Towards a Synchronous Game Semantics*

Mohamed N. Menaa \&
Dan Ghica

University of Birmingham

GaLoP
28 March 2009

* (Work in progress)

Synchrony

The Perfectly Synchronous Concurrency Model

Based on the synchronous hypothesis: concurrent processes can compute and communicate in zero time (on a level of abstraction).

Synchronous Languages

Computation proceeds in a sequence of atomic macro-steps (rounds) within which micro-steps are considered simultaneous, cyclically:

1. read the inputs
2. compute
3. produce the outputs

1 - Game Semantics is Asynchronous

Concurrent Game Semantics

Game semantics of Concurrent Algol [GM07]

- Language constants interpreted by saturated strategies
- record all sequential observations of parallel interactions.

Definition

$\sigma: A$ is saturated iff

1. If $s_{0} \cdot m_{1} \cdot m_{2} \cdot s_{1} \in \sigma$ and $\lambda_{A}\left(m_{1}\right)=\lambda_{A}\left(m_{2}\right)$ then $s_{0} \cdot m_{2} \cdot m_{1} \cdot s_{1} \in \sigma$
2. If s_{0}.p.o. $s_{1} \in \sigma$ and s_{0}.o.p. $s_{1} \in P_{A}$ then s_{0}.o.p. $s_{1} \in \sigma$

Asynchrony in Game Semantics

Saturated strategies capture the intuition that in a concurrent (asynchronous) setting, some of the ordering of events in a play is arbitrary:

- Arbitrary delays on communication channels.

$$
m \| m^{\prime} \rightsquigarrow m \cdot m^{\prime}, m^{\prime} \cdot m
$$

True Concurrency

In some execution models (e.g. clocked digital hardware), concurrent events are truly simultaneous.

$$
o_{1} \| o_{2} \rightsquigarrow\left\langle o_{1}, o_{2}\right\rangle
$$

2 - Synchronous Interpretations of Asynchronous Primitives

I/O Simultaneity

$R_{3} \cdot R_{1} \cdot D_{1} \cdot R_{2} \cdot D_{2} \cdot D_{3}$

I/O Simultaneity

$$
R_{3} \cdot R_{1} \cdot D_{1} \cdot R_{2} \cdot D_{2} \cdot D_{3}
$$

In a synchronous setting: $\left\langle R_{3}, R_{1}\right\rangle .\left\langle D_{1}, R_{2}\right\rangle .\left\langle D_{2}, D_{3}\right\rangle$

Round Abstraction

- Given an output variable x on an asynchronous module P, next x for P is the module obtained by collapsing all computational steps occuring between two changes in x into a single computational step [AH99].
- Use a variant where every output in a round marker, to systematically derive synchronous strategies for primitive that have an asynchronous definitions.

Round generation

- if $s_{1} \cdot o . p . s_{2} \in \sigma$ then $s_{1} \cdot\langle o, p\rangle . s_{2} \in R A(\sigma)$
- if $s_{1} \cdot p_{1} \cdot p_{2} \cdot s_{2} \in \sigma$ then $s_{1} \cdot\left\langle p_{1}, p_{2}\right\rangle \cdot s_{2} \in R A(\sigma)$

I/O Simultaneity

$\llbracket \mathrm{seq}: \mathrm{com}_{1} \times \mathrm{com}_{2} \Rightarrow \mathrm{com}_{3} \rrbracket$

$$
R_{3} \cdot R_{1} \cdot D_{1} \cdot R_{2} \cdot D_{2} \cdot D_{3}
$$

In a synchronous setting: $\left\langle R_{3}, R_{1}\right\rangle \cdot \underbrace{\left\langle D_{1}, R_{2}\right\rangle}_{\text {round }} \cdot\left\langle D_{2}, D_{3}\right\rangle$

O/I Simultaneity

$$
\llbracket \mathrm{seq}: \mathrm{com}_{1} \times \mathrm{com}_{2} \Rightarrow \mathrm{com}_{3} \rrbracket
$$

$\left\langle R_{3}, R_{1}\right\rangle \cdot\left\langle D_{1}, R_{2}\right\rangle \cdot\left\langle D_{2}, D_{3}\right\rangle$
$\left\langle R_{3}, R_{1}, D_{1}, R_{2}\right\rangle \cdot\left\langle D_{2}, D_{3}\right\rangle$

O/I Simultaneity

$$
\llbracket \mathrm{seq}: \mathrm{com}_{1} \times \mathrm{com}_{2} \Rightarrow \mathrm{com}_{3} \rrbracket
$$

$$
\begin{aligned}
& \left\langle R_{3}, R_{1}\right\rangle \cdot\left\langle D_{1}, R_{2}\right\rangle \cdot\left\langle D_{2}, D_{3}\right\rangle \\
& \left\langle R_{3}, R_{1}, D_{1}, R_{2}\right\rangle \cdot\left\langle D_{2}, D_{3}\right\rangle \\
& \left\langle R_{3}, R_{1}\right\rangle \cdot\left\langle D_{1}, R_{2}, D_{2}, D_{3}\right\rangle
\end{aligned}
$$

O/I Simultaneity

$$
\llbracket \mathrm{seq}: \mathrm{com}_{1} \times \mathrm{com}_{2} \Rightarrow \mathrm{com}_{3} \rrbracket
$$

$\left\langle R_{3}, R_{1}\right\rangle \cdot\left\langle D_{1}, R_{2}\right\rangle \cdot\left\langle D_{2}, D_{3}\right\rangle$
$\left\langle R_{3}, R_{1}, D_{1}, R_{2}\right\rangle .\left\langle D_{2}, D_{3}\right\rangle$
$\left\langle R_{3}, R_{1}\right\rangle \cdot\left\langle D_{1}, R_{2}, D_{2}, D_{3}\right\rangle$
$\left\langle R_{3}, R_{1}, D_{1}, R_{2}, D_{2}, D_{3}\right\rangle$

Round Abstraction

- Given an output variable x on an asynchronous module P, next x for P is the module obtained by collapsing all computational steps occuring between two changes in x into a single computational step [AH99].
- Use a similar concept to systematically derive synchronous strategies for primitive that have an asynchronous definitions

Round generation

$=$ if $s_{1} \cdot 0 \cdot p \cdot s_{2} \in \sigma$ then $s_{1} \cdot\langle 0, p\rangle \cdot s_{2} \in R A(\sigma)$

- if $s_{1} \cdot p_{1} \cdot p_{2} \cdot s_{2} \in \sigma$ then $s_{1} \cdot\left\langle p_{1}, p_{2}\right\rangle \cdot s_{2} \in R A(\sigma)$

Instant feedback

- if $s_{1} \cdot p . o . s_{2} \in R A(\sigma)$ then $s_{1} \cdot\langle p, o\rangle . s_{2} \in R A(\sigma)$
- if $s_{1} \cdot o_{1} \cdot o_{2} \cdot s_{2} \in R A(\sigma)$ then $s_{1} \cdot\left\langle o_{1}, o_{2}\right\rangle \cdot s_{2} \in R A(\sigma)$

Strategy Derivation Through Round Abstraction

$$
\llbracket i f:\left(\exp _{1} \times \operatorname{com}_{2} \times \mathrm{com}_{3}\right) \rightarrow \operatorname{com}_{4} \rrbracket
$$

$R 4 . Q 1 . T 1 . R 2 . D 2 . D 4 \quad \xrightarrow{R A} \quad\langle R 4, Q 1\rangle .\langle T 1, R 2\rangle .\langle D 2, D 4\rangle$ $\langle R 4, Q 1, T 1, R 2\rangle .\langle D 2, D 4\rangle$ $\langle R 4, Q 1\rangle .\langle T 1, R 2, D 2, D 4\rangle$
$\langle R 4, Q 1, T 1, R 2, D 2, D 4\rangle$

Strategy Derivation Through Round Abstraction

$$
\llbracket i f:\left(\exp _{1} \times \operatorname{com}_{2} \times \operatorname{com}_{3}\right) \rightarrow \operatorname{com}_{4} \rrbracket
$$

R4.Q1.F1.R3.D3.D4 $\xrightarrow{R A} \quad\langle R 4, Q 1\rangle .\langle F 1, R 3\rangle .\langle D 3, D 4\rangle$ $\langle R 4, Q 1, F 1, R 3\rangle .\langle D 3, D 4\rangle$ $\langle R 4, Q 1\rangle .\langle F 1, R 3, D 3, D 4\rangle$
$\langle R 4, Q 1, F 1, R 3, D 3, D 4\rangle$

3 - Synchronous Interpretations of Synchronous Primitives

Synchronous Primitives

Strategies for synchronous primitives can be formulated.

Synchronous Primitives

Strategies for synchronous primitives can be formulated.

Esterel [BMR83]

Programs typically consist of several processes composed in parallel and synchronising using signals.

- Processes: sequential threads of execution.
- Signals: broadcast events of Boolean nature.

Synchronous Primitives

Strategies for synchronous primitives can be formulated.

Esterel [BMR83]

Programs typically consist of several processes composed in parallel and synchronising using signals.

- Processes: sequential threads of execution.
- Signals: broadcast events of Boolean nature.

Some candidates (from Esterel)

- pause
- $p \| q$
- emit S
- present S then p else q end
- await S
- suspend p when S

Synchronous Primitives

- ReactiveML [MP05] extends ML with such synchronous primitives by adding entities that are orthogonal to the type system.
- Processes.
- Signals.

Synchronous Primitives

- ReactiveML [MP05] extends ML with such synchronous primitives by adding entities that are orthogonal to the type system.
- Processes \rightarrow strategies.
- Signats \rightarrow moves.

Synchronous Primitives

- ReactiveML [MP05] extends ML with such synchronous primitives by adding entities that are orthogonal to the type system.
- Processes \rightarrow strategies.
- Signats \rightarrow moves.
- Use start and end of computation as signals.

The Semantics of await

```
trap T in
    loop
        pause;
        present S then exit T else nothing end
    end
```


The Semantics of await

```
trap T in
    loop
        pause;
        present S then exit T else nothing end
    end
```

- Variant: await the start of a command.
- A semantic version of a pointcut in Aspect-oriented Programming.

The Semantics of await

```
trap T in
    loop
        pause;
        present S then exit T else nothing end
    end
```

- Variant: await the start of a command.
- A semantic version of a pointcut in Aspect-oriented Programming.

The Semantics of await

The Semantics of await

The Semantics of await

R3

The Semantics of await

The Semantics of await

The Semantics of await

awaited

await: $\operatorname{com}_{1} \Rightarrow \operatorname{com}_{2} \times \operatorname{com}_{3}$

		r
r	r	d
d	d	

$\langle R 2, R 1\rangle .\langle D 1, R 2\rangle$ $\langle R 2, R 1, D 1, R 2\rangle$
$R 3 .\langle R 2, R 1, D 3\rangle .\langle D 1, D 2\rangle$
$R 3 .\langle R 2, R 1, D 3, D 1, D 2\rangle$
$\langle R 3, R 2, R 1, D 3\rangle .\langle D 1, D 2\rangle$
$\langle R 3, R 2, R 1, D 3, D 1, D 2\rangle$

4 - Categorical Structure

Synchronous Traces

Plays represented using synchronous traces.

Definition

A trace $t \in U$, where U is an arbitrary set of traces over a set of labels L, is a triple $\left\langle E, \preceq_{E}, \lambda: E \rightarrow L\right\rangle$ where

- E is a set of events,
- \preceq_{E} is a total preorder between events signifying temporal precedence.

The equivalence relation \approx_{E}, which means the simultaneous occurrence of two events, is defined as:

$$
\forall a, b \in E \bullet a \preceq_{E} b \wedge b \preceq_{E} a \Leftrightarrow a \approx_{E} b
$$

- λ is a function mapping events to labels in a set L.

Category

- Objects: sets of labels.
- Morphisms: sets of synchronous traces between sets of labels.

Composition

Definition

$U: A \rightarrow B$ and $V: B \rightarrow C$ are two arbitrary sets of synchronous traces. Their composition is a set of traces $U ; V: A \rightarrow C$ defined as:

$$
\begin{gathered}
U ; V=\left\{t^{\prime} \in \Theta_{A+C} \mid \exists t \in \Theta_{A+B+C} \bullet\right. \\
\text { out }_{A+B}^{A+B+C}(t) \in U \wedge \\
\text { out }_{B+C}^{A+B+C}(t) \in V \wedge \\
\\
\left.t^{\prime}=\text { out }_{A+C}^{A+B+C}(t)\right\}
\end{gathered}
$$

Identity

Definition

$$
\begin{aligned}
I D_{A}=\{ & \left\langle E, \preceq \preceq_{E}, \lambda: E \rightarrow A+A\right\rangle \mid \exists k \in \mathbb{N} \bullet E \stackrel{e}{\cong}\{1,2, \ldots, 2 k\}, \\
& \forall i<2 k \bullet e(i) \preceq_{E} e(i+1) \wedge \\
& \left(i \text { is odd } \Rightarrow e(i) \approx_{E} e(i+1)\right) \wedge \\
& \left.\left(\text { out }_{A_{1}}^{A_{1}+A_{2}} \circ \lambda \circ e\right)(i)=\left(\text { out }_{A_{2}}^{A_{1}+A_{2}} \circ \lambda \circ e\right)(i+1)\right\}
\end{aligned}
$$

Tensor

Definition

A tensor is a bifunctor $\otimes: \mathcal{S} \times \mathcal{S} \rightarrow \mathcal{S}$ defined as

- On objects: $A \otimes B=A+B$.
- On morphisms: $U: A \rightarrow B, V: C \rightarrow D$

$$
U \otimes V=\left\{t \in \Theta_{A+B+C+D} \mid \text { out }_{A+B}(t) \in U \wedge \text { out }_{C+D}(t) \in V\right\}
$$

Arrow

Definition

The arrow is a functor $\Rightarrow: \mathcal{S}^{o p} \times \mathcal{S} \rightarrow \mathcal{S}$ with the same definitions as \otimes. In a polarised setting, its definitions are:

- On objects: $A \Rightarrow B=B+A^{*}$
- On morphisms: $U \Rightarrow V=V \otimes U^{*}$
where * reverses the I/O polarities of labels.

Evaluation

Definition

Eval is a morphism eval $A_{A, B}: A \otimes(A \Rightarrow B) \rightarrow B$ that satisfies the following universal property: for every morphism $f: A \otimes X \rightarrow B$ in \mathcal{S} there exists a unique morphism $h: X \rightarrow A \Rightarrow B$ such that $f=e \operatorname{eval}_{A, B} \circ\left(I D_{A} \otimes h\right)$. It is defined as:

$$
\text { eval }_{A, B}=\left\{t \in \Theta_{A_{1}+A_{2}+B_{1}+B_{2}} \mid \text { out }_{A_{1}+A_{2}}(t) \in I D_{A_{1}+A_{2}} \wedge \text { out }_{B_{1}+B_{2}}(t) \in I D_{B_{1}+B_{2}}\right\}
$$

Evaluation - Universal Property

$\forall f: A \otimes X \rightarrow B,!\exists h: X \rightarrow A \Rightarrow B$ such that:

$$
f=e \operatorname{eva}_{A, B} \circ\left(i d_{A} \otimes h\right)
$$

Evaluation - Universal Property

$\forall f: A \otimes X \rightarrow B,!\exists h: X \rightarrow A \Rightarrow B$ such that:

$$
f=e v a l_{A, B} \circ\left(i d_{A} \otimes h\right)
$$

(Compact) Closed monoidal category

Outlook

- Closed monoidal category provides the right structural properties.
- Extend it with Cartesian product.
- Definability as a test for the choice of primitives.

Outlook

- Closed monoidal category provides the right structural properties.
- Extend it with Cartesian product.
- Definability as a test for the choice of primitives.

THANKS!

References

R
Alur, R \& Henzinger, T. A. (1999), "Reactive Modules", Formal Methods in System Design, 15, pp. 7-48.
E
Berry, G., Moisan, S. \& Rigault, J-P. (1983), "Esterel: Towards a Synchronous and Semantically Sound High-Level Language for Real-Time Applications", Proc. IEEE Real-Time Systems Symposium, pp. 30-40.
R
Ghica, D. R. \& Murawski, A. S. (2008), "Angelic Semantics of Fine-Grained Concurrency", Annals of Pure and Applied Logic, 151(2-3), pp. 89-114.
國 Mandel, L. \& Pouzet, M. (2005), "ReactiveML, a Reactive Extension to ML", Proc. Principles and Practice of Declarative Programming, pp. 82-93.

