Explaining ALC Subsumption

Alex Borgida!

Enrico Franconi

and lan Horrocks?

Abstract. Knowledge representation systems, including ones basedequence of rules in a simple variant of the sequent calcklash

on Description Logics (DLs), use explanation facilities &mnong
others, debug knowledge bases. Until now, such facilitiesew
not available for expressive DLs, whose reasoning is anaiural
refutation-based tableau. We offer a solution based onwestgal-
culus that is closely related to the tableau implementaggploiting
its optimisations. The resulting proofs are pruned and tiresented
as simply as possible using templates.

1 Introduction

The usability of knowledge representation systems, inotu@énes
based on Description Logics (DLs) is considerably enhafgethe
ability to explain inferences to knowledge-base develppdno are
not familiar with the implementation of the reasoner [1Gjr BLs,
inferring subsumption relationships is a fundamentaloeg task,
and its explanation is relatively natural for systems basedtruc-
tural subsumption algorithms [10]. However, such algonistare un-
able to deal with a more complex language suchld€’. Tableaux-
based systems, on the other hand, can deal wWift¢ (and much
more complex languages), but the reasoning method doesatbtd
a natural explanation of subsumption inferences becausédi#sed
on a “refutation/unsatisfiability” approach; for examplewould
probably not be useful to have the subsumptiéh(CnD) C VR.C
explained by the fact thg R.(C'M D)) M3R.~C is not satisfiable.

This problem is not restricted to DL-based systems: in otrer
eas of theorem proving, there is a desire to provide expEmaof
why theorems hold, yet the proof techniques (e.g., resmijtare
not “natural”. The solution in such situations [9, 7] hashée find
ways to transform proofs from their original form into somena
“natural” form, such asatural deduction(ND) proofs. From the
beginning, ND proofs have been claimed to be easier to présen
users, and natural language generation systems have exebibi&
to produce sophisticated English output from ND proofs.(&BRB-
MOBIL project [8]). Related to ND proof systems aequent calculi
introduced by Gentzen. Such calculi axiomatise the engitmela-
tion, which has an obvious parallel with the subsumptioatreh.

However, most sequent calculi include reasoning rules atal-n
tion that are less than natural in the case of DLs, such asngdwi-
mulae from one side of the turnstile to the other. Just as itapty,
it is undesirable to have an explanation component thassodiated
from the implementation of the reasoner (the tableaux tiecien in
our case). This is both because of efficiency and the possévia-
tion between implementation and explanation [14, 10].

We propose using a slightly extended tableaux algorithry tha
keeping track of the “undesirable” steps involved in both téduc-
tion of the subsumption problem to an unsatisfiability peobkllows
the structure of the original subsumption inference to les@rnved
(Section 2). Interestingly, the tableaux proof can be regméed as a

1 Dept. of Computer Science, Rutgers University, USA
bor gi da@s. rut gers. edu

2 Dept. of Computer Science, University of Manchester, UK
{f ranconi |horrocks}@s. man. ac. uk

rule application in this sequent calculus can then be exethin
terms of one or more steps — some optional steps are omitted-wh
ever possible, to produce a simpler proof — resulting in sipao-
nious yet understandable proof presentation (Section 3).

2 Subsumption Proofs with Tableaux

In order to solve asubsumptionproblem using a tableaux-based
procedure — which solves unsatisfiability problems — thessoip-
tion has to be reduced to an equivalent satisfiability probl€hat
is, if we want to check that a concept express@ris subsumed
by a concept expressioP, we should check whether the concept
C M =D is not satisfiable, since’ C D iff C M -D C 1. For
example, in order to prove that Q)

(3friend.T MVfriend.—(3child.—Doctor Ll Jchild.Lawyer))
C (Ifriend.(Vchild.(Rich U Doctor))),

it is necessary to prove that the following concept does avelany
model:

dfriend. T M

Vfriend.—((3child.—Doctor) U (Ichild.Lawyer))rl

—3Jfriend.(Vchild.(Rich LIDoctor)).

Moreover, tableaux algorithms typically transform theutéag
concept into negation normal form using a combination of deM
gan’s rules and modal normalisations (e-ggR.C iff VR.—C) [4].
For example, the above concept would be immediately tramsfo
into the following concept, which should be then checkeduftsat-
isfiability:

dfriend. T M

Vfriend.((Vchild.Doctor) M (Vchild.—Lawyer))r

Vfriend.(3child.(—Rich M —Doctor)).

Thus, the structure of the original problem is completebt,land
the explanation of the proof steps generated by the tablpence-
dure wouldn’t be understandable by the user. These proldambe
overcome using a combination laeizy unfoldingandtagging

Lazy unfolding is an optimisation technique, widely useahple-
mented systems, that has the effect of delaying the noratialisof
compound concepts until it is required by the progress ofahkeaux
expansion [5]. In the generation of the proof, the comboratf a
normalisation and a subsequent expansion rule corresporzdsin-
gle proof step. For example, normalisirga M b) to —a LI —b, fol-
lowed by an application of the tableauxrule, would be seen as a
single proof step explained by some sort-of-rule.

Secondly, by tagging the subsumer conc&pturing the initial
transformation of the subsumption probl&C= D into the satisfia-
bility problem C' 1 =D, where' indicates the tagged concept, and
by consistently tagging all concepts derived from it by aggilons of
tableaux rules, it is always possible to determine whethmmeept
in a particular stage of the tableaux was derived from thesuler,
i.e., its negation plays the role of subsumer in the explanatep.

We will assume an unlabelled (often calledce basedn the DL
literature) tableaux based procedure #£C [4], modified with the

{3friend.T,Vfriend.—((3child.—Doctor) LI (Ichild.Lawyer)),
—(3friend.(Vchild.(Rich LI Doctor)))'}.

Because the concept triggering the tableaux rule was ngethghis
(L) X, LrFY XkET,Y (rd) corresponds to a sequent step using th¢ fule (step 2 in Figure 2).

) X,a,-a Y X F a,-a,Y (r1)

) ﬁ’i‘hz’j t § X F a}j{YF aﬂbXY'_ b Y Ay The tableaux algorithm would then normalise
a3 : o —(3fri i1d.(Ri f
(1=n) X aXF’ f(aﬂb)))(: yb FY § = —\((l(ljf—\bl;: 3; (r=A) | (Ffriend.(Vchild.(Rich U Doctor)))
avy Xeat X.bry X Faby vy t0giveViriend (-Vchild.(Rich UDoctor))’, and apply thed-
Loae m Y PN ruleto 3friend. T, generating the sub-problem consisting of
(=) X *);(GU”F) ; Y X ; :(“Ub))/’ Y (=) {T, ~((3child.—Doctor) L (Ichild.Lawyer)),
» @ a.,
(=) X, oaF v XF —a,Y (r=-) —Vchild.(Rich LI Doctor)'},
X', b kY X' b, Y tos .
(o) X, b F Y X T Vrb,Y (rB) where —Vchild.(Rich U Doctor)' is tagged because it was de-
(1-0) X.cb b Yo Xk b Yo (r=0) rived from a tagged concept. Because the triggering coneapnot
T o tagged, this corresponds to a sequent step usingtele (step 3
where X’ ={a |Vr.a € X} U{-a | -3ra € X}, and e P g p using e le (step
Y'={a|IraecY}U{-a|-VraeY} Y)- . .
The next step in the tableaux algorithm would be a nor-
Figurel. Rules forALC malisation of —((3child.—Doctor) U (child.Lawyer)) to give

—(3child.—Doctor) M —(Ichild.Lawyer), followed by an appli-

addition of lazy unfolding and tagging. As a notation for fiveof ~ cation of theM-rule, leading to the set
generated by the modified tableaux procedure, we introdace & {T,—(3child.—Doctor), ~(Ichild.Lawyer),
simple sequent calculus. Sequent calculi #£C can be obtained —Vchild.(Rich L Doctor)t}.
from the modal logic literature [3] by exploiting the corpemdence
betweenALC and the multi-modal propositional logi&), with
the subsumption relation being encoded as the entailmiatiorein
a sequent. Note that there have already been attempts[{&]).to
produce sequent calculi for DLs based on such calculi froedipr
cate logic. However, the result does not bear a direct o#ldt our
tableaux proof system, nor has it been used to generate skort
planations. In order to devise the sequent notation, weoixihle {~—Doctor, ~Lawyer, ~(Rich LI Doctor)'}.
well known fact that in classical logic it is possible to dhta se- Because the triggering concept was tagged, this expansioe-c
guent proof directly from a standard tableaux satisfiabdigorithm, sponds to one of the sequent right rules, and the precedimgatio
where applications of tableaux rules correspond with stefise se- sation step means that it corresponds to a sequent stepthsi@d)
quent proof, and clash detections correspond with ternoimegtx- rule (step 5 in Figure 2).
ioms (e.g., [12]). The tableaux algorithm would then proceed with a normatisat

The calculus is shown in Figure 1. Please note that the peapos of ——Doctor, corresponding to a sequent step using the-§ rule
system is not strictly original (see, e.g., [2]); what is oniant here is (step 6 in Figure 2), and a normalisation-efRich LI Doctor)', fol-
the way a sequent proof can be correlated with a tableauwedme lowed by an application of the-rule to give
for ALC, since all the implemented systems for expressive Descrip- {Doctor, ~Lawyer, -Rich!, <Doctor'},
tion Logics make use of tableaux procedures. In order tdlphtae
behaviour introduced by lazy unfolding and tagging in thHagaux
calculus, weakening and negation rules do not exist. If atieg
rule is used in an explanation of subsumption, this wouldltes
shifts of subsumers to subsumees and vice versa. On thetzthey
new rules are introduced which explicitly consider negatiofront
of every construct. In order to parallel the behaviour of Yheind
J-rules in the tableaux calculus, the applicability condition oéth
O- and<-rulesis explicitly considered. The condition states that the
rule is applicable if all the homologous universal and exitial for-
mulze are “gathered” together on the left and right hand sifitlse 3 The surface structure of explanations

igﬁ;Jseemalgdtizinglet(é?mg;%nﬂ&]liiglIJWLZ ;Srttehaedrsloagii\)/gid onlgeordf The sequent calculus proofs obtained from the theorem pyuee
We \;viII now see how the tableaux algorithm Woulld demonstratew.de the framework for an expla!nathn, but there are sorpblpms
i - with these proofs that would limit their usefulness as exatins to
the above-mentioned subsumption (1). be given to end-users
We want to parallel the steps in the tableaux algorithm whih t |

corresponding sequent steps for the same proof (Figuret®) se- One problem relates to the contents of the proof tree ittedfe
ponding seq p: P o can be several fragments of proofs which are irrelevant amgldv
guent notation will be used in the next section to devise iydae

: . PR only clutter the exlanation. These can occur because ofpukations
gggggb; he proof starts by proving the unsatisfiability loé set of applied to concept fragments that end up being irrelevantekam-

ple, in showing that—AMYr.CM3r.D is subsumed byr.(DUE),
{(3friend. T MVfriend.—((Ichild.~Doctor) L (Jchild.Lawyer)))iliS unnecessary to.apply ru{é-—), noris it usgful to carry the con-
~(3friend.(Vchild.(Rich L Doctor)))T}, ceptC, when a_pplylng rule_l€>). The s_,oluuon is to simplify the se-
quent proof using a recursive analysis of the relevance df eam-

An application of the tableaux-rule to the first concept leads to the ponent. This procedure has similarities with non-modabpmn-
set densation techniques used in theorem proving (e.g., s¢e [11

Because the triggering concept was not tagged, these tvps ste
correspond to a sequent step using thev(rule (step 4 in
Figure 2). The tableaux algorithm would then normalise h# t
negated concepts to givehild.m—Doctor, Vchild.—Lawyer and
Jchild.~(Rich U Doctor)' respectively. Thé-rule would then be
applied to the last of these concepts, generating

where—Rich and—Doctor are both tagged. The combination of the
triggering tagged concept and the normalisation step mibatshis
last expansion corresponds to the) sequent rule.

Finally, the tableau algorithm detects a clash betwiertor and
—Doctor’. Because-Doctor! is tagged, this corresponds to the se-
guent termination axiorf, Doctor F Doctor, Y (step 7 in Fig-
ure 2).

Ifriend. T MVfriend.—((3child.—Doctor) U (Ichild.Lawyer))
F Jfriend.Vchild.(Rich LI Doctor)
@

(an

Jfriend. T, Vfriend.—((3child.—Doctor) LI (3child.Lawyer))
F 3friend.Vchild.(Rich U Doctor)

(1) (@)
T, =((3child.—Doctor) LI (Ichild.Lawyer))
F Vchild.(Rich Ll Doctor)
(-v) (©)
T, =(3child.—Doctor), —(3child.Lawyer)
F Vchild.(Rich Ll Doctor)
(rD) 4)
——Doctor, —Lawyer I Rich U Doctor
(-=) ©)
Doctor, —Lawyer F Rich U Doctor
(rv) (6)
Doctor, —Lawyer F Rich, Doctor
=) @)

TRUE

Figure2. Sequent proof.

The other problems are related to the presentation of theeseq
rules to users. The solution here mainly involves the useroptates
to generate a surface explanation (in one or more steps)cof s
guent rule application.

3.1 Simplifying proofs

The sequent proof tree found by the theorem prover will barassl
to be presented as a term, where the term constructor wilidoaute
name, and its arguments will include the important metéabées
appearing in the sequent rule, as well as any sub-proofs.

For example, consider a proof that starts with the appbcatif
the (-—M) rule to

—Doctor, ~—Lawyer F —(RichDoctor),

leading to-Doctor, =—Lawyer + —Rich, -Doctor, followed by
an application of {-—), and then the termination axiofs=) with
—Doctor. This would be encoded as the term

rNotAnd(Rich, Doctor, INotNot(Lawyer, ident(—Doctor)))

where, for example, the type of proof constructbtNot is De-
scriptionx Proof.

We now describe a functioRelevant, which takes a proof and
simplifies it so that only relevant proof steps are kept aodnpfodal
rules, only those descriptions that are relevant to latetspaf the
proof are carried into the sub-proof. This is accomplishgdtdm-
puting two such sets of relevant terms (one for each sidg-of
for everystep of the proof. The functioRelevant takes as argu-

ment aProof, and returns a three-tuple: the revised proof, plus the

above-mentioned two sets of concept terms, from which thespt
sequent can be reconstructed. The function is defined byarede-
sis of the proof step constructors, and is presented for sepresen-
tative cases using pseudo-ML code, with pattern-matchitgtion.
Starting with the termination rules, we have, for example

Relevant(ident(A)) = (ident(A) , {A}, {A})
Relevant(1Bot()) = (IBot() , 0, 0)
Relevant(IContrad(A)) = (IContrad(A) , {A, —A},0)

The code forlNotNot(A, Pf) would first recursively process its

Relevant(INotNot(A,Pf)) =
let (Pf1,Lhs1,Rhsl) = Relevant(Pf) in
if (A € Lhsl)
then (INotNot(A,Pfl), Lhsl — {A} U {——A}, Rhsl)
else (Pfl,Lhs1,Rhsl)

Similarly, in dealing withrNotAnd (A, B, Pf), if neither—A nor—-B
was useful in the sub-proof then the rule can be skipped:

Relevant(rNotAnd(A,B,Pf)) =
let (Pf1,Lhs1,Rhsl) = Relevant(Pf) in
if (-A € Rhsl) orelse (—B € Rhs1)
then (rNotAnd(A,B,Pfl), Lhs1,
Rhsl — {-A,-B} U {~(ArB)})
else (Pfl,Lhs1,Rhsl)

For example, by applyinRelevant to proof 3.1, we would obtain
the proofrNotAnd(Rich, Doctor, ident(—Doctor)), plus the sets
{—Doctor} and{—(RichMDoctor)}, representing the relevant parts
of the sequent derived by the proof.

Finally, we need to consider the modal rules. First, obsénag
modal rule applications appearing in our proof can no lohgeuse-
less”, so our main task will be to thin out the terms that areied
into the sub-proof.

For example, in proving that

Vchild.Adult, dchild.—~—Doctor
F dchild.Doctor, dchild.Rich

rule (<) would gatheeveryrestriction on rolechild, producing the

subgoalPerson, -—Doctor F Doctor,Rich. However, the only

relevant parts from both sides are those dealing Déttttor, so we

will want the sequent produced to be orlghild.——Doctor F
dchild.Doctor.

When applying modal rules we need to track the precise form of
the relevant subconcepts. We therefore distinguish in hecadent
X'’ of the top sequent those terms that come from formulee of the
form Vr.a from those that come from formulee of the forrdr.q;
likewise for the succedert’. Thus the [O) rule needs a list of four
argumentsiLa, Lns, Rs and Rna, such that the antecedeit’ =
La U Lns and the succedent’ = Rs U Rna, where, for example,
La={a|Vra € X}andLns = {-a | —3r.a € X}. Each of
these sets may be diminished by the “relevance”lliss1 returned
by the recursive call on the sub-proof:

Relevant(1Some(p,B,[La,Lns,Rs,Rna],Pf)) =

let (Pf1,Lhs1,Rhs1) = Relevant(Pf) and
(Lal=La N Lhsl) and (Lns1l=Lns N Lhsl) and
(Rs1=Rs N Rhsl) and (Rnal=Rna N Rhsl)

in (ISome(p,B,[Lal,Lns1,Rs1,Rnal],Pfl),
{3p.B}U {Vp.A| A€ Lal} U {—-3p.A| —-A € Lnsl},
{3p.A] A€ Rsl} U {-Vp.A| -A € Rnal}

)

(3.1)

As a result, the sequent proof of (3.1), represented by

ISome(child,~—Doctor, [{Adult},0,{Doctor,Rich},0],
INotNot(Doctor,ident(Doctor)))

is reduced to

ISome(child,~—Doctor, [(,0,{Doctor},d],
INotNot(Doctor,ident(Doctor)))
In the original example, from Section ZRelevant elimi-
nates—3child.Lawyer from the application ofrd, by replacing
{——Doctor,—Lawyer } with {~—Doctor} in the original proof step
rAll(child, (Rich U Doctor), [#, { ~—Doctor, ~Lawyer}, @, 0], _).

3.2 Generating surface explanations from pruned
proofs.

sub-proofPf (see theet statement in the following pseudo-code); if The following problems arise when trying to offer the (reeldgse-
it turns out that the concept was not needed (to detect a termina- guent proof as an explanation:

tion) in the sub-proof, them—A itself is irrelevant to the proof, and
the step is skipped. Otherwise, the sub-proof explains ethexA is
used, and makes us be interested in explaining where-thé came
from.

1. The use of the comma as a separator on the antecedent side is

semantically equivalent to conjunction, while on the sdece it
is disjunction; this is quite confusing to non-initiates1 the other

(NotNot) ——a= a
(NotAnd) =(aMb---) =—all=b:-- —(alb:-+) ==al=b--- (NotOr)
(NotSome) —3r.a=Vr.na —Vr.a=3r.—a (NotAll)

(AndAll) Vr.anVr.b---=Vr.(aMb---) Ir.al3r.b--- =3r.(alUb---) (OrSome)
(SomeBot) Jr.l=1 Vr.T=T (AllTop)

(SomeAndAll) 3r.amVr.b = Ir.(aMb)MVr.b

Figure 3. Rules for concept equivalence used in explanations

hand, if we do not use the comma notation, inferences dealin

with the commutativity and associativity of simple propmsial
connectives clutter explanations unnecessarily.

2. Several rules are identical on the left and right hand, siel
might therefore be better presented as single rules foragass
concepts into an equivalent form (e.g., using de Morgaré&sju

3. The inference rules for modal formulae are quite complest a
their validity is entirely non-obvious (and hence not a @nopx-
planation step), since it is based on model-theoretic aegusnin-
accessible to naive users. This is in contrast to a strucsuka
sumption rule such ag—4=>— which is self evident.

4. Proofs could, in general, be exponential in size. Howdvased
on experience with CASSIC, in explaining a subsumption of the
form A C C N D, experience with CASSIC suggests that users
often see one of the subsumptions [C C or A C D), and only
want the other one explained. Since the problem is irARE,
this means that single branches are at most polynomial én siz

As promised, rulesif\) and V) are not explicitly reported, so
thatExplain(a C 3, I1And(A, B, Pf)) justinvokesExplain(a’ C 3,
Pf), wherea’ may have conjunction nesting removed framRules
(Iv) and ¢ A) represent case analysis, and offer the user a choice of
which branch of the proof to follow (or stacks the proofs farttp
cases).

Finally, we come to modal rules. Let us consider

Explain(a C 8, ISome(r, B, [Lal, Lnsl, Rsl, Rnal], Pf)).

If Lnsl is not empty, then we first apply equivalence rule
NotSome) to the elements ofv which appear i—3r.C | C €
nsl}. Similarly for Rnal. This leaves us an explanation of the

form Explain(a C 3, ISome(r, B, [La2, 0, Rs2, 0], Pf)). If La2 is

non-empty, then we apply equivalence ru{@sdAll) (unlessLa2

is a singleton) andSomeAndAll) to the subsumee to gather tHe

restrictions and absorb them inde. B. This leaves us with an expla-

nation of the formExplain(a C 3, ISome(r, B, [0, 0, Rs2, 0], Pf)).

If Rs2 contains more than one element, they can be gathered into a

single 3-restriction using th€OrSome) equivalence rule. We now

have two cases

e Rs2 is the empty set. In this case the subsumee must be in-
coherent, so we say‘To prove thata T 3, we will show
that 3r.B is incoherent, and hence is subsumed by everything.
For this, it is sufficient to show thaB is incoherent.! If we
wanted, we could now introduce a variant®fplain(-, -), call it
Explainincoherent(B, Pf), which knows that the prooPf only
deals with the lhs, since it had an empty relevant rhs. Or we ca
continue withExplain(B C L, Pf).

e Rs2 contains a single concepf’. In this case, we can use

To resolve these problems we propose an approach based on the(StructSome) to provide a simple explanatioff#*The subsump-
following idea:Each proof step in the sequent calculus is expressed tion can now be proven by showing thatestrictions for roler

in terms of zero or more explanation rules (ERs) to be intosdly
plus some choice on how to proceed with the rest of the exjitema

To be clear, henceforth we will use instead of + to indicate
the subsumption relationships that are being explainedi refer to
the antecedent and succedent as “Ihs” and “rhs” of the subsom

First, we make conjunction and disjunction explicit on the &nd
rhs, replacing the commas. However, we will leave implitiinaa-
nipulations relating to associativity and commutativifytttese oper-
ators. Therefore, sequent rulég) and ¢V) will not appear in the
surface explanation.

Second, we introduce, in Figure 3, a variety of ERs that mpla
concepts by equivalent ones using, for example, the fannilias of
de Morgan. These rules can be applied to concepts in prqus.ste

Each of these rules has an English template describingpigcap
tion, and possibly a “because” clause, which the user mayaask
order to explain the rule itself. (This should be unnecsssatcept
for one rule, marked with * in Figure 4, which may well be treht
as alemma.)

For the modal rules, we offer simpler variants, which willdmen-
bined with equivalence rules (when necessary) to produesame
effect as the corresponding sequent rules. To begin witttJY and
(r—<) are explained as applications of de Morgan’s law followgd b
(1) or (rO) respectively. Then, theApdAll) and OrSome) equiva-
lences can be used to gather together relevant componettis ths
and rhs. Finally, the subsumption can be explained usinfntlostly)
structural rules given in Figure 4.

We are now ready to sketch the proof explanation funcisrn
plain(-, -), which, given the subsumptiam C 3 and its proof, gen-
erates some text, possibly offering further sub-explangs). Again,
we consider a variety of sequent rule kinds to illustrateapproach.

For a termination sequent rule such @s), Explain(cc C g,

subsume. To provér. X C 3r.Y, itis sufficient to proveX C Y.
So in this case we are reduced to showiBgC C”. The first
sentence is omitted & has no conjuncts.

Returning to our original example, we were asked to explain

(3friend.T MVfriend.—(3child.—Doctor Ll 3child.Lawyer))
C (3friend.(Vchild.(Rich LI Doctor))),

The (pruned) sequent proof is constructed with
IAnd, ISome, INotOr, rAll, INotNot, rOr and ident. According

to our rules, we skipAnd, and explainSome, which here uses ERs
(SomeAndAll) and(StructSome). These generate the text

On the Ihs, Jfriend. T can be strengthened
with V-restrictions on role friend to Yyield
Jfriend.(T M —((3child.—Doctor) U (Ichild.Lawyer))).
The subsumption can now be proven by showing that
J-restrictions for role friend subsume. To prove
dfriend. X [C dfriend.Y, it is sufficient to prove
X LC Y. So in this case we are reduced to show-
ing T M —((3child.—Doctor) LI (Ichild.Lawyer)) L
Vchild.(Rich U Doctor).

For rAll(child, (Rich Ll Doctor), [#, {—Doctor}, @, 0],), we use
ERs (NotSome) (combined with the precedingNotOr), and then
(StructAll) to get

On the |hs, apply de Morgan’s laws to propagate in negation, t
get (Vchild.——Doctor). To proveVchild. X C Vchild.Y,

it is sufficient to showX C Y. So in this case we are reduced
to showing——Doctor C (Rich LI Doctor).

(Note that=3child. Lawyer had been pruned from the explanation.)

ident(Z)) would say:“The subsumption now follows because the FromINotNot we get

description Z is subsumed by Z, *and the lhs is a constrictibg,
since it is a conjunction, while **the rhs is an expansion g&ifice

Double negation elimination on the lhs leavestor.

it is a disjunction”. The sentence fragment starting at * (resp. **) is Finally, skippingrOr, ident produces:

omitted if o (resp.() is a singleton rather than a conjunct.

Next, consider an equivalence rule, like-—). Explain(a C g,
INotNot(Z, Pf)) produces:Double negation elimination on the lhs
leaves Z"

The subsumption now follows because the descriftéartor
is subsumed yoctor, and the rhs is an expansion Déctor,
since it is a disjunction

alb alb
(StructSome) EIr.aEEIr.b Vr.aEVr.b (StructAII)
al(blc)

Vra (v ola) (AlllsaAllSomex)

Figure4. ERs for role-restriction subsumptions

4 Extensions

Implemented DL systems support additional features sucteras
minological definitions TboX and role hierarchies. Explanations
should support these as well.

A Tbox is a set of axioms of the forl@ T D or C = D that
assert subsumption relationships between (possibly @ggon-
cepts. In many DLs, axioms are restricted to be “definitiotts8 left
hand side is an atomic concept name that does not occur oefthe |
hand side of any other axiom, and is not referred to (eithexctly or
indirectly) in the right hand side. Examples of definitiornars are
Doctor C WellPaid andRichKids = Vchild.(Rich L Doctor).

When the Thox is restricted to definition axioms, reasonmg i
volves simply expanding names with the associated Thox idefin
tions during a proof. For example, if the conceiichKids were
defined as in the previous paragraph and used in our earken-ex
ple instead of’child.(Rich LI Doctor), then it could be expanded

to RichKids M Ychild.(Rich L Doctor) during the proof This
procedure can be captured by simple sequent rules with siuldi-c

tions, such as22X =Y if (¢ = d) € Thox, and explained by a

X - Y
corresponding ER rules such dsi can be strengthened to M 3
becausev = 3 is in the Thox”* Moreover, correspondence with the
tableaux algorithm is maintained because the “lazy unfigftiopti-
misation behaves in exactly the same way: defined conce@are
only unfolded (expanded) as required by the progress ofthieaux
proof. A very similar technique can be applied with necessan-
ditions on primitive concepts (i.e., wheris an atomic concept and
C C D € Thox).

Extending the tableaux algorithm to deal with transitiviescand
role hierarchies requires only a relatively minor extendio the3-

the original subsumptioryet can be obtained directly from a slightly
enhanced tableaux algorithn(b) the surface explanation rules are
used to provide the simplest explanation possible, avgidimmost
cases the use of the one ER that, we believe, would itselfirequ
explanation (namelyAlllsaAllSome)).

In some situations, our approach may in fact be better than on
based on naive structural subsumption even for languagegevthe
latter proof technique is applicable. For example, in showthat
CNa C C,astructural subsumption technique first normalises the
Ihs, which is unnecessary in this case, yet might involveperin-
ferences if, for exampley contains an incoherence. The same would
apply if C'is a defined concept, when normalisation expands defini-
tions, while our lazy unfolding would find the proof immedibt

The choice of the surface explanation rules, and espedciadiy
English language realization is to some extent provisiontie cur-
rent work. This is particularly the case with proofs invalgirole-
restrictions.

Although much more sophisticated natural language texéigen
tion is possible from proofs (e.g. [8]), we believe that feets build-
ing DL knowledge bases, a point-by-point explanation ofitifer-
ences, as done earlier m.AssIC, is sufficient. We are aware that a
considerable number of theorem provers have been endovilethei
ability to produce explanations from the steps of proofs, ssme of
them, e.g.ILF [1], even offer a service whereby proofs obtained from
seemingly arbitrary axiomatisations can submitted toial@surface
English explanation, if the proof system can be reformaatepro-
priately. The very specialised nature of concept desorigtin DLs
and modal logics (in contrast to FOL formulas) and of the soijs
tion proof itself, have led us to develop for now our own rigkdy
simple surface generator, rather than trying to find a tediwsi of
our proofs into yet another form (e.gLF’s “block proofs”), which
may not be natural in the end.

We plan to concentrate instead on extensions to more exggess
DLs and their highly optimised implementations, as wellhasitives-
tigation of proof tactics that produce short or most easijyl@nable
proofs.

Acknowledgements We wish to thank our original collaborators,
Deborah McGuinness and Peter Patel-Schneider for thetribon

rule [5], and a corresponding extension to the modal sequens ruletions, as well as very useful pointers offered by Matthewn8i¢lans

is possible. (This extension leads to some problems withitettion
in the tableaux algorithm, but this is irrelevant for the lexytion
component, which receives a completed proof.)

Modern DL implementations also support a variety of of ojdan
tion techniques. Some (like lazy unfolding) facilitate tpeneration
of parsimonious explanations. For example, backjumpintgcha-
nique for pruning irrelevant search, complements the sfioation
procedure described in Section 3.1, while caching, a tecienfor
reusing sub-proofs, can be used as a lemma generator.

Other extensions, such as general Thox axioms and semanti

branching optimisation complicate the task of explanatand will
be treated in future work.

5 Conclusions

Explanation of subsumption in expressive descriptiondsegivas
thought to be hard because the standard proof techniquésbéeau-
based, and are thus unnatural.

We have proposed a methodology for explaining the subsompti
relationship betweerl LC concepts based on (i) a sequent proof for

ALC derived from a tableaux based procedure, (ii) a pruning-algo [9]

rithm that eliminates unnecessary steps, and (iii) a se¢roptates
used to generate “surface” explanations (in one or moresyfepm
each sequent rule application. The significant properti¢ki® pro-
posal include the fact that (a) the proof does not move teroms f
one side of the turnstile to the other, thus preserving thettre of

3 1t could be substituted with its definition, but retaining thame can lead to
a shorter proof.

4 Such a sequent calculus would, in general, be non termmatiowever, in
our framework, finite proofs are generated by the tableagardhm, for
which termination is guaranteed.

Juergen Ohlbach, and by an anonymous referee. The firstraviso
supported by NSF-grant IR19619979.

REFERENCES

[1] B. . Dahn, J. Gehne, T. Honigmann and A. Wolf, ‘Integoatiof auto-
mated and interactive theorem proving in ILProc. of CADE-14pp.

57-60, (1997).

[2] S. Demriand R. Goré, ‘Display calculi for logics withlagive accessi-
bility relations’, JoLLI, (1999).

f3] M. Fitting, Proof Methods for Modal and Intuitionistic LogicKluwer,
1983.

[4] B. Hollunder and W. Nutt, ‘Subsumption algorithms fornoept lan-
guages’, inProc. of ECAI'9Q pp. 348-353, (1990).

[5] I Horrocks, ‘Using an expressive description logicdHaor fiction?’,

in Proc. of KR'98 pp. 636-647, (1998).
[6] I. Horrocks and P. F. Patel-Schneider, ‘Optimising diggion logic
subsumption’JLC, 9(3), 267—293, (1999).
[7] X. Huang, ‘Reconstructing proofs at the assertion leviel Proc. of
CADE-94 (1994).
[8] X.Huang and A. Fiedler, ‘Presenting machine-found fisgan Proc.
of CADE-96 (1996).
C. Lingenfelder, ‘Transformation of refutation grapiméo natural de-
duction proofs’, SEKI-Rep. 86-10, Univ. of Kaiserslautefh986).
D. McGuinness and A. Borgida, ‘Explaining subsumptiardescrip-
tion logics’, inProc. of IJCAI'95 pp. 816-821, (1995).
F. Oppacher and E. Suen, ‘HARP: A tableau-based theqnawver’,
Journal of Automated Reasoning 69-100, (1988).
S. Reeves and M. Clarkkeogic for Computer Sciencéddison Wesley,
1993.
V. Royer and J. Quantz, ‘Deriving inference rules fom@ological
logics’, in Proc. of JELIA’92 pp. 84-105, (1992).
W. R. Swartout and J. D. Moore, ‘Explanation in secondegation ex-
pert systems’, irBecond Generation Expert Syster@pringer Verlag,
(1996).

[10]
[11]
[12]
[13]
[14]

