Games & Higher-order Linear Dataflow

Lars Birkedal¹, Søren Debois¹, and Thomas Hildebrandt¹

¹ Programming, Logic and Semantics Group IT University of Copenhagen

> GaLoP IV March 29, 2009

Overview

- Towards Higher-Order Bigraphs
- We give a model of higher-order linear dataflow.
- This model is based upon fully complete models of linear logic by
 - Murawski & Ong (2003)
 - Hyland & Ong (1993)
 - Abramsky & Jagadeesan (1994)
 - ... and the Int-construction by Joyal, Street, and Verity.
- The model is reminiscent of:
 - Hughes (2006) MLL+unit proof nets
 - Hughes (2005) free *-autonomous category

Motivation

I wish that Robin Milner's bigraphs were symmetric monoidal closed.

Bigraphs are symmetric monoidal categories of graph contexts. Dynamics of bigraphs are influenced by contexts.

- 1 Symmetric monoidal category \sim multi-hole contexts.
- 2 Symmetric monoidal *closed* category \sim higher-order contexts.

The problem

Have:

- **1** Category R_0 of finite sets and relations.
- **2** Category $T_0 \hookrightarrow R_0$ of finite sets and total functions.

Want:

- 1 Symmetric monoidal closed category
- 2 which embeds T_0
- and which in some sense contains only total functions

- **1** Do Int-construction on R_0 , getting $Int(R_0)$.
- **2** Then find a subcategory of $Int(R_0)$ of total functions.

What is Int(R_0)? Objects pairs of finite sets (A^+ , A^-). Morphisms $f : (A^+, A^-) \rightarrow (B^+, B^-)$ relations $f \subseteq A^+ + B^- \times B^+ + A^-$.

Composition is path-composition.

Alas, $Int(R_0)$ has no (interesting) subcategory of total functions.

- Problem: Total functions of Int(R₀) are not closed under composition.
- Solution: Find a category *H* and faithful functor $F : H \rightarrow \text{Int}(R_0)$, with image exactly the total functions.

(Such refinements are known as *sortings* in the bigraph community.)

Intuition behind definition of *H* and *F*:

Objects types
$$A$$
 (over $I, \otimes, -\infty$)
 $F(A) = (A^+, A^-)$

Morphisms $f : A \rightarrow B$ total functions $f : A^+ + B^- \rightarrow B^+ + A^$ s.t. "*f* is a valid dataflow for $A \multimap B$ ". F(f) = f

Valid dataflow?

Formalisation? Variation on Fair games of Hyland and Ong.

Games

Fair game: triple (M, λ, F) of

- *moves M* (finite, contains at least two such);
- 2 labelling function $\lambda : M \to \{P, O\};$
- 3 *maximal plays F*; a non-empty anti-chain of even-length sequences of alternately labelled moves, all beginning with an O-move.

The plays are the prefixes of the elements of *F*.

• The tensor game $A \otimes B$ has

1 moves
$$M_A + M_B$$
;

- **2** labelling function $[\lambda_A, \lambda_B]$; and
- 3 maximal plays finite alternately-labelled sequences *s* over $M_A + M_B$ beginning with an O-move such that

 $s \upharpoonright A \in F_A$ and $s \upharpoonright B \in F_B$.

■ The linear implication game A → B has

- 1 moves $M_A + M_B$;
- **2** labelling function $[\overline{\lambda}_A, \lambda_B]$, and
- 3 maximal plays finite alternately-labelled sequences over $M_A + M_B$ beginning with an O-move such that

 $s \upharpoonright A \in F_A$ and $s \upharpoonright B \in F_B$.

Fair games are apparently unique in satisfying:

Proposition

Let σ be a total P-strategy for a game $A \multimap B$. Then $\sigma \upharpoonright A$ is a total O-strategy for A and $\sigma \upharpoonright B$ is a total P-strategy for B.

The atomic game:

? O ! P

Intuition: '?' requests data, '!' provides data.

■ The *unit game* is simply the atomic game.

We now have games for each type. E.g., $a \multimap b$:

Games & total functions

Write |A| for the atoms of A; A^+ , A^- for the positive/negative atoms of A.

For a game $A \multimap B$:

- A maximal play of $A \multimap B$ is a linear order of $M_A + M_B$.
- By restriction to !-moves, a maximum play of A → B is a linear order on |A| + |B|.
- A total strategy for *A* → *B* defines a *set of such linear orders*.

For a total function $f : A^+ + B^- \rightarrow B^+ + A^-$:

The reflexive closure f^0 of f is a *partial order* on |A| + |B|. A strategy $\sigma : A \multimap B$ respects f written $f \sqsubseteq \sigma$ iff for each linear

order *s* of σ , the inclusion $f^0 \hookrightarrow s$ is order-respecting.

Example, revisited.


```
Objects linear types A (over \otimes, -\infty, I).

Morphisms f : A \to B is a total function

f : A^+ + B^- \to B^+ + A^- of Int(R_0) s.t. there exists

a strategy \sigma : A \to B which respects f.
```

Theorem

- 1 H is symmetric monoidal closed.
- **2** H embeds T_0 .
- 3 If $f : A \multimap B \in H$ then $f : A^+ + B^- \rightarrow B^+ + A^-$ is a total function.

Conclusion

- Found a symmetric monoidal closed category H and a functor $F : H \rightarrow \text{Int}(R_0)$ with image total functions.
- 2 From this we get (didn't say how) symmetric closed bigraphs.

Questions:

1 Did we really need Hyland-Ong fair games?

Thank you.