same facts. This is achieved using known knowledge compi-
lation techniques, which we survey next.

Resolution-Based Knowledge Compilation
In their seminal paper, Selman and Kautz [1996] proposed an
algorithm for compiling a set of propositional clauses S into
a set of Horn clauses SH such that the Horn consequences
of S and SH coincide. Subsequently, del Val [2005] gener-
alised this algorithm to the case when S contains first-order
clauses, but without any termination guarantees; Procedure 1
paraphrases this algorithm. The algorithm applies to S bi-
nary resolution and positive factoring from resolution theo-
rem proving, and it keeps only the consequences that are not
redundant according to Definition 10. Unlike standard reso-
lution, the algorithm maintains two sets SH and SH of Horn

Procedure 1 Compile-Horn
Input: S: set of clauses
Output: SH : set of Horn clauses
1: SH := {C ∈ S | C is a Horn clause and not a tautology}
2: SH := {C ∈ S | C is a non-Horn clause and not a tautology}
3: repeat
4: Compute all relevant consequences of 〈SH ,SH〉
5: for each relevant consequence C of 〈SH ,SH〉 do
6: Delete from SH and SH all clauses θ-subsumed by C
7: if C is Horn then SH := SH ∪ {C}
8: else SH := SH ∪ {C}
9: until there is no relevant consequence of 〈SH ,SH〉

10: return SH

and non-Horn clauses, respectively; furthermore, the algo-
rithm never resolves two Horn clauses.

Definition 10. Let SH and SH be sets of Horn and non-Horn
clauses, respectively. A clause C is a relevant consequence of
〈SH ,SH〉 if

• C is not redundant in SH ∪ SH , and

• C is a factor of a clause C1 ∈ SH , or a resolvent of
clauses C1 ∈ SH and C2 ∈ SH ∪ SH .

Theorem 11 recapitulates the algorithm’s properties. It es-
sentially shows that, even if the algorithm never terminates,
each Horn consequence of S will at some point during algo-
rithm’s execution become entailed by the set of Horn clauses
SH computed by the algorithm. The theorem was proved by
showing that each resolution proof of a consequence of S can
be transformed to ‘postpone’ all resolution steps between two
Horn clauses until the end; thus, one can ‘precompute’ set SH
of all consequences of S derivable using a non-Horn clause.

Theorem 11. ([del Val, 2005]) Let S be a set of clauses, and
let C be a Horn clause such that S |= C, and assume that
Procedure 1 is applied to S. Then, after some finite number
of iterations of the loop in lines 3–9, we have SH |= C.

ABox-Independent Compilation
Compiling knowledge into Horn clauses and computing data-
log rewritings are similar in spirit: both transform one theory
into another while ensuring that the two theories are indistin-
guishable w.r.t. a certain class of queries. There is, however,
an important difference: given a disjunctive program P and a
fixed ABoxA, one could apply Procedure 1 to S = P ∪ A to
obtain a datalog program SH , but such SH would not neces-
sarily be independent from the specific ABox A. In contrast,
a rewriting of P is a datalog program PH that can be freely
combined with an arbitrary ABox A. We next show that a
program PH satisfying the latter requirement can be obtained
by applying Procedure 1 to P only.

Towards this goal, we generalise Theorem 11 and show
that, when applied to an arbitrary set of first-order clausesN ,
Procedure 1 computes a set of Horn clausesNH such that the
Horn consequences of N ∪A and NH ∪ A coincide for an
arbitrary ABox A. Intuitively, this shows that, when Proce-
dure 1 is applied to S = N ∪A, all inferences involving facts
in A can be ‘moved’ to end of derivations.

Theorem 12. LetN be a set of clauses, letA be an ABox, let
C be a Horn clause such that N ∪A |= C, and assume that
Procedure 1 is applied to N . Then, after some finite number
of iterations of the loop in lines 3–9, we have NH ∪ A |= C.

Rewriting Nearly-Monadic Disjunctive Programs
The final obstacle to obtaining a datalog rewriting of a SHI-
TBox T is due to Theorem 6: the rules in ΞT should be ap-
plied ‘before’ ΩT . While this allows us to transform ΩT into
P = DD(ΩT) and PH without taking ΞT into account, this
also means that Theorems 6, 8, and 12 only imply that the
facts entailed by T ∪ A and PH ∪ ΞT (A) coincide. To ob-
tain a ‘true’ rewriting, we show in Lemma 13 that program
PH is nearly-monadic. We use this observation in Theorem
14 to show that each binary fact obtained by applying PH to
ΞT (A) is of the form R(c, c), and so it cannot ‘fire’ the rules
in ΞT ; hence, PH ∪ ΞT is a rewriting of T .
Lemma 13. Let P be a nearly-monadic program, and as-
sume that Procedure 1 terminates when applied to P and re-
turns PH . Then, PH is a nearly-monadic datalog program.

Theorem 14. Let P = DD(ΩT) for T an SHI-TBox. If,
when applied to P , Procedure 1 terminates and returns PH ,
then PH ∪ ΞT is a rewriting of T .

Please note that our algorithm (just like all rewriting algo-
rithms we are aware of) computes rewritings using a sound
inference system and thus always produces strong rewritings.
Example 15. When applied to the program P = DD(Tex)
from Table 2, Procedure 1 resolves C2 and C5 to derive (1),
C2 and C6 to derive (2), and C1 and C6 to derive (3).

¬takes(x, y) ∨ ¬Course(y) ∨ GrSt(x) ∨ UnGrCo(y) (1)
¬takes(x, y) ∨ ¬UnGrSt(x) ∨ ¬Course(y) ∨ UnGrCo(y) (2)

¬takes(x, y) ∨ ¬Student(x) ∨ ¬GrCo(y) ∨ GrSt(x) (3)

Resolving (2) and C1, and (3) and C2 produces redundant
clauses, after which the procedure terminates and returns the
setPH consisting of clausesC3–C6, (2), and (3). By Theorem
14, PH is a strong rewriting of Tex.

4.4 Termination
Procedure 1 is not a semi-decision procedure for either strong
non-rewritability (cf. Example 16) or strong rewritability (cf.
Example 17) of nearly-monadic programs.
Example 16. Let P be defined as follows.

G(x) ∨B(x) (4)
B(x1) ∨ ¬E(x1, x0) ∨ ¬G(x0) (5)
G(x1) ∨ ¬E(x1, x0) ∨ ¬B(x0) (6)

Clauses (5) and (6) are mutually recursive, but they are also
Horn, so Procedure 1 never resolves them directly.

Clauses (5) and (6), however, can interact through clause
(4). Resolving (4) and (5) on ¬G(x0) produces (7); and re-
solving (6) and (7) on B(x1) produces (8). By further resolv-
ing (8) alternatively with (5) and (6), we obtain (9) for each
even n. By resolving (6) and (9) on B(x0), we obtain (10).
Finally, by factoring (10), we obtain (11) for each even n.

B(x1) ∨ ¬E(x1, x0) ∨B(x0) (7)

G(x2) ∨ ¬E(x2, x1) ∨ ¬E(x1, x0) ∨B(x0) (8)

G(xn) ∨ [

n∨
i=1

¬E(xi, xi−1)] ∨B(x0) (9)

G(xn) ∨ [

n∨
i=1

¬E(xi, xi−1)] ∨G(x′1) ∨ ¬E(x′1, x0) (10)

G(xn) ∨ ¬E(xn, x0) ∨ [

n∨
i=1

¬E(xi, xi−1)] (11)

Procedure 1 thus derives on P an infinite set of Horn clauses,
and Theorem 22 shows that no strong rewriting of P exists.
Example 17. Let P be defined as follows.

B1(x0) ∨B2(x0) ∨ ¬A(x0) (12)
A(x1) ∨ ¬E(x1, x0) ∨ ¬B1(x0) (13)
A(x1) ∨ ¬E(x1, x0) ∨ ¬B2(x0) (14)

When applied to P , Procedure 1 will eventually compute in-
finitely many clauses Cn of the following form:

Cn = A(xn) ∨ [

n∨
i=1

¬E(xi, xi−1)] ∨ ¬A(x0)

However, for each n > 1, clause Cn is a logical consequence
of clause C1, so the program consisting of clauses (12), (13),
and C1 is a strong rewriting of P .

Example 18 demonstrates another problem that can arise
even if P is nearly-monadic and simple.
Example 18. Let P be the following program:

¬R(x, y) ∨A(x) (15)
¬R(x, y) ∨B(x) (16)

¬A(x) ∨ ¬B(x) ∨ C(x) ∨D(x) (17)

Now resolving (15) and (17) produces (18); and resolving
(16) and (18) produces (19).

¬R(x, y) ∨ ¬B(x) ∨ C(x) ∨D(x) (18)
¬R(x, y1) ∨ ¬R(x, y2) ∨ C(x) ∨D(x) (19)

Clause (19) contains more variables than clauses (15) and
(16), which makes bounding the clause size difficult.

Notwithstanding Example 18, we believe one can prove
that Procedure 1 terminates if P is nearly-monadic and sim-
ple. However, apart from making the termination proof more
involved, deriving clauses such as (19) is clearly inefficient.
We therefore extend Procedure 1 with the condensation sim-
plification rule, which eliminates redundant literals in clauses
such as (19). A condensation of a clause C is a clauseD with
the least number of literals such that D ⊆ C and C subsumes
D. A condensation of C is unique up to variable renaming,
so we usually speak of the condensation of C. We next show
that Theorems 11 and 12 hold even with condensation.
Lemma 19. Theorems 11 and 12 hold if Procedure 1 is mod-
ified so that, after line 5, C is replaced with its condensation.

One can prove that all relevant consequences of nearly-
monadic and simple clauses are also nearly-monadic and sim-
ple, so by using condensation to remove redundant literals,
we obtain Lemma 20, which clearly implies Theorem 21.

Lemma 20. If used with condensation, Procedure 1 termi-
nates when applied to a simple nearly-monadic program P .

Theorem 21. Let P = DD(ΩT) for T a DL-LiteH,+
bool -TBox.

Procedure 1 with condensation terminates when applied to P
and returns PH ; furthermore, PH ∪ ΞT is a rewriting of T .

We thus obtain a tractable (w.r.t. data complexity) proce-
dure for answering queries over DL-LiteH,+

bool -TBoxes. Fur-
thermore, given a ground query Q and a nearly-monadic and
simple program PH obtained by Theorem 21, it should be
possible to match the NLOGSPACE lower complexity bound
by Artale et al. [2009] as follows. First, one should ap-
ply backward chaining to Q and PH to compute a UCQ Q′

such that cert(Q,PH ,ΞT (A)) = cert(Q′, ∅,ΞT (A)); since
all nearly-monadic rules in PH are simple, it should be possi-
ble to show that such ‘unfolding’ always terminates. Second,
one should transform ΞT into an equivalent piecewise-linear
datalog program Ξ′T . Although these transformations should
be relatively straightforward, a formal proof would require
additional machinery and is thus left for future work.

5 Limits to Strong Rewritability
We next show that strong rewritings may not exist for rather
simple non-Horn ELU-TBoxes that are rewritable in general.
This is interesting because it shows that an algorithm capable
of rewriting a larger class of TBoxes necessarily must depart
from the common approaches based on sound inferences.
Theorem 22. The ELU-TBox T corresponding to the pro-
gram P from Example 16 and the ground CQQ = G(x1) are
Q-rewritable, but not strongly Q-rewritable.

The proof of Theorem 22 proceeds as follows. First, we
show that, for each ABox A encoding a directed graph, we
have cert(Q, T ,A) 6= ∅ iff the graph contains a pair of ver-
tices reachable by both an even and an odd number of edges.
Second, we show that latter property can be decided using a
datalog program that uses new relations not occurring in T .
Third, we construct an infinite set of rulesR entailed by each
strong rewriting of T . Fourth, we show that R′ 6|= R holds
for each finite datalog programR′ such that T |= R′.

Since our procedure from Section 4 produces only strong
rewritings, it cannot terminate on a TBox that has no strong
rewritings. This is illustrated in Example 16, which shows
that Procedure 1 does not terminate when applied to (the
clausification of) the TBox from Theorem 22.

6 Outlook
Our work opens many possibilities for future research. On
the theoretical side, we will investigate whether one can de-
cide existence of a strong rewriting for a given SHI-TBox
T , and to modify Procedure 1 so that termination is guaran-
teed. Bienvenue et al. [2013] recently showed that rewritabil-
ity of unary ground queries over ALC-TBoxes is decidable;
however, their result does not consider strong rewritability or
binary ground queries. On the practical side, we will inves-
tigate whether Procedure 1 can be modified to use ordered
resolution instead of unrestricted resolution. We will also im-
plement our technique and evaluate its applicability.

References
[Acciarri et al., 2005] Andrea Acciarri, Diego Calvanese,

Giuseppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, Mattia Palmieri, and Riccardo Rosati. Quonto:
Querying ontologies. In AAAI, pages 1670–1671, 2005.

[Afrati et al., 1995] Foto Afrati, Stavros S Cosmadakis, and
Mihalis Yannakakis. On Datalog vs. polynomial time. J.
of Computer and System Sciences, 51(2), 1995.

[Artale et al., 2009] Alessandro Artale, Diego Calvanese,
Roman Kontchakov, and Michael Zakharyaschev. The
DL-Lite family and relations. Journal of Artificial Intel-
ligence Research, 36:1–69, 2009.

[Baader et al., 2003] Franz Baader, Diego Calvanese, Deb-
orah L. McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider. The Description Logic Handbook: Theory, Im-
plementation, and Applications. Cambridge Univ. Press,
2003.

[Baader et al., 2005] Franz Baader, Sebastian Brandt, and
Carsten Lutz. Pushing the el envelope. In IJCAI, pages
364–369, 2005.

[Bienvenue et al., 2013] M. Bienvenue, B. Ten Cate,
C. Lutz, and F. Wolter. Ontology-based Data Access: A
Study through Disjunctive Datalog, CSP, and MMSNP. In
ACM PODS, 2013.

[Bishop et al., 2011] Barry Bishop, Atanas Kiryakov,
Damyan Ognyanoff, Ivan Peikov, Zdravko Tashev, and
Ruslan Velkov. OWLim: A family of scalable semantic
repositories. Semantic Web J., 2(1):33–42, 2011.

[Calvanese et al., 2007] Diego Calvanese, Giuseppe De Gi-
acomo, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati. Tractable reasoning and efficient query an-
swering in description logics: The DL-Lite family. J. of
Automated Reasoning (JAR), 39(3):385–429, 2007.

[Chortaras et al., 2011] A. Chortaras, D. Trivela, and G. Sta-
mou. Optimized query rewriting in OWL 2 QL. In CADE,
pages 192–206, 2011.

[Cuenca Grau et al., 2013] Bernardo Cuenca Grau, Boris
Motik, Giorgos Stoilos, and Ian Horrocks. Comput-
ing Datalog Rewritings Beyond Horn Ontologies, 2013.
arXiv:1304.1402.

[del Val, 2005] Alvaro del Val. First order lub approxima-
tions: characterization and algorithms. Artif. Intell., 162(1-
2):7–48, 2005.

[Eiter et al., 2012] Thomas Eiter, Magdalena Ortiz, Man-
tas Simkus, Trung-Kien Tran, and Guohui Xiao. Query
rewriting for horn-shiq plus rules. In AAAI, 2012.

[Glimm et al., 2008] B. Glimm, I. Horrocks, C. Lutz, and
U. Sattler. Conjunctive Query Answering for the Descrip-
tion Logic SHIQ. Journal of Artificial Intelligence Re-
search, 31:151–198, 2008.

[Grosof et al., 2003] Benjamin N. Grosof, Ian Horrocks,
Raphael Volz, and Stefan Decker. Description logic pro-
grams: combining logic programs with description logic.
In WWW, pages 48–57, 2003.

[Hustadt et al., 2005] Ullrich Hustadt, Boris Motik, and Ul-
rike Sattler. Data complexity of reasoning in very expres-
sive description logics. In IJCAI, pages 466–471, 2005.

[Hustadt et al., 2007] Ullrich Hustadt, Boris Motik, and Ul-
rike Sattler. Reasoning in Description Logics by a Reduc-
tion to Disjunctive Datalog. Journal of Automated Rea-
soning, 39(3):351–384, 2007.

[Krisnadhi and Lutz, 2007] Adila Krisnadhi and Carsten
Lutz. Data complexity in the EL family of description
logics. In LPAR, 2007.

[Lutz and Wolter, 2012] Carsten Lutz and Frank Wolter.
Non-Uniform Data Complexity of Query Answering in
Description Logics. In KR, 2012.

[Lutz, 2008] C. Lutz. The Complexity of Conjunctive Query
Answering in Expressive Description Logics. In IJCAR,
2008.

[Ortiz et al., 2011] Magdalena Ortiz, Sebastian Rudolph,
and Mantas Simkus. Query answering in the horn frag-
ments of the description logics SHOIQ and SROIQ. In
IJCAI, pages 1039–1044, 2011.

[Pérez-Urbina et al., 2010] Héctor Pérez-Urbina, Boris
Motik, and Ian Horrocks. Tractable query answering and
rewriting under description logic constraints. Journal of
Applied Logic (JAL), 8(2):186–209, 2010.

[Rodriguez-Muro and Calvanese, 2012] Mariano
Rodriguez-Muro and Diego Calvanese. High perfor-
mance query answering over DL-Lite ontologies. In KR,
2012.

[Rosati and Almatelli, 2010] Riccardo Rosati and Alessan-
dro Almatelli. Improving query answering over DL-Lite
ontologies. In KR, 2010.

[Selman and Kautz, 1996] B. Selman and H. Kautz. Knowl-
edge compilation and theory approximation. J. of the ACM
(JACM), 43(2):193–224, 1996.

[Simancik, 2012] F. Simancik. Elimination of Complex
RIAs without Automata. In Y. Kazakov, D. Lembo, and
F. Wolter, editors, Proc. of the 2012. Int. Workshop on De-
scription Logics (DL 2012), volume 846 of CEUR Work-
shop Proceedings, Rome, Italy, June 7–10 2012.

[Stocker and Smith, 2008] Markus Stocker and Michael
Smith. Owlgres: A scalable owl reasoner. In OWLED,
2008.

[Wegener, 1987] I. Wegener. The Complexity of Boolean
Functions. John Wiley and Sons, 1987.

[Wu et al., 2008] Zhe Wu, George Eadon, Souripriya Das,
Eugene Inseok Chong, Vladimir Kolovski, Melliyal Anna-
malai, and Jagannathan Srinivasan. Implementing an infer-
ence engine for RDFS/OWL constructs and user-defined
rules in Oracle. In ICDE, pages 1239–1248, 2008.

