Games \& Higher-order Linear Dataflow

Lars Birkedal ${ }^{1}$, Søren Debois ${ }^{1}$, and Thomas Hildebrandt ${ }^{1}$
${ }^{1}$ Programming, Logic and Semantics Group
IT University of Copenhagen

GaLoP IV
March 29, 2009

Overview

■ Towards Higher-Order Bigraphs

- We give a model of higher-order linear dataflow.
- This model is based upon fully complete models of linear logic by

■ Murawski \& Ong (2003)
■ Hyland \& Ong (1993)
■ Abramsky \& Jagadeesan (1994)
... and the Int-construction by Joyal, Street, and Verity.
\square The model is reminiscent of:
■ Hughes (2006) MLL+unit proof nets
■ Hughes (2005) free *-autonomous category

Motivation

I wish that Robin Milner's bigraphs were symmetric monoidal closed.

Bigraphs are symmetric monoidal categories of graph contexts. Dynamics of bigraphs are influenced by contexts.
1 Symmetric monoidal category ~ multi-hole contexts.
2 Symmetric monoidal closed category \sim higher-order contexts.

The problem

Have:
1 Category R_{0} of finite sets and relations.
2 Category $T_{0} \hookrightarrow R_{0}$ of finite sets and total functions.
Want:
1 Symmetric monoidal closed category
2 which embeds T_{0}
3 and which in some sense contains only total functions

Idea

1 Do Int-construction on R_{0}, getting $\operatorname{Int}\left(R_{0}\right)$.
2 Then find a subcategory of $\operatorname{Int}\left(R_{0}\right)$ of total functions.

What is $\operatorname{Int}\left(R_{0}\right)$?
Objects pairs of finite sets $\left(A^{+}, A^{-}\right)$.
Morphisms $f:\left(A^{+}, A^{-}\right) \rightarrow\left(B^{+}, B^{-}\right)$relations

$$
f \subseteq A^{+}+B^{-} \times B^{+}+A^{-}
$$

Composition is path-composition.

Alas, $\operatorname{Int}\left(R_{0}\right)$ has no (interesting) subcategory of total functions.

■ Problem: Total functions of $\operatorname{Int}\left(R_{0}\right)$ are not closed under composition.
■ Solution: Find a category H and faithful functor $F: H \rightarrow \operatorname{Int}\left(R_{0}\right)$, with image exactly the total functions.
(Such refinements are known as sortings in the bigraph community.)

Intuition behind definition of H and F :
Objects types A (over I, \otimes, \multimap)
$F(A)=\left(A^{+}, A^{-}\right)$
Morphisms $f: A \rightarrow B$ total functions $f: A^{+}+B^{-} \rightarrow B^{+}+A^{-}$ s.t. " f is a valid dataflow for $A \multimap B$ ".
$F(f)=f$

Valid dataflow?

Formalisation?
Variation on Fair games of Hyland and Ong.

Games

Fair game: triple (M, λ, F) of
1 moves M (finite, contains at least two such);
2 labelling function $\lambda: M \rightarrow\{\mathrm{P}, \mathrm{O}\}$;
3 maximal plays F; a non-empty anti-chain of even-length sequences of alternately labelled moves, all beginning with an O-move.
The plays are the prefixes of the elements of F.

■ The tensor game $A \otimes B$ has
1 moves $M_{A}+M_{B}$;
2 labelling function $\left[\lambda_{A}, \lambda_{B}\right]$; and
3 maximal plays finite alternately-labelled sequences s over $M_{A}+M_{B}$ beginning with an O-move such that

$$
s \upharpoonright A \in F_{A} \text { and } s \upharpoonright B \in F_{B} .
$$

- The linear implication game $A \multimap B$ has

1 moves $M_{A}+M_{B}$;
2 labelling function $\left[\bar{\lambda}_{A}, \lambda_{B}\right]$, and
3 maximal plays finite alternately-labelled sequences over $M_{A}+M_{B}$ beginning with an O-move such that

$$
s \upharpoonright A \in F_{A} \text { and } s \upharpoonright B \in F_{B} .
$$

Fair games are apparently unique in satisfying:
Proposition
Let σ be a total P -strategy for a game $A \multimap B$. Then $\sigma \upharpoonright A$ is a total O -strategy for A and $\sigma \upharpoonright B$ is a total P -strategy for B.

- The atomic game:

Intuition: '?’ requests data, '!' provides data.

- The unit game is simply the atomic game.

We now have games for each type. E.g., $a \multimap b$:

Games \& total functions

Write $|A|$ for the atoms of $A ; A^{+}, A^{-}$for the positive/negative atoms of A.
For a game $A \multimap B$:

- A maximal play of $A \multimap B$ is a linear order of $M_{A}+M_{B}$.

■ By restriction to !-moves, a maximum play of $A \multimap B$ is a linear order on $|A|+|B|$.

- A total strategy for $A \multimap B$ defines a set of such linear orders.
For a total function $f: A^{+}+B^{-} \rightarrow B^{+}+A^{-}$:
- The reflexive closure f^{0} of f is a partial order on $|A|+|B|$.

A strategy $\sigma: A \multimap B$ respects f written $f \sqsubseteq \sigma$ iff for each linear order s of σ, the inclusion $f^{0} \hookrightarrow s$ is order-respecting.

Example, revisited.

Objects linear types $A($ over $\otimes, \multimap, l)$.
Morphisms $f: A \rightarrow B$ is a total function
$f: A^{+}+B^{-} \rightarrow B^{+}+A^{-}$of $\operatorname{Int}\left(R_{0}\right)$ s.t. there exists a strategy $\sigma: A \multimap B$ which respects f.

Theorem
1 H is symmetric monoidal closed.
2 H embeds T_{0}.
3 If $f: A \rightarrow B \in H$ then $f: A^{+}+B^{-} \rightarrow B^{+}+A^{-}$is a total function.

Conclusion

1 Found a symmetric monoidal closed category H and a functor $F: H \rightarrow \operatorname{Int}\left(R_{0}\right)$ with image total functions.
2 From this we get (didn't say how) symmetric closed bigraphs.

Questions:
1 Did we really need Hyland-Ong fair games?
Thank you.

