
Abox Satisfiability Reduced to Terminological

Reasoning in Expressive Description Logics

Sergio Tessaris1 and Ian Horrocks2

1 Department of Computation
UMIST

Manchester, UK
sergio@co.umist.ac.uk

2 Department of Computer Science
University of Manchester

Manchester, UK
horrocks@cs.man.ac.uk

Abstract. Description Logics knowledge bases are traditionally divided
into a terminological part (Tbox), and an assertional part (Abox). How-
ever, most of recent results on practical algorithms are confined to ter-
minological reasoning only. Due to the applications of Description Logics
for databases and the so-called “Semantic Web”, there is a growing inter-
est for practical algorithms for Abox reasoning. In this paper we present
an algorithm for deciding knowledge base satisfiability based on the idea
of separating terminological and assertional reasoning. This modularity
allows to build complete Description Logics systems, by reusing available
terminological reasoners.

1 Introduction

Although Description Logics (DLs) have proved useful in a range of applica-
tion domains, e.g., configuration [1] and reasoning about database schemas and
queries [2], their original development was motivated by the desire to give a well
defined and implementation independent semantics to knowledge representation
systems based on semantic networks and frames [3], and to provide automated
reasoning services for interesting inference problems, e.g., concept subsumption.
Subsequent research has investigated the computational complexity of such in-
ference problems for different DLs, and the design and implementation of (sound
and complete) algorithms capable of solving these problems. Recently, the focus
of this work has been on the development of algorithms and optimised imple-
mentations for increasingly expressive DLs, e.g., those supporting transitive roles
(binary relations) and general inclusion axioms.1

The knowledge represented in a DL based system is often divided into two
parts: a “terminological” part (called the Tbox) and an “assertional” part (called

1 I.e., axioms asserting a subsumption relationship between arbitrarily complex con-
cepts.



the Abox). The Tbox defines the structure of the domain, and consists of a set
of axioms asserting, e.g., that one concept (class) subsumes (is a superclass of)
another; the Abox describes a concrete example of the domain, and consists of a
set of axioms asserting, e.g., that an individual is an instance of a concept or that
one individual is related to another by a given role. Interesting inference problems
for a DL based knowledge representation system include concept satisfiability
and subsumption, realisation (what is the most specific concept an individual is
an instance of) and retrieval (which individuals are instances of a given concept).

The use of DLs in knowledge representation has been highlighted by the
recent explosion of interest in the so-called “Semantic Web” [4], where DLs are
set to provide both the formal underpinnings and automated reasoning services
for Semantic Web knowledge representation languages such as DAML+OIL [5].
The DL based design of these languages allows them to exploit both formal
results (e.g., w.r.t. the decidability and complexity of key inference problems [6])
and implemented systems from DL research. Reasoning with Aboxes is likely to
be of increasing importance, e.g., in Semantic Web applications, where it will
be necessary not only to reason with concepts, but also with individuals (web
resources) that instantiate them, and in particular to answer queries over sets
of such individuals (e.g., see [7]).

Most of the current DL systems (for example RACER [8]) use optimised
versions of the tableaux–based algorithm described in [9] for deciding the satis-
fiability of a Tbox or knowledge base.2 In this paper we present an alternative
algorithm based on the precompletion technique introduced in [10, 11]. We ex-
tended the original work to deal with transitive roles, functional roles and general
inclusion axioms.

The main idea behind this technique is to eliminate Abox axioms specify-
ing relationships between individuals by explicating the consequences of such
relationships. Once these axioms have been eliminated, the assertions about a
single individual can be independently verified using a standard Tbox reasoner.
The algorithm is completely independent of the Tbox reasoner, so it can exploit
existing systems with highly optimised Tbox reasoners, and could be used to
add an Abox to such a system without re-implementing the Tbox reasoner [12].

The main purpose of this paper is to present the precompletion algorithm and
to provide evidence of its correctness and completeness. However, in Section 5
we briefly comment on a prototypical implementation of this algorithm, and its
empirical evaluation.3

The proof for correctness and completeness of the technique is in two parts:
in Section 3 we present the method to enumerate the so called precompletions of
a KB. We show that a KB is satisfiable iff one of these precompletions is satisfi-
able. In the second part (Section 4) we show that, for checking the satisfiability
of a precompletion, role assertions can be ignored. In a precompletion the rele-
vant elements are the concept assertions and the terminology. Each individual

2 Many interesting inference problems, including both realisation and retrieval, can
be reduced to knowledge base satisfiability.

3 A more extended discussion can be found in [12] or [13].



is associated to its individual concept, which is the conjunction of the concepts
appearing in Abox assertions about the individual itself. If all the individual
concepts are satisfiable (with respect to the terminology), then their models can
be combined in an interpretation satisfying the precompleted knowledge base.

Due to space restrictions, most of the proofs are only sketched or omitted;
their full version can be found in Chapter 5 of [13].4

2 Preliminaries

2.1 SHf knowledge bases

The DL SHf is built over a signature of distinct sets of concept (CN ), role
(RN ) and individual (O) names. In addition, we distinguish two non-overlapping
subsets of RN (T RN and FRN ) which denote the transitive and the functional
roles. The set of all SHf concepts is the smallest set such that every concept name
in CN and the symbols >, ⊥ are concepts, and if C and D are concepts and R a
role name in RN , then ¬C, (CuD), (CtD), (∀R.C), and (∃R.C) are concepts.

An interpretation I = (∆I , ·I) consists of a nonempty domain ∆I and a
interpretation function ·I . The interpretation function maps concepts into sub-
sets of ∆I , individual names into different elements of ∆I ,5 and role names into
binary relations over ∆I (i.e. subsets of ∆I ×∆I). Complex concept expressions
are interpreted according to the following equations (see [14])

>I = ∆I (C u D)
I

= CI ∩ DI

⊥I = ∅ (C t D)
I

= CI ∪ DI

¬CI = ∆I \ CI

(∀R.C)
I

=
{

x ∈ ∆I | ∀y(x, y) ∈ RI ⇒ y ∈ CI
}

(∃R.C)
I

=
{

x ∈ ∆I | ∃y(x, y) ∈ RI ∧ y ∈ CI
}

In addition, the interpretation function must satisfy the transitive and functional
restrictions on role names; i.e. for any R ∈ T RN if (x, y) ∈ RI and (y, z) ∈ RI ,
then (x, z) ∈ RI , and for any F ∈ FRN if (x, y) ∈ F I and (x, z) ∈ F I , then
y = z.

A SHf knowledge base (KB) is a pair 〈T ,A〉, where T is called Tbox and A
is called Abox. The Tbox contains a finite set of axioms of the form C v D or
RvS; while A is the Abox and contains a finite set of assertions of the form a:C
or 〈a, b〉:R (where C,D are SHf concepts, R,S role names, and a, b individual
names). Intuitively, axioms in the Tbox describe intensional properties of all the
elements of the domain, while assertions in the Abox assign properties of some
named elements. We say that an interpretation I = (∆I , ·I) satisfies the axiom
C v D (R v S) iff CI ⊆ DI (RI ⊆ SI), and the assertion a:C (〈a, b〉:R) iff
aI ∈ CI ((aI , bI) ∈ RI).

4 Its electronic version is available at http://www.cs.man.ac.uk/~tessaris/papers/
phd-thesis.ps.gz

5 This corresponds to the so-called Unique Name Assumption (UNA).



Role inclusion axioms contain only role names, and if there are cyclical defini-
tions (e.g. SvR and RvS), all the names involved in the cycle must correspond
to the same binary relation in every interpretation (satisfying the axioms). For
these reasons, we assume that role axioms are summarised by a partial order �
defined over the set of role names.

We assumed that transitive and functional role names are distinct, and it is
easy to realise that a subrole of a functional role is functional as well. There-
fore, we impose the restriction that transitive roles cannot be sub-roles of any
functional role.

2.2 Technical Definitions

Without loss of generality we assume that all the concept axioms in the Tbox
are in the form > v C, where C is a concept expression. In DLs closed under
negation, this assumption is not restrictive at all. Since, an arbitrary assertion
C1 vC2 can be transformed into the equivalent assertion >v (¬C1 tC2), which
is in the required form.

A second assumption we adopt is that concept expressions are in negation
normal form, where the ¬· constructor can appear only in front of concept names.
Any concept expression can be transformed into an equivalent expression in
normal form using the following rewriting rules.

¬¬C ≡ C ¬(C u D) ≡ ¬C t ¬D ¬∃R.C ≡ ∀R.¬C

¬(C t D) ≡ ¬C u ¬D ¬∀R.C ≡ ∃R.¬C

Given a knowledge base Σ = 〈T ,A〉, the label of an individual (written
as L(Σ, o)) is the set of concept expressions in the assertions on the individ-
ual itself. This is formally defined by {C | o:C ∈ A} if this set is not empty,
or {>} otherwise. The individual concept expression

d
L(Σ, o) is defined as

the conjunction of all the concept expressions in L(Σ, o): C1 u . . . u Cn where
{Ci | i = 1, . . . , n} = L(Σ, o).

In order to simplify the formulae that define the precompletion algorithm,

we define the role binary operators ·
o
≈A · (depending on the individual name

o in O, and an Abox A). Intuitively, these operators take into account the
possible interaction between the role hierarchy and the functional restrictions.

An operator ·
o
≈A · holds between two role names R and S if they are functional,

and the Abox assertions force the R and S successors of the individual name o

to be the same element.

Definition 1. Given two roles R and S, an individual o, and a KB Σ = 〈T ,A〉,

R
o
≈A S holds iff:

– there is a role R0 � R s.t. either o:∃R0.C0 or 〈o, o′〉:R0 is in A; and
– there is a role S0 � S s.t. either o:∃S0.D0 or 〈o, o′′〉:S0 is in A; and
– there is a set of roles {R1, . . . Rn−1}, and a set of functional roles {F1, . . . , Fn},

s.t.



• either o:∃Ri.Ci or 〈o, o′〉:Ri is in A, for any i = 1, . . . , n − 1 and
• R � F1, S � Fn, R1 � F1, R1 � F2, R2 � F2, . . . , Rn−1 � Fn.

The ·
o
≈A · relation can be better understood by considering that it is de-

scribing a situation in which part of the role taxonomy looks like

F1 F2 Fn−1 Fn

R R1 · · · Rn−1 S

R0 S0

�
�

� �
�

� � �

� �

and for each of the role names R, R1, . . . , Rn−1, S the individual name o has a
successor. In this case, the functional restrictions cause all these successors to
be interpreted as the very same element. By the way it is defined, the relation

·
o
≈A · is symmetric (i.e. R

o
≈A S ⇒ S

o
≈A R). Next proposition shows that the

definition captures the intuition behind the operators.

Proposition 1. Let Σ = 〈T ,A〉 be a KB, and I = (∆I , ·I) be an interpretation
satisfying Σ. For any individual name o, role names R, S, and elements x, y of

∆I , if (oI , x) ∈ RI , (oI , y) ∈ SI , and R
o
≈A S, then x = y.

Proof. All the roles R,S,R1, . . . , Rn−1 of Definition 1 are functional because
they are included in functional roles (F1, . . . , Fn); therefore oI has at most one
successor for any of these roles. We are going to show that all these successors
are equal.

Note that for any Ri, the constraint o:∃Ri.Ci (or 〈o, o′〉:Ri) implies the exis-
tence of an element xi in ∆I s.t. (oI , xi) ∈ Ri

I .
Let us consider (oI , x1) ∈ R1

I , and (oI , x) ∈ RI . Since R1
I ⊆ F1

I and
RI ⊆ F1

I , then
{

(oI , x1), (o
I , x)

}

⊆ F1
I . From the functionality of F1

I we can
conclude that x1 = x.

The very same arguments can be applied to all pair of roles Ri, Ri+1, includ-
ing the last Rn−1, S; therefore x = x1 = x2 = . . . = xn−1 = y.

3 Precompletions of knowledge bases

Intuitively, a knowledge base is precompleted if all the information entailed by
the presence of role assertions is exhibited in the form of concept assertions. The
definition of a precompletion for a knowledge base 〈T ,A〉 is given in a procedural
way, as a new KB 〈T ,Apc〉 where the Abox is extended using the syntactic rules
of Figure 1 as long as they are applicable. Due to the nondeterminism of the
rules, several precompletions can be derived. A knowledge base is satisfiable if
and only if a satisfiable precompletion can be derived.

The precompletion rules are designed in such a way that, whatever strategy of
application is chosen, the process of completing a knowledge base always termi-
nates (Proposition 2). The precompletion algorithm generates a finite, but pos-
sibly exponential, number of precompletions; which can be individually checked



A→v{o:C} ∪ A
if o is in O, >v C is in T
and o:C is not in A.

A→t{o:D} ∪ A
if o:C1 t C2 is in A,
and D = C1 or D = C2

and neither o:C1 nor o:C2 is in A.

A→∃1{o′:C} ∪ A
if o:∃R.C and 〈o, o′〉:S are in A,

R
o

≈A S, and o′:C is not in A.

A→∀+{o′:∀R.C} ∪ A
if o:∀T.C in A, 〈o, o′〉:S is in A,
and there is R ∈ T RN such that S � R � T ,
and o′:∀R.C is not in A.

A→u{o:C1, o:C2} ∪ A
if o:C1 u C2 is in A,
and neither o:C1 nor o:C2 is in A.

A→∀1{o′:C} ∪ A
if o:∀R.C and 〈o, o′〉:S are in A,

there is R′ � R s.t. R′ o

≈A S

and o′:C is not in A.

A→∀{o
′:C} ∪ A

if o:∀R.C is in A, and 〈o, o′〉:S is in A,
and S � R, and o′:C is not in A.

Fig. 1. Precompletion rules for SHf

for their consistency. The advantage over the original knowledge base is that they
are simpler, enabling the use of techniques based on terminological reasoning.

Proposition 2. The precompletion process always terminates, and any precom-
pletion has a size which is polynomial w.r.t. the size of the knowledge base.

Proof (Sketched). The number of new assertions introduced by the terminology
via the →v rule is equal to the number of individual names in the KB multiplied
by the number of concept axioms in the Tbox. The rules →u, →t, →∃1 , →∀1 ,
and →∀ always introduce assertions smaller than the original ones. The only
rule that introduces non decreasing assertions is →∀+ ; however, its applicability
is bounded by the number of role assertions, which is invariant.

For estimating the size of each precompletion we can use the argument that
the number of different concept expressions that can be generated is polynomial
w.r.t. the size of the KB.6 Therefore the size of a precompletion cannot exceed
the number of individual names multiplied by the number of concept expressions,
and this number is still polynomial w.r.t. the size of the KB.

The satisfiability of a knowledge base and the satisfiability of its precomple-
tions are strictly related. In fact, the knowledge base is satisfiable if and only if
at least one of its precompletions is satisfiable (Proposition 3).

Proposition 3. A knowledge base Σ = 〈T ,A〉 is satisfiable if and only if it has
a satisfiable precompletion.

Proof. For the if direction, since Σ is included in all its precompletions, a model
for a precompletion Σpc is a model for Σ as well.

6 Again the only problem may come from the →∀+ rule, but the number of formulae
that it can generate is limited by the number of transitive role names.



For the only if direction, we show that given a model I = (∆I , ·I) for Σ, a
satisfiable precompletion of Σ can be built. This precompletion Σpc = 〈T ,Apc〉
is built by extending A using a set of rules constrained by the model I. The
rules are the same as Figure 1 apart from the nondeterministic →t rule, which
is transformed into a deterministic one by using the model I:

A →t {o:D} ∪ A
if o:C1 t C2 in A,
and D = C1 if oI ∈ CI

1 and D = C2 otherwise
and neither o:C1 nor o:C2 is in A.

All the rules preserve satisfiability, in the sense that if I is a model for the
Abox before the application of the rule, then it is a model for the extended
Abox as well. Because of the preserved satisfiability, I must be a model for the
precompleted knowledge base Σpc as well.

Here we show the proofs for the →t and →∀1 rules only, the rest of the rules
follow a similar pattern.

→t If I is a model for 〈T ,A〉, then oI ∈ (C1tC2)
I ; therefore either oI ∈ CI

1 or
oI ∈ CI

2 . Suppose that oI ∈ CI
1 , then A is extended by adding the assertion

o:C1 which is satisfied by I, and analogously for the case in which oI ∈ CI
2 .

→∀1 If I is a model for 〈T ,A〉, then (oI , o′
I
) ∈ SI , and every element x s.t.

(oI , x) ∈ RI must be in CI .

Since R′ o
≈A S, there is a role R0 � R′ and an element x such that (oI , x) ∈

R0
I . In addition, R′ � R therefore (oI , x) ∈ RI , which means that x ∈ CI .

Finally, we can use Proposition 1 with R′ and S for concluding that x = o′
I
,

so I satisfies the assertion o′:C.

Since Proposition 2 ensures that the precompletions of a given knowledge
base can be enumerated, the satisfiability checking can be performed on pre-
completed knowledge bases. Therefore the problem of checking the satisfiability
of a SHf knowledge base can be reduced to the problem of verifying whether
one of its precompletions is satisfiable.

4 Satisfiability of precompletions

In precompleted knowledge bases, the information carried by role assertions is
made explicit; therefore all the relevant properties of an individual are in the
form of concept assertions. The label of an individual completely characterises
the properties of the individual, and it can be used to verify that these properties
are not contradictory.

Since we are going to ignore the role assertions of a precompleted KB, first
we must make sure that a precompleted KB does not contain any contradiction
caused by role assertions. In SHf this case is restricted to assertions involving
functional roles. We say that a precompletion Σpc = 〈T ,Apc〉 contains a clash iff
there are two roles R,R′ ∈ RN , and individual names a, b, c with b 6= c, such that



R
a
≈Apc

R′, and {〈a, b〉:R, 〈a, c〉:R′} ⊆ Apc. A precompletion containing a clash
is trivially not satisfiable because it violates some the functional restrictions; in
fact, by Proposition 1 the interpretations of b and c must coincide, which is in
contradiction with the unique name assumption.

It is easy to see that if a precompleted KB is satisfiable, then each individual
concept is satisfiable as well. More involved is the proof that the satisfiability
of all the individual concepts guarantees the satisfiability of the whole KB. The
rest of this section is devoted to show that this is the case.

If each individual concept
d

L(Σpc, o) is separately satisfiable with respect
to the terminology, then for every individual name o there is an individual model
Io = (∆o, ·

Io) that witnesses the satisfiability. We are going to use these in-
dividual models to build a new interpretation which satisfies the precompleted
KB.

Without loss of generality, we can assume that these individual models are
tree-shaped,7 and the root of the tree is in the interpretation of the individual
concept. In fact, the enriched expressivity of SHf forces interpretations not being
simple trees, but what we call quasi transitive trees (see [13]). These are trees
where part of the branches can be transitively closed by the role transitivity. The
effect is that one node can have more than a parent, but all the parents of any
node belong to the same path. However, the main property we are interested in
this context, is that the root node does not have entering edges. To simplify the
notation, we assume that the individual model Io contains the interpretation
for the individual o (i.e. oIo), which is the root of the quasi transitive tree. In
addition, the domains of the models can be considered pairwise disjoint without
loss of generality.

As anticipated, we are going to build an interpretation for the precompleted
KB (called union interpretation) by combining the individual models. The do-
main of the union interpretation is the union of all the domains from each individ-
ual model. The interpretation function is defined in terms of the interpretation
functions of each individual model. Each individual name is interpreted as the
root of its corresponding model (i.e. oIo), and concept names are interpreted as
the union of their interpretations in the different models. Interpretation of roles
involves something more than the union of individual interpretations. First, the
role assertions in the Abox must be taken into account, as well as the effect of
transitivity and role hierarchy. On top of that we must ensure that functional
roles are still functional.

Consider for example a KB containing only the Abox assertions 〈a, b〉:F and
a:∃F.C, where F is a functional role. The precompletion of this KB contains
the Abox assertions 〈a, b〉:F , a:∃F.C, and b:C. From the precompletion, two
individual models can be derived: Ia for the concept ∃F.C and Ib for C. If we try
to merge these two models, together with the pair generated by the role assertion
〈a, b〉:F , the resulting interpretation would not satisfy the functional restriction
on F . The solution to this problem relies on a more careful definition of the
union interpretation, which takes into account the functional restrictions on role

7 Roles represent the labelled edges connecting elements of the interpretation domain.



extensions. For this purpose we introduce the notion of restricted interpretation
(written as Io). The idea is to remove the links that will be added later on
by means of role assertions in the Abox. We perform this operation only on
functional roles, because they are the problematic ones.

Given a precompleted KB Σpc = 〈T ,Apc〉, and an individual o in Σpc, let
Io = (∆o, ·

Io) be the individual model for o. Its correspondent restricted indi-
vidual interpretation function ·Io is equal to the original interpretation function
·Io for concept and individual names; while for roles it is defined as

RIo =











RIo \
{

(oIo , x) | (oIo , x) ∈ RIo

}

if there are R′, R′′ s.t. R � R′,

〈o, o′〉:R′′ ∈ Apc, and R′ o
≈Apc

R′′;

RIo otherwise.

Note that the restricted interpretation depends on the knowledge base as
well as on each individual model. It is used instead of the original interpretation
function in Definition 2, where the extension of role names is defined in such a
way that pairs removed by means of the restricted interpretations are substituted
by pairs induced by Abox assertions. Transitive roles are not affected by the
restricted interpretation because, by assumption, they cannot have functional
super-roles.

Definition 2 (Union interpretation). Given a precompleted knowledge base
Σpc = 〈T ,Apc〉 and the individual models Io = (∆o, ·Io) for each individual

o ∈ O, then the union interpretation I = (∆, ·I) is defined as:

∆ =
⋃

o∈O

∆o, AI =
⋃

o∈O

AIo , oI = oIo ,

RI =



























⋃

o∈O RIo ∪
{

(aI , bI) | 〈a, b〉:R′ ∈ Apc, R
a
≈Apc

R′
}

∪
{

(aI , bI) | 〈a, b〉:R′ ∈ Apc, R
′ � R

}

∪
⋃

S�R,S∈T RN SI

if R 6∈ T RN ;

(
⋃

o∈O RIo ∪
{

(aI , bI) | 〈a, b〉:R′ ∈ Apc, R
′ � R

}

)+ if R ∈ T RN .

For each o ∈ O, A ∈ CN , R ∈ RN . The operator ·+ builds the transitive
closure of a relation.8

Note that the definition is recursive because the union interpretation is used
to build the interpretation for roles. However, the interpretation is well defined,
because we assumed that the role hierarchy is acyclic (see Section 2.1).

The definition of union interpretation for concept and individual names is
straightforward, while roles are more involved. The reason is that by consider-
ing precompleted Aboxes we ignored the role assertions. However, these must
be added when we build the interpretation for the whole Abox. Role assertions
require new pairs directly corresponding to the assertion themselves, represented

8 Interpretation of complex concept expressions are defined as described in Section 2.1.



by the component
{

(aI , bI) | 〈a, b〉:R′ ∈ Apc, R
′ � R

}

. But this is not enough

because of transitivity and functional restriction. Transitivity is guaranteed by

the application of the ·+ operator, and by the component
⋃

S�R,S∈T RN SI .

While the
{

(aI , bI) | 〈a, b〉:R′ ∈ Apc, R
a
≈Apc

R′
}

component ensures the pres-

ence of pairs enforced by the interaction between functionality and role hierarchy.

4.1 Interpretation of roles

The crucial properties used are the disjointness of the domains, together with
the quasi transitive model structure. These ensure that all the newly added pairs
involve (or are “mediated” by) root nodes. Proofs in this section are omitted and
they can be found in [13] (Section 5.2.1). Most of them consist of an induction
on the role hierarchy, based on the definition of union interpretation.

No pair of elements, coming from the same individual domain, is in the
union interpretation of a role unless it is in the individual interpretation of the
role itself. Obviously, we must exclude the case of a pair induced by an Abox

assertion. For example, the assertion 〈a, a〉:R forces the pair (aIa , aIa) in RI .

Proposition 4. Given a precompleted knowledge base Σpc = 〈T ,Apc〉, and the

union interpretation I = (∆, ·I) from the individual models Io = (∆o, ·
Io) with

o ∈ O. For each role R ∈ RN , individual name o ∈ O, and elements {x, y} ⊆
∆o:

(x, y) ∈ RI and y 6= oI implies (x, y) ∈ RIo

The following proposition shows that if two elements corresponding to indi-
vidual names are related, then this is because of one or more Abox assertions.

Proposition 5. Given a precompleted knowledge base Σpc = 〈T ,Apc〉, and the

union interpretation I = (∆, ·I) from the individual models Io = (∆o, ·Io) with

o ∈ O. For any role R ∈ RN and elements x, y of ∆, if (x, y) ∈ RI and y ∈ OI

then:

(x, y) ∈
{

(aI , bI) | 〈a, b〉:R′ ∈ Apc, R
′ � R

}

, or

(x, y) ∈
{

(aI , bI) | 〈a, b〉:R′ ∈ Apc, R
a
≈Apc

R′
}

, or

(x, y) ∈ (
{

(aI , bI) | 〈a, b〉:R′ ∈ Apc, R
′ � S

}

)+ for some transitive role S � R.

In the union interpretation there cannot be any connection between elements
from different individual domains, without a path passing through a root node
(Proposition 6). This property ensures that all the restrictions applying to a non-
root element are never directly propagated from different individual domains, but
induced through the root of its own individual domain.

Proposition 6. Given a precompleted knowledge base Σpc = 〈T ,Apc〉, and the

union interpretation I = (∆, ·I) from the individual models Io = (∆o, ·
Io) with



o ∈ O. For any role R ∈ RN , different individual names a, b, and elements

x ∈ ∆a, y ∈ ∆b, if (x, y) ∈ RI then x = aI , and y = bI or there is a role

S ∈ T RN such that S � R and
{

(x, bI), (bI , y)
}

⊆ SI .

Functional restrictions are satisfied because we removed potential conflicts
with Abox assertions by means of the restricted interpretation of roles.

Proposition 7. Given a precompleted knowledge base Σpc = 〈T ,Apc〉, and the

union interpretation I = (∆, ·I) from the individual models Io = (∆o, ·
Io)

with o ∈ O. If a role R is included in a functional role F (i.e. R � F ), then

]
{

y|(x, y) ∈ RI
}

≤ 1 for any element x of ∆.

While the recursive definition of the union interpretation ensures that the
hierarchy is satisfied (see Definition 2).

Proposition 8. Given a precompleted knowledge base Σpc = 〈T ,Apc〉, and the

union interpretation I = (∆, ·I) from the individual models Io = (∆o, ·Io) with

o ∈ O. For two arbitrary roles R and S, if S � R then SI ⊆ RI .

4.2 Interpretation of concepts

The presence of new pairs in the interpretation of roles can modify the exten-
sion of concept forming constructors. In particular, this affects the universal
constructor (∀R.C); e.g. if one element was in the interpretation of ∀R.C, new
elements related via R and not being in C may force the same element not being
in ∀R.C any more. This kind of “non-monotonicity” problem does not involve
any element of the domain, but it is localised to root elements. Roughly speak-
ing, the reason for this lies on the fact that the interpretation of roles, restricted
to non–root elements, does not change (see Proposition 4).

Proposition 9. For any individual name a ∈ O and concept expression D,

DIa \
{

aI
}

⊆ DI .

The proof of this proposition consists of a structural induction on concept ex-
pressions, where the basic cases are the concept names. Intuitively, the property

is true because no new successors are added to elements of ∆a \
{

aI
}

.

A restricted version of Proposition 9 is valid for elements corresponding to
individual names (roots) w.r.t. concept expressions which appear as assertions
in the precompleted KB (Proposition 10). This restricted property of the union
interpretation (together with the more general one applying to non-roots) is suf-
ficient to prove that all the axioms and assertions in the precompleted knowledge
base are satisfied by the union interpretation (Proposition 11).

Proposition 10. For any individual name a ∈ O, a:D ∈ Apc implies aI ∈ DI .



Proof. The Proposition is proved by induction on the structure of the concept
expression D. Here we show only the more interesting universal constructor case.

As induction hypothesis we assume that the proposition is valid for the con-
cept C1 and we show that it must be valid for (∀R.C1) as well. Suppose that

(aI , x) ∈ RI , then we distinguish three different cases according to the element

x: x is one of the root elements (i.e. x ∈ OI), x ∈ ∆a \
{

aI
}

, or there is b 6= a

s.t. x ∈ ∆b \
{

bI
}

.

– If x = oI then the pair (aI , x) must be introduced by means of Abox asser-
tions (see Proposition 5). Let us consider the three different cases.

(aI , x) ∈
{

(aI , bI) | 〈a, b〉:R′ ∈ Apc, R
′ � R

}

: there is a constraint 〈a, b〉:R′

with R′ � R s.t. x = bI . The constraint b:C1 must be in Apc because of
the →∀ rule.Therefore we can use the induction hypothesis for concluding

that x ∈ C1
I .

(aI , x) ∈
{

(aI , bI) | 〈a, b〉:R′ ∈ Apc, R
a
≈Apc

R′
}

: there is a constraint 〈a, b〉:R′

with R
a
≈Apc

R′ s.t. x = bI . The constraint b:C1 must be in Apc because
of the →∀1 rule.Therefore we can use the induction hypothesis for con-

cluding that x ∈ C1
I .

(aI , x) ∈ (
{

(aI , bI) | 〈a, b〉:R′ ∈ Apc, R
′ � S

}

)+ : there is a set of constraints

{〈a, o1〉:S1, 〈o1, o2〉:S2, . . . , 〈on−1, on〉:Sn} ⊆ Apc

and a transitive role S s.t. Si � S � R for all i = 1, . . . , n, and x =

on
I .For each i = 1, . . . , n, the constraints oi:(∀S.C1) and oi:C1 are in

Apc (because of the →∀+ rule and the →∀). Therefore on:C1 is in Apc

and x ∈ C1
I by the induction hypothesis.

– If x ∈ ∆a \
{

aI
}

then (aI , x) ∈ RIa , because both aI and x are in the same

individual domain (see Definition 2). In addition, (∀R.C1) ∈ L(Σpc, a) so

x ∈ C1
Ia because Ia is a model for the label L(Σpc, a). Using Proposition 9

we can conclude that x ∈ C1
I .

– If there is b 6= a s.t. x ∈ ∆b\
{

bI
}

, then by Proposition 6 there is a transitive

role S s.t. S � R and both (aI , bI), (bI , x) are in SI . By using the very same
arguments as the first case we can show that the constraint b:(∀S.C1) is in

Apc; therefore we can conclude that x ∈ C1
I by using the same arguments

as in the previous case.

It is clear that a model for the knowledge base is a model for every individual
concept. Using the properties demonstrated in the previous pages we show that
the union interpretation is a model for the precompleted knowledge base.

Proposition 11. A clash-free SHf precompleted knowledge base Σpc = 〈T ,Apc〉
is satisfiable if and only if for each individual name o ∈ O the concept expressiond

L(Σpc, o) is satisfiable with respect the terminology Tpc.



Proof. The only if direction is easy because a model for Σpc is a model for
o:L(Σpc, o) for any individual name o, so L(Σpc, o) must be satisfiable.

For the if direction we use the propositions defined in this section to show
that every statement in the KB is satisfied by the union interpretation I =

(∆, ·I).

a:C : By Proposition 10, aI ∈ CI .

〈a, b〉:R : By construction of RI (see Definition 2) (aI , bI) ∈ RI .
>v C : Let x be an element of ∆, then there exists a ∈ O such that x ∈ ∆a,

and x ∈ CIa because the model Ia satisfies Tpc. There are two cases: x = aI

or x ∈ ∆a \
{

aI
}

– If x = aI then x ∈ CI because of Proposition 10 (a:C is in the precom-
pleted Abox Apc because of the →v rule).

– If x 6= aI , then x ∈ CI by Proposition 9.

R ∈ T RN : Transitivity of RI is guaranteed by construction (see Definition 2).
R ∈ FRN : Functionality is satisfied by Proposition 7.

S v R : If S � R, then SI ⊆ RI by Proposition 8.

5 Notes on implementation and evaluation

The algorithm described in this paper has been implemented in order to verify
the feasibility of the approach in terms of performance. Although a description of
the implemented system and the analysis of the results of the experiments is out-
side the scope of this paper, we mention this work for the sake of completeness.
For more details the reader should refer to [12] or [13].

The experience with previous DL systems shows that the direct implemen-
tation of the tableaux–based satisfiability algorithms provides very poor perfor-
mance. The development of other DL reasoners showed that the use of various
optimisations and heuristics has a great impact on performance with application
and synthetic knowledge bases. We adopted some of the well known optimisation
techniques adopted by most of the state of the art DL reasoners (see [15, 16]), as
well as techniques developed in conjunction with the precompletion algorithm.
Moreover, the precompletion phase is completely separated from the terminolog-
ical reasoning, so optimisation techniques implemented at the two levels do not
interact adversely. For example, if a contradiction is found in an individual label
(even in the modal part, by means of a call to the terminological reasoner) there
is no reason to generate a full precompletion. For this reason, the terminological
reasoner is called at different stages during the precompletion.

We used the Abox reasoner RACER (see [8]) to compare the results of our
system. In Table 1 we provide a summary of the results obtained with the syn-
thetic Abox tests of the DL benchmark suite (see [15, 17]). There are 9 classes of
tests, each one containing different instances of problems of increasing difficulty.
Each instance is automatically generated according to a schema related to the
class, and it consists of a Tbox, an Abox and a set of instance checking queries.



Optimised Not Optimised RACER Max
k branch n 2 1 3 4
k d4 n 2 1 2 4
k dum n 8 1 13 21
k grz n 7 2 10 10
k lin n 4 3 4 10
k path n 4 1 3 4
k ph n 6 6 5 7
k poly n 4 4 4 8
k t4p n 2 0 2 5

Table 1. Summary of experimental results

Results of the experiments are grouped by the class of tests, and each column
shows the last instance of the test which has been solved within the given time-
out of 500 seconds. As a reference, the two last columns show the results of
the RACER system (version 1.2)9 and the maximum number of test instances.
The second and third columns show the results with and without optimisations
respectively.

6 Conclusions

We have presented a precompletion style algorithm for deciding knowledge base
satisfiability in the SHf description logic, and proved its soundness and com-
pleteness. Reasoning with a complete knowledge base, i.e., an Abox as well as a
Tbox, will be of increasing importance in the application of Description Logics,
e.g., in providing inference services for the Semantic Web.

The main advantages of the precompletion approach (w.r.t. tableaux algo-
rithms that reason directly with the whole knowledge base) are its ability to
exploit existing highly optimised Tbox reasoners, and the fact that it may be
able to handle very large Aboxes by partitioning them into disconnected parts.

On the other hand, the logic described is a subset of that required by Se-
mantic Web knowledge representation languages such as DAML+OIL, and it is
not easy to see how the technique can be extended to deal with more expres-
sive languages. There is, however, no known tableaux algorithm that is able to
deal with the complete DAML+OIL language [18], and applications are already
using reasoners that only deal with subsets of the language. Moreover, SHf is
the largest language for which reasonable evidence exists as to the empirical
tractability of highly optimised tableaux algorithms (for Tbox reasoning) [19].
It has yet to be shown that these results will extend to logics, such as SHIQ,
which are closer in expressive power to DAML+OIL.

9 This was the version of the RACER system available at the time we performed the
experiments. As pointed out by an anonymous reviewer, the latest version of RACER
(1.6.7) improved the results in most of the classes.



References

1. McGuinness, D.L., Wright, J.R.: An industrial strength description logic-based
configuration platform. IEEE Intelligent Systems (1998) 69–77

2. Calvanese, D., De Giacomo, G., Lenzerini, M.: On the decidability of query con-
tainment under constraints. In: Proc. of PODS-98. (1998) 149–158

3. Brachman, R.J., Schmolze, J.G.: An overview of the KL-ONE knowledge repre-
sentation system. Cognitive Science 9 (1985) 171–216

4. Berners-Lee, T.: Weaving the Web. Harpur, San Francisco (1999)
5. Horrocks, I., Patel-Schneider, P.: The generation of DAML+OIL. In: Proc. of DL

2002, CEUR Workshop Proceedings (2001) 30–35
6. Donini, F.M., Lenzerini, M., Nardi, D., Nutt, W.: The complexity of concept

languages. Information and Computation 134 (1997) 1–58
7. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: An architecture for storing

and querying RDF data and schema information. In D. Fensel, J. Hendler, H.L.,
Wahlster, W., eds.: Semantics for the WWW. MIT Press (2001)

8. Haarslev, V., Möller, R.: RACER system description. In: Proc. of IJCAR-01.
(2001)

9. Horrocks, I., Sattler, U., Tobies, S.: Reasoning with individuals for the description
logic SHIQ. In MacAllester, D., ed.: Proc. of CADE-2000. Number 1831 in LNCS,
Springer-Verlag (2000) 482–496

10. Hollunder, B.: Algorithmic Foundations of Terminological Knowledge Representa-
tion Systems. PhD thesis, Universität des Saarlandes (1994)

11. Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: Deduction in concept lan-
guages: From subsumption to instance checking. J. of Logic and Computation 4

(1994) 423–452
12. Tessaris, S., Horrocks, I., Gough, G.: Evaluating a modular abox algorithm. In:

Proc. of KR-02. (2002)
13. Tessaris, S.: Questions and answers: reasoning and querying in Description Logic.

PhD thesis, University of Manchester (2001)
14. Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with comple-

ments. Artificial Intelligence 48 (1991) 1–26
15. Haarslev, V., Möller, R.: An empirical evaluation of optimization strategies for

abox reasoning in expressive description logics. In: Proc. of DL’99. (1999) 115–119
16. Horrocks, I., Patel-Schneider, P.F.: Optimising description logic subsumption.

Journal of Logic and Computation 9 (1999) 267–293
17. Horrocks, I., Patel-Schneider, P.F.: DL system comparison. In: Proc. of DL’98.

(1998)
18. Horrocks, I.: Daml+oil: a reason-able web ontology language. In: Proc. of EDBT

2002. (2002)
19. Horrocks, I.: Using an expressive description logic: FaCT or fiction? In: Proc. of

KR-98. (1998) 636–647


