
Labelled Transition Systems For a Game Graph

Soren Lassen1 Paul Blain Levy2

1Google, Inc.

2University of Birmingham

March 29, 2009

Soren Lassen, Paul Blain Levy (Google, Inc., University of Birmingham)LTSs for a game graph March 29, 2009 1 / 27

Outline

1 Adapting LTSs to games

2 Example: the applicative LTS for call-by-push-value

3 Discussion of normal form LTSs

Soren Lassen, Paul Blain Levy (Google, Inc., University of Birmingham)LTSs for a game graph March 29, 2009 2 / 27

Labelled Transition Systems

Definition

An alphabet A is a countable set of actions.

Definition

A LTS over A is a set S of nodes and a function S
θ // P(A× S) .

Coalgebra for S 7→ P(A× S)

A LTS with divergence over A is a set S of nodes and a function

S
θ // P((A× S) + {⇑}) . Coalgebra for S 7→ P((A× S) + {⇑})

Can we adapt all this to (alternating) two-player games?

We must distinguish between Proponent (output) actions and
Opponent (input) actions. (cf. Moore and Mealy machines)

The set of available actions must change through time (cf. typed
transition systems).

Soren Lassen, Paul Blain Levy (Google, Inc., University of Birmingham)LTSs for a game graph March 29, 2009 3 / 27

Game graphs

We replace the definition of alphabet as follows.

Definition

A game graph M consists of

a set Mact of active modes (rough idea: mode = type)

a set Mpass of passive modes

for each active mode m ∈Mact, a countable set MP(m) of
Proponent-actions from m

a function
∑

m∈Mact
MP(m)

tgtP //Mpass

for each passive mode m ∈Mpass, a countable set MO(m) of
Opponent-actions from m

a function
∑

m∈Mpass
MO(m)

tgtO //Mact

These are not transitions systems. (cf. Hyvernat’s Janus systems)

Soren Lassen, Paul Blain Levy (Google, Inc., University of Birmingham)LTSs for a game graph March 29, 2009 4 / 27

Game graphs

We replace the definition of alphabet as follows.

Definition

A game graph M consists of

a set Mact of active modes (rough idea: mode = type)

a set Mpass of passive modes

for each active mode m ∈Mact, a countable set MP(m) of
Proponent-actions from m

a function
∑

m∈Mact
MP(m)

tgtP //Mpass

for each passive mode m ∈Mpass, a countable set MO(m) of
Opponent-actions from m

a function
∑

m∈Mpass
MO(m)

tgtO //Mact

These are not transitions systems. (cf. Hyvernat’s Janus systems)

Soren Lassen, Paul Blain Levy (Google, Inc., University of Birmingham)LTSs for a game graph March 29, 2009 4 / 27

LTS over a game graph

Definition

Let M be a game graph. A LTS with divergence over M consists of the
following:

for each active mode m, a set Sact(m) of active nodes in mode m

for each passive mode m, a set Spass(m) of passive nodes in mode m

for each active mode m, a function

Sact(m)
θact(m)// P((

∑
i∈MP(m)SpasstgtP(m, i))+{⇑})

for each passive mode m, a function

Spass(m)
θpass(m)//

∏
i∈M(m) SacttgtO(m, i) .

For an active node n, we write n ⇒i n′ and n ⇑
For a passive node n, we write n : i for the node we move to after
inputting i .

Soren Lassen, Paul Blain Levy (Google, Inc., University of Birmingham)LTSs for a game graph March 29, 2009 5 / 27

LTS wrt an endofunctor

Let M be a game graph, and let R be an endofunctor on Set.

Definition

Let M be a game graph. A LTS over M wrt R consists of the following:

for each active mode m, a set Sact(m) of active nodes in mode m

for each passive mode m, a set Spass(m) of passive nodes in mode m

for each active mode m, a function

Sact(m)
θact(m)// R

∑
i∈MP(m)SpasstgtP(m, i)

for each passive mode m, a function

Spass(m)
θpass(m)//

∏
i∈M(m) SacttgtO(m, i) .

Soren Lassen, Paul Blain Levy (Google, Inc., University of Birmingham)LTSs for a game graph March 29, 2009 6 / 27

LTS as a coalgebra

Let M be a game graph, and let R be an endofunctor on Set.

Definition

The endofunctor RM on SetMact × SetMpass is given by

〈Sact,Spass〉 7→ 〈λm ∈Mact.R
∑

i∈MP(m)SpasstgtP(m, i),

λm ∈Mpass.
∏

i∈MO(m)SacttgtO(m, i)〉

Definition

A LTS over M wrt R is a coalgebra for RM.

Soren Lassen, Paul Blain Levy (Google, Inc., University of Birmingham)LTSs for a game graph March 29, 2009 7 / 27

Bisimulation

Let R be a mode-indexed binary relation between S and S ′, LTSs over a
game graph M.
It is a convex bisimulation when the following conditions hold.

Proponent actions are matched

For active nodes n R n′ in mode m

if n ⇒i p then there exists p′ s.t. n′ ⇒i p′ and p R p′

if n′ ⇒i p′ then there exists p s.t. n ⇒i p and p R p′

n ⇑ iff n′ ⇑

Opponent actions are matched

For passive nodes n R n′ in mode m,

n : i R n′ : i for each i ∈MO(m)

The largest convex bisimulation is convex bisimilarity.

Soren Lassen, Paul Blain Levy (Google, Inc., University of Birmingham)LTSs for a game graph March 29, 2009 8 / 27

Call-By-Push-Value Syntax

Types (can also include type recursion)

value types A ::= UB |
∑

i∈IAi | 1 | A× A
computation types B ::= FA |

∏
i∈I B i | A→ B

Terms (including recursion and countable nondeterminism)

Judgements Γ `v V : A Γ `c M : B

values V ::= x | thunk M | 〈̂ı,V 〉 | 〈V ,V 〉
computations M ::= let V be x. M | return V | M to x. M

| λx.M | MV | λ{i .Mi}i∈I | M ı̂ | force V
| pm V as {〈i , x〉. Mi}i∈I | pm V as 〈x, y〉. M
| rec x. M | choose n ∈ N. Mn

Soren Lassen, Paul Blain Levy (Google, Inc., University of Birmingham)LTSs for a game graph March 29, 2009 9 / 27

Applicative Bisimulation (Abramsky 1990)

A type-indexed relation R on closed terms is a convex applicative
bisimulation when the following hold.

If M R M ′ : FA

M ⇓ return V implies there exists V ′ s.t. M ′ ⇓ V ′ and V R V ′ : A

M ′ ⇓ return V ′ implies there exists V s.t. M ⇓ V and V R V ′ : A

M ⇑ iff M ′ ⇑

Requirements at other types

If 〈̂ı,V 〉 R 〈̂ı′,V ′〉 :
∑

i∈IAi then ı̂ = ı̂′ and V R V ′ : Aı̂.

If 〈V ,W 〉 R 〈V ′,W ′〉 : A× B then V R V ′ : A and W R W ′ : B.

If V R V ′ : UB then force V R force V ′ : B.

If M R M ′ : A→ B then MV R M ′V : B for each `v V : B.

If M R M ′ :
∏

i∈IB i then M ı̂ R M ′ı̂ for each ı̂ ∈ I .

Soren Lassen, Paul Blain Levy (Google, Inc., University of Birmingham)LTSs for a game graph March 29, 2009 10 / 27

Some conditions are Proponent flavoured

If M R M ′ : FA

M ⇓ return V implies there exists V ′ s.t. M ′ ⇓ V ′ and V R V ′ : A

M ′ ⇓ return V ′ implies there exists V s.t. M ⇓ V and V R V ′ : A

M ⇑ iff M ′ ⇑

Requirements at other types

If 〈̂ı,V 〉 R 〈̂ı′,V ′〉 :
∑

i∈IAi then ı̂ = ı̂′ and V = V ′.

If 〈V ,W 〉 R 〈V ′,W ′〉 : A× B then V R V ′ : A and W R W ′ : B.

If V R V ′ : UB then force V R force V ′ : B.

If M R M ′ : A→ B then MV R M ′V : B for each `v V : B.

If M R M ′ :
∏

i∈IB i then M ı̂ R M ′ı̂ for each ı̂ ∈ I .

Soren Lassen, Paul Blain Levy (Google, Inc., University of Birmingham)LTSs for a game graph March 29, 2009 11 / 27

Some conditions are Opponent flavoured

If M R M ′ : FA

M ⇓ return V implies there exists V ′ s.t. M ′ ⇓ V ′ and V R V ′ : A

M ′ ⇓ return V ′ implies there exists V s.t. M ⇓ V and V R V ′ : A

M ⇑ iff M ′ ⇑

Requirements at other types

If 〈̂ı,V 〉 R 〈̂ı′,V ′〉 :
∑

i∈IAi then ı̂ = ı̂′ and V = V ′.

If 〈V ,W 〉 R 〈V ′,W ′〉 : A× B then V R V ′ : A and W R W ′ : B.

If V R V ′ : UB then force V R force V ′ : B.

If M R M ′ : A→ B then MV R M ′V : B for each `v V : B.

If M R M ′ :
∏

i∈IB i then M ı̂ R M ′ı̂ for each ı̂ ∈ I .

Soren Lassen, Paul Blain Levy (Google, Inc., University of Birmingham)LTSs for a game graph March 29, 2009 12 / 27

Ultimate Patterns: for the Proponent actions

Intuition (Abramsky-McCusker)

Every value type A is isomorphic to one of the form
∑

i∈IUB i

We want to decompose a closed value into

an ultimate pattern—the tags

and the filling a value sequence—the rest, consisting of thunks.

Example:

〈i0, 〈〈〈thunk M, thunk M ′〉, thunk M ′′〉, 〈i1, thunk M ′′′〉〉〉

We decompose this into

the ultimate pattern 〈i0, 〈〈〈−UB ,−UB′〉,−UB′′〉, 〈i1,−UB′′′〉〉〉

and the filling thunk M, thunk M ′, thunk M ′′, thunk M ′′′

Soren Lassen, Paul Blain Levy (Google, Inc., University of Birmingham)LTSs for a game graph March 29, 2009 13 / 27

The Ultimate Patterns

We write ulpatt(A) for the set of ultimate patterns of type A.

These sets are defined by mutual induction.

−UB ∈ ulpatt(UA).

If p ∈ ulpatt(A) and p′ ∈ ulpatt(A′) then 〈p, p′〉 ∈ ulpatt(A× A′).

If ı̂ ∈ I and p ∈ ulpatt(Aı̂) then 〈̂ı, p〉 ∈ ulpatt(
∑

i∈IAi).

We write H(p) for the sequence of types of the holes of p. They are all U
types.

Soren Lassen, Paul Blain Levy (Google, Inc., University of Birmingham)LTSs for a game graph March 29, 2009 14 / 27

The Ultimate Patterns

We write ulpatt(A) for the set of ultimate patterns of type A.

These sets are defined by mutual induction.

−UB ∈ ulpatt(UA).

If p ∈ ulpatt(A) and p′ ∈ ulpatt(A′) then 〈p, p′〉 ∈ ulpatt(A× A′).

If ı̂ ∈ I and p ∈ ulpatt(Aı̂) then 〈̂ı, p〉 ∈ ulpatt(
∑

i∈IAi).

We write H(p) for the sequence of types of the holes of p. They are all U
types.

Soren Lassen, Paul Blain Levy (Google, Inc., University of Birmingham)LTSs for a game graph March 29, 2009 14 / 27

Ultimate Pattern Matching Theorem

Theorem for Closed Values

Any closed value ` V : A is p(
−→
W) for unique p ∈ ulpatt(A) and filling

`
−→
V : A.

Theorem for Open Values

Let Γ be a context in which each identifier has a U type.

Any value Γ `v V : A is p(
−→
W) for unique p ∈ ulpatt(A) and filling

Γ `
−→
V : A.

Soren Lassen, Paul Blain Levy (Google, Inc., University of Birmingham)LTSs for a game graph March 29, 2009 15 / 27

Operand List—for Opponent Actions

In the applicative rules, a closed computation gets applied to a list of
closed operands until it becomes a computation of F type.

We write OpList(B) for the set of operand lists from B.

More generally, OpList(Γ | B) when the operands are in context Γ.

nil FA ∈ OpList(Γ | FA).

If Γ `v V : A and o ∈ OpList(Γ | B) then V :: o ∈ OpList(Γ | A→ B).

If ı̂ ∈ I and o ∈ OpList(Γ | B ı̂) then ı̂ :: o ∈ OpList(Γ |
∏

i∈I B i).

We write E (o) for the end-type of o, which is an F type.

If Γ `c M : B and o ∈ OpList(Γ | B) then Γ `c Mo : E (l).

Soren Lassen, Paul Blain Levy (Google, Inc., University of Birmingham)LTSs for a game graph March 29, 2009 16 / 27

Operand List—for Opponent Actions

In the applicative rules, a closed computation gets applied to a list of
closed operands until it becomes a computation of F type.

We write OpList(B) for the set of operand lists from B.
More generally, OpList(Γ | B) when the operands are in context Γ.

nil FA ∈ OpList(Γ | FA).

If Γ `v V : A and o ∈ OpList(Γ | B) then V :: o ∈ OpList(Γ | A→ B).

If ı̂ ∈ I and o ∈ OpList(Γ | B ı̂) then ı̂ :: o ∈ OpList(Γ |
∏

i∈I B i).

We write E (o) for the end-type of o, which is an F type.

If Γ `c M : B and o ∈ OpList(Γ | B) then Γ `c Mo : E (l).

Soren Lassen, Paul Blain Levy (Google, Inc., University of Birmingham)LTSs for a game graph March 29, 2009 16 / 27

Operand List—for Opponent Actions

In the applicative rules, a closed computation gets applied to a list of
closed operands until it becomes a computation of F type.

We write OpList(B) for the set of operand lists from B.
More generally, OpList(Γ | B) when the operands are in context Γ.

nil FA ∈ OpList(Γ | FA).

If Γ `v V : A and o ∈ OpList(Γ | B) then V :: o ∈ OpList(Γ | A→ B).

If ı̂ ∈ I and o ∈ OpList(Γ | B ı̂) then ı̂ :: o ∈ OpList(Γ |
∏

i∈I B i).

We write E (o) for the end-type of o, which is an F type.

If Γ `c M : B and o ∈ OpList(Γ | B) then Γ `c Mo : E (l).

Soren Lassen, Paul Blain Levy (Google, Inc., University of Birmingham)LTSs for a game graph March 29, 2009 16 / 27

The Applicative Game Graph

We want Proponent actions to be ultimate patterns, and Opponent
actions to be operand lists.

Definition of the game graph

An active mode is an F type.

A passive mode is a finite sequence of U types.

A Proponent action from the active mode FA is p ∈ ulpatt(A). Its
target is H(p).

An Opponent action from the passive mode UB0, . . . ,UBm−1 is a
pair (j , o) where j < m and o ∈ OpList(| B j). Its target is E (o).

Soren Lassen, Paul Blain Levy (Google, Inc., University of Birmingham)LTSs for a game graph March 29, 2009 17 / 27

The Applicative LTS

Definition of the transition system

An active node in mode FA is a closed computation.

A passive node in mode UB0, . . . ,UBm−1 is a sequence of closed
values.

For an active node `c M : FA

if M ⇓ return V , then V = p(
−→
W) and M ⇒p

−→
W in the LTS

if M ⇑, then M ⇑ in the LTS.

For a passive node `v −→V :
−−→
UB i

(
−→
V) : (j , o)

def
= (force Vj) o

LTS bisimilarity coincides with applicative bisimilarity.

Soren Lassen, Paul Blain Levy (Google, Inc., University of Birmingham)LTSs for a game graph March 29, 2009 18 / 27

The Applicative LTS

Definition of the transition system

An active node in mode FA is a closed computation.

A passive node in mode UB0, . . . ,UBm−1 is a sequence of closed
values.

For an active node `c M : FA

if M ⇓ return V , then V = p(
−→
W) and M ⇒p

−→
W in the LTS

if M ⇑, then M ⇑ in the LTS.

For a passive node `v −→V :
−−→
UB i

(
−→
V) : (j , o)

def
= (force Vj) o

LTS bisimilarity coincides with applicative bisimilarity.

Soren Lassen, Paul Blain Levy (Google, Inc., University of Birmingham)LTSs for a game graph March 29, 2009 18 / 27

Proponent actions vs Opponent actions

There is an asymmetry between the actions of the two players.
The set of Proponent actions from FA is ulpatt(A). This is a countable set.

The set of Opponent actions from UB0, . . . ,UBm−1 is
∑

i<mOpList(B i).
This is an uncountable set.

So we do not have a game graph.

But the target mode of an Opponent action depends only on the tags that
appear in it.

Soren Lassen, Paul Blain Levy (Google, Inc., University of Birmingham)LTSs for a game graph March 29, 2009 19 / 27

Proponent actions vs Opponent actions

There is an asymmetry between the actions of the two players.
The set of Proponent actions from FA is ulpatt(A). This is a countable set.

The set of Opponent actions from UB0, . . . ,UBm−1 is
∑

i<mOpList(B i).
This is an uncountable set.

So we do not have a game graph.

But the target mode of an Opponent action depends only on the tags that
appear in it.

Soren Lassen, Paul Blain Levy (Google, Inc., University of Birmingham)LTSs for a game graph March 29, 2009 19 / 27

Proponent actions vs Opponent actions

There is an asymmetry between the actions of the two players.
The set of Proponent actions from FA is ulpatt(A). This is a countable set.

The set of Opponent actions from UB0, . . . ,UBm−1 is
∑

i<mOpList(B i).
This is an uncountable set.

So we do not have a game graph.

But the target mode of an Opponent action depends only on the tags that
appear in it.

Soren Lassen, Paul Blain Levy (Google, Inc., University of Birmingham)LTSs for a game graph March 29, 2009 19 / 27

Proponent actions vs Opponent actions

There is an asymmetry between the actions of the two players.
The set of Proponent actions from FA is ulpatt(A). This is a countable set.

The set of Opponent actions from UB0, . . . ,UBm−1 is
∑

i<mOpList(B i).
This is an uncountable set.

So we do not have a game graph.

But the target mode of an Opponent action depends only on the tags that
appear in it.

Soren Lassen, Paul Blain Levy (Google, Inc., University of Birmingham)LTSs for a game graph March 29, 2009 19 / 27

Game graph with parameters

Definition

A game graph with parameters M consists of

a game graph

for each active mode m and Opponent action i ∈MO(m) a set
Mparam

O (m, i) of parameters for i .

The set of parameters doesn’t need to be countable.

The target mode of a Opponent action doesn’t depend on the parameters.

Soren Lassen, Paul Blain Levy (Google, Inc., University of Birmingham)LTSs for a game graph March 29, 2009 20 / 27

LTS over a game graph with parameters

Definition

Let M be a game graph with parameters. A LTS with divergence over M
consists of the following:

for each active mode m, a set Sact(m) of active nodes in mode m

for each passive mode m, a set Spass(m) of passive nodes in mode m

for each active mode m, a function

Sact(m)
θact(m)// P((

∑
i∈MP(m)SpasstgtP(m, i)) + {⇑})

for each passive mode m, a function

Spass(m)
θpass(m)//

∏
i∈M(m)(M

param
O (m, i) → SacttgtO(m, i)) .

For an active node n, we write n ⇒i n′ and n ⇑
For a passive node n, we write n : i(a) for the node we move to after
inputting action i and parameter a.

Soren Lassen, Paul Blain Levy (Google, Inc., University of Birmingham)LTSs for a game graph March 29, 2009 21 / 27

Ultimate patterns for operand list

Intuition

Every computation type B is isomorphic to one of the form∏
i∈I (UAi → FBi).

An operand list is a sequence of values and tags. So just like a single
value, it can be ultimately pattern matched.

We write olup(B) for the set of operand list ultimate patterns.

These sets are defined by mutual induction.

nil FA ∈ olup(FA).

If p ∈ ulpatt(A) and q ∈ olup(B) then p :: q ∈ olup(A→ B).

If ı̂ ∈ I and q ∈ olup(B ı̂) then ı̂ :: q ∈ olup(
∏

i∈I B i).

We write H(q) for the sequence of types—all U types—of the holes of q.
We write E (q) for the end-type of q, which is an F type.

Soren Lassen, Paul Blain Levy (Google, Inc., University of Birmingham)LTSs for a game graph March 29, 2009 22 / 27

Ultimate patterns for operand list

Intuition

Every computation type B is isomorphic to one of the form∏
i∈I (UAi → FBi).

An operand list is a sequence of values and tags. So just like a single
value, it can be ultimately pattern matched.

We write olup(B) for the set of operand list ultimate patterns.

These sets are defined by mutual induction.

nil FA ∈ olup(FA).

If p ∈ ulpatt(A) and q ∈ olup(B) then p :: q ∈ olup(A→ B).

If ı̂ ∈ I and q ∈ olup(B ı̂) then ı̂ :: q ∈ olup(
∏

i∈I B i).

We write H(q) for the sequence of types—all U types—of the holes of q.
We write E (q) for the end-type of q, which is an F type.

Soren Lassen, Paul Blain Levy (Google, Inc., University of Birmingham)LTSs for a game graph March 29, 2009 22 / 27

Ultimate patterns for operand list

Intuition

Every computation type B is isomorphic to one of the form∏
i∈I (UAi → FBi).

An operand list is a sequence of values and tags. So just like a single
value, it can be ultimately pattern matched.

We write olup(B) for the set of operand list ultimate patterns.

These sets are defined by mutual induction.

nil FA ∈ olup(FA).

If p ∈ ulpatt(A) and q ∈ olup(B) then p :: q ∈ olup(A→ B).

If ı̂ ∈ I and q ∈ olup(B ı̂) then ı̂ :: q ∈ olup(
∏

i∈I B i).

We write H(q) for the sequence of types—all U types—of the holes of q.
We write E (q) for the end-type of q, which is an F type.

Soren Lassen, Paul Blain Levy (Google, Inc., University of Birmingham)LTSs for a game graph March 29, 2009 22 / 27

Ultimate patterns for operand list

Intuition

Every computation type B is isomorphic to one of the form∏
i∈I (UAi → FBi).

An operand list is a sequence of values and tags. So just like a single
value, it can be ultimately pattern matched.

We write olup(B) for the set of operand list ultimate patterns.

These sets are defined by mutual induction.

nil FA ∈ olup(FA).

If p ∈ ulpatt(A) and q ∈ olup(B) then p :: q ∈ olup(A→ B).

If ı̂ ∈ I and q ∈ olup(B ı̂) then ı̂ :: q ∈ olup(
∏

i∈I B i).

We write H(q) for the sequence of types—all U types—of the holes of q.
We write E (q) for the end-type of q, which is an F type.

Soren Lassen, Paul Blain Levy (Google, Inc., University of Birmingham)LTSs for a game graph March 29, 2009 22 / 27

The Ultimate Pattern Matching Theorem For Operand
Lists

Theorem for Closed Operand Lists

Any closed operand list o ∈ OpList(B) is q(
−→
W) for unique q ∈ olup(B)

and filling `v −→W : H(q).

Theorem for Open Operand Lists

Let Γ be a context in which each identifier has a U type.

Any closed operand list o ∈ OpList(Γ | B) is q(
−→
W) for unique q ∈ olup(B)

and filling Γ `v −→W : H(q).

Soren Lassen, Paul Blain Levy (Google, Inc., University of Birmingham)LTSs for a game graph March 29, 2009 23 / 27

The Applicative Game Graph, Take Two

Definition of the game graph with parameters

An active mode is an F type.

A passive mode is a finite sequence of U types.

A Proponent action from the active mode FA is p ∈ ulpatt(A). Its
target is H(p).

An Opponent action from the passive mode UB0, . . . ,UBm−1 is a
pair (j , q) where j < m and q ∈ olup(B j). Its target is E (q).

A parameter for (j , q) is a value sequence `v −→V : H(q).

Soren Lassen, Paul Blain Levy (Google, Inc., University of Birmingham)LTSs for a game graph March 29, 2009 24 / 27

The Applicative LTS, Take Two

Definition of the transition system

An active node in mode FA is a closed computation.

A passive node in mode UB0, . . . ,UBm−1 is a sequence of closed
values.

For an active node `c M : FA

if M ⇓ return V , then V = p(
−→
W) and M ⇒p

−→
W in the LTS

if M ⇑, then M ⇑ in the LTS.

For a passive node `v −→V :
−−→
UB i

(
−→
V) : (j , q)(

−→
W)

def
= (force Vj) q(

−→
W)

Soren Lassen, Paul Blain Levy (Google, Inc., University of Birmingham)LTSs for a game graph March 29, 2009 25 / 27

Normal Form (Open) Bisimulation

In the applicative LTS, when the Opponent plays an operand list ultimate
pattern, he supplies a filling of closed values.

But in a normal form LTS, he does not supply a filling. It gets filled with
fresh identifiers.

This requires operational semantics to be defined on open computations.

A mode contains two contexts ΓP and ΓO, representing the free identifiers
possessed by each player.

Such transition systems are closely related to game semantics using
pointers (Laird 2007, Jagadeesan, Pitcher and Riely 2007, Lassen and Levy
2007).

Soren Lassen, Paul Blain Levy (Google, Inc., University of Birmingham)LTSs for a game graph March 29, 2009 26 / 27

Normal Form (Open) Bisimulation

In the applicative LTS, when the Opponent plays an operand list ultimate
pattern, he supplies a filling of closed values.

But in a normal form LTS, he does not supply a filling. It gets filled with
fresh identifiers.

This requires operational semantics to be defined on open computations.

A mode contains two contexts ΓP and ΓO, representing the free identifiers
possessed by each player.

Such transition systems are closely related to game semantics using
pointers (Laird 2007, Jagadeesan, Pitcher and Riely 2007, Lassen and Levy
2007).

Soren Lassen, Paul Blain Levy (Google, Inc., University of Birmingham)LTSs for a game graph March 29, 2009 26 / 27

Normal Form (Open) Bisimulation

In the applicative LTS, when the Opponent plays an operand list ultimate
pattern, he supplies a filling of closed values.

But in a normal form LTS, he does not supply a filling. It gets filled with
fresh identifiers.

This requires operational semantics to be defined on open computations.

A mode contains two contexts ΓP and ΓO, representing the free identifiers
possessed by each player.

Such transition systems are closely related to game semantics using
pointers (Laird 2007, Jagadeesan, Pitcher and Riely 2007, Lassen and Levy
2007).

Soren Lassen, Paul Blain Levy (Google, Inc., University of Birmingham)LTSs for a game graph March 29, 2009 26 / 27

Normal Form (Open) Bisimulation

In the applicative LTS, when the Opponent plays an operand list ultimate
pattern, he supplies a filling of closed values.

But in a normal form LTS, he does not supply a filling. It gets filled with
fresh identifiers.

This requires operational semantics to be defined on open computations.

A mode contains two contexts ΓP and ΓO, representing the free identifiers
possessed by each player.

Such transition systems are closely related to game semantics using
pointers (Laird 2007, Jagadeesan, Pitcher and Riely 2007, Lassen and Levy
2007).

Soren Lassen, Paul Blain Levy (Google, Inc., University of Birmingham)LTSs for a game graph March 29, 2009 26 / 27

Normal Form (Open) Bisimulation

In the applicative LTS, when the Opponent plays an operand list ultimate
pattern, he supplies a filling of closed values.

But in a normal form LTS, he does not supply a filling. It gets filled with
fresh identifiers.

This requires operational semantics to be defined on open computations.

A mode contains two contexts ΓP and ΓO, representing the free identifiers
possessed by each player.

Such transition systems are closely related to game semantics using
pointers (Laird 2007, Jagadeesan, Pitcher and Riely 2007, Lassen and Levy
2007).

Soren Lassen, Paul Blain Levy (Google, Inc., University of Birmingham)LTSs for a game graph March 29, 2009 26 / 27

Renamings—recent work with Sam Staton

A renaming ΓP
θP // Γ′P and a renaming Γ′O

θO // ΓO induce a map

from the nodes in mode ΓP; ΓO to the nodes in mode Γ′P; Γ′O.

It is an easy result that bisimilarity is preserved by renaming.

We make this automatic by adapting the notion of game graph and LTS
to incorporate morphisms between modes.

Soren Lassen, Paul Blain Levy (Google, Inc., University of Birmingham)LTSs for a game graph March 29, 2009 27 / 27

Renamings—recent work with Sam Staton

A renaming ΓP
θP // Γ′P and a renaming Γ′O

θO // ΓO induce a map

from the nodes in mode ΓP; ΓO to the nodes in mode Γ′P; Γ′O.

It is an easy result that bisimilarity is preserved by renaming.

We make this automatic by adapting the notion of game graph and LTS
to incorporate morphisms between modes.

Soren Lassen, Paul Blain Levy (Google, Inc., University of Birmingham)LTSs for a game graph March 29, 2009 27 / 27

Renamings—recent work with Sam Staton

A renaming ΓP
θP // Γ′P and a renaming Γ′O

θO // ΓO induce a map

from the nodes in mode ΓP; ΓO to the nodes in mode Γ′P; Γ′O.

It is an easy result that bisimilarity is preserved by renaming.

We make this automatic by adapting the notion of game graph and LTS
to incorporate morphisms between modes.

Soren Lassen, Paul Blain Levy (Google, Inc., University of Birmingham)LTSs for a game graph March 29, 2009 27 / 27

	Adapting LTSs to games

