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‘Control’ — i.e. policies for restricting access to informatic resources.

Idea (since 1970’s): Security Lattice L.

Often generated by poset (Principals, <).

Reading of ℓ < ℓ′:

ℓ is at a {higher/lower} {security/authorization} level than ℓ′

Traditional: Hi and Lo (variables, procedures/actions).

A Hi thread can access a Lo resource, but not vice versa.

Then ℓ < ℓ′ means that ℓ is (relatively) Lo and ℓ′ is (relatively) Hi.
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Basic notion ‘ℓ says φ’.

φ is uttered at Authorization level ℓ.

In this reading, the underlying principle we want to enforce is:

No proof of a formula of the form “P says φ” can make any

essential use of formulas of the form “Q says ψ” unless Q is

at the same or higher security level as P. In other words, we

cannot rely on a lower standard of “evidence” or authorization
in passing to a higher level.

In this context, it is natural to read the security lattice in the opposite

direction!
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Take a standard type theory — could be a typed λ-calculus or a Linear

version — as a base.

We may think of this as a programming language (in which case it will

have features such as recursion), or as a logical calculus.

We then extend this with a family of monads Tℓ, indexed by elements of
the security lattice L. Some additional axioms are given relating these

monads.

In the Authorization Logic context, we read TℓA directly as ‘ℓ says A’.

In the flow or dependency analysis context, TℓA is ‘wrapping’ the type A

in a protection level ℓ, and hence preventing objects of that type being
accessed by lower-level sub-computations.

The main results are non-interference theorems, stating that the desired

restrictions are enforced by the type system.
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Let there be two principals, Bob (a user) and admin (standing for

administration). Let dfile stand for the proposition that a certain file should

be deleted. Consider the collection of assertions:

1. (admin says dfile) ⇒ dfile

2. admin says ((Bob says dfile) ⇒ dfile )

3. Bob says dfile

Using the unit of the monad with (3) yields (admin says (Bob says dfile)).

Using modal consequence with (2) yields:

• (admin says (Bob says dfile)) ⇒ (admin says dfile)

dfile now follows using modus ponens.
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• Previous work in this area has been syntactic in nature. Natural

models of these notions have not been forthcoming.
Non-interference results are proved syntactically.

• We take a semantic approach. We show that Game Semantics
provides an intuitive and illuminating account of access control, and

moreover leads to strikingly simple and robust proofs of

interference-freedom.

• Advantages of the semantic approach: more robust and general.

Still applicable to syntactic systems.

• Some novelties in the Game Semantics: justified AJM games (with

no justification pointers), eliminating the need for an ‘intensional

equivalence’ on strategies.
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Why AJM games?

• Want to cover linear type theories

• An occasion to revisit AJM game, rethink some basic issues

We will need justifiers to formulate the access control constraints.

Intuition for justifiers in terms of procedural control-flow:

• A call of procedure P will have as its justifier the currently active

call of the procedure in which P was (statically) declared. ‘Link in
the “static chain”’.

• A procedure return will have the corresponding call as its justifier.
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Why do we need justification pointers in HO games?

Two reasons:

• Moves can have multiple occurrences in plays — this is how copying is

performed.

• The justification or enabling relation is often allowed to be many-valued.

AJM games are naturally linear : moves only occur once. Different copies are

tagged or named explicitly - this is how the exponential works.

Moreover, justification can be made single-valued (original HO games did this). This

only requires a minor modification to the definition of the linear implication.

So our games will have a ‘static’ justification function

jA : MA ⇀MA

but no justification pointers — plays are just sequences of moves.
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Justified AJM games have the structure A = (MA, λA, jA, PA,≈A).

The justifier function inverts O/P labelling, and takes answers to questions. Those

moves it is undefined on are initial.

Global conditions on plays s ∈M⊛

A :

(p1) Opponent starts If s is non-empty, it starts with an O-move.

(p2) Alternation Moves in s alternate between O and P.

(p3) Linearity Any move occurs at most once in s.

(p4) Well-bracketing Write each answer a as )a and the corresponding question

q = jA(a) as (a. Then we require that s is well-bracketed in the obvious

sense.

(p5) Justification If m occurs in s, s = s1ms2, then the justifier jA(m) must occur

in s1.
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The game !A is defined as the “infinite symmetric tensor power” of A. The

symmetry is built in via the equivalence relation on positions.

• M!A = ω ×MA =
∑

i∈ω MA.

• Labelling is by source tupling: λ!A(i, a) = λA(a).

• Justification is componentwise: j!A(i,m) = (i, jA(m)).

• We write s↾i to indicate the restriction to moves with index i.

P!A = {s ∈M⊛

!A | (∀i ∈ ω) s↾i ∈ PA} .

• Let S(ω) be the set of permutations on ω. Then s ≈!A t iff:

(∃π ∈ S(ω))[(∀i ∈ ω. s↾i ≈A t↾π(i)) ∧ (π ◦ fst)∗(s) = fst
∗(t)].
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• MA⊸B = (Σb∈InitB
MA) +MB .

• λA⊸B = [[λA | b ∈ InitB], λB].

• We define justification by cases. We write mb, for m ∈MA and b ∈ InitB ,

for the b-th copy of m.

jA⊸B(mb) =

{

b, m ∈ InitA
(jA(m))b, m 6∈ InitA

jA⊸B(m) = jB(m), m ∈MB .

• We write s↾A to indicate the restriction to moves in Σb∈InitB
MA, replacing

each mb by m.

PA⊸B = {s ∈M⊛

A⊸B | s↾A ∈ PA ∧ s↾B ∈ PB}

Note that Linearity for A implies that only one copy mb of each m ∈MA can

occur in any play s ∈ PA⊸B .
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A of even-length plays
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Causal Consistency sab ∈ σ =⇒ s ∈ σ

Representation Independence s ∈ σ ∧ s ≈A t =⇒ t ∈ σ

Determinacy sab, ta′b′ ∈ σ ∧ sa ≈A ta′ =⇒ sab ≈A ta′b′.



Strategies

Game Semantics for Access Control GaLoP IV 28/3/2009 – 14 / 29

We also show that AJM strategies can be simplified.

A strategy on a game A is a non-empty set σ ⊆ P even

A of even-length plays
satisfying the following conditions:

Causal Consistency sab ∈ σ =⇒ s ∈ σ

Representation Independence s ∈ σ ∧ s ≈A t =⇒ t ∈ σ

Determinacy sab, ta′b′ ∈ σ ∧ sa ≈A ta′ =⇒ sab ≈A ta′b′.

We can recover the usual notion as a ‘skeleton’, a subset of the strategy satisfying

Uniformization ∀sab ∈ σ. s ∈ φ =⇒ ∃!b′. sab′ ∈ φ.
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We also show that AJM strategies can be simplified.

A strategy on a game A is a non-empty set σ ⊆ P even

A of even-length plays
satisfying the following conditions:

Causal Consistency sab ∈ σ =⇒ s ∈ σ

Representation Independence s ∈ σ ∧ s ≈A t =⇒ t ∈ σ

Determinacy sab, ta′b′ ∈ σ ∧ sa ≈A ta′ =⇒ sab ≈A ta′b′.

We can recover the usual notion as a ‘skeleton’, a subset of the strategy satisfying

Uniformization ∀sab ∈ σ. s ∈ φ =⇒ ∃!b′. sab′ ∈ φ.

Then the ‘intensional preorder’ <≈ on skeletons (old-style AJM strategies) reduces to

subset inclusion on the new strategies.

Everything works out just fine!
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This is carried componentwise through all the constructions on games, e.g.

levA⊸B = [[levA | b ∈ InitB ], levB].

There is a single additional condition on plays:

(p6) Levels A non-initial move m can only be played if levA(m) ≤ levA(jA(m)).

This constraint has a clear motivation: a principal can only affirm a proposition at its

own level of authorization based on assertions made at the same level or higher. In

terms of control flow (where the lattice has the opposite interpretation): a procedure

can only perform an action at its own security level or lower.
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Given a security semilattice (L,⊔,⊥), we define a category GL with objects

A = (MA, λA, jA, PA,≈A, levA)

Justified AJM games with one new component levA : MA → L.

This is carried componentwise through all the constructions on games, e.g.

levA⊸B = [[levA | b ∈ InitB ], levB].

There is a single additional condition on plays:

(p6) Levels A non-initial move m can only be played if levA(m) ≤ levA(jA(m)).

This constraint has a clear motivation: a principal can only affirm a proposition at its

own level of authorization based on assertions made at the same level or higher. In

terms of control flow (where the lattice has the opposite interpretation): a procedure

can only perform an action at its own security level or lower.

Note that formally, this is a purely static constraint (on types rather than strategies)!



The Level Monads

Access Control

Game Semantics

The Model
• Games Over A
Lattice

• The Level Monads

• Properties of Tℓ

• Copycats and Levels

Results

Game Semantics for Access Control GaLoP IV 28/3/2009 – 17 / 29



The Level Monads

Access Control

Game Semantics

The Model
• Games Over A
Lattice

• The Level Monads

• Properties of Tℓ

• Copycats and Levels

Results

Game Semantics for Access Control GaLoP IV 28/3/2009 – 17 / 29

Fixing a level ℓ, we can embed G fully and faithfully into GL by giving

every move of every game the level ℓ. Interesting things start to happen

when there are moves at different levels.
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Fixing a level ℓ, we can embed G fully and faithfully into GL by giving

every move of every game the level ℓ. Interesting things start to happen

when there are moves at different levels.

We define, for each ℓ ∈ L, a construction Tℓ on games, which acts only

on the level assignment:

levTℓA(m) = levA(m) ⊔ ℓ.
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Fixing a level ℓ, we can embed G fully and faithfully into GL by giving

every move of every game the level ℓ. Interesting things start to happen

when there are moves at different levels.

We define, for each ℓ ∈ L, a construction Tℓ on games, which acts only

on the level assignment:

levTℓA(m) = levA(m) ⊔ ℓ.

The following commutation properties of Tℓ are immediate.

Proposition 1 The following equations hold:

TℓI = I

Tℓ(A⊗B) = TℓA⊗ TℓB

Tℓ(A ⊸ B) = TℓA ⊸ TℓB

Tℓ(A&B) = TℓA&TℓB

Tℓ !A = !TℓA

Tℓ(A⇒ B) = TℓA⇒ TℓB
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The semilattice structure on L acts on the L-indexed family of monads in

the evident fashion:

Proposition 2 The following equations hold:

Tℓ(Tℓ′A) = Tℓ⊔ℓ′A

T⊥A = A.

We can extend each Tℓ with a functorial action: if σ : A→ B then we

can define Tℓσ : TℓA→ TℓB simply by taking Tℓσ = σ. To justify this,

note that

PA⊸B = PTℓ(A⊸B) = PTℓA⊸TℓB
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...

...
O m1

P m1

O m2

P m2

One shows that the Level condition holds for each of these moves. �
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Thus we can define a natural transformation ηA : A→ TℓA, where ηA is the

copy-cat strategy. Furthermore, by Proposition 2, TℓTℓA = TℓA.
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Proposition 3 The copy-cat strategy is well defined on A ⊸ TℓA.

Proof Consider a play of the copy-cat strategy

A ⊸ TℓA
...

...
O m1

P m1

O m2

P m2

One shows that the Level condition holds for each of these moves. �

Thus we can define a natural transformation ηA : A→ TℓA, where ηA is the

copy-cat strategy. Furthermore, by Proposition 2, TℓTℓA = TℓA.

Proposition 4 Each Tℓ is an idempotent commutative monad.
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Firstly, we prove a strong form of converse of Proposition 3.

Proposition 5 If ¬(ℓ ≤ ℓ′), then there is no natural transformation from Tℓ to Tℓ′ .
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Firstly, we prove a strong form of converse of Proposition 3.

Proposition 5 If ¬(ℓ ≤ ℓ′), then there is no natural transformation from Tℓ to Tℓ′ .

Proof Suppose for a contradiction that there is such a natural transformation τ .

Given any flat game X♭
⊥, with levX♭

⊥

(m) = ⊥ for all moves m ∈MX♭
⊥

, the

strategy τX♭
⊥

: TℓX
♭
⊥ → Tℓ′X

♭
⊥ can only play in Tℓ′X

♭
⊥, since playing the initial

move in TℓX
♭
⊥ would violate the Level condition.

We now work the naturality square

TℓA
τA

- Tℓ′A

TℓA

Tℓσ

?

τA
- Tℓ′A

Tℓ′σ

?

with A = Nat
♭
⊥ to yield the required contradiction. �
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Consider the following situation. We have a term in context Γ ⊢ t : T , and we wish

to guarantee that t is not able to access some part of the context. For example, we
may have Γ = x : U,Γ′, and we may wish to verify that t cannot access x. Rather

than analyzing the particular term t, we may wish to guarantee this purely at the

level of the types, in which case it is reasonable to assume that this should be

determined by the types U and T , and independent of Γ′.
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the denotation of such a term in context will be a morphism of the form
f : A⊗ C → B, where A = JUK, C = JΓ′K, B = JT K.
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Consider the following situation. We have a term in context Γ ⊢ t : T , and we wish

to guarantee that t is not able to access some part of the context. For example, we
may have Γ = x : U,Γ′, and we may wish to verify that t cannot access x. Rather

than analyzing the particular term t, we may wish to guarantee this purely at the

level of the types, in which case it is reasonable to assume that this should be

determined by the types U and T , and independent of Γ′.

This can be expressed in terms of the categorical semantics as follows. Note that

the denotation of such a term in context will be a morphism of the form
f : A⊗ C → B, where A = JUK, C = JΓ′K, B = JT K.

Definition 6 Let C be an affine category, i.e. a symmetric monoidal category in

which the tensor unit I is the terminal object. We write ⊤A : A→ I for the unique

arrow. We define A 6→ B if for all objects C, and f : A⊗ C → B, f factors as

f = A⊗ C
⊤A⊗idC

- I ⊗ C
∼=
- C

g
- B.

The idea is that no information from A can be used by f — it is “constant in A”.

Note that GL and Ghf

L are affine, so this definition applies directly to our situation.
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Firstly, we characterize this notion in GL and Ghf

L .

Lemma 7 In GL and Ghf

L , A 6→ B if and only if, for any strategy

σ : A⊗ C → B, σ does not play any move in A.
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σ : A⊗ C → B, σ does not play any move in A.

We now give a simple characterization for when this “no-flow” relation
holds between games.
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Firstly, we characterize this notion in GL and Ghf

L .

Lemma 7 In GL and Ghf

L , A 6→ B if and only if, for any strategy

σ : A⊗ C → B, σ does not play any move in A.

We now give a simple characterization for when this “no-flow” relation
holds between games.

Given a game A, we define:

Level(A) = {levA(m) | m ∈ InitA}
A�B ≡ ∀ℓ ∈ Level(A), ℓ′ ∈ Level(B).¬(ℓ ≤ ℓ′)
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Firstly, we characterize this notion in GL and Ghf

L .

Lemma 7 In GL and Ghf

L , A 6→ B if and only if, for any strategy

σ : A⊗ C → B, σ does not play any move in A.

We now give a simple characterization for when this “no-flow” relation
holds between games.

Given a game A, we define:

Level(A) = {levA(m) | m ∈ InitA}
A�B ≡ ∀ℓ ∈ Level(A), ℓ′ ∈ Level(B).¬(ℓ ≤ ℓ′)

Theorem 8 (No-Flow) For any games A, B in GL:

A 6→ B ⇐⇒ A�B.
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The characterization of no-flow in terms of the levels of types means that

we can obtain useful information by computing levels.
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The characterization of no-flow in terms of the levels of types means that

we can obtain useful information by computing levels.

We consider a syntax of types built from basic types (to be interpreted as

flat games at a stipulated level) using the connectives of ILL extended
with the level monads. For any such type T , we can give a simple

inductive definition of Level(A) where A = JT K:

Level(X♭
ℓ) = {ℓ}

Level(I) = ∅

Level(A⊗B) = Level(A) ∪ Level(B)
Level(A ⊸ B) = Level(B)
Level(A&B) = Level(A) ∪ Level(B)
Level(A⇒ B) = Level(B)
Level(!A) = Level(A)
Level(TℓA) = {ℓ ⊔ ℓ′ | ℓ′ ∈ Level(A)}
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The characterization of no-flow in terms of the levels of types means that

we can obtain useful information by computing levels.

We consider a syntax of types built from basic types (to be interpreted as

flat games at a stipulated level) using the connectives of ILL extended
with the level monads. For any such type T , we can give a simple

inductive definition of Level(A) where A = JT K:

Level(X♭
ℓ) = {ℓ}

Level(I) = ∅

Level(A⊗B) = Level(A) ∪ Level(B)
Level(A ⊸ B) = Level(B)
Level(A&B) = Level(A) ∪ Level(B)
Level(A⇒ B) = Level(B)
Level(!A) = Level(A)
Level(TℓA) = {ℓ ⊔ ℓ′ | ℓ′ ∈ Level(A)}

This yields a simple, computable analysis which by Theorem 8 can be

used to guarantee access constraints of the kind described above.
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We give a semantic account of protected types, which play a key rôle in the DCC

type system (Abadi, Bannerjee, Heintze, Riecke).

Definition 9 We say that a game A is protected at level ℓ if Level(A) ≥ ℓ,

meaning that ℓ′ ≥ ℓ for all ℓ′ ∈ Level(A).

This notion extends immediately to types via their denotations as games.

The following (used as an inductive definition of protection in Abadi et al.) is an

immediate consequence of our definition.

Lemma 10

1. If ℓ ≤ ℓ′, then Tℓ′A is protected at level ℓ.

2. If B is protected at level ℓ, so are A ⊸ B and A⇒ B.

3. If A and B are protected are level ℓ, so are A&B and A⊗B.

4. If A is protected at level ℓ, so is !A.

5. I is protected at level ℓ.
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We also have the following protected promotion lemma, which shows the soundness

of the key typing rule in DCC.

Lemma 11 If σ : !A→ TℓB, τ : !B → C, and C is protected at level ℓ, then the

coKleisli composition
σ†; τ : !A→ C

is well-defined.

Proof Firstly, by Proposition 1, Tℓ !B = !TℓB. So it suffices to show that τ is

well-defined as a strategy τ : Tℓ !B → C. If we consider an initial move m in Tℓ !B
played by τ , we must have lev !B(m) ≤ lev(j(m)) since τ : !B → C is

well-defined. Moreover, ℓ ≤ lev(j(m)) since C is protected at ℓ. Hence

levTℓ !B(m) ≤ lev(j(m)). �
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We now give a semantic version of the main result in Abadi’s ICFP 06 paper

(Theorem 7.6), which shows stability of the type theory under erasure of level
constraints. This is used by Abadi to derive several other results relating to

non-interference.
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We now give a semantic version of the main result in Abadi’s ICFP 06 paper

(Theorem 7.6), which shows stability of the type theory under erasure of level
constraints. This is used by Abadi to derive several other results relating to

non-interference.

Firstly, given ℓ ∈ L, we define the erasure Aℓ of a type A, which replaces every

sub-expression of A of the form Tℓ′B, with ℓ′ ≥ ℓ, by ⊤. Semantically, this

corresponds to erasing all moves m in the game (denoted by) A such that

lev(m) ≥ ℓ, and all plays containing such moves.
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We now give a semantic version of the main result in Abadi’s ICFP 06 paper

(Theorem 7.6), which shows stability of the type theory under erasure of level
constraints. This is used by Abadi to derive several other results relating to

non-interference.

Firstly, given ℓ ∈ L, we define the erasure Aℓ of a type A, which replaces every

sub-expression of A of the form Tℓ′B, with ℓ′ ≥ ℓ, by ⊤. Semantically, this

corresponds to erasing all moves m in the game (denoted by) A such that

lev(m) ≥ ℓ, and all plays containing such moves.

Abadi’s result is that, if we can derive a typed term in context Γ ⊢ e : A, then we

can derive a term Γℓ ⊢ e′ : Aℓ. To obtain an appropriate semantic version, we need

to introduce the notion of total strategies. A strategy σ is total if when s ∈ σ, and

sa ∈ PA, then sab ∈ σ for some b.
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We now give a semantic version of the main result in Abadi’s ICFP 06 paper

(Theorem 7.6), which shows stability of the type theory under erasure of level
constraints. This is used by Abadi to derive several other results relating to

non-interference.

Firstly, given ℓ ∈ L, we define the erasure Aℓ of a type A, which replaces every

sub-expression of A of the form Tℓ′B, with ℓ′ ≥ ℓ, by ⊤. Semantically, this

corresponds to erasing all moves m in the game (denoted by) A such that

lev(m) ≥ ℓ, and all plays containing such moves.

Abadi’s result is that, if we can derive a typed term in context Γ ⊢ e : A, then we

can derive a term Γℓ ⊢ e′ : Aℓ. To obtain an appropriate semantic version, we need

to introduce the notion of total strategies. A strategy σ is total if when s ∈ σ, and

sa ∈ PA, then sab ∈ σ for some b. This is the direct analogue of totality for

functions, and will hold for the strategies denoted by terms in a logical type theory —
although not in general for terms in a programming language equipped with general

recursion. One can show that total strategies which are finite (or alternatively

winning) in a suitable sense form a category with the appropriate structure to model

intuitionistic and linear type theories.
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Theorem 12 Suppose that σ : A→ B is a total strategy. Then so is

σ′ : Aℓ → Bℓ for any ℓ ∈ L, where σ′ is the restriction of σ to plays in

Aℓ ⊸ Bℓ.

Proof Suppose for a contradiction that σ′ is not total, and consider a

witness sab ∈ σ \ σ′, with sa ∈ PAℓ⊸Bℓ . Then lev(b) ≥ ℓ; but by the
Level constraint, we must have lev(j(b)) ≥ ℓ, which by the Justification

condition contradicts sa ∈ PAℓ⊸Bℓ . �
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• We have considered a semantic setting which is adequate for both

intuitionistic and (intuitionistic-)linear type theories. It would also be interesting

to look at access control in the context of classical type theories such as λµ,

particularly since it is suggested by Abadi and Garg and Pfenning that there

are problems with access control logics in classical settings.
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• We have considered a semantic setting which is adequate for both

intuitionistic and (intuitionistic-)linear type theories. It would also be interesting

to look at access control in the context of classical type theories such as λµ,

particularly since it is suggested by Abadi and Garg and Pfenning that there

are problems with access control logics in classical settings.

• The development of algorithmic game semantics suggests that it may be

promising to look at automated analysis based on our semantic approach.

• We have developed our semantics in the setting of AJM games, equipped with

a notion of justification. One could alternatively take HO-games as the starting

point, but these would also have to be used in a hybridized form, with

“AJM-like” features, in order to provide models for linear type theories. In fact,
one would like a form of game semantics which combined the best features

(and minimized the disadvantages) of the two approaches. Some of the ideas

introduced in the present paper may be useful steps in this direction.
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