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Abstract

Effective optimization techniques can make a dramatic difference in the performance of knowledge representation
systems based on expressive description logics. With currently-available desktop computers, systems that incorpo-
rate these techniques can effectively reason in description logics with intractable inference. Because of the corre-
spondence between description logics and propositional modal logic, difficult problems in propositional modal logic
can be effectively solved using the same techniques.
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1 Introduction

Description logics are a logical formalism for the representation of knowledge about indi-
viduals and descriptions of individuals [8]. Description logics represent and reason with
descriptions similar to ‘all people whose friends are both doctors and lawyers’ or ‘all people
whose children are doctors or lawyers or who have a child who has a spouse’.

The computationsperformed by systemsthat implement description logicsare based around
determining whether one description is more general than (subsumes) another. There have
been various schemes for computing this subsumption relationship, depending on the expres-
sive power of the description logic and the degree of completeness of the system. Asdescrip-
tion logic systems perform numerous subsumption checks in the course of their operations,
they need to have a highly optimized subsumption checker.

Schild [44] has shown that determining subsumption in expressive description logics is
equivalent to determining satisfiability of formulaein propositional modal or dynamiclogics.
Several description logic systems have been built for such description logics, and thusinclude
what is essentially a satisfiability checker for some propositional modal logic; examples of
such systems include KRis [5] and CRACK [10]. These two systems have incorporated a
number of optimizations to achieve better performance of their subsumption checkers.

Description logic systems are also optimized in other ways. In particular, their operations
are arranged so as to avoid potentially costly subsumption checks whenever possible. There
are also optimizationsthat are particular to description logics, having to do with the nature of
the representation of knowledge in a description logic [2], but these have little or nothing to
do with optimizing subsumption in general.

Two systems that explore the subsumption optimizations required to build an expressive
description logic system are FaCT [29], a full description logic system, and DLP [37], an
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experimental system providing only a limited description logic interface.r These two sys-
tems incorporate a range of known, adapted, and novel optimization techniquesin their sub-
sumption checkers. The optimization techniques include: lexical normalization, semantic
branching search, simplification, dependency directed backtracking, heuristic guided search
and caching.

These optimization techniques make a dramatic differenceto the performance of adescrip-
tion logic system. As evidence, KRIS is not able to load a modified version of the GALEN
knowledge base because it gets stuck trying to determine one of the thousands of subsump-
tionsrequired to load the knowledge base. With their higher levels of optimization, FaCT and
DLP are able to quickly load this knowledge base, classifying over two thousand definitions
in about two hundred seconds for FaCT and under 100 seconds for DLP.

We have also performed experiments with both FaCT and DLP on several test suites of
propositional modal formulae.? The optimizations built into the two systems qualitatively
change their behaviour on the test suites, indicating that the optimizations have considerable
utility simply taken as optimizations for reasoning in propositional modal logics.

2 Background

FaCT and DLP are designed to build and maintain taxonomies of named concepts. Given a
collection of definitions of named concepts and statements about these concepts, they deter-
mine the subsumption partial order for the named concepts. To do this, FaCT and DLP have
to determine subsumption relationships between descriptions in a description logic. Both
FaCT and DL P implement expressive description logics, with subsumption problemsthat are
known to be highly intractable in the worst case.

FaCT implements a superset of the description logic ALCz+ [43], an extension of
ALC [45] that distinguishesthe set of transitiveroles, R, ; in FaCT, this set is defined by ax-
iomsof theform R € R.. To thislogic, FaCT adds role and concept inclusion axioms[29].
Role inclusion axioms are of the form R C S, where R and S are role names, and can be
used to define a primitive role hierarchy. Concept inclusion axioms are of theform C' C D,
where C and D are concept expressions, and can be used to assert arbitrary subsumption
relationships.®

A standard Tarski style model theoretic semantics is used to interpret concepts and roles,
and to justify subsumption inferences [47, 3]. The meaning of concepts and rolesis given
by an interpretation Z, which is a pair (A7, .7), where A7 is the domain (a set) and -* is
an interpretation function. The interpretation function maps each concept to a subset of A
and each role to a binary relation (or equivalently a set valued function): RZ C AT x AT
(RT : AT — 227). The syntax and semantics of FaCT’s concepts, roles and axioms is
givenin Table 1. In thistable A is an atomic concept, C' and D are concept expressions, and
R and S areroles.

The Tarski style semantics is a simple transformation of the possible world semantics for
propositional modal logics. In this transformation elements of the domain correspond to
possible worlds, atomic concepts correspond to propositional variables, and roles correspond

1DLPis designed to facilitate the investigation of new and improved optimization techniques: it is written in a
functional language and is highly configurable.

2We augmented FaCT and DLP with an interface that allows these systems to perform directly as reasoners for
various propositional modal logics.

3Concept equality, written C' = D), can be asserted using a symmetrical pair of inclusion axioms C' C D and
DLCC.
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TABLE 1. Syntax and semantics of the FaCT description logic

Syntax Semantics
Concepts | A AT C AT
T AT
1 0
-C AT - CT

cnbD |CcftnDt

cubD |ctuD?

JR.C | {de AT |R*(d)nCT # B}
VR.C |{de AT |R%(d)CCT}
Roles R RT C AT x AT

Axioms |Re Ry | RT = (RY)T

RCS |RTcs?

cCcD |ctcD?

to modalities. This transformation shows that fragments of FaCT (and ALC p+) correspond
t0 K(m) and K4y, with transitive rolesin FaCT being used for K4, and non-transitive
rolesfor K ). FaCT can also expressformulaein K'T ) and S4 ) viatheusual encoding
that mapsVR.C into C NVR.C and 3R.C' into C U 3R.C.

DLP implements two description logics of differing expressive power. The less expres-
sive logic is equivaent to the logic implemented by FaCT. Here DLP is essentially a re-
implementation (with improved data structures and some additional optimization) of FaCT’s
subsumption reasoner. The more expressive logic implemented by DLP includes proposi-
tional dynamic logic (PDL) [16], augmenting PDL with number restrictions on atomic roles.
The syntax and semantics of the more expressivelogic is given in Table 2. Inthistable A is
an atomic concept, C' and D are concept expressions, P is an atomic role, and R and S are
arbitrary roles.

A simpletransformation of the semantics demonstratesthat this more expressivelogic con-
tains propositional dynamic logic as a subset [44]. It is aso easy to see that this description
logic is asuperset of the logic used in FaCT, as both transitive roles and role inclusions can
be simulated using role expressions. For example, a transitive role R can be simulated by
replacing R with R wherever it appearsin a concept expression, while arole inclusion ax-
iom R C S can be simulated by replacing S with (R LI S), wherever it appearsin a concept
expression.

Determining subsumption in ALC g+ (and equivalently in S4) is Pspace-complete [43,
24]. Adding either role or concept inclusion axioms results in EXPTIME-compl ete subsump-
tion* [38, 48, 29]. Determining subsumption in propositional dynamic logic is also Ex-
PTIME-complete [39]. These and related complexity problems have led some developers of
description logic systemsto use less-expressive description logics [9]. However, although the
theoretical complexity results are discouraging, empirical analyses of real applications have
shown that the kinds of construct that lead to worst case intractability rarely occur in prac-
tice [35, 25, 46, 28], and it has proved possible to build practical description logic systems
based on expressive description logics [5, 10, 29].

4The addition of role inclusion axioms also allows concept inclusion axioms to be dealt with by adding them to
concept expressions, atechnique known asinternalization [1, 29].
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TABLE 2. Syntax and semantics of the DLP description logic

Syntax Semantics
Concepts | A AT C AT

T AT

1 0

-C AT _ T
cnD |CtnD?
cubD |CTuD*
AR.C | {de AT : R%(
VR.C |{de AT:R%(

>nP | {de AT: |PE(d)| >n}

<P | {de AT: |PE(d) | <n}
Roles P PT C AT x AT

RuUS |RTuUS?

/C AT x CT

RoS RTo ST

n
R+ Un>1 RI
Axioms |CCD |CTCD?

Systems that are based on description logics like these generally determine whether a sub-
sumption holds by transforming the subsumption problem into a satisfiability problemin the
obvious manner: concept C subsumes concept D if and only if the concept D M —C is not
satisfiable. The systems then solve this problem by attempting to construct a model for the
concept, just as a tableau satisfiability checker for a propositional modal logic attempts to
construct amodel for aformula. The model is represented by atree in which nodes represent
individuals and edges represent roles. Each node is labelled with a set of concepts—we will
use L(z) to denote the label of a node x. The meaning of the label is that the individual
represented by x must be in the extension of every concept in £ (). Edges are labelled with
role names—if an edge (z, y) islabelled R, then y is said to be an R-successor of z. If z is
connected to y via an arbitrary sequence of edges then x is said to be an ancestor of y. The
treeissaid to contain aclash if for some node  and some concept C, either {C, -C'} C L(z)
or L € L(x). From amodal logic perspective, one can view nodes as representing possible
worlds, a node label as a set of formulae that must evaluate to true at the world, (Iabelled)
edges as (multi-)modal relationships, and clashes as obvious contradictions.

To test the satisfiability of a concept (formula) D, the basic algorithm initializes a tree to
contain a single node z, with L(z) = {D}, representing an individual that must be in the
extension of D. Thetreeisthen expanded by applying rulesthat either extend £ (x) for some
node z or add new leaf nodes. Digunctive concepts (C' U D) give rise to non-deterministic
expansion, existential role concepts (3R.C) cause the creation of new R-successor nodes,
and universal role concepts (VR.C') extend the labels of R-successor nodes. Thetreeisfully
expanded when none of the expansion rules can be applied. If afully expanded and clash-free
tree can be found then the algorithm returns satisfiable; otherwise it returns unsatisfiable.

In the FaCT algorithm, transitive roles and the role hierarchy are dealt with by a more
complex rule for expanding universal role concepts and by incorporating a check for cycles
(which could otherwise cause non-termination) in the rule for expanding existential role con-
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N-rue ifCiNCye L(.Z’)
then L(z) := L(x) U {Cy,Cs}

U-rule: if C1 UCy € L(x)
then non-deterministically add either C or D to L(x)

F-rule.  if AR.C € L(z) and z isnot blocked and
thereis no R-successor y of z with C' € L(y)
then create anew R-successor z of z with L(z) = {C'}

V-rule: if VR.C € L(z)
then for each S-successor y of « suchthat S C R,
L(y) =L(y)U{C}U{VPD|PcR,, SCPandPC R}

FIG. 1. Expansion rulesfor FaCT agorithm

cepts. In description logic agorithms, such cycle checks are often called blocking. In FaCT,
anode z issaid to be blocked if there is some ancestor node y such that £(x) C L(y); if this
is the case then the two nodes can be collapsed into acycle (z = y).5

The expansion rules for the FaCT algorithm are summarized in Figure 1. In order to
simplify the rules it is assumed that = is a node in the tree; that a rule is not applicable if
applying the rule would not change the tree; and that for two roles R and S, R C S if either
R =S,RC Sisanaxiom, or thereisarole P suchthat P C Sisanaxiomand R C P.
Moreover, y is considered to be an R-successor of z if the edge (z, y) islabeled with arole
S suchthat S C R. Concept inclusion axioms are also ignored because, as noted above, they
can be dealt with by internalization.

In practice, expansion is performed one node at a time, with the expansion of succes-
sors being postponed until the current node is fully expanded. Successor nodes can then
be expanded one at a time and discarded once their local satisfiability has been determined.
Non-determinism in the L-rule is implemented by a depth-first search, halting either when a
model is found or when all possible choices have been explored and found to lead to a clash.
Full details of the algorithm along with a proof of its soundness and completeness can be
foundin [30].

The algorithm for the logic implemented by DLP in its more expressive configuration is
more complex due to the presence of the transitive closure operator and of number restric-
tions. However, as the optimization and testing described in the rest of this paper refer to
DLP in its less expressive configuration,® the algorithm that DLP implements for its more
expressive logic will not be described in detail. The main diferences between this algorithm
and the FaCT agorithm described above are:

1. expanding a concept of the form IR T.C istreated as a non-deterministic choice between
AR.C andIR.(3RT.C);

2. cycles caused by concepts of the form IR*.C' must be checked to see if they actually
satisfy the concept (agood cycle) or simply postpone satisfying it until acycleis encoun-

5In this description logic all cycles are good—they can be interpreted as valid cyclical models.
6The main reason for thisis alack of suitable test data. It is hoped that the availability of DLP will lead to the
development of such data, in particular knowledge bases that use its more expressive description logic.
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tered (abad cycle);
3. number restrictions can give rise to extra non-deterministic choice when <nP concepts
restrict the number of P-successorsthat can be created;

4. the definition of aclash is extended to include the case where { >m P, <nP} C L(z) and
m > n.

Further details can be found in [37, 1, 13].

Theimplementationsof both FaCT and DLPincludeatermclassifier or Thox that can build
and maintain a concept hierarchy—a partial ordering of named concepts based on the sub-
sumption relation. Named concepts are defined by axioms of the form CN = C' (equivalent
toCNC C'andC C CN) and CN C C, where CN isaconcept name.

Thetask of computing the partial ordering of named conceptsfor agiven knowledgebaseis
itself amenable to arange of optimizations. In particular, concept definitions can, in general,
be dealt with much more efficiently than other axioms using a technique called unfolding [2],
the basic idea being simply to substitute names with their corresponding definition wherever
they occur. These techniques are not, however, relevant to the optimization of the underlying
subsumption (satisfiability) tester, and are not studied in this paper.

3 Optimization techniques

The basic algorithm given above is too slow to form the basis of a useful description logic
system. We have therefore investigated and employed a range of known, adapted and novel
optimizations that improve the performance of the satisfiability testing algorithm. These
optimizationsinclude: lexical normalization, semantic branching search, simplification, de-
pendency directed backtracking, heuristic guidance of the search, and caching. Each of these
techniqueswill be described in detail in the following sections.

3.1 Lexical normalization

Theoretical descriptions of tableau algorithms generally assume that the concept expression
to be tested isin negation normal form, with negations applying only to atomic concepts[27,
4, 11]. This simplifies the (description of the) algorithm but it means that a clash will be
detected only when an atomic concept and its negation occur in the same node label.

For example, when testing the satisfiability of the concept expression

JR.(C' M D) NVYR.~C,

where C is an atomic concept, a clash would be detected when the algorithm creates an R-
successor y because {C, ~C} C L(y). However, if C isaconcept expression, then the clash
would not be detected immediately because —~C would have been transformed into negation
normal form. If C' islargethis could lead to costly wasted work.

The late detection of clashes can be addressed by transforming concept expressions (and
recursively their sub-expressions) into alexically normalized form, and by identifying lexi-
cally equivalent expressions. All concept expressions can then be treated equally with aclash
being detected whenever a concept expression and its negation occur in the same node la-
bel.” In this lexically normalized form, concept expressions consist only of atomic concepts,

7K RI's addresses the same problem, in aless complete manner, by lazily expanding named concepts, and retaining
their names in node labels [2].
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TABLE 3. Normalization rulesfor FaCT and DLP

Concept expression Normal form
L -T
cub —|(ﬁC [l ﬂD)
dR.C =(VR.-C)
cnb n{C,D}
M{{C4,...,Cr},..} | {C4,....Ch,...}
n{C} c

TABLE 4. Lexical smplification rulesfor FaCT and DLP

Concept expression |  Simplification
VR.T T
{T,C,...} n{c,...}
n{-T,...} T
n{C,-C,...} T

conjunction concepts, universal role concepts, and their negations. Moreover, conjunctions
are treated as sets so that their equivalence is recognized regardless of ordering, repetition
or nesting of conjuncts; a conjunction in this form will be written N{C4,...,C,}, where
{C1,...,Cy} istheset of conjuncts. The full set of normalization rules employed by FaCT
and DLP aregivenin Table 3.

The normalization process can also include lexical simplifications that eliminate redun-
dancy and help to identify obvious satisfiability and unsatisfiability; those performed by FaCT
and DLP are shown in Table 4. Other simplifications, such as N{VR.C,VR.C,...} —
M{VR.M{C,D},...}, would also be possible.

The detection and handling of contradictory conjuncts can make a dramatic differencein
solutiontime. In extreme cases the need for atableau expansion can be completely eliminated
by simplifying the expressionto T or —=T. Efficiency can be further enhanced by tagging
each lexically distinct expression with a unique code so that equivalent expressions can be
identified simply by comparing tags,® or by uniquely storing expressions.

Tableau expansion of conceptsin thisform is no more complex than if they arein negation
normal form: ~(VR.C) canbe dealt withinthe ssmeway asaR.-C', while-n{C,...,C,}
can be dealt with in the same way as (=C, U ... U =C,,). For example, the expression
JR.(C N D) NVYR.~C would be transformed into N{—~(VR.— 1 {C, D}),VR.~C}, and the
~(VR.- 1 {C, D}) term would lead directly to the creation of an R-successor whose |abel
contained both C and —=C'. As the two occurrences of C' will be lexically normalized and
tagged as the same concept, a clash will immediately be detected, regardless of the structure
of C.

8A similar technique is used in K SAT, but without the benefit of tagging [23].
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L(z) U{C} = clash (4 L(z)U{D}

L(wg) U{C} = clash

FIG. 2. Syntactic branching

3.2 Semantic branching search

Standard tableau agorithms are inherently inefficient because they use a search technique
based on syntactic branching. When expanding the label of a node z, syntactic branching
works by choosing an unexpanded disjunction (C; U ... U C},) in £(z) and searching the
different models obtained by adding each of the diguncts Ci, ..., C,, to L(z) [22]. As
the alternative branches of the search tree are not digoint, there is nothing to prevent the
recurrence of an unsatisfiable digunct in different branches. The resulting wasted expansion
could be costly if discovering the unsatisfiability requires the solution of a complex sub-
problem. For example, tableau expansion of a node z, where {(C U D;),(C U D3)} C
L(z) and C' is an unsatisfiable concept expression, could lead to the search pattern shown in
Figure 2, in which the unsatisfiability of C' must be demonstrated twice.

This problem can be dealt with by using a semantic branching technique adapted from
the Davis—Putnam—L ogemann—L oveland procedure (DPL) commonly used to solve proposi-
tional satisfiability (SAT) problems[12, 21]. Instead of choosing an unexpanded disjunction
in L(x), asingledigunct D ischosen from one of the unexpanded disunctionsin £(z). The
two possible sub-trees obtained by adding either D or =D to £ () arethen searched. Because
the two sub-trees are strictly digoint, there is no possibility of wasted search as in syntactic
branching. If D isalarge concept, the addition of =D could result in a significantly larger
search space. However, as we will see in Section 4, this does not seem to be a significant
problem in practice, and semantic branching consistently wins out.

An additional advantage of using aDPL based search techniqueisthat agreat deal isknown
about the implementation and optimization of thisalgorithm. In particular, both simplification
and heuristic guided search can be used to try to minimize the size of the search tree.

3.3 Smplification

Simplification is a technique used to reduce the amount of non-determinism (branching) in
the expansion of node labels. Before any non-deterministic expansion of anodelabel L(z) is
performed, digunctions (actually negated conjunctions) in £(x) areexamined, and if possible
simplified. The simplification used by both FaCT and DLP is to deterministically expand
digunctionsin L(z) that present only one expansion possibility and to detect a clash when a
digunctionin £(z) has no expansion possibilities.

This simplification has been called Boolean constraint propagation (BCP) [20]. In effect,
the inferencerule

-Cy,...,~Cp,CLU...uC,UD
D

is being used to simplify the expression represented by £ ().
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{(CLuDy), ..., (CoUDy), 3R.(C T D), ¥RACY e

U \\\I_I

—C,(’E)U{(j]} \) \} L(I)U{“C’],D]}
“\U ¥ A
L(Jl)U{CQ} \7 \l L(;l‘l)U{“Cg,Dg}
u// e ¥ A
27N Lfxy) U{=Cs, Dy}
L(za_1) ULCa) (2 #77N
R

{(cnDy,=C,C, D} o Yoy {(C D), =C,C, D}

clash clash
FiG. 3. Thrashing in backtracking search

For example, given anode x such that
{(Cu (Dl ﬂDZ)): (_'Dl U _'DZ),_'C} - L(l‘),

BCP deterministically expands the disunction (C'U (D M D,)) because -C' € L(xz). The
deterministic expansion of (D, M D) addsboth D; and D- to L(x), alowing BCP toidentify
(=D, U —D») asaclash without any branching having occurred.

3.4 Dependency-directed backtracking

Inherent unsatisfiability conceal ed in sub-problemscan lead to large amounts of unproductive
backtracking search known as thrashing. The problem is exacerbated when blocking is used
to guarantee termination, because blocking may require that sub-problems be explored only
after all other forms of expansion have been performed. For example, expanding a node z,
where

L(z) ={(C1uDy),...,(C,UD,),3R.(C N D),YR.-C},

would lead to the fruitless exploration of 2™ possible R-successors of x before the inherent
unsatisfiability is discovered.® The search tree created by the tableau expansion algorithm is
illustrated in Figure 3.

This problem is addressed by adapting a form of dependency-directed backtracking called
backjumping, which has been used in solving constraint satisfiability problems[6] (asimilar
technique was a so used in the HARP theorem prover [36]). Backjumping works by labelling
concept expressions with a dependency set indicating the branching points on which they de-
pend. A concept expression C' € L(z) depends on abranching point if C' was added to L(z)
by the branching point or if C' € L(x) was generated by an expansion rule (including sm-
plification) that depends an another concept expression D € L(y), and D € L(y) depends
on the branching point. A concept expression C' € L(z) depends on a concept expression
D € L(y) when C was added to L () by adeterministic expansion that used D € L(y), e.g.
if A e L(z) wasderived fromthe expansionof (AN B) € L(z), then A € L(z) dependson
(AN B) € L(z).

%Note that if £(z) simply included 3R.C instead of 3R.(C M D), then the inherent unsatisfiability would have
been detected immediately due to the lexical normalization of 3R.C as -VR.—C.
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Backjump -~ Pruning

Yon

clash clash
FIG. 4. Pruning the search using backjumping

When a clash is discovered, the dependency sets of the clashing concepts can be used to
identify the most recent branching point where exploring the other branch might alleviate
the cause of the clash. The algorithm can then jump back over intervening branching points
without exploring alternative branches.

In more detail, when a clash is detected the dependency sets of the clashing concepts are
unioned and backtracking is initiated. During backtracking, each branching point encoun-
tered is checked against the dependency set to see if it is a member. If it is not in the de-
pendency set, then the other branch isignored and backtracking continues. If the branching
point isin the dependency set, and the other branch has not been explored, then backtracking
stops and the algorithm proceeds with the exploration of the second branch. If both branches
have already been explored, then the dependency sets from the two branches are unioned and
backtracking continues.

For example, when expanding the node 2 from the previous example, the search algorithm
will perform a sequence of n branches, eventually leading to the node z,, with {3R.(C N
D),YR.-C} C L(z,). When3R.(CND) € L(x,) isexpanded the algorithm will generate
an R-successor y; with L(y;) = {(C' N D),~C}. The concept expression (C' 1 D) will
then be expanded and a clash will be detected because {C,-~C} C L(y1). As neither C
nor —=C' in L(y;) will have the branching points leading from z to z,, in their dependency
sets, the algorithm can either return unsatisfiable immediately (if both the dependency sets
were empty), or backtrack to the most recent branching point on which one of C' or —~C' did
depend, without exploring the alternative branches at any of theintervening branching points.
Figure 4 illustrates how the search tree below z is pruned by backjumping, with the number
of R-successors explored being reduced by 2™ — 1.

3.5 Heuristic guided search

Heuristic techniques can be used to guide the search in a way that tries to minimize the
size of the search tree. A method that is widely used in DPL SAT agorithms is to branch
on the digunct that has the Maximum number of Occurrences in digunctions of Minimum
Size—the well known MOMS heuristic [20]. By choosing a digunct that occurs frequently
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in small disunctions, the MOMS heuristic tries to maximize the effect of BCP. For example,
if the label of anode = contains the unexpanded disunctions C LI D, through C' U D,,, then
branching on C' leads to their deterministic expansion in a single step: when C' is added to
L(z), dl of the disunctions are fully expanded and when —~C' is added to L(z), BCP will
expand all of the diunctions, causing Dy, ..., D,, to be added to £(z). Branching first on
any of D4, ..., D,, ontheother hand, would cause only asingle disunction to be expanded.

There are severa variants of the MOMS heuristic, including the heuristic from Jeroslow
and Wang [34]. The Jeroslow and Wang (JW) heuristic considers al occurrences of a dis-
junct, weighting them according to the size of the digunction in which they occur. The
heuristic then selects the digjunct with the highest overall weighting, again with the objective
of maximising BCP and reducing the size of the search tree.

Unfortunately MOM S-style heuristics interact adversely with the backjumping optimiza-
tion because they do not prefer older diguncts, i.e. diguncts that result from earlier branch-
ing points and that will thus lead to more effective pruning if a clash is discovered [29].
Moreover, MOMS-style heuristics are of little value themselves in description logic systems
because they rely for their effectiveness on finding the same disjuncts recurring in multiple
unexpanded digunctions: thisis likely in hard propositional problems, where the diguncts
are propositional variables, and where the number of different variablesisusually small com-
pared to the number of digunctive clauses (otherwise problemswould, in general, betrivially
satisfiable); it is unlikely in concept satisfiability problems, where the disjuncts are concept
expressions, and wherethe number of different concept expressionsisusually large compared
to the number of disunctive clauses. As aresult, these heuristics will often discover that all
diguncts have similar or equal priorities, and the guidance they provide is not particularly
useful.

An dternative strategy is to employ an oldest-first heuristic that tries to maximize the
effectiveness of backjumping by using dependency sets to guide the expansion. Whenever a
choiceis presented, the heuristic triesto choose a disjunction whose dependency set does not
include any recent branching points. Thistechniquecan be used both when sel ecting diguncts
on which to branch and when selecting the order in which R-successors are expanded. The
ol dest-first heuristic can be combined with aMOM S-style heuristic (such asthe W heuristic)
by using the MOM S-style heuristic to select adigjunct from one of the oldest disjunctions or
from al of the oldest disunctions.

3.6 Caching

During a satisfiability check there may be many successor nodes created. These nodes tend
tolook very similar, particularly asthe R-successorsfor anode x each have the same concept
expressions for the universal role conceptsin L(x). Considerable time can thus be spent re-
performing the computations on nodes that end up having the same label. Asthe satisfiability
algorithm cares only whether anode is satisfiable or not, thistime is wasted.

If successors are created only when other possibilities at a node are exhausted, then the
entire set of concept expressions that come into a node label can be generated at one time.1°
The satisfiability status of the node is then completely determined by this set of concept
expressions. If there exists another node with the same set of initial formulae then the two
nodes will have the same satisfiability status. Work need be done only on one of the two

10This may be required by blocking, and is generally a good idea anyway as it reduces the number of nodes that
are created. Both FaCT and DLP operate in this manner.
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nodes, potentially saving a considerable amount of processing, as not only is the work at one
of the nodes saved, but also the work at any of the successors of this node.

The downside of caching is that the dependency information required for backjumping
cannot be effectively calculated for the nodes that are not expanded. This happens because
the dependency set of any clash detected depends on the dependency sets of the incoming
concept expressions, which may differ between the two nodes. Backjumping can still be
performed, however, by combining the dependency sets of all incoming concept expressions
and using that as the dependency set for the unsatisfiable node.

Another problem with caching is that it requires that nodes be retained until the end of
a satisfiability test (or longer, if the results are to be used in later satisfiability tests). This
extra storage consumption can be reduced by storing only the sets of concepts and their
satisfiability conditions, instead of storing a complete node, but caching can still require
considerable extra storage.

DL P usesthe device of storing just sets of conceptsand their satisfiability condition, which
can be satisfiable, unsatisfiable, or unknown. In fact, as DLP uniquely stores concept expres-
sions, it performs caching by constructing the conjunction of the initial set of conceptsin a
node label and treating it as a concept expression. If this concept expression is not in the
concept store, then it is added and its satisfiability condition set to unknown; if it is already
in the concept store, then its existing satisfiability condition is simply accessed. If the re-
sulting satisfiability conditionisis either satisfiable or unsatisfiable, then thisis used instead
of expanding the node; otherwise expansion continues, and when the node’s satisfiability is
determined the concept store is updated accordingly.

4 Comparison with other systems

To analyse the effectiveness of the above optimizations, we compared the performance of
FaCT and DLP against the performance of another description logic system (KRis [5]) and
a propositional modal logic prover (KsSAT [23]). We used KRIS here as an example of an
unoptimized description logic system. Other unoptimized description logic systems, such as
Crack [10], givesimilar or worseresults. We used K SAT as an example of a heavily optimized
reasoner for propositional modal logics. However, neither KRIS nor KSAT can be used on all
our tests. Neither handle transitive roles, and K SAT cannot handle a knowledge base.

We used two propositional modal test suites: the test suite from the Tableaux’ 98 propo-
sitional modal logic comparison [26]* and a collection of random formulae like those gen-
erated by Hustadt and Schmidt [33]. These test suites are not ideal, but we were unable to
find many description logic knowledge bases that were suitable for testing the performance
of FaCT and DLP.

The Tableaux’ 98 test suite consists of nine classes of formulae (e.g. branch), in both prov-
able (p) and non-provable(n) forms,*2 for each of K, KT, and S4. For each class of formula,
21 examplesof supposedly exponentially increasing difficulty have been generated from aba-
sic pattern that incorporates features intended to make the formulae hard to solve. The test
suite tries to emphasize modal reasoning, and for most classes of formulae the increase in
difficulty is achieved, at least in part, by increasing the modal depth; the maximum modal
depth of K-branch formulae, for example, increases from 2 for the easiest problem to 22
for the hardest problem. However, in some cases the increase in difficulty is due purely to

1we entered both FaCT and DLP in this comparison [32].
2Note that aformulais proved by demonstrating the unsatisfiability of its negation.
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TABLE 5. Reaultsfor K and KT

FaCT DLP KSAT Kris
K p n p n p n p n
branch 6 4 19 13 8 8 3 3
d4 >20 8| >20| >20 8 5 8 6
dum >20| >20| >20| >20 11| >20 15| >20
grz >20| >20| >20| >20 17| >20 13| >20
lin >20| >20| >20| >20| >20 3 6 9
path 7 6| >20| >20 4 8 3 11
ph 6 7 7 9 5 5 4 5
poly >20| >20| >20| >20 13 12 11| >20
t4p >20| >20| >20| >20 10 18 7 5
KT p n p n p n p n
45 >20| >20| >20| >20 5 5 4 3
branch 6 4 19 12 8 7 3 3
dum 11| 20| >20| >20 7 12 3 14
grz >20| >20| >20| >20 9| >20 0 5
md 4 5 3| >20 2 4 3 4
path 5 3 16 14 2 5 1 13
ph 6 7 7] >20 4 5 3 3
poly >20 7| >20 12 1 2 2 2
t4p 4 2] >20| >20 1 1 1 7

harder (or at least larger) propositiona reasoning; K-ph formulae, for example, al have a
maximum modal depth of 3. Full details of the generation technique and the characteristics
of the various classes of formulae can be found in the comparison description [26].

The test methodology here is to ascertain the number of the largest formula of each type
that the system is ableto solvewithin 100 seconds of CPU time (>20 indicatesthat the hardest
problem was solved in less than 100 seconds). The results of the K and KT tests with FaCT,
DLP, KsAT '3 and KRis ¥ are summarized in Table 5 while those for S4 with FaCT and
DLP are summarized in Table 6. Neither KSAT nor KRIS can reason with transitive roles,
so they cannot be used to perform S4 satisfiability tests. All times reported are for runs on
machines with approximately the speed of a SPARC Ultra 1.

In these tests FaCT and DLP outperformed the other systems, with DLP being a clear
winner. DLP also outperformed the other systems that took part in the Tableaux’ 98 compari-

son [7].

Our second propositional modal logic test suite uses a common method for testing SAT
decision procedures[17] that has been adapted for use with propositional modal K by Giun-
chiglia and Sebastiani [23], and further refined by Hustadt and Schmidt [33]. The method
uses a random generator to produce formulae, with the characteristics of the formulae be-
ing controlled by a number of parameters. Each formula produced is a conjunction of L
K -clauses, where a K-clause is a digunction of K elements, each element being negated

13Thetests here used the original Lisp implementation of K sAT; amuch faster C implementation is now available.
141t should be noted that K RIS was not designed to deal efficiently with large satisfiability problems.
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TABLE 6. Results for S4

FaCT DLP
S4 p n p n
45 >20| >20| >20| >20
branch 4 4 18 12
agrz 2| >20( >20| >20
ipc 5 4 10| >20
md 8 4 3| >20
path 2 1 15 15
ph 5 4 7| >20
s5 >20 2| >20| >20
tap 5 3| >20| >20

with a probability of 0.5. An element is either a modal atom of the form VR.C, where C' is
itself a K'-clause, or at the maximum modal depth D, a propositional variable chosen from
the N propositional variablesthat appear in the formula. Trivial satisfiability of K-clausesis
avoided by choosing a combination of propositional variables from the ¥ Cx possibilities.

Hustadt and Schmidt used two sets of formulae, denoted PS12 and PS13, choosing N =
4 and N = 6 respectively, with K = 3 and D = 1 in both cases. Because the depth
was set to 1, this test suite overemphasizes propositional reasoning, and has little interesting
modal reasoning. Initial work indicated that this was where the hard problems occur in modal
satisfiability; we are re-examining this finding.

Thetest sets are created by varying L from N to 30V, giving formulae with a probability
of satisfiability varying from ~1 to ~0, and generating 100 formulae for each integer value of
L/N. For SAT problemsit has been demonstrated that when the other parameters are fixed,
thevalueof L/N determinesthe ‘hardness’ of formulae.

The median times required to test the satisfiability of the PS12 and PS13 formulae using
FaCT, DLP, KsAT and KRis are shown in Figures 5 and 6. In order to keep the the total
time required to perform the tests within reasonable bounds, a maximum of 1000 seconds
was allowed for testing asingle formula, and testing was terminated at a data point as soon as
evidence was gathered that the median solution time for that data point would exceed 1000
seconds.

It can be seen that in these tests the performance differences between FaCT, DLP and
K saT are much less marked than was the case in the Tableaux’ 98 tests. Thisis because, with
such a small number of literals, the purely propositional problems at depth 1 can amost al-
ways be solved deterministically, and performanceis therefore dependent on the efficiency of
propositional reasoning at depth 0. Several optimizationsin FaCT and DL P, notably caching,
are of little use with these formulae as there are no hard modal sub-problems.

The speed difference between FaCT and DLP on these formulae is a bit puzzling, as
caching, the main difference between FaCT and DLP, is not effective here (see below). The
differenceis probably due to low-level improvementsin DLP, such as optimized data struc-
tures.

Although the Tableaux’ 98 and random test suites show how our optimizations perform on
propositional modal logics, neither is very good for our purposes. In particular, the collection
of random formulae has amodal depth of 1 and most of the computational difficulties have to
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TABLE 7. Classification times for GALEN knowledge base
FaCT | DLP KRIS CRACK

Load 6.03 — 135.90 —
Pre-process 0.85 — — —
Classify 204.03 — | >400,000 | >>10,000

Total CPU time(s) || 210.91 | 69.56 | >>400,000 | 10,000

do with theinitial non-modal component. When using the algorithm for subsumption testing
with arealistic knowledge base we expect to encounter hard problems where the hardness
comes from the number of successors that have to be considered and their interaction with
the non-modal component. The Tableaux’ 98 formulae have this form, but there are too few
hard collections there to validate our optimizations, and the regular structure of the formulae
tends to exaggerate the utility of the caching optimization, particularly for satisfiable (non-
provable) formulae.

One test that we have been able to do with an expressive knowledge base is to take the
GALEN knowledge base [42] and construct a version of it that is acceptable to FaCT, DLP,
KRis and CRACK.®® The GALEN knowledge base is a high-level ontology that has been
designed to form the foundation of alarge concept model representing medical terminology.
It has been created using the specially developed GRAIL description logic [41] that supports
aprimitiverole hierarchy, transitive roles and concept inclusion axioms. GRAIL hasalimited
terminological language—only conjunction and existential role concepts are supported—and
an unusual syntax that restricts the way concept expressions can be formed.

The test knowledge base was constructed by first trandating the GRAIL syntax of the
GALEN knowledge base into the standard syntax used by most implemented description log-
ics [3]. Concept inclusion axioms were then eliminated using a pre-processing technique
called absorption [29], which can convert some forms of inclusion axiom into augmented
concept definitions while still retaining their meaning—an important effect of GRAIL’S re-
stricted syntax isthat all concept inclusion axioms can be eliminated in thisway.6 Finally, all
role axioms were discarded. Thislast step makes the knowledge base acceptable to alarger
number of implemented description logics (including KRis and CRACK), and has relatively
little impact on the ‘hardness’ of subsumption testing, which derives primarily from the large
number of highly digunctive concepts generated by absorption [29].

The resulting knowledge base contains 2719 named concepts and 413 roles. The results
of the tests using this knowledge base are summarized in Table 7. Although the structure of
the concept hierarchy turns out to be quite simple,!’ it is still necessary to perform tens of
thousands of subsumption tests in order to compute the partial ordering, and some of these
tests prove to be extremely hard for less optimized subsumption reasoners. neither KRIs
nor CRACK was ableto classify the knowledge base as they got stuck on single subsumption
testswhose solution required more CPU time than was allowed for thewholetest. In contrast,
FaCT classified the knowledge base in 211 seconds while DLP did so in 70 seconds.

We have also tested FaCT and DLP on dlightly modified versions of several other existing

15Test results for CRACK are due to Enrico Franconi [18].

16\We have been unable to find aredlistic knowledge base containing non-absorbable inclusion axioms. Thisis not
surprising as prior to FaCT no implemented description logic could deal with such a knowledge base.

17The concept hierarchy closely resembles a tree, with less than 15% of concepts having more than one parent.
The average concept has two direct sub-concepts, and the maximum depth of the hierarchy is 14.
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TABLE 8. Classification times for other knowledge bases (CPU seconds)

Knowledgebase || Concepts | FaCT | DLP | KRis | CRACK | NeoClassic
ckb-roles 79| 019 | 0.27 | 0.68 1.19 0.42
datamont-roles 120 | 042 | 0.36 | 0.89 1.18 0.65
espr-roles 142 | 033 | 0.13| 0.8 0.00 0.63
fssroles 132 | 066 | 064 | 1.16 0.37 0.78
wines 267 | 471 | 205 | 2.99 2.37 2.77
wisber-roles 140 | 048 | 0.78 | 1.03 1.63 1.03

knowledge bases. In this case the test was broadened to include NeoClassic, a reimplemen-
tation of one of the older description logic systems for which these knowledge bases were
developed. More information on these tests can be found in the Systems Comparison section
of the Proceedings of the 1998 International Workshop on Description Logics [31].

The results of these tests, given in Table 8 show that FaCT and DLP perform very well
compared to other systems, even those, like NeoClassic, designed to work very quickly with
simple constructs. However, the problem with these knowledge bases is that they are too
small or too simple to show off the optimizationsin FaCT and DLP. They can serve only to
show that thereis no significant overhead in using the approach employed in FaCT and DLP.

5 Comparing optimizations

The comparison with other systems indicatesthat the suite of optimizationsin FaCT and DLP
is effective, taken as a group, on several kinds of formulae and knowledge bases. However, it
does not show which of the optimizations are most effective. To answer this question, recent
versions of DLP have had compile-time configuration options included that can be used to
turn on and off or vary the above optimizations. There are too many possible configurations
of the optimizations to test them all, but we have run DLP in various configurations on the
abovetest suites.

We chose to test various heuristic combinations with all the other optimizations enabled,
and then to test the same heuristic options, at least as far as possible, with each of the opti-
mizations turned off one by one. This could have resulted in some slightly misleading results
if two optimizations had similar benefits, as they would both seem to be ineffective, but this
does not appear to have been the case in our tests.

The heuristic combinationsthat were tested are:

Oldest-random: select a digunction at random from the set of oldest digunctions and use
the JW heuristicto select adisunctin it. For syntactic branching this reducesto selecting
an oldest digjunction at random.

Oldest-JW: usethe JW heuristicto select adisjunct from within the set of oldest digunctions.
JW: use the JW heuristic to select a digunct from within the entire set of disjunctions.

Random: select adigunct at random. (Actually just select the first disunct that has no value
from thefirst disunction.)

The optimizations that were removed are:

No caching: turn off caching.
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TABLE 9. Total Tableaux’ 98 problems solved

Optimization removed Heuristics used

Oldest-random | Oldest-JW JW | Random
None 967 915 936 874
Caching 882 826 851 671
Backjumping 880 847 877 795
Semantic branching 849 — — 851
BCP 932 873 879 839
Normalization 911 913 931 781

No backjumping: turn off backjumping.
No semantic branching: use syntactic instead of semantic branching. This allows only two

heuristic variants, random selection of disjunctions and random selection among the ol d-
est digunctions.

No BCP: turn off Boolean constraint propagation.

No normalization: turn off normalization. (This does not turn off early detection of clashes
between formulae that are syntactically identical.)

Since the JW heuristic cannot be used with syntactic branching, we ended up with 22
configurations. We ran each of these configurations over the three test suites described in the
previous section. Presenting the amount of detail given in the previous section for each of
these configurationswould result in too much information, so we have condensed the results.

For the Tableaux’ 98 test suite we present the total number of problems solved (within
100s of CPU time) by various configurations, and for provable S4 formulae, the number of
problems solved in each problem set. The Tableaux’ 98 test suite contains 1134 problemsin
total; the totals solved by the various configurations are given in Table 9.

Note that the problems in each set are expected to be exponentialy more difficult for a
naive prover, so even a small increase in the number of problems solved is significant. For
example, running on a machine that is roughly twice as fast results in only eight more prob-
lems being solved for the fastest configuration; running with atime limit of 1000 seconds on
this faster machine resultsin only 55 more problems being solved. Bearing thisin mind, we
can see from the table that each of the optimizations makes a considerable difference. We
can also see that the effectiveness of the optimizations varies depending on which heuristic
isused, complicating any determination of which optimization is‘best’. The heuristics were
less effective, but still quite important. However, the best heuristic overal included a ‘ran-
dom’ pick from the oldest disunctions. This probably reflects some localization heuristic
(the pick was actualy the first digunct in the list of diguncts), as well as the relatively high
cost of evaluating the JW weighting for each digunct.

Overall the optimization whose removal causes the greatest change to the results is the
caching optimization, followed by backjumping and semantic branching.’® Caching is very
effective on this test suite because of the large amount of structure in the problems, which
results in the frequent repetition of sub-problems. Boolean constraint propagation and nor-
malization are less effective.

18]t is especially hard to compare semantic branching to the other optimizations, as syntactic branching does not
admit the same collection of heuristics as does semantic branching.
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TABLE 10. Provable S4 Tableaux’ 98 problems solved

Optimization | Heuristic 45 branch grz ipc md path ph s5 tdp
removed used
None Oldest-random | 21 18 21 10 3 15 7 21 21
Oldest-JW 21 21 21 10 3 8 5 21 21
Jw 21 18 21 10 3 9 5 21 21
Random 21 18 21 21 4 7 7 21 21
Caching Oldest-random | 21 18 21 8 7 8 7 21 21
Oldest-JW 21 21 21 7 7 5 5 10 21
Jw 21 18 21 7 7 6 5 21 21
Random 21 18 0 13 4 3 7 21 21
Backjumping | Oldest-random | 21 17 21 9 3 3 7 2 21
Oldest-JW 21 21 21 9 3 3 4 2 18
Jw 21 17 21 9 3 3 4 4 21
Random 21 17 21 8 3 3 5 4 21
Semantic Oldest-random | 15 18 21 7 3 3 7 4 7
branching Random 15 18 21 7 3 3 7 4 7
BCP Oldest-random | 21 15 21 10 3 11 6 21 21
Oldest-JW 21 21 21 10 3 7 4 15 21
Jw 21 12 21 10 3 8 4 21 21
Random 21 16 21 21 4 7 6 21 21
Normalization | Oldest-random | 21 18 7 10 3 9 6 21 21
Oldest-Jw 21 21 21 10 3 10 6 21 21
Jw 21 16 21 10 3 9 6 21 21
Random 21 10 21 21 4 7 7 4 21

Table 10 shows how many of the provable S4 formulae were solved within the time limit.
From this table we can see that some of the problemswere easy for amost all the configura-
tions, and others were hard for amost all the configurations. The most unusual point in the
tableis the 0. We can find no reason why that configuration of DLP performs so poorly on
this one point, even after rerunning the test several times with different reporting. At a guess,
some interaction between the problem and the ‘random’ choices is making that version of
DLP examine many successor nodes, and backjumping is not helping to reduce the search
space.

For some problems the optimizations result in not only a quantitative change in difficulty,
but also a qualitative change, from an exponential growth in solution time to an almost con-
stant or definitely sub-exponential solution time growth. Thisisillustrated in Figures7 and 8,
which show the actual solution times for two classes of formulae with various optimizations
dizabled. In one of these examplesthe qualitative improvement is due to caching; in the other
it is due to semantic branching and backjumping.

Similar testing was performed on the random formulae from Hustadt and Schmidt. Again,
there is too much data to present it al. Tables 11 and 12 show the average time for the
median-time and 90th-percentile-time formulae across all values of L/N from 1 to 30 for
the PS12 formulae. The data for PS13 are roughly similar, at least as far as we can tell—
one reason for using the PS12 formulae is that the times can be computed for aimost all
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TABLE 11. Average median times for PS12 formulae

Optimization removed Heuristics used

Oldest-random | Oldest-JW JW | Random
None 0.20 0.85 0.29 0.15
Caching 0.20 0.85 0.29 0.15
Backjumping 1.35 2.06 1.38 1.92
Semantic branching 13.35 — — 11.69
BCP 1.26 6.25 1.86 0.60
Normalization >87.61 >158.07 | >81.34 | >15.10

configurations, whereas many of the PS13 formulae cannot be solved in 1000 seconds. The
datafor removing normalization is incomplete and only an estimate, as these tests could not
be completed due to exhaustion of virtual memory

The results here are somewhat biased against the optimizations, as the implementation
methods in DLP were designed to improve maintainability at the expense of the best speed
for the optimizations. For example, determining the best W digunct requires a separate pass
over al the diguncts and performing Boolean constraint propagation requires a separate pass
over al the disjunctions. Thus differences of a factor of 2 or 3 against the optimizations are
not really significant.

The average median and 90th-percentile data are only a rough indicator as they do not
show the variation of solution times as /N varies. The median and 90th-percentile times
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TABLE 12. Average 90th-percentile times for PS12 formulae

Optimization removed Heuristics used

Oldest-random | Oldest-JW JW | Random
None 0.40 141 0.53 0.32
Caching 0.40 1.42 0.53 0.32
Backjumping 4.61 5.70 4.55 10.21
Semantic branching 102.54 — — 90.91
BCP 221 9.84 3.17 1.23
Normalization >178.46 >236.51 | >195.31 | >51.40

for PS12 for some configurations of DLP are given in Figures 9 and 10. Here only the best
variant is given for each removal of an optimization.

The most effective optimization by far for this test suite is normalization. This result is
surprising, as direct redundancies and contradictions are supposed to have been removed
from the data.l® As this test emphasizes propositional reasoning, we expected that semantic
branching and backjumping would be the most important optimizations. However, the nor-
malization process appears to find redundancies and contradictions at a higher level, and the
removal of these redundancies makes a dramatic change in the solution time. The next most
effective optimization for thistest suite is semantic branching. The probablereason for the ef-

19Hustadt and Schmidt revised the earlier generation mechanism to remove these problems.
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fectiveness of these two optimizationsisthat for largevaluesof L/N most or al propositional
solutions must be searched, and thus it is important to ensure that only unique solutions are
generated. Syntactic branching obviously fails to do this, but so does non-normalized DLP
because it allows the non-modal atomsto look different and thusincrease the search space.

Backjumping and Boolean constraint propagation, are also effective, but to a lesser ex-
tent. Of the two, backjumping is more effective for intermediate values of L/N, where the
‘harder’ problems arise, and Boolean constraint propagation is more effective for the larger
values of L/N, where the formulae are severely over-constrained, so there is considerable
scope for simplification whenever a branching choice is made. The effectiveness of Boolean
constraint propagation also helps to explain the effectiveness of semantic branching for the
over-constrained formulae, as syntactic branching does not allow as much Boolean constraint
propagation.

Caching is not effective at al in this test suite. Thisis because, with such a small number
of literals in the successor nodes, the purely propositional problems at depth 1 can always be
solved deterministically, and performanceis therefore dependent on the efficiency of proposi-
tional reasoning at the root node. Caching isthusineffective because there are no hard modal
sub-problemsto cache.

Theversionswithout heuristicswere the fastest in thistest suite, showing that the heuristics
arenot particularly effective. However, computing the information needed for the heuristicsis
expensivein DLP because of its functional nature. A faster implementation for the heuristics
would reduce the difference, but, in this problem set, the structure of the formulae makeit un-
likely that the configurations with the heuristics would be faster that those without. Because
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TABLE 13. Classification times for GALEN knowledge base (CPU seconds)

Optimization removed Heuristics used

Oldest-random | Oldest-JW JW | Random
None 70 172 153 37
Caching 399 1182 1005 326
Backjumping >10,000 >10,000 | >10,000 | >10,000
Semantic branching 2087 — — 319
BCP 90 431 616 40
Normalization 87 207 162 39

the diguncts are randomly generated modal sub-formulae there are many different possible
diguncts, so any given digunct is unlikely to occur in many disjunctions, resulting in little
guidance from the JW heuristic. The oldest-first heuristic is ineffective because for formulae
in conjunctive normal form every digunction in the label of the root node has the same *age’.

We have also tested the various configurations of DLP on the modified GALEN knowledge
base. Thetimesfor the various configurations of DL P |oading this knowledge base are given
in Table 13.

In this test backjumping is by far the most important optimization. With backjumping
turned off DLP was unable to process the knowledge base within 10 000 seconds. The next-
most important optimizations are caching and semantic branching. Boolean constraint prop-
agation is even less effective, and normalization is aimost totally ineffective.



290 Optimizing Description L ogic Subsumption

The heuristics are not very effective here, with random choice being the fastest. However,
this mostly reflects the overhead required to decide which disunct or diunction to use and
does not mean that the heuristics were actually bad—just that there was too much overhead
to show the improvement.

We also took some of the hardest subsumption problems from this knowledge base and
turned them into satisfiability tests. These tests have proved to be difficult for state-of-the-art
propositional modal theorem provers such as KSAT and Hustadt and Schmidt’s SPASS based
system [33]. In fact, some of these satisfiability tests take over 1000 seconds for these two
theorem provers. We had planned to use these hard subsumption problemsto further evaluate
the optimizations but our initial runs have served to show that there is an unacceptable level
of similarity between the different elements of the collection. Thisis not too surprising, as
they all come from the same knowledge base, but it means that little information can be
gathered from the problems beyond that gathered from the total time for processing the entire
knowledge base.

6 Summary

The collection of optimizations we have described are effective in improving the speed of
modal propositional logic reasoners, as shown by the results we have given above. The opti-
mizations can also dramatically improve the speed of subsumption reasoning on the GALEN
knowledge base. To our knowledge some of these improvements have not been investigated
in the modal propositional reasoning literature. The combination appears to be unique and,
moreover, results in a powerful reasoner for the propositional modal logics K, KT, and S4.

The optimizations are not uniformly effective. In particular, semantic branching is ex-
tremely effective on constructed hard problems and on random satisfiability problems, but
not on the GALEN knowledge base. We plan to perform more experiments to see if semantic
branching is indeed ineffective on other realistic knowledge bases. The two other optimiza-
tionsthat are the most effective on the non-random tests are backjumping and caching. These
two optimizations make the difference between acceptable and ridiculous performance in
many cases. Their absence in previous description logic systems has made them unaccept-
ably slow.

We, along with a colleague, are embarking on a project to create a description logic system
for a description logic that includes converse propositional dynamic logic. This project will
require more optimization, as inference in converse propositional dynamic logic is more dif-
ficult to efficiently implement than inference in the logics we are currently handling, and will
give usfurther opportunitiesto investigate the optimization of satisfiability reasoners. We are
a so performing more testing of the optimizationswe are putting into our proversand we plan
to create atest suite that emphasizes the modal nature of description logics.

FaCT isavailable at

http://ww. cs. man. ac. uk/ “horrocks;
the DLP prover is currently under development, but aversion is available at

http://ww. bel | -1abs. conf user/ pf ps.
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