
Explaining ALC Subsumption
Alex Borgida1, Enrico Franconi and Ian Horrocks2

Abstract. Knowledge representation systems, including ones based
on Description Logics (DLs), use explanation facilities to, among
others, debug knowledge bases. Until now, such facilities were
not available for expressive DLs, whose reasoning is an un-natural
refutation-based tableau. We offer a solution based on a sequent cal-
culus that is closely related to the tableau implementation, exploiting
its optimisations. The resulting proofs are pruned and thenpresented
as simply as possible using templates.

1 Introduction

The usability of knowledge representation systems, including ones
based on Description Logics (DLs) is considerably enhancedby the
ability to explain inferences to knowledge-base developers who are
not familiar with the implementation of the reasoner [10]. For DLs,
inferring subsumption relationships is a fundamental reasoning task,
and its explanation is relatively natural for systems basedon struc-
tural subsumption algorithms [10]. However, such algorithms are un-
able to deal with a more complex language such asALC. Tableaux-
based systems, on the other hand, can deal withALC (and much
more complex languages), but the reasoning method does not lead to
a natural explanation of subsumption inferences because itis based
on a “refutation/unsatisfiability” approach; for example,it would
probably not be useful to have the subsumption∀R.(C⊓D) ⊑ ∀R.C

explained by the fact that(∀R.(C⊓D))⊓∃R.¬C is not satisfiable.
This problem is not restricted to DL-based systems: in otherar-

eas of theorem proving, there is a desire to provide explanations of
why theorems hold, yet the proof techniques (e.g., resolution) are
not “natural”. The solution in such situations [9, 7] has been to find
ways to transform proofs from their original form into some more
“natural” form, such asnatural deduction(ND) proofs. From the
beginning, ND proofs have been claimed to be easier to present to
users, and natural language generation systems have even been built
to produce sophisticated English output from ND proofs (e.g., VERB-
MOBIL project [8]). Related to ND proof systems aresequent calculi,
introduced by Gentzen. Such calculi axiomatise the entailment rela-
tion, which has an obvious parallel with the subsumption relation.

However, most sequent calculi include reasoning rules and nota-
tion that are less than natural in the case of DLs, such as moving for-
mulæ from one side of the turnstile to the other. Just as importantly,
it is undesirable to have an explanation component that is dissociated
from the implementation of the reasoner (the tableaux technique, in
our case). This is both because of efficiency and the possibledevia-
tion between implementation and explanation [14, 10].

We propose using a slightly extended tableaux algorithm that, by
keeping track of the “undesirable” steps involved in both the reduc-
tion of the subsumption problem to an unsatisfiability problem allows
the structure of the original subsumption inference to be preserved
(Section 2). Interestingly, the tableaux proof can be represented as a

1 Dept. of Computer Science, Rutgers University, USA
borgida@cs.rutgers.edu

2 Dept. of Computer Science, University of Manchester, UK
{franconi|horrocks}@cs.man.ac.uk

sequence of rules in a simple variant of the sequent calculus. Each
rule application in this sequent calculus can then be explained in
terms of one or more steps – some optional steps are omitted when-
ever possible, to produce a simpler proof – resulting in a parsimo-
nious yet understandable proof presentation (Section 3).

2 Subsumption Proofs with Tableaux

In order to solve asubsumptionproblem using a tableaux-based
procedure – which solves unsatisfiability problems – the subsump-
tion has to be reduced to an equivalent satisfiability problem. That
is, if we want to check that a concept expressionC is subsumed
by a concept expressionD, we should check whether the concept
C ⊓ ¬D is not satisfiable, sinceC ⊑ D iff C ⊓ ¬D ⊑ ⊥. For
example, in order to prove that (1)

(∃friend.⊤ ⊓ ∀friend.¬(∃child.¬Doctor ⊔ ∃child.Lawyer))
⊑ (∃friend.(∀child.(Rich ⊔ Doctor))),

it is necessary to prove that the following concept does not have any
model:

∃friend.⊤ ⊓
∀friend.¬((∃child.¬Doctor) ⊔ (∃child.Lawyer))⊓
¬∃friend.(∀child.(Rich ⊔ Doctor)).

Moreover, tableaux algorithms typically transform the resulting
concept into negation normal form using a combination of deMor-
gan’s rules and modal normalisations (e.g.,¬∃R.C iff ∀R.¬C) [4].
For example, the above concept would be immediately transformed
into the following concept, which should be then checked forunsat-
isfiability:

∃friend.⊤ ⊓
∀friend.((∀child.Doctor) ⊓ (∀child.¬Lawyer))⊓
∀friend.(∃child.(¬Rich ⊓ ¬Doctor)).

Thus, the structure of the original problem is completely lost, and
the explanation of the proof steps generated by the tableauxproce-
dure wouldn’t be understandable by the user. These problemscan be
overcome using a combination oflazy unfoldingandtagging.

Lazy unfolding is an optimisation technique, widely used inimple-
mented systems, that has the effect of delaying the normalisation of
compound concepts until it is required by the progress of thetableaux
expansion [5]. In the generation of the proof, the combination of a
normalisation and a subsequent expansion rule correspondsto a sin-
gle proof step. For example, normalising¬(a ⊓ b) to ¬a ⊔ ¬b, fol-
lowed by an application of the tableaux⊔-rule, would be seen as a
single proof step explained by some sort of¬⊓-rule.

Secondly, by tagging the subsumer conceptD during the initial
transformation of the subsumption problemC ⊑ D into the satisfia-
bility problemC ⊓ ¬D†, where† indicates the tagged concept, and
by consistently tagging all concepts derived from it by applications of
tableaux rules, it is always possible to determine whether aconcept
in a particular stage of the tableaux was derived from the subsumer,
i.e., its negation plays the role of subsumer in the explanation step.

We will assume an unlabelled (often calledtrace basedin the DL
literature) tableaux based procedure forALC [4], modified with the

(=) X , a ⊢ a , Y

(l↑) X , a , ¬a ⊢ Y X ⊢ a , ¬a , Y (r↑)

(l⊥) X , ⊥ ⊢ Y X ⊢ ⊤ , Y (r⊥)

(l∧)
X , a , b ⊢ Y

X , a⊓b ⊢ Y

X ⊢ a , Y X ⊢ b , Y

X ⊢ a⊓b , Y
(r∧)

(l¬∧)
X , ¬a ⊢ Y X , ¬b ⊢ Y

X , ¬(a⊓b) ⊢ Y

X ⊢ ¬a , ¬b , Y

X ⊢ ¬(a⊓b) , Y
(r¬∧)

(l∨)
X , a ⊢ Y X , b ⊢ Y

X , a⊔b ⊢ Y

X ⊢ a , b , Y

X ⊢ a⊔b , Y
(r∨)

(l¬∨)
X , ¬a , ¬b ⊢ Y

X , ¬(a⊔b) ⊢ Y

X ⊢ ¬a , Y X ⊢ ¬b , Y

X ⊢ ¬(a⊔b) , Y
(r¬∨)

(l¬¬)
X , a ⊢ Y

X , ¬¬a ⊢ Y

X ⊢ a , Y

X ⊢ ¬¬a , Y
(r¬¬)

(l3)
X′ , b ⊢ Y ′

X , ∃r.b ⊢ Y

X′ ⊢ b , Y ′

X ⊢ ∀r.b , Y
(r2)

(l¬2)
X′ , ¬b ⊢ Y ′

X , ¬∀r.b ⊢ Y

X′ ⊢ ¬b , Y ′

X ⊢ ¬∃r.b , Y
(r¬3)

where X′ = {a | ∀r.a ∈ X} ∪ {¬a | ¬∃r.a ∈ X}, and
Y ′ = {a | ∃r.a ∈ Y } ∪ {¬a | ¬∀r.a ∈ Y }

Figure 1. Rules forALC

addition of lazy unfolding and tagging. As a notation for theproof
generated by the modified tableaux procedure, we introduce here a
simple sequent calculus. Sequent calculi forALC can be obtained
from the modal logic literature [3] by exploiting the correspondence
betweenALC and the multi-modal propositional logicK(m), with
the subsumption relation being encoded as the entailment relation in
a sequent. Note that there have already been attempts (e.g.,[13]) to
produce sequent calculi for DLs based on such calculi from predi-
cate logic. However, the result does not bear a direct relation to our
tableaux proof system, nor has it been used to generate shortex-
planations. In order to devise the sequent notation, we exploit the
well known fact that in classical logic it is possible to obtain a se-
quent proof directly from a standard tableaux satisfiability algorithm,
where applications of tableaux rules correspond with stepsin the se-
quent proof, and clash detections correspond with termination ax-
ioms (e.g., [12]).

The calculus is shown in Figure 1. Please note that the proposed
system is not strictly original (see, e.g., [2]); what is important here is
the way a sequent proof can be correlated with a tableaux procedure
for ALC, since all the implemented systems for expressive Descrip-
tion Logics make use of tableaux procedures. In order to parallel the
behaviour introduced by lazy unfolding and tagging in the tableaux
calculus, weakening and negation rules do not exist. If a negation
rule is used in an explanation of subsumption, this would result in
shifts of subsumers to subsumees and vice versa. On the otherhand,
new rules are introduced which explicitly consider negation in front
of every construct. In order to parallel the behaviour of the∀- and
∃-rules in the tableaux calculus, the applicability condition of the
2- and3-rules is explicitly considered. The condition states that the
rule is applicable if all the homologous universal and existential for-
mulæ are “gathered” together on the left and right hand sidesof the
sequent in the precondition; the rule is then applied only once. Of
course, additional termination axioms are also given.

We will now see how the tableaux algorithm would demonstrate
the above-mentioned subsumption (1).

We want to parallel the steps in the tableaux algorithm with the
corresponding sequent steps for the same proof (Figure 2). The se-
quent notation will be used in the next section to devise the expla-
nation. The proof starts by proving the unsatisfiability of the set of
concepts

{(∃friend.⊤ ⊓ ∀friend.¬((∃child.¬Doctor) ⊔ (∃child.Lawyer))),

¬(∃friend.(∀child.(Rich ⊔ Doctor)))†},

An application of the tableaux⊓-rule to the first concept leads to the
set

{∃friend.⊤,∀friend.¬((∃child.¬Doctor) ⊔ (∃child.Lawyer)),

¬(∃friend.(∀child.(Rich ⊔ Doctor)))†}.

Because the concept triggering the tableaux rule was not tagged, this
corresponds to a sequent step using the (l∧) rule (step 2 in Figure 2).
The tableaux algorithm would then normalise

¬(∃friend.(∀child.(Rich ⊔ Doctor)))†

to give ∀friend.(¬∀child.(Rich ⊔ Doctor))†, and apply the∃-
rule to ∃friend.⊤, generating the sub-problem consisting of

{⊤,¬((∃child.¬Doctor) ⊔ (∃child.Lawyer)),
¬∀child.(Rich ⊔ Doctor)†},

where¬∀child.(Rich ⊔ Doctor)† is tagged because it was de-
rived from a tagged concept. Because the triggering conceptwas not
tagged, this corresponds to a sequent step using the (l3) rule (step 3
in Figure 2).

The next step in the tableaux algorithm would be a nor-
malisation of¬((∃child.¬Doctor) ⊔ (∃child.Lawyer)) to give
¬(∃child.¬Doctor) ⊓ ¬(∃child.Lawyer), followed by an appli-
cation of the⊓-rule, leading to the set

{⊤,¬(∃child.¬Doctor),¬(∃child.Lawyer),
¬∀child.(Rich ⊔ Doctor)†}.

Because the triggering concept was not tagged, these two steps
correspond to a sequent step using the (l¬∨) rule (step 4 in
Figure 2). The tableaux algorithm would then normalise all the
negated concepts to give∀child.¬¬Doctor, ∀child.¬Lawyer and
∃child.¬(Rich ⊔ Doctor)† respectively. The∃-rule would then be
applied to the last of these concepts, generating

{¬¬Doctor,¬Lawyer,¬(Rich ⊔ Doctor)†}.

Because the triggering concept was tagged, this expansion corre-
sponds to one of the sequent right rules, and the preceding normali-
sation step means that it corresponds to a sequent step usingthe (r2)
rule (step 5 in Figure 2).

The tableaux algorithm would then proceed with a normalisation
of ¬¬Doctor, corresponding to a sequent step using the (l¬¬) rule
(step 6 in Figure 2), and a normalisation of¬(Rich ⊔ Doctor)†, fol-
lowed by an application of the⊓-rule to give

{Doctor,¬Lawyer,¬Rich†,¬Doctor†},

where¬Rich and¬Doctor are both tagged. The combination of the
triggering tagged concept and the normalisation step meansthat this
last expansion corresponds to the (r∨) sequent rule.

Finally, the tableau algorithm detects a clash betweenDoctor and
¬Doctor†. Because¬Doctor† is tagged, this corresponds to the se-
quent termination axiomX , Doctor ⊢ Doctor , Y (step 7 in Fig-
ure 2).

3 The surface structure of explanations

The sequent calculus proofs obtained from the theorem prover pro-
vide the framework for an explaination, but there are some problems
with these proofs that would limit their usefulness as explanations to
be given to end-users.

One problem relates to the contents of the proof tree itself:there
can be several fragments of proofs which are irrelevant and would
only clutter the exlanation. These can occur because of manipulations
applied to concept fragments that end up being irrelevant. For exam-
ple, in showing that¬¬A⊓∀r.C⊓∃r.D is subsumed by∃r.(D⊔E),
it is unnecessary to apply rule(l¬¬), nor is it useful to carry the con-
ceptC, when applying rule (l3). The solution is to simplify the se-
quent proof using a recursive analysis of the relevance of each com-
ponent. This procedure has similarities with non-modal proof con-
densation techniques used in theorem proving (e.g., see [11]).

∃friend.⊤ ⊓ ∀friend.¬((∃child.¬Doctor) ⊔ (∃child.Lawyer))
⊢ ∃friend.∀child.(Rich ⊔ Doctor)

(l∧) (1)

∃friend.⊤ , ∀friend.¬((∃child.¬Doctor) ⊔ (∃child.Lawyer))
⊢ ∃friend.∀child.(Rich ⊔ Doctor)

(l3) (2)

⊤ , ¬((∃child.¬Doctor) ⊔ (∃child.Lawyer))
⊢ ∀child.(Rich ⊔ Doctor)

(l¬∨) (3)

⊤ , ¬(∃child.¬Doctor) , ¬(∃child.Lawyer)
⊢ ∀child.(Rich ⊔ Doctor)

(r2) (4)

¬¬Doctor , ¬Lawyer ⊢ Rich ⊔ Doctor
(l¬¬) (5)

Doctor , ¬Lawyer ⊢ Rich ⊔ Doctor
(r∨) (6)

Doctor , ¬Lawyer ⊢ Rich , Doctor
(=) (7)

TRUE

Figure 2. Sequent proof.

The other problems are related to the presentation of the sequent
rules to users. The solution here mainly involves the use of templates
to generate a surface explanation (in one or more steps) of each se-
quent rule application.

3.1 Simplifying proofs

The sequent proof tree found by the theorem prover will be assumed
to be presented as a term, where the term constructor will be the rule
name, and its arguments will include the important meta-variables
appearing in the sequent rule, as well as any sub-proofs.

For example, consider a proof that starts with the application of
the (r¬⊓) rule to

¬Doctor,¬¬Lawyer ⊢ ¬(Rich ⊓ Doctor),

leading to¬Doctor,¬¬Lawyer ⊢ ¬Rich,¬Doctor, followed by
an application of (l¬¬), and then the termination axiom(=) with
¬Doctor. This would be encoded as the term

rNotAnd(Rich, Doctor, lNotNot(Lawyer, ident(¬Doctor)))

where, for example, the type of proof constructorlNotNot is De-
scription×Proof.

We now describe a functionRelevant , which takes a proof and
simplifies it so that only relevant proof steps are kept and, for modal
rules, only those descriptions that are relevant to later parts of the
proof are carried into the sub-proof. This is accomplished by com-
puting two such sets of relevant terms (one for each side of⊢)
for everystep of the proof. The functionRelevant takes as argu-
ment aProof, and returns a three-tuple: the revised proof, plus the
above-mentioned two sets of concept terms, from which the current
sequent can be reconstructed. The function is defined by caseanaly-
sis of the proof step constructors, and is presented for somerepresen-
tative cases using pseudo-ML code, with pattern-matching notation.

Starting with the termination rules, we have, for example

Relevant(ident(A)) = (ident(A) , {A}, {A})
Relevant(lBot()) = (lBot() , ∅, ∅)
Relevant(lContrad(A)) = (lContrad(A) , {A, ¬A},∅)

The code forlNotNot(A,Pf) would first recursively process its
sub-proofPf (see thelet statement in the following pseudo-code); if
it turns out that the conceptA was not needed (to detect a termina-
tion) in the sub-proof, then¬¬A itself is irrelevant to the proof, and
the step is skipped. Otherwise, the sub-proof explains where theA is
used, and makes us be interested in explaining where the¬¬A came
from.

Relevant(lNotNot(A,Pf)) =
let (Pf1,Lhs1,Rhs1) = Relevant(Pf) in

if (A ∈ Lhs1)
then (lNotNot(A,Pf1), Lhs1 − {A} ∪ {¬¬A}, Rhs1)
else (Pf1,Lhs1,Rhs1)

Similarly, in dealing withrNotAnd(A,B,Pf), if neither¬A nor¬B
was useful in the sub-proof then the rule can be skipped:

Relevant(rNotAnd(A,B,Pf)) =
let (Pf1,Lhs1,Rhs1) = Relevant(Pf) in

if (¬A ∈ Rhs1) orelse (¬B ∈ Rhs1)
then (rNotAnd(A,B,Pf1), Lhs1,

Rhs1 − {¬A,¬B} ∪ {¬(A⊓B)})
else (Pf1,Lhs1,Rhs1)

For example, by applyingRelevant to proof 3.1, we would obtain
the proof rNotAnd(Rich, Doctor, ident(¬Doctor)), plus the sets
{¬Doctor} and{¬(Rich⊓Doctor)}, representing the relevant parts
of the sequent derived by the proof.

Finally, we need to consider the modal rules. First, observethat
modal rule applications appearing in our proof can no longerbe “use-
less”, so our main task will be to thin out the terms that are carried
into the sub-proof.

For example, in proving that

∀child.Adult, ∃child.¬¬Doctor
⊢ ∃child.Doctor, ∃child.Rich (3.1)

rule (l3) would gathereveryrestriction on rolechild, producing the
subgoalPerson,¬¬Doctor ⊢ Doctor, Rich. However, the only
relevant parts from both sides are those dealing withDoctor, so we
will want the sequent produced to be only∃child.¬¬Doctor ⊢
∃child.Doctor.
When applying modal rules we need to track the precise form of

the relevant subconcepts. We therefore distinguish in the antecedent
X ′ of the top sequent those terms that come from formulæ of the
form ∀r.a from those that come from formulæ of the form¬∃r.a;
likewise for the succedentY ′. Thus the (l3) rule needs a list of four
arguments:La, Lns, Rs andRna, such that the antecedentX ′ =
La ∪ Lns and the succedentY ′ = Rs ∪ Rna, where, for example,
La = {a | ∀r.a ∈ X} andLns = {¬a | ¬∃r.a ∈ X}. Each of
these sets may be diminished by the “relevance” listLhs1 returned
by the recursive call on the sub-proof:

Relevant(lSome(p,B,[La,Lns,Rs,Rna],Pf)) =
let (Pf1,Lhs1,Rhs1) = Relevant(Pf) and

(La1=La ∩ Lhs1) and (Lns1=Lns ∩ Lhs1) and
(Rs1=Rs ∩ Rhs1) and (Rna1=Rna ∩ Rhs1)

in (lSome(p,B,[La1,Lns1,Rs1,Rna1],Pf1) ,
{∃p.B}∪ {∀p.A | A ∈ La1} ∪ {¬∃p.A | ¬A ∈ Lns1},
{∃p.A | A ∈ Rs1} ∪ {¬∀p.A | ¬A ∈ Rna1}

)
As a result, the sequent proof of (3.1), represented by

lSome(child,¬¬Doctor, [{Adult},∅,{Doctor,Rich},∅],
lNotNot(Doctor,ident(Doctor)))

is reduced to

lSome(child,¬¬Doctor, [∅,∅,{Doctor},∅],
lNotNot(Doctor,ident(Doctor)))

In the original example, from Section 2,Relevant elimi-
nates¬∃child.Lawyer from the application ofr2, by replacing
{¬¬Doctor,¬Lawyer} with {¬¬Doctor} in the original proof step
rAll(child, (Rich ⊔ Doctor), [∅, {¬¬Doctor,¬Lawyer}, ∅, ∅],).

3.2 Generating surface explanations from pruned
proofs.

The following problems arise when trying to offer the (reduced) se-
quent proof as an explanation:

1. The use of the comma as a separator on the antecedent side is
semantically equivalent to conjunction, while on the succedent it
is disjunction; this is quite confusing to non-initiates. On the other

(NotNot) ¬¬a≡ a

(NotAnd) ¬(a⊓b···)≡¬a⊔¬b··· ¬(a⊔b···)≡¬a⊓¬b··· (NotOr)

(NotSome) ¬∃r.a≡∀r.¬a ¬∀r.a≡∃r.¬a (NotAll)

(AndAll) ∀r.a⊓∀r.b···≡∀r.(a⊓b···) ∃r.a⊔∃r.b···≡∃r.(a⊔b···) (OrSome)

(SomeBot) ∃r.⊥≡⊥ ∀r.⊤≡⊤ (AllTop)

(SomeAndAll) ∃r.a⊓∀r.b ≡ ∃r.(a⊓b)⊓∀r.b

Figure 3. Rules for concept equivalence used in explanations

hand, if we do not use the comma notation, inferences dealing
with the commutativity and associativity of simple propositional
connectives clutter explanations unnecessarily.

2. Several rules are identical on the left and right hand side, and
might therefore be better presented as single rules for massaging
concepts into an equivalent form (e.g., using de Morgan’s rules).

3. The inference rules for modal formulae are quite complex and
their validity is entirely non-obvious (and hence not a proper ex-
planation step), since it is based on model-theoretic arguments in-
accessible to naive users. This is in contrast to a structural sub-
sumption rule such as A⊑B

∀r.A⊑∀r.B
, which is self evident.

4. Proofs could, in general, be exponential in size. However, based
on experience with CLASSIC, in explaining a subsumption of the
form A ⊑ C ⊓ D, experience with CLASSIC suggests that users
often see one of the subsumptions (A ⊑ C or A ⊑ D), and only
want the other one explained. Since the problem is in PSPACE,
this means that single branches are at most polynomial in size.

To resolve these problems we propose an approach based on the
following idea:Each proof step in the sequent calculus is expressed
in terms of zero or more explanation rules (ERs) to be introduced,
plus some choice on how to proceed with the rest of the explanation.

To be clear, henceforth we will use⊑ instead of ⊢ to indicate
the subsumption relationships that are being explained, and refer to
the antecedent and succedent as “lhs” and “rhs” of the subsumption.

First, we make conjunction and disjunction explicit on the lhs and
rhs, replacing the commas. However, we will leave implicit all ma-
nipulations relating to associativity and commutativity of these oper-
ators. Therefore, sequent rules (l∧) and (r∨) will not appear in the
surface explanation.

Second, we introduce, in Figure 3, a variety of ERs that replace
concepts by equivalent ones using, for example, the familiar rules of
de Morgan. These rules can be applied to concepts in proof steps.

Each of these rules has an English template describing its applica-
tion, and possibly a “because” clause, which the user may askfor in
order to explain the rule itself. (This should be unnecessary, except
for one rule, marked with * in Figure 4, which may well be treated
as a lemma.)

For the modal rules, we offer simpler variants, which will becom-
bined with equivalence rules (when necessary) to produce the same
effect as the corresponding sequent rules. To begin with, (l¬2) and
(r¬3) are explained as applications of de Morgan’s law followed by
(l3) or (r2) respectively. Then, the (AndAll) and (OrSome) equiva-
lences can be used to gather together relevant components onthe lhs
and rhs. Finally, the subsumption can be explained using the(mostly)
structural rules given in Figure 4.

We are now ready to sketch the proof explanation functionEx-
plain(·, ·), which, given the subsumptionα ⊑ β and its proof, gen-
erates some text, possibly offering further sub-explanation(s). Again,
we consider a variety of sequent rule kinds to illustrate ourapproach.

For a termination sequent rule such as(=), Explain(α ⊑ β,
ident(Z)) would say:“The subsumption now follows because the
description Z is subsumed by Z, *and the lhs is a constrictionof Z,
since it is a conjunction, while **the rhs is an expansion of Z, since
it is a disjunction”. The sentence fragment starting at * (resp. **) is
omitted ifα (resp.β) is a singleton rather than a conjunct.

Next, consider an equivalence rule, like(l¬¬). Explain(α ⊑ β,
lNotNot(Z,Pf)) produces:“Double negation elimination on the lhs
leaves Z”.

As promised, rules (l∧) and (r∨) are not explicitly reported, so
thatExplain(α ⊑ β, lAnd(A, B,Pf)) just invokesExplain(α′ ⊑ β,
Pf), whereα′ may have conjunction nesting removed fromα. Rules
(l∨) and (r∧) represent case analysis, and offer the user a choice of
which branch of the proof to follow (or stacks the proofs for both
cases).

Finally, we come to modal rules. Let us consider

Explain(α ⊑ β, lSome(r, B, [La1, Lns1, Rs1, Rna1], Pf)).

If Lns1 is not empty, then we first apply equivalence rule
(NotSome) to the elements ofα which appear in{¬∃r.C | C ∈
Lns1}. Similarly for Rna1. This leaves us an explanation of the
form Explain(α ⊑ β, lSome(r, B, [La2, ∅, Rs2, ∅], Pf)). If La2 is
non-empty, then we apply equivalence rules(AndAll) (unlessLa2
is a singleton) and(SomeAndAll) to the subsumee to gather the∀-
restrictions and absorb them into∃r.B. This leaves us with an expla-
nation of the formExplain(α ⊑ β, lSome(r,B, [∅, ∅, Rs2, ∅], Pf)).
If Rs2 contains more than one element, they can be gathered into a
single∃-restriction using the(OrSome) equivalence rule. We now
have two cases

• Rs2 is the empty set. In this case the subsumee must be in-
coherent, so we say:“To prove that α ⊑ β, we will show
that ∃r.B is incoherent, and hence is subsumed by everything.
For this, it is sufficient to show thatB is incoherent.”. If we
wanted, we could now introduce a variant ofExplain(·, ·), call it
ExplainIncoherent(B,Pf), which knows that the proofPf only
deals with the lhs, since it had an empty relevant rhs. Or we can
continue withExplain(B ⊑ ⊥, Pf).

• Rs2 contains a single conceptC. In this case, we can use
(StructSome) to provide a simple explanation:“*The subsump-
tion can now be proven by showing that∃-restrictions for roler
subsume. To prove∃r.X ⊑ ∃r.Y , it is sufficient to proveX ⊑ Y .
So in this case we are reduced to showingB ⊑ C” . The first
sentence is omitted ifα has no conjuncts.

Returning to our original example, we were asked to explain

(∃friend.⊤ ⊓ ∀friend.¬(∃child.¬Doctor ⊔ ∃child.Lawyer))
⊑ (∃friend.(∀child.(Rich ⊔ Doctor))),

The (pruned) sequent proof is constructed with
lAnd, lSome, lNotOr, rAll, lNotNot, rOr and ident. According
to our rules, we skiplAnd, and explainlSome, which here uses ERs
(SomeAndAll) and(StructSome). These generate the text

On the lhs, ∃friend.⊤ can be strengthened
with ∀-restrictions on role friend to yield
∃friend.(⊤ ⊓ ¬((∃child.¬Doctor) ⊔ (∃child.Lawyer))).
The subsumption can now be proven by showing that
∃-restrictions for role friend subsume. To prove
∃friend.X ⊑ ∃friend.Y , it is sufficient to prove
X ⊑ Y . So in this case we are reduced to show-
ing ⊤ ⊓ ¬((∃child.¬Doctor) ⊔ (∃child.Lawyer)) ⊑
∀child.(Rich ⊔ Doctor).

For rAll(child, (Rich ⊔ Doctor), [∅, {¬Doctor}, ∅, ∅],), we use
ERs(NotSome) (combined with the preceding(NotOr), and then
(StructAll) to get

On the lhs, apply de Morgan’s laws to propagate in negation, to
get (∀child.¬¬Doctor). To prove∀child.X ⊑ ∀child.Y ,
it is sufficient to showX ⊑ Y . So in this case we are reduced
to showing¬¬Doctor ⊑ (Rich ⊔ Doctor).

(Note that¬∃child.Lawyer had been pruned from the explanation.)
FromlNotNot we get

Double negation elimination on the lhs leavesDoctor.

Finally, skippingrOr, ident produces:

The subsumption now follows because the descriptionDoctor
is subsumed byDoctor, and the rhs is an expansion ofDoctor,
since it is a disjunction.

(StructSome) a⊑b
∃r.a⊑∃r.b

a⊑b
∀r.a⊑∀r.b

(StructAll)

a⊑(b⊔c)
∀r.a⊑(∀r.b⊔∃r.c) (AllIsaAllSome∗)

Figure 4. ERs for role-restriction subsumptions

4 Extensions

Implemented DL systems support additional features such aster-
minological definitions (Tbox) and role hierarchies. Explanations
should support these as well.

A Tbox is a set of axioms of the formC ⊑ D or C
.
= D that

assert subsumption relationships between (possibly complex) con-
cepts. In many DLs, axioms are restricted to be “definitions”: the left
hand side is an atomic concept name that does not occur on the left
hand side of any other axiom, and is not referred to (either directly or
indirectly) in the right hand side. Examples of definition axioms are
Doctor ⊑ WellPaid andRichKids

.
= ∀child.(Rich ⊔ Doctor).

When the Tbox is restricted to definition axioms, reasoning in-
volves simply expanding names with the associated Tbox defini-
tions during a proof. For example, if the conceptRichKids were
defined as in the previous paragraph and used in our earlier exam-
ple instead of∀child.(Rich ⊔ Doctor), then it could be expanded
to RichKids ⊓ ∀child.(Rich ⊔ Doctor) during the proof.3 This
procedure can be captured by simple sequent rules with side condi-
tions, such asc,d,X ⊢ Y

c,X ⊢ Y
if (c

.
= d) ∈ Tbox, and explained by a

corresponding ER rules such as:“ α can be strengthened toα ⊓ β

becauseα
.
= β is in the Tbox”.4 Moreover, correspondence with the

tableaux algorithm is maintained because the “lazy unfolding” opti-
misation behaves in exactly the same way: defined concept names are
only unfolded (expanded) as required by the progress of the tableaux
proof. A very similar technique can be applied with necessary con-
ditions on primitive concepts (i.e., whenC is an atomic concept and
C ⊑ D ∈ Tbox).

Extending the tableaux algorithm to deal with transitive roles and
role hierarchies requires only a relatively minor extension to the∃-
rule [5], and a corresponding extension to the modal sequent rules
is possible. (This extension leads to some problems with termination
in the tableaux algorithm, but this is irrelevant for the explanation
component, which receives a completed proof.)

Modern DL implementations also support a variety of of optimisa-
tion techniques. Some (like lazy unfolding) facilitate thegeneration
of parsimonious explanations. For example, backjumping, atech-
nique for pruning irrelevant search, complements the simplification
procedure described in Section 3.1, while caching, a technique for
reusing sub-proofs, can be used as a lemma generator.

Other extensions, such as general Tbox axioms and semantic
branching optimisation complicate the task of explanation, and will
be treated in future work.

5 Conclusions

Explanation of subsumption in expressive description logics was
thought to be hard because the standard proof techniques aretableau-
based, and are thus unnatural.

We have proposed a methodology for explaining the subsumption
relationship betweenALC concepts based on (i) a sequent proof for
ALC derived from a tableaux based procedure, (ii) a pruning algo-
rithm that eliminates unnecessary steps, and (iii) a set of templates
used to generate “surface” explanations (in one or more steps) from
each sequent rule application. The significant properties of this pro-
posal include the fact that (a) the proof does not move terms from
one side of the turnstile to the other, thus preserving the structure of

3 It could be substituted with its definition, but retaining the name can lead to
a shorter proof.

4 Such a sequent calculus would, in general, be non terminating. However, in
our framework, finite proofs are generated by the tableaux algorithm, for
which termination is guaranteed.

the original subsumption,yet can be obtained directly from a slightly
enhanced tableaux algorithm; (b) the surface explanation rules are
used to provide the simplest explanation possible, avoiding in most
cases the use of the one ER that, we believe, would itself require
explanation (namely(AllIsaAllSome)).

In some situations, our approach may in fact be better than one
based on naive structural subsumption even for languages where the
latter proof technique is applicable. For example, in showing that
C⊓α ⊑ C, a structural subsumption technique first normalises the
lhs, which is unnecessary in this case, yet might involve complex in-
ferences if, for example,α contains an incoherence. The same would
apply if C is a defined concept, when normalisation expands defini-
tions, while our lazy unfolding would find the proof immediately.

The choice of the surface explanation rules, and especiallytheir
English language realization is to some extent provisionalin the cur-
rent work. This is particularly the case with proofs involving role-
restrictions.

Although much more sophisticated natural language text genera-
tion is possible from proofs (e.g. [8]), we believe that for users build-
ing DL knowledge bases, a point-by-point explanation of theinfer-
ences, as done earlier inCLASSIC, is sufficient. We are aware that a
considerable number of theorem provers have been endowed with the
ability to produce explanations from the steps of proofs, and some of
them, e.g.,ILF [1], even offer a service whereby proofs obtained from
seemingly arbitrary axiomatisations can submitted to obtain a surface
English explanation, if the proof system can be reformulated appro-
priately. The very specialised nature of concept descriptions in DLs
and modal logics (in contrast to FOL formulas) and of the subsump-
tion proof itself, have led us to develop for now our own relatively
simple surface generator, rather than trying to find a translation of
our proofs into yet another form (e.g.,ILF ’s “block proofs”), which
may not be natural in the end.

We plan to concentrate instead on extensions to more expressive
DLs and their highly optimised implementations, as well as the inves-
tigation of proof tactics that produce short or most easily explainable
proofs.
Acknowledgements We wish to thank our original collaborators,
Deborah McGuinness and Peter Patel-Schneider for their contribu-
tions, as well as very useful pointers offered by Matthew Stone, Hans
Juergen Ohlbach, and by an anonymous referee. The first author was
supported by NSF-grant IRI9619979.

REFERENCES
[1] B. I. Dahn, J. Gehne, T. Honigmann and A. Wolf, ‘Integration of auto-

mated and interactive theorem proving in ILF’,Proc. of CADE-14, pp.
57–60, (1997).

[2] S. Demri and R. Goré, ‘Display calculi for logics with relative accessi-
bility relations’, JoLLI, (1999).

[3] M. Fitting, Proof Methods for Modal and Intuitionistic Logics, Kluwer,
1983.

[4] B. Hollunder and W. Nutt, ‘Subsumption algorithms for concept lan-
guages’, inProc. of ECAI’90, pp. 348–353, (1990).

[5] I. Horrocks, ‘Using an expressive description logic: FaCT or fiction?’,
in Proc. of KR’98, pp. 636–647, (1998).

[6] I. Horrocks and P. F. Patel-Schneider, ‘Optimising description logic
subsumption’,JLC, 9(3), 267–293, (1999).

[7] X. Huang, ‘Reconstructing proofs at the assertion level’, in Proc. of
CADE-94, (1994).

[8] X. Huang and A. Fiedler, ‘Presenting machine-found proofs’, in Proc.
of CADE-96, (1996).

[9] C. Lingenfelder, ‘Transformation of refutation graphsinto natural de-
duction proofs’, SEKI-Rep. 86-10, Univ. of Kaiserslautern, (1986).

[10] D. McGuinness and A. Borgida, ‘Explaining subsumptionin descrip-
tion logics’, inProc. of IJCAI’95, pp. 816–821, (1995).

[11] F. Oppacher and E. Suen, ‘HARP: A tableau-based theoremprover’,
Journal of Automated Reasoning, 4, 69–100, (1988).

[12] S. Reeves and M. Clarke,Logic for Computer Science, Addison Wesley,
1993.

[13] V. Royer and J. Quantz, ‘Deriving inference rules for terminological
logics’, in Proc. of JELIA’92, pp. 84–105, (1992).

[14] W. R. Swartout and J. D. Moore, ‘Explanation in second generation ex-
pert systems’, inSecond Generation Expert Systems, Springer Verlag,
(1996).

