
OWL-Eu: Adding Customised Datatypes into OWL

Jeff Z. Pan and Ian Horrocks

{pan,horrocks}@cs.man.ac.uk

School of Computer Science, University of Manchester, UK

Abstract. Although OWL is rather expressive, it has a very serious limitation
on datatypes; i.e., it does not support customised datatypes. It has been pointed
out that many potential users will not adopt OWL unless this limitation is over-
come. Accordingly, the Semantic Web Best Practices and Development Working
Group sets up a task force to address this issue. This paper makes the following
two contributions: (i) it provides a brief summary of OWL-related datatype for-
malisms, and (ii) it provides a decidable extension of OWL DL, called OWL-Eu,
that supports customised datatypes.

1 Introduction

The OWL Web Ontology Language [3] is a W3C recommendation for expressing on-
tologies in the Semantic Web. Datatype support [16, 17] is one of the most useful fea-
tures OWL is expected to provide, and has brought extensive discussions in the RDF-
Logic mailing list [18] and Semantic Web Best Practices mailing list [20]. Although
OWL adds considerable expressive power to the Semantic Web, the OWL datatype for-
malism (or simplyOWL datatyping) is much too weak for many applications; in partic-
ular, OWL datatyping does not provide a general framework for customised datatypes,1

such as XML Schema derived datatypes.
It has been pointed out that many potential users will not adopt OWL unless this

limitation is overcome [19], as it is often necessary to enable users to define their own
datatypes and datatype predicates for their ontologies and applications. For instance,
when using a computer sales ontology, a user may need to describe a PC with mem-
ory size greater than or equal to 512Mb, unit price less than 700 pounds and delivery
date earlier than 15/03/2004. In this context, ‘greater than or equal to 512’, ‘less than
700’ and ‘earlier than 15/12/2004’ can be seen as customised datatypes, with the base
datatypes being integer, integer and date, respectively.

After reviewing the design of OWL, and the needs of various applications and (po-
tential) users, the following requirements for an extension to OWL DL have been iden-
tified:

1. It should provide customised datatypes; therefore, it should be based on a datatype
formalism which is compatible with OWL datatyping, provides facilities to con-
struct customised datatypes and, most importantly, guarantees the computerability
of the kinds of customised datatypes it supports.

1 A widely discussed example would be the ‘BigWheel’ example discussed in, e.g.,http://
lists.w3.org/Archives/Public/public-swbp-wg/2004Apr/0061.html .

2. It should overcome other important limitations of OWL datatyping, such as the ab-
sence of negated datatypes and the un-intuitive semantics for unsupported datatypes
(which will be further explained in Section 4).

3. It should satisfy thesmall extension requirement, which is two folded: on the one
hand, the extension should be a substantial and necessary extension that overcomes
the above mentioned limitations of OWL datatyping; on the other hand, following
W3C’s ‘onesmallstep at a time’ strategy, it should only be as large as is necessary
in order to satisfy the requirements.

4. It should be a decidable extension of OWL DL.

This paper makes two main contributions. Firstly, it provides an overview of rel-
evant (to OWL) datatype formalisms, namely those of XML, RDF and OWL itself.
Secondly, and most importantly, it presents an extension of OWL DL,2 called OWL-Eu
(OWL with unary datatype Expressions), which satisfies the above requirements.

The rest of the paper is organised as follows. Section 2 briefly introduces the OWL
Web Ontology Language. Section 3 describes OWL-related datatype formalisms. Sec-
tion 4 summarises the limitations of OWL datatyping. Section 5 presents the OWL-Eu
language, showing how it satisfies the above four requirements. Section 6 describes
some related works, and Section 7 concludes the paper and suggests some future works.

2 An Overview of OWL

OWL is a standard (W3C recommendation) for expressing ontologies in the Seman-
tic Web. The OWL language facilitates greater machine understandability of Web re-
sources than that supported by RDFS by providing additional constructors for building
class and property descriptions (vocabulary) and new axioms (constraints), along with
a formal semantics. The OWL recommendation actually consists of three languages of
increasing expressive power: OWL Lite, OWL DL and OWL Full.OWL LiteandOWL
DL are, like DAML+OIL, basically very expressive Description Logics (DLs); they are
almost3 equivalent to theSHIF(D+) andSHOIN (D+) DLs.OWL Fullprovides the
same set of constructors as OWL DL, but allows them to be used in an unconstrained
way (in the style of RDF). It is easy to show that OWL Full is undecidable, because it
does not impose restrictions on the use of transitive properties [10]; therefore, when we
mention OWL in this paper, we usually mean OWL DL.

Let C, RI, RD andI be the sets of URIrefs that can be used to denote classes,
individual-valuedproperties,data-valuedproperties and individuals respectively. An
OWL DL interpretationis a tupleI = (∆I ,∆D, ·I , ·D) where the individual domain
∆I is a nonempty set of individuals, the datatype domain∆D is a nonempty set of data
values,·I is an individual interpretation function that maps

– each individual namea ∈ I to an elementaI ∈ ∆I ,
– each concept nameCN ∈ C to a subsetCNI ⊆ ∆I ,
– eachindividual-valuedproperty nameRN ∈ RI to a binary relationRNI ⊆ ∆I × ∆I

and

2 cf. Section 2 for the differences of three sub-languages of OWL.
3 They also provide annotation properties, which Description Logics don’t.

Abstract Syntax DL Syntax Semantics
ObjectProperty(R) R RI ⊆ ∆I ×∆I

ObjectProperty(S inverseOf(R)) R− (R−)I ⊆ ∆I ×∆I

Table 1.OWL individual-valuedproperty descriptions

– eachdata-valuedproperty nameTN ∈ RD to a binary relationTNI ⊆ ∆I ×∆D,

and ·D is a datatype interpretation function. More details of∆D and ·D will be pre-
sented in Section 3.3.

The individual interpretation function can be extended to give semantics to class
andindividual-valuedproperty descriptions shown in Tables 1 and 2, whereA ∈ C is
a concept URIref,C,C1, . . . , Cn are concept descriptions,R ∈ RI is an individual-
valuedproperty URIref,R1, . . . , Rn are individual-valuedproperty descriptions and
o, o1, o2 ∈ I are individual URIrefs,u is a data range (cf. Definition 8),T ∈ RD is a
data-valuedproperty and] denotes cardinality.

An OWL DL ontology can be seen as a DL knowledge base [11], which consists
of a set ofaxioms, including class axioms, property axioms and individual axioms.4

Table 3 presents the abstract syntax, DL syntax and semantics of OWL axioms.

Abstract Syntax DL Syntax Semantics
Class(A) A AI ⊆ ∆I

Class(owl:Thing) > >I =∆I

Class(owl:Nothing) ⊥ ⊥I = ∅
intersectionOf(C1, C2, . . .) C1 u C2 (C1 u C2)

I = CI
1 ∩ CI

2

unionOf(C1, C2, . . .) C1 t C2 (C1 t C2)
I = CI

1 ∪ CI
2

complementOf(C) ¬C (¬C)I = ∆I \ CI

oneOf(o1, o2, . . .) {o1}t {o2} ({o1}t {o2})I = {o1I , o2
I}

restriction(R someValuesFrom(C)) ∃R.C (∃R.C)I = {x | ∃y.〈x, y〉 ∈ RI ∧ y ∈ CI}
restriction(R allValuesFrom(C)) ∀R.C (∀R.C)I = {x | ∀y.〈x, y〉 ∈ RI → y ∈ CI}
restriction(R hasValue(o)) ∃R.{o} (∃R.{o})I = {x | 〈x, oI〉 ∈ RI}
restriction(R minCardinality(m)) > mR (> mR)I = {x |]{y.〈x, y〉 ∈ RI} ≥ m}
restriction(R maxCardinality(m)) 6 mR (6 mR)I = {x |]{y.〈x, y〉 ∈ RI} ≤ m}
restriction(T someValuesFrom(u)) ∃T.u (∃T.u)I = {x | ∃t.〈x, t〉 ∈ T I ∧ t ∈ uD}
restriction(T allValuesFrom(u)) ∀T.u (∀T.u)I = {x | ∃t.〈x, t〉 ∈ T I → t ∈ uD}
restriction(T hasValue(w)) ∃T.{w} (∃T.{w})I = {x | 〈x, wD〉 ∈ T I}
restriction(T minCardinality(m)) > mT (> mT)I = {x |]{t | 〈x, t〉 ∈ T I} ≥ m}
restriction(T maxCardinality(m)) 6 mT (6 mT)I = {x |]{t | 〈x, t〉 ∈ T I} ≤ m}

Table 2.OWL class descriptions

4 Individual axioms are also calledfacts.

Abstract Syntax DL Syntax Semantics
Class(A partialC1 . . . Cn) A v C1 u . . . u Cn AI ⊆ CI1 ∩ . . . ∩ CIn
Class(A completeC1 . . . Cn) A ≡ C1 u . . . u Cn AI = CI1 ∩ . . . ∩ CIn
EnumeratedClass(A o1 . . . on) A ≡ {o1} t . . .t {on} AI = {o1I , . . . , oIn}
SubClassOf(C1, C2) C1 v C2 CI1 ⊆ CI2
EquivalentClasses(C1 . . . Cn) C1 ≡ . . . ≡ Cn CI1 = . . . = CIn
DisjointClasses(C1 . . . Cn) Ci v ¬Cj , CI1 ∩ CIn = ∅,

(1 ≤ i < j ≤ n) (1 ≤ i < j ≤ n)
SubPropertyOf(R1, R2) R1 v R2 RI1 ⊆ RI2
EquivalentProperties(R1 . . . Rn) R1 ≡ . . . ≡ Rn RI1 = . . . = RIn
ObjectProperty(R super(R1) ... super(Rn) R v Ri RI ⊆ RIi

domain(C1) ... domain(Ck) > 1R v Ci RI ⊆ CIi × ∆I

range(C1) ... range(Ch) > v ∀R.Ci RI ⊆ ∆I × CIi
[Symmetric] R ≡ R− RI = (R−)I

[Functional] Func(R) {〈x, y〉 |]{y.〈x, y〉 ∈ RI} ≤ 1}
[InverseFunctional] Func(R−) {〈x, y〉 |]{y.〈x, y〉 ∈ (R−)I} ≤ 1}
[Transitive]) Trans(R) RI = (RI)+

AnnotationProperty(R)
Individual(o type(C1) . . . type(Cn) o : Ci, 1 ≤ i ≤ n oI ∈ CIi , 1 ≤ i ≤ n

value(R1, o1) . . . value(Rn, on) 〈o, oi〉 : Ri,1 ≤ i ≤ n 〈oI , oIi 〉 ∈ RIi , 1 ≤ i ≤ n

SameIndividual(o1 . . . on) o1 = . . . = on oI1 = . . . = oIn
DifferentIndividuals(o1 . . . on) oi 6= oj , 1 ≤ i < j ≤ n oIi 6= oIj , 1 ≤ i < j ≤ n

Table 3.OWL axioms

3 Datatype Formalisms

In this section we will provide a brief overview of the XML, RDF and OWL datatype
formalisms.

3.1 XML Schema Datatypes

W3C XML Schema Part 2 [4] defines facilities for defining simple types to be used in
XML Schema as well as other XML specifications.

Definition 1 An XML Schema simple typed is characterised by a value space,V (d),
which is a non-empty set, a lexical space,L(d), which is a non-empty set of Unicode [6]
strings, and a set of facets,F (d), each of which characterizes a value space along inde-
pendent axes or dimensions. �

XML Schema simple types are divided into disjoint built-in simple types and de-
rived simple types. Derived datatypes can be defined by derivation from primitive or
existing derived datatypes by the following three means:

– Derivation byrestriction, i.e., by using facets on an existing type, so as to limit the
number of possible values of the derived type.

– Derivation byunion, i.e., to allow values from a list of simple types.
– Derivation bylist, i.e., to define the list type of an existing simple type.

Example 1.The following is the definition of a derived simple type (of the base
datatype xsd:integer) which restricts values to integers greater than or equal to 0 and

less than 150, using the facets minInclusive and maxExclusive.
<simpleType name = “humanAge”>

<restriction base = “xsd:integer”>
<minInclusive value = “0”/>
<maxExclusive value = “150”/>

</restriction>
</simpleType> ♦

3.2 Datatypes in RDF

According to [8], RDF allows the use of datatypes defined by any external type systems,
e.g., the XML Schema type system, which conform to the following specification.

Definition 2 A datatyped is characterised by a lexical space,L(d), which is an non-
empty set of Unicode strings; a value space,V (d), which is an non-empty set, and a
total mappingL2V (d) from the lexical space to the value space. �

This specification allows the use of non-list XML Schema built-in simple types
as datatypes in RDF, although some built-in XML Schema datatypes are problematic
because they do not fit the RDF datatype model.5 Furthermore, comparisons between
Definition 1 and 2 show that RDF does not take XML Schema facets into account,
which are essential to define derived simple types.

In RDF, data values are represented by literals.

Definition 3 All literals have a lexical form being a Unicode string.Typed literalsare
of the form“s”ˆˆu, where s is a Unicode string, called thelexical formof the typed lit-
eral, andu is a datatype URI reference.Plain literalshave a lexical form and optionally
a language tagas defined by [1], normalised to lowercase. �

Example 2.Boolean is a datatype with value space{true, false}, lexical space
{“true”, “false”,“1”,“0” } and lexical-to-value mapping{“true” 7→ true, “false”7→
false, “1” 7→ true, “0” 7→ false}. “true”ˆˆxsd:boolean is a typed literal, while“true”
is a plain literal. ♦

The associations between datatype URI references (e.g.,xsd:boolean) and
datatypes (e.g., boolean) can be provided by datatype maps defined as follows.

Definition 4 A datatype mapMd is a partial mapping from datatype URI references to
datatypes. �

Note that XML Schema derived simple types arenot RDF datatypes because XML
Schema provides no mechanism for using URI references to refer to derived simple
types.

The semantics of RDF datatypes are defined in terms ofMd-interpretations, which
extend RDF-interpretations and RDFS-interpretations (cf. RDF Semantics [8]) with ex-
tra conditions for datatypes.

5 Readers are referred to [8] for more details.

Definition 5 Given a datatype mapMd, an RDFSMd-interpretationI of a vocabu-
lary V (a set of URIrefs and plain literals) is any RDFS-interpretation ofV ∪ {u |
∃ d.〈u, d〉 ∈Md} which introduces

– a non-empty setIR of resources, called thedomain(or universe) of I,
– a setIP (the RDF-interpretation requiresIP to be a sub-set ofIR) called theset of proper-

ties in I,
– a setIC (the RDFS-interpretation requiresIC to be a sub-set ofIR) called theset of classes

in I, and
– a distinguished subsetLV of IR, called theset of literal values, which contains all the plain

literals inV,
– a mappingIS from URIrefs inV to IR,
– a mappingIEXT , called theextension function, from IP to the powerset ofIR× IR,
– a mappingICEXT , called theclass extension function, from IC to the set of subsets of

IR,

– a mappingIL from typed literals inV into IR,

and satisfies the following extra conditions:

1. LV = ICEXT (IS(rdfs:Literal)),
2. for each plain literalpl, IL(pl) = pl,
3. for each pair〈u, d〉 ∈ Md,

(a) ICEXT (d) = V (d) ⊆ LV,
(b) there existd ∈ IR s.t.IS(u) = d,
(c) IS(u) ∈ ICEXT (IS(rdfs:Datatype)),
(d) for “s”ˆˆu′ ∈ V,IS(u′) = d, if s ∈ L(d), thenIL(“s”ˆˆu′) = L2S(d)(s), otherwise,

IL(“s”ˆˆu′) ∈ IR \ LV,

4. if d ∈ ICEXT (IS(rdfs:Datatype)), then〈d, IS(rdfs:Literal)〉 ∈ IEXT (rdfs:
subClassOf). �

According to Definition 5,LV is a subset ofIR, i.e., literal values are resources. Con-
dition 1 ensures that the class extension ofrdfs:Literal is LV. Condition 2 ensures
that the plain literals are interpreted as themselves. Condition 3a asserts that RDF(S)
datatypes are classes (because datatypes are interpreted using the class extension func-
tion ICEXT), condition 3b ensures that there is a resourced for datatyped in Md, and
condition 3c ensures that the classrdfs:Datatype contains the datatypes used in any
satisfyingMd-interpretation. Condition 3d explains why the range ofIL is IR rather
thanLV (because, for“s”ˆˆu, if s 6∈ L(IS(u)), thenIL(“s”ˆˆu) 6∈ LV); note that this
is different from OWL datatypes (cf. Definition 9). Condition 4 requires that RDF(S)
datatypes aresub-classesof rdfs:Literal.

3.3 Datatypes in OWL

OWL datatyping adopts the RDF specification of datatypes and data values. It extends
RDF datatyping by (i) allowing different OWL reasoners to provide different supported
datatypes, and (ii) introducing the use of so called enumerated datatypes.

Definition 6 Given a datatype mapMd, a datatype URI referenceu is called asup-
ported datatype URI reference w.r.t.Md if there exists a datatyped s.t.Md(u) = d
(in this case,d is called asupported datatype w.r.t.Md); otherwise,u is called an
unsupported datatype URI reference w.r.t.Md . �

Definition 7 Let y1, . . . , yn be typed literals. Anenumerated datatypeis of the form
oneOf(y1 . . . yn). �

Definition 8 An OWL data rangehas one of the forms: (i) a datatype URI reference,
(ii) an enumerated datatype, or (iii) rdf:Literal. �

The semantics of OWL DL datatypes are defined in terms of OWL datatype inter-
pretations.

Definition 9 An OWL datatype interpretation w.r.t. to a datatype map
Md is a pair (∆D, ·D), where the datatype domain∆D = PL ∪⋃

for each supported datatype URIref u w.r.t.Mp
V (Mp(u)) (PL is the value

space for plain literals, i.e., the union of the set of Unicode strings and the set of pairs
of Unicode strings and language tags) and·D is a datatype interpretation function,
which has to satisfy the following conditions:

1. rdfs:LiteralD = ∆D;
2. for each plain literall, lD = l ∈ PL;
3. for each supported datatype URIrefu (let d = Md(u)):

(a) uD = V (d) ⊆ ∆D,
(b) if s ∈ L(d), then(“s”ˆˆu)D = L2V (d)(s),
(c) if s 6∈ L(d), then(“s”ˆˆu)D is not defined;

4. for each unsupported datatype URIrefu, uD ⊆ ∆D, and(“s”ˆˆu)D ∈ uD.
5. each enumerated datatype oneOf(y1 . . . yn) is interpreted asyD

1 ∪ . . . ∪ yD
n . �

The above definition shows that OWL datatyping is similar to RDF datatyping, except
that (i) RDF datatypes are classes, while OWL DL datatypes are not classes,6 and (ii)
in RDF ill-defined typed literals are interpreted as resources inIR\LV, while in OWL
DL the interpretation of ill-defined typed literals are undefined.

4 Limitations of OWL Datatyping

OWL datatyping has the following serious limitations, which discourage potential users
from adopting OWL DL in their SW and ontology applications [15, 19].

1. OWL does not support customised datatypes (except enumerated datatypes).
Firstly, XML Schema derived simple types are not OWL DL datatypes, because
of the problem of datatype URI references for XML Schema derived simple types.
Secondly, OWL does not provide a mechanism to tell which (customised) datatypes
can be used together so that the language is still decidable.

6 In fact, classes and datatypes in OWL DL use different interpretation functions; cf. Section 2.

2. OWL does not support negated datatypes. For example, ‘all integers but 0’, which
is the relativised negation of the enumerated datatype oneOf(“0”ˆˆxsd:integer), is
not expressible in OWL. Moreover, negated datatypes arenecessaryin the negated
normal form (NNF)7 of datatype-related class descriptions in, e.g., DL tableaux
algorithms.

3. An OWL DL datatype domain seriously restricts the interpretations of typed literals
with unsupported datatype URIrefs. For example, given the datatype mapMd1 =
{xsd:integer 7→ integer, xsd:string 7→ string}, “1.278e-3”ˆˆxsd:float has to
be interpreted as either an integer, a string or a string with a language tag, which is
counter-intuitive.

5 OWL-Eu

This section presents OWL-Eu and elaborates how OWL-Eu satisfies the four require-
ments (listed in Section 1) in the following four sub-sections.

5.1 Supporting Customised Datatypes

OWL-Eu supports customised datatypes through unary datatype expressions based on
unary datatype groups. Intuitively, an unary datatype group extends the OWL datatyping
with a hierarchy of supported datatypes.8

Definition 10 A unary datatype groupG is a tuple (Md,B,dom), whereMd is the
datatype mapof G, B is the set ofprimitive base datatypeURI references inG anddom
is thedeclared domain function. We callS the set of supported datatype URI references
of G, i.e., for eachu ∈ S, Md(u) is defined; we requireB ⊆ S. We assume that
there exists a unary datatype URI referenceowlx:DatatypeBottom 6∈ S. The declared
domain functiondom has the following properties: for eachu ∈ S, if u ∈ B, dom(u) =
u; otherwise,dom(u) = v, wherev ∈ B. �

Definition 10 ensures that all the primitive base datatype URIrefs ofG are supported
(B ⊆ S) and that each supported datatype URIref relates to a primitive base datatype
URIref through the declared domain functiondom.

Example 3.G1 = (Md1,B1, dom1) is a unary datatype group, where

– Md1 = {xsd:integer 7→ integer, xsd:string 7→ string, xsd:nonNegativeInteger
7→≥0, xsdx:integerLessThanN 7→<N},

– B1 = {xsd:string, xsd:integer}, and
– dom1 = {xsd:integer 7→ xsd:integer, xsd:string 7→ xsd:string, xsd:nonNega-

tiveInteger7→ xsd:integer, xsdx:integerLessThanN 7→ xsd:integer}.

7 A concept is in negation normal form iff negation is applied only to atomic concept names,
nominals or datatypes.

8 Note that in [15] datatype groups allow arbitrary datatype predicates, while here we consider
only datatypes, which can be regarded asunarydatatype predicates.

According to Md1, we haveS1 = {xsd:integer, xsd:string, xsd:nonNega-
tiveInteger,xsdx:integerLessThanN}, henceB1 ⊆ S1. Note that the value space of
<N is

V (<N) = {i ∈ V (integer) | i < L2S(integer)(N)},
and by <N we mean there exists a supported datatype<N for each integer
L2S(integer)(N). ♦

Based on a unary datatype group, OWL-Eu provides a formalism (called datatype
expressions) for constructing customised datatypes using supported datatypes.

Definition 11 Let G be a unary datatype group. The set ofG-unary datatype ex-
pressionsin abstract syntax (corresponding DL syntax can be found in Table 5.1 on
page 10), abbreviatedDexp(G), is inductively defined as follows:

1. atomic expressions: if u is a datatype URIref, thenu ∈ Dexp(G);
2. relativised negated expressions: if u is a datatype URIref, thennot (u) ∈ Dexp(G);
3. enumerated datatypes: if l1, . . . , ln are literals, thenoneOf (l1, . . . , ln) ∈ Dexp(G);
4. conjunctive expressions: if {E1, ..., En} ⊆ Dexp(G), thenand (E1, ..., En) ∈ Dexp(G);
5. disjunctive expressions: if {E1, ..., En} ⊆ Dexp(G), thenor (E1, ..., En) ∈ Dexp(G).�

Example 4.G-unary datatype expressions can be used to represent XML Schema non-
list simple types. Given the unary datatype groupG1 presented in Example 3 (page 8),

– built-in XML Schema simple typesinteger, string, nonNegativeInteger are supported
datatypes inG1;

– the XML Schema derived simple type (using only one facet)
<simpleType name = “lessThan5”>

<restriction base = “xsd:integer”>
<maxExclusive value = “5”/>

</restriction>
</simpleType>,

i.e.<5, is a supported datatype inG1;
– the XML Schema derived simple type (using more than one facet) “humanAge” presented

in Example 1 (page 4) can be represented by the following conjunctive expression

and (xsd:nonNegativeInteger, xsdx:integerLessThan150);

– the following XML Schema derived union simple type
<simpleType name = “cameraPrice”>

<union>
<simpleType>

<restriction base = “xsd:nonNegativeInteger”>
<maxExclusive value = “100000”/>

</restriction>
</simpleType>
<simpleType>

<restriction base = “xsd:string”>
<enumeration value = “low”/>
<enumeration value = “medium”/>
<enumeration value = “expensive”/>

</restriction>
</simpleType>

</union>
<simpleType>

can be represented by the following disjunctive expression
or (

and (xsd:nonNegativeInteger, xsdx:integerLessThan100000)
oneOf (“low”ˆˆxsd:string,“medium”ˆˆxsd:string, “expensive”ˆˆxsd:string)

). ♦

Abstract Syntax DL Syntax Semantics
a datatype URIrefu u uD

oneOf (l1, . . . , ln) {l1, . . . , ln} {lD1 } ∪ . . . ∪ {lDn }
not (u) u (Md(u))D \ uD if u ∈ S \B

∆D \ uD otherwise
and (E1, . . . , En) E1 ∧ . . . ∧ En ED

1 ∩ . . . ∩ ED
n

or (P, Q) E1 ∨ . . . ∨ En ED
1 ∪ . . . ∪ ED

n

Table 4.Syntax and semantics of datatype expressions (OWL-Eu data ranges)

Definition 12 A datatype interpretationID of a unary datatype groupG =
(Md,B, dom) is a pair(∆D, ·D), where∆D (the datatype domain) is a non-empty
set and·D is a datatype interpretation function, which has to satisfy the following con-
ditions:

1. (rdfs:Literal)D = ∆D and(owlx:DatatypeBottom)D = ∅;
2. for each plain literall, lD = l ∈ PL andPL ⊆ ∆D;9

3. for any two primitive base datatype URIrefsu1, u2 ∈ B: uD
1 ∩ uD

2 = ∅;
4. for each supported datatype URIrefu ∈ S (let d = Md(u)):

(a) uD = V (d) ⊆ ∆D, L(u) ⊆ L(dom(u)) andL2S(u) ⊆ L2S(dom(u));
(b) if s ∈ L(d), then(“s”ˆˆu)D = L2V (d)(s); otherwise,(“s”ˆˆu)D is not defined;

5. ∀u 6∈ S, uD ⊆ ∆D, and“v”ˆˆu ∈ uD.

Moreover, we extend·D to G unary datatype expression as shown in Table 5.1
(page 10). LetE be aG unary datatype expression, the negation ofE is of the form
¬E, which is interpreted as∆D \ ED. �

In Definition 12, Condition 3 ensures that the value spaces of all primitive base
datatypes are disjoint with each other. Condition 4a ensures that each supported
datatype is a derived datatype of its primitive base datatype. Please note the difference
between a relativised negated expression and the negation of a unary datatype expres-
sion: the former one is a kind of unary datatype expression, while the latter one is the
form of negation of all kinds of unary datatype expressions.

Now we introduce the kind of basic reasoning mechanisms required for a unary
datatype group.

Definition 13 Let V be a set of variables,G = (Md,B, dom) a unary datatype group.
A datatype conjunctions ofG of the form

C =

k∧
j=1

uj(vj) ∧
l∧

i=1

6=i (v
(i)
1 , v

(i)
2), (1)

where thevj are variables fromV, v(i)
1 , v

(i)
2 are variables appear in

∧k
j=1 uj(vj), uj are

datatype URI references fromS and 6=i are the inequality predicates for primitive base
datatypesMd(dom(ui)) whereui appear in

∧k
j=1 uj(vj).

9 PL is the value space for plain literals; cf. Definition 9 on page 7.

A predicate conjunctionC is called satisfiableiff there exist an interpretation
(∆D, ·D) of G and a functionδ mapping the variables inC to data values in∆D s.t.
δ(vj) ∈ uD

j (for all 1 ≤ j ≤ k) and{δ(v(i)
1), δ(v(i)

2)} ⊆ uD
i andδ(v(i)

1) 6= δ(v(i)
2) (for

all 1 ≤ i ≤ l). Such a functionδ is called asolutionfor C w.r.t. (∆D, ·D). �

We end this section by elaborating the conditions that computable unary datatype
groups require.

Definition 14 A unary datatype groupG is conformingiff

1. for anyu ∈ S \B: there existu′ ∈ S \B such thatu′D = uD, and
2. the satisfiability problems for finite datatype conjunctions of the form (1) is decid-

able. �

5.2 Small Extension: From OWL DL to OWL-Eu

In this section, we present a small extension of OWL DL, i.e., OWL-Eu. The underpin-
ning DL of OWL-Eu isSHOIN (G1), i.e., theSHOIN DL combined with a unary
datatype groupG (1 for unary). Specifically, OWL-Eu (only) extends OWL data range
(cf. Definition 8) to OWL-Eu data ranges defined as follows.

Definition 15 An OWL-Eu data rangeis aG unary datatype expression. Abstract (as
well as DL) syntax and model-theoretic semantics of OWL-Eu data ranges are presented
in Table 5.1 (page 10). �

The consequence of the extension is that customised datatypes, represented by
OWL-Eu data ranges, can be used in datatype exists restrictions (∃T.u) and datatype
value restrictions (∀T.u), whereT is a datatype property andu is an OWL-Eu data range
(cf. Table 2 on page 3). Hence, this extension of OWL DL is as large as is necessary to
support customised datatypes.

Example 5.PCs with memory size greater than or equal to 512 Mb and with price
cheaper than 700 pounds can be represented in the following OWL-Eu concept descrip-
tion in DL syntax (cf. Table 5.1 on page 10):

PC u ∃memorySizeInMb.<512 u ∃priceInPound. <700,

where<512 is a relativised negated expression and<700 is a supported datatype inG1.
♦

5.3 Decidability of OWL-Eu

Theorem 5.19 of [15] indicates that we can combine any decidable DL that provides the
conjunction (u) and bottom (⊥) constructors with a conforming unary datatype group
and the combined DL is still decidable. Therefore, OWL-Eu is decidable.

Theorem 1. (Theorem 6.2 of [15]) The knowledge base satisfiability problem of OWL-
Eu is decidable if the combined unary datatype group is conforming.

5.4 Overcoming the Limitations of OWL Datatyping

This section summarises how OWL-Eu overcomes the limitations of OWL datatyp-
ing presented in Section 4. Firstly, OWL-Eu is a decidable extension (Theorem 1) of
OWL DL that supports customised datatypes with unary datatype expressions (cf. Ex-
ample 4). Secondly, Definition 12 defines the negations of datatype expressions and
OWL-Eu provides relativised negated datatype expression (Definition 11). Thirdly, ac-
cording to Definition 12, the datatype domain in an interpretation of a datatype group
is a superset of (instead of equivalent to) the value spaces of primitive base datatypes
and plain literals; hence, typed literals with unsupported predicates are interpreted more
intuitively.

6 Related Work

The concrete domain approach [2, 14] provides a rigorous treatment of datatype pred-
icates, rather than datatypes.10 In the type system approach [12], datatypes are consid-
ered to be sufficiently structured by type systems; however, it does not specify how the
derivation mechanism of a type system affects the set of datatypesD. [5] suggests some
solutions to the problem of referring to an XML Schema user defined simple type with
a URI reference; however, it does not address the computability issue of combining the
SHOIN DL with customised datatypes.

7 Discussion

Although OWL is rather expressive, it has a very serious limitation on datatypes; i.e.,
it does not support customised datatypes. It has been pointed out that many potential
users will not adopt OWL unless this limitation is overcome. Accordingly, the Semantic
Web Best Practices and Development Working Group sets up a task force to address this
issue. As discussed above, a solution for the problem should cover much more than just
a standard way of referring to an XML Schema user defined simple type with a URI
reference.

In this paper, we propose OWL-Eu, an extension of OWL DL that supports cus-
tomised datatypes. The underpinning of OWL-Eu is theSHOIN (G1) DL, a combi-
nation ofSHOIN and a unary datatype group. OWL-Eu is decidable if the combined
unary datatype group is conforming; the conformability of a unary datatype group pre-
cisely specifies the conditions on the set of supported datatypes. OWL-Eu provides a
general framework for integrating OWL DL with customised datatypes, such as XML
Schema non-list simple types.

We have implemented a prototype extension of the FaCT [9] DL system to support
TBox reasoning of theSHIQ(G1) DL, a sub-language of OWL-Eu. As for future work,
we are planing to extend the DIG1.1 interface [7] to support OWL-Eu and to implement
a Prot́eǵe [13] plug-in to support XML Schema non-list simple types, i.e. users should
be able to define and/or import customised XML Schema non-list simple types based
on a set of supported datatypes, and to exploit our prototype through the extended DIG
interface.
10 The reader is referred to Section 5.1.3 of [15] for detailed discussions on concrete domains.

Bibliography

[1] H. Alvestrand. Rfc 3066 - tags for the identification of languages. Technical
report, IETF, Jan 2001. http://www.isi.edu/in-notes/rfc3066.txt.

[2] Franz Baader and Philipp Hanschke. A Schema for Integrating Concrete Domains
into Concept Languages. InProc. of the 12th Int. Joint Conf. on Artificial Intelli-
gence (IJCAI’91), pages 452–457, 1991.

[3] Sean Bechhofer, Frank van Harmelen, James Hendler, Ian Horrocks, Deborah L.
McGuinness, Peter F. Patel-Schneider, and Lynn Andrea Stein eds. OWL Web
Ontology Language Reference. http://www.w3.org/TR/owl-ref/, Feb 2004.

[4] Paul V. Biron and Ashok Malhotra. Extensible Markup Language (XML) Schema
Part 2: Datatypes – W3C Recommendation 02 May 2001. Technical report, World
Wide Web Consortium, 2001. http://www.w3.org/TR/xmlschema-2/.

[5] Jeremy J. Carroll and Jeff Z. Pan. XML Schema Datatypes
in RDF and OWL. Technical report, W3C Semantic Web Best
Practices and Development Group, Nov 2004. Editors’ Draft,
http://www.w3.org/2001/sw/BestPractices/XSCH/xsch-sw/.

[6] Unicode Consortium.The Unicode Standard. Addison-Wesley, 2000. ISBN 0-
201-61633-5. version 3.

[7] DIG. SourceForge DIG Interface Project. http://sourceforge.net/projects/dig/,
2004.

[8] Patrick Hayes. RDF Semantics. Technical report, W3C, Feb 2004. W3C recom-
mendation, http://www.w3.org/TR/rdf-mt/.

[9] I. Horrocks. Using an Expressive Description Logic: FaCT or Fiction? InProc.
of KR’98, pages 636–647, 1998.

[10] I. Horrocks, U. Sattler, and S. Tobies. Practical Reasoning for Expressive De-
scription Logics. InProc. of Int. Conf. on Logic for Programming and Automated
Reasoning (LPAR’99), number 1705 in LNAI, pages 161–180, 1999.

[11] Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From SHIQ and
RDF to OWL: The making of a web ontology language.Journal of Web Semantics,
1(1):7–26, 2003.

[12] Ian Horrocks and Ulrike Sattler. Ontology reasoning in theSHOQ(D) description
logic. In Proc. of the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI 2001),
pages 199–204, 2001.

[13] Holger Knublauch, Ray W. Fergerson, Natalya Fridman Noy, and Mark A. Musen.
The Prot́eǵe OWL Plugin: An Open Development Environment for Semantic Web
Applications. InInternational Semantic Web Conference, pages 229–243, 2004.

[14] Carsten Lutz.The Complexity of Reasoning with Concrete Domains. PhD thesis,
Teaching and Research Area for Theoretical Computer Science, RWTH Aachen,
2001.

[15] Jeff Z. Pan.Description Logics: Reasoning Support for the Semantic Web. PhD
thesis, School of Computer Science, The University of Manchester, Oxford Rd,
Manchester M13 9PL, UK, 2004.

[16] Jeff Z. Pan and Ian Horrocks. Extending Datatype Support in Web Ontology
Reasoning. InProc. of the 2002 Int. Conference on Ontologies, Databases and
Applications of SEmantics (ODBASE 2002), Oct 2002.

[17] Jeff Z. Pan and Ian Horrocks. Web Ontology Reasoning with Datatype Groups.
In Proc. of the 2003 International Semantic Web Conference (ISWC2003), pages
47–63, 2003.

[18] RDF-Logic Mailing List. http://lists.w3.org/archives/public/www-rdf-logic/.
W3C Mailing List, starts from 2001.

[19] A. Rector. Re: [UNITS, OEP] FAQ : Constraints on data values range. Dis-
cussion in [20], Apr. 2004. http://lists.w3.org/Archives/Public/public-swbp-
wg/2004Apr/0216.html.

[20] Semantic Web Best Practice and Development Working Group Mailing List.
http://lists.w3.org/archives/public/public-swbp-wg/. W3C Mailing List, starts
from 2004.

