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A system that correctly reasons with information in an expressive description
logic includes a decision procedure for an expressive propositional modal logic.
This decision procedure must be heavily optimised if it is tobe able to usefully
reason with knowledge bases of any complexity. Descriptionlogic systems that
incorporate a heavily-optimised propositional modal logic decision procedure in-
clude FACT [5], DLP [7], and HAM -ALC [4].

Therefore, a system that efficiently reasons with information in an expressive
description logic can be used as a fast decision procedure for an expressive propo-
sitional modal logic. The current status is that not only arethe fastest reasoners
for expressive description logics fast reasoners for propositional modal logics, but
for many classes of formulae they are thefastestsuch reasoners.

We have performed numerous experiments with DLP, showing that it is com-
petitive with other reasoners for propositional modal logics, including compar-
isons presented at recent Tableaux conferences where DLP was the fastest sys-
tem [1, 8]. In more recent tests we have compared DLP with KSAT [3], TA [6],
and KSATC [2] on various collections of random formulae.

The two fastest of these systems by a considerable amount areDLP and KSATC.
DLP is an experimental description logic system available fromBell Labs at
http://www.bell-labs.com/user/pfps/dlp. It implements a very
expressive description logic, including full regular expressions on roles. KSATC is
a reasoner forK(m), built on a fast Davis-Putnam-Logemann-Loveland decision
procedure for propositional logic. KSATC is available atftp://ftp.mrg.
dist.unige.it/pub/mrg-systems/KR98-sources/KSat-source
/KSatC.

Tests illustrating the differences between DLP and KSATC are reported in Fig-
ures 1 and 2. Both figures give results for randomly-generated 3CNF formulae in
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Figure 1: Results for test 1 (modal depth 2)
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Figure 2: Results for test 2 (modal depth 1)
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the modal logicK using a formula generator that we have devised, which is simi-
lar to previously-used formula generators but eliminates their problems.

Figure 1 gives the results for formulae with a maximum modal depth (role re-
striction depth) of 2. For a given number of propositional variables (N), ranging
from 3 to 9, formulae were generated with a number of clauses ranging from the
number of propositional variables up to 150 times this number (shown asL/N in
the results). In each clause there was a 50% chance that an atom was a proposi-
tional variable or modal formulae at depths 0 and 1.

For large values ofL/N in these tests KSATC often takes very little time (less
than0.01 seconds) whereas DLP takes considerably longer (about0.1 seconds).
These formulae are unsatisfiable even ignoring any modal subformulae. Both DLP

and KSAT can easily determine this sort of unsatisfiability. Becausethe DPLL
algorithm in KSAT can perform single passes over a large set of clauses in a very
short time, KSAT can process the trivially unsatisfiable formulae very quickly, but
DLP’s data structures and low-level algorithms are not heavilyoptimised so DLP

takes a total time for such formulae of about0.1 seconds.
For data points in theL/N range from about20–50, many or most of the

formulae are satisfiable. Here DLP is uniformly faster than KSATC. Much of this
difference is due to KSATC investigating modal successors (role restrictions) at
every choice point. Modal successors do not produce much unsatisfiability in
these tests, so the investigation of modal successors does not cut off search.

Even outside the above ranges (ofL/N values), DLP performs better than
KSATC for satisfiableformulae. Although there may be some benefit in examin-
ing modal successors early for these formulae, this benefit would occur only when
a large number of necessary modal formulae have been assigned true. Because of
the repeated work performed by KSATC on such successors, it does not appear
that the benefits are realized.

Figure 2 gives the results for formulae with a maximum modal depth (role re-
striction depth) of 1. Here all atoms at depth 0 are modal formulae. Here KSATC
performs much better than DLP. Because it aggressively investigates the modal
successors, it can eliminate search at the top level. DLP has to examine many
modal successors, as it will generate many top-level assignments that contain
nearly the same modal successors. Its caching of modal results does not help
very much as there are so many different modal successors that can be generated.

We have performed other tests using the same generator showing some ar-
eas where DLP dominates, some where KSATC dominates, and some where they
perform equally well.
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Even though we have performed many of these test using randomly-generated
formulae, we are not happy with the fact that we are restricted to such tests. We
would much prefer to test the performance of DLP on real knowledge bases that
use the more-powerful features of DLP’s description logic. However, such knowl-
edge bases do not yet exist. We hope that the performance of DLP, and of other
expressive description logic systems, will encourage people to develop knowledge
bases using these features. We are highly motivated to work with developers of
such knowledge bases.
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