Labelled Transition Systems For a Game Graph

Soren Lassen¹ Paul Blain Levy²

¹Google, Inc.

²University of Birmingham

March 29, 2009

2 Example: the applicative LTS for call-by-push-value

Definition

An alphabet \mathcal{A} is a countable set of actions.

Definition

- A LTS over \mathcal{A} is a set S of nodes and a function $S \xrightarrow{\theta} \mathcal{P}(\mathcal{A} \times S)$. Coalgebra for $S \mapsto \mathcal{P}(\mathcal{A} \times S)$
- A LTS with divergence over \mathcal{A} is a set S of nodes and a function $S \xrightarrow{\theta} \mathcal{P}((\mathcal{A} \times S) + \{\uparrow\})$. Coalgebra for $S \mapsto \mathcal{P}((\mathcal{A} \times S) + \{\uparrow\})$

Can we adapt all this to (alternating) two-player games?

- We must distinguish between Proponent (output) actions and Opponent (input) actions. (cf. Moore and Mealy machines)
- The set of available actions must change through time (cf. typed transition systems).

Game graphs

We replace the definition of alphabet as follows.

Definition

- A game graph ${\mathcal M}$ consists of
 - a set \mathcal{M}_{act} of *active modes* (rough idea: mode = type)
 - \bullet a set $\mathcal{M}_{\mathsf{pass}}$ of passive modes
 - for each active mode m ∈ M_{act}, a countable set M_P(m) of *Proponent-actions* from m
 - a function $\sum_{m \in \mathcal{M}_{act}} \mathcal{M}_{P}(m) \xrightarrow{tgt_{P}} \mathcal{M}_{pass}$
 - for each passive mode m ∈ M_{pass}, a countable set M_O(m) of Opponent-actions from m

• a function
$$\sum_{m \in \mathcal{M}_{pass}} \mathcal{M}_{O}(m) \xrightarrow{tgt_{O}} \mathcal{M}_{act}$$

Game graphs

We replace the definition of alphabet as follows.

Definition

- A game graph ${\mathcal M}$ consists of
 - a set \mathcal{M}_{act} of *active modes* (rough idea: mode = type)
 - \bullet a set $\mathcal{M}_{\mathsf{pass}}$ of passive modes
 - for each active mode m ∈ M_{act}, a countable set M_P(m) of *Proponent-actions* from m
 - a function $\sum_{m \in \mathcal{M}_{act}} \mathcal{M}_{P}(m) \xrightarrow{tgt_{P}} \mathcal{M}_{pass}$
 - for each passive mode m ∈ M_{pass}, a countable set M_O(m) of Opponent-actions from m

• a function
$$\sum_{m \in \mathcal{M}_{pass}} \mathcal{M}_{O}(m) \xrightarrow{tgt_{O}} \mathcal{M}_{act}$$

These are not transitions systems. (cf. Hyvernat's Janus systems)

Definition

Let \mathcal{M} be a game graph. A LTS with divergence over \mathcal{M} consists of the following:

- for each active mode m, a set $S_{act}(m)$ of active nodes in mode m
- for each passive mode m, a set $S_{pass}(m)$ of passive nodes in mode m
- for each active mode m, a function $\mathcal{S}_{act}(m) \xrightarrow{\theta_{act}(m)} \mathcal{P}((\sum_{i \in \mathcal{M}_{P}(m)} \mathcal{S}_{pass}tgt_{P}(m, i)) + \{\uparrow\})$
- for each passive mode m, a function $S_{\text{pass}}(m) \xrightarrow{\theta_{\text{pass}}(m)} \prod_{i \in \mathcal{M}(m)} S_{\text{act}} \operatorname{tgt}_{O}(m, i)$.
- For an active node *n*, we write $n \stackrel{i}{\Rightarrow} n'$ and $n \Uparrow$
- For a passive node *n*, we write *n* : *i* for the node we move to after inputting *i*.

Let \mathcal{M} be a game graph, and let R be an endofunctor on **Set**.

Definition

Let \mathcal{M} be a game graph. A LTS over \mathcal{M} wrt R consists of the following:

- for each active mode m, a set $S_{act}(m)$ of active nodes in mode m
- for each passive mode m, a set $S_{pass}(m)$ of passive nodes in mode m

• for each active mode
$$m$$
, a function
 $S_{act}(m) \xrightarrow{\theta_{act}(m)} R \sum_{i \in \mathcal{M}_{P}(m)} S_{pass}tgt_{P}(m, i)$

• for each passive mode *m*, a function

$$\mathcal{S}_{\text{pass}}(m) \xrightarrow{\theta_{\text{pass}}(m)} \prod_{i \in \mathcal{M}(m)} \mathcal{S}_{\text{act}} \operatorname{tgt}_{O}(m, i)$$
.

Let \mathcal{M} be a game graph, and let R be an endofunctor on **Set**.

Definition

The endofunctor $R_{\mathcal{M}}$ on $\mathbf{Set}^{\mathcal{M}_{act}} \times \mathbf{Set}^{\mathcal{M}_{pass}}$ is given by

$$\begin{array}{ll} \langle \mathcal{S}_{\mathsf{act}}, \mathcal{S}_{\mathsf{pass}} \rangle & \mapsto & \langle \lambda m \in \mathcal{M}_{\mathsf{act}}.R \sum_{i \in \mathcal{M}_{\mathsf{P}}(m)} \mathcal{S}_{\mathsf{pass}} \mathrm{tgt}_{\mathsf{P}}(m, i), \\ & \lambda m \in \mathcal{M}_{\mathsf{pass}}.\prod_{i \in \mathcal{M}_{\mathsf{O}}(m)} \mathcal{S}_{\mathsf{act}} \mathrm{tgt}_{\mathsf{O}}(m, i) \rangle \end{array}$$

Definition

A LTS over \mathcal{M} wrt R is a coalgebra for $R_{\mathcal{M}}$.

Bisimulation

Let ${\cal R}$ be a mode-indexed binary relation between ${\cal S}$ and ${\cal S}',$ LTSs over a game graph ${\cal M}.$

It is a convex bisimulation when the following conditions hold.

Proponent actions are matched

For active nodes $n \mathcal{R} n'$ in mode m

- if $n \stackrel{i}{\Rightarrow} p$ then there exists p' s.t. $n' \stackrel{i}{\Rightarrow} p'$ and $p \mathcal{R} p'$
- if $n' \stackrel{i}{\Rightarrow} p'$ then there exists p s.t. $n \stackrel{i}{\Rightarrow} p$ and $p \mathcal{R} p'$

• $n \uparrow \text{iff } n' \uparrow$

Opponent actions are matched

For passive nodes $n \mathcal{R} n'$ in mode m,

•
$$n: i \mathcal{R} n': i$$
 for each $i \in \mathcal{M}_{O}(m)$

The largest convex bisimulation is convex bisimilarity.

Types (can also include type recursion)

value types computation types

Terms (including recursion and countable nondeterminism)

Judgements $\Gamma \vdash^{\mathsf{v}} V : A \quad \Gamma \vdash^{\mathsf{c}} M : \underline{B}$

Soren Lassen, Paul Blain Levy (Google, Inc.,

Applicative Bisimulation (Abramsky 1990)

A type-indexed relation \mathcal{R} on closed terms is a convex applicative bisimulation when the following hold.

If $M \mathcal{R} M' : FA$

- $M \Downarrow$ return V implies there exists V' s.t. $M' \Downarrow V'$ and $V \mathcal{R} V' : A$
- $M' \Downarrow$ return V' implies there exists V s.t. $M \Downarrow V$ and $V \mathcal{R} V' : A$
- *M* ↑ iff *M*′ ↑

Requirements at other types

- If $\langle \hat{\imath}, V \rangle \mathcal{R} \langle \hat{\imath}', V' \rangle : \sum_{i \in I} A_i$ then $\hat{\imath} = \hat{\imath}'$ and $V \mathcal{R} V' : A_{\hat{\imath}}$.
- If $\langle V, W \rangle \mathcal{R} \langle V', W' \rangle : A \times B$ then $V \mathcal{R} V' : A$ and $W \mathcal{R} W' : B$.
- If $V \mathcal{R} V'$: $U\underline{B}$ then force $V \mathcal{R}$ force V': \underline{B} .
- If $M \mathcal{R} M' : A \to \underline{B}$ then $MV \mathcal{R} M'V : \underline{B}$ for each $\vdash^{v} V : \underline{B}$.
- If $M \mathcal{R} M' : \prod_{i \in I} \underline{B}_i$ then $M\hat{\imath} \mathcal{R} M'\hat{\imath}$ for each $\hat{\imath} \in I$.

If $M \mathcal{R} M' : FA$

- $M \Downarrow$ return V implies there exists V' s.t. $M' \Downarrow V'$ and $V \mathcal{R} V' : A$
- $M' \Downarrow$ return V' implies there exists V s.t. $M \Downarrow V$ and $V \mathcal{R} V' : A$
- $M \Uparrow \text{ iff } M' \Uparrow$

Requirements at other types

- If $\langle \hat{\imath}, V \rangle \mathcal{R} \langle \hat{\imath}', V' \rangle : \sum_{i \in I} A_i$ then $\hat{\imath} = \hat{\imath}'$ and V = V'.
- If $\langle V, W \rangle \mathcal{R} \langle V', W' \rangle : A \times B$ then $V \mathcal{R} V' : A$ and $W \mathcal{R} W' : B$.
- If $V \mathcal{R} V'$: $U\underline{B}$ then force $V \mathcal{R}$ force V': \underline{B} .
- If $M \mathcal{R} M' : A \to \underline{B}$ then $MV \mathcal{R} M'V : \underline{B}$ for each $\vdash^{\mathsf{v}} V : \underline{B}$.
- If $M \mathcal{R} M' : \prod_{i \in I} \underline{B}_i$ then $M\hat{\imath} \mathcal{R} M'\hat{\imath}$ for each $\hat{\imath} \in I$.

If $M \mathcal{R} M' : FA$

- $M \Downarrow$ return V implies there exists V' s.t. $M' \Downarrow V'$ and $V \mathcal{R} V' : A$
- $M' \Downarrow$ return V' implies there exists V s.t. $M \Downarrow V$ and $V \mathcal{R} V' : A$
- $M \Uparrow \text{iff } M' \Uparrow$

Requirements at other types

- If $\langle \hat{\imath}, V \rangle \mathcal{R} \langle \hat{\imath}', V' \rangle : \sum_{i \in I} A_i$ then $\hat{\imath} = \hat{\imath}'$ and V = V'.
- If $\langle V, W \rangle \mathcal{R} \langle V', W' \rangle : A \times B$ then $V \mathcal{R} V' : A$ and $W \mathcal{R} W' : B$.
- If $V \mathcal{R} V' : U\underline{B}$ then force $V \mathcal{R}$ force $V' : \underline{B}$.
- If $M \mathcal{R} M' : A \to \underline{B}$ then $MV \mathcal{R} M'V : \underline{B}$ for each $\vdash^{v} V : \underline{B}$.
- If $M \mathcal{R} M' : \prod_{i \in I} \underline{B}_i$ then $M\hat{\imath} \mathcal{R} M'\hat{\imath}$ for each $\hat{\imath} \in I$.

Ultimate Patterns: for the Proponent actions

Intuition (Abramsky-McCusker)

Every value type A is isomorphic to one of the form $\sum_{i \in I} U\underline{B}_i$

We want to decompose a closed value into

• an ultimate pattern—the tags

• and the filling a value sequence—the rest, consisting of thunks. Example:

 $\langle i_0, \langle \langle (\texttt{thunk } M, \texttt{thunk } M' \rangle, \texttt{thunk } M'' \rangle, \langle i_1, \texttt{thunk } M''' \rangle \rangle \rangle$

We decompose this into

the ultimate pattern $\langle i_0, \langle \langle \langle - \underline{\textit{UB}}, -\underline{\textit{UB}''} \rangle, -\underline{\textit{UB}''} \rangle, \langle i_1, -\underline{\textit{UB}'''} \rangle \rangle \rangle$

and the filling thunk M, thunk M', thunk M'', thunk M'''

We write ulpatt(A) for the set of ultimate patterns of type A.

These sets are defined by mutual induction.

- $-_{U\underline{B}} \in ulpatt(UA).$
- If $p \in ulpatt(A)$ and $p' \in ulpatt(A')$ then $\langle p, p' \rangle \in ulpatt(A \times A')$.
- If $\hat{\imath} \in I$ and $p \in ulpatt(A_{\hat{\imath}})$ then $\langle \hat{\imath}, p \rangle \in ulpatt(\sum_{i \in I} A_i)$.

We write ulpatt(A) for the set of ultimate patterns of type A.

These sets are defined by mutual induction.

- $-_{U\underline{B}} \in ulpatt(UA).$
- If $p \in ulpatt(A)$ and $p' \in ulpatt(A')$ then $\langle p, p' \rangle \in ulpatt(A \times A')$.
- If $\hat{\imath} \in I$ and $p \in ulpatt(A_{\hat{\imath}})$ then $\langle \hat{\imath}, p \rangle \in ulpatt(\sum_{i \in I} A_i)$.

We write H(p) for the sequence of types of the holes of p. They are all U types.

Theorem for Closed Values

Any closed value $\vdash V : A$ is $p(\overrightarrow{W})$ for unique $p \in ulpatt(A)$ and filling $\vdash \overrightarrow{V} : A$.

Theorem for Open Values

Let Γ be a context in which each identifier has a U type. Any value $\Gamma \vdash^{\vee} V : A$ is $p(\vec{W})$ for unique $p \in \text{ulpatt}(A)$ and filling $\Gamma \vdash \vec{V} : A$. In the applicative rules, a closed computation gets applied to a list of closed operands until it becomes a computation of F type.

We write $OpList(\underline{B})$ for the set of operand lists from \underline{B} .

In the applicative rules, a closed computation gets applied to a list of closed operands until it becomes a computation of F type.

We write $OpList(\underline{B})$ for the set of operand lists from \underline{B} . More generally, $OpList(\Gamma | \underline{B})$ when the operands are in context Γ . In the applicative rules, a closed computation gets applied to a list of closed operands until it becomes a computation of F type.

We write $OpList(\underline{B})$ for the set of operand lists from \underline{B} . More generally, $OpList(\Gamma | \underline{B})$ when the operands are in context Γ .

- nil $_{FA} \in OpList(\Gamma | FA)$.
- If $\Gamma \vdash^{\vee} V : A$ and $o \in OpList(\Gamma \mid \underline{B})$ then $V :: o \in OpList(\Gamma \mid A \rightarrow \underline{B})$.
- If $\hat{\imath} \in I$ and $o \in \text{OpList}(\Gamma \mid \underline{B}_{\hat{\imath}})$ then $\hat{\imath} :: o \in \text{OpList}(\Gamma \mid \prod_{i \in I} \underline{B}_i)$.

We write E(o) for the end-type of o, which is an F type. If $\Gamma \vdash^{c} M : \underline{B}$ and $o \in OpList(\Gamma \mid \underline{B})$ then $\Gamma \vdash^{c} Mo : E(I)$. We want Proponent actions to be ultimate patterns, and Opponent actions to be operand lists.

Definition of the game graph

- An active mode is an F type.
- A passive mode is a finite sequence of U types.
- A Proponent action from the active mode FA is p ∈ ulpatt(A). Its target is H(p).
- An Opponent action from the passive mode $U\underline{B}_0, \ldots, U\underline{B}_{m-1}$ is a pair (j, o) where j < m and $o \in OpList(| \underline{B}_j)$. Its target is E(o).

Definition of the transition system

- An active node in mode FA is a closed computation.
- A passive node in mode $U\underline{B}_0, \ldots, U\underline{B}_{m-1}$ is a sequence of closed values.
- For an active node $\vdash^{c} M : FA$
 - if $M \Downarrow \text{return } V$, then $V = p(\overrightarrow{W})$ and $M \stackrel{\underline{P}}{\Rightarrow} \overrightarrow{W}$ in the LTS
 - if $M \uparrow$, then $M \uparrow$ in the LTS.
- For a passive node $\vdash^{\mathsf{v}} \overrightarrow{V} : \overrightarrow{UB_i}$

$$(\overrightarrow{V}):(j,o)\stackrel{\scriptscriptstyle\mathrm{def}}{=}(\texttt{force }V_j)\;o$$

Definition of the transition system

- An active node in mode FA is a closed computation.
- A passive node in mode $U\underline{B}_0, \ldots, U\underline{B}_{m-1}$ is a sequence of closed values.
- For an active node $\vdash^{c} M : FA$
 - if $M \Downarrow \text{return } V$, then $V = p(\overrightarrow{W})$ and $M \stackrel{\underline{P}}{\Rightarrow} \overrightarrow{W}$ in the LTS
 - if $M \uparrow$, then $M \uparrow$ in the LTS.
- For a passive node $\vdash^{\mathsf{v}} \overrightarrow{V} : \overrightarrow{UB_i}$

$$(\overrightarrow{V}):(j,o)\stackrel{\scriptscriptstyle\mathrm{def}}{=}(\texttt{force }V_j)\;o$$

LTS bisimilarity coincides with applicative bisimilarity.

There is an asymmetry between the actions of the two players. The set of Proponent actions from FA is ulpatt(A). This is a countable set. There is an asymmetry between the actions of the two players. The set of Proponent actions from *FA* is ulpatt(A). This is a countable set. The set of Opponent actions from $U\underline{B}_0, \ldots, U\underline{B}_{m-1}$ is $\sum_{i < m} OpList(\underline{B}_i)$.

This is an uncountable set.

There is an asymmetry between the actions of the two players. The set of Proponent actions from FA is ulpatt(A). This is a countable set.

The set of Opponent actions from $U\underline{B}_0, \ldots, U\underline{B}_{m-1}$ is $\sum_{i < m} OpList(\underline{B}_i)$. This is an uncountable set.

So we do not have a game graph.

There is an asymmetry between the actions of the two players. The set of Proponent actions from FA is ulpatt(A). This is a countable set.

The set of Opponent actions from $U\underline{B}_0, \ldots, U\underline{B}_{m-1}$ is $\sum_{i < m} OpList(\underline{B}_i)$. This is an uncountable set.

So we do not have a game graph.

But the target mode of an Opponent action depends only on the tags that appear in it.

Definition

A game graph with parameters $\mathcal M$ consists of

- a game graph
- for each active mode *m* and Opponent action $i \in \mathcal{M}_{O}(m)$ a set $\mathcal{M}_{O}^{\text{param}}(m, i)$ of *parameters* for *i*.

The set of parameters doesn't need to be countable.

The target mode of a Opponent action doesn't depend on the parameters.

Definition

Let \mathcal{M} be a game graph with parameters. A *LTS with divergence* over \mathcal{M} consists of the following:

- for each active mode m, a set $\mathcal{S}_{act}(m)$ of active nodes in mode m
- for each passive mode *m*, a set $\mathcal{S}_{pass}(m)$ of *passive nodes in mode m*
- for each active mode m, a function $S_{act}(m) \xrightarrow{\theta_{act}(m)} \mathcal{P}((\sum_{i \in \mathcal{M}_{P}(m)} S_{pass}tgt_{P}(m, i)) + \{\uparrow\})$
- for each passive mode m, a function $\mathcal{S}_{\text{pass}}(m) \xrightarrow{\theta_{\text{pass}}(m)} \prod_{i \in \mathcal{M}(m)} (\mathcal{M}_{O}^{\text{param}}(m, i) \to \mathcal{S}_{\text{act}} \text{tgt}_{O}(m, i))$.
- For an active node *n*, we write $n \stackrel{i}{\Rightarrow} n'$ and $n \Uparrow$
- For a passive node *n*, we write *n* : *i*(*a*) for the node we move to after inputting action *i* and parameter *a*.

Every computation type \underline{B} is isomorphic to one of the form $\prod_{i \in I} (U\underline{A}_i \to FB_i).$

An operand list is a sequence of values and tags. So just like a single value, it can be ultimately pattern matched.

Every computation type \underline{B} is isomorphic to one of the form $\prod_{i \in I} (U\underline{A}_i \to FB_i).$

An operand list is a sequence of values and tags. So just like a single value, it can be ultimately pattern matched.

We write $olup(\underline{B})$ for the set of operand list ultimate patterns.

Every computation type \underline{B} is isomorphic to one of the form $\prod_{i \in I} (U\underline{A}_i \to FB_i).$

An operand list is a sequence of values and tags. So just like a single value, it can be ultimately pattern matched.

We write $olup(\underline{B})$ for the set of operand list ultimate patterns.

These sets are defined by mutual induction.

- nil $_{FA} \in olup(FA)$.
- If $p \in \text{ulpatt}(A)$ and $q \in \text{olup}(\underline{B})$ then $p :: q \in \text{olup}(A \to \underline{B})$.
- If $\hat{\imath} \in I$ and $q \in \mathsf{olup}(\underline{B}_{\hat{\imath}})$ then $\hat{\imath} :: q \in \mathsf{olup}(\prod_{i \in I} \underline{B}_i)$.

Every computation type \underline{B} is isomorphic to one of the form $\prod_{i \in I} (U\underline{A}_i \to FB_i).$

An operand list is a sequence of values and tags. So just like a single value, it can be ultimately pattern matched.

We write $olup(\underline{B})$ for the set of operand list ultimate patterns.

These sets are defined by mutual induction.

- nil $_{FA} \in olup(FA)$.
- If $p \in \text{ulpatt}(A)$ and $q \in \text{olup}(\underline{B})$ then $p :: q \in \text{olup}(A \to \underline{B})$.
- If $\hat{\imath} \in I$ and $q \in \mathsf{olup}(\underline{B}_{\hat{\imath}})$ then $\hat{\imath} :: q \in \mathsf{olup}(\prod_{i \in I} \underline{B}_i)$.

We write H(q) for the sequence of types—all U types—of the holes of q. We write E(q) for the end-type of q, which is an F type.

The Ultimate Pattern Matching Theorem For Operand Lists

Theorem for Closed Operand Lists

Any closed operand list $o \in \text{OpList}(\underline{B})$ is $q(\overrightarrow{W})$ for unique $q \in \text{olup}(\underline{B})$ and filling $\vdash^{\vee} \overrightarrow{W} : H(q)$.

Theorem for Open Operand Lists

Let Γ be a context in which each identifier has a U type. Any closed operand list $o \in \text{OpList}(\Gamma \mid \underline{B})$ is $q(\overrightarrow{W})$ for unique $q \in \text{olup}(\underline{B})$ and filling $\Gamma \vdash^{\vee} \overrightarrow{W} : H(q)$.

Definition of the game graph with parameters

- An active mode is an F type.
- A passive mode is a finite sequence of U types.
- A Proponent action from the active mode FA is p ∈ ulpatt(A). Its target is H(p).
- An Opponent action from the passive mode $U\underline{B}_0, \ldots, U\underline{B}_{m-1}$ is a pair (j, q) where j < m and $q \in olup(\underline{B}_j)$. Its target is E(q).
- A parameter for (j, q) is a value sequence $\vdash^{\vee} \overrightarrow{V} : H(q)$.

Definition of the transition system

- An active node in mode FA is a closed computation.
- A passive node in mode $U\underline{B}_0, \ldots, U\underline{B}_{m-1}$ is a sequence of closed values.
- For an active node $\vdash^{c} M : FA$
 - if $M \Downarrow \text{return } V$, then $V = p(\overrightarrow{W})$ and $M \stackrel{\underline{p}}{\Rightarrow} \overrightarrow{W}$ in the LTS
 - if $M \uparrow$, then $M \uparrow$ in the LTS.
- For a passive node $\vdash^{\mathsf{v}} \overrightarrow{V} : \overrightarrow{UB_i}$

$$(\overrightarrow{V}):(j,q)(\overrightarrow{W})\stackrel{\scriptscriptstyle\mathrm{def}}{=}(\texttt{force }V_j)\;q(\overrightarrow{W})$$

But in a normal form LTS, he does not supply a filling. It gets filled with fresh identifiers.

But in a normal form LTS, he does not supply a filling. It gets filled with fresh identifiers.

This requires operational semantics to be defined on open computations.

But in a normal form LTS, he does not supply a filling. It gets filled with fresh identifiers.

This requires operational semantics to be defined on open computations.

A mode contains two contexts Γ_P and Γ_O , representing the free identifiers possessed by each player.

But in a normal form LTS, he does not supply a filling. It gets filled with fresh identifiers.

This requires operational semantics to be defined on open computations.

A mode contains two contexts Γ_P and Γ_O , representing the free identifiers possessed by each player.

Such transition systems are closely related to game semantics using pointers (Laird 2007, Jagadeesan, Pitcher and Riely 2007, Lassen and Levy 2007).

A renaming $\Gamma_P \xrightarrow{\theta_P} \Gamma'_P$ and a renaming $\Gamma'_O \xrightarrow{\theta_O} \Gamma_O$ induce a map from the nodes in mode Γ_P ; Γ_O to the nodes in mode Γ'_P ; Γ'_O .

A renaming $\Gamma_P \xrightarrow{\theta_P} \Gamma'_P$ and a renaming $\Gamma'_O \xrightarrow{\theta_O} \Gamma_O$ induce a map from the nodes in mode Γ_P ; Γ_O to the nodes in mode Γ'_P ; Γ'_O . It is an easy result that bisimilarity is preserved by renaming. A renaming $\Gamma_P \xrightarrow{\theta_P} \Gamma'_P$ and a renaming $\Gamma'_O \xrightarrow{\theta_O} \Gamma_O$ induce a map from the nodes in mode $\Gamma_P; \Gamma_O$ to the nodes in mode $\Gamma'_P; \Gamma'_O$.

It is an easy result that bisimilarity is preserved by renaming.

We make this automatic by adapting the notion of game graph and LTS to incorporate morphisms between modes.