
A Game-Theoretic Framework
For Dependent Types

Pierre Clairambault
PPS – Université Paris 7

GaLoP 2009



0. Introduction



Why dependent types ?

Several motives:

Understand better dependent types,

Gives an interactive view of dependent type constructions
(Σ,Π,Id),

A framework robust to variations of constraints (Control
features, references). . .

and to new constructions (inductive types, universes. . . )

Try to bridge a gap in the community. . .



1 Dependent Types

2 Dependent Games

3 Identity types

4 Conclusion



I. Dependent Types



Basic Framework

Types can depend on terms. Seven kind of judgements.

` Γ ctxt

Γ ` A type

Γ ` M : A

Γ = ∆ ctxt

Γ ` A = B type

Γ ` M = N : A

δ : ∆→ Γ

With all the rules for reasoning with equality over terms, types,
contexts, and the rules for context and susbtitutions formation.



Intensional Identity Types

Γ ` M : A Γ ` N : A

Γ ` IdA(M,N) type

Γ ` M : A

Γ ` reflA(M) : IdA(M,M)

Γ, z : A ` H : B[z/x , z/y , reflA(z)/p] Γ ` P : IdA(M,N)

R Id(H,M,N,P) : B[M/x ,N/y ,P/p]



Extensionality

The two following rules makes typechecking undecidable.

Γ ` P : IdA(M,N)

Γ ` M = N : A

Γ ` P : IdA(M,N)

Γ ` P = reflA(M)

Proved independent by the groupoid model of type theory
(Hofmann&Streicher)



Categorical models

A (non exhaustive) list of categorical models:

Locally cartesian closed categories (Seely, 1984) : Extensional
type theory. Coherence problem.

Display categories (Taylor, 1986)

D-categories (fibrations) (Ehrhard, 1988)

Categories with attributes (Cartmell, 1978), categories with
families (Dybjer, 1996): modular, closer to syntax



Categorical models

A (non exhaustive) list of categorical models:

Locally cartesian closed categories (Seely, 1984) : Extensional
type theory. Coherence problem.

Display categories (Taylor, 1986)

D-categories (fibrations) (Ehrhard, 1988)

Categories with attributes (Cartmell, 1978), categories with
families (Dybjer, 1996): modular, closer to syntax



Categories with families

A CwF is given by the following data:

A base category C with a terminal object 1.

A functor T : Cop → Fam (associates to each context a
family of terms indexed by types)

M ∈ T (Γ)A is denoted by M : Γ ` A

The action of T (δ) (substitution) is denoted by [δ] on types
and terms.

A context extension operation. If Γ ∈ C and A ∈ Type(Γ),
Γ·A ∈ C, equiped with projections and pairing.



II. Dependent Games



Games and Totality

A language for proofs is a total programming language,

Hence, proofs are to be interpreted as total strategies,

The class of total strategies is not closed under
composition. . .



Interlude: the game-theoretic interaction of δδ
•0◦0•0 ◦0•0◦0 •0 ◦0•0◦0•0 ◦0 •0◦0 •0 ◦0•0◦0•0 ◦0•0◦0 •0 ◦0 •0◦0•0 ◦0 •0◦0 •0 ◦0•0◦0•0 ◦0•0◦0 •0 ◦0•0◦0•0 ◦0 •0◦0 •0 ◦0 •0◦0•0 ◦0•0◦0 •0 ◦0 •0◦0•0 ◦0 •0◦0 •0 ◦0•0◦0•0 ◦0•0◦0 •0 ◦0•0◦0•0 ◦0 •0◦0 •0 ◦0•0◦0•0 ◦0•0◦0 •0 ◦0 •0◦0•0 ◦0 •0◦0 •0 ◦0 •0◦0•0 ◦0•0◦0 •0 ◦0•0◦0•0 ◦0 •0◦0 •0 ◦0 •0◦0•0 ◦0•0◦0 •0 ◦0 •0◦0•0 ◦0 •0◦0 •0 ◦0•0◦0•0 ◦0•0◦0 •0 ◦0•0◦0•0 ◦0 •0◦0 •0 ◦0•0◦0•0 ◦0•0◦0 •0 ◦0 •0◦0•0 ◦0 •0◦0 •0 ◦0•0◦0•0 ◦0•0◦0 •0 ◦0•0◦0•0 ◦0 •0◦0 •0 ◦0 •0◦0•0 ◦0•0◦0 •0 ◦0 •0◦0•0 ◦0 •0◦0 •0 ◦0 •0◦0•0 ◦0•0◦0 •0 ◦0•0◦0•0 ◦0 •0◦0 •0 ◦0•0◦0•0 ◦0•0◦0 •0 ◦0 •0◦0•0 ◦0 •0◦0 •0 ◦0 •0◦0•0 ◦0•0◦0 •0 ◦0•0◦0•0 ◦0 •0◦0 •0 ◦0 •0◦0•0 ◦0•0◦0 •0 ◦0 •0◦0•0 ◦0 •0◦0 •0 ◦0•0◦0•0 ◦0•0◦0 •0 ◦0•0◦0•0 ◦0 •0◦0 •0 ◦0•0◦0•0 ◦0•0◦0 •0 ◦0 •0◦0•0 ◦0 •0◦0 •0 ◦0•0◦0•0 ◦0•0◦0 •0 ◦0•0◦0•0 ◦0 •0◦0 •0 ◦0 •0◦0•0 ◦0•0◦0 •0 ◦0 •0◦0•0 ◦0 •0◦0 •0 ◦0•0◦0•0 ◦0•0◦0 •0 ◦0•0◦0•0 ◦0 •0◦0 •0 ◦0•0◦0•0 ◦0•0◦0 •0 ◦0 •0◦0•0 ◦0 •0◦0 •0 ◦0 •0◦0•0 ◦0•0◦0 •0 ◦0•0◦0•0 ◦0 •0◦0 •0 ◦0 •0◦0•0 ◦0•0◦0 •0 ◦0 •0◦0



Bounded total strategies

Definition

A strategy is bounded when there is a bound on the size of its
P-views.

Theorem (Coquand, Clairambault&Harmer)

An interaction of bounded strategies is necessarily finite

Corollary

If σ : A⇒ B and τ : B ⇒ C are total and bounded, so is
σ; τ : A⇒ C .

Hence we get a CCC of arenas and total bounded strategies.



Dependent Games

Base idea: dependent games are usual games, but enriched with
dependency information.

Definition

A dependent game is a pair (A,PA), where:

A is an arena,

PA ⊆ LA is the set of valid plays.

Dependent games will be the semantic counterpart of contexts.



Example

Jn : nat, l : list(n)K is the pair (A,PA) where:

A = nat× list

PA is the set of plays on A such that there is n ∈ nat:

s�nat ∈ JnK
s�list ∈ Jlist(n)K

Plays such as

n : nat × list(n)

q

1

q

Nil

are banned.



Valid strategies

First (inaccurate) intuition:

Definition

σ is a valid strategy on A if σ ⊆ PA.

Too strong: the following play should be accepted:

n : nat ` list(n) +3 list(n)

q

q

1

q

Nil

Nil



Valid strategies

Strategies are not forced to obey dependency if Opponent breaks it
first.

Definition

A strategy is valid on A if for any even-length s ∈ σ, if sa ∈ PA,
then there is sab ∈ σ ∩ PA.

An analogous condition (skipped here) allows Player to break
dependency if Opponent behaves non-innocently, i.e. uses
side-effects in an obvious way.

Theorem

There is a cartesian closed category Dep of dependent games and
valid strategies.



External dependency, 1: the informational preorder

External dependencies will be modeled as relations

These relations have to respect the informational preorder

Definition (Information)

Let v denote the prefix order on plays.

V (s) = {ps ′q | s ′ v s}

V (s) quantifies the information on Player contained in s.

Definition (Informational preorder)

s1 ≤ s2 ⇔ V (s1) ⊆ V (s2)

≤ also corresponds to v up to reordering of independent parts of
the play.



Relations and external dependencies

Definition

If Γ ∈ Dep, a game dependent over Γ will be a triple (A,PA,BA)
where:

(A,PA) is a dependent game,

BA ⊆ LΓ × LA, satisfying

∀s ∈ LΓ, s BA ε

∀s, s ′, t, s BA t ∧ s ′ ≥ s =⇒ s ′ BA t

The two last conditions are known as monotonicity. We denote
by Dep(Γ) the set of games dependent over Γ.



Paradigmatic example: list(n)



Substitution, 1: The relational functor

There is a functor
Rel : Dep→ Rel

To any game A, Rel associates LA

To any strategy σ : A⇒ B, Rel(σ) ⊆ LA × LB is

{(s�A, s�B
) | s ∈ σ}



Substitution, 2: Composition and monotonic completion

Definition

If A ∈ Dep(Γ) and σ : ∆⇒ Γ, then

A[δ] = (A,PA,Rel(δ);BA)

where Rel(δ) is the monotonic completion of Rel(δ). We check
that A[δ] ∈ Dep(∆)

This construction is functorial, hence produces a functor

T : Depop → Set

To get a Cwf, we still need terms and context comprehension.



Dependent game constructions

To build the Cwf structure, we will do the following:

For A ∈ Dep(Γ), build a dependent game Γ ` A. Terms
σ ∈ Γ ` A will be strategies σ : Γ ` A.

For A ∈ Dep(Γ), build a dependent game Γ·A, the context
extension.

Γ ` A and Γ·A are respectively special cases of Π-types and
Σ-types.



Construction of Γ ` A

The base arena of Γ ` A will be Γ⇒ A. When is s ∈ PΓ`A ?

n : nat · list(n) ` list(n)

q

q

l

l

This play should be accepted, even if it is not in Blist

Definition (Forcing)

s 
A t ⇔ ∀α : Γ, s ∈ α =⇒ ∃s ′ ∈ α, s ′ BA t



Construction of Γ ` A

Definition

Γ ` A = (Γ⇒ A,PΓ`A), with

PΓ`A = {s ∈ PΓ⇒A | s�Γ 
A s�A}

Definition

Terms σ ∈ Γ ` A are simply valid strategies σ : Γ ` A. If
δ : ∆⇒ Γ,

σ[δ] = δ;σ : Γ ` A[δ]

With these definitions, the functor T extends to

T : Depop → Fam



Construction of Γ·A

Let us look at some examples.

n : nat ·list(n)

q

0

q

Nil

must be naturally accepted, since it is in Blist.



Construction of Γ·A

But if Opponent asks first right. . .

n : nat ·list(n)

q

Nil

q

1

We see that there is a retroaction from right to left, so the
situation is not so simple.



Construction of Γ·A

The appropriate definition is dual to forcing.

Definition (Coherence)

Let Γ ∈ Dep, and A ∈ Dep(Γ). We set:

s _
^At ⇔ ∃α : Γ, s ∈ α ∧ ∃s ′ ∈ α, s ′ BA t

Definition

Γ·A = (Γ× A,PΓ·A), with

Γ·A = {s ∈ PΓ×A | s�Γ
_
^As�A}

Projections comes from the underlying cartesian product of Γ·A,
and all the required equations are satisfied. Hence (Dep,T ) is a
Cwf.



III. Intensional Identity Types



The basic idea

Let us consider σ, τ : A. The type IdA(σ, τ) will look as follows:

Its base arena will be A

PIdA(σ,τ) will be

PIdA(σ,τ) = {s ∈ PA | s ∈ σ ∧ s ∈ τ}

Then, the existence of a total strategy p : IdA(σ, τ) will be
equivalent to σ = τ .



Identity types

We define a game IdA ∈ Dep(Γ·A1 ·A2[p]) as follows:

The base arena is A

The set of valid plays is PA

We need a monotonic relation BIdA
⊆ LΓ·A1·A2[p] × LA:

s BIdA
t ⇔

{
t ≤ s�A1

t ≤ s�A2

Which satisfies the required properties.



Reflexivity

We need a strategy reflA : Γ·A ` IdA[〈id , q〉].

i.e. a strategy reflA : Γ× A⇒ A, satisfying additional
conditions.

We define reflA as the copycat π2 : Γ× A→ A

reflA satisfies the required conditions, and is stable under
substitution.



The model refutes extensionality

n : nat `Σm1:nat. Σm2:nat. Idnat,m1,m2

q

q

n

n

q

q

n

q

n

n



The model refutes uniqueness of proofs

refl ′nat : Γ · nat ` Idnat[〈id , q〉]
q

q

n

q

n

n



IV. Conclusion



Achievements

We’ve built a Cwf of games and strategies,

It supports intensional identity types, but refutes both
extensionality and uniqueness of proofs.

Not presented here are extensions to:

Σ-types: no fundamental problem, they can be accomodated
in this setting.

Π-types: necessity to handle dependencies in contravariant
position. External dependencies extended to (BP

A ,B
O
A ).

Extensionality identity types: achieved after a (quite
technical) extensional collapse.



Future work

Lots of things to consider.

Find a (more) elegant formulation of the model with Π and Σ,

Inductive types,

Universes,

Inductive-recursive definitions. . .

Questions ?


	Dependent Types
	Dependent Games
	Identity types
	Conclusion

